【专题整理】【解答题】【数学归纳法、放缩法】【数列】
最新高中数学数列放缩专题用放缩法处理数列和不等问题(精品收藏)
数列和不等问题(教师版)一.先求和后放缩(主要是先裂项求和,再放缩处理) 例1.正数数列{}na 的前n 项的和nS ,满足12+=n n a S ,试求:(1)数列{}na 的通项公式;(2)设11+=n n na a b,数列{}n b 的前n 项的和为n B ,求证:21<n B 解:(1)由已知得2)1(4+=nna S ,2≥n 时,211)1(4+=--n n a S ,作差得:1212224----+=n n nnna a a a a ,所以0)2)((11=--+--n n n n a a a a ,又因为{}na 为正数数列,所以21=--n n a a ,即{}n a 是公差为2的等差数列,由1211+=a S ,得11=a ,所以12-=n a n(2))121121(21)12)(12(111+--=+-==+n n n n a a bn n n,所以21)12(2121)1211215131311(21<+-=+---+-=n n n B n 真题演练1:(06全国1卷理科22题)设数列{}na 的前n 项的和,14122333n nnS a +=-⨯+,1,2,3,n =(Ⅰ)求首项1a 与通项n a ;(Ⅱ)设2n n nT S =,1,2,3,n =,证明:132ni i T =<∑。
解: (Ⅰ)由 S n=错误!a n -错误!×2n +1+错误!, n=1,2,3,… , ①得 a 1=S 1= \f (4,3)a 1—错误!×4+错误! 所以a 1=2再由①有 Sn —1=\f (4,3)a n -1-错误!×2n+错误!, n=2,3,4,…将①和②相减得: a n =S n -S n-1= 错误!(an -a n-1)-错误!×(2n+1—2n),n=2,3, …整理得: a n +2n=4(an-1+2n-1),n=2,3, … , 因而数列{ a n +2n}是首项为a 1+2=4,公比为4的等比数列,即 : a n +2n =4×4n-1= 4n , n=1,2,3, …, 因而a n =4n -2n , n=1,2,3, …,(Ⅱ)将a n =4n —2n 代入①得 S n = \f (4,3)×(4n -2n)—\f (1,3)×2n+1 + 错误! = 错误!×(2n+1-1)(2n+1-2) = \f(2,3)×(2n+1-1)(2n-1)T n= \f(2n,S n) =错误!×错误! = 错误!×(错误! - 错误!)所以, 1ni i T =∑=错误!1(ni =∑错误! - 错误!) = 错误!×(错误! -1121n +-) < \f (3,2)二.先放缩再求和1.放缩后成等比数列,再求和例2.等比数列{}na 中,112a =-,前n 项的和为n S ,且798,,S S S 成等差数列.设nnn a a b -=12,数列{}nb 前n 项的和为nT ,证明:13nT<. 解:∵9789A A a a -=+,899A A a -=-,899a a a +=-,∴公比9812aq a==-.∴n na)21(-=. nn n nn n b 231)2(41)21(141⋅≤--=--=.(利用等比数列前n 项和的模拟公式n nSAq A=-猜想)∴n n b b b B ++=2131)211(31211)211(213123123123122<-=--⋅=⋅++⋅+⋅≤nn 。
高中数学解题技巧-数列放缩
数列放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩例1.(1)求∑=-n k k 12142的值; (2)求证:35112<∑=nk k.解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n ,所以122121114212+=+-=-∑=n n n k n k (2)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n k nk 奇巧积累:(1)⎪⎭⎫ ⎝⎛+--=-<=1211212144441222n n n n n (2))1(1)1(1)1()1(21211+--=-+=+n n n n n n n C C n n (3))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r r r r r r n r n r n nC Tr rrn r (4)25)1(123112111)11(<-++⨯+⨯++<+n n nn(5)nn nn 21121)12(21--=- (6)n n n -+<+221(7))1(21)1(2--<<-+n n nn n (8) nn n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+-(9)⎪⎭⎫ ⎝⎛++-+=+++⎪⎭⎫ ⎝⎛+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1 (10) !)1(1!1!)1(+-=+n n n n (11)21212121222)1212(21-++=-++=--+<n n n n n n n(11) )2(121121)12)(12(2)22)(12(2)12)(12(2)12(21112≥---=--=--<--=----n n n n n n n n n n n n n n (12)111)1(1)1(1)1)(1(11123--+⋅⎪⎪⎭⎫ ⎝⎛+--=+-<⋅=n n n n n n n n n n n n 11112111111+--<-++⋅⎪⎭⎫⎝⎛+--=n n n n n n n(13) 3212132122)12(332)13(2221nn nn n n n n n <-⇒>-⇒>-⇒>⋅-=⋅=+(14)!)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15) )2(1)1(1≥--<+n n n n n(15) 111)11)((1122222222<++++=+++--=-+-+j i j i j i j i j i ji j i例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n (2)求证:nn412141361161412-<++++(3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn(4) 求证:)112(2131211)11(2-+<++++<-+n nn解析:(1)因为⎪⎭⎫ ⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以 )12131(211)12131(211)12(112--+>+-+>-∑=n n i ni (2))111(41)1211(414136116141222nnn-+<+++=++++(3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ,再结合nn n -+<+221进行裂项,最后就可以得到答案 (4)首先nn n n n++=-+>12)1(21,所以容易经过裂项得到 nn 131211)11(2++++<-+再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n n例3.求证:35191411)12)(1(62<++++≤++n n n n解析:一方面:因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk 另一方面:1111)1(143132111914112+=+-=+++⨯+⨯+>++++n n n n n n当3≥n 时,)12)(1(61++>+n n n n n ,当1=n 时,2191411)12)(1(6n n n n ++++=++ ,当2=n 时,2191411)12)(1(6nn n n ++++<++ ,所以综上有35191411)12)(1(62<++++≤++n n n n例4.(2008年全国一卷) 设函数()ln f x x x x =-.数列{}n a 满足101a <<.1()n n a f a +=.设1(1)b a ∈,,整数11ln a b k a b-≥.证明:1k a b +>. 解析:由数学归纳法可以证明{}n a 是递增数列,故存在正整数k m ≤,使b a m ≥,则b a a k k ≥>+1,否则若)(k m b a m ≤<,则由101<<≤<b a a m 知0ln ln ln 11<<≤b a a a a a m m m ,∑=+-=-=k m m m k k k k a a a a a a a111ln ln ,因为)ln (ln 11b a k a a km m m <∑=,于是b a b a b a k a a k =-+≥+>+)(|ln |11111例5.已知m m m m m n S x N m n ++++=->∈+ 321,1,,,求证: 1)1()1(11-+<+<++m n m n S m n .解析:首先可以证明:nx x n +≥+1)1(∑=++++++++--=-++---+--=nk m m m m m m m m k kn n n n n 111111111])1([01)2()1()1( 所以要证1)1()1(11-+<+<++m n m n S m n 只要证:∑∑∑=+++++++++==++-+=-++--+-+=-+<+<--nk m m m m m m m m m n k m n k m m k k n n n n n k m k k 111111111111111])1[(2)1()1(1)1()1(])1([故只要证∑∑∑=++==++-+<+<--nk m m n k m nk m m k k k m k k1111111])1[()1(])1([,即等价于m m m m m k k k m k k -+<+<--+++111)1()1()1(,即等价于11)11(11,)11(11++-<+-+<++m m kk m k k m而正是成立的,所以原命题成立. 例6.已知n n n a 24-=,nnna a a T +++=212,求证:23321<++++nT T T T .解析:)21(2)14(3421)21(241)41(4)222(444421321n n nn n n nT -+-=-----=+++-++++=所以123)2(22232234232323422234342)21(2)14(3422111111+⋅-⋅⋅=+⋅-⋅=-+=-+-=-+-=++++++n n nn n n n n n n n n n n nn T⎪⎭⎫ ⎝⎛---=--⋅⋅=+12112123)12)(122(2231n n nn n 从而231211217131311231321<⎪⎭⎫ ⎝⎛---++-+-=+++++n n nT T T T例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n x n,求证:*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+证明:nnn n n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为12++<n n n ,所以)1(2122214122n n n n nx x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+二、函数放缩例8.求证:)(665333ln 44ln 33ln 22ln *N n n n nn∈+-<++++ .解析:先构造函数有xxx x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln n n nn+++--<++++ 因为⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 31121219181716151413121313121 6533323279189936365111n n n n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>---所以6653651333ln 44ln 33ln 22ln +-=--<++++n n n n nn例9.求证:(1)12ln 3ln 2ln 2--n n n αααααα解析:构造函数后即可证明例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n解析:1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案 例13.证明:)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n 解析:构造函数)1(1)1()1ln()(>+---=x x x x f ,求导,可以得到: 12111)('--=--=x x x x f ,令0)('>x f 有21<<x ,令0)('<x f 有2>x ,所以0)2()(=≤f x f ,所以2)1ln(-≤-x x ,令12+=n x 有,1ln 22-≤n n 所以211ln -≤+n n n,所以)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n 例14. 已知112111,(1).2n n n aa a n n +==+++证明2n a e <.解析:nn n n n a n n a n n a )21)1(11(21))1(11(1+++<+++=+,然后两边取自然对数,可以得到nn n a n n a ln )21)1(11ln(ln 1++++<+ 然后运用x x <+)1ln(和裂项可以得到答案)放缩思路:⇒+++≤+n nn a n n a )2111(21⇒++++≤+n n n a n n a ln )2111ln(ln 21 nn n n a 211ln 2+++≤。
高考数学数列放缩法技巧全总结
高考数学备考之 放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑=-nk k12142的值; (2)求证:35112<∑=nk k.解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n,所以122121114212+=+-=-∑=n n n k n k(2)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk奇巧积累:(1)⎪⎭⎫ ⎝⎛+--=-<=1211212144441222n n n n n (2))1(1)1(1)1()1(21211+--=-+=+n n n n n n n C C n n(3))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r r r r r r n r n r n n C T r rrn r(4)25)1(123112111)11(<-++⨯+⨯++<+n n nn(5)nn nn 21121)12(21--=- (6)n n n -+<+221(7))1(21)1(2--<<-+n n nn n (8)n n n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+-(9)⎪⎭⎫⎝⎛++-+=+++⎪⎭⎫ ⎝⎛+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1(10) !)1(1!1!)1(+-=+n n n n (11)21212121222)1212(21-++=-++=--+<n n n n n n n(11) )2(121121)12)(12(2)22)(12(2)12)(12(2)12(21112≥---=--=--<--=----n n n n n n n n n n n n n n(12) 111)1(1)1(1)1)(1(11123--+⋅⎪⎪⎭⎫ ⎝⎛+--=+-<⋅=n n n n n n n n n n n n(13) 3212132122)12(332)13(2221nn n n n n n n n <-⇒>-⇒>-⇒>⋅-=⋅=+(14) !)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15))2(1)1(1≥--<+n n n n n(15) 111)11)((1122222222<++++=+++--=-+-+j i j i j i j i j i j i j i例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n(2)求证:n n 412141361161412-<++++(3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n n n(4) 求证:)112(2131211)11(2-+<++++<-+n nn解析:(1)因为⎪⎭⎫⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以)12131(211)12131(211)12(112--+>+-+>-∑=n n i ni(2))111(41)1211(414136116141222n n n -+<+++=++++ (3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ,再结合nn n -+<+221进行裂项,最后就可以得到答案(4)首先nn n n n++=-+>12)1(21,所以容易经过裂项得到nn 131211)11(2++++<-+再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n n例3.求证:35191411)12)(1(62<++++≤++n n n n 解析: 一方面: 因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk另一方面: 1111)1(143132111914112+=+-=+++⨯+⨯+>++++n nn n n n当3≥n 时,)12)(1(61++>+n n nn n ,当1=n 时,2191411)12)(1(6n n n n ++++=++ ,当2=n 时,2191411)12)(1(6n n n n ++++<++ ,所以综上有35191411)12)(1(62<++++≤++n n n n 例4.(2008年全国一卷)设函数()ln f x x x x =-.数列{}na 满足101a <<.1()n n af a +=.设1(1)b a ∈,,整数11ln a bk a b-≥.证明:1k ab+>.解析: 由数学归纳法可以证明{}na 是递增数列, 故 若存在正整数k m ≤, 使ba m≥, 则ba ak k ≥>+1,若)(k m b am≤<,则由101<<≤<b a am 知0ln ln ln 11<<≤b a a a a am m m,∑=+-=-=km mm k k k k a a a a a a a 111ln ln ,因为)ln (ln 11b a k a akm m m<∑=,于是ba b a b a k a ak =-+≥+>+)(|ln |11111例5.已知mm m m m n S x N m n ++++=->∈+ 321,1,,,求证:1)1()1(11-+<+<++m n m n S m n .解析:首先可以证明:nxx n+≥+1)1(∑=++++++++--=-++---+--=nk m m m m m m m m k k n n n n n 111111111])1([01)2()1()1( 所以要证1)1()1(11-+<+<++m n m n S m n 只要证:∑∑∑=+++++++++==++-+=-++--+-+=-+<+<--n k m m m m m m m m m nk m n k m m k k n n n n n k m k k 111111111111111])1[(2)1()1(1)1()1(])1([故只要证∑∑∑=++==++-+<+<--nk m m n k m n k m m k k k m k k 1111111])1[()1(])1([,即等价于mm m m m k k k m k k -+<+<--+++111)1()1()1(,即等价于11)11(11,)11(11++-<+-+<++m m kk m k k m 而正是成立的,所以原命题成立.例6.已知nnna 24-=,nnn a a a T +++=212,求证:23321<++++n T T T T .解析:)21(2)14(3421)21(241)41(4)222(444421321n nn n nnn T -+-=-----=+++-++++=所以123)2(22232234232323422234342)21(2)14(3422111111+⋅-⋅⋅=+⋅-⋅=-+=-+-=-+-=++++++n n nn n n n n n n n n n nnn T从而231211217131311231321<⎪⎭⎫ ⎝⎛---++-+-=+++++n n n T T T T例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n x n ,求证:*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+证明: nnn n n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为 12++<n n n ,所以)1(2122214122n n n n nx x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+二、函数放缩 例8.求证:)(665333ln 44ln 33ln 22ln *N n n n n n ∈+-<++++ .解析:先构造函数有xx x x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln n n n n +++--<++++cause⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 31121219181716151413121313121 6533323279189936365111nn n n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>---所以6653651333ln 44ln 33ln 22ln +-=--<++++n n n n n n 例9.求证:(1))2()1(212ln 33ln 22ln ,22≥+--<+++≥n n n n n n ααααααα解析:构造函数xxx f ln )(=,得到22ln ln nnn n ≤αα,再进行裂项)1(1111ln 222+-<-≤n n nn n ,求和后可以得到答案函数构造形式: 1ln -≤x x ,)2(1ln ≥-≤αααn n例10.求证:n n n 1211)1ln(113121+++<+<++++ 解析:提示:2ln 1ln 1ln 1211ln)1ln(++-++=⋅⋅-⋅+=+ n nn n n n n n n函数构造形式:xx x x 11ln ,ln -><当然本题的证明还可以运用积分放缩如图,取函数xx f 1)(=,首先:⎰-<nin ABCF x S 1,从而,)ln(ln |ln 11i n n x x i n n i n nin --==<⋅--⎰取1=i 有,)1ln(ln 1--<n n n,所以有2ln 21<,2ln 3ln 31-<,…,)1ln(ln 1--<n n n ,n n n ln )1ln(11-+<+,相加后可以得到:)1ln(113121+<++++n n 另一方面⎰->ni n ABDEx S 1,从而有)ln(ln |ln 11i n n x x i i n n i n nin --==>⋅---⎰取1=i 有,)1ln(ln 11-->-n n n ,所以有nn 1211)1ln(+++<+ ,所以综上有nn n 1211)1ln(113121+++<+<++++例11.求证:e n <+⋅⋅++)!11()!311)(!211( 和en <+⋅⋅++)311()8111)(911(2 .解析:构造函数后即可证明例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n解析:1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案函数构造形式:)0(13)1ln(1)0(132)1ln(>+>++⇔>+->+x x x x x x x (加强命题)例13.证明:)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n解析:构造函数)1(1)1()1ln()(>+---=x x x x f ,求导,可以得到:12111)('--=--=x xx x f ,令0)('>x f 有21<<x ,令0)('<x f 有2>x ,所以0)2()(=≤f x f ,所以2)1ln(-≤-x x ,令12+=n x 有,1ln 22-≤n n所以211ln -≤+n n n ,所以)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n例14. 已知112111,(1).2n n n a a a n n +==+++证明2nae <.FE D C BAn-inyxO解析:nn n n n a n n a n n a )21)1(11(21))1(11(1+++<+++=+,然后两边取自然对数,可以得到nn n a n n a ln )21)1(11ln(ln 1++++<+然后运用x x <+)1ln(和裂项可以得到答案) 放缩思路:⇒+++≤+n nn a n n a )2111(21⇒++++≤+n nn a n n a ln )2111ln(ln 21nn n n a 211ln 2+++≤。
(学)高中数学数列放缩专题:用放缩法处理数列和不等问题(20200629095452)
数列和不等问题(教师版)•先求和后放缩(主要是先裂项求和,再放缩处理) 例1正数数列 a 詁勺前n 项的和S n ,满足2 S ; -a n 1,试求:(1)数列;a n 1的通项公式;AA(2)设b n ——,数列h n [的前n 项的和为B n ,求证:B n :::—a n an +2 3解:(1)由已知得 4S n =(a n J)2 , n_2 时,4S n ^-(a n j 1)2,作差得:4a n 二a ; • 2a n -a ;丄-2a n 」,所以(a n a nJ )(a n -a n 」-2)=0,又因为、a n {为正数数列,所以 a n - a n 丄=2,即:a n :■是公差为2的等差数列,由 2 S^a 1 1,得厲=1,所以a n = 2n -1111-(3 —),所以 2 2n -1 2n 14 1 2 彳得 a 1=S 1= 3*1 — "3X 4+"3 所以a 〔=2 3334 1将①和②相减得:a n =S — s —1= -(a n — a n -1) — -X (2n+13 3因而数列{ a n +2n}是首项为a1+2=4,公比为4的等比数列,即: ,,因而 a n =4 — 2 , n=1,2,3,,,4 n n 1 n+1 3X (4 — 2 ) — 2 + 2 1 n+1 n+13 = - X (2 — 1)(2 —2)2丁 (2n+1— 1)(2 n — 1) 3 2—-X 2n+1+3, n=1,2,3 ,,,①B n J(1 一1 !一! 2 3 3 5 2n -1 2n 1 2 2(2n 1) 2真题演练1: (06全国 1卷理科22题)设数列「a n ?的前n 项的和,& =4a n-- 2nd3 32-,n =1,2,3—(I)求首项 a i 与通项 a n ; (n)设 T n, S nnn =1,2,3,二3,证明:v T iid :再由①有S 4 —1 =§a n — 1 — 1 23X 2n+3, n=2,3 , 4,, 2n Tn =恳 2n3 2X (2 n+1— 1)(2 n — 1) 31=2 X (22n+1— 11n 所以,'、 i =11 i+1_ 3」 1T = 2二(2—1 — 2^—1)=i 332(21— 11 2n 1 -13 )<3⑵b n1 1a n a n 1 (2n -1)(2n 1)4Sn =3a整理得:a n +2n=4(a n — :+2n —:),n=2,3, a n +2n =4X 4n —:= 4n ,n=1,2,3, —2n ), n=2,3. (n )将a n =4n — 2n代入①得 S n =二.先放缩再求和1 •放缩后成等比数列,再求和例2.等比数列3中,a1 V ,前n 项的和为S ,且成等差数列.2设b n 二主—,数列4/前n 项的和为1 — a n真题演练2: (06福建卷理科22题)已知数列 订「满足a^1,3nd =2a n 1( N *).(I )求数列 曲的通项公式;(II )若数列 和[滿足4b ^44b2^' 4bn ^ -(a n - 1)bn (n ・N *),证明:数列〈b n ?是等差数列; (川)证明: ° _1 :::色■电■…,-a ^ ::: n (n ・ N *).2 3 a2a3an + 2» *(I )解:a n 1—2a n 1(n N ),-a n1 1=2(a n 1), :a n 1是以a 「1 = 2为首项,2为公比的等比数列 .a n 1 =2n .即 a n =22 -1(n N *).(II )证法一:;4k ^44k24...4kn4 =(a n 1)kn ..4E % +••*“)■» =2nk n2[(b b 2 ... b n )-n]= nb n ,① 2[(b 1 b 2 ... bn b n1)-(n 1)]=(n 1)b n1.②②—①,得 2(0 1 -1)=(n 1)b n1 - nbh,1T n'证明:「2解:T A 9 -A 7 =a 8 89,A 8 _ A 9a8' a 9V 9,二公比 q88(利用等比数列前 二 B n fb nb n11_(_1)nn 项和的模拟公式 4nS n 1 _(-2)n1<3 2n=Aq n - A 猜想)1 13 2 3 223 21 11 1 2(^2?)T — 2 1(1 1)3,2n ;即(n -1)bn 1 -nb n 2 =0, nb n 2 -(n 1)0 1 2=0. ③—④,得nb h .2-2nb h 1 nb n =0,d 2-20 10 =0,. 0 2 - g 1二 0 1 - 0 (□N *),.血?是等差数列故得 a n 1 -a n -32n 43 •放缩后成等差数列,再求和 例4.已知各项均为正数的数列 {a n }的前n 项和为& ,且a 2(山)证明:a kk .2 -1 k .2 -1a ia ? a 3k..a k 2-1-1 ak 12k -12(21) 1 ,k =1,2,..., n,2—— --------------------------------- ---------- — --------------------------------------- 二_ ——2 2(2k 1 -1) 2 3.2k2—2一2 321 1 1.k ,k= 1,2,...,n,a na ? a 3n 1 111、 n 11、 n 1-厂3(2戸…歹)匕一3(12)厂亍a ? a 3.电a n 1n *□ N).2 •放缩后为“差比”数列,再求和 例3•已知数列{a n }满足:a, =1 ,an 1= (1尹)a n ( n ~ 1,2,3 ).求证:a n1a n-3证明:因为 a n 1 = (1-斗)a n ,所以a n d 与a n 同号,又因为a^ ^1 0,所以a n 0 ,2即 a n 1 - a n0,即a n d ■ a n .所以数列{a n }为递增数列,所以a . — a1 =1,即 a n 1 " a n1累加得:a n ~^1 -2+——222nJ令S nn _•亍,两式相减得:1 n -1 —,所以Sn =2 nJn 2 22心,所以 an -32n -,a n二2S n.解:(1)在条件中,令 n=1,得 al - a^2S^2a 1,; a 1 0 . 1,又由条件 a 2 - a n = 2S n 有a 41 ■ a n 1 = 2S n 勺,上述两式相减,注意到 a n “ = S n j - S n 得(a n 1 a n )(a n 1 _a n _ 5 = 0a n 0 a n 1 a n 0二 a n 1「a n = 1所以,a n =1 1 (n -1) = n ,S n =练习:13 1. (08南京一模22题)设函数f (x ) x 2 bx,已知不论:J 为何实数,恒有f (cos 「)岂0且4 4f (2-si n 0.对于正数列,其前n 项和^乂仁內),(n • N *).(I )求实数b 的值;(II )求数列<a n ?的通项公式; —,n • N .,且数列;的前n 项和为T n ,试比较T n 和1的大小并证明之1 a n61解:(I ) b(利用函数值域夹逼性);(II ) a n =2n ,1;24 (04全国)已知数列{a n }的前n 项和S n 满足:S n =2a n ・(T )n , n_1(1)写出数列{a n }的前三项a 1,a 2,a ? ; ( 2)求数列{a .}的通项公式;⑴求证: S n:::2 2a n an 14⑵求证:n(n 1) 22 2所以2 2a n ' a n 14(2)因为 n v Jn(n +1) < n +1,所以 2 <、 <2 \:n(n+1) n+1所以2「n(n 1)2n n(n 1) 2 2、2S n 2(川)若,C n(出) C n—丄」 ・(2n 2)22 2n 1 2n 31 M二—工 5丄J 2n 36二数列{ a n }的通项公式为: a n 心十1)n ].⑶观察要证的不等式,左边很复杂,111 3「1 = 亠 亠•亠a4 a5 用等比数列的前1a m =2[22 - n 项公式求和,由于-1 1 13 - 2 2 1 2 1 23,1 13歹,因此,可将 先要设法对左边的项进行适当的放缩,使之能够求和。
高中数学数列放缩专题用放缩法处理数列和不等问题含答案
高中数学数列放缩专题用放缩法处理数列和不等问题含答案TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】用放缩法处理数列和不等问题(教师版)一.先求和后放缩(主要是先裂项求和,再放缩处理) 例1.正数数列{}n a 的前n 项的和n S ,满足12+=n n a S ,试求:(1)数列{}n a 的通项公式; (2)设11+=n n n a a b ,数列{}n b 的前n 项的和为n B ,求证:21<n B解:(1)由已知得2)1(4+=n n a S ,2≥n 时,211)1(4+=--n n a S ,作差得:1212224----+=n n n n n a a a a a ,所以0)2)((11=--+--n n n n a a a a ,又因为{}n a 为正数数列,所以21=--n n a a ,即{}n a 是公差为2的等差数列,由1211+=a S ,得11=a ,所以12-=n a n (2))121121(21)12)(12(111+--=+-==+n n n n a a b n n n ,所以 真题演练1:(06全国1卷理科22题)设数列{}n a 的前n 项的和,14122333n n n S a +=-⨯+,1,2,3,n =(Ⅰ)求首项1a 与通项n a ;(Ⅱ)设2nn nT S =,1,2,3,n =,证明:132ni i T =<∑.解:(Ⅰ)由S n =a n -×2n+1+,n=1,2,3,…,①得a 1=S 1=a 1-×4+所以a 1=2再由①有S n -1=a n -1-×2n+,n=2,3,4,…将①和②相减得:a n =S n -S n -1=(a n -a n -1)-×(2n+1-2n),n=2,3,…整理得:a n +2n=4(a n -1+2n -1),n=2,3,…,因而数列{a n +2n}是首项为a1+2=4,公比为4的等比数列,即:a n +2n=4×4n -1=4n ,n=1,2,3,…,因而a n =4n -2n,n=1,2,3,…,(Ⅱ)将a n =4n-2n代入①得S n =×(4n-2n)-×2n+1+=×(2n+1-1)(2n+1-2) =×(2n+1-1)(2n -1) T n ==×=×(-) 所以,1n i i T =∑=1(ni =∑-)=×(-1121n +-)<二.先放缩再求和1.放缩后成等比数列,再求和例2.等比数列{}n a 中,112a=-,前n 项的和为n S ,且798,,S S S 成等差数列.设nn n a a b -=12,数列{}n b 前n 项的和为n T ,证明:13n T <.解:∵9789A A a a -=+,899A A a -=-,899a a a +=-,∴公比9812a q a ==-. ∴n na )21(-=.nn n nn n b 231)2(41)21(141⋅≤--=--=. (利用等比数列前n 项和的模拟公式nn S Aq A =-猜想)∴n n b b b B ++=2131)211(31211)211(213123123123122<-=--⋅=⋅++⋅+⋅≤n n . 真题演练2:(06福建卷理科22题)已知数列{}n a 满足*111,21().n n a a a n N +==+∈(I )求数列{}n a 的通项公式;(II )若数列{}n b 满足12111*444(1)()n n b b b b n a n N ---=+∈,证明:数列{}n b 是等差数列; (Ⅲ)证明:*122311...()232n n a a a n n n N a a a +-<+++<∈.(I )解:*121(),n n a a n N +=+∈112(1),n n a a +∴+=+{}1n a ∴+是以112a +=为首项,2为公比的等比数列12.n n a ∴+=即 2*21().n a n N =-∈(II )证法一:1211144...4(1).n n k k k k n a ---=+122[(...)],n n b b b n nb ∴+++-= ①12112[(...)(1)](1).n n n b b b b n n b ++++++-+=+ ② ②-①,得112(1)(1),n n n b n b nb ++-=+-即1(1)20,n n n b nb +--+=21(1)20.n n nb n b ++-++= ③-④,得 2120,n n n nb nb nb ++-+=即 2120,n n n b b b ++-+=*211(),n n n n b b b b n N +++∴-=-∈{}n b ∴是等差数列(III)证明:1121211,1,2,...,,12122(2)2k k k k k k a k n a ++--==<=-- 2.放缩后为“差比”数列,再求和 例3.已知数列{}n a 满足:11=a ,)3,2,1()21(1 =+=+n a n a n n n .求证:11213-++-≥>n n n n a a 证明:因为n nn a na )21(1+=+,所以1+n a 与n a 同号,又因为011>=a ,所以0>n a , 即021>=-+n n n n a na a ,即n n a a >+1.所以数列{}n a 为递增数列,所以11=≥a a n , 即n n n n n n a n a a 221≥=-+,累加得:121212221--+++≥-n n n a a .令12212221--+++=n n n S ,所以n n n S 2122212132-+++= ,两式相减得:n n n n S 212121212121132--++++=- ,所以1212-+-=n n n S ,所以1213-+-≥n n n a , 故得11213-++-≥>n n n n a a .3.放缩后成等差数列,再求和例4.已知各项均为正数的数列{}n a 的前n 项和为n S ,且22n n n a a S +=.(1)求证:2214n n n a a S ++<;(2)<⋅⋅⋅解:(1)在条件中,令1=n ,得1112122a S a a ==+,1011=∴>a a ,又由条件n n n S a a 22=+有11212+++=+n n n S a a ,上述两式相减,注意到n n n S S a -=++11得0)1)((11=--+++n n n n a a a a 001>+∴>+n n n a a a ∴11n n a a +-=所以,n n a n =-⨯+=)1(11,(1)2n n n S +=所以42)1(212)1(21222++=++•<+=n n n a a n n n n S (2)因为1)1(+<+<n n n n ,所以212)1(2+<+<n n n n ,所以 2122312-=+=+n S n n ;222)1(2222121n n S n n n S S S =+=+++>++练习:1.(08南京一模22题)设函数213()44f x x bx =+-,已知不论,αβ为何实数,恒有(cos )0f α≤且(2sin )0f β-≥.对于正数列{}n a ,其前n 项和()n n S f a =,*()n N ∈.(Ⅰ)求实数b 的值;(II )求数列{}n a 的通项公式;1,1n n N a +=∈+,且数列{}n c 的前n 项和为n T ,试比较n T 和16的大小并证明之. 解:(Ⅰ)12b =(利用函数值域夹逼性);(II )21n a n =+; (Ⅲ)∵21111(22)22123n c n n n ⎛⎫=<- ⎪+++⎝⎭,∴1231111+23236n n T c c c c n ⎛⎫=+++⋅⋅⋅<-< ⎪+⎝⎭…2.(04全国)已知数列}{n a 的前n 项和n S 满足:nn n a S )1(2-+=,1≥n(1)写出数列}{n a 的前三项1a ,2a ,3a ;(2)求数列}{n a 的通项公式; (3)证明:对任意的整数4>m ,有8711154<+++m a a a 分析:⑴由递推公式易求:a 1=1,a 2=0,a 3=2;⑵由已知得:1112(1)2(1)nn n n n n n a S S a a ---=-=+----(n>1)化简得:1122(1)n n n a a --=+-2)1(2)1(11---=---n n n n a a ,]32)1([232)1(11+--=+---n n n n a a 故数列{32)1(+-n n a }是以321+-a 为首项,公比为2-的等比数列. 故1)2)(31(32)1(---=+-n nn a ∴22[2(1)]3n n n a -=-- ∴数列{n a }的通项公式为:22[2(1)]3n n n a -=--.⑶观察要证的不等式,左边很复杂,先要设法对左边的项进行适当的放缩,使之能够求和。
2024年高考数学二轮专题05 数列放缩(精讲精练)(解析版)
专题05 数列放缩【命题规律】数列放缩是高考重点考查的内容之一,数列与不等式综合热门难题(压轴题),有所降温,难度趋减,将稳定在中等偏难程度.此类问题往往从通项公式入手,若需要放缩也是考虑对通项公式进行变形;在放缩时,对通项公式的变形要向可求和数列的通项公式靠拢,常见的是向可裂项相消的数列与等比数列进行靠拢.【核心考点目录】核心考点一:先求和后放缩核心考点二:裂项放缩核心考点三:等比放缩核心考点四:1()()ni i a f n =<>∑型不等式的证明核心考点五:1()()n i i a f n =<>∏型不等式的证明核心考点六:1()ni i a b =<>∑型不等式的证明核心考点七:1()ni i a b =<>∏型不等式的证明【真题回归】1、(2022·全国·()e e ax x f x x =-.(1)当1a =时,讨论()f x 的单调性;(2)当0x >时,()1f x <-,求a 的取值范围;(3)设n *∈N ln(1)n >+ .【解析】(1)当1a =时,()()1e xf x x =-,则()e xf x x '=,当0x <时,()0f x '<,当0x >时,()0f x ¢>,故()f x 的减区间为(),0∞-,增区间为()0,∞+.(2)设()e e 1ax x h x x =-+,则()00h =,又()()1e e ax x h x ax '=+-,设()()1e e ax xg x ax =+-,则()()22e e ax xg x a a x '=+-,若12a >,则()0210g a '=->,因为()g x '为连续不间断函数,故存在()00,x ∈+∞,使得()00,x x ∀∈,总有()0g x '>,故()g x 在()00,x 为增函数,故()()00g x g >=,故()h x 在()00,x 为增函数,故()()01h x h >=-,与题设矛盾.若102a <≤,则()()()ln 11e e ee ax ax ax xx h x ax ++'=+-=-,下证:对任意0x >,总有()ln 1x x +<成立,证明:设()()ln 1S x x x =+-,故()11011x S x x x-'=-=<++,故()S x 在()0,∞+上为减函数,故()()00S x S <=即()ln 1x x +<成立.由上述不等式有()ln 12e e e e e e 0ax ax x ax ax x ax x +++-<-=-≤,故()0h x '≤总成立,即()h x 在()0,∞+上为减函数,所以()()00h x h <=.当0a ≤时,有()e e e 1100ax x axh x ax '=-+<-+=,所以()h x 在()0,∞+上为减函数,所以()()00h x h <=.综上,12a ≤.(3)取12a =,则0x ∀>,总有12e e 10xx x -+<成立,令12e x t =,则21,e ,2ln x t t x t >==故22ln 1t t t <-即12ln t t t<-对任意的1t >恒成立.所以对任意的*n ∈N,有<整理得到:()ln 1ln n n +-<()ln 2ln1ln 3ln 2ln 1ln n n>-+-+++- ()ln 1n =+,故不等式成立.2、(2022·全国·高考真题)记n S 为数列{}n a 的前n 项和,已知11,n n S a a ⎧⎫=⎨⎬⎩⎭是公差为13的等差数列.(1)求{}n a 的通项公式;(2)证明:121112na a a +++< .【解析】(1)∵11a =,∴111S a ==,∴111S a =,又∵n n S a ⎧⎫⎨⎩⎭是公差为13的等差数列,∴()121133n n S n n a +=+-=,∴()23n n n a S +=,∴当2n ≥时,()1113n n n a S --+=,∴()()112133n n n n n n a n a a S S --++=-=-,整理得:()()111n n n a n a --=+,即111n n a n a n -+=-,∴31211221n n n n n a a a a a a a a a a ---=⨯⨯⨯⋯⨯⨯()1341112212n n n n n n ++=⨯⨯⨯⋯⨯⨯=--,显然对于1n =也成立,∴{}n a 的通项公式()12n n n a +=;(2)()12112,11n a n n n n ⎛⎫==- ⎪++⎝⎭∴12111n a a a +++ 1111112121222311n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-=-< ⎪ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦3、(2021·天津·高考真题)已知{}n a 是公差为2的等差数列,其前8项和为64.{}n b 是公比大于0的等比数列,1324,48b b b =-=.(I )求{}n a 和{}n b 的通项公式;(II )记2*1,n n nc b b n N =+∈,(i )证明{}22n n c c -是等比数列;(ii)证明)*nk n N =<∈【解析】(I )因为{}n a 是公差为2的等差数列,其前8项和为64.所以12818782642a a a a ⨯++⋅⋅⋅+=+⨯=,所以11a =,所以()12121,n n n n N a a *=+-=-∈;设等比数列{}n b 的公比为(),0q q >,所以()221321484q b b b q q b q ==-=--,解得4q =(负值舍去),所以114,n n n b q n N b -*==∈;(II )(i )由题意,221441n n nn n b c b =++=,所以22224211442444n n nn nn n c c ⎛⎫⎛⎫=+-+=⋅ ⎪ ⎪⎝⎭⎝⎭-,所以220nn c c ≠-,且212222124424n n n n nn c c c c +++⋅==⋅--,所以数列{}22n n c c -是等比数列;(ii )由题意知,()()22122222121414242222n n n n n n n n n a n n c c a +-+-==<-⋅⋅⋅,12n n -==,所以112nn k k k -==<,设10121112322222nn k n k k n T --===+++⋅⋅⋅+∑,则123112322222n n n T =+++⋅⋅⋅+,两式相减得21111111122121222222212nn n n n nn n n T -⎛⎫⋅- ⎪+⎝⎭=+++⋅⋅⋅+-=-=--,所以1242n n n T -+=-,所以1112422nn k n k k n --==+⎫<=-<⎪⎭4、(2021·全国·高考真题(文))设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a 成等差数列.(1)求{}n a 和{}n b 的通项公式;(2)记n S 和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <.【解析】(1)因为{}n a 是首项为1的等比数列且1a ,23a ,39a 成等差数列,所以21369a a a =+,所以211169a q a a q =+,即29610q q -+=,解得13q =,所以11(3n n a -=,所以33n n n na nb ==.(2)[方法一]:作差后利用错位相减法求和211213333n n n n nT --=++++ ,012111111223333-⎛⎫=++++ ⎪⎝⎭ n n S ,230121123111112333323333n n nn S n T -⎛⎫⎛⎫-=++++-++++=⎪ ⎪⎝⎭⎝⎭ 012111012222333---++++ 111233---+n nn n .设0121111101212222Γ3333------=++++ n n n , ⑧则1231111012112222Γ33333-----=++++ n nn . ⑨由⑧-⑨得1121113312111113322Γ132********--⎛⎫--- ⎪⎛⎫⎝⎭=-++++-=-+- ⎪⎝⎭- n n n n n n n .所以21312Γ4323---=--=⨯⨯n n n n 因此10232323--=-=-<⨯⨯n n n n n S n n nT .故2nn S T <.[方法二]【最优解】:公式法和错位相减求和法证明:由(1)可得11(1)313(1)12313n n n S ⨯-==--,211213333n n n n nT --=++++ ,①231112133333n n n n nT +-=++++ ,②①-②得23121111333333n n n n T +=++++- 1111(1)1133(1)1323313n n n n n n ++-=-=---,所以31(14323n n nn T =--⋅,所以2n n S T -=3131(1)(1043234323n n n n n n ----=-<⋅⋅,所以2nn S T <.[方法三]:构造裂项法由(Ⅰ)知13⎛⎫= ⎪⎝⎭n n b n ,令1()3αβ⎛⎫=+ ⎪⎝⎭nn c n ,且1+=-n n n b c c ,即1111()[(1)]333αβαβ+⎛⎫⎛⎫⎛⎫=+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭nnn n n n ,通过等式左右两边系数比对易得33,24αβ==,所以331243nn c n ⎛⎫⎛⎫=+⋅ ⎪ ⎪⎝⎭⎝⎭.则12113314423nn n n n T b b b c c +⎛⎫⎛⎫=+++=-=-+ ⎪⎪⎝⎭⎝⎭,下同方法二.[方法四]:导函数法设()231()1-=++++=- n nx x f x x x x x x,由于()()()()()()1221'111'11(1)'1(1)1n n n n nx x x x x x x x nx n x x x x +⎡⎤⎡⎤⎡⎤----⨯--+-+⎣⎦⎣⎦⎢⎥==---⎢⎥⎣⎦,则21()123-=++++=' n f x x x nx又1111333-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭n n n b n n ,所以2112311111233333n n n T b b b b n -⎡⎤⎛⎫⎛⎫=++++=+⨯+⨯++⋅=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦ 12111(1)11133333113n nn n f +⎛⎫⎛⎫+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭⋅=⨯ ⎪⎝⎭⎛⎫- ⎪⎝⎭'13113311(1)4334423n nnn n n +⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+-+=-+⎢⎥ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,下同方法二.【整体点评】本题主要考查数列的求和,涉及到等差数列的性质,错位相减法求数列的和,考查学生的数学运算能力,是一道中档题,其中证明不等式时采用作差法,或者作商法要根据式子得结构类型灵活选择,关键是要看如何消项化简的更为简洁.(2)的方法一直接作差后利用错位相减法求其部分和,进而证得结论;方法二根据数列的不同特点,分别利用公式法和错位相减法求得,n n S T ,然后证得结论,为最优解;方法三采用构造数列裂项求和的方法,关键是构造1()3αβ⎛⎫=+ ⎪⎝⎭nn c n ,使1+=-n n n b c c ,求得n T 的表达式,这是错位相减法的一种替代方法,方法四利用导数方法求和,也是代替错位相减求和法的一种方法.【方法技巧与总结】常见放缩公式:(1)()()21111211<=-≥--n n n n n n ;(2)()2111111>=-++n n n n n ;(3)2221441124412121⎛⎫=<=- ⎪--+⎝⎭n n n n n ;(4)()()()11!111112!!!11+=⋅=⋅<<=-≥---rr n r r n T C r n r n r n r r r r r;(5)()1111111312231⎛⎫+<+++++< ⎪⨯⨯-⎝⎭nn n n ;(6(()22<=≥n ;(7(2=>=;(8=<==+;(9)()()()()()()()1211222211212121212122212121---=<==----------nn n n n n n n n n n n n()2≥n ;(10=<=2=-=-()22<≥n;(11=<=()2n==-≥;(12)()()01211122221111111nnn n nC C C n n n n=<==--++-+++-;(13)()()()111121122121212121nn n nn nn---<=-≥-----.(14)=<<=.(15)二项式定理①由于()0112(1)21(11)11(3)2n n nn n n n nn nC C C C C n+-=+-=+++->+=≥,于是12112(3)21(1)1nnn n n n⎛⎫<=-≥⎪-++⎝⎭②221(3)n n n>+≥,011012(11)221n n n nn n n n n nC C C C C C n-=+=++++>+=+;222(5)n n n n≥++≥,0122101222(11)2222n n n n nn n n n n n n n nC C C C C C C C C n n--=+=++++++≥++=++(16)糖水不等式若>>>0,0b a m,则+>+a m ab m b;若>>>0b a m,则-<-a m ab m b.【核心考点】核心考点一:先求和后放缩例1.(2022·全国·模拟预测)己知n S为等比数列{}n a的前n项和,若24a,32a,4a成等差数列,且4282S a=-.(1)求数列{}n a的通项公式;(2)若()()122nnn naba a+=++,且数列{}nb的前n项和为nT,证明:11124nT≤<.【解析】(1)设数列{}n a的公比为q,由24a,32a,4a成等差数列可得24344a a a+=,故244q q+=,解得2q=,由4282S a=-可得()4111216212aa-=--,解得12a=,故2nna=,即数列{}n a的通项公式为2,Nnna n*=∈.(2)由(1)可得()()()()1112112222222222n n n n n n n n n a b a a +++===-++++++,故1111111111114661010182222422n n n n T ++=-+-+-+⋅⋅⋅+-=-+++.当1n =时,1122n ++取得最大值16,当n →+∞时,11022n +→+1110226n +∴<≤+,故11124n T ≤<.例2.(2022·江苏南京·模拟预测)记数列{}n a 的前n 项和为n S ,已知12a =-,()1122n n n S S +++=-.(1)求{}n a 的通项公式;(2)记数列{}n a 的前n 项和为n T ,证明:3n n n S T S ≤<.【解析】(1)由()1122n n n S S ++=-+-,两边同时除以()12n +-可得:()()11122n nn nS S ++=+--,故数列()2n n S ⎧⎫⎪⎪⎨⎬-⎪⎪⎩⎭为以1为公差的等差数列,则()()()111111222n n S S a n n n =+-⨯=+-=---,即()2n n S n =⋅-,当2n ≥时,()()()()()111212231n n n n n n a S S n n n ---=-=⋅----=--+,将1n =代入上式,可得()()1112312a -=--+=-,则1a 满足上式,故数列{}n a 的通项公式()()1231n n a n -=--+.(2)由*N n ∈,则310n -+<,即()()()11231231n n n a n n --=--+=-,()0121222528231n n T n -=⨯+⨯+⨯++- ,()1232222528231n n T n =⨯+⨯+⨯++- ,两式相减可得,()1212232323231n nn T n --=+⨯+⨯++⨯-- ()()231232222231n n n -=+⨯++++-- ()()12122323112n n n -⨯-=+⨯---()()12621231n n n -=+⨯---()2326231n n n =+⨯---()4243n n =-+-,则()4234nn T n =+-,由(1)可得()22nnn S n n =⋅-=⋅,()()423424224n n n n n T S n n n -=+--⋅=+-,令()4224n n b n =+-,()()11142224422420n n n n n b b n n n +++-=++----=⋅>,则数列{}n b 为递增数列,()1142240b =+⨯-=,则0n b ≥,即n n T S ≥;()2342343242n n n n n T S n n +-=+--⋅=-,令242n n c +=-,易知数列{}n c 为递减数列,1214240c +=-=-<,则0n c <,即3n n S T >.综上,不等式3n n n S T S ≤<恒成立.例3.(2022·重庆巴蜀中学高三阶段练习)已知数列{}n a 满足11a =,{}n a 的前n 项和为n S ,且()*122n n a S n +=-∈N .(1)求数列{}n a 的通项公式;(2)设4n n nb a =⋅,记12n n T b b b =+++ ,证明:1n T <.【解析】(1)依题意()*122n n a S n +=-∈N ,()1122,22n n n n n S S S S S ++-=-=+,()11111,2222n n n n S S S S ++=+-=-,所以数列{}2n S -是首项为11221S a -=-=-,公比为12的等比数列,所以11112,222n n n n S S ---==-,当2n ≥时,由1122n n S -=-得12122n n S --=-,两式相减并化简得()2111111211222222n n n n n n a n -----=-=-=≥,1a 也符合上式,所以112n n a -=.(2)111242n n n n n b -+==⋅,23112222n n n T +=+++ ,3421122222n n n T +=+++ ,两式相减得2312111122222n n n n T ++=+++- ,所以1211112222n n n n T +=+++-11111112221111222212n n n n n n n n +++⎛⎫- ⎪+⎝⎭=-=--=-<-.例4.(2022·黑龙江·海伦市第一中学高三期中)在各项均为正数的数列{}n a 中,13a =,且()2116n n n n a a a a ++=+.(1)求{}n a 的通项公式;(2)若()()()121111n n n n n a b a a +--=++,数列{}n b 的前n 项和为nT,证明:14n T <.【解析】(1)因为{}n a 各项为正数,()2116n n n n a a a a ++=+,所以上式两边同时除以2na ,得1126n n n n a aa a ++⎛⎫= ⎝⎭+⎪,令()10n na x a x +=>,则26x x =+,即260x x --=,解得3x =(负值舍去),所以13n na a +=,又13a =,所以{}n a 是以13a =,3q =的等比数列,故1333n nn a -=⨯=.(2)由(1)得()()()121111333n n n n n b +--==++()()()()()11111133331111313n n n n n n n n n n ++++-+++==-++++,所以223111111111223131313133343n n n n T nn n ++++-+++⎛⎫⎛⎫⎛⎫=-+-+=- ⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭+ ,因为*N n ∈,则11031n n ++>+,所以14nT <.例5.(2022·山西临汾·高三阶段练习)在各项均为正数的等比数列{}n a 中,n S 为其前n 项和,11a =,3a ,22S ,4a 成等差数列.(1)求{}n a 的通项公式;(2)若()2log 1n nb S =+,数列122n n n n b b b a ++⎧⎫+⎨⎩⎭的前n 项和为n T ,证明:3182n T ≤<.【解析】(1)设数列{}n a 的公比为q ,由题意知2344S a a =+,即()()2321244(1)1a a q q q q q +=+=+=+,因为*n ∀∈N ,0n a >,所以0q >,所以2q =,所以12n n a -=.(2)证明:由(1)得122112n n n S -==--,所以2log 2nn b n ==,所以()()1112221112212n n n n n n n b n b b a n n n n ++++++==-+⋅⋅+⋅,所以()()1223111111111112222232212212n n n n T n n n ++=-+-+⋅⋅⋅+-=-⨯⨯⨯⨯⨯+⨯+⨯.显然{}n T 单调递增,所以138n T T ≥=,因为()11012n n +>+⨯,所以12nT <,所以3182n T ≤<.例6.(2022·浙江·慈溪中学高三期中)已知数列{}n a 的前n 项和为n S ,若23123452n S S S S n n n ++++=++ ,(1)求数列{}n a 的通项公式;(2)证明:123111138n S S S S ++++< .【解析】(1)当2n ≥时,23123452n S S S S n n n ++++=++ ()()23112113451n S S S S n n n -++++=-+-+ 相减得()()22222nn S n S n n n n =⇒=+≥+当1n =时,16=S 符合上式所以()()*22N n S n n n =+∈.当2n ≥时,()()()12221142n n n a S S n n n n n -=-=+--+=+当1n =时,116a S ==符合上式.故()*42N n a n n =+∈(2)由(1)知:()111112242n S n n n n ⎛⎫==- ⎪++⎝⎭所以1231111nS S S S ++++ 111111111111143243546112n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-++-+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 111113113111314212421284128n n n n n n ⎛⎫⎛⎫⎛⎫=+--=--=-+< ⎪ ⎪ ⎪++++++⎝⎭⎝⎭⎝⎭核心考点二:裂项放缩例7.(2022·天津市新华中学高三阶段练习)已知n S 为数列{}n a 的前n 项和,且(1)2n n n S +=,数列{}n b 前n 项和为n T ,且12b =,12n n b T +=+.(1)求{}n a 和{}n b 的通项公式;(2)设2(1)n n n c a =-,设数列{}n c 的前n 项和为n P ,求2n P ;(3)证明:()22211121ni i i i a a b =++<-∑.【解析】(1)由(1)2n n n S +=,当1n =时,111a S ==,当2n ≥时,()()1+11===22n n n n n n n a S S n ----,检验1n =时,111a S ==,所以=n a n ;因为12n n b T +=+,1=+2n n b T -(2n ≥),所以+11==n n n n n b b T T b ---,即12n nb b +=(2n ≥),而12112,224b b T b ==+=+=,故212b b =满足上式,所以{}n b 是以12b =,公比等于2的等比数列,即2nn b =;(2)因为22=(1)=(1)n n n n c a n --,所以()()22212+=21+2=41n n c c n n ---,所以21234212=++++++n n n P c c c c c c - ()23+41=3+7++41==2+2n n n n n --⋅⋅⋅;(3)因为()()2222+12+1+1+1+1+1=<(1)1212n n n n n a n n a b n n n ---,()()()()22+1+1+1+1+1+1+1++11+1111==+=+12122122122n n n n n n n n n n n n n n n n n n n n ---⋅-⋅-⋅-⋅⋅.所以()22222+1111(1)1nni i i i i i i i i a a a a b a b -==+++-∑∑ ,()2+1+122+11111=+(1)2122nn i i i i i i i i i a a a b i i ---⋅⋅==⎛⎫+ ⎪ ⎪⎝⎭∑∑()34+12334+1111111111=+++++++2222222232122n n n n n ⋅⋅⋅--⋅⋅⋅-⨯⨯⨯-⋅⋅1+1+1+11111111182=+=14222212n n n n n n -----⋅⋅-⎛⎫ ⎪⎝⎭,因为1102n +>,+11>02n n ⋅,所以+1+11111<2222n n n --⋅,即22+111(1)2ni i i i i a a a b -=+∑,即证:()22211121ni i i i a a b =++<-∑;综上,=n a n ,2nn b =,222n P n n =+ .例8.(2022·山东·济宁市育才中学高三开学考试)已知数列{an }的前n 项和为Sn ,且()14211n n S n a +=-+,a 1=1.(1)求数列{an }的通项公式;(2)设n b =,数列{bn }的前n 项和为Tn ,证明32n T <.【解析】(1)因为()14211n n S n a +=-+,所以()()142312n n S n a n -=-+≥.两式相减,得()()()1421232n n n a n a n a n +=---≥,即()()12121n n n a n a ++=-所以当2n ≥时,12121n na n a n ++=-,在()14211n n S n a +=-+中,令1n =,得23a =,所以123211232121232553121(2)23252731n n n n n n n a a a a a n n n a n n a a a a a n n n --------=⋅⋅⋅⋅⋅⋅⋅⋅=-≥--- ,又11a =满足,所以21n a n =-所以()()()1212322n n a a n n n --=---=≥,故数列{an }是首项为1,公差为2的等差数列,且21n a n =-.(2)()2122n n n S n n -=+⨯=,所以()()()12211=21221222222n b n n n n n n n n <=-----,当1n =时,1312T ==<,当2n ≥时,11111131312446222222n T n n n ⎛⎫<+-+-++-=-< ⎪-⎝⎭ ,所以32n T <.例9.(2022·天津一中高三阶段练习)已知数列{}n a 满足111,2,22,n n n a n a a a n +-⎧==⎨+⎩为奇数为偶数记21n n b a -=.(1)证明:数列{}n b 为等比数列,并求出数列{}n b 的通项公式;(2)求数列{}n a 的前2n 项和2n S .(3)设()2111log n n c n b +=+,记数列{}n c 的前n 项和为n T ,求证:34n T <.【解析】(1)证明:因为21n n b a -=,所以()121221212221222n n n n n n b a a a a b ++--==+=-+==,又112b a ==,所以数列{}n b 是首项为2,公比为2的等比数列,所以2nn b =.(2)()()21321242n n n S a a a a a a -=++⋯++++⋯+()()()()1321132111n n a a a a a a -⎡⎤=++⋯++-+-+⋯+-⎣⎦()13212n a a a n-=++⋯+-()122n b b b n=++⋯+-()221222412n n n n +-=⋅-=---(3)222111111(1)21222n c n n n n n n n ⎛⎫==<=- ⎪+++++⎝⎭1111111112324352n T n n ⎛⎫∴<-+-+-++- ⎪+⎝⎭ 11113122124n n ⎛⎫=+--< ⎪++⎝⎭例10.(2022·全国·成都七中高三开学考试(理))记数列{}n a 前n 项和为n S ,222n n S n na n +=+.(1)证明:{}n a 为等差数列;(2)若11a =,记n T 为数列{}n a 的前n 项积,证明:112nk kT =∑<.【解析】(1)由题意,得222n n S na n n =+-.则()()21122111n n S n a n n --=-+---.两式相减,得()()*12222222n n n a n a n n n ----=-≥∈N ,,,即*112n n a a n n --=≥∈N ,,,{}n a ∴是等差数列.(2)因为11a =,由(1)知*112n n a a n n --=≥∈N ,,(11a =也符合此式)故数列{}n a 的通项公式为n a n =则123!n n T a a a a n =⋅⋅=L 所以1111111!2!3!!nk k T n =∑=++++L ()111112231n n ≤++++⨯⨯-L 11111112231n n ⎛⎫⎛⎫⎛⎫=+-+-++- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭L 122n=-<故112nk kT =∑<,得证.例11.(2022·河南·模拟预测(理))若数列{}n a 满足11a =,12n n a a n +-=.(1)求{}n a 的通项公式;(2)证明:121112na a a +++< .【解析】(1)因为12n n a a n +-=,11a =,所以()()()1122112(1)2(2)21n n n n n a a a a a a a a n n ---=-+-++-+=-+-+++ 2222(1)112n n n n -+⋅-+=-+=,故21n a n n =-+;(2)证明:当n =1时,1112a =<;当2n ≥时,2111111(1)1n a n n n n n n=<=--+--,则12231111111111111112231n n a a a a a a n n ⎛⎫+++=++++<+-+-++- ⎪-⎝⎭ 122n =-<,故121112na a a +++< ;综上,21n a n n =-+.核心考点三:等比放缩例12.(2022·重庆八中高三阶段练习)记n S 为数列{}n a 的前n 项和,已知1=2a ,{}32n n a S -是公差为2的等差数列.(1)求{}n a 的通项公式;(2)证明:121111na a a ++⋅⋅⋅+<.【解析】(1)111322a S a -== ,()322212n n a S n n ∴-=+-=,即32n n S a n =-;当2n ≥且n *∈N 时,()1133122n n n n n a S S a n a n --=-=--+-,即132n n a a -=+,()1131n n a a -∴+=+,又113a +=,∴数列{}1n a +是以3为首项,3为公比的等比数列,13n n a ∴+=,则31n n a =-.(2)由(1)得:1131nn a =-,()()212323320331331331n n n n n n n n n ⋅----==>--- ,123n n a ∴<,2121111112221332111333313n n n n a a a ⎛⎫- ⎪⎝⎭∴++⋅⋅⋅+<++⋅⋅⋅+=⨯=-<-.例13.(2022·广东·高三阶段练习)已知数列{}n a 的首项为1,n S 为数列{}n a 的前n 项和,11n n S qS +=+,其中0,q n N *>∈.(1)若2322,,2a a a +成等差数列,求{}n a 的通项公式;(2)设数列{}n b满足n b =,且253b =,数列{}n b 的前n 项和为n T ,证明:()1433n nn n T n N *-->∈.【解析】(1)由11n n S qS +=+得211n n S qS ++=+,两式相减得21(1)n n a qa n ++=≥,由211S qS =+可得21a qa =,故1n n a qa +=对所有n N *∈都成立,所以数列{}n a 是首项为1,公比为q 的等比数列,从而1n n a q -=,由2322,,2a a a +成等差数列可得32232a a =+,化简得22320q q --=,又0q >,解得12,2q q ==-(舍去),所以()12n n a n -*=∈N .(2)由题意可知n b ==由253b =53=,解得44,33q q ==-(舍去),又222(1)1144411333n n n ---⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫+=+>⎢⎥⎢⎥ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦143n -⎛⎫> ⎪⎝⎭,即()143n n b n N -*⎛⎫>∈ ⎪⎝⎭,则11241443143313nn n b b b -⎛⎫- ⎪⎛⎫⎝⎭+++>+++= ⎪⎝⎭-,即()1433n nn n T n N *-->∈.例14.(2022·天津·南开中学高三阶段练习)记n S 是公差不为0的等差数列{}n a 的前n 项和,已知3453a a S +=,154a a S =,数列{}n b 满足()11322n n n b b n --=+≥,且111b a =-.(1)求{}n a 的通项公式,并证明数列12n nb ⎧⎫+⎨⎬⎩⎭是等比数列;(2)若数列{}n c 满足()()()114111n n n n nc a a -+=---,求{}n c 的前n 项和的最大值、最小值.(3)求证:对于任意正整数n ,1211132n b b b +++< .【解析】(1)设等差数列{}n a 的公差为()d d≠0,由3451543a a S a a S +=⎧⎨=⎩,可得1111115423(3)5243(4)42a d a d a d a a d a d ⨯⎧+++=+⎪⎪⎨⨯⎪+=+⎪⎩,解得122a d =⎧⎨=⎩或100a d =⎧⎨=⎩(舍去),22(1)2n a n n =+-=∴.又1111b a =-=,则113122b +=,由()11322n n n b b n --=+≥,可得11312222n n n n b b --=⋅+,∴11311222n n n n b b --⎛⎫+=+⎪⎝⎭,∴数列12n nb ⎧⎫+⎨⎬⎩⎭是以32为首项,32为公比的等比数列;(2)由(1)可得()()()()()()()()()111144411111212212121n n n n n n n n n c a a n n n n ---+=-=-=----+--+()()()()()()112121122111121121n n n n n n n n --⎛⎫=-+ ⎪++-=+-⎝-+-⎭,设{}n c 的前n 项和为n W ,则()11231111111111335572121n n n W c c c c n n -⎛⎫⎛⎫⎛⎫⎛⎫=+++⋯+=+-++++⋯+-+ ⎪ ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭⎝⎭111(1)21n n -=+-+,当n 为奇数时,1121n W n =++随着n 的增大而减小,可得413n W <≤,当n 为偶数时,1121n W n =-+随着n 的增大而增大,可得415n W ≤<,n W ∴的最大值为43,最小值为45.(3)证明:因为数列12n nb ⎧⎫+⎨⎬⎩⎭是以32为首项,32为公比的等比数列,∴3122nn n b ⎛⎫+= ⎪⎝⎭,∴32n nn b =-.所以1111323n n n n b -=≤-,所以1231111nb b b b ++++ 211111333n -≤++++ 11133131123213n n⎡⎤⎛⎫⨯-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦==-<⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-,所以1211132n b b b +++< .例15.(2022·浙江大学附属中学高三期中)记n S 为数列{}n a 的前n 项和,已知12a =,{}32n n a S -是公差为2的等差数列.(1)求证{}1n a +为等比数列,并求{}n a 的通项公式;(2)证明:121111na a a +++< .【解析】(1)因为{}32n n a S -是公差为2的等差数列,1111123232a S a a a --===,所以()232122n n n n a S =-⨯-+=,当2n ≥时,112322n n a n S --=--,两式相减得,12332n n n a a a ---=,即132n n a a -=+,故()1131n n a a -+=+,又113a +=,所以{}1n a +是首项为3,公比为3的等比数列,故11333n n n a -+=⨯=,则31n n a =-.(2)因为*N n ∈,所以()2313323323n n n n n->+->+->,则211331n n n a >=-,即123nn a <,所以2121113311122212111333313nn nn a a a ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦+++<+++=⨯=-< ⎪⎝⎭- .例16.(2022·浙江·模拟预测)已知正项数列{}n a 满足11a =,当2n ≥时,22121n n a a n --=-,{}n a 的前n 项和为n S .(1)求数列{}n a 的通项公式及n S ;(2)数列{}n b 是等比数列,q 为数列{}n b 的公比,且13b q a ==,记21n n n nS a c b -+=,证明:122733n c c c ≤++⋅⋅⋅+<【解析】(1)当2n ≥时,22121n n a a n --=-累加可得22,0,,n n n a n a a n =>\= 且当1n =时,11a =符合,n a n ∴=.由等差数列前n 项和的公式可得:(1)2n n n S +=(2)由(1)得213n n n c +=,对于左边,123c =,又120,3n n k k c c =>>å ,对于右边,212(1)12132213122121122,(1)(11)313133n nn n n ncn n n n c n n ++++++++³==×=+£+=++,1211213255252257527239939339333313n n n nk k c ---=éùæöêú-ç÷ç÷êúæöæöèøëûç÷ç÷\£++´++´=+´=-´<ç÷ç÷èøèø-å .综上:122733n c c c £+++< 成立.例17.(2022·江苏·泗洪县洪翔中学高三开学考试)已知数列{}n a 的前n 项和为n S ,13a =,12n n S a +=+.(1)证明:数列{}2n S -为等比数列;(2)记数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,证明:2n T <.【解析】(1)因为()1122n n n n S a S S ++=+=+-,所以122n n S S +=+,所以()1222n n S S +-=-,因为120S -≠,所以10n S -≠,1222n n S S +-=-,故数列{}2n S -为等比数列,首项为121S -=,公比为2;(2)由(1)可知122n n S --=,所以11111222n n n S --=<+,所以21111111212121222212n n n nT -⎛⎫- ⎪⎛⎫⎝⎭<+++⋅⋅⋅+==-< ⎪⎝⎭-.核心考点四:1()()ni i a f n =<>∑型不等式的证明例18.(2022·山东省实验中学模拟预测)已知函数1ln ()xf x x+=.(1)求函数()y f x =的最大值;(2)若关于x 的方程2ln e e 1x x x x kx =-+-有实数根,求实数k 的取值范围;(3)证明:()2*222ln 2ln 3ln 21N ,2234(1)n n n n n n n --+++<∈≥+ .【解析】(1)2ln ()xf x x -'=,当(0,1)x ∈时,()0f x '>,当(1,)x ∈+∞时,()0f x '<,()f x 在(0,1)上单调递增,在(1,)+∞上单调递减所以max ()(1)1f x f ==,即当1x =时,()f x 取最大值1.(2)依题意,21ln ln e e 1(e e )x x x x x x kx k x x +=-+-⇔=+-,令1ln ()(e e )x xg x x x +=+-,2ln ()(e e )x xg x x -'=+-,当(0,1)x ∈时,()0g x '>,当(1,)x ∈+∞时,()0g x '<,()g x 在(0,1)上单调递增,在(1,)+∞上单调递减,即max ()(1)1g x g ==,因此()g x 的值域是(,1]-∞,方程1ln )(e e x xk x x+=+-有解,有1k ≤,所以实数k 的取值范围是1k ≤.(3)由(1)知()1f x ≤,当且仅当1x =时取等号,因此当1x >时,ln 1x x <-,即当2n ≥时,22ln 1n n <-,222222ln 1ln 111111()(1)[1]2222(1)n n n n n n n n n -=⋅<=-<-+111[1()]21n n =--+, 所以222ln 2ln 3ln 1111111[1()1()1(23223341n n n n +++<--+--++--+ 211121[(1)(2214(1)n n n n n --=---=++.例19.(2022·全国·高三专题练习)设各项均为正数的数列{}n a 的前n 项和为n S ,满足()()222*330,n n S n n S n n n N -+--+=∈.(1)求1a 的值:(2)求数列{}n a 的通项公式:(3)证明:对一切正整数n≤ .【解析】(1)令1n =,()()1121133101-+--+=S S ,则13a =-舍去,所以12a =.(2)()()()()2222330,30n n n n S n n S n n S S n n -+--+=∴+--= ,因为数列{}n a 各项均为正数,3≠-n S 舍去,2∴=+n S n n ,当2n ≥时,()()21111,2--∴===-+-∴-n n n n S n n a S S n ,12,12.2,2-=⎧∴=∴=⎨-=≥⎩n n n n n a a n S S n n (3)令n b ===≤=()2n==≥,所以1211n n S b b b b =+++≤11.4==+例20.(2022·上海·模拟预测)在数列{}n a 中,115,342n n a a a n +==-+,其中N n *∈.(1)设2n n b a n =-,证明数列{}n b 是等比数列;(2)记数列{}n a 的前n 项和为n S ,试比较n S 与22022n +的大小.【解析】(1)N n *∈,由2n n b a n =-得:2n n a b n =+,而1342+=-+n n a a n ,则12(1)3(2)42n n b n b n n +++=+-+,整理得13n n b b +=,而1123b a =-=,所以数列{}n b 是首项为3,公比为3的等比数列.(2)由(1)知,1333n nn b -=⨯=,于是得32nn a n =+,123(13)223313222n n n n n n n S +-+=+⋅=++--,因此,2112233324047(202022222)22n n n n n n n S n +++--++---=+=,令1324047n n c n +=+-,显然数列{}n c 是递增数列,而671848,2528c c =-=,即{1,2,3,4,5,6}n ∈时,0n c <,2202)(20n S n -+<,当7,N n n *≥∈时,2202)(20n S n -+>,所以,当6,N n n *≤∈时,22022n S n +<,当7,N n n *≥∈时,22022n S n +>.例21.(2022·全国·高三专题练习)已知函数()e e ax x f x x =-.(1)当1a =时,讨论()f x 的单调性;(2)当0x >时,()1f x <-,求a 的取值范围;(3)设n *∈N ln(1)n >+ .【解析】(1)当1a =时,()()1e x f x x =-,则()e xf x x '=,当0x <时,()0f x '<,当0x >时,()0f x ¢>,故()f x 的减区间为(),0∞-,增区间为()0,∞+.(2)设()e e 1ax x h x x =-+,则()00h =,又()()1e e ax x h x ax '=+-,设()()1e e ax xg x ax =+-,则()()22e e ax xg x a a x '=+-,若12a >,则()0210g a '=->,因为()g x '为连续不间断函数,故存在()00,x ∈+∞,使得()00,x x ∀∈,总有()0g x '>,故()g x 在()00,x 为增函数,故()()00g x g >=,故()h x 在()00,x 为增函数,故()()01h x h >=-,与题设矛盾.若102a <≤,则()()()ln 11e e ee ax ax ax xx h x ax ++'=+-=-,下证:对任意0x >,总有()ln 1x x +<成立,证明:设()()ln 1S x x x =+-,故()11011x S x x x-'=-=<++,故()S x 在()0,∞+上为减函数,故()()00S x S <=即()ln 1x x +<成立.由上述不等式有()ln 12e e e e e e 0ax ax x ax ax x ax x +++-<-=-≤,故()0h x '≤总成立,即()h x 在()0,∞+上为减函数,所以()()00h x h <=.当0a ≤时,有()e e e 1100ax x axh x ax '=-+<-+=,所以()h x 在()0,∞+上为减函数,所以()()00h x h <=.综上,12a ≤.(3)取12a =,则0x ∀>,总有12e e 10xx x -+<成立,令12e x t =,则21,e ,2ln x t t x t >==,故22ln 1t t t <-即12ln t t t<-对任意的1t >恒成立.所以对任意的*n ∈N ,有<整理得到:()ln 1ln n n +-<()ln 2ln1ln 3ln 2ln 1ln n n>-+-+++- ()ln 1n =+,故不等式成立.例22.(2022·湖南·周南中学高三阶段练习)已知函数()1ln xf x x+=.(1)求函数()y f x =的最大值;(2)证明:()()2222ln 2ln 3ln 21N ,22341n n n n n n n *--+++<∈≥+ 【解析】(1)因为()1ln x f x x +=定义域为()0,∞+,所以()2ln xf x x -'=,当()0,1x ∈时,()0f x ¢>,当()1,x ∈+∞时,()0f x '<,所以()f x 在()0,1上单调递增,在(1,)+∞上单调递减,所以()max 1)1(f x f ==,即当1x =时,()f x 取最大值1.(2)证明:由(1)知()1f x ≤,当且仅当1x =时取等号,因此当1x >时,ln 1x x <-,即当2n ≥时,22ln 1n n <-,所以()222222ln 1ln 1111111111112222121n n n n n n n n n n n ⎡⎤⎛⎫-⎡⎤⎛⎫⎛⎫=⋅<=-<-=--⎢ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎣⎦⎝⎭⎣⎦,所以222ln 2ln 3ln 111111111123223341n n n n ⎡⎤⎛⎫⎛⎫⎛⎫+++<--+--++-- ⎪ ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎣⎦()()211121122141n n n n n ⎡⎤--⎛⎫=---= ⎪⎢⎥++⎝⎭⎣⎦.例23.(2022·全国·高三专题练习)已知单调递减的正项数列{}n a ,2n ≥时满足()()()22111111210n n n n n n n n n a a a a a a a a a ----+++-++=. 112n a S =,为{}n a 前n 项和.(1)求{}n a 的通项公式;(2)证明:1n S >【解析】(1)由()()()22111111210n n n n n n n n n a a a a a a a a a ----+++-++=,得()2221111()20n n n n n n n n a a a a a a a a --------=,即()()111120n n n n n n n n a a a a a a a a -----+--=,由{}n a 是单调递减的正项数列,得1120n n n n a a a a ----<,则110n n n n a a a a ---+=,即1111n n a a --=,故1n a ⎧⎫⎨⎬⎩⎭是以112a =为首项,1为公差的等差数列,则11n n a =+,即11n a n =+.(2)要证:1n S >只需证:11n a n =>+即证:2111(1)1n n n >+++21111(1)n n n >+-++,22221(1)n n n n ++>+,即证:3224(1)(221)n n n n +>++,即证:324410n n +->,而此不等式显然成立,所以1n S >.例24.(2022·广东·铁一中学高三阶段练习)记n S 为数列{}n a 的前n 项和,已知1n S n -⎧⎫⎨⎬⎩⎭是首项为3,公差为1的等差数列.(1)求{}n a 的通项公式;(2)证明:当2n ≥时,231111112n n n a S S S a -+++<-+ .【解析】(1)∵1n S n -⎧⎫⎨⎬⎩⎭是首项为3,公差为1的等差数列,∴3()11n n n S =+--,∴2221(1)n S n n n ++=+=.∴当2n ≥时,12n S n -=,121n n n a S S n -=-=+.又114S a ==不满足21n a n =+,∴{}n a 的通项公式*41212N n n a n n n =⎧=⎨+≥∈⎩,,且.(2)当2n ≥时,21111(1)1(1)1n S n n n n n =<=-+++,112111222212n n a n n a n n --=-=-+++,∴23111111111111233412112nn S S S n n n n +++<-+-++-=-=-+++ ,∴231111112n n n a S S S a -+++<-+ .例25.(2022·全国·高三专题练习)已知数列{}n a 和{}n b 满足11a b =,且对任意*N n ∈都有1n n a b +=,121n n n na ba a +=-.(1)求数列{}n a 和{}nb 的通项公式;(2)证明:31324122341123ln(1)n n n n a a a a a a a a n b b b b b b b b +++++⋯+<+<+++⋯+.【解析】(1) 对任意*N n ∈都有1n n a b +=,121n n n n a b a a +=-,∴12211111n n n n n n n a b a a a a a +-===--+.∴1111n n a a +=+,即1111n n a a +-=.∴数列1n a ⎧⎫⎨⎬⎩⎭是首项为11a ,公差为1的等差数列.11a b = ,且111a b +=,1112a b ∴==.∴12(1)1n n n a =+-=+.∴11n a n =+,11n n n b a n =-=+,(2) 11n a n =+,1n nb n =+,∴1n n a b n =.∴所证不等式31324122341123ln(1)n n n n a a a a a a a a n b b b b b b b b +++++⋯+<+<+++⋯+,即1111111ln(1)1234123n n n +++⋯+<+<++⋯++.①先证右边不等式:111ln(1)123n n+<+++⋯+.令()(1)f x ln x x =+-,则1()111xf x x x'=-=-++.当0x >时,()0f x '<,所以函数()f x 在[0,)+∞上单调递减.∴当0x >时,()(0)0f x f <=,即ln(1)x x +<.分别取1111,,,23x n=.得111111ln(11)ln(1)ln(1)ln(1)12323n n ++++++⋯++<+++⋯+.即111111ln[(11)(1)(1)(1)]12323n n+⋅+⋅+⋯+<+++⋯+.也即341111ln(212323n n n +⨯⨯⨯⋯⨯<+++⋯+.即111ln(1)123n n+<+++⋯+.②再证左边不等式:1111ln(1)2341n n +++⋯+<++.令()ln(1)1xf x x x=+-+,则2211()1(1)(1)x f x x x x '=-=+++.当0x >时,()0f x '>,所以函数()f x 在[0,)+∞上单调递增.∴当0x >时,()(0)0f x f >=,即ln(1)1xx x+>+.分别取1111,,,23x n =.得111111ln(11)ln(1)ln(1)ln(123231n n++++++⋯++>++⋯++.即111111ln[(11)(1(1(1)]23231n n +⋅+⋅+⋅⋅+>++⋯++.也即341111ln(2)23231n n n+⨯⨯⨯⋯⨯>++⋯++.即。
高考数学 放缩法证明“数列+不等式”问题的两条途径 新人教版
放缩法证明“数列+不等式”问题的两条途径数列与不等式的综合问题常常出现在高考的压轴题中,是历年命题的热点,解决这类问题常常用到放缩法。
用放缩法解决“数列+不等式”问题通常有两条途径:一是先放缩再求和,二是先求和再放缩。
1、 先放缩再求和例1 (05年湖北理)已知不等式],[log 21131212n n >+++ 其中n 为不大于2的整数,][log 2n 表示不超过n 2log 的最大整数。
设数列{}n a 的各项为正且满足111),0(--+≤>=n n n a n na a b b a )4,3,2( =n ,证明:][log 222n b b a n +<, 5,4,3=n 分析:由条件11--+≤n n n a n na a 得:n a a n n 1111+≥- na a n n 1111≥-∴- )2(≥n111121-≥---n a a n n ……211112≥-a a 以上各式两边分别相加得:21111111++-+≥- n n a a n 2111111++-++≥∴ n n b a n ][l o g 2112n b +> )3(≥n =bn b 2][log 22+ ∴ ][log 222n b b a n +<)3(≥n 本题由题设条件直接进行放缩,然后求和,命题即得以证明。
例2 (04全国三)已知数列}{n a 的前n 项和n S 满足:n n n a S )1(2-+=, 1≥n(1)写出数列}{n a 的前三项1a ,2a ,3a ;(2)求数列}{n a 的通项公式;(3)证明:对任意的整数4>m ,有8711154<+++m a a a 分析:⑴由递推公式易求:a 1=1,a 2=0,a 3=2;⑵由已知得:1112(1)2(1)n n n n n n n a S S a a ---=-=+----(n>1)化简得:1122(1)n n n a a --=+-2)1(2)1(11---=---n n n n a a ,]32)1([232)1(11+--=+---n n n n a a 故数列{32)1(+-n n a }是以321+-a 为首项, 公比为2-的等比数列. 故1)2)(31(32)1(---=+-n n n a ∴22[2(1)]3n n n a -=-- ∴数列{n a }的通项公式为:22[2(1)]3n n n a -=--. ⑶观察要证的不等式,左边很复杂,先要设法对左边的项进行适当的放缩,使之能够求和。
数列的放缩(含答案)
数列的放缩题型一:单调性法例1:证明:11115123136n n n n ++++>++-,2n n N *≥∈,.因为1111111112313233233n a n n n n n n n n =++++<++++++-++++ 所以n a 单调递增,156n a a >=例2:证明:1111121313n n n n<++++<+-,n N *∈.右边:11111(31)213231n n n n n n n++++<•-+=+--左边:1111112313n a n n n n n=+++++++-可以证明:11232n x n x n+>+- 44()(3)2*2n nn x n x n n>+-所以倒叙相加可得 1111111111()()1231333121n n nn n n n nn n++++++++++++++--+ 2*n >422*2nn n = 所以1n a >题型二:裂项法例1:证明:222211117147(32)6n +++<-,n N *∈.211(32)(34)(31)n n n <---例2:证明:2611151(1)(21)493n n n n ≤++++<++ 解析: 一方面⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk 另一21111111111492334(1)11n n n n n n ++++>++++=-=⨯⨯+++方面:当3≥n 时,)12)(1(61++>+n n n n n ,当1=n 时,2191411)12)(1(6n n n n ++++=++ ,当2=n 时,2191411)12)(1(6nn n n ++++<++ ,所以综上有35191411)12)(1(62<++++≤++n n n n例3:证明:11112477121017(31)(52)25n n +++<⨯⨯⨯++提示:1313615(31)(52)55(31)(3)(3)(3)522n n n n n n =<++++-+例4:求证:22211171135(21)62(21)n n ++++>---,2n n N *≥∈,. 提示:211(21)(21)(21)n n n >--+例5:证明:222233131312n+++<---,n N *∈ 方法一:13123n n --≥⨯方法二:1111122323113()31(31)3(31)(31)3131n n nn n n n n n +++++⨯⨯=<=-------例6:已知当0x >时sin x x >,求证:211sinln 2(1)nk k =<+∑例7:已知函数()()cos sin 10f x x x x x =-+>。
高中数学数列放缩专题:用放缩法处理数列和不等问题(含答案)
用放缩法处理数列和不等问题(教师版)一.先求和后放缩(主要是先裂项求和,再放缩处理)例1.正数数列{}n a 的前n 项的和n S ,满足12+=n n a S ,试求: (1)数列{}n a 的通项公式; (2)设11+=n n n a a b ,数列{}n b 的前n 项的和为n B ,求证:21<n B解:(1)由已知得2)1(4+=n n a S ,2≥n 时,211)1(4+=--n n a S ,作差得:1212224----+=n n n n n a a a a a ,所以0)2)((11=--+--n n n n a a a a ,又因为{}n a 为正数数列,所以21=--n n a a ,即{}n a 是公差为2的等差数列,由1211+=a S ,得11=a ,所以12-=n a n(2))121121(21)12)(12(111+--=+-==+n n n n a a b n n n ,所以21)12(2121)1211215131311(21<+-=+---+-=n n n B n 真题演练1:(06全国1卷理科22题)设数列{}n a 的前n 项的和,14122333n n n S a +=-⨯+,1,2,3,n = (Ⅰ)求首项1a 与通项n a ;(Ⅱ)设2n n n T S =,1,2,3,n = ,证明:132ni i T =<∑.解: (Ⅰ)由 S n =43a n -13×2n+1+23, n=1,2,3,… , ① 得 a 1=S 1= 43a 1-13×4+23所以a 1=2再由①有 S n -1=43a n -1-13×2n +23, n=2,3,4,…将①和②相减得: a n =S n -S n -1= 43(a n -a n -1)-13×(2n+1-2n ),n=2,3, …整理得: a n +2n =4(a n -1+2n -1),n=2,3, … , 因而数列{ a n +2n }是首项为a1+2=4,公比为4的等比数列,即 : a n +2n =4×4n -1= 4n , n=1,2,3, …, 因而a n =4n -2n , n=1,2,3, …,(Ⅱ)将a n =4n -2n 代入①得 S n = 43×(4n -2n )-13×2n+1 + 23 = 13×(2n+1-1)(2n+1-2)= 23×(2n+1-1)(2n -1)T n = 2n S n = 32×2n (2n+1-1)(2n -1) = 32×(12n -1 - 12n+1-1)所以, 1ni i T =∑= 321(ni =∑12i -1 - 12i+1-1) = 32×(121-1 - 1121n +-) < 32二.先放缩再求和1.放缩后成等比数列,再求和例2.等比数列{}n a 中,112a =-,前n 项的和为n S ,且798,,S S S 成等差数列.设nn n a a b -=12,数列{}n b 前n 项的和为n T ,证明:13n T <.解:∵9789A A a a -=+,899A A a -=-,899a a a +=-,∴公比9812a q a ==-. ∴n n a )21(-=. nn n nn n b 231)2(41)21(141⋅≤--=--=. (利用等比数列前n 项和的模拟公式n n S Aq A =-猜想)∴n n b b b B ++=2131)211(31211)211(213123123123122<-=--⋅=⋅++⋅+⋅≤n n . 真题演练2:(06福建卷理科22题)已知数列{}n a 满足*111,21().n n a a a n N +==+∈(I )求数列{}n a 的通项公式;(II )若数列{}n b 滿足12111*444(1)()n n b b b b n a n N ---=+∈ ,证明:数列{}n b 是等差数列; (Ⅲ)证明:*122311...()232n n a a a n nn N a a a +-<+++<∈. (I )解:*121(),n n a a n N +=+∈112(1),n n a a +∴+=+{}1n a ∴+是以112a +=为首项,2为公比的等比数列12.n n a ∴+=即 2*21().n a n N =-∈(II )证法一:1211144...4(1).n n k k k k n a ---=+12(...)42.n n k k k n nk +++-∴=122[(...)],n n b b b n nb ∴+++-= ①12112[(...)(1)](1).n n n b b b b n n b ++++++-+=+ ②②-①,得112(1)(1),n n n b n b nb ++-=+-即1(1)20,n n n b nb +--+= ③21(1)20.n n nb n b ++-++= ④③-④,得 2120,n n n nb nb nb ++-+=即 2120,n n n b b b ++-+=*211(),n n n n b b b b n N +++∴-=-∈{}n b ∴是等差数列(III )证明:1121211,1,2,...,,12122(2)2k k k k k k a k n a ++--==<=-- 12231 (2)n n a a a na a a +∴+++<111211111111.,1,2,...,,2122(21)2 3.222232k k k k k kk k a k n a +++-==-=-≥-=--+-1222311111111...(...)(1),2322223223n n n n a a a n n n a a a +∴+++≥-+++=-->-*122311...().232n n a a a n nn N a a a +∴-<+++<∈ 2.放缩后为“差比”数列,再求和例3.已知数列{}n a 满足:11=a ,)3,2,1()21(1 =+=+n a n a n n n .求证:11213-++-≥>n n n n a a 证明:因为n nn a na )21(1+=+,所以1+n a 与n a 同号,又因为011>=a ,所以0>n a , 即021>=-+n n n n a na a ,即n n a a >+1.所以数列{}n a 为递增数列,所以11=≥a a n , 即n n n n n n a n a a 221≥=-+,累加得:121212221--+++≥-n n n a a . 令12212221--+++=n n n S ,所以n n n S 2122212132-+++= ,两式相减得: n n n n S 212121212121132--++++=- ,所以1212-+-=n n n S ,所以1213-+-≥n n n a , 故得11213-++-≥>n n n n a a .3.放缩后成等差数列,再求和例4.已知各项均为正数的数列{}n a 的前n 项和为n S ,且22n n n a a S +=.(1) 求证:2214n n n a a S ++<;(2)<⋅⋅⋅+<解:(1)在条件中,令1=n ,得1112122a S a a ==+,1011=∴>a a ,又由条件n n n S a a 22=+有11212+++=+n n n S a a ,上述两式相减,注意到n n n S S a -=++11得0)1)((11=--+++n n n n a a a a 001>+∴>+n n n a a a ∴11n n a a +-=所以, n n a n =-⨯+=)1(11,(1)2n n n S +=所以42)1(212)1(21222++=++∙<+=n n n a a n n n n S (2)因为1)1(+<+<n n n n ,所以212)1(2+<+<n n n n ,所以 2)1(23222121+++⨯+⨯=++n n S S S n 212322++++<n 2122312-=+=+n S n n ;222)1(2222121n n S n n n S S S =+=+++>++练习:1.(08南京一模22题)设函数213()44f x x bx =+-,已知不论,αβ为何实数,恒有(cos )0f α≤且(2sin )0f β-≥.对于正数列{}n a ,其前n 项和()n n S f a =,*()n N ∈.(Ⅰ) 求实数b 的值;(II )求数列{}n a 的通项公式;1,1nn N a +=∈+,且数列{}n c 的前n 项和为n T ,试比较n T 和16的大小并证明之.解:(Ⅰ) 12b =(利用函数值域夹逼性);(II )21n a n =+; (Ⅲ)∵21111(22)22123nc n n n ⎛⎫=<- ⎪+++⎝⎭,∴1231111+23236n n T c c c c n ⎛⎫=+++⋅⋅⋅<-< ⎪+⎝⎭…2.(04全国)已知数列}{n a 的前n 项和n S 满足:n n n a S )1(2-+=, 1≥n (1)写出数列}{n a 的前三项1a ,2a ,3a ;(2)求数列}{n a 的通项公式; (3)证明:对任意的整数4>m ,有8711154<+++m a a a 分析:⑴由递推公式易求:a 1=1,a 2=0,a 3=2;⑵由已知得:1112(1)2(1)n n n n n n n a S S a a ---=-=+----(n>1) 化简得:1122(1)n n n a a --=+-2)1(2)1(11---=---n n n n a a ,]32)1([232)1(11+--=+---n n n n a a故数列{32)1(+-nn a }是以321+-a 为首项, 公比为2-的等比数列. 故1)2)(31(32)1(---=+-n nn a ∴22[2(1)]3n n n a -=-- ∴数列{n a }的通项公式为:22[2(1)]3n n n a -=--. ⑶观察要证的不等式,左边很复杂,先要设法对左边的项进行适当的放缩,使之能够求和。
高中数学数列放缩专题:用放缩法处理数列和不等问题(含答案)
用放缩法处理数列和不等问题(教师版)之邯郸勺丸创作一.先求和后放缩(主要是先裂项求和,再放缩处理) 例1.正数数列{}n a 的前n 项的和n S ,满足12+=n n a S ,试求: (1)数列{}n a 的通项公式; (2)设11+=n n n a a b ,数列{}n b 的前n 项的和为n B ,求证:21<n B 解:(1)由已知得2)1(4+=n n a S ,2≥n 时,211)1(4+=--n n a S ,作差得:1212224----+=n n n n n a a a a a ,所以0)2)((11=--+--n n n n a a a a ,又因为{}n a 为正数数列,所以21=--n n a a ,即{}n a 是公役为2的等差数列,由1211+=a S ,得11=a ,所以12-=n a n (2))121121(21)12)(12(111+--=+-==+n n n n a a b n n n ,所以真题演练1:(06全国1卷理科22题)设数列{}n a 的前n 项的和,14122333n n n S a +=-⨯+,1,2,3,n =(Ⅰ)求首项1a 与通项n a ;(Ⅱ)设2nn nT S =,1,2,3,n =,证明:132nii T =<∑. 解: (Ⅰ)由 Sn=43an -13×2n+1+23, n=1,2,3,… , ① 得 a1=S1=43a1-13×4+23所以a1=2 再由①有 Sn -1=43an -1-13×2n+23, n=2,3,4,…将①和②相减得: an=Sn -Sn -1= 43(an -an -1)-13×(2n+1-2n),n=2,3, …整理得: an+2n=4(an -1+2n -1),n=2,3, … , 因而数列{ an+2n}是首项为a1+2=4,公比为4的等比数列,即 : an+2n=4×4n-1= 4n, n=1,2,3, …, 因而an=4n -2n, n=1,2,3, …,(Ⅱ)将an=4n -2n 代入①得 Sn= 43×(4n-2n)-13×2n+1 + 23 =13×(2n+1-1)(2n+1-2)= 23×(2n+1-1)(2n -1)Tn= 2n Sn = 32×2n (2n+1-1)(2n -1) = 32×(12n -1 - 12n+1-1)所以, 1ni i T =∑= 321(n i =∑12i -1 - 12i+1-1) = 32×(121-1 - 1121n +-)< 32二.先放缩再求和1.放缩后成等比数列,再求和例2.等比数列{}n a 中,112a =-,前n 项的和为n S ,且798,,S S S 成等差数列.设nn n a a b -=12,数列{}n b 前n 项的和为n T ,证明:13n T <.解:∵9789A A a a -=+,899A A a -=-,899a a a +=-,∴公比9812a q a ==-.∴n n a )21(-=. nn n nn n b 231)2(41)21(141⋅≤--=--=.(利用等比数列前n 项和的模拟公式n n S Aq A =-猜测)∴n n b b b B ++=2131)211(31211)211(213123123123122<-=--⋅=⋅++⋅+⋅≤n n . 真题演练2:(06福建卷理科22题)已知数列{}n a 满足*111,21().n n a a a n N +==+∈(I )求数列{}n a 的通项公式;(II )若数列{}n b 滿足12111*444(1)()nnb b b b n a n N ---=+∈,证明:数列{}n b 是等差数列;(Ⅲ)证明:*122311...()232n n a a a n nn N a a a +-<+++<∈. (I )解:*121(),n n a a n N +=+∈112(1),n n a a +∴+=+{}1n a ∴+是以112a +=为首项,2为公比的等比数列12.n n a ∴+=即 2*21().n a n N =-∈(II )证法一:1211144...4(1).nnk k k k n a ---=+122[(...)],n n b b b n nb ∴+++-=①12112[(...)(1)](1).n n n b b b b n n b ++++++-+=+②②-①,得112(1)(1),n n n b n b nb ++-=+-即1(1)20,n n n b nb +--+=21(1)20.n n nb n b ++-++= ③-④,得 2120,n n n nb nb nb ++-+=即 2120,n n n b b b ++-+=*211(),n n n n b b b b n N +++∴-=-∈{}n b ∴是等差数列(III )证明:1121211,1,2,...,,12122(2)2k k k k k k a k n a ++--==<=-- 2.放缩后为“差比”数列,再求和例3.已知数列{}n a 满足:11=a ,)3,2,1()21(1 =+=+n a na n nn .求证:11213-++-≥>n n n n a a 证明:因为n nn a na )21(1+=+,所以1+n a 与n a 同号,又因为011>=a ,所以0>n a ,即021>=-+n nn n a na a ,即n n a a >+1.所以数列{}n a 为递增数列,所以11=≥a a n ,即nn n n n n a n a a 221≥=-+,累加得:121212221--+++≥-n n n a a . 令12212221--+++=n n n S ,所以nn n S 2122212132-+++= ,两式相减得: n n n n S 212121212121132--++++=- ,所以1212-+-=n n n S ,所以1213-+-≥n n n a , 故得11213-++-≥>n n n n a a . 3.放缩后成等差数列,再求和例4.已知各项均为正数的数列{}n a 的前n 项和为n S ,且22n n n a a S +=.(1) 求证:2214n n n a a S ++<;(2)<⋅⋅⋅+解:(1)在条件中,令1=n ,得1112122a S a a ==+,1011=∴>a a ,又由条件n n n S a a 22=+有11212+++=+n n n S a a ,上述两式相减,注意到n n n S S a -=++11得0)1)((11=--+++n n n n a a a a 001>+∴>+n n n a a a ∴11n n a a +-=所以, n n a n =-⨯+=)1(11,(1)2n n n S +=所以42)1(212)1(21222++=++•<+=n n n a a n n n n S(2)因为1)1(+<+<n n n n ,所以212)1(2+<+<n n n n ,所以 2122312-=+=+n S n n ;222)1(2222121n n S n n n S S S =+=+++>++练习:1.(08南京一模22题)设函数213()44f x x bx =+-,已知不管,αβ为何实数,恒有(cos )0f α≤且(2sin )0f β-≥.对于正数列{}n a ,其前n 项和()n n S f a =,*()n N ∈.(Ⅰ) 求实数b 的值;(II )求数列{}n a 的通项公式; 1,1nn N a +=∈+,且数列{}n c 的前n 项和为n T ,试比较n T 和16的大小并证明之.解:(Ⅰ) 12b =(利用函数值域夹逼性);(II )21n a n =+; (Ⅲ)∵21111(22)22123n c n n n ⎛⎫=<- ⎪+++⎝⎭,∴1231111+23236n n T c c c c n ⎛⎫=+++⋅⋅⋅<-< ⎪+⎝⎭…2.(04全国)已知数列}{n a 的前n 项和n S 满足:n n n a S )1(2-+=,1≥n (1)写出数列}{n a 的前三项1a ,2a ,3a ;(2)求数列}{n a 的通项公式;(3)证明:对任意的整数4>m ,有8711154<+++m a a a 阐发:⑴由递推公式易求:a1=1,a2=0,a3=2;⑵由已知得:1112(1)2(1)n n n n n n n a S S a a ---=-=+----(n>1) 化简得:1122(1)n n n a a --=+-2)1(2)1(11---=---n n n n a a ,]32)1([232)1(11+--=+---n n n n a a故数列{32)1(+-nn a }是以321+-a 为首项, 公比为2-的等比数列.故1)2)(31(32)1(---=+-n nn a ∴22[2(1)]3n n n a -=-- ∴数列{n a }的通项公式为:22[2(1)]3n n n a -=--.⑶不雅察要证的不等式,左边很庞杂,先要设法对左边的项进行适当的放缩,使之能够求和.而左边=232451113111[]221212(1)m mm a a a -+++=+++-+--,如果我们把上式中的分母中的1±去掉,就可利用等比数列的前n 项公式求和,由于-1与1交错出现,容易想到将式中两项两项地合并起来一起进行放缩,测验考试知:32322121121121+>++-,43432121121121+<-++,因此,可将1212-保存,再将后面的项两两组合后放缩,即可求和.这里需要对m 进行分类讨论,(1)当m 为偶数)4(>m 时,(2)当m 是奇数)4(>m 时,1+m 为偶数, 所以对任意整数4>m ,有m a a a 11154+++ 87<. 本题的关头是并项后进行适当的放缩.3.(07武汉市模拟)定义数列如下:*+∈+-==N n a a a a n n n ,1,2211 求证:(1)对于*∈N n 恒有n n a a >+1成立; (2)当*∈>N n n 且2,有11211+=-+a a a a a n n n 成立; (3)11112112006212006<+++<-a a a 阐发:(1)用数学归纳法易证. (2)由121+-=+n n n a a a 得:)1(11-=-+n n n a a a )1(111-=-∴--n n n a a a……)1(1112-=-a a a以上各式两边辨别相乘得: )1(111211-=--+a a a a a a n n n ,又21=a(3)要证不等式11112112006212006<+++<-a a a , 可先设法求和:200621111a a a +++ ,再进行适当的放缩.111120071---=a a 20062111a a a -=1<又2006200612006212=>a a a a 200620062121111->-∴a a a ∴原不等式得证.本题的关头是按照题设条件裂项求和.用放缩法处理数列和不等问题(学生版)一.先求和后放缩(主要是先裂项求和,再放缩处理) 例1.正数数列{}n a 的前n 项的和n S ,满足12+=n n a S ,试求: (1)数列{}n a 的通项公式; (2)设11+=n n n a a b ,数列{}n b 的前n 项的和为n B ,求证:21<n B 真题演练1:(06全国1卷理科22题)设数列{}n a 的前n 项的和,14122333n n n S a +=-⨯+,1,2,3,n =(Ⅰ)求首项1a 与通项n a ;(Ⅱ)设2nn nT S =,1,2,3,n =,证明:132nii T =<∑. 二.先放缩再求和1.放缩后成等比数列,再求和例2.等比数列{}n a 中,112a =-,前n 项的和为n S ,且798,,S S S 成等差数列.设nn n a a b -=12,数列{}n b 前n 项的和为n T ,证明:13n T <.真题演练2:(06福建卷理科22题)已知数列{}n a 满足*111,21().n n a a a n N +==+∈(I )求数列{}n a 的通项公式;(II )若数列{}n b 滿足12111*444(1)()nnb b b b n a n N ---=+∈,证明:数列{}n b 是等差数列;(Ⅲ)证明:*122311...()232n n a a a n nn N a a a +-<+++<∈. 2.放缩后为“差比”数列,再求和 例3.已知数列{}n a 满足:11=a ,)3,2,1()21(1 =+=+n a na n n n .求证:11213-++-≥>n n n n a a 3.放缩后成等差数列,再求和例4.已知各项均为正数的数列{}n a 的前n 项和为n S ,且22n n n a a S +=.(1) 求证:2214n n n a a S ++<;(2)<⋅⋅⋅+练习:1.(08南京一模22题)设函数213()44f x x bx =+-,已知不管,αβ为何实数,恒有(cos )0f α≤且(2sin )0f β-≥.对于正数列{}n a ,其前n 项和()n n S f a =,*()n N ∈.(Ⅰ) 求实数b 的值;(II )求数列{}n a 的通项公式;1,1nn N a +=∈+,且数列{}n c 的前n 项和为n T ,试比较n T 和16的大小并证明之.2.(04全国)已知数列}{n a 的前n 项和n S 满足:n n n a S )1(2-+=,1≥n(1)写出数列}{n a 的前三项1a ,2a ,3a ;(2)求数列}{n a 的通项公式;(3)证明:对任意的整数4>m ,有8711154<+++m a a a 3.(07武汉市模拟)定义数列如下:*+∈+-==N n a a a a n n n ,1,2211 求证:(1)对于*∈N n 恒有n n a a >+1成立; (2)当*∈>N n n 且2,有11211+=-+a a a a a n n n 成立; (3)11112112006212006<+++<-a a a。
高考数学难点---数列放缩法技巧总结
高考数学备考之一 放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩例1.(1)求∑=-n k k 12142的值; (2)求证:35112<∑=nk k .解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n ,所以122121114212+=+-=-∑=n nn k n k (2)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk技巧积累:(1)⎪⎭⎫⎝⎛+--=-<=1211212144441222n n n n n(2))1(1)1(1)1()1(21211+--=-+=+n n n n n n n C C n n (3))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r r r r r r n r n r n nC T r r rn r(4)25)1(123112111)11(<-++⨯+⨯++<+n n n n (5)nn nn 21121)12(21--=- (6)n n n -+<+221(7))1(21)1(2--<<-+n n nn n (8) n n n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+- (9)⎪⎭⎫⎝⎛++-+=+++⎪⎭⎫ ⎝⎛+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1(10) !)1(1!1!)1(+-=+n n n n (11)21212121222)1212(21-++=-++=--+<n n n n n n n(11) )2(121121)12)(12(2)22)(12(2)12)(12(2)12(21≥---=--=--<--=--n n n n n(12) 111)1(1)1(1)1)(1(11123--+⋅⎪⎪⎭⎫ ⎝⎛+--=+-<⋅=n n n n n n n n n nn n 11112111111+--<-++⋅⎪⎭⎫ ⎝⎛+--=n n n n n n n (13) 3212132122)12(332)13(2221nn n n n n n n n <-⇒>-⇒>-⇒>⋅-=⋅=+(14) !)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15) )2(1)1(1≥--<+n n n n n (15)111)11)((1122222222<++++=+++--=-+-+j i j i j i j i j i j i j i例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n (2)求证:n n412141361161412-<++++ (3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n n n (4) 求证:)112(2131211)11(2-+<++++<-+n nn解析:(1)因为⎪⎭⎫⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以 )12131(211)12131(211)12(112--+>+-+>-∑=n n i ni(2))111(41)1211(414136116141222n nn -+<+++=++++(3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ,再结合n n n -+<+221进行裂项,最后就可以得到答案 (4)首先nn n n n++=-+>12)1(21,所以容易经过裂项得到nn 131211)11(2++++<-+再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n n例3.求证:35191411)12)(1(62<++++≤++n n n n解析: 一方面: 因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n kn k 另一方面: 1111)1(143132111914112+=+-=+++⨯+⨯+>++++n nn n n n 当3≥n 时,)12)(1(61++>+n n nn n ,当1=n 时,2191411)12)(1(6nn n n ++++=++ ,当2=n 时,2191411)12)(1(6n n n n ++++<++ , 所以综上有35191411)12)(1(62<++++≤++n n n n例4.(2008年全国一卷)设函数()ln f x x x x =-.数列{}n a 满足101a <<.1()n n a f a +=.设1(1)b a ∈,,整数11ln a bk a b-≥.证明:1k a b +>. 解析: 由数学归纳法可以证明{}n a 是递增数列, 故 若存在正整数k m ≤, 使b a m ≥, 则b a a k k ≥>+1,若)(k m b a m ≤<,则由101<<≤<b a a m 知0ln ln ln 11<<≤b a a a a a m m m ,∑=+-=-=km m m k k k k a a a a a a a 111ln ln ,因为)ln (ln 11b a k a a km m m <∑=,于是b a b a b a k a a k =-+≥+>+)(|ln |11111例5.已知m m m m m n S x N m n ++++=->∈+ 321,1,,,求证: 1)1()1(11-+<+<++m n m n S m n .解析:首先可以证明:nx x n +≥+1)1(∑=++++++++--=-++---+--=nk m m m m m m m m k k n n n n n 111111111])1([01)2()1()1( 所以要证1)1()1(11-+<+<++m n m n S m n只要证:∑∑∑=+++++++++==++-+=-++--+-+=-+<+<--nk m m m m m m m m m n k m n k m m k k n n n n n k m k k 111111111111111])1[(2)1()1(1)1()1(])1([故只要证∑∑∑=++==++-+<+<--nk m m n k m nk m m k k k m k k1111111])1[()1(])1([,即等价于m m mm m k k k m k k-+<+<--+++111)1()1()1(, 即等价于11)11(11,)11(11++-<+-+<++m m kk m k km 而正是成立的,所以原命题成立. 例6.已知n n n a 24-=,n nn a a a T +++= 212,求证:23321<++++n T T T T .解析:)21(2)14(3421)21(241)41(4)222(444421321n nn n nnn T -+-=-----=+++-++++= 所以123)2(22232234232323422234342)21(2)14(3422111111+⋅-⋅⋅=+⋅-⋅=-+=-+-=-+-=++++++n n nn n n n n n n n n n n nnT⎪⎭⎫ ⎝⎛---=--⋅⋅=+12112123)12)(122(2231n n nn n从而231211217131311231321<⎪⎭⎫ ⎝⎛---++-+-=+++++n n n T T T T 例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n x n ,求证:*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+证明: nn n n n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为12++<n n n ,所以)1(2122214122n n n n nx x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+二、函数放缩例8.求证:)(665333ln 44ln 33ln 22ln *N n n n n n ∈+-<++++ . 解析:先构造函数有xxx x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln n n nn+++--<++++cause ⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 31121219181716151413121313121 6533323279189936365111nn n n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>---n例 例11.例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n 解析:1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案例13.证明:)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n 解析:构造函数)1(1)1()1ln()(>+---=x x x x f ,求导,可以得到: 12111)('--=--=x x x x f ,令0)('>x f 有21<<x ,令0)('<x f 有2>x , 所以0)2()(=≤f x f ,所以2)1ln(-≤-x x ,令12+=n x 有,1ln 22-≤n n 所以211ln -≤+n n n ,所以)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n例14. 已知11111,(1).2n n a a a n n +==+++证明2n a e <.解析:n n n n n a n n a n n a )21)1(11(21))1(11(1+++<+++=+, 然后两边取自然对数,可以得到n n n a n n a ln )21)1(11ln(ln 1++++<+ 然后运用x x <+)1ln(和裂项可以得到答案) 放缩思路:⇒+++≤+nnn a n n a )2111(21⇒++++≤+nn an n a ln )2111ln(ln 1nn n n a 211ln 2+++≤。
(完整word版)高考数学数列不等式证明题放缩法十种办法技巧总结,推荐文档
1.均值不等式法例1 设.)1(3221+++⋅+⋅=n n S n Λ求证.2)1(2)1(2+<<+n S n n n 例2 已知函数bxa x f 211)(⋅+=,若54)1(=f ,且)(x f 在[0,1]上的最小值为21,求证:.2121)()2()1(1-+>++++n n n f f f Λ 例3 求证),1(221321N n n n C C C Cn n nnnn∈>⋅>++++-Λ.例4 已知222121n a a a +++=L ,222121n x x x +++=L ,求证:n n x a x a x a +++Λ2211≤1.例5 求证例6 例7 例8 }{n a 满足:1a 再如: 例9 设nnn n 3. 部分放缩例10 设++=a n a 21111,23a aa n ++≥L ,求证:.2<n a 例11 设数列{}n a 满足()++∈+-=N n na a a n n n 121,当31≥a 时证明对所有,1≥n 有:2)(+≥n a i n ; 21111111)(21≤++++++n a a a ii Λ.4 . 添减项放缩例12 设N n n∈>,1,求证)2)(1(832(++<n n n.例13 设数列}{na 满足).,2,1(1,211Λ=+==+n a a a a nn n 证明12+>n a n 对一切正整数n 成立;5 利用单调性放缩: 构造函数例14 已知函数223)(x ax x f -=的最大值不大于61,又当]21,41[∈x 时.81)(≥x f(Ⅰ)求a 的值;(Ⅱ)设*+∈=<<N n a f a a n n ),(,21011,证明.11+<n a n 例15(I 例16 例17 设 例18 设例19 例20 (1例21 (Ⅰ)写出数列}{n a 的前3项321,,a a a ; (Ⅱ)求数列}{n a 的通项公式;(Ⅲ)证明:对任意的整数4>m ,有8711154<+++m a a a Λ. 9. 借助数学归纳法例22(Ⅰ)设函数)10( )1(log )1(log )(22<<--+=x x x x x x f ,求)(x f 的最小值; (Ⅱ)设正数n p p p p 2321,,,,Λ满足12321=++++n p p p p Λ,求证:10. 构造辅助函数法例23 已知()f x = 2ln 243x x +-,数列{}n a 满足()()*11 2 ,0211N n a f a n an ∈=<<-++(1)求()f x 在⎥⎦⎤⎢⎣⎡-021,上的最大值和最小值; (2)证明:102n a -<<; (3)判断n a 与1()n a n N *+∈的大小,并说明理由.例24 已知数列{}n a 的首项135a =,1321n n n a a a +=+,12n =L,,.(Ⅰ)求{}n a 的通项公式; (Ⅱ)证明:对任意的0x>,21121(1)3n na x xx ⎛⎫-- ⎪++⎝⎭≥,12n =L ,,;21+<k 则411()11(0)141422x x x xf x x ==->-≠++•1(1)()(122f f n ⇒++>-⨯L 211(1)(1)2222n +-++-⨯⨯L 例3 简析 不等式左边123nnn n n C C C C ++++L =12222112-++++=-n n Λn n n 122221-⋅⋅⋅⋅⋅>Λ=212-⋅n n ,故原结论成立.例4 【解析】使用均值不等式即可:所以有22222211221122222n n n n a x a x a x a x a x a x ++++++≤+++L L其实,上述证明完全可以改述成求n n x a x a x a +++Λ2211的最大值。
高考数学数列放缩法技巧全总结
高考数学备考之 放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种:一、裂项放缩 例1.(1)求∑=-nk k12142的值; (2)求证:35112<∑=nk k.解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n,所以122121114212+=+-=-∑=n n n k nk(2)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk奇巧积累:(1)⎪⎭⎫ ⎝⎛+--=-<=1211212144441222n n n n n(2))1(1)1(1)1()1(21211+--=-+=+n n n n n n n C C n n(3))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r r r r r r n r n r n n C T r rrn r(4)25)1(123112111)11(<-++⨯+⨯++<+n n nn(5)nn nn 21121)12(21--=- (6)n n n -+<+221(7))1(21)1(2--<<-+n n nn n (8)n n n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+-(9)⎪⎭⎫⎝⎛++-+=+++⎪⎭⎫ ⎝⎛+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1(10) !)1(1!1!)1(+-=+n n n n (11)21212121222)1212(21-++=-++=--+<n n n n n n n(11) )2(121121)12)(12(2)22)(12(2)12)(12(2)12(21112≥---=--=--<--=----n n n n n n n n n n n n n n(12) 111)1(1)1(1)1)(1(11123--+⋅⎪⎪⎭⎫ ⎝⎛+--=+-<⋅=n n n n n n n n n n n n11112111111+--<-++⋅⎪⎭⎫ ⎝⎛+--=n n n n n n n(13) 3212132122)12(332)13(2221nn n nnnnnn <-⇒>-⇒>-⇒>⋅-=⋅=+(14) !)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15))2(1)1(1≥--<+n n n n n(15)111)11)((1122222222<++++=+++--=-+-+j i j i j i j i j i j i j i例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n(2)求证:n n 412141361161412-<++++(3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n n n(4) 求证:)112(2131211)11(2-+<++++<-+n nn解析:(1)因为⎪⎭⎫⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以)12131(211)12131(211)12(112--+>+-+>-∑=n n i ni(2))111(41)1211(414136116141222n n n -+<+++=++++ (3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ,再结合nn n -+<+221进行裂项,最后就可以得到答案(4)首先nn n n n++=-+>12)1(21,所以容易经过裂项得到nn 131211)11(2++++<-+再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n n例3.求证:35191411)12)(1(62<++++≤++n n n n 解析: 一方面: 因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk另一方面: 1111)1(143132111914112+=+-=+++⨯+⨯+>++++n nn n n n当3≥n 时,)12)(1(61++>+n n nn n ,当1=n 时,2191411)12)(1(6n n n n ++++=++ ,当2=n 时,2191411)12)(1(6n n n n ++++<++ ,所以综上有35191411)12)(1(62<++++≤++n n n n例4.(2008年全国一卷)设函数()ln f x x x x =-.数列{}na 满足101a <<.1()n n af a +=.设1(1)b a ∈,,整数11ln a bk a b-≥.证明:1k ab +>.解析: 由数学归纳法可以证明{}na 是递增数列, 故 假设存在正整数k m ≤, 使bam≥, 则ba ak k ≥>+1,假设)(k m b a m≤<,则由101<<≤<b a am 知0ln ln ln 11<<≤b a a a a am m m,∑=+-=-=km mm k k k k a a a a a a a 111ln ln ,因为)ln (ln 11b a k a akm m m<∑=,于是ba b a b a k a ak =-+≥+>+)(|ln |11111m m m m m n S x N m n ++++=->∈+ 321,1,,,求证: 1)1()1(11-+<+<++m n m n S m n .解析:首先可以证明:nxx n+≥+1)1(∑=++++++++--=-++---+--=n k m m m m m m m m k k n n n n n 111111111])1([01)2()1()1( 所以要证1)1()1(11-+<+<++m n m n S m n 只要证:∑∑∑=+++++++++==++-+=-++--+-+=-+<+<--n k m m m m m m m m m nk m n k m m k k n n n n n k m k k 111111111111111])1[(2)1()1(1)1()1(])1([故只要证∑∑∑=++==++-+<+<--nk m m n k m n k m m k k k m k k 1111111])1[()1(])1([,即等价于mm m m m k k k m k k -+<+<--+++111)1()1()1(,即等价于11)11(11,)11(11++-<+-+<++m m kk m k k m 而正是成立的,所以原命题成立.n n n a 24-=,nnn a a a T +++=212,求证:23321<++++n T T T T .解析:)21(2)14(3421)21(241)41(4)222(444421321n nn n nnn T -+-=-----=+++-++++=所以123)2(22232234232323422234342)21(2)14(3422111111+⋅-⋅⋅=+⋅-⋅=-+=-+-=-+-=++++++n n nn n n n n n n n n n nnn T⎪⎭⎫⎝⎛---=--⋅⋅=+12112123)12)(122(2231n n n n n从而231211217131311231321<⎪⎭⎫ ⎝⎛---++-+-=+++++n nn T T T T例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n x n ,求证:*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+证明: nnn n n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为 12++<n n n ,所以)1(2122214122n n n n nx x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+二、函数放缩例8.求证:)(665333ln 44ln 33ln 22ln *N n n n n n ∈+-<++++ .解析:先构造函数有xx x x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln n n n n +++--<++++cause⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 31121219181716151413121313121 6533323279189936365111nn n n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>---所以6653651333ln 44ln 33ln 22ln +-=--<++++n n n n n n 例9.求证:(1))2()1(212ln 33ln 22ln ,22≥+--<+++≥n n n n n n ααααααα解析:构造函数xxx f ln )(=,得到22ln ln nn n n ≤αα,再进行裂项)1(1111ln 222+-<-≤n n n nn ,求和后可以得到答案函数构造形式: 1ln -≤x x ,)2(1ln ≥-≤αααn n例10.求证:n n n 1211)1ln(113121+++<+<++++ 解析:提示:2ln 1ln 1ln 1211ln)1ln(++-++=⋅⋅-⋅+=+ n nn n n n n n n函数构造形式:xx x x 11ln ,ln -><当然此题的证明还可以运用积分放缩如图,取函数xx f 1)(=,首先:⎰-<nin ABCFx S 1,从而,)ln(ln |ln 11i n n x x i n n i n nin --==<⋅--⎰取1=i 有,)1ln(ln 1--<n n n,所以有2ln 21<,2ln 3ln 31-<,…,)1ln(ln 1--<n n n,n n n ln )1ln(11-+<+,相加后可以得到:)1ln(113121+<++++n n 另一方面⎰->ni n ABDEx S 1,从而有)ln(ln |ln 11i n n x x i i n n i n nin --==>⋅---⎰取1=i 有,)1ln(ln 11-->-n n n ,所以有nn 1211)1ln(+++<+ ,所以综上有nn n 1211)1ln(113121+++<+<++++FE D C BAn-inyxO例11.求证:e n <+⋅⋅++)!11()!311)(!211( 和en <+⋅⋅++)311()8111)(911(2 .解析:构造函数后即可证明例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n解析:1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案 函数构造形式:)0(13)1ln(1)0(132)1ln(>+>++⇔>+->+x x x x x x x (加强命题)例13.证明:)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n解析:构造函数)1(1)1()1ln()(>+---=x x x x f ,求导,可以得到:12111)('--=--=x x x x f ,令0)('>x f 有21<<x ,令0)('<x f 有2>x ,所以0)2()(=≤f x f ,所以2)1ln(-≤-x x ,令12+=n x 有,1ln 22-≤n n所以211ln -≤+n n n ,所以)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n例14. 已知112111,(1).2n n n a a a n n +==+++证明2nae <.解析:nn n n n a n n a n n a )21)1(11(21))1(11(1+++<+++=+,然后两边取自然对数,可以得到nn n a n n a ln )21)1(11ln(ln 1++++<+然后运用x x <+)1ln(和裂项可以得到答案) 放缩思路:⇒+++≤+n nn a n n a )2111(21⇒++++≤+n nn a n n a ln )2111ln(ln 21nn n n a 211ln 2+++≤。
数列求和中常见放缩方法和技巧(含答案)
数列求和中常见放缩方法和技巧一、放缩法常见公式:(1)()()111112-<<+n n n n n(2)()12122112--=-+<+=<++n n n n n n n n n (3)()()211++<+<n n n n n (4)122+>n n(二项式定理)(5)1+>x e x,1ln -<x x (常见不等式)常见不等式: 1、均值不等式; 2、三角不等式; 3、糖水不等式; 4、柯西不等式; 5、绝对值不等式;若欲证不等式含有与自然数n 有关的n 项和,可采用数列中裂项求和等方法来解题。
例4. 已知n ∈N*,求n 2n131211<…++++。
证明:因为()12222121n n n n n n n n ==<=--++-,则()()()111112212322123n n n++++<+-+-++--212n n <-<,证毕。
例 5. 已知*N n ∈且)1n (n 3221a n +++⨯+⨯= ,求证:2)1(2)1(2+<<+n a n n n 对所有正整数n 都成立。
证明:因为n n n n =>+2)1(,所以2)1n (n n 21a n +=+++> , 又2)1()1(+<+n n n n , 所以2)1n (21n 225232)1n (n 232221a 2n +=++++=++++++< ,综合知结论成立。
例6、求证:2222111171234n ++++< 证明:21111(1)1n n n n n<=--- 222221111*********1()().1232231424n n n n ∴++++<++-++-=+-<- 此题采用了从第三项开始拆项放缩的技巧,放缩拆项时,不一定从第一项开始,须根据具体题型分别对待,即不能放的太宽,也不能缩的太窄,真正做到恰倒好处。
数列放缩法高考专题
高考专题—放缩法一.先求和后放缩 例1.正数数列{}n a 的前n 项的和nS ,满足12+=nna S ,试求:,试求:(1)数列{}n a 的通项公式;的通项公式;(2)设11+=n n na a b,数列{}n b 的前n 项的和为n B ,求证:21<n B二.先放缩再求和1.放缩后成等差数列,再求和 例2.已知各项均为正数的数列{}n a 的前n 项和为n S ,且22n n n a a S +=. (1) 求证:2214nn n a aS ++<;(2)(2) 求证:112122nn nSSS S S +-<++××××××++<2.放缩后成等比数列,再求和例3.(1)设a ,n ∈N *,a ≥2,证明:n n n a a a a ×+³--)1()(2;(2)等比数列{a n }中,112a =-,前n 项的和为A n ,且A 7,A 9,A 8成等差数列.设nn n a a b -=12,数列{b n }前n 项的和为B n ,证明:B n <13.1n1+练习1nn m1-2设数列{na }满足12,311+-==+n a aa nn (1) 求{n a }的通项公式;的通项公式; (2) 若11111,1,1++-=-=-==n n n n n n n c c d n a c c b c求证:数列{n n d b ×}的前n 项和31<n s3已知正项数列{n a }满足)(,)1(1,1211*+Î×++==N n a n a a a nn n (1) 判断数列{n a }的单调性;的单调性; (2) 求证:21)1(1112111+<-<+-++n a a n n n n求证:121(23n a a a n a a a -<+++6 ,有11178a a a +++<.。
【专题整理】【解答题】【放缩法、构造法】【数列、导函数】
高考压轴题中的放缩法与构造法(数列与不等式、函数与不等式)总的来说,高考中与不等式有关的大题(主要是证明题)一般常用均值不等式、构造函数后用导数工具、裂项相消等常见放缩法来解决.证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材.这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种:以下的所有放缩法中裂项相消法、均值不等式法放缩、二项分布法放缩以及函数放缩法最常用必须掌握,所以要先看这些方法.其他的方法,如果有精力的话可以了解一下.如果真的掌握不了也足以应付高考.一、裂项放缩【例1】(1)求∑=-nk k12142的值;(2)求证:35112<∑=nk k. 【解析】(1)∵121121)12)(12(21422+--=+-=-n n n n n ,∴122121114212+=+-=-∑=n nn k nk . (2)∵)121121(21444111222+--=-=-<n n n n n ,∴35321)]121121()5131[(21112=+<+--++-+<∑=n n knk Λ.【常用放缩技巧】(1))121121(2144441222+--=-<=n n n n n ; (2))1(1)1(1)1()1(21211+--=-+=+n n n n n n n C C n n ; (3)rr r r r n r n r n n C T r r rn r 111)1(1!11)!(!!11--=-<<⋅-=⋅=+(2≥r ); (4)25)1(123112111)11(<-++⨯+⨯++<+n n n n Λ;(5)nn nn 21121)12(21--=-;(6)n n n -+<+221; (7))1(21)1(2--<<-+n n nn n ;(8)nn n n n n n 2)32(12)12(121)321122(1⋅+-⋅+=⋅+-+-;(9)11)111()1(1++-+=-+n k k n k n k ,)111(11)1(1kn n k k n n ++-+=++; (10)!)1(1!1!)1(+-=+n n n n ;(11)21212121222)1212(21-++=-++=--+<n n n n n n n; (12)121121)12)(12(2)22)(12(2)12)(12(2)12(21112---=--=--<--=----nn n n n n n n n n n n n (2≥n ); (13)111])1(1)1(1[)1)(1(11123--+⋅+--=+-<⋅=n n n n n n n n n n n n1111211)1111(+--<-++⋅+--=n n n n n n n ; (14)3212132122)12(332)13(2221nn n n n n n n n <-⇒>-⇒>-⇒>⋅-=⋅=+;(15)!)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k ;(16)1)1(1--<+n n n n (2≥n );(17)111)11)((1122222222<++++=+++--=-+-+n m n m n m n m n m n m n m .【例2】(1)求证:)12(2167)12(151311222-->-++++n n Λ(2≥n ); (2)求证:n n412141361161412-<++++Λ; (3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn ΛΛΛ;(4)求证:)112(2131211)11(2-+<++++<-+n nn Λ.【解析】(1)∵)121121(21)12)(12(1)12(12+--=+->-n n n n n ,∴)12131(211)12131(211)12(112--+>+-+>-∑=n n i ni ; (2))111(41)1211(414136116141222n nn -+<+++=++++ΛΛ; (3)先运用分式放缩法证明出1212642)12(531+<⋅⋅-⋅⋅n nn ΛΛ,再结合n n n -+<+221进行裂项,最后就可以得到答案; (4)首先nn n n n++=-+>12)1(21,∴容易经过裂项得到nn 131211)11(2++++<-+Λ;再证21212121222)1212(21-++=-++=--+<n n n n n n n,而由均值不等式知道这是显然成立的,∴)112(2131211-+<++++n nΛ.【例3】求证:35191411)12)(1(62<++++≤++n n n n Λ. 【解析】一方面:∵)121121(21444111222+--=-=-<n n n n n ,∴35321)]121121()5131[(21112=+<+--++-+<∑=n n k nk Λ;另一方面:1111)1(143132111914112+=+-=+++⨯+⨯+>++++n n n n n n ΛΛ;当3≥n 时,)12)(1(61++>+n n n n n ,当1=n 时,2191411)12)(1(6n n n n ++++=++Λ,当2=n 时,2191411)12)(1(6nn n n ++++<++Λ,∴综上有35191411)12)(1(62<++++≤++n n n n Λ.【例4】(2008年全国卷)设函数x x x x f ln )(-=,数列}{n a 满足101<<a ,)(1n n a f a =+.设)1 ,(1a b ∈,整数ba ba k ln 11-≥.证明:b a k >+1. 【解析】由数学归纳法可以证明}{n a 是递增数列,故存在正整数k m ≤,使b a m ≥,则b a a k k ≥>+1,否则若b a m <(k m ≤),则由101<<≤<b a a m 知:0ln ln ln 11<<≤b a a a a a m m m ,∑=+-=-=km m m k k k k a a a a a a a 111ln ln ,∵)ln (ln 11b a k a a km m m <∑=,于是b a b a b a k a a k =-+≥+>+)(|ln |11111.【例5】已知:m 、*∈N n ,1->x ,m m m m m n S ++++=Λ321,求证:1)1()1(11-+<+<++m n m n S m n . 【解析】首先可以证明:nx x n +≥+1)1(.∑=++++++++--=-++---+--=nk m m m m m m m m k k n n n nn111111111])1([01)2()1()1(Λ,∴要证:1)1()1(11-+<+<++m n m n S m n,只要证:1)1()1(])1([11111-+<+<--+==++∑∑m nk m nk m m n k m k k∑=++++++++-+=-++--+-+=nk m m m m m m m m k k n nnn 111111111])1[(12)1()1(Λ;故只要证:∑∑∑=++==++-+<+<--nk m m nk m nk m m k k k m k k1111111])1[()1(])1([,即等价于m m m m m k k k m k k -+<+<--+++111)1()1()1(,即等价于1)11(11++<++m kk m ,1)11(11+-<+-m kk m ,而正是成立的,∴原命题成立. 【例6】已知:nnn a 24-=,nn n a a a T +++=Λ212,求证:23321<++++n T T T T Λ.【解析】)21(2)14(3421)21(241)41(4)222(444421321n nn n nnn T -+-=-----=+++-++++=ΛΛ,∴2234232323422234342)21(2)14(342111111+⋅-⋅=-+=-+-=-+-=++++++n n nn n n n n n n n nn T)121121(23)12)(122(223123)2(222312---=--⋅⋅=+⋅-⋅⋅=+n n n n n n n n ;从而23)]121121()7131()311[(231321<---++-+-=+++++n n n T T T T ΛΛ.【例7】已知:11=x ,⎩⎨⎧∈=-∈-==) , 2( 1), 12( Z k k n n Z k k n n x n ,求证:)11(21114122454432-+>++⋅+⋅+n x x x x x x n n Λ(*∈N n ). 【解析】nnnn n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,∵12++<n n n ,∴)1(2122214122n n n n nx x n n -+=++>>+,∴)11(21114122454432-+>++⋅+⋅+n x x x x x x n n Λ(*∈N n ).二、函数放缩【例8】求证:665333ln 44ln 33ln 22ln +-<++++n n n n Λ(*∈N n ).. 【解析】先构造函数由xx x x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln n n n n +++--<++++ΛΛ;∵)3112121()918171615141()3121(313121n n n n +++++++++++++=+++ΛΛΛ 65)33323()279189()9363(65111nnn n n =+⋅++++++>---Λ,∴6653651333ln 44ln 33ln 22ln +-=--<++++n n n n n n Λ. 【例9】求证:2≥a ,)1(212ln 33ln 22ln 2+--<+++n n n n n a a a a a a Λ(2≥n ). 【解析】构造函数x x x f ln )(=,得到22ln ln n n n n a a ≤,再进行裂项)1(1111ln 222+-<-≤n n n n n ,求和后可以得到答案;或函数构造形式:1ln -≤x x ,1ln -≤a a n n (2≥a ). 【例10】求证:nn n 1211)1ln(113121+++<+<++++ΛΛ. 【解析】提示:2ln 1ln 1ln 1211ln)1ln(++-++=-⋅+=+ΛΛn nn n n n n n n .函数构造形式:x x <ln ,xx 11ln ->. 当然本题的证明还可以运用积分放缩:如图,取函数xx f 1)(=.首先:⎰-<ni n ABCFdx x S 1,从而)ln(ln |ln 11i n n x dx xi n n i n n i n --==<⋅--⎰,取1=i 有,)1ln(ln 1--<n n n ,∴有2ln 21<、2ln 3ln 31-<、Λ、)1ln(ln 1--<n n n、n n n ln )1ln(11-+<+,相加后可以得到:)1ln(113121+<++++n n Λ;另一方面⎰->ni n ABDE dx x S 1,从而有)ln(ln |ln 11i n n x x i i n n i n ni n --==>⋅---⎰,取1=i 有,)1ln(ln 11-->-n n n ,∴有nn 1211)1ln(+++<+Λ,∴综上有n n n 1211)1ln(113121+++<+<++++ΛΛ.【例11】求证:e n <+++)!11()!311)(!211(Λ和e n <+++)311()8111)(911(2Λ.【解析】构造函数后即可证明.【例12】求证:32)]1(1[)321()211(->++⨯+⋅⨯+n e n n Λ.【解析】1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案.函数构造形式:132)1ln(+->+x x (0>x )⇔13)1ln(1+>++x x x (0>x )(加强命题)【例13】证明:4)1(1ln 54ln 43ln 32ln -<+++++n n n n Λ(*∈N n ,1>n ). 【解析】构造函数1)1()1ln()(+---=x x x f (1>x ),求导可以得到:12111)('--=--=x xx x f ,令0)('>x f ,有21<<x ,令0)('<x f ,有2>x ,∴0)2()(=≤f x f ,∴2)1ln(-≤-x x ,令12+=n x 有,1ln 22-≤n n ,∴211ln -≤+n n n ,∴4)1(1ln 54ln 43ln 32ln -<+++++n n n n Λ(*∈N n ,1>n ). 【例14】已知11=a ,nn n a n n a 21)11(21+++=+,证明:2e a n <. 【解析】 n n n n n a n n a n n a ]21)1(11[21])1(11[1+++<+++=+,然后两边取自然对数,可以得到n n n a n n a ln ]21)1(11ln[ln 1++++<+,然后运用x x <+)1ln(和裂项可以得到答案.放缩思路:n n n a n n a )2111(21+++≤+⇒n nn a n n a ln )2111ln(ln 21++++≤+⇒ n n n n n a a 211ln ln 21+++≤+.于是nnn n n a a 211ln ln 21++≤-+,)211()ln (ln 211111i n i i i n i i i a a ++≤-∑∑-=+-=⇒22112211)21(111ln ln 11<--=--+-≤--n n n n n a a ,即2ln ln 1<-a a n ⇒2e a n <.注:题目所给条件x x <+)1ln((0x >)为一有用结论,可以起到提醒思路与探索放缩方向的作用;当然,本题还可用结论)1(2->n n n(2≥n )来放缩:)1(1])1(11[1-+-+≤+n n a n n a n n ⇒)1]()1(11[11+-+≤++n n a n n a ⇒)1(1))1(11ln()1ln()1ln(1-<-+≤+-++n n n n a a n n ⇒∑∑-=+-=-<+-+12112)1(1)]1ln()1ln([n i i i n i i i a a ⇒111)1ln()1ln(2<-<+-+na a n ,即3ln 1)1ln(+<+n a ⇒213e e a n <-<. 【例15】(2008年厦门市质检)已知函数)(x f 是在) , 0(∞+上处处可导的函数,若)()('x f x xf >在0>x 上恒成立.(1)求证:函数xx f x g )()(=在) , 0(∞+上是增函数; (2)当01>x ,02>x 时,证明:)()()(2121x x f x f x f +<+; (3)已知不等式x x <+)1ln(在1->x 且0≠x 时恒成立,求证:)2)(1(2)1ln()1(14ln 413ln 312ln 2122222222++>++++++n n n n n Λ(*∈N n ). 【解析】 (1)0)()(')('2>-=x x f x xf x g ,∴函数x x f x g )()(=在) , 0(∞+上是增函数;(2)∵x x f x g )()(=在) , 0(∞+上是增函数,∴212111)()(x x x x f x x f ++<⇒)()(212111x x f x x x x f +⋅+<;212122)()(x x x x f x x f ++<⇒)()(212122x x f x x x x f +⋅+<,两式相加后可以得到)()()(2121x x f x f x f +<+. (3)【方法一】n n x x x x x x f x x f ++++++<ΛΛ212111)()(⇒)()(212111n nx x x f x x x x x f +++⋅+++<ΛΛ;n n x x x x x x f x x f ++++++<ΛΛ212122)()(⇒)()(212122n n x x x f x x x x x f +++⋅+++<ΛΛ;Λ;n n n n x x x x x x f x x f ++++++<ΛΛ2121)()(⇒)()(2121n nnn x x x f x x x x x f +++⋅+++<ΛΛ; 相加后可以得到:)()()()(2121n n x x x f x f x f x f +++<+++ΛΛ,∴)ln()(ln ln ln ln 2121332211n n n n x x x x x x x x x x x x x x ++++++<++++ΛΛΛ; 令2)1(1n x n +=,有<++++++-])1ln()1(14ln 413ln 312ln 21[22222222n n Λ ])1(13121ln[])1(1413121[2222222++++⋅+++++n n ΛΛ])1(1231121ln[])1(13121[222n n n +++⨯+⨯⋅++++<ΛΛ)2)(1(2)2121)(11(++-=+-+-<n n n n n ,∴)2)(1(2)1ln()1(14ln 413ln 312ln 2122222222++>++++++n n n n n Λ(*∈N n ). 【方法二】)2111(4ln )2)(1(4ln )2)(1()1ln()1()1ln(222+-+=++≥+++>++n n n n n n n n n ,∴)2(24ln )2121(4ln )1ln()1(14ln 413ln 312ln 2122222222+=+->++++++n n n n n Λ,又1114ln +>>n ,∴)2)(1(2)1ln()1(14ln 413ln 312ln 2122222222++>++++++n n n n n Λ(*∈N n ). 【例16】(2008年福州市质检)已知函数x x x f ln )(=.若0>a ,0>b ,证明:)()(2ln )()(b f b a f b a a f -+≥++.【解析】设函数)()()(x k f x f x g -+=(0>k ),∵x x x f ln )(=,∴)ln()(ln )(x k x k x x x g --+=,∴k x <<0,∵xk xx k x x g -=---+=ln1)ln(1ln )(',令0)('>x g ,则有1>-x k x ⇒02>--x k k x ⇒k x k<<2,∴函数)(x g 在) , 2[k k 上单调递增,在]2 , 0(k 上单调递减,∴)(x g 的最小值为)2(kg ,即总有)2()(k g x g ≥;而2ln )()2ln (ln 2ln )2()2()2(k k f k k kk k k f k f k g -=-==-+=,∴2ln )()(k k f x g -≥,即2ln )()()(k k f x k f x f -≥-+,令a x =,b x k =-,则b a k +=,∴2ln )()()()(b a b a f b f a f +-+≥+,∴)()(2ln )()(b f b a f b a a f -+≥++.三、分式放缩姐妹不等式:m a m b a b ++>(0>>a b ,0>m )和ma mb a b ++<(0>>b a ,0>m );记忆口诀“小者小,大者大”;解释:看b 的大小,若b 小,则不等号是小于号,反之. 【例19】姐妹不等式:12)1211()511)(311)(11(+>-++++n n Λ和121)211()611)(411)(211(+<+---n nΛ,也可以表示成为:12)12(5312642+>-⋅⋅⋅⋅n n nΛΛ和1212642)12(531+<⋅⋅-⋅⋅n nn ΛΛ. 【解析】利用假分数的一个性质ma mb a b ++>(0>>a b ,0>m )可得:)12(212654321212674523122563412+⋅-⋅⋅=+⋅⋅>-⋅⋅n n n n n n n ΛΛΛ⇒12)122563412(2+>-⋅⋅n n n Λ,即12)1211()511)(311)(11(+>-++++n n Λ.【例20】证明:313)2311()711)(411)(11(+>-++++n n Λ. 【解析】运用两次次分式放缩:1338956232313784512-⋅⋅>--⋅⋅n n n n ΛΛ(加1);nn n n 31391067342313784512+⋅⋅>--⋅⋅ΛΛ(加2);两式相乘可以得到:)13(132387542113138105724)2313784512(2+⋅--⋅⋅=-+⋅⋅>--⋅⋅n n n n n n n ΛΛΛ,∴有313)2311()711)(411)(11(+>-++++n n Λ.四、分类放缩【例21】求证:212131211nn >-++++Λ. 【解析】 +++++++++>-++++ΛΛ)21212121()4141(211121312113333n 2)211(221)212121(n n nn n n n >-+=-+++Λ.【例22】(2004年全国高中数学联赛加试改编)在平面直角坐标系xOy 中,y 轴正半轴上的点列}{n A 与曲线x y 2=(0≥x )上的点列}{n B 满足nOB OA n n 1||||==,直线n n B A 在x 轴上的截距为n a .点n B 的横坐标为n b ,*∈N n .(1)证明:41>>+n n a a ,*∈N n ;(2)证明有*∈N n 0,使得对0n n >∀都有2008112312-<+++++-n b b b b b b b b nn n n Λ. 【解析】(1)依题设有:(()10,,,0n n n n A B b b n ⎛⎫> ⎪⎝⎭,由1n OB n=得:2*212,1,n n n b b b n N n +=∴∈,又直线n n A B 在x 轴上的截距为n a 满足()()11000nn ab n n ⎫⎛⎫-=--⎪ ⎪⎭⎝⎭,n a 22221210,2n nn nn b n b b n b =->+=Q,212n n n n a b n b ∴=+1n a ∴1101n n >>+,有*14,n n a a n N +>>∈. (2)证明:设*11,n n nb c n N b +=-∈,则()()()22222111211212121n c n n n n n n n ⎛- +⎝⎛⎫ ⎪++ > ++ ⎝()()()2*1212210,,2n n n n n c n N n ++-+=>∴>∈+Q ;设*12,n n S c c c n N =+++∈L ,则当()*221k n k N =->∈时,23111111111113421234212212n k k k k S -⎛⎫⎛⎫⎛⎫>++++=+++++++ ⎪ ⎪ ⎪-++⎝⎭⎝⎭⎝⎭L L L 212311112222222k k k -->⋅+⋅++⋅=L .∴,取4009022n =-,对0n n ∀>都有:2008214017111012312=->>=⎪⎪⎭⎫ ⎝⎛-++⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-+n n n n S S b b b b b b Λ;故有nn n n b b b b b b b b 112312+-++++Λ<2008-n 成立. 【例23】(2007年泉州市高三质检)已知函数),1()(2R c b c bx x x f ∈≥++=,若)(x f 的定义域为[-1,0],值域也为[-1,0].若数列}{n b 满足)()(*3N n nn f b n ∈=,记数列}{n b 的前n 项和为n T ,问是否存在正常数A ,使得对于任意正整数n 都有A T n <?并证明你的结论. 【解析】 首先求出x x x f 2)(2+=,∵nn n n n n f b n 12)(323>+==,∴nb b b b T n n 131211321++++>++++=ΛΛ,∵214124131=⨯>+,2181481716151=⨯>+++,…,2121221*********=⨯>+++++---k k k k k Λ,故当k n 2>时,12+>k T n ,因此,对任何常数A ,设m 是不小于A 的最小正整数,则当222->m n 时,必有A m m T n >=+->1222.故不存在常数A 使A T n <对所有2≥n 的正整数恒成立. 【例24】(2008年中学教学参考)设不等式组⎪⎩⎪⎨⎧+-≤>>n nx y y x 3,0,0表示的平面区域为n D ,设n D 内整数坐标点的个数为n a .设nn n na a a S221111+++=++Λ,当2≥n 时,求证:3611711112321+≥++++n a a a a nΛ.容易得到n a n 3=,∴,要证3611711112321+≥++++n a a a an Λ只要证1211721312112+≥++++=n S n nΛ,∵n n n n S 21221121()81716151()4131(211112++++++++++++++=--ΛΛ12117)1(12723211121222+=-+≥+++++=-n n T T T n Λ,∴原命题得证.五、迭代放缩【例25】已知1,1411=++=+x x x x nn n ,求证:当2≥n 时,n ni ix-=-≤-∑1122|2|.【解析】通过迭代的方法得到1212-≤-n n x ,然后相加就可以得到结论.【例26】设n n n S 2!sin 2!2sin 2!1sin 21+++=Λ,求证:对任意的正整数k ,若k ≥n 恒有:|Sn+k -Sn|<1n .【解析】 |2)sin(2)!2sin(2)!1sin(|||21kn n n n kn k n n n S S++++++++++=-Λkn n n k n n n k n n n +++++++++≤++++++≤212121|2)sin(||2)!2sin(||2)!1sin(|2121ΛΛn k n k n21)211(21)212121(212<-⋅=+++=Λ,又n C C C nn n n n n>+++=+=Λ10)11(2,∴nS S n n k n 121||<<-+.六、借助数列递推关系【例27】求证:1222642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn ΛΛΛ.【解析】 设nn a n 2642)12(531⋅⋅⋅⋅-⋅⋅⋅⋅=ΛΛ,则n n n n n a na a n a n n a +=+⇒++=++2)1(2)1(21211,从而n n n na a n a 2)1(21-+=+,相加后就可以得到1221)22(1321)1(22)1(21121-+⋅+<-+⋅+<-+=++++n n n n a a n a a an n Λ,∴1222642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn ΛΛΛ. 【例28】求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn ΛΛΛ.【解析】 设nn a n 2642)12(531⋅⋅⋅⋅-⋅⋅⋅⋅=ΛΛ,则111)12(]1)1(2[)1(212+++++=++⇒++=n n n n n a a n a n a n n a ,从而n n n a n a n a )12(]1)1(2[11+-++=++,相加后就可以得到11223121)12(3)12(1121-+<-+⋅+<-+=++++n n n a a n a a a n n Λ. 【例29】若1,111+=⋅=+n a a a n n ,求证:)11(211121-+≥+++n a aa nΛ.【解析】n n n n n n n a a a a a n a a -=⇒+⋅=+=⋅+++++21112112,∴就有2122111121121121-+=-≥--++=+++++n a a a a a a a a a a a n n n n n Λ.七、分类讨论【例30】已知数列}{n a 的前n 项和n S 满足.1,)1(2≥-+=n a S nn n 证明:对任意的整数4>m ,有8711154<+++m a a aΛ.容易得到[].)1(23212---+=n n n a ,由于通项中含有n )1(-,很难直接放缩.考虑分项讨论:当3≥n ,且n 为奇数时,12222223)121121(2311213212121--++⋅=-++=+-------+n n n n n n n n n a a )2121(2322223123212-----+⋅=+⋅<n n n n n (减项放缩),于是: ①当4>m 且m 为偶数时,=+++m a a a 11154Λ)11()11(11654m m a a a a a +++++-Λ.878321)211(412321)212121(23214243=+<-⋅⋅+=++++<--m m Λ;②当4>m 且m 为奇数时,<+++m a a a 11154Λ1541111+++++m m a a a a Λ(添项放缩),由①知:.871111154<+++++m m a a a a Λ;由①②得证.八、线性规划型放缩【例31】设函数221()2x f x x +=+.若对一切x R ∈,3()3af x b -≤+≤,求a b -的最大值. 【解析】由22221(2)(1)(())((1)1)22(2)x x f x f x -+-+-=+知:1(())((1)1)02f x f +-≤,即1()12f x -≤≤,由此再由()f x 的单调性可以知道()f x 的最小值为12-,最大值为1,因此对一切x R ∈,3()3af x b -≤+≤的充要条件是:133233a b a b ⎧-≤-+≤⎪⎨⎪-≤+≤⎩,即a 、b 满足约束条件33132132a b a b a b a b +≥-⎧⎪+≤⎪⎪⎨-+≥-⎪⎪-+≤⎪⎩,由线性规划得:a b -的最大值为5.九、均值不等式放缩【例32】设.)1(3221+++⋅+⋅=n n S n Λ,求证:.2)1(2)1(2+<<+n Sn n n.【解析】此数列的通项为.,,2,1,)1(n k k k a k Λ=+=;2121)1(+=++<+<k k k k k k Θ,)21(11∑∑==+<<∴nk n n k k S k ,即.2)1(22)1(2)1(2+<++<<+n n n n S n n n . 注:①应注意把握放缩的“度”,上述不等式右边放缩用的是均值不等式2ba ab +≤,若放成1)1(+<+k k k ,则得2)1(2)3)(1()1(21+>++=+<∑=n n n k S nk n ,就放过“度”了!②根据所证不等式的结构特征来选取所需要的重要不等式,这里na a na a a a a a n nnn n n22111111++≤++≤≤++ΛΛΛΛ;其中,3,2=n 等的各式及其变式公式均可供选用.【例33】已知函数bx a x f 211)(⋅+=,若54)1(=f ,且)(x f 在[0,1]上的最小值为21,求证:.2121)()2()1(1-+>++++n n n f f f Λ. 【解析】)2211()()1()0(22114111414)(⨯->++⇒≠•->+-=+=n f f x x f xx x x Λ.2121)21211(41)2211()2211(112-+=+++-=⨯-++⨯-++-n n n n n ΛΛ.【例34】已知b a ,为正数,且111=+b a ,试证:对每一个*∈N n ,1222)(+-≥--+n n n n n b a b a . 【解析】由111=+b a 得:b a ab +=,又42)11)((≥++=++ab b a b a b a ,故4≥+=b a ab ,而nn n r r n r n n n n n n b C b a C b a C a C b a +++++=+--ΛΛ110)(,令n n n b a b a n f --+=)()(,则)(n f =1111----++++n n n r r n r n n n ab C b a C b a C ΛΛ,∵i n n i n C C -=,倒序相加得)(2n f =)()()(111111b a ab C b a b a C ab b a C n n n n r n r r r n r n n n n-------+++++++ΛΛ,而1211112422+------=⋅≥≥+==+==+n nnnn n rn r r rn n n b a b aabba b aabb aΛΛ,则)(2n f =))(22())((11rr n r n r n r r n r n r n n r n n b a b a b a b a C C C -----+-=+++++ΛΛ⋅-≥)22(n 12+n ,∴)(n f ⋅-≥)22(n n 2,即对每一个*∈N n ,1222)(+-≥--+n n n n n b a b a . 【例35】求证:),1(221321N n n n C C C C n n n n n n ∈>⋅>++++-Λ.【解析】不等式左=++++nn n n n C C C C Λ32112222112-++++=-n n Λn n n 122221-⋅⋅⋅⋅⋅>Λ=212-⋅n n ,原结论成立.【例36】已知xx e e x f -+=)(,求证:21)1()()3()2()1(nn e n f f f f +>⋅⋅⋅⋅+Λ.【解析】 11)1()1()()(2121122121221121+>⋅+++=+⋅+=⋅++x x x x x x x x x x x x x xe ee e e e e e e e e e xf x f ;经过倒序相乘,就可以得到21)1()()3()2()1(nn en f f f f +>⋅⋅⋅⋅+Λ.【例37】已知x x x f 1)(+=,求证:n n n n f f f f )1(2)2()3()2()1(+>⋅⋅⋅⋅Λ. 【解析】2)12(2)12(11212)12()12112)(1(+-+>-++-++-++-+=-++-++k n k n k k k n k n kk n k k n k n k k ;其中:n k 2,,3,2,1Λ=,∵n k n k k n k n k k n k 2)12(0)2)(1(2)1(2≥-+⇒≥--=--+⋅,∴22)12112)(1(+≥-++-++n kn k n k k ,从而n n n f f f f 22)22()]2()3()2()1([+>⋅⋅⋅⋅Λ,∴n n n n f f f f )1(2)2()3()2()1(+>⋅⋅⋅⋅Λ.【例38】若7>k ,求证:231121111>-++++++=nk n n n S n Λ. 【解析】 )111()3121()2111()111(2nnk nk n nk n nk nS n +-++-+++-+++-+=Λ;∵当0,0>>y x 时,xy y x xy y x 211,2≥+≥+,∴4)11)((≥++y x y x ,∴yx y x +≥+411,当且仅当y x =时取到等号.∴1)1(414324214142-+-=-+++-+++-+++-+>nk n k n nk n nk n nk n nk n S n Λ,∴231421)1(211)1(2>+-=+->-+->k k k nk k S n ∴231121111>-++++++=nk n n n S n Λ.【例39】已知))(()(21x x x x a x f --=,求证:16)1()0(2af f ≤⋅.【解析】16)]1()][1([)1()0(222112a x x x x a f f ≤--=⋅.【例40】已知函数f (x )=x2-(-1)k ·2lnx (k ∈N*).k 是奇数,n ∈N*时,求证:[f ’(x )]n -2n -1·f ’(xn )≥2n (2n -2). 【解析】由已知得)0(22)(>+='x x x x f ,(1)当n=1时,左式=22(2)(2)0x x x x+-+=右式=0.∴不等式成立;(2)2n ≥,左式=)22(2)22()(2)]([11nn n n n n n x x x x x f x f +⋅-+='⋅-'--).11(221424221------++++=n n n n n n n n n n n x C x C x C x C Λ;令1224214211n n n n n n nnn n S C x C x C C xx------=++++L .由倒序相加法得:)1()1()1(2221442221-------++++++=n n n n n n n n n n x xC xx C xx C S Λ)22(2)(2121-=+++≥-n n n n n C C C Λ,∴).22(-≥n S ;∴.)22(2)(2)]([1成立-≥'⋅-'-n n n n n x f x f 综上,当k 是奇数,N n +∈时,命题成立.【例41】(2007年东北三校)已知函数)1()(>-=a x a x f x .(1)求函数)(x f 的最小值,并求最小值小于0时的a 取值范围;(2)令)1()2()1()('1'2'1-+++=-n f C f C f C n S n n n n Λ,求证:)2()22()('n f n S n ⋅->.【解析】ea a a a a x x x e a a ea a a a x f aa a f x f a a x f a x x f a x a aa a a x f a a x f 1min min ''''11ln ,1ln ln ,0ln ln ln 1,0)(ln ln ln 1)ln log ()(),ln log )ln log ,()(,ln log ,0)(ln log 1,ln 1,1ln ,0)(,1ln )()1(<<∴<∴-<<+<+=-=+∞---∞-<<->∴>>∴>>-=的取值范围是则即若所以上递增;上递减,在(在所以有同理:又即:由所以不等式成立。
高考数学压轴题难题重点——数列放缩技巧深究
数列放缩技巧一、有通项的放缩例1.已知数列{}n a 的前n 项和n S 满足()2123---=nn n a S (*∈N n ). (Ⅰ)证明:(){}nn a 1--为等比数列,并求出{}n a 的通项公式;(Ⅱ)设数列⎭⎬⎫⎩⎨⎧n a 1的前n 项和为n T ,证明:32<n T (*∈N n ).解:(Ⅰ)由()()⎪⎪⎩⎪⎪⎨⎧---=---=+++212321231!1n n n nn n a S a S得()()nn n n n a a a 112323111-+---=+++即()()nn n n a a 1212311---+=++ ()()()()3)1()1(33)1(121311111=----=-----+=----∴+++nn n n n n nn n nn n n a a a a a a(){}nn a 1--∴为等比数列()2123---=nn n a S 令1=n ,解得21=a(){}nn a 1--∴是首项为3,公比为3的等比数列()n nn a 31=--∴,即()nn n a 13-+=方法一:分奇偶讨论,放缩成等比数列(Ⅱ)法1.当k 为正偶数时,当n 为奇数时⎪⎪⎭⎫ ⎝⎛+++⎪⎪⎭⎫ ⎝⎛++=-n n n a a a a a T 111111321 ⎪⎭⎫ ⎝⎛++++<-n n 3131313121132 3231161211<⎪⎭⎫ ⎝⎛-+=-n 当n 为偶数时321<<+n n T T ,32<∴n T (*∈N n ) 方法二:利用110n a --≥放缩成等比数列法2. 当3≥n 时,()()223811391131--⨯<-+⨯=-+n nn nn 1121112111313133313333313113111+++++++++=+<--++=-++=+k k k k k k k k k k k k k k a a3113113181101213131318110121222-⎪⎭⎫ ⎝⎛-⨯⨯++=⎪⎭⎫ ⎝⎛+++++<∴--n n n T32805316110121311161101212<=++<⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-++=-n 方法三:累乘法放缩成等比数列设1n n b a =若第一项开始,由1212134q q =⇒=-,但114n n b b +<不成立;故转证:2316n b b b +++<,此时2110b =,由11210165q q =⇒=-,即证:125n n b b +<这是成立的; 2212111112221210555n n a a a -⎡⎤⎛⎫⎛⎫⎛⎫∴+++<++++⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦121111125221026315n -⎛⎫- ⎪⎝⎭=+<+=- 练习1.数列{}n a 的前n 项和为n S ,且*2,()n n S a n n N =-+∈。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、作差法构造函数证明
【例2】已知函数 ,求证:在区间 上,函数 的图象在函数 的图象的下方.
【分析】
函数 的图象在函数 的图象的下方 问题,即 ,只需证明在区间 上,恒有 成立,设 , ,考虑到 ,要证不等式转化变为:当 时, ,这只要证明: 在区间 是增函数即可.
【分析】
此题目具有幂指数形式,对不等式两边分别取对数得 ,整理为 ,在此基础上根据“形似”构造辅助函数 ,再根据函数的单调性证明之.
【解析】
不等式两边分别取对数得 ,可化为 .令 ,显然 在 内连续并可导, ( ),故 在 内严格单调递减,由 得: ,∴ ,即 ,故 .
【例9】已知 、 都是正整数,且 ,证明: .
(1)若 的通项公式;
(2)求证:
【解析】
(1) ,
.
(2)由(1)知: , ,
7、【2011年河北省唐山一中】已知数列 满足 = , ,数列 满足 .
(1)求数列 的通项公式;
(2)设数列 的前 项和为 ,求证:当 时, ;
(3)求证:当 时, .
【解析】
(1)由题意得: ,即 , .
(2) ,当 时, ,平方则 ,叠加得 , , .
7、利用基本不等式放缩
【例7】已知: ,证明:不等式 ,对任何正整数 、 都成立.
【解析】
要证 ,只要证: ,∵ , ,故只要证: ,即只要证: ,∵ ,∴命题得证.
【点评】本题通过化简整理之后,再利用基本不等式由 放大即可.
8、先适当组合、排序,再逐项比较或放缩
【例8】已知: 、 、 是正整数,且 .
2、先放缩再求和(或先求和再放缩)
【例2】函数 ,求证: ( ).
【解析】
由 得: ( ).
【点评】此题不等式左边不易求和,此时根据不等式右边特征,先将分子变为常数,再对分母进行放缩,从而对左边可以进行求和.若分子,分母如果同时存在变量时,要设法使其中之一变为常量,分式的放缩对于分子分母均取正值的分式.如需放大,则只要把分子放大或分母缩小即可;如需缩小,则只要把分子缩小或分母放大即可.
4、【解析】 , ,故 在 上是减函数,由 有 ,故选A.
高考真题荟萃
1、【2012年广东卷,理】设数列 的前 项和为 ,满足 ( ),且 、 、 成等差数列.
(1)求 的值;
(2)求数列 的通项公式;
(3)证明:对一切正整数 ,有 .
【解析】
(1) , ;两式相减得: . , ; 、 、 成等差数列 .
(2)由 得到该数列的一个特征方程 ,即 ,解得: 或 ,∴ ①; ②;两式相除可得 ,而 ,故数列 是以 为首项,以 为公比的等比数列,则 ,故 .
3、【1年浙江卷,理19】已知公差不为0的等差数列 的首项 为a( ),设数列的前n项和为 ,且 , , 成等比数列.
(1)求数列 的通项公式及 ;
【解析】
(1)过程略;
(2)对 求导,则 .在 中以b为主变元构造函数,设 ,则 .当 时, ,因此 在 内为减函数;当 时, ,因此 在 上为增函数.从而当 时, 有极小值 ,∵ ,∴ ,即 又设 ,则 ;当 时, .因此 在 上为减函数,∵ ∴ ,即 .
6、构造二阶导数函数证明导数的单调性(二次求导)
3、换元法构造函数证明
【例3】(2007年山东卷)证明:对任意的正整数n,不等式 都成立.
【分析】
本题是山东卷的第(2)问,从所证结构出发,只需令 ,则问题转化为:当 时,恒有 成立,现构造函数 ,求导即可达到证明.
【解析】
令 ,则 在 上恒正,∴函数 在 上单调递增,∴ 时,恒有 ,即 ,∴ ,对任意正整数n,取 .
(1)∵ ,故点 在函数 的图像上,故由所给出的两点 、 ,可知直线 的斜率一定存在.故直线 的方程为 ,令 可得: ,∴ .
下面用数学归纳法证明 :①当 时, ,满足 ;②假设 时, 成立,则当 时, ,由 ,即 也成立.综上可知: 对任意正整数恒成立.
下面证明 :由 ;由 ,故有 ,即 .综上可知: 恒成立.
【点评】我们知道,当 在 上单调递增,则 时,有 .如果 = ,要证明当 时, ,那么,只要令 = - ,就可以利用 的单调增性来推导.也就是说,在 可导的前提下,只要证明 0即可.
4、从条件特征入手构造函数证明
【例4】若函数y= 在R上可导,且满足不等式x >- 恒成立,常数a、b满足a>b,求证:a >b .
(1)由题意 ,由S2是等比中项知 ;由 解得: .
(2)【证法一】由题设条件有 ,故 ,从而对 有 ①;因 ,由①得 ,要证 ,由①只要证 ,即证 ,此式明显成立.因此 最后证 若不然 又因 矛盾.因此 .
【证法二】由题设知 ,故方程 (可能相同).因此判别式 又由 因此 ,解得 因此 由 ,得:
【解析】
原不等式等价于 ,令 ( ),则 ,即 在 上严格递减,∴ ,即 成立.
【思维挑战】
1、(2007年,安徽卷)设 , .
求证:当 时,恒有 .
2、(2007年,安徽卷)已知定义在正实数集上的函数 , ,其中 ,且 ,求证: .
3、已知函数 ,求证:对任意的正数 、 ,恒有 .
4、(2007年,陕西卷) 是定义在 上的非负可导函数,且满足 ,对任意正数 、 ,若 ,则必有()
(2)由 , 得: ,对 均成立; 得: .
(3)【证法一】当 时, ;当 时, ; ;由上式得:对一切正整数 ,有 .
【证法二】∵ ,∴ ,∴ ,于是 .
2、【2012年大纲卷,理】函数 .定义数列 如下: , 是过两点 、 的直线 与 轴交点的横坐标.
(1)证明: ;
(2)求数列 的通项公式.
【解析】
(1)证明: ;(2)证明: .
【解析】
(1)对于 ,且 , ,同理 ,由于 ,对于整数 1、2、 、 ,有 ,∴ ,即 .
(2)由二项式定理有: , ,由(1)知: ( ),而 , ,∴ ( ),∴ , , , , , , , ,∴ ,即 成立.
构造法证明不等式
1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点.
7、对数法构造函数(选用于幂指数函数不等式)
【例7】证明:当 时, .
【解析】
对不等式两边取对数得 ,化简为 ,设辅助函数 ( ), ,又 ( ),易知 在 上严格单调增加,从而 ( ),又由 在 上连续,且 ,得 在 上严格单调增加,∴ ( ),即 , ,故 ( ).
8、构造形似函数
【例8】证明:当 ,证明 .
(3)当 时, 即 时命题成立;假设 时命题成立,即: ;当 时, = ,即 时命题也成立.综上可得,对于任意 , .
3、先放缩,后裂项(或先裂项再放缩)
【例3】已知: ,求证: .
【解析】
.
【点评】本题先采用减小分母的两次放缩,再裂项,最后又放缩,有的放矢,直达目标.
4、放大或缩小“因式”
【例4】已知数列 满足: ,求证: .
【解析】
, , .
【点评】本题通过对因式 放大,而得到一个容易求和的式子 ,最终得出证明.
【例6】已知函数 .
(1)若 在 上为增函数,求 的取值范围;
(2)若 ,求证:当 时, .
【解析】
(1) ,∵ 在 上为增函数,∴ 对 恒成立,即 对 恒成立;记 ,则 ;当 时, ;当 时, .知 在 上为增函数,在 上为减函数,∴ 在 时,取得最大值,即 ,∴ ,即 的取值范围是 .
(2)记 ( ),则 ,令 ,则 ;当 时, ,∴ 在 上为增函数,又 在 处连续,∴ ,即 ,∴ 在 上为增函数,又 在 处连续,∴ ,即 .
2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键.
一、移项法构造函数
【例1】已知函数 ,求证:当 时,恒有 .
【分析】
本题是双边不等式,其右边直接从已知函数证明,左边构造函数 ,从其导数入手即可证明.
(1)求函数 的最大值;
(2)设 ,证明: .
【分析】
对于第(2)小问,绝大部分的学生都会望而生畏.学生的盲点也主要就在对所给函数用不上.如果能挖掘一下所给函数与所证不等式间的联系,想一想大小关系又与函数的单调性密切相关,由此就可过渡到根据所要证的不等式构造恰当的函数,利用导数研究函数的单调性,借助单调性比较函数值的大小,以期达到证明不等式的目的.
(2)记 , ,当 时,试比较 与 的大小.
【解析】
(1)设等差数列 的公差为d,由 得: ;因为 ,所以 所以 .
(2)因为 ,所以 ;因为 ,所以 ;当 ,即 ,所以当 ;当 .
4、【2011年重庆卷,理21】设实数数列 的前n项和 ,满足 .
(1)若 成等比数列,求 和 ;
(2)求证:对 .
【解析】
5、逐项放大或缩小
【例5】设 ,求证: .
【解析】
∵ , ,∴ ,∴ ,∴ .
【点评】本题利用 ,对 中每项都进行了放缩,从而得到可以求和的数列,达到化简的目的.
6、固定一部分项,放缩另外的项
【例6】求证: .
【解析】
, .
【点评】此题采用了从第三项开始拆项放缩的技巧,放缩拆项时,不一定从第一项开始,须根据具体题型分别对待,即不能放的太宽,也不能缩的太窄,真正做到恰倒好处.
因此 .
5、【2011年广东惠州】已知曲线 上有一点列 ,点 在x轴上的射影是 ,且 , .
(1)求数列 的通项公式;
(2)设四边形 的面积是 ,求证: .