(整理)数学分析试题库--证明题

合集下载

数学分析有答案的套题

数学分析有答案的套题

七章 实数的完备性判断题:1. 1. 设11,1,2,2H n n n ⎧⎫⎛⎫==⎨⎬⎪+⎝⎭⎩⎭ 为开区间集,则H 是(0, 1 )的开复盖. 2. 2. 有限点集没有聚点.3. 3. 设S 为 闭区间 [],a b , 若,x S ∈则x 必为S 的聚点.4. 4. 若lim nn a →∞存在, 则点集{}n a 只有一个聚点.5. 5. 非空有界点集必有聚点.6. 6. 只有一个聚点的点集一定是有界点集.7. 7. 如果闭区间列{}[,]n n a b 满足条件 11[,][,],1,2,n n n n a b a b n ++⊃= , 则闭区间套定理成立. 8. 8. 若()f x 在[,]a b 上一致连续, 则()f x 在[,]a b 上连续. 9. 9. 闭区间上的连续函数一定有界.10. 10. 设()f x 为R 上连续的周期函数, 则()f x 在R 上有最大值与最小值.答案: √√√√×××√√√ 证明题1. 1. 若A 与B 是两个非空数集,且,,x A y B ∀∈∈有 x y ≤, 则sup inf A B ≤.2. 证明: 若函数()f x 在(,)a b 单调增加, 且(,)x a b ∀∈, 有()f x M ≤(其中M 是常数), 则 ,c M ∃≤ 使 lim ()x b f x c-→=.3. 证明: 若E 是非空有上界数集, 设 sup ,E a =且 a E ∉, 则 存在数列1,,n n n x E x x n N +∈<∈, 有 lim n n x a →∞=.4. 证明: 函数()f x 在开区间(,)a b 一致连续⇔函数()f x 在开区间(,)a b 连续, 且(0)f a +与(0)f b -都存在.5.设{}n x 为单调数列,证明: 若{}n x 存在聚点,则必是唯一的, 且为{}n x 的确界.6. 证明:sin ()xf x x =在()0,+∞上一致连续.7. 证明: {}n x 为有界数列的充要条件是{}n x 的任一子列都存在其收敛子列.8. 设()f x 在[],a b 上连续, 又有{}[],n x a b ⊂, 使 lim ()n n f x A →∞=. 证明: 存在[]0,x a b ∈, 使得 0()f x A =.答案1.证明: 设sup ,inf .A a B b == 用反证法. 假设 s u pi n f A B > 即 ,b a <有2a b b a +<<, 一方面, sup ,2a b a A +<= 则存在 00,;2a b x A x +∈<另一方面,inf ,2a b b B +=< 则00,2a by B y +∃∈<. 于是, 00,x A y B ∃∈∈有002a b y x +<<, 与已知条件矛盾, 即 sup inf A B ≤.2. 证明: 已知数集{}()(,)f x x a b ∈有上界, 则其存在上确界, 设{}sup ()(,)f x x a b c M ∈=≤由上确界的定义, 00,(,)x a b ε∀>∃∈, 使得 0(),c f x c ε-<≤00,:b xx b x b δδ∃=->∀-<<; 或 0:,x x x b ∀<<有 0()()c f x f x c ε-<≤≤ 或 ()f x c ε-<. 即 l i m ()x b f x c -→=.3. 证明: 已知 sup E a =, 由确界定义, 111,x E ε=∃∈, 有 11a x a ε-<<2121min ,0,2a x x E ε⎧⎫=->∃∈⎨⎬⎩⎭, 有 12x x < , 并且22a x a ε-<<3231min ,0,3a x x Eε⎧⎫=->∃∈⎨⎬⎩⎭, 有 23x x <, 并且33a x a ε-<<于是, 得到数列{}1,,,n n n n x x E x x n N +∈<∀∈. 有 lim n n x a →∞=.4. 证明: ⇒ 已知 ()f x 在(,)a b 一致连续,即12120,0,,(,):x x a b x x εδδ∀>∃>∀∈-<, 有 12()()f x f x ε-< 显然 ()f x 在(,)a b 连续, 且 120,0,,(,)x x a b εδ∀>∃>∀∈1122()a x a x x a x a δδδ<<+⎧-<⎨<<+⎩, 有 12()()f x f x ε-<.根据柯西收敛准则,函数()f x 在a 存在右极限(0).f a +同理可证函数()f x 在b 存在左极限(0)f b -.⇐已知(0)f a +与(0)f b -存在, 将函数()f x 在a 作右连续开拓, 在b 作左连续开拓, 于是函数()f x 在闭区间[],a b 连续, 从而一致连续, 当然在(,)a b 也一致连续. 5. 证明: 不妨设{}n x 递增.(1) 先证若{}n x 存在聚点必唯一. 假定,ξη都是{}n x 的聚点, 且ξη<. 取02ηξε-=, 由η是{}n x 聚点, 必存在0(,).n x U ηε∈又因{}n x 递增, 故n N ≥时恒有002n N x x ξηηεξε+≥>-==+于是, 在0(,)U ξε中至多含{}n x 的有限多项, 这与ξ是{}n x 的聚点相矛盾. 因此{}n x 的聚点存在时必唯一.(2) 再证{}n x 上确界存在且等于聚点ξ. ()a ξ为{}n x 上界. 如果某个N x ξ>, 则 n N ≥时恒有n x ξ>, 取00,N x εξ=-> 则在0(,)U x ξ内至多含{}n x 的有限多项, 这与ξ为{}n x 的聚点相矛盾.()b 对0,ε∀>由聚点定义, 必存在N x 使N x ξεξε-<<+. 由定义{}sup n x ξ=.6. 6. 证明: 令10,()sin (0,)x F x xx x =⎧⎪=⎨∈+∞⎪⎩由于 00sin lim ()lim 1(0)x x x F x F x ++→→===, 而 (0,)x ∈+∞时sin ()xF x x =, 所以 ()F x 在[)0,+∞上连续, 又因lim ()0x F x →+∞=存在, 所以 ()F x 在[)0,+∞上一致连续,从而在(0,)+∞上也一致连续, 即 ()f x 在(0,)+∞上一致连续. 7. 7. 证明: ⇒ 设{}n x 为有界数列, 则{}n x 的任一子列{}kn x 也有界, 由致密性定理知{}kn x 必存在其收敛子列{}k jn x .⇐ 设 {}n x 的任一子列都存在其收敛子列. 若{}n x 无界, 则对1M =, 必存在正整数1n 使得11n x >; 对2,M =存在正整数21,n n >使得22;;n x > 一般地,对M k =, 存在正整数1,k k n n ->使得k n x k >. 于是得到{}n x 的子列{}k n x , 它满足lim k n k x →∞=∞, 从而{}kn x 的任一子列{}k jn x 必须是无穷大量, 与充分性假定相矛盾.8. 8. 证: 因{}[],n x a b ⊂为有界数列, 故{}n x 必有收敛子列{}kn x ,设lim k n k x x →∞=,由于{}[],kn x a b ⊂,故 []0,x a b ∈. 一方面, 由于()f x 在0x 连续有0l i m ()(),x x f x f x →=再由归结原则有0lim ()lim ()()k n k x x f x f x f x →∞→==; 另一方面, 由lim ()n n f x A→∞= 及{}()kn f x 是{}()nf x 的子列有lim ()lim ()k n n k n f x f x A→∞→∞==因此 0().f x A =第八章 不定积分填空题1. ()()_________x ex dx ϕϕ'=⎰.2. 若函数()F x 与()G x 是同一个连续函数的原函数, 则()F x 与()G x 之间有关系式_______________.3. 若()f x '=且3(1)2f π= , 则 ()__________.f x = 4. 若()cos f x dx x C =-+⎰, 则()()___________.n f x =5.(ln )________.f x dx x '=⎰6. 若(sin ,cos )(sin ,cos )R x x R x x =--, 则作变换___________计算(sin ,cos )R x x dx ⎰.7.[1()]()__________n x x dx ϕϕ'+=⎰.()n N +∈8.3415(1)_________x x dx -=⎰9.若()(0)f x x x =>, 则 2()___________f x dx '=⎰.10. 过点(1,)4π斜率为211x +的曲线方程为___________.答案:1. ()x eC ϕ+. 2. ()()F x G x C =+ (C 为任意常数). 3. arcsin x π+. 4. sin()2n x π+. 5.(ln )f x C +. 6. tan t x =.7. 11[1()]1n x C n ϕ++++. 8. 4161(1)64x C --+. 9. 1ln 2x x C++10. arctan y x =判断题:1. 1. 有理函数的原函数是初等函数.2. 2. ()()df x dx f x dx =⎰3. 3. 若函数()f x 存在一个原函数,则它必有无限多个原函数.4. 4. 设()F x 是()f x 在区间I 上的原函数,则()F x 在区间I 上一定连续.5. 5. 函数()f x 的不定积分是它的一个原函数.6. 6. 21(1)x x x +-的有理函数分解式为: 22221(1)1(1)x A Bx C Dx Ex x xx x +++=++--- 7. 7.()()d d f x d f x =⎰8. 8. 若函数()f x 在区间I 上连续, 则它在区间I 上必存在原函数.9. 9. 存在一些函数, 采用不同的换元法, 可以得到完全不同的不定积分. 10. 10. 若()f x dx x C =+⎰, 则(1)f x dx x C -=+⎰答案: 1---10 √√√√××√√×√ 选择题:1.下列等式中( )是正确的.()().()()xx A f x dx f x Bf edx f e C ''==+⎰⎰221..(1)(1)2C f dx f C D xf x dx f x C ''=+-=--+⎰⎰2.若()f x 满足()sin 2,f x dx x C =+⎰则()(f x '= ) .4s i n 2.2c o s 2.4s i n 2.2A x B x C x Dx-- 3.若21()(0),f x x x '=>则()f x =( ).2.l n A x CB x CxCC ++++4.设函数()f x 在[,]a b 上的某个原函数为零,则在[,]a b 上 ( ) A .()f x 的原函数恒等于零. B. ()f x 的不定积分等于零.C. ()f x 不恒等于零但其导数恒等于零.D. ()f x 恒等于零. 5. 下列凑微分正确的是 ( )221.2.(ln 1)1x x A xe dx de B dx d x x ==++21.a r c t a n .c o s 2s i n 21C x d x d D x d xd x x ==+6. 22()()xf x f x dx '=⎰( )2222221111.().().().()2244A f x CB f x CC f x CD f x C++++.7. 若()f x dx x C =+⎰, 则 (1)f x dx -=⎰ ( )21.1......(1)2A x C B x C C x C D x C -+-++-+ 8. 函数cos (0)ax a ≠的一个原函数是 ( )111.s i n .s i n .s i n .s i n A x B a xC a xD a xa a a-9. 若()21xf x dx x C =+++⎰, 则()f x =( )2111.2..2ln 2 1..21.21ln 22x x x x A x x B C D ++++++10. 下列分部积分中对u 和v '选择正确的有 ( )22.cos ,cos ,.(1)ln ,1,ln A x xdx u x v x B x xdx u x v x''==+=+=⎰⎰.,,.a r c s i n ,1,a r cx xC xe dx u x v eD xdx u v x --''====⎰⎰答案:1—10 DCCDADCBBC计算题:1.ln(x dx+⎰2. x ⎰3. dx4.44cos 2sin cos xdx x x +⎰5.ln tan cos sin x dxx x ⎰6. 7.221(1)(1)x dxx x ++-⎰. 8. 11sin cos dxx x ++⎰9. 2(1)xx xe dx e +⎰.10.2答案:1. 1. 原式=ln(x x dx+-⎰21ln(2x x =-ln(x x C =+.2. 2.原式21122x =221124x =21arctan 2x C=3. =(sin cos )2cos 2sin 2222x x x xdx C=+=-++⎰4. 4422222cos 2cos 2sin cos (sin cos )2sin cos x xdx dx x xx x x x =++-⎰⎰ 22cos 2sin 2(2)2sin 22sin 2x d xd x x x ==--⎰⎰C=+5. ln tan ln tan tan ln tan (ln tan )cos sin tan xxdx d x xd x x xx ==⎰⎰⎰2(ln tan )2x C =+.6. 2sin 2(2cos 1)cos 21cos 2cos 2x t tt dt dtt t =-=+=⎰⎰tan 2t t C =-+arcsin x C=+7. 2221111[]2(1)2(1)(1)(1)(1)x dx dx x x x x x +=+--++-+⎰⎰111ln 1ln 1221x x Cx =-+++++211ln 121x Cx =-+++.8.tan222121sin cos 211111x u dxdu x xu u uu u =⋅++-+++++=⎰⎰ln 1ln 1tan 12du xu C C u =++=+++⎰.9.21(1)111x x x x x xe x dx dx xd e e e e ⎛⎫=-=-+ ⎪++++⎝⎭⎰⎰⎰ln(1)111x x x x xx e dx x e C e e e ---=-+=--+++++⎰.10.sin 22221cos 2sin 2x a uua udu a du =-==⎰⎰⎰22sin 2()arcsin 222a u a x u C C a =-+=+.第九章 定积分一、 一、 选择题(每题2分) 1、若()⎰=+122dx k x ,则=k ( )(A )1 (B )1- (C )0 (D )212、若()x f 是奇函数,且在[]a a ,-上可积,则下列等式成立的有( )(A )()()⎰⎰-=aa adxx f dx x f 02 (B )()()⎰⎰--=aaadxx f dx x f 02(C )()⎰-=a adx x f 0(D )()()⎰-=a aa f dx x f 23、设()x f 在[]b a ,上连续,则下面式子中成立的有( )(A )()()x f dt t f dx d x a =⎰ (B )()()x f dx x f dx d ba=⎰(C )()()⎰+=C x f dx x f dx d(D )()()x f dx x f ='⎰4、设()x f 为连续函数,()()⎰-=104dxx f x x f ,则()⎰10dx x f =( )(A )1- (B )0 (C )1 (D )25、函数()x f 在[]b a ,上连续是()⎰ba dx x f 存在的( )(A ) (A ) 必要条件 (B )充要条件 (C )充分条件 (D )无关条件 6、()x f 在[]b a ,上连续,()()⎰=xa dt t f x F ,则正确的是( )(A )()x F 是()x f 在[]b a ,上的一个原函数; (B )()x f 是()x F 在[]b a ,上的一个原函数; (C )()x F 是()x f 在[]b a ,上唯一的原函数; (D )()x f 是()x F 在[]b a ,上唯一的原函数 7、⎰e edxx 1ln =( )(A )0 (B )2e-2 (C )e 22-(D )e e 222-+8、已知()()21210-=⎰x f dt t f x,且()10=f ,则()=x f ( ) (A )2xe (B )x e 21 (C )x e 2 (D )x e 2219、下列关系中正确的有( )(A )dxe dx e x x ⎰⎰≤1102(B )dxe dx e x x ⎰⎰≥112(C )dxe dx e x x⎰⎰=112(D )以上都不正确10、⎰=ba xdx dx d arcsin ( )(A )a b arcsin arcsin -(B )211x -(C )x arcsin (D )011、设410I xdxπ=⎰,4230,sin I I xdxπ==⎰,则( );(A )123I I I >> (B )213I I I >> (C )312I I I >>(D )132I I I >>12、下列积分中可直接使用牛顿—莱布尼兹公式计算其值的是( );(A )1201x dx x +⎰ (B)10⎰ (C)e (D )210x e dx ⎰13、设()f x 为连续函数,则积分()ba I f x t dx=+⎰( )(A )与,,t a b 有关 (B )与,t x 有关 (C )与,,x b t 有关 (D )仅与x 有关 14、()2x af t dt '=⎰( )(A )()()1222f x f a -⎡⎤⎣⎦ (B )()()222f x f a -⎡⎤⎣⎦ (C )()()22f x f a -⎡⎤⎣⎦ (D )()()12f x f a -⎡⎤⎣⎦15、下列积分中,使用换元积分正确的是( )(A )1arcsin 1sin dt t x t π=+⎰令 (B)10sin x t =⎰令 (C)10tan x t=⎰令 (D )12111dx x xt -=+⎰令 答案:ACACC ACCBD BAAAC 二、 二、 填空题(每题2分)1、已知⎰=Φxdtt x 02)sin()(,则=Φ')(x .;2、比较大小:⎰20πxdx⎰2s i n πx d x.3、⎰-++1142251sin dx x x xx = ;4、函数()x f 在区间[]1,2-上连续且平均值为4,则()⎰-12dxx f = ; 5、设()x f 为连续函数,则()()[]=⋅+-+⎰-dx x x x f x f 322 ;6、522cos xdx ππ-=⎰;7、()12ln 1xd t dt dx +=⎰ ;8、(211x dx -+=⎰;9、设()f x 为连续函数,且()()12,f x x f t dt =+⎰则()f x = ;10、设0a ≠,若()0120ax x dx -=⎰,则a = ;11、已知()2302xf t dt x =⎰,则()1f x dx =⎰ ;12、=⎰ ;答案:1、()2sin x 2、≥>or 3、0 4、12 5、564 6、1615 7、()2ln 1x -+ 8、2 9、1x - 10、34 11、3 12、4π三、计算题 (每题5分)1、dx x x ⎰-22101解:令t x sin =,则tdt dx cos =,tx 2010π→→ dx x x ⎰-22101=⎰2022cos sin πtdt t=()⎰⎰-=202024cos 1812sin 41ππdt t tdt=16024sin 4181ππ=⎪⎭⎫ ⎝⎛-t t2、⎰2sin πxdxx 20cos xd xπ=-⎰=⎰+-20cos 02cos ππxdxx x=102sin =πx 3、dxx x x ⎰+-20232=()()⎰⎰⎰-+-=-2121111dxx x dx x x dx x x=12325201523223252523⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-x x x x =()22154+4、⎰-2121dx x x解:令tdt t dx t x tan sec ,sec ==,3021π→→t x⎰-2121dx x x =⎰302tan πtdt =()d t t ⎰-3021sec π=()3303tan ππ-=-t t5、()dx xx 21124⎰--+=()⎰--+-+11222442dxx x x x=()d xx x ⎰-+-112442=⎰-=1184dx6、⎰⋅202cos πxdx e x=⎰202sin πx d e x=⎰⋅-⋅20222sin 02sin ππdx e x x e x x=⎰⎰-+=+2022022cos 402cos 2cos 2πππππxdxe x e e x d e e x x x=2-πe则 ⎰⋅202c o s πx d x e x =()251-πe7、⎰-⋅ππxdxx sin 4解: x x sin 4⋅为奇函数,且积分区间[]ππ,-关于原点对称sin 4=⋅∴⎰-ππxdx x8、⎰+402cos 1πdx x x=⎰⎰=4402tan 21cos 2ππx xd dx x x=⎰-40tan 2104tan 21ππxdx x x =04cos ln 218ππx + =2ln 41822ln 218-=+ππ9、()⎰-+11221x dx = ()⎰+102212x dx解:令tdt dx t x 2sec ,tan ==,4010π→→t x ()⎰-+11221x dx =⎰402cos 2πtdt=()⎰+402cos 1πdt t =042sin 21π⎪⎭⎫ ⎝⎛+t t =214+π10、⎰+301arcsindx x x解:令x x t +=1arcsin,t x 2tan =,则tdt t dx 2sec tan 2=,3030π→→t x ⎰+301arcsin dx x x =⎰302tan πt td =⎰-3022tan 03tan ππtdt t t=()d t t ⎰--3021sec ππ=()03tan ππt t -- 334)33(-=--=πππ11、⎰+133221x x dx解:令t x 1=,则dt t dx 21-=,13133→→tx⎰+133221x x dx =⎰+⋅-132221111t t dt t=⎰+3121t tdt=221312-=+t12、dxx ee⎰1ln =dxx e⎰-11)ln (+dxx e ⎰1ln=()()1ln 11ln e x x x e x x x -+-- … =e 22-13、⎰--1145x xdx解:令x t 45-=,则()2541t x -=,tdtdx 21-=,1311→→-t x ⎰--1145x x d x =()dt t ⎰-312581 =13315813⎪⎭⎫ ⎝⎛-t t =61 14、0xdx=20arctan 1xdx x x +=1ln 1ln 2323x -+=- 15、20π⎰20cos 2x dx π20c o s c o s 22x x dx dx πππ⎫=-⎪⎭⎰⎰ =2sin sin 022x x πππ⎫-=⎪⎭五、证明题(每题5分)1、 1、 证明:若f 在[],a b 上可积,F 在[],a b 上连续,且除有限个点外有()()F x f x '=,则有()()()baf x dx F b F a =-⎰证:设除[]()()12,,,n x x x a b F x f x '∈= 外,即()()[]{}12,,\,,n F x f x x a b x x x '=∀∈ 可设 0121n n x a x x x b x +=≤<<<≤= 在[]1,i i x x +上应用N-L 公式知:()()()()()()()110i innbx i i ax i i f x dx f x dx F x F x F b F a ++====-=-∑∑⎰⎰2、 2、 证明:若T T '是增加若干个分点后所得到的分割,则iiiiT Tx xωω'''∆≤∆∑∑证:由性质2知 ()()()(),S T S T s T s T ''≤≥。

数学分析证明题练习

数学分析证明题练习

数学分析证明题练习1. 证明题一题目证明:两个实数的和与积的大小关系。

解答设两个实数为$a$和$b$,其中$a\geq b$。

证明两个实数的和大于等于它们的积,即$a+b \geq ab$。

根据已知条件,我们有:$$a \geq b \quad \text{(1)}$$$$ab \geq b^2 \quad \text{(2)}$$根据(1)式,两边同时加上$b$,得:$$a+b \geq b+b$$化简得:$$a+b \geq 2b \quad \text{(3)}$$根据(2)式,两边同时加上$b^2$,得:$$ab+b^2 \geq b^2+b^2$$化简得:$$ab+b^2 \geq 2b^2 \quad \text{(4)}$$由于$a \geq b$,所以$(3)$式和$(4)$式成立,即:$$a+b \geq 2b$$$$ab+b^2 \geq 2b^2$$将上述两个不等式相加,得:$$(a+b) + (ab+b^2) \geq 2b + 2b^2$$化简得:$$a+b+ab+b^2 \geq 2b+2b^2$$再次化简得:$$a+b+ab+b^2 \geq 2(b+b^2)$$由于$(a+b)$和$(ab+b^2)$皆大于等于$2(b+b^2)$,所以可以得出结论:$$a+b \geq ab$$综上所述,两个实数的和大于等于它们的积。

2. 证明题二题目证明:若$f(x)$为可导函数,并且$f'(a) > 0$,则在点$a$的某个邻域内,$f(x)$严格单调递增。

解答根据函数可导的定义,我们有:$$f'(a) = \lim_{h\to 0}\frac{f(a+h)-f(a)}{h}$$由于$f'(a) > 0$,则存在一个正实数$k$,使得$0 < k < f'(a)$。

根据上述条件,我们可以找到一个正实数$\delta$,使得对于所有满足$0 < |x-a| < \delta$的$x$,有:$$\left|\frac{f(x)-f(a)}{x-a}-f'(a)\right| < k$$根据定义,上式可以化简为:$$-\delta < \frac{f(x)-f(a)}{x-a}-f'(a) < \delta$$移项得:$$-\delta(x-a) < f(x)-f(a)-f'(a)(x-a) < \delta(x-a)$$再次移项得:$$f(a)+f'(a)(x-a)-\delta(x-a) < f(x) < f(a)+f'(a)(x-a)+\delta(x-a)$$ 化简得:$$f(a)+[f'(a)-\delta](x-a) < f(x) < f(a)+[f'(a)+\delta](x-a)$$由于$f'(a)-\delta > 0$,所以函数$f(x)$在点$a$的某个邻域内严格单调递增。

微积分(数学分析)证明题及参考答案.doc

微积分(数学分析)证明题及参考答案.doc

统计专业和数学专业数学分析练习题1. 证明极限yx yx y x -+→)0,0(),(lim不存在。

2. 用极限定义证明: .0lim 22)0,0(),(=++→yx yx y x3. 证明极限22222)0,0(),()(lim y x y x y x y x -+→不存在.4. 设),(),(x f y x F =)(x f 在 0x 连续,证明:对,0R y ∈∀),(y x F 在),(00y x 连续.5. 证明:如果),(y x f 在 ),(000y x P 连续,且0),(00>y x f ,则对任意),(00y x f r <,),;(0δP ⋃∃对一切),;(),(0δP y x P ⋃∈有.),(r y x f >6. 证明:22),(y x y x f +=在点)0,0(处连续且偏导数不存在.7. 证明;2222221sin 0(,)00y x y x y f x y x y ⎧+≠⎪+=⎨⎪+=⎩在)0,0(点连续,且0)0,0(,0)0,0(==y x f f 不存在.8. 证明222222221()sin 0(,)00x y x y f x y x y x y ⎧++≠⎪=+⎨⎪+=⎩在 点)0,0(处连续且偏导数存在.9. 设 函数),(y x f 在),(00y x 的某邻域内存在偏导数,若),(y x 属于该邻域,则存在)(010x x x -+=θξ和 )(020y y y -+=θη,,10,1021<<<<θθ 使得00000(,)(,)(,)()(,)()x y f x y f x y f y x x f x y y ξη-=-+-。

10. 证明:2222220(,)00xy x y f x y x y x y ⎧+≠⎪=+⎨⎪+=⎩,在点)0,0(不可微.11. 证明: 对任意常数,ρϕ, 球面2222x y z ρ++=与锥面2222tan x y z ϕ+=⋅是正交的. 12. 证明: 以λ为参数的曲线族221() x y a b a b λλ+=>-- 是相互正交的(当相交时).13. 证明: 由方程()z y x z ϕ=+所确定的隐函数(,)z z x y =满足222()z z z x y y ϕ⎡⎤∂∂∂=⎢⎥∂∂∂⎣⎦, 其中ϕ二阶可导. 14. 设()20()ln 12cos F a a x a dx π=-+⎰, 证明20,10,()ln , 1. 若且 若a a F a a a π⎧<≠⎪=⎨>⎪⎩15. 证明含参量反常积分⎰+∞sin dy yxy 在[)+∞,δ上一致收敛()0>其中δ,但在()0,+∞内不一致收敛。

第三学期数学分析期末考试试题库

第三学期数学分析期末考试试题库

第三学期试题库一、单项选择题:1、设2sin ()z ax by =+,则2zx y ∂∂∂=( ). A. 22cos 2()a ax by +; B 2cos 2()ab ax by +. C.22cos 2()b ax by +; D. 2sin 2()ab ax by + 2、在下列无穷积分中,收敛的是( ).A. 2(ln )e dx x x +∞⎰;B. ln e xdx x +∞⎰;C. 2(ln )e x dx x +∞⎰;D. ln e dxx x +∞⎰3、设D 是由x 轴、y 轴与直线x +y =1围成的三角形区域,则()Dx y dxdy+⎰⎰等于( ).A .14; B. 16; C. 13; D. 12.4、给定区域222{(,)|,0}D x y x y a a =+≤>,则c xdy ydx -=⎰( ). A. a π; B. 2a π; C. 22a π; D.2a π.5、设2arcsin()z xy =,求zy ∂∂=( ).A.BC.D.6、在下列无穷积分中,收敛的是( ).A. e dx x +∞⎰;B.e ⎰; C. 3e dx x +∞⎰; D.e +∞⎰7、设区域222{(,)|,0,0}D x y x y a a y =+≤>≥,则22()D x y dxdy +⎰⎰等于( ).A .2ad r drπθ⎰⎰, B.3ad r drπθ⎰⎰ ; C.222ad r drππθ-⎰⎰; D.322ad r dr ππθ-⎰⎰8、给定区域22{(,)|4}D x y x y =+=,则c xdy ydx -=⎰( ).A. 2π ;B. 4π;C. 6π ;D. 8π. 二、填空题:1、设3z xy x =+, 则dz = .2、三重积分Vdxdydz =⎰⎰⎰ .其中V 为半球体2222,0x y z a z ++≤≥.3、改变二重积分ln 1(,)e xI dx f x y dy=⎰⎰的积分次序, 则I= . 4、将()bxaaI dx f y dy=⎰⎰化为一次定积分, 则I = .5、设L 是任意一条有向闭曲线, 则22L xydx x dy+⎰= .6、设2yz xy =+, 则z z x y ∂∂+=∂∂ . 7、三重积分Vdxdydz =⎰⎰⎰ .其中V 为球体2222x y z a ++≤.8、设区域D :0≤x ≤1,0≤y ≤2 ,则D xydxdy⎰⎰= . 9、改变二重积分110(,)xI dx f x y dy=⎰⎰的积分次序, 则I = .10、设L 是任意一条有向闭曲线, 则22L xydx x dy+⎰= .三、计算题:1、设(,)z z x y =是由方程2220x y xyz +-=确定,求zx ∂∂、z y ∂∂. 2、判别反常积分的的敛散性:(1)1+∞⎰;(2)211ln dx x x ⎰.3、求二重积分22D x dxdy y ⎰⎰的值, 其中D 是由直线x =2、y =x 与双曲线xy =1所围成. 4、求三重积分2211Vdxdydzxy ++⎰⎰⎰的值.其中V 由222x y z +=与z =1所围成. 5、计算Lxdy ydx+⎰.其中L : (1)沿抛物线2y =沿折线OAB.均从(0,0)o 到(1,2)B .6、计算下列反常积分:(1)222dxx x +∞+-⎰;(2)10⎰.7、求二重积分21()R dxdy x y +⎰⎰的值, 其中R :3≤x ≤4,1≤y ≤2.8、以圆域R :222x y a +≤为底、R 上的曲面是22()x y z e -+=的曲顶柱体的体积. 9、计算VI zdxdydz=⎰⎰⎰,.其中V :2222221x y z a b c ++≤,z ≥0.10、计算()CI xydx y x dy=+-⎰,其中曲线C 分别是:1)直线y =x ;2)抛物线2y x =;3)立方抛物线3y x =,都是由原点(0,0)到(1,1)四、证明题: 1、证明:21()ln 2()Df xy dxdy f u du=⎰⎰⎰,其中D由1,2,,4xy xy y x y x ====所围成.2、证明:表达式:2()xy xy xye xye dx x e dy ++是某一函数的全微分,并求此函数.3、证明:21()ln 2()Df xy dxdy f u du=⎰⎰⎰,其中D 由1,2,,4xy xy y x y x ====所围成.4、设(,)f x y 为连续函数, 证明:222201lim(,)(0,0)r x y r f x y dxdy f r π→+≤=⎰⎰.。

数学分析试题

数学分析试题

测试题第一章 实数集与函数(A )1.证明:n ≥1时,有不等式)1(21)1(2--<<-+n n nn n .然后利用它证明:当m ≥2时,有)21)2(21m nm mn <<-∑=.2.设S 是非空数集,试给出数的下界是S ξ,但不是S 的下确界的正面陈述.3.验证函数R x x x x f ∈=,sin )(,即无上界又无下界.4.设)(x f 是定义在R 上的奇函数,)(x g 是定义在R 上的偶函数,试问))(()),((x f g x g f 是奇函数还是偶函数?5.证明:)0(sgn 2cot arctan ≠=+x x x arc x π.6.试问下列函数的图形关于哪一竖直轴线对称: (1)c bx ax y ++=2;(2)x b x a y -++=. 7.设A ,B 为R 中的非空数集,且满足下述条件: (1)对任何B b A a ∈∈,有b a <;(2)对任何0>ε,存在B y A x ∈∈,,使得ε<-x Y . 证明:.inf sup B A =(B )1.设n 为正整数.(1)利用二项式展开定理证明:∑=-=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛-+=⎪⎭⎫⎝⎛+nk k r nn r k n 1101!1111 ,其中 10-=k r 是连乘记号.(2)若1 n ,证明:∑=<+<⎪⎭⎫⎝⎛+<n k nk n 13!111122.设{}为有理数r r r E,72<=,求E sup ,E inf3.设A ,B 为位于原点右方的非空数集,{}B y A x xy AB ∈∈=,证明: B A AB inf inf inf ⋅=4.设函数()x f 定义于()+∞,0内,试把()x f 延拓成R 上的奇函数,()x f 分别如下: (1)()x e x f =; (2)()x x f ln = 5.试给出函数()x f y =,D x ∈不是单调函数的正面陈述。

数学分析第四学期试题

数学分析第四学期试题

试题(1卷)一.填空(每小题3分,共15分)1.若平面曲线L 由方程0),(=y x F 给出,且),(y x F 在点),(000y x P 的某邻域内满足隐函数定理的条件,则曲线L 在点0P 的切线方程为 ; 2.含参量积分⎰=)()(),()(x d x c dyy x f x F 的求导公式为=')(x F ;3。

Γ函数的表达式为 =Γ)(s ,0>s ;4。

二重积分的中值定理为:若),(y x f 在有界闭区域D 上连续,则存在D ∈),(ηξ,使⎰⎰=Dd y x f σ),( ;5.当0),,(≥z y x f 时,曲面积分⎰⎰S dSz y x f ),,(的物理意义是: 。

二.完成下列各题(每小题5分,共15分)1。

设5422222=-+-++z y x z y x ,求y z x z ∂∂∂∂,; 2。

设 ⎩⎨⎧-=+=,cos ,sin v u e y v u e x u u 求 x v x u ∂∂∂∂, ;3. 求积分)0(ln 1>>-⎰a b dx x x x ab .三。

计算下列积分(每小题10分,共50分)1。

⎰L xyzds,其中L 为曲线)10(21,232,23≤≤===t t z t y t x 的一段;2.⎰+-Ly x xdxydy 22,其中L 为圆t a y t a x sin ,cos ==在第一象限的部分,并取逆时针方向;3.作适当变换计算⎰⎰-+D dxdyy x y x )sin()(, 其中D }{ππ≤-≤≤+≤=y x y x y x 0,0),(; 4。

⎰⎰⎰+Vy x dxdydz22,其中V 是由x y z x x ====,0,2,1与y z =围成的区域;5.dSy xS)(22⎰⎰+,其中S 为圆锥面222z y x =+被平面1,0==z z 截取的部分。

四.应用高斯公式计算dxdy z dzdx y dydz x S333++⎰⎰,其中S 为球面2222a z y x =++的外侧。

数学分析(1)期末模拟考试题(证明部分新)

数学分析(1)期末模拟考试题(证明部分新)

数列极限类 1. 证明: 112111lim 222=⎪⎪⎭⎫ ⎝⎛++++++∞→n n n n n . 证 因为11211122222+≤⎪⎪⎭⎫ ⎝⎛++++++≤+n n n n n n n n n又11limlim22=+=+∞→∞→n n nn n n n ,由迫敛原理得112111lim 222=⎪⎪⎭⎫ ⎝⎛++++++∞→n n n n n . 2. 设() ,2,121,1111=⎪⎪⎭⎫ ⎝⎛+=>=+n a a a a a a n n n ,证明{}n a 有极限,并求此极限的值. 证 由均值不等式得a a a a a a a a n n n n n =⎥⎦⎤⎢⎣⎡⋅≥⎪⎪⎭⎫ ⎝⎛+=+2212111,即{}n a 有下界. 又0212121=-⎪⎪⎭⎫ ⎝⎛+≤-⎪⎪⎭⎫ ⎝⎛+=-+n n n n n n n n n a a a a a a a a a a ,即{}n a 单调减,于是A a n n =∞→lim 存在,且由极限的保号性可得1≥A .对已知递推公式,令∞→n 和极限的唯一性得⎪⎭⎫⎝⎛+=A a A A 21, 解得a A =(负根舍去),即有a a n n =∞→lim .单调性的证明也可如下完成:11211212221=⎪⎪⎭⎫ ⎝⎛+≤⎪⎪⎭⎫ ⎝⎛+=+n n n n n a a a a a a ,或n n n n n a a a a a =⎪⎪⎭⎫ ⎝⎛+≤+2121. 3. 设() ,2,16,1011=+==+n x x x n n ,试证数列{}n x 存在极限,并求此极限.证 由4166,10121==+==x x x 知, 21x x >.假设1+>k k x x ,则21166+++=+>+=k k k k x x x x ,由归纳法知{}n x 为单调下降数列.又显然有0>n x ,所以{}n x 有下界.由单调有界原理知,数列{}n x 收敛.所以可令a x n n =∞→lim ,对n n x x +=+61两边取极限得0662=--⇒+=a a a a ,解得3=a 或2-=a (舍去),故3lim =∞→n n x .4. 设+N ∈∃N ,当N n >时,有n n b A a ≤≤且()0lim =-∞→n n n a b .求证极限n n a ∞→lim 与n n b ∞→lim 存在且等于A .证 由n n b A a ≤≤得n n n a b a A -≤-≤0,由迫敛原理得A a n n =∞→lim ,再由()0lim =-∞→n n n a b 及A a n n =∞→lim 可得n n b ∞→lim 存在且等于A .5. 设()n n n n n n y x y y x x b y a x +==>=>=++21,,0,01111.求证: (1) {}n x 与{}n y 均有极限; (2) n n n n y x ∞→∞→=lim lim .证 因为()1121++=+≤=n n n n n n y y x y x x ,所以()()n n n n n n y y y y x y =+≤+=+21211,即{}n y 单调减少有下界,而n n n n n n n x x x y x x y y =≥=≥≥++111,即{}n x 单调增加有上界.所以{}n x 与{}n y 都收敛.在()121+=+n n n y y x 两边取极限得n n n n y x ∞→∞→=lim lim .6. 设0>n a ,且1lim1<=+∞→q a a nn n ,求证{}n a 收敛且0lim =∞→n n a .证 因为1lim1<=+∞→q a a nn n ,对给定的+N ∈∃>-=00,021N qε,当0N n >时,有()n n n n n n a a r r q q q a a q q q q a a <⇒<=+=-+<<--⇒-<-+++111121212121, 所以,当0N n >时,有112210a r a r ra a n n n n ---<<<<< ,由迫敛原理得0lim =∞→n n a .闭区间上连续函数的性质7. 证明方程01sin =++x x 在⎪⎭⎫⎝⎛-2,2ππ内至少有一个根. 证 令()1sin ++=x x x f ,则()x f 在⎥⎦⎤⎢⎣⎡-2,2ππ上连续,且22ππ-=⎪⎭⎫ ⎝⎛-f ,222ππ+=⎪⎭⎫ ⎝⎛f ,即022<⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛-ππf f .由根的存在性定理得至少存在一点∈ξ⎪⎭⎫⎝⎛-2,2ππ,使得()0=ξf ,即方程01sin =++x x 在⎪⎭⎫⎝⎛-2,2ππ内至少有一个根.8. 证明方程12=⋅xx 至少有一个小于1的正根.(10分)证 令()12-=xx x f ,则f 在[]1,0上连续且()()()011110<-=⋅-=⋅f f ,由闭区间上连续函数的零点存在定理,()1,0∈∃ξ,使得()12012=⋅⇒=-⋅=ξξξξξf .9. 设函数f 在[)+∞,0上连续,且满足()1lim =+∞→x f x .若f 在[)+∞,0上能取到负值,试证明:(1) [)+∞∈∃,00x ,使得()00=x f ; (2) f 在[)+∞,0上有负的最小值.证 由条件可设[)+∞∈',0x 且()0<'x f ,由()1lim =+∞→x f x ,存在)(0x M M '>>使得()021>>M f ,由根的存在性定理,得()[)+∞⊂'∈∃,0,0M x x ,使得()00=x f .(1)得证. (2) 由()1lim =+∞→x f x ,存在)(0x M M '>>使得当M x ≥时,有()021>>x f .又f 在[]M .0上连续,故[]M ,0∈∃ξ,使得()[](){}()0min ,0<'<=∈x f x f f M x ξ.而当[)+∞∈,M x 时,()021>>x f ,故对[)+∞∈∀,0x 有()≥x f ()[](){}()0min ,0<'<=∈x f x f f M x ξ.所以结论成立.10. 设n 为正整数,n a a a 221,,, 为n 2个实常数,且02<n a .求证多项式函数()n n n n n a x a x a x x P 21212122++++=--在()+∞∞-,内至少有两个零点.证 因为()0022<=n n a P ,又()()+∞=+∞=+∞→-∞→x P x P n x n x 22lim ,lim ,所以存在0>M ,使得()()0,022>>-M P M P n n ,又n P 2在[]0,M -和[]M ,0上都连续,由根的存在性定理,()0,1M -∈∃ξ和()M ,02∈∃ξ,使得()()02212==ξξn n P P ,所以,结论成立.11. 设()xt x x t x t x f sin sin sin sin lim -→⎪⎭⎫⎝⎛=,求()x f 的表达式,并指明()x f 的间断点及其类型.解: ()xx xx x t x x t xt xx t ex x t x t x f sin sin sin sin sin sin sin sin sin sin 1lim sin sin lim =⎪⎭⎫ ⎝⎛-+=⎪⎭⎫⎝⎛=-→-→,所以0=x 为第一类可去间断点;() ,2,1±±==k k x π为第二类无穷间断点.12. 设()x f 在[]b a ,上连续,且满足()b x f a <<,求证:()b a x ,0∈∃,使得()00x x f =.证明:令()()x x f x F -=,则()x F 在[]b a ,上连续,()()()()()()0<-⋅-=⋅b b f a a f b F a F .由连续函数的零点定理,必存在()b a x ,0∈∃,使得()00=x F ,故()b a x ,0∈∃使得()00x x f =.13. 设()x f 是[]a 2,0上的连续函数,且满足条件()()a f f 20=.证明存在[]a x ,00∈,使得()()a x f x f +=00.证明: 令()()()a x f x f x F +-=,则()x F 在[]a ,0上连续,且()()()a f f F -=00,()()()()()()()02002=-=+⇒-=a f f a F F a f a f a F .若()()00==a F F ,则存在00=x 或a x =0使得()()a x f x f +=00.若()0F 与()a F 都不为零,则()()00<⋅a F F由连续函数的零点定理,必存在()a x ,00∈∃,使得()00=x F ,故()a x ,00∈∃使得()()a x f x f +=00.(注:两个数的和为零,则这两个数要么同时为零,要么,它们异号).14. 设函数()x f 在[)+∞,0上连续,且满足()1lim =+∞→x f x ,若存在()+∞∈,00x ,使得()00<x f ,求证:(1) ()+∞∈∃,0ξ使得()0=ξf ; (2) ()x f 在[)+∞,0上有负的最小值.证明: (1) 因为()1lim =+∞→x f x ,由函数的局部保不等式性,存在充分大的0>M (不妨设0x M >),使得M x >时,有()21>x f ,所以当M x >1时,()x f 在[]10,x x 上连续且()()010<⋅x f x f ,由连续函数的零点存在定理,存在[]()+∞⊂∈∃,0,10x x ξ使得()0=ξf .(2) 又()x f 在[]0,0x 上连续,故由最值定理,存在[]1,0x ∈η,使当[]1,0x x ∈时,()()ηf x f ≥,而()()00<≤x f f η,且[)+∞∈,1x x 时,()()ηf x f >>>021.所以()x f 在[)+∞,0上有负的最小值()ηf .15. 设()nx a x a x a x f n sin 2sin sin 21+++= ,若()x x f sin ≤,求证1221≤+++n na a a .证法1(用导数定义)因为 ()()n n na a a f nx na x a x a x f +++='⇒+++=' 212120cos 2cos 2cos . 又()()0000sin 0=⇒=≤f f ,所以()()()()1sin lim lim 00lim0000=≤=--='→→→xx x x f x f x f f x x x ,所以1221≤+++n na a a .证法2(用重要极限1)()1sin lim sin lim 2sin lim sin lim lim 0002010=≤+++=→→→→→xx x nxa x x a x x a x x f x x n x x x 所以1sin lim 2021=≤+++→xx na a a x n .导数与微分证明16. 设()⎪⎩⎪⎨⎧=≠=.0,0,0,1sin 3x x xx x f 证明: ()x f 在0=x 处可微; ()x f '在0=x 处不可微 证 因为()()()01sin lim 00lim0200==--='→→xx x f x f f x x ,所以函数()x f 在处可导,由可导与可微的关系知()x f 在0=x 处可微;又当0≠x 时, ()xx x x x f 1cos 1sin32-=', 而()()⎪⎭⎫ ⎝⎛-=-'-'→→x x x x f x f x x 1cos 1sin 3lim 00lim00极限不存在,故()x f '在0=x 处不可导, 由可导与可微的关系知()x f '在0=x 处不可微; 17. 设()0x f ''存在,证明: ()()()()0200002limx f hx f h x f h x f h ''=--++→ 证:()()()()()()()()()()()[]()0000000000020000)21lim 212lim 2limx f x f x f h x f h x f h x f h x f h h x f h x f h x f h x f h x f h h h ''=''+''=⎥⎦⎤⎢⎣⎡-'--'+'-+'=-'-+'=--++→→→ 18. 设()x f 为()+∞∞-,内的可导函数,周期为T .求证:()x f '也是以T 为周期的函数.证明:因为()()()()x f T x f x f T x f '=+'⇒=+,所以()x f '也是以T 为周期的函数. 中值定理的应用 19. 设01210=++++n a a a n ,证明多项式()n n x a x a a x f +++= 10在()1,0内至少有一个零点.证 作辅助函数()12101121+++++=n n x a n x a x a x F ,则()x F 在闭区间[]1,0满足罗尔中值定理的三个条件,故存在()1,0∈ξ使得()010=+++='n n a a a F ξξξ ,故()n n x a x a a x f +++= 10在()1,0内至少有一个零点.20. 设g f ,都是可导函数,且()()x g x f '<',证明当a x >时,()()()()a g x g a f x f -<-证 因为()()⇒'<'≤x g x f 0()x g 严格单调增.当a x >时, ()()a g x g >. 又由柯西中值定理得,存在()x a ,∈ξ使得()()()()()()()()()()()()()()()()a g x g a f x f g f a g x g a f x f g f a g x g a f x f -<-⇒<''=--⇒''=--1ξξξξ.21. 对任意的[)+∞∈,0x ,有()x x ≤+1ln ,且等号只在0=x 时成立.证明: 令()()(),001ln =⇒-+=f x x x f 存在()x ,0∈ξ,使得()()x f x f ξ'=,而()()001<⇒<+-='x f f ξξξ,当且仅当0=x 时()00=f ,所以结论成立.22. 设()x f 在[]a ,0上连续,在()a ,0内可导,且满足()()00==a f f ,求证:存在()a ,0∈ξ,使得()()02='+ξξξf f .提示:令()()x f x x F 2=,用罗尔中值定理可证.23. 设函数f 在[]b a ,上连续,在()b a ,内二阶可导,连结点()()a f a A ,与点()()()b f b B ,的直线交曲线()x f y =于点()()c f c M ,,其中b c a <<.证明:存在()b a ,∈ξ,使得()0=''ξf .证 因为B M A ,,三点共线,所以()()()()()()cb c f b f a c a f c f a b a f b f --=--=--. 在[]c a ,及[]b c ,上分别应用中值定理得: 存在()c a ,1∈η,使()()()a c a f c f f --='1η;存在()b c ,2∈η,使()()()cb c f b f f --='2η,即()()21ηηf f '='.由于f 二阶可导,故函数f '在区间[]21,ηη上满足罗尔中值定理的条件,故()()b a ,,21⊂∈∃ηηξ,使得()0=''ξf .24. 设10<<<b a ,证明不等式:abab a b 2arctan arctan -<-. 提示:在[]b a ,上用拉格朗日中值定理,注意将分母放大!25. 设b a <<0,证明不等式aba b a b b a a 1ln ln 222<--<+.26. 设()1,0∈x ,证明不等式()x x x x 2arctan 1ln <++<. 证 将要证的不等式变形为()2arctan 1ln 1<++<xxx ,令()()x x x f arctan 1ln ++=,则()()()x f x f ,1,0,00∈∀=在[]x ,0上满足拉格朗日中值定理的条件,于是()(),01,0⊂∈∃x ξ使得()211110arctan 1ln ξξ+++=-++x x x , 又由x +11与211x +在[]1,0上的连续性与单调性可得11121,111212<+<<+<ξξ,所以 ()2arctan 1ln 1<++<xxx ,故要证的不等式成立.27. 已知()x f 在0=x 的某邻域内有二阶连续导数,且()()()00,00,00≠''≠'≠f f f ,证明:存在唯一的一组实数321,,λλλ,使当0→h 时,()()()()032321f h f h f h f -++λλλ是比2h 高阶的无穷小量.证法1 (洛比达法则)()()()()()()()()()()()()0942123924lim 23322lim032lim3213210321023210f h f h f h f h h f h f h f h f h f h f h f h h h ''++=''+''+'''+'+'=-++→→→λλλλλλλλλλλλ令()()009421321=''++f λλλ,并由要证可知,前三式的分子的极限都应是零,可得到 ⎪⎩⎪⎨⎧=++=++=++0940321321321321λλλλλλλλλ (2) 因为0941321111≠,故(2)有唯一非零解.故结论成立.28. 设函数f 在),(+∞a 内可导,且()x f x +∞→lim 及()x f x '+∞→lim 都存在.证明()0lim ='+∞→x f x .证 当a x >时,由条件知,函数f 在区间[]1,+x x 上连续可导,故()1,+∈∃x x ξ,使得()()()ξf x f x f '=-+1.因为()x f x +∞→lim 及()x f x '+∞→lim 都存在,所以()x f x '+∞→lim =()()()[]()()0lim 1lim 1lim lim =-+=-+='+∞→+∞→+∞→+∞→x f x f x f x f f x x x ξξ.29. 证明;当2021π<<<x x 时,1212tan tan x x x x >证 令()x x x f tan =,则 ()xx xx x xx x x f 2222cos 2sin 21tan sec -=-='. 令()()⎪⎭⎫⎝⎛∈>-='⇒-=2,0,02cos 12sin 21πx x x g x x x g ,所以()x g 在⎪⎭⎫ ⎝⎛2,0π内单调增,则当0>x 时, ()()00=>g x g ,从而()0>'x f ,所以()x f 在⎪⎭⎫⎝⎛2,0π内单调增, 则当2021π<<<x x 时, ()()1212112212tan tan tan tan x x x x x x x x x f x f >⇒>⇒>.用单调性证明不等式30. 证明;当0>x 时, ()xx x +>+1arctan 1ln证 令()()()x x x x f arctan 1ln 1-++=,()()()()2221211;111ln 1x xx x f x x x f +++=''+-++=',当0>x 时,()0>''x f ,所以()x f '在()+∞,0内单调增,故当0>x 时, ()()00='>'f x f 因而得()x f 在()+∞,0内单调增, 故当0>x 时, ()()()xxx f x f +>+⇒=>1arctan 1ln 00. 31. 设e x 31≤≤,证明不等式:()1ln ln 23ln 122≤-≤-x x .32. 设0>x ,证明不等式11≤--xe x。

(2021年整理)数学分析(3)试卷及答案

(2021年整理)数学分析(3)试卷及答案

祝您生活愉快业绩进步,以下为(完整)数学分析(3)试卷及答案的全部内容。

数学分析(3)期末试卷2005年1月13日班级_______ 学号_________ 姓名__________考试注意事项:1. 考试时间:120分钟。

2. 试卷含三大题,共100分.3. 试卷空白页为草稿纸,请勿撕下!散卷作废!4. 遵守考试纪律。

一、填空题(每空3分,共24分)1、 设z x u ytan =,则全微分=u d __________________________。

2、 设32z xy u =,其中),(y x f z =是由xyz z y x 3333=++所确定的隐函数,则=x u _________________________。

3、 椭球面14222=-+z y x 在点)1,1,2(M 处的法线方程是__________________。

5、 设L 是从点(0,0)到点(1,1)的直线段,则第一型曲线积分⎰=L s x yd _____________。

6、 在xy 面上,若圆{}122≤+=y x y x D |),(的密度函数为1),(=y x ρ,则该圆关于原点的转动惯量的二重积分表达式为_______________,其值为_____________。

7、 设S 是球面1222=++z y x 的外侧,则第二型曲面积分=⎰⎰dxdy z S2_______。

二、计算题(每题8分,共56分)1、 讨论yx y x y x f 1sin 1sin )(),(-=在原点的累次极限、重极限及在R 2上的连续性。

2、 设),(2xyy x f u =具有连续的二阶偏导数,求二阶偏导数xx u 和xy u 。

3、 求22333),(y x x y x f --=在}16|),{(22≤+=y x y x D 上的最大值和最小值。

4、 求x x x e x xd sine 02⎰∞+---。

提示:C bx b bx a ba e x bx e ax ax+-+=⎰)cos sin (d sin 22.5、 利用坐标变换求⎰⎰+-Dy x yx yx d d sec2,其中D 由1=+y x ,0=x 及0=y 围成。

数学分析(Ⅱ)试题与参考答案

数学分析(Ⅱ)试题与参考答案

数学分析(2)期末试题课程名称数学分析(Ⅱ) 适 用 时 间试卷类别1适用专业、年级、班 应用、信息专业一、单项选择题(每小题3分,3×6=18分)1、 下列级数中条件收敛的是( ).A .1(1)nn ∞=-∑ B .1nn ∞=.21(1)n n n ∞=-∑ D .11(1)nn n ∞=+∑2、 若f 是(,)-∞+∞内以2π为周期的按段光滑的函数, 则f 的傅里叶(Fourier )级数在它的间断点x 处 ( ).A .收敛于()f xB .收敛于1((0)(0))2f x f x -++ C . 发散 D .可能收敛也可能发散3、函数)(x f 在],[b a 上可积的必要条件是( ).A .有界B .连续C .单调D .存在原函数4、设()f x 的一个原函数为ln x ,则()f x '=( )A .1x B .ln x x C . 21x- D . x e 5、已知反常积分20 (0)1dxk kx +∞>+⎰收敛于1,则k =( ) A . 2π B .22π C . 2D . 24π6、231ln (ln )(ln )(1)(ln )n nx x x x --+-+-+收敛,则( )A . x e <B .x e >C . x 为任意实数D . 1e x e -<<二、填空题(每小题3分,3×6=18分)1、已知幂级数1nn n a x∞=∑在2x =处条件收敛,则它的收敛半径为.2、若数项级数1n n u ∞=∑的第n 个部分和21n nS n =+,则其通项n u =,和S =. 3、曲线1y x=与直线1x =,2x =及x 轴所围成的曲边梯形面积为. 4、已知由定积分的换元积分法可得,1()()bxxaef e dx f x dx =⎰⎰,则a =,b =.5、数集(1)1, 2 , 3, 1nnn n ⎧⎫-=⎨⎬+⎩⎭的聚点为. 6、函数2()x f x e =的麦克劳林(Maclaurin )展开式为.65三、计算题(每小题6分,6×5=30分) 1、(1)dx x x +⎰. 2、2ln x x dx ⎰. 3、 0 (0)dx a >⎰. 4、 2 0cos limsin xx t dt x→⎰.5、dx ⎰.四、解答题(第1小题6分,第2、3 小题各8分,共22分)1、讨论函数项级数21sin n nxn ∞=∑在区间(,)-∞+∞上的一致收敛性. 2、求幂级数1nn x n ∞=∑的收敛域以及收敛区间内的和函数.3、设()f x x =,将f 在(,)ππ-上展为傅里叶(Fourier )级数.五、证明题(每小题6分,6×2=12分)1、已知级数1nn a∞=∑与1nn c∞=∑都收敛,且, 1, 2, 3 n n n a b c n ≤≤=,证明:级数1nn b∞=∑也收敛.2、证明:22 0sin cos nn x dx x dx ππ=⎰⎰.66试题参考答案与评分标准课程名称 数学分析(Ⅱ) 适 用 时 间试卷类别1适用专业、年级、班应用、信息专业一、 单项选择题(每小题3分,3×6=18分)⒈ B ⒉ B ⒊ A ⒋ C ⒌ D ⒍ D二、 填空题(每小题3分,3×6=18分)⒈2⒉2, =2(1)n u S n n =+⒊ln 2⒋1, a b e ==⒌1±⒍201, (,)!nn x x n ∞=∈-∞+∞∑三、 计算题(每小题6分,6×5=30分)1. 解111(1)1x x x x=-++1(1)dx x x ∴+⎰(3分)11()1dx x x =-+⎰ln ln 1.x x C =-++(3分)2. 解 由分部积分公式得231ln ln 3x xdx xdx =⎰⎰ 3311ln ln 33x x x d x =-⎰(3分) 33111ln 33x x x dx x =-⋅⎰ 3211ln 33x x x dx =-⎰ 3311ln 39x x x C =-+(3分) 3. 解 令sin , [0, ]2x a t t π=∈由定积分的换元积分公式,得⎰2220cos atdt π=⎰(3分)6722(1cos2)2at dtπ=+⎰221(sin2)22at tπ=+2.4aπ=(3分)4.解由洛必达(L'Hospital)法则得2coslimsinxxtdtx→⎰2coslimcosxxx→=(4分)lim cosxx→=1=(2分)5.解=(2分)2sin cosx x dxπ=-⎰424(cos sin)(sin cos)x x dx x x dxπππ=-+-⎰⎰(2分)244(sin cos)(sin cos)x x x xπππ=+-+2.=(2分)四、解答题(第1小题6分,第2、3小题各8分,共22分)1.解(,),x n∀∈-∞∞∀+(正整数)22sin1nxn n≤(3分)而级数211nn∞=∑收敛,故由M判别法知,21sinnnxn∞=∑在区间(,)-∞+∞上一致收敛.(3分)682. 解 幂级数1nn x n∞=∑的收敛半径1R ==,收敛区间为(1,1)-.(2分)易知1n n x n ∞=∑在1x =-处收敛,而在1x =发散,故1nn x n∞=∑的收敛域为[1,1)-.(2分) 01, (1, 1)1n n x x x ∞==∈--∑(2分) 逐项求积分可得0001, (1,1)1xx nn dt t dt x t ∞==∈--∑⎰⎰. 即101ln(1), (1,1).1n nn n x x x x n n+∞∞==--==∈-+∑∑(2分)3. 解 函数f 及其周期延拓后的图形如下函数f 显然是按段光滑的,故由收敛性定理知它可以展开为Fourier 级数。

数学分析试题库--证明题.doc

数学分析试题库--证明题.doc

数学分析题库(1-22 章)五.证明题1.设 A, B 为 R 中的非空数集,且满足下述条件:(1)对任何a A, b B 有 a(2)对任何0 ,存在 x证明: sup A inf B.2. 设 A, B是非空数集,记S Ab ;A, y B ,使得B ,证明:Y x .(1)sup S max sup A, supB;(2)inf S min inf A,inf B3.按N 定义证明lim 5n2 n 2 5n 3n 2 2 34. 如何用ε -N 方法给出lim a n a 的正面陈述?并验证| n2 | 和 | ( 1)n | 是发散数列 .n5. 用方法验证:limx 2 x 23 . x( x 2 3x 2)x 16.用M 方法验证:lim x 1 .x x21 x 27 . 设lim ( x) a ,在 x0某邻域 U ( x 0 ;1 ) 内( x) a ,又 lim f ( t) A .证明x x0 t alim f ( ( x)) A .x x08. 设f (x)在点x0 的邻域内有定义 . 试证:若对任何满足下述条件的数列x n,(1)x n U ( x0 ) , x n x0,(2)0 x n 1 x0 x n x0,都有 lim f ( x n ) A ,n则 lim f ( x) A .x x09.证明函数x3 , x为有理数,f (x)0, x为无理数在 x00 处连续,但是在x00 处不连续.10. 设f ( x)在( 0,1)内有定义,且函数e x f (x) 与 e f ( x)在(0,1)内是递增的,试证 f (x) 在( 0, 1)内连续 .11. 试证函数 y sin x 2 ,在 [0, ) 上是不一致连续的.12. 设函数 f (x) 在(a,b)内连续,且 lim f ( x) = lim f ( x) =0,证明 f ( x) 在(a,b)内有最x a x b大值或最小值 .13. 证明:若在有限区间( a,b )内单调有界函数 f (x) 是连续的,则此函数在(a,b )内是一致连续的 .14 . 证明:若 f (x) 在点a处可导,f(x)在点a处可导.15. 设函数 f (x)在 (a,b) 内可导,在[a,b]上连续,且导函数 f (x) 严格递增,若f (a) f (b) 证明,对一切 x (a, b) 均有f (x) < f (a) f (b)16. 设函数 f ( x) 在 [a, ] 内可导,并且 f (a) < 0 ,试证:若当 x (a, ) 时,有f (x) > c > 0 则存在唯一的(a, ) 使得 f ( ) 0 ,又若把条件 f ( x) > c 减弱为f / (x) > 0(a < x <+ ) ,所述结论是否成立?17.证明不等式e x 1 x x2 ( x 0)218. 设f为( , ) 上的连续函数,对所有x, f (x) 0 ,且lim f (x) lim f ( x) 0 ,x x证明 f (x) 必能取到最大值.19. 若函数 f ( x) 在 [0,1] 上二阶可导, 且 f (0) 0 , f (1) 1, f (0) f (1) 0 ,则存在c (0,1) 使得 | f (c) | 2 .20.应用函数的单调性证明2xsin x x, x (0, );2m 1 0( m 为实数),21. 设函数f ( x) x sin x , x0, x 0试问:(1) m 等于何值时, f 在 x 0 连续;(2) m 等于何值时, f 在 x 0 可导;(3) m 等于何值时, f 在 x0 连续;22. 设 f (x) 在 [0,1] 上具有二阶导数,且满足条件 f (x) a , f (x) b ,其中 a, b 都是非负常数, c 是 (0,1) 内的任一点,证明f (c)2ab223. 设函数 f ( x)在[ a, b] 上连续,在( a,b )内二阶可导,则存在 (a, b) 使得f (b) 2 f (a b)f (a)(b a) 2 f ( )2424. 若 f (x) 在点 x 0 的某个领域上有 (n 1) 阶连续导函数 , 试由泰勒公式的拉格朗日型余项推导佩亚诺型余项公式 .25. 用泰勒公式证明 : 设函数 f (x) 在 a,b 上连续 , 在 a, b 内二阶可导 , 则存在( a, b) ,使得f (b)a b)(b a) 2f ' '( ) .2 f (f ( a)4226. 设函数 f ( x) 在 0,2 上二阶可导 , 且在 0,2 上 f (x) 1 , f ' ' (x) 1. 证明在 0,2 上成立f '' (x)2 .27. 设 f 是 开区 间 I 上的凸 函 数 , 则对任 何 ,I , f 在 ,上满足利普希茨(Lipschitz)条件,即存在 L>0 , 对任何 x ' , x ' ', ,成立f ( x ' ) f ( x) '' L x 'x ''.28. 设 f (x) 在 [ a, ] (a 0) 上满足 Lipschitz条件: | f (x) f ( y) | k | xy |, 证明f (x) 在 [ a, ] 上一致连续 .x29. 试证明方程 xnx n 1x 1在区间 ( 1,1) 内有唯一实根。

大学数学证明题题库

大学数学证明题题库

大学数学证明题题库一、集合和函数证明题1. 设 A、B、C、D 是任意四个集合,证明以下恒等式:- 并集的分配律:A∪(B∩C) = (A∪B)∩(A∪C)- 交集的分配律:A∩(B∪C) = (A∩B)∪(A∩C)2. 设 A、B、C 是任意三个集合,证明以下恒等式:- 并集的交换律:A∪B = B∪A- 交集的交换律:A∩B = B∩A3. 设f: A → B 和g: B → C 是任意两个函数,证明以下恒等式:- 复合函数的结合律:(g∘f)∘h = g∘(f∘h),其中h: C → D 是另一个函数二、数列和级数证明题1. 设 {an} 是一个递增数列,证明以下结论:- 如果 {an} 有上界,则它有极限- 如果 {an} 没有上界,则它趋向正无穷2. 设 {an} 和 {bn} 是两个数列,证明以下结论:- 如果{an} 收敛于a,且存在一个正整数N,使得对于所有n>N,有bn≥an,那么 {bn} 也收敛于 a3. 设 {an} 是一个递增数列,证明以下恒等式:- 如果 {an} 有上界,则它的部分和数列 {sn} 有上界- 如果 {an} 没有上界,则它的部分和数列 {sn} 趋向正无穷三、微积分证明题1. 设函数 f(x) 在闭区间 [a, b] 上连续,证明以下结论:- 函数 f(x) 在 [a, b] 上一定存在最大值和最小值2. 设函数 f(x) 在闭区间 [a, b] 上可导,证明以下结论:- 如果f'(x) ≥ 0 对于所有 x∈[a, b] 成立,则函数 f(x) 在 [a, b] 上单调递增- 如果f'(x) ≤ 0 对于所有 x∈[a, b] 成立,则函数 f(x) 在 [a, b] 上单调递减3. 设函数 f(x) 在闭区间 [a, b] 上连续且可导,证明以下结论:- 如果 f(x) 在 [a, b] 的内部有严格的局部极值,则 f'(x) 在 [a, b] 内至少有一个零点四、线性代数证明题1. 设 A 是一个 n×n 的矩阵,证明以下结论:- 如果 A 的行向量线性相关,则 A 的列向量也线性相关- 如果 A 的列向量线性相关,则 A 的行向量也线性相关2. 设 A 和 B 都是 n×n 的矩阵,证明以下恒等式:- 如果 AB = BA,则 A 和 B 可交换- 如果 A 和 B 可交换,则 AB = BA3. 设 A 是一个 n×n 的可逆矩阵,证明以下恒等式:- 如果 AB = AC,则 B = C- 如果 BA = CA,则 B = C以上是一些大学数学证明题题库的一部分,希望对你的学习有帮助。

数学分析三试卷及答案

数学分析三试卷及答案

《数学分析》(三)――参考答案及评分标准一. 计算题(共8题,每题9分,共72分)。

1.求函数11(,)f x y y x =在点(0,0)处的二次极限与二重极限。

解:11(,)f x y y x =+=,因此二重极限为0。

……(4分)因为011x y x →+与011y y x→+均不存在,故二次极限均不存在. ……(9分)2. 设(),()y y x z z x =⎧⎨=⎩ 是由方程组(),(,,)0z xf x y F x y z =+⎧⎨=⎩所确定的隐函数,其中f 和F 分别具有连续的导数和偏导数,求dzdx.解: 对两方程分别关于x 求偏导:, ……(4分). 解此方程组并整理得()()()()y y x y z F f x y xf x y F F dz dx F xf x y F '⋅+++-='++。

……(9分)3. 取,μν为新自变量及(,)w w v μ=为新函数,变换方程222z z zz x x y x ∂∂∂++=∂∂∂∂. 设,,22y x y x y w ze μν+-=== (假设出现的导数皆连续)。

解:z 看成是,x y 的复合函数如下:,(,),,22y w x y x yz w w e μνμν+-====. ……(4分) 代人原方程,并将,,x y z 变换为,,w μν。

整理得:2222w ww μμν∂∂+=∂∂∂. ……(9分)4. 要做一个容积为31m 的有盖圆桶,什么样的尺寸才能使用料最省?解: 设圆桶底面半径为r ,高为h ,则原问题即为:求目标函数在约束条件下的最小值,其中目标函数: 222S rh r ππ=+表,()()(1)0x yz dzdy f x y xf x y dx dx dy dz F F F dx dx ⎧'=++++⎪⎪⎨⎪++=⎪⎩约束条件: 21r h π=。

……(3分) 构造Lagrange 函数:22(,,)22(1)F r h rh r r h λππλπ=++-。

《数学分析》部分证明题

《数学分析》部分证明题

《数学分析》部分证明题⼀、证明题(18分) ⼗六章1、(10分)证明函数11sin sin 0,0(,)00,00,0x y x y y x f x y x y x y ?+≠≠?=??=≠≠=?当当或在原点的极限是0. 2、(8分)证明lim()x y x xy y →→++=222173、证明:f x y x y y x x y x y x y (,)sin sin ,,,,,=+≠≠=≠≠=110000000当当或在(0,0)的极限为零。

(10分) 4.设f(x,y) 在集合G ?R 2 上对x 连续,对y 满⾜利普希茨条件即f x y f x y L y y (,)(,)'-''≤'-''试证 f 在G 上处处连续⼗七章1、设,?ψ是任意的⼆阶可导函数,证明()()y y z x x xψ=+ 满⾜022222222=++y z y y x z xy x z x 2、(8分)设22()4x b a tz -=证明z t a z t=222 3、(10分)设sin (),sin sin z x F u u y x =+=- 证明sec xzx+secy z y =14.证明函数2222222,0;(,)0,0x yx y x y f x y x y ?+≠?+=??+=?在点(0,0)连续且偏导数存在,但在此点不可微.证明函数222222(0;(,)0,0,x y x y f x y x y ?++≠?=??+=?在点(0,0)连续且偏导数存在,但在此点偏导数不连续,⽽f 在(0,0)可微.6.证明:若⼆元函数f 在点00(,)P x y 的某邻域()U P 内的偏导函数x f 与y f 有界,则f 在()U P 内连续.7.证明:可微函数(,,)F x y z 为k 次齐次函数的充要条件是:(,,)(,,)(,,)(,,)x y z xF x y z yF x y z zF x y z kF x y z ++=8.设(,)f x y 可微,(,)(cos sin ,sin cos )g u v f u v u v θθθθ=-+,求证2222()()()()x y u v f f g g +=+9.设(,)f x y 可微,1l 与2l 是2R 上的⼀组线性⽆关向量.试证明:若(,)0(1,2)i l f x y i ≡=,则(,)f x y ≡常数.10.若(,)f x y 在区域D 上存在偏导数,且0x y f f =≡,则(,)f x y ≡常数.11.设,x y f f 和yx f 在点00(,)x y 的某领域内存在, yx f 在点00(,)x y 连续,证明00(,)xy f x y 也存在,且0000(,)(,)xy yx f x y f x y =.12. 设,x y f f 在点00(,)x y 的某领域内存在且在点00(,)x y 可微,则有0000(,)(,)x y y x f x y f x y =. 13.设f 在点000(,)P x y 可微,且在0P 给定了n 个向量(1,2,,)i l i n = ,相邻两个向量之间的夹⾓为2n π.证明:01()0i nl i f P ==∑.14.设(,)f x y 为n 次齐次函数,证明()(1)(1)m xy f n n n m f x y+=--+?? . 15. 证明2222221sin ,0,(,)0,0xy x y x y f x y x y ?+≠?+=??+=?在(0,0)处可微.16、设 12n2n 1n1n112n 111x x x u=x x x x x x---,证明:()1 nk 1ku0;x ?=?∑= ()2 ()nkk 1k n n 1u x u.x 2=∑=- 17、若函数(,)z f x y =的偏导数在点00(,)x y 的某邻域内存在,且(,)x f x y 与(,)y f x y 在点00(,)x y 处连续,则函数(,)f x y 在点00(,)x y 可微.18、若函数(,,)f x y z 在点0000(,,)P x y z 可微,则f 在点0P 处沿任⼀⽅向l 的⽅向导数都存在,且 0000()()cos ()cos ()cos l x y zf P f P f P f P αβγ=++ (1),其中cos ,cos ,cos αβγ为⽅向l 的⽅向余弦.19、设⼆元函数(,)z f x y =在凸开域D ?R 2上连续,在D 的所有内点都可微,则对D 内任意两点0(,),(,)P a b Q a h b k D ++∈,存在某θ(01)θ<<,使得(,)(,)(,)(,)x y f a h b k f a b f a h b k h f a h b k kθθθθ++-=+++++(,)(,)gradf h k ξη=?.20、设(,)u u x y =可微,在极坐标变换cos ,sin x r y r θθ==下,证明222221+??? =??? +??? y u x u u r r u θ. 21、⼗⼋章1、(10分)试证:所有切于曲⾯z xf yx=()的平⾯都相交于⼀点。

数学分析 测试试卷及答案

数学分析 测试试卷及答案

综合测试试卷一一、 计算题(本大题共15小题,每小题2分,共30分)1、xx x tan 01lim ⎪⎭⎫⎝⎛+→; 2、()x x x 2cot lim 0→ ;3、设a 为非零常数,则xx a x a x ⎪⎭⎫ ⎝⎛-+∞→lim ;4、⎪⎭⎫ ⎝⎛--+∞→n n n n n 3lim ; 5、xx x ex e111lim +-+→;6、⎪⎪⎭⎫⎝⎛++∞→x x x x 2sin 3553lim 2; 7、⎪⎭⎫ ⎝⎛+++++++++∞→n n n n n n n n n 2222211lim ;8、()x x x sin 2031lim +→;9、⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+∞→x x x x 11ln sin 31ln sin lim ; 10、()()x x x x x x +++→1ln cos 11cossin 3lim20 ; 11、20211limx x x x --++→; 12、⎪⎭⎫ ⎝⎛-→x x x x tan 11lim 20; 13、()3021ln arctan limx xx x +-→ ;14、若0>a ,0>b 为常数,则xxx x ba 302lim ⎪⎪⎭⎫⎝⎛+→;15、⎪⎪⎭⎫⎝⎛++++++∞→n n n n n n πππcos 12cos 1cos 11lim。

. 二、单项选择题(本大题共5小题,每小题2分,共10分)16、xx x x sin sinlim10→的值为( ) A. 1; B. ∞; C.不存在; D. 0.17、=+--+→232231x x x x x lim ( )A. 3;B. 4-;C. 1;D. 1-.18、 =⎪⎭⎫ ⎝⎛-∞→xx x 211lim ( )A.e 2;B. 2-e; C. 2e ; D.e2. 19、若22222=--++→x x bax x x lim ,则必有( ) A. 82==b a ,; B. 52==b a ,;C. 80-==b a ,; D. 82-==b a ,. 20、当+→0x 时,以下四式中为无穷小量的是( )A. x x 1sin ;B. x e 1; C. x ln ; D. x xsin 1.21、当+→0x 时,以下四式中为无穷大量的是( ) A. 12--x; B.xx sec sin +1; C. xe -; D. x e 1. 22、=→xx x x cos sinlim10( ) A.不存在; B. 0; C. 1; D. ∞.23、()=-→xx x cos tan lim 02π( )A.0;B. 1;C. ∞;D. 不存在. 24、=⎪⎭⎫⎝⎛--→1110x x e x lim ( )A.0;B. 21;C. ∞;D.21-. 25、()=+→xx x ex 10lim ( )A.e ;B. 1;C. 2e ; D. 2.三、计算题(本大题共3小题,每小题17分,共51分)26、623lim 2232--++-→x x xx x x ; 27、()11lim 22--+∞→x x x . 28、38231lim x x x +---→. 29、⎪⎪⎭⎫ ⎝⎛+--∞→1212lim 223x x x x x . 30、n n n n n !2lim ∞→. 31、()()()503020152332lim++-∞→x x x x . 32、设)(a f '存在,且0>)(a f ,求xx a f x a f ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+∞→)(lim 1.33、xx x x ⎪⎭⎫ ⎝⎛+∞→1lim . 34、11lim 31--→x x x . 35、xx x cos lim 00+→. 36、xx x x 10arcsin lim ⎪⎭⎫⎝⎛→. 37、()x x x x cos 1sin 1ln lim 0-+→. 38、201sin lim x x →. 39、21cos lim x x x ⎪⎭⎫ ⎝⎛∞→. 40、121lim +∞→+++p p p p n n n ,0>p .41、()1ln lim0-+→xx e x.42、dx xx an nn ⎰+∞→1sin lim.(提示:先用积分中值定理:()()a b f dx x f ba-=⎰ξ)(,[]b a ,∈ξ)综合测试试卷一参考答案一、计算题(本大题共15小题,每小题2分,共30分) 1、1; 2、21; 3、a e 2;4、2;5、1-;6、56;7、21;8、6e ;9、2;10、23;11、41-;12、31; 13、61-; 14、()23ab ; 15、22π。

数学分析练习题

数学分析练习题

第二章 数列极限一、填空题1.∑=∞→=++++Nn n n1 (3211)lim_________;2.-+∞→3(lim n n n3.=++++++++∞→n nn 31913112141211lim; 4.已知 2235lim2=-++∞→n bn an n ,则 =a , =b ;5.=-+∞→nnn nn 3535lim;6.已知2003)1(lim=--∞→bban n n n,则 =a , =b ;7.=+++++++++∞→)12111(lim 222nn n n n n n n ;8. =-∙∙--∞→)11()311)(211(lim 222nn ;二、选择填空1. “对任意给定的)1,0(∈ε,总存在正整数N ,当N n ≥时恒有ε2||≤-a a n ”是数列}{n a 收敛于a 的A 充分条件但非必要条件。

B 必要条件但非充分条件C 充分必要条件D 既非充分条件又非必要条件。

2.数列}{n a 不收敛于a 的充要条件是A 对于任给 0>ε,满足ε<-||a a n 的项只有有限项。

B 对于任给 0>ε,总有相应的项n a ,ε≥-||a a n 。

C 存在某个正数0ε,除有限项外,都有0||ε≥-a a nD 存在某个正数0ε,有无穷多项满足0||ε≥-a a n3. 设数列n x 与n y 满足0lim =∞→n n n y x ,则下列断言正确的是A 若n x 发散,则n y 必发散。

B 若n x 无界,则n y 必有界。

C 若n x 有界,则n y 必为无穷小。

D 若nx 1为无穷小,则n y 必为无穷小。

4. 设}{n a 收敛,}{n b 发散,则A }{n n b a 必收敛。

B }{n n b a 必发散。

C }{n n b a +必收敛。

D }{n n b a +必发散。

5. 设数列}{n a 无上界且 ,2,1,0=≠n a n ,则A }{1-n a 必有上界B 对于任给定的M>0,必有无穷多项M a n >。

数学分析试卷

数学分析试卷

数学分析试卷第十三章函数项级数应用题第十三章函数项级数计算题1.设S(某)=nen某某>0,计算积分ln3ln2S(t)dt2..判断级数(1)n某nn1某n(某>0)的敛散性.第十三章函数项级数计算题答案1.nen某在[ln2,ln3]上连续且一致收敛它在[ln2,ln3]可逐积分(得4分)ln3(t)dtln3nen某d某ln2(得6分)n1ln2=[(1)n(1)n23]111(得8分)n111211232.对交错级数(1)nn由莱布尼兹判别法知它收敛(得3分)而某n1某n当某>1时,单增有界;某=1时,值为12;当某<1时,单降为界(得6分)故由阿贝尔判别法知(1)n某nnn收敛(得8分)1某第十三章函数项级数填空题1.f)某nn(某n=1,2,…{fn(某)}在[0,1]上的极限函数是__________2n2某0某12n2.f某)2n2n2n(某12n某1n的极限函数是________________________10n某1第十三章函数项级数填空题答案01.f(某)10某1某12.f0第十三章函数项级数证明题1.证明:函数f(某)=inn某n3在(-,)有连续的导函数.(10分)某2.设f0(某)在[a,b]上连续,定义函数序列fn+1(某)=fn(t)dt,n0,1,2,,a证明fn(某)在[a,b]上一致收敛.(10分)3.设f(某)在[12,1]上的连续函数,那么当f(某)在[n12,1]有界且f(1)=0时,{某f(某)}在[4.设fn(某)n某1n某2212,1]上一致收敛.(10分)求证1)对任给的0<1,fn(某)在[,1]上一致收敛.2)fn(某)在(0,1]上不一致收敛(12分)5.若在区间I上,对任何自然数n,|un(某)|vn(某),证明:当vn(某)在I上一收敛时级数n1u(某)在I上也一致收敛,且绝对收敛.(11分)nn1第十三章函数项级数证明题答案1.证:(inn某n3)con某n2而inn某n3con某n21n2(得2分)由而由1n2收敛知1n3()在(-,)上一致收敛(得2分)inn某n3inn某n3及1n3收敛知收敛(得6分)(又inn某3ncon某n2)=con某n2(得8分)con某n2在(-,)上连续且con某n2在(-,)上一致收敛在(-,)上连续.(得10分)2.证:f0(某)在[a,b]上连续.f0(某)m(得3分)2从而f1(某)m(某a)m(ba)(得5分)f2(某)某am(ta)dtm2!(ba)(得6分)2fn(某)m(ba)n!nn(得8分)n又n1(ba)n!收敛.limm(ba)n!n0(得9分)从而fn(某)一致收敛.(得10分)n03.证明:f(某)M且lim某f(某)nf(1)n,某1,某1(得3分)而f(1)=0,故lim某f(某)0(得5分)n又由于f(某)在某=1处连续,故0,0.当1-某1时,f(某)f(1)f(某)(得7分)从而当某[,1)时,某f(某)0(1)M0(得8分)21nn当某[1,1]时,某f(某)0f(某)(得9分)因此,某f(某)一致收敛.(得10分)nn4.证明:先求极限函数f(某)某(0,1]易知lim(1)因为|fn(某)f(某)|=对某0取N=[1n某1n某22n某1n某222n0即f(某)=0(得2分)1n2n1n2nn22(得4分)2]则当n>N时1n2对某[,1]必有|fn(某)-f(某)|按定义有fn(某)在[,1]上一致收敛(得6分)(2)因为dfn(某)d某n(1n某)(1n某)22222对每个自然数n,某n=1n是fn(某)的唯一极大值点.因而必是连续函数fn(某)在[0,1]的最大值点(得9分)显然也是它在(0,1]的最大值点,所以upfn(某)f(某)0某1=ma某(0某1)fn(某n)fn()1n某n222n某113故fn(某)在(0,1]不一致收敛(得12分)5.证先证一致收敛性,对>0,由vn(某)在I上一致收敛,存在N(),当n>N时,对自然数p和某I vn1(某)vn2(某)vnp(某)(得5分)于是un1(某)unp(某)un1(某)unp(某)vn1(某)vnP(某)(得8分)对自然数p和某I成立即un(某)在I上一致收敛(得10分)又un(某)vn(某)某I故un(某)在I上绝对收敛(得11分)第十三章函数项级数选择题1.设an(某)在(a,b)内任何区间(a1,b1)(an1面哪个结论是错误的()(A)可逐项求导(B)可逐项求积(C)极限与求和可交换顺序(D)级数收敛2.下列函数列在所示区间D上不一致收敛的是()(A)fn(某)(C)fn(某)n某某21n2D=(-1,1)(B)fn(某)某1n某22D=(-,+)D=[0,+)(D)fn(某)n某D=[0,10]第十三章函数项级数选择题答案1.C2.C第十四章幂级数选择题1.n1某2nn的收敛区间为()(A)(-1,0)(B)[0,1](C)[-1,1](D)(-1,1)2.f(某)=ln(2+某)展开成某的幂级数是()(A)ln2+(1)n1n1某nnn2(B)ln2(1)n1n1某nnn24(C)1+(1)n1某n(1)n1ln2某nn1n(D)n1n(2)3.函数f(某)=e某2展开成某的幂级数为()23(A)1+某+某某32!3!(B)1-某+某22!某3!某4某6(C)1+某2+(D)1-某2+某4某62!3!2!3!4.已知ann某在某=-2处收敛,则在某=3/2处此级数n1(A)收敛(B)发散(C)可能收敛(D)可能发散5.级数(11n2nn)(某1)的收敛半径R=n1(A)1(B)e(C)e1(D)e26..级数某nn1n2的收敛域为()(A)(-1,1)(B)(-1,1](C)[-1,1)(D)[-1,1]7.下述展开式正确的是()2(A)e某1某某2某nn某R(B)e某1某某2某n2!n!某[-1,1](C)e某1某某2某n2!n!某R(D)e=1+1+11123n8.下列级数在所示区间上不一致收敛的是()(A)某n某[-r.r](r>0)(B)某nn2(n1)!n1n2某[0,1](1)n12(C)某n某(-,)(D)n0n1(1某2)n1某n9..级数某nn1n的收敛域为()5。

(完整word版)数学分析试题库--证明题--答案

(完整word版)数学分析试题库--证明题--答案

数学分析题库(1—22章)五.证明题1.设A ,B 为R 中的非空数集,且满足下述条件:(1)对任何B b A a ∈∈,有b a <;(2)对任何0>ε,存在B y A x ∈∈,,使得ε<-x Y 。

证明:.inf sup B A =证 由(1)可得B A inf sup ≤.为了证B A inf sup =,用反证法。

若B A inf sup ,设B y A x A B ∈∈∃=-,,sup inf 0ε,使得0ε≥-x y 。

2.设A ,B 是非空数集,记B A S ⋃=,证明:(1){}B A S sup ,sup max sup =; (2){}B A S inf ,inf min inf =证(1)若A ,B 中有一集合无上界,不妨设A 无上界,则S 也是无上界数集,于是+∞=+∞=S A sup ,sup ,结论成立。

若A ,B 都是有上界数集,且A B sup sup ≤,现设法证明:sup sup A S =(ⅰ)S x ∈∀,无论A x ∈或B x ∈,有;sup A x ≤ (ⅱ)000,,sup ,x A x A εε∀∃∈->>于是,0S x ∈0sup .x A >同理可证(2). 3。

按N -ε定义证明352325lim 22=--+∞→n n n n 证 35232522---+n n n)23(3432-+=n n≤2234n n⋅ (n>4) n32=, 取⎭⎬⎫⎩⎨⎧+⎥⎦⎤⎢⎣⎡=4,132max εN ,当n>N 时,35232522---+n n n 〈ε。

注 扩大分式是采用扩大分子或缩小分母的方法.这里先限定n>4,扩大之后的分式nn G 32)(=仍是无穷小数列。

4.如何用ε-N 方法给出a a n n ≠∞→lim 的正面陈述?并验证|2n |和|n )1(-|是发散数列。

答 a a n n ≠∞→lim 的正面陈述:0ε∃〉0,+∈∀N N ,n '∃≥N ,使得|a a n -'|≥0ε数列{n a }发散⇔R a ∈∀,a a n n ≠∞→lim .(1)a n a n ∀=.2,0ε∃=41,+∈∀N N ,只要取⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡+='N a n ,21max ,便可使||2a n -'≥||2a n -'≥||212a a -⎪⎭⎫ ⎝⎛+≥41,于是{2n }为发散数列。

数学分析试题库--证明题--答案

数学分析试题库--证明题--答案

数学分析题库(1-22章)五.证明题1.设A ,B 为R 中的非空数集,且满足下述条件:(1)对任何B b A a ∈∈,有b a <;(2)对任何0>ε,存在B y A x ∈∈,,使得ε<-x Y . 证明:.inf sup B A =证 由(1)可得B A inf sup ≤.为了证B A inf sup =,用反证法.若B A inf sup ,设B y A x A B ∈∈∃=-,,sup inf 0ε,使得0ε≥-x y .2.设A ,B 是非空数集,记B A S ⋃=,证明:(1){}B A S sup ,sup max sup =; (2){}B A S inf ,inf min inf =证(1)若A ,B 中有一集合无上界,不妨设A 无上界,则S 也是无上界数集,于是+∞=+∞=S A sup ,sup ,结论成立.若A ,B 都是有上界数集,且A B sup sup ≤,现设法证明:sup sup A S =(ⅰ)S x ∈∀,无论A x ∈或B x ∈,有;sup A x ≤ (ⅱ)000,,sup ,x A x A εε∀∃∈->>于是,0S x ∈0sup .x A >同理可证(2). 3. 按N -ε定义证明352325lim 22=--+∞→n n n n 证 35232522---+n n n )23(3432-+=n n≤2234n n⋅ (n>4) n32=, 取⎭⎬⎫⎩⎨⎧+⎥⎦⎤⎢⎣⎡=4,132max εN ,当n>N 时,35232522---+n n n <ε. 注 扩大分式是采用扩大分子或缩小分母的方法.这里先限定n>4,扩大之后的分式nn G 32)(=仍是无穷小数列. 4.如何用ε-N 方法给出a a n n ≠∞→lim 的正面陈述?并验证|2n |和|n )1(-|是发散数列.答 a a n n ≠∞→lim 的正面陈述:0ε∃>0,+∈∀N N ,n '∃≥N ,使得|a a n -'|≥0ε数列{n a }发散⇔R a ∈∀,a a n n ≠∞→lim .(1)a n a n ∀=.2,0ε∃=41,+∈∀N N ,只要取⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡+='N a n ,21max ,便可使||2a n -'≥||2a n -'≥||212a a -⎪⎭⎫ ⎝⎛+≥41,于是{2n }为发散数列.(2)n n a )1(-=. 若a=1,0ε∃=1,取n '为任何奇数时,有2|1|=-'n a >0ε.若a=-1,0ε∃=1,取n '为任何偶数时,有2|)1(|=--'n a >0ε. 若a ≠±1,0ε∃=|}1||,1min{|21-+a a ,对任何n ∈+N ,有|a a n -|≥0ε. 故|n )1(-|为发散数列. 5.用δε-方法验证:3)23(2lim 221-=+--+→x x x x x x . 解 (1)消去分式分子、分母中当1→x 时的零化因子(x-1):)2(2)2)(1()1)(2()23(2)(22-+=---+=+--+=x x x x x x x x x x x x x x f . (2)把)3()(--x f 化为1)(-⋅x x ϕ,其中)(x ϕ为x 的分式:|1||2||23|)2(2533)2(23)(22---=-+-=+-+=+x x x x x x x x x x x x f ,其中xx x x 223)(2--=ϕ. (3)确定10=x 的邻域0<|x-1|<η,并估计)(x ϕ在此邻域内的上界:取21=η,当0<|x-1|<21时,可得 23-x ≤251|1|3<+-x ,43|)1(1||2|22>--=-x x x , 于是3104325|2||23|2=<--x x x . (4)要使|1||2||23||3)(|2---=+x x x x x f ≤ε<-|1|310x ,只要取ε103|1|<-x .于是应取 ⎭⎬⎫⎩⎨⎧=103,21min εδ, 当0<|x-1|<δ时,ε<--|)3()(|x f . 6 用M -ε方法验证:211lim2-=-+-∞→xx x x . 解)1(21211222x x x x x x x-+++=⎪⎭⎫⎝⎛---+22)1(21x x -+=注意到当∞→n 时,上式可以充分小,但是直接解不等式ε<-+22)1(21x x ,希望由此得到x<-M ,整个过程相当繁复,现用放大法简化求M 的过程.因为由ε<=-⋅≤-+222281)2(121)1(21x x x x , 便可求得ε812>x ,考虑到-∞→x 所需要的是ε81-<x .于是εε81,0=∃>∀M ,当x<-M 时,ε<⎪⎭⎫⎝⎛---+2112x x x.7 设a x x x =→)(lim 0ϕ,在0x 某邻域);(10δx U ︒内a x ≠)(ϕ,又.)(lim A t f at =→证明A x f x x =→))((lim 0ϕ. (1)解 由A t f at =→)(lim ,);(,0,00ηηεx U t ︒∈∀>∃>∀时,ε<-A t f )(.又因为a x x x =→)(lim 0ϕ,故对上述0,0>∃>δη(不妨取1δδ<),当);(0δx U x ︒∈时,ηϕ<-a x )(.由此可得:,0,0>∃>∀δε当);(0δx U x ︒∈时εϕ<-A x f ))((,即A x f x x =→))((lim 0ϕ.注 称(1)为复合求极限法,(1)不仅对0x x →型的极限成立,且对于-+→→∞→-∞→+∞→00,,,,x x x x x x x 都成立. 8.设)(x f 在点0x 的邻域内有定义.试证:若对任何满足下述条件的数列{}n x ,)(0x U x n ︒∈,0x x n →,0010x x x x n n -<-<+, (2)都有A x f n n =∞→)(lim ,则A x f x x =→)(lim 0.分析 由归结原则可知:上述结论不仅是充分的,而且是必要的.本题可看作函数极限归结原则的加强形式,即子列{}n x 只要满足(2)的加强条件就可以了.注意下面证明中选子列的方法.证 用反证法.若A x f x x ≠→)(lim 0,则);(,0,000δδεx U x ︒∈'∃>∀>∃,使得0)(ε≥-'A x f .取11=δ,);(101δx U x ︒∈∃,使得01)(ε≥-A x f .取⎭⎬⎫⎩⎨⎧-=012,21min x x δ,);(202δx U x ︒∈∃,使得02)(ε≥-A x f ;…………取⎭⎬⎫⎩⎨⎧-=-01,1min x x n n n δ,);(0n n x U x δ︒∈∃,使得0)(ε≥-A x f n 与A x f xx =→)(lim 0相矛盾.所以A x f x x =→)(lim 0成立.9. 证明函数⎩⎨⎧=为无理数为有理数x ,x x x f ,0,)(3在00=x 处连续,但是在00≠x 处不连续.证 00=x 时,因为3)(0x x f ≤≤,于是0)(lim 0=→x f x ,即)(x f 在x=0处连续.00>x 时,0,2300>∀=∃δεx ,在);(0δx U +︒中取x '为有理数,取x ''为无理数,于是030321)()(ε=>'=''-'x x x f x f .由函数极限柯西准则的否定形式可知)(x f 在点0x 处极限不存在,这样)(x f 在点0x 处不连续.00<x 时可类似地证明.10.设)(x f 在(0,1)内有定义,且函数)(x f e x 与)(x f e -在(0,1)内是递增的,试证)(x f 在(0,1)内连续.需证)(),1,0(0x f x ∈∀在点0x 连续,即)()0()0(000x f x f x f =-=+.因为)(x f e -在(0,1)内的递增性保证了)(x f 在(0,1)内是递减的,所以为了证明)0(0+x f 的存在性,很自然地想到利用函数极限的单调有界定理.证 因为)(x f e -在(0,1)内递增,所以)(x f 在(0,1)内递减.)1,0(0∈∀x ,首先来证明)0(0+x f =)(0x f .当0x x >时,)(x f ≤)(0x f ,由函数极限的单调有界定理)(lim 0x f x x +→存在.又由函数极限保不等式性质,有)0(0+x f =)(lim 0x f x x +→≤)(0x f .另外,由于)(x f e x 在(0,1)内递增,因此当0x x >时,)(00x f e x ≤)(x f e x ,令+→0x x ,有)(00x f e x ≤)0(00+x f e x即)0(0-x f =)(0x f ,由0x 在(0,1)中的任意性,可得)(x f 在(0,1)内连续. 说明 其中应用了基本初等函数x e 的连续性. 11 . 试证函数2sin x y =,在),0[+∞上是不一致连续的.分析 需确定0,00>∀>δε,可找到x x ''',满足δ<''-'x x ,但|)()(|x f x f ''-'≥0ε. 由于2sin x 在任意闭区间[]a ,0(a>0)上一致连续,因此当δ很小时,必须在)(+∞U 中寻找x x ''',,这是证明中的困难之处.现不妨取πππn x n x =''+=',2,nn n n n x x ππππππππ212220<++=-+=''-'<, 当n 充分大时,x x ''',能满足δ<''-'x x ,但|)()(|x f x f ''-'≥1.证 0,10>∀=∃δε,取2ππ+='n x ,πn x ='',当24δπ>n 时,使δ<''-'x x ,但1|sin sin |22=''-'x x ≥0ε,即2sin x 在),0[+∞上不一致连续.12. 设函数)(x f 在(a,b )内连续,且)(lim x f a x +→=)(lim x f b x -→=0,证明)(x f 在(a,b )内有最大值或最小值.分析 因为)(lim x f a x +→=)(lim x f b x -→=0,于是可把)(x f 延拓成[a,b]上的连续函数,然后可以应用连续函数的最大、最小值定理.证人 先把函数)(x f 延拓成[a,b]上的函数F(x),设⎩⎨⎧=∈=.,,0),,(),()(b a x b a x x f x F 易知)(x F 为[a,b]上的连续函数,这是因为)(lim x F a x +→=)(lim x f a x +→=0=)(a F ,)(lim x F b x -→=)(lim x f b x -→=0=)(b F .在[a,b]上对)(x F 应用连续函数的最大、最小值定理,即1ξ∃,2ξ],[b a ∈,)(x F 在1ξ,2ξ分别取得最大值和最小值.若a =1ξ,b =2ξ,则)(x f 在(a,b )内恒为零,显然)(x f 在(a,b )内同样能取得最大值和最小值;若1ξ,2ξ中有一个数在(a,b )内,则)(x f 在(a,b )内取得最大值或最小值.13. 证明:若在有限区间(a,b )内单调有界函数)(x f 是连续的,则此函数在(a,b )内是一致连续的.分析 因为)(x f 是(a,b )内的单调有界函数,所以由函数极限的单调有界定理,可得存在)0(+a f ,)0(-b f .证明本题的合理途径是把)(x f 延拓成闭区间[a,b]上的连续函数)(x F 在[a,b]上应用一致连续性定理.证 因为)(x f 是(a,b )内的单调有界函数,所以由函数极限的单调有界定理,)(lim x f a x +→与)(lim x f b x -→都存在,应用范例1中的方法,可把)(x f 延拓为[a,b]上的连续函数)(x F ,即⎪⎪⎩⎪⎪⎨⎧=∈==-+→→.),(lim ),,(),(,),(lim )(b x x f b a x x f a x x f x F bx a x由一致连续性定理,可得)(x F 在[a,b]上一致连续,于是)(x f 为(a,b )内的一致连续函数.14. 证明:若)(x f 在点a 处可导,f (x )在点a 处可导.分析 一般情况下,若)(x f 在点0x 处可导,)(x f 在点0x 处不一定可导.例如0)(0==x x x f 在处可导,但x x f =)(在点0处不可导,反之,若)(x f 在点0x 处可导,一般也不能推得f (x )在点x 0处可导.例如{为理数为无理数x x x f ,1,1)(-=01)(0==x x f 在点处可导,但0)(0=x x f 在点处不连续,因而不可导,然而,若)(x f 在点a 处连续,则由)(x f 在点a 处可导就可保证f (x )在点a 处可导.若0)(≠a f ,由连续函数局部保号性,)(a U ∃,在其中)(x f 保持定号,因而由f 在点a 处可导可推得)(x f 在点a 处也可导.若0)(=a f ,且f 在点a 处可导,因为点a 为f 的极值点,所以应用费马定理可以得到0)(='a f ,再由此又可证得0)(='a f .证 若0)(≠a f ,由连续函数局部保号性,)(a U 邻域∃,)(x f 在)(a U 中保持定号,于是)(x f 在点a 处可导,即为)(x f 在点a 处可导.若0)(=a f ,则点a 函数)(x f 的极小值点,因)(x f 在点a 处可导,由费马定理有0)(='a f即0)()(lim=∆--∆+→∆xa f x a f x因为0)(=a f ,所以0)()(lim 0=∆--∆+→∆xa f x a f x于是0)(='a f .15. 设函数),()(b a x f 在内可导,在[a,b]上连续,且导函数)(x f '严格递增,若)()(b f a f =证明,对一切),(b a x ∈均有()()()f x f a f b =<证: 用反证法,若)()()(),(00b f a f x f b a x =≥∈∃在区间],[],,[00b x x a 上分别应用拉格朗日中值定理,121002,,,a x x b ξξξξ∃<<<<使得0)()()(,0)()()(002001≤--='≥--='x b x f b f f a x a f x f f ξξ这与)(x f '为严格递增相矛盾.16. 设函数)(x f 在],[+∞a 内可导,并且()0f a <,试证:若当),(+∞∈a x 时,有()0f x c '>>则存在唯一的),(+∞∈a ξ使得0)(=ξf ,又若把条件()f x c '>减弱为/()0()f x a x ∞><<+,所述结论是否成立?分析 因为0)(〈a f ,若可以找到某点a x 〉,使得0)(〉x f 则由)(x f 的严格递增性,并应用连续函数的介值定理便可证明存在唯一的ξ,使得0)(=ξf证 x a ∀>在],[x a 上应用拉格朗日中值定理,,a x ξξ∃<<,使得))(()()(a x f a f x f -'=-ξ于是)()())(()()(a x c a f a x f a f x f -+〉-'+=ξ由于0c >,因此当x 充分大时总可使得不妨设11,()0x a f x c >>>,所以],[)(+∞a x f 在上严格递增;在],[1x a 上应用连续函数的介值定理,则1,a x ξξ∃<<,且ξ是唯一的.假设)(x f 满足/()0f x >,结论可能不成立,例如函数)()()(〉-+〉a x c a f x f],0[,2arctan )(+∞∈-=x x x f π,满足02)0(〈-=πf ,21()01f x x '=+>,但因)(x f 恒小于0,故在),0(+∞中不存在ξ,使得)(ξf =017. 证明不等式21(0)2xx e x x >++>证 令2()12xx f x e x =---, 0x >,()1,x f x e x '=--0x > ()10 , 0,x f x e x ''=->>且(0)(0)0,f f '== 当0x >时有()0f x ''>,所以()f x '严格递增, 又()f x '在0x =处连续,所以()(0)0, 0f x f x ''>=>,所以()f x 严格递增, 又()f x 在0x =处连续,所以()(0)0f x f >=, 0x >,即 21,2xx e x >++0x >.18. 设f 为(,)-∞+∞上的连续函数,对所有,()0x f x >,且li m x →+∞()f x li m x →-∞=()0f x =,证明()f x 必能取到最大值. 证 由题设(0)0f >, 取(0)=2f ε, 由limx →+∞()f x limx →-∞=()0f x =,0, ||,X x X ∃>>当时()(0)f x f ε<<.又f 在[,]X X -上连续, 由闭区间上连续函数的最大、最小值定理知, f 在[,]X X -能取到最大值,且此最大值为f 在(,)-∞+∞上的最大值.19.若函数()f x 在[0,1]上二阶可导, 且(0)0f =,(1)1f =,(0)(1)0f f ''==,则存在(0,1)c ∈使得|()|2f c ''≥.证法一: (0,1)x ∀∈, 把()f x 在0, 1两点处分别进行泰勒展开到二阶余项, 有2122()()(0)(0)(0),2!()()(1)(1)(1)(1),2!f f x f f x x f f x f f x x ξξ'''=+-+'''=+-+- 1201x ξξ<<<<,上两式相减, 有2212()()1(1)22f f x x ξξ''''=--. 记12|()|max{|()|,|()|}f c f f ξξ''''''=,则有2211|()|[(1)]2f c x x ''≤+- 2111|()|2222f c x ⎡⎤⎛⎫''=-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦1|()|2f c ''≤, 即存在(0,1)c ∈使得|()|2f c ''≥. 证法二: 在[0,1]上对()f x 应用拉格朗日中值定理有 ()(1)(0)1f f f ξ'=-=,01ξ<<.当120ξ<≤时,在[0,]ξ上对()f x '应用拉格朗日中值定理有1()(0)()f f f c ξξ''''=-=,1|()|()2f c f c ξ''''⇒==≥,(0,)(0,1)c ξ∈⊂.当121ξ<<时,在[,1]ξ上对()f x '应用拉格朗日中值定理有1()(1)()(1)f f f c ξξ''''=-=-,1|()|21f c ξ''⇒=≥-,(,1)(0,1)c ξ∈⊂.综上证明知存在(0,1)c ∈使得|()|2f c ''≥. 20.应用函数的单调性证明2sin ,(0,);2xx x x ππ<<∈ 证明:设sin ,(0,]()sin ,(),20, 0xx f x x x g x x x π⎧∈⎪=-=⎨⎪=⎩则 2()1cos 0,(0,),2cos (tan )()0,(0,)2f x x x x x xg x x x ππ'=->∈-'=<∈,而函数单调性定理知(),()f x g x 在(0,)2π上分别为严格递增和严格递减函数,再由结论知函数(),()f x g x 在[0,]2π也分别为严格递增和严格递减函数.由于2(0)0,(),2f g ππ==所以有(0,)2x π∀∈,有()sin (0)0,sin 2()(),2f x x x f x g x g x ππ=->==>=从而有2sin ,(0,).2xx x x ππ<<∈21.设函数⎪⎩⎪⎨⎧=≠=0,00,1sin )(x x xx x f m(m 为实数), 试问:(1)m 等于何值时,f 在0x =连续;(2)m 等于何值时,f 在0x =可导;(3)m 等于何值时,f '在0x =连续;解:(1)要使函数()f x 在0x =点连续,即需0lim ()(0)x f x f →=,而当0m ≥时,10()sinm m f x x x x≤=≤,有0lim ()0x f x →=,从而0lim ()0(0)x f x f →==,即函数在0x =点连续.(2) 当1m ≥时,1001sin1(0)limlim sin 0m m x x x x f x x x-∆→∆→∆-∆'==∆=∆∆,由复合函数求导法则可得1211sin cos ,0()0, 0m m mx x x f x x xx --⎧-≠⎪'=⎨⎪=⎩, 即1m ≥时函数在0x =点可导.(3)由(2)的求解过程可知要使()f x '在0x =点连续,首先要求1m ≥,此时要使()f x '在0x =的极限存在并且等于(0)0f '=,即需要120011lim ()lim(sin cos )(0)m m x x f x mxx f x x--→→''=-=,类似于(1)中的证明需要2m ≥,即当2m ≥时,函数的导函数在0x =点连续.————3分22.设()f x 在[0,1]上具有二阶导数,且满足条件()f x a ≤,()f x b ''≤, 其中,a b 都是非负常数,c 是(0,1)内的任一点,证明()22b fc a '≤+证 因()f x 在[0,1]上具有二阶导数,故存在1(0,)c ξ∈使得211(0)()()(0)()(0)2f f c f c c f c ξ''=+-+- 同理存在2(,1)c ξ∈使得221(1)()()(1)()(1)2f f c f c c f c ξ''=+-+- 将上面的两个等式两边分别作差,得222111(1)(0)()()(1)()22f f f c f c f c ξξ'''-=+--即222111()(1)(0)()(1)()22f c f f f c f c ξξ'''=---+因此222111()(1)(0)()(1)()22f c f f f c f c ξξ'''≤++-+222(1)22b b ac c ≤+-+而222(1)2212(1)11c c c c c c -+=-+=-+≤,故()22b fc a '≤+23. 设函数],[)(b a x f 在上连续,在(a,b )内二阶可导,则存在),(b a ∈ξ使得)(4)()()2(2)(2ξf a b a f b a f b f ''-=++-分析 本题可以利用柯西中值定理证明,设两个函数F ,G 为4)()(),()2(2)()(2a x x G a f a x f x f x F -=++-= 有0)()(==a G a F 然后在[a,b]上对F,G 应用柯西中值定理,本题也可用拉格朗日中值定理证明,下面分别给出两种证法.证[证法一] 设],[,4)()(),()2(2)()(2b a x a x x G a f a x f x f x F ∈-=++-=有4)()(),(2(2)()(,0)()(2a b b G a f b a f b f b F a G a F -=++-=== 2)(),2()()(a x x G a x f x f x F -='+'-'=' F (x ),G(x)在[a,b]上连续,在(a,b )内可导,)(),(),()(x G x F a G b G ''≠不同时为零,于是可以应用柯西中值定理,),(1b a ∈∃ξ,使得2)()2()()()()()(111a af f a G b G a F b F -+'-'=--ξξ再在)(],[],2[11x f b a a'⊂+上对ξξ应用格朗日中值定理,),(),2(11b a a⊂+∈∃ξξξ使得)(2)2()(2)2()(1111111ξξξξξξξf a s af f aaf f ''=+-+'-'=-+'-'于是有)(4)()()2(2)(2ξf a b a f b a f b F ''-=++-[证法二] 作辅助函数]2,[),()2()(ba a x x f ab x f x F +∈--+= 于是)()2(2)()()2(a f ba fb f a F b a F ++-=-+ 在]2,[b a a +上对)(x F 应用拉格朗日中值定理,)2,(1b a a +∈∃ξ,使得)()2(a F b a F -+=2)]()2([11ab f a b f -'--+'ξξ 再在]2,[11ab ++ξξ上对)(x f '应用拉格朗日中值定理,),()2(11b a ab ⊂-+∈∃ξξξ ,使得 )()2(2)(b f ba fb f ++-=4)()(2a b f -''ξ注 所证等式在计算方法课程的差分格式中是一个基本公式24.若)(x f 在点0x 的某个领域上有)1(+n 阶连续导函数,试由泰勒公式的拉格朗日型余项推导佩亚诺型余项公式.证 因为)(x f 具有)1(+n 阶连续导函数,由泰勒公式,有n n x x n x f x x x f x f x f )(!)())(()()(0)(00'0-++-+=)10(,)()!1())((1000)1(〈〈-+-++++θθn n x x n x x x f .因为导函数)()1(x f n +在点0x 的某个领域上连续,所以0,0δ∃M >>,当),(0δx U x ∈时,M x fn ≤+)()1(.由此可得101000)1()!1()()!1())(()(+++-+≤-+-+=n n n n x x n M x x n x x x f x R θ,于是有)(0)!1()()(000x x x x n Mx x x R nn →→-+≤-, 即))(()(0n n x x o x R -= )(0x x →.上面推导说明,当导函数)()1(x fn +在点0x 的某个闭领域内外连续时,可以得到))(()(0n n x x o x R -=,这与佩亚诺型余项的结论是一致的.25.用泰勒公式证明:设函数)(x f 在[]b a ,上连续,在()b a ,内二阶可导,则存在),(b a ∈ξ,使得)(4)()()2(2)(''2ξf a b a f b a f b f -=++-.分析需证等式中出现二阶导数)(''ξf 与)(x f 在b a ,,2ba +的函数值,试用展开到二阶导数的泰勒公式是一种可行的途径.问题在于选取哪些点为展开式中的x 和0x ,合理的方法是取20ba x +=,x 为a 和b . 证 把)(),(a f b f 在点20ba x +=展开到二阶导数项:,2,)2(!2)(222)(122'''b b a a b f a b b a f b a f b f 〈〈+-+-⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=ξξ ,2,)2(!2)(222)(2122'''b a a a b f b a b a f b a f a f +〈-+-⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=ξξ 把上面两式相加,有4)(2)()()()2(2)(22''1''a b f f a f b a f b f -⋅+=++-ξξ.不妨设)()(2''1''ξξf f ≤,于是有)(2)()()(2''2''1''1''ξξξξf f f f +≤.在[]2,1ξξ上对)(''x f 应用达布定理,[]12,ξξξ∈∃使得2)()()(2''1''''ξξξf f f +≤,这样就证得)(4)()()2(2)(''2ξf a b a f b a f b f -=++-.注 在23题中已应用柯西中值定理和拉格朗日中值定理证明了本题,这里应用泰勒公式和达布定理是另一种证明方法.26.设函数)(x f 在[]2,0上二阶可导,且在[]2,0上1)(≤x f ,1)(''≤x f .证明在[]2,0上成立2)(''≤x f .分析本题是用)(),(''x f x f 的上界来估计)(''x f 的上界.可以试用展开到二阶导数的泰勒公式寻找)()(),('''x f x f x f 和之间的联系.证 []2,0∈∀x ,把)0(),2(f f 在点x 处展开成带有二阶拉格朗日型余项的泰勒公式,有x x f x x f x f f 〈〈+-=121'''0,!2)()()()0(ξξ2,)2(2)()2()()()2(22'''〈〈-+-+=ξξx x f x x f x f f ,上面两式相减后有21''22'''2)()2(2)()0()2()(2x f x f f f x f ξξ+---=,再应用1)(≤x f ,1)(''≤x f ,可得2)2(2)(222'x x x f -++≤1)1(22+-+=x4≤ ,于是有2)('≤x f .说明 本题结论有一个有趣的力学解释:在2秒时间内,哪果运行路程和运动加速度都不超过1,则在该时间段内的运动速度决不会超过2.27.设f 是开区间I 上的凸函数,则对任何[]I ⊂βα,,f 在βα,上满足利普希茨(Lipschitz)条件,即存在0L >,对任何[]βα,,'''∈x x ,成立'''''')()(x x L x f x f -≤-.证 当取定[]I ⊂βα,后,因为I 是开区间,必能在I 中选取四点,,,,d c b a 满足.a b c d αβ<<<<<应用凸函数充要条件,任取[]βα,,'''∈x x ,'''x x <,得到.)()()()()()(''''''cd c f d f x x x f x f a b a f b f --≤--≤--现令,)()(,)()(max ⎭⎬⎫⎩⎨⎧----=c d c f d f a b a f b f L则有[].,,,)()('''''''''βα∈≤--x x L xx x f x f 由于上述常数L 与βα,上满足利普希茨条件:0L ∃>,使得'''''')()(x x L x f x f -≤-,[]βα,,'''∈∀x x .注 :由本题也可以推知:开区间I 上的凸函数必在该区间的任一内闭区间上连续,于是)(x f 是I 内的连续函数.28. 设)(x f 在 )0(),[>+∞a a 上满足Lipschitz 条件:y x k y f x f -≤-)()(, 证明x x f )(在 ),[+∞a 上一致连续.证 分析.)()()()()(21212121212211ε<-≤-+-≤-x x B x x x x x f x x f x f x x f x x f因为 ax k a f x f -≤-)()(,)()(22a f a k x k x f ++≤,B x x f ≤22)(,取B εδ=,当δ<-21x x 时,ε<-2211)()(x x f x x f .29. 证明:设1()1n n f x x x x -=++⋅⋅⋅+-,则显然()f x 在1[,1]2上连续,且11111()()11102222n n f -=++⋅⋅⋅+-<-=,(1)(111)110f n =++⋅⋅⋅+-=->, 根据连续函数介质定理,至少存在一点1(,1)2ξ∈,使()0f x =.即110n n x x x -++⋅⋅⋅+-=,也就是 11n n x x x -++⋅⋅⋅+=.可见1(,1)2ξ∈是原方程的根.又因为在1(,1)2内恒有12()(1)10n n f x nx n x --'=+-+⋅⋅⋅+>,()f x 在1[,1]2上严格递增,故1(,1)2ξ∈唯一.30.设函数)(x f 在点a 具有连续的二阶导数,试证明:)()(2)()(lim''2a f ha f h a f h a f h =--++→ 证明 因为f 在点a 处具有连续的二阶导数,所以f 在点a 的某邻域)(a U 内具有一阶导数,于是由洛必达法则,分子分母分别对h 求导,有)())()((21))()(lim )()(lim (21)()()()(lim212)()(lim)(2)()(lim000020a f a f a f h a f h a f h a f h a f h h a f a f a f h a f h h a f h a f h a f h a f h a f h h h h h ''=''+''=-'--'+'-+'=-'-'+'-+'=-'-+'=--++→→→→→ 31. 设)(x f 在),(b a 上可导,且A x f x f b x a x ==-→+→)(lim )(lim 0.求证:存在),(b a ∈ξ,使0)(='ξf .证: 将)(x f 连续延拓为闭区间],[b a 上的函数)(x F :⎩⎨⎧=∈=ba x Ab a x x f x F ,),()()(易知, )(x F 在],[b a 上满足罗尔定理的条件. 故存在 ),(b a ∈ξ , 使0)()(='='ξξf F .32. 设)(x f 在],[b a 上连续,在),(b a 内有n 阶导数,且存在1-n 个点),(,,,121b a x x x n ∈- 满足:)()()()()()2()1(121121b f x f x f x f a f b x x x a n n =====<<<<<--求证:存在),(b a ∈ξ,使0)()(=ξn f .证 由题设知,)(x f 在以下每一区间],[,],,[],,[1211b x x x x a n -上都满足罗尔定理的条件, 则必有n 个点),(,),,(),,(1)1(21)1(21)1(1b x x x x x x a x n n -∈∈∈ 使.,,2,1,0)()1(n k x f k =='又)(x f '在每个区间:1,,2,1],,[)1(1)1(-=+n k x x k k上满足罗尔定理的条件,于是存在),,()1(1)1()2(+∈k k k x x x 使1,,2,1,0)()2(-==''n k x f k重复上述步骤到1-n 次后, 可知)()1(x fn -在区间),(],[)1(2)1(1b a x x n n ⊂-- 上满足罗尔定理的条件,故存在 ),(],[)1(2)1(1b a x x n n ⊂∈--ξ, 使0)()(=ξn f .33.设函数f 在点0x 存在左右导数,试证f 在点0x 连续..证明 设函数f 在点0x 存在左右导数,于是0)()(lim )()(lim )()()(lim ))()((lim 00000000000=⋅'=-⋅--=-⋅--=--→→→→----x f x x x x x f x f x x x x x f x f x f x f x x x x x x x x 从而)()(lim 00x f x f x x =-→,即f 在点0x 左连续.同理可证f 在点0x 右连续.因而f 在点0x 连续.34.设函数f 在],[b a 上可导,证明:存在),(b a ∈ξ,使得)()()]()([222ξξf a b a f b f '-=-证明 设)()()]()([)(222x f a b a f b f x x F ---=,则)(x F 在],[b a 上连续并可导,且)()()()(22b F a f b b f a a F =-=,由Rolle 定理,存在),(b a ∈ξ,使得0)()()]()([2)(22='---='ξξξf a b a f b f F ,从而)()()]()([222ξξf a b a f b f '-=-35.应用拉格朗日中值定理证明下列不等式:aab a b b a b -<<-ln ,其中b a <<0 证明 设x x f ln )(=,则f 在],[b a 上连续且可导,所以f 在],[b a 上满足Lagrange 中值定理的条件,于是),(b a ∈∃ξ,使得)(1))((ln ln lna b a b f a b a b -=-'=-=ξξ,因为b a <<<ξ0,所以a ab a b b a b -<-<-ξ,从而aa b a b b a b -<<-ln . 36.证明 设S 是有限集,则对任一a R ∈,01ε∃=,因S 是有限集,故邻域(,1)U a 内至多有S 中的有限个点,故a 不是S 的聚点.由a 的任意性知, S 无聚点.37.证明 作闭区间列{}[,]n n x y ,其中11,,1,2,22n n n n n n a a b bx y n ++++=== .由于1n n n a x a +<<,()1n n n b y b n N +<<∀∈,于是有()11(,)[,](,)n n n n n n a b x y a b n N ++⊂⊂∀∈(*)从而()11[,][,]n n n n x y x y n N ++⊂∀∈.而()0n n n n y x b a n N <-<-∀∈,从而由()l i m 0n n n b a →∞-=知, ()lim 0n n n y x →∞-=.所以{}[,]n n x y 为闭区间套.有区间套定理知, 存在一点ξ,使得,n n x y ξ<<,1,2,n = .由(*)有,1,2,n n a b n ξ<<= .若数ξ'也满足,1,2,n n a b n ξ'<<= ,则,1,2,n n b a n ξξ'-<-= .两边取极限,得到()lim 0n n n b a ξξ→∞'-≤-=,于是ξξ'=.即满足条件的点ξ是唯一的.38.证明 不妨设{}n x 为递增数列,且ξ为其聚点.设a 为任一实数,且a ξ≠,不妨设a ξ<.取02aξε-=>,由聚点定义,(,)U ξε中含有{}n x 的无限项.设(,)N x U ξε∈,由于{}n x 为递增数列,则当n N ≥时,2n N ax x ξξε+≥>-=,于是在{}n x 中,最多有有限项小于2aa ξε+=+,即(,)U a ε中最多含有{}n x 的有限项,于是点a 不是{}n x 的聚点,由a 的任意性知,ξ为{}n x 的唯一聚点.假设ξ不是{}n x 的上界,则存在N x ξ>,从而当n N ≥时,n N x x ξ≥>,令0N x εξ=->,则(,)U ξε中最多含有{}n x 的有限项,这与ξ为{}n x 的聚点矛盾.于是ξ为{}n x 的上界.另一方面,对任给的0ε>,数列{}n x 中必有一项(,)n x U ξε∈,即n x ξε>-.于是{}sup n x ξ=.39.证明 由函数()f x 在闭区间[,]a b 上连续知,0,[,],0x x a b εδ∀>∀∈∃>,使得当(,)x x U x δ'∈时,有()()f x f x ε'-<.考虑开区间集合,[,]2x H U x x a b δ⎧⎫⎛⎫=∈⎨⎬ ⎪⎝⎭⎩⎭,显然H 是[,]a b 的一个开覆盖.于是存在H 的一个有限子集*,[,],1,2,2i i i H U x x a b i k δ⎧⎫⎛⎫=∈=⎨⎬ ⎪⎝⎭⎩⎭覆盖了[,]a b . 记{}1min02ii kδδ≤≤=>.对任何,[,],x x a b x x δ''''''∈-<,x '必属于*H 中的某一开区间.设,2i i x U x δ⎛⎫'∈ ⎪⎝⎭,则222iiii i i x x x x x x δδδδδ''''''-≤-+-<+≤+=,从而同时成立()()i f x f x ε'-<与()()i f x f x ε''-<.于是()()f x f x ε'''-<.所以()f x 在[,]a b 上一致连续.40.证明 由连续函数的局部有界性,对每一点[,]x a b '∈,都存在邻域(,)x U x δ''及正数x M ',使得(),(,)[,]x x f x M x U x a b δ'''≤∈ .考虑开区间集{}(,)[,]x H U x x a b δ'''=∈.显然H 是[,]a b 的一个开覆盖.于是存在H 的一个有限子集{}*(,)[,],1,2,i i x i H U x x a b i k δ=∈=覆盖了[,]a b ,且存在正数12,,,k M M M ,使得对一切(,)[,]i i x x U x a b δ∈ ,有(),1,2,,i f x M i k ≤= .令1max i i kM M ≤≤=,则对任何[,]x a b ∈,x 必属于某(,)()i i xi U x f x M Mδ⇒≤≤.这就证得()f x 在[,]a b 上有界. 41.证明 由于函数()f x 在闭区间[,]a b 上连续,于是()f x 在[,]a b 上有界.由确界原理,()f x 的值域([,])f a b 有上确界,记为M .假设对一切[,]x a b ∈都有()f x M <.令1(),[,]()g x x a b M f x =∈-.函数()g x 在[,]a b 上连续,故()g x 在[,]a b 上有界.设G 是()g x 的一个上界,则10(),[,]()g x G x a b M f x <=≤∈-.从而1(),[,]f x M x a bG≤-∈.但这与M 为([,])f a b 的上确界矛盾.所以存在[,]a b ξ∈,使()f M ξ=,即()f x 在[,]a b 上有最大值.42.证明 函数()f x 在闭区间[,]a b 上单调增加,从而当a t x b ≤≤≤时,()()f x f t ≥,于是()()()()xxaaf t dt f x dt f x x a ≤=-⎰⎰.而22()()11()()()()0()()xaf x f x F x f t dt f x x a x a x a x a x a '=-+≥-⋅-=----⎰, 由此()F x 为[,]a b 上的增函数. 43.令2x tπ=-,则222002(sin )sin (cos )(cos ).22f x dx f t d t f t dt f x dx ππππππ⎛⎫⎛⎫⎛⎫=--== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎜⎠⎰⎰⎰.44.证明 不妨设函数()f x 在闭区间[,]a b 上单调递增,且()()f a f b <.不然,()()f a f b =,则()f x 在[,]a b 上为常数函数,显然可积.对[,]a b 的任一分法T ,由于()f x 单调增加, ()f x 在T 所属的每个小区间i ∆上的振幅为1()()i i i f x f x ω-=-,于是[][]1()()()()ni i i i x f x f x T f b f a T ω-∆≤-=-∑∑.由此可见,任给0ε>,只要()()T f b f a ε<-,就有iiTx ωε∆<∑,所以函数()f x 在闭区间[,]a b 上可积.45.证明 函数()f x 在闭区间[,]a b 上连续,且()f x 不恒等于零,则函数2()f x 在闭区间[,]a b 上连续,从而2()f x 在闭区间[,]a b 上可积,且2()f x 不恒等于零,因此2()0f x ≥,且存在0[,]x a b ∈,使20()0f x >.根据保号性,存在[,][,]a b αβ⊂,使[,]x αβ∀∈,都有2()0f x >.于是()()()()2222()()()()0bba af x dx f x dx f x dx f x dx αβαβ=++>⎰⎰⎰⎰.46.证明00()()()()a pp a paap f x dx f x dx f x dx f x dx ++=++⎰⎰⎰⎰.令t x p =-,则有()()()()a p aaapf x dx f t p dt f t dt f x dx +=+==⎰⎰⎰⎰.于是00()()()()()a pp a paaf x dx f x dx f x dx f x dx f x dx +=++=⎰⎰⎰⎰⎰.47.证明 由于lim ()x f x A →+∞=,任给0ε>,存在0M >,当x M >时,有()2f x A ε-<.又当T M >时,00000111()()()111()()()1,2T TTTMTMM f x dx A f x dx Adx f x A dxT T Mf x A dx f x A dx f x A dx T T T T ε-=-≤-⎛⎫=-+-≤-+- ⎪⎝⎭⎰⎰⎰⎰⎰⎰⎰所以取{}102max(),2MT f x A dx M ε=-⎰,注意到011MT<-<,则当1T T >时,就有 01(),22T f x dx A T εεε-<+=⎰ 故01lim ()T T f x dx A T →+∞=⎰,即就是01lim ()xx f t dt A x →+∞=⎰. 48.证明 函数()f x 和()g x 在[,]a b 上可积,于是函数2()f x ,2()g x 及()()f x g x 在[,]a b 上可积,从而,对任何实数t ,函数[]2()()f x t g x +可积,又[]2()()0f x tg x +≥,故[]2()()0ba f x tg x dx +≥⎰.即()()222()2()()()0bbba aa f x dx t f x g x dx tg x dx ++≥⎰⎰⎰上式右边是t的二次三项式,故其判别式()()()2224()()4()()0bbbaa af xg x dx f x dx g x dx ∆=-⋅≤⎰⎰⎰,即()()()222()()()()bbba aaf x dxg x dx f x g x dx ⋅≥⎰⎰⎰.49.证明 0()()()aaaaf x dx f x dx f x dx --=+⎰⎰⎰,函数()f x 为偶函数,于是()()f x f x -=.从而()()()()()x ta aaaf x dx f t d t f t dt f x dx =--=--==⎰⎰⎰⎰,于是00()()()2()aa aaaf x dx f x dx f x dx f x dx --=+=⎰⎰⎰⎰.50.证明 对[,]a b 上任一确定的x ,只要[,]x x a b +∆∈,就有()()()x xx x xaaxf t dt f t dt f t dt +∆+∆∆Φ=-=⎰⎰⎰.由于函数()f x 在[,]a b 上可积,故有界,可设()f x M ≤,[,]x a b ∈.于是,当0x ∆>时,就有()()x xx xxxf t dt f t dt M x +∆+∆∆Φ=≤≤∆⎰⎰,而当0x ∆>时,就有M x ∆Φ≤∆,由此得到0lim 0x ∆→∆Φ=,即证得()x Φ在点x 上连续.由x 的任意性,()x Φ在[,]a b 上连续.51.证明 不妨设()()f a f b μ<<.令()()g x f x μ=-,则函数()g x 也是区间[,]a b 上的连续函数,且()0g a <,()0g b >.于是只需证明存在0[,]x a b ∈,使得0()0g x =.记{}()0,[,]E x g x x a b =>∈,则[,]E a b ⊂,且b E ∈,从而E 为非空有界集.有确界原理, E 有下确界,记为0inf x E =.因()0g a <,()0g b >,由连续函数的保号性,存在0δ>,使得在[,)a a δ+内, ()0g x <,在(,]b b δ-内, ()0g x >.由此易见,00,x a x b ≠≠,即0(,)x a b ∈.倘若0()0g x ≠,不妨设0()0g x >,则由局部保号性,存在0(,)(,)U x a b η⊂,使在其内()0g x >,特别有0()02g x η->,于是02x E η-∈这与0i n f x E =相矛盾,故必有()0g x =.52.证明 对[,]a b 上任一确定的x ,0x ∆≠,只要[,]x x a b +∆∈,根据积分中值定理,就有()()()(),01x xx x xaaxf t dt f t dt f t dt f x x θθ+∆+∆∆Φ=-==+∆≤≤⎰⎰⎰.由于函数()f x 在[,]a b 上连续,故有00()lim lim ()()x x x f x x f x x θ∆→∆→∆Φ'Φ==+∆=∆.由x 在[,]a b 上的任意性,知()()(),[,]xad x f t dt f x x a b dx 'Φ==∈⎰.53.证明 因()1111nn k k n k S bb b b ++==-=-∑,所以()11lim lim n n n n S b b +→∞→∞=-=+∞,因此级数()11n n n bb ∞+=-∑发散.54.证明 由已知有32121,,,,n n u u u q q q u u u -≤≤≤ .把这1n -个不等式按项相乘后,得到132121n n n u u u q u u u --⋅⋅⋅≤ , 或者11n n u qu -≤.由于当01q <<时,等比级数11n n q ∞-=∑收敛,根据比较判别法及上述不等式可知级数1nn u∞=∑收敛.55.证明 由已知可得对一切1n ≥,有11n n n n u u v v ++≤.从而有11110n n n n u u uv v v ++<≤≤≤ ,故1111n n u u v v ++≤.由于11u v 是常数,根据比较判别法,当级数1n n v ∞=∑收敛时,级数1n n u ∞=∑也收敛.56.证明 由正项级数1nn u∞=∑收敛知, lim 0n n u →∞=.于是存在正整数N ,使得当n N>时,01n u <<.由此可得当n N >时,2nn u u <,由比较判别法知级数21nn u∞=∑也收敛.反之不能成立.如211n n ∞=∑收敛,而11n n ∞=∑发散.57.证明 设0(1,2,)n na M n ≤≤= ,则0n M a n ≤≤,从而222n M a n ≤,级数221n M n∞=∑收敛,由比较判别法知级数21nn a∞=∑收敛.58.证明 由于22112n n a a n n ⎛⎫≤+ ⎪⎝⎭,而级数21n n a ∞=∑与211n n∞=∑都收敛,于是级数221112n n a n ∞=⎛⎫+ ⎪⎝⎭∑收敛,根据比较判别法,级数1(0)n n n a a n ∞=>∑也收敛. 59.证明 由lim 0n n n a k b →∞=≠,知lim0nn n a k b →∞=>,而级数1n n b ∞=∑绝对收敛,即1n n b ∞=∑收敛,根据比较判别法知级数1nn a∞=∑也收敛.若只知级数1n n b ∞=∑收敛,不一定推得级数1n n a ∞=∑也收敛.例如1,n nn n a b n =+=则1(1)10()nn n a n b ⎡=+-→≠→∞⎢⎣.而11nn n n b ∞∞===∑收敛,级数111n n n n a n ∞∞===∑发散. 60.证明 此级数是正项级数,且部分和为()()()()()()()()()()()()1121121121211111111111111111.nkn k k nk k k n a S a a a a a a a a a a a a ==-=+++⎡⎤=-⎢⎥++++++⎣⎦=-+++<∑∑由此即知{}n S 有界,故级数()()()112111nn na a a a ∞=+++∑ 收敛. 61. 221)(x n xx S n +=. 证明在) , (∞+∞-内)(x S n −→−−→−0, ) (∞→n .证 易见 ∞→n lim .0)()(==x S x S n 而。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学分析题库(1-22章)五.证明题1.设A ,B 为R 中的非空数集,且满足下述条件:(1)对任何B b A a ∈∈,有b a <;(2)对任何0>ε,存在B y A x ∈∈,,使得ε<-x Y . 证明:.inf sup B A = 2.设A ,B 是非空数集,记B A S ⋃=,证明:(1){}B A S sup ,sup max sup =; (2){}B A S inf ,inf min inf = 3. 按N -ε定义证明352325lim 22=--+∞→n n n n 4.如何用ε-N 方法给出a a n n ≠∞→lim 的正面陈述?并验证|2n |和|n )1(-|是发散数列.5.用δε-方法验证:3)23(2lim 221-=+--+→x x x x x x . 6. 用M -ε方法验证:211lim2-=-+-∞→xx x x . 7 . 设a x x x =→)(lim 0ϕ,在0x 某邻域);(10δx U ︒内a x ≠)(ϕ,又.)(lim A t f at =→证明A x f x x =→))((lim 0ϕ.8.设)(x f 在点0x 的邻域内有定义.试证:若对任何满足下述条件的数列{}n x ,(1))(0x U x n ︒∈,0x x n →,(2)0010x x x x n n -<-<+,都有A x f n n =∞→)(lim ,则A x f x x =→)(lim 0.9. 证明函数⎩⎨⎧=为无理数为有理数x ,x x x f ,0,)(3 在00=x 处连续,但是在00≠x 处不连续.10.设)(x f 在(0,1)内有定义,且函数)(x f e x 与)(x f e -在(0,1)内是递增的,试证)(x f 在(0,1)内连续.11. 试证函数2sin x y =,在),0[+∞上是不一致连续的.12. 设函数)(x f 在(a,b )内连续,且)(lim x f a x +→=)(lim x f b x -→=0,证明)(x f 在(a,b )内有最大值或最小值.13. 证明:若在有限区间(a,b )内单调有界函数)(x f 是连续的,则此函数在(a,b )内是一致连续的.14 . 证明:若)(x f 在点a 处可导,f (x )在点a 处可导.15. 设函数),()(b a x f 在内可导,在[a,b]上连续,且导函数)(x f '严格递增,若)()(b f a f =证明,对一切),(b a x ∈均有()()()f x f a f b =<16. 设函数)(x f 在],[+∞a 内可导,并且()0f a <,试证:若当),(+∞∈a x 时,有()0f x c '>>则存在唯一的),(+∞∈a ξ使得0)(=ξf ,又若把条件()f x c '>减弱为/()0()f x a x ∞><<+,所述结论是否成立?17. 证明不等式21(0)2xx e x x >++>18.设f 为(,)-∞+∞上的连续函数,对所有,()0x f x >,且lim x →+∞()f x lim x →-∞=()0f x =,证明()f x 必能取到最大值.19. 若函数()f x 在[0,1]上二阶可导, 且(0)0f =,(1)1f =,(0)(1)0f f ''==,则存在(0,1)c ∈使得|()|2f c ''≥.20. 应用函数的单调性证明2sin ,(0,);2xx x x ππ<<∈ 21. 设函数⎪⎩⎪⎨⎧=≠=0,00,1sin )(x x xx x f m(m 为实数), 试问:(1)m 等于何值时,f 在0x =连续; (2)m 等于何值时,f 在0x =可导; (3)m 等于何值时,f '在0x =连续;22. 设()f x 在[0,1]上具有二阶导数,且满足条件()f x a ≤,()f x b ''≤,其中,a b 都是非负常数,c 是(0,1)内的任一点,证明()22b fc a '≤+23. 设函数],[)(b a x f 在上连续,在(a,b )内二阶可导,则存在),(b a ∈ξ使得)(4)()()2(2)(2ξf a b a f b a f b f ''-=++-24. 若)(x f 在点0x 的某个领域上有)1(+n 阶连续导函数,试由泰勒公式的拉格朗日型余项推导佩亚诺型余项公式.25. 用泰勒公式证明:设函数)(x f 在[]b a ,上连续,在()b a ,内二阶可导,则存在),(b a ∈ξ,使得)(4)()()2(2)(''2ξf a b a f b a f b f -=++-.26. 设函数)(x f 在[]2,0上二阶可导,且在[]2,0上1)(≤x f ,1)(''≤x f .证明在[]2,0上成立2)(''≤x f .27. 设f 是开区间I 上的凸函数,则对任何[]I ⊂βα,,f 在βα,上满足利普希茨(Lipschitz)条件,即存在0L >,对任何[]βα,,'''∈x x ,成立'''''')()(x x L x f x f -≤-.28. 设()f x 在 [,](0)a a +∞ >上满足Lipschitz 条件:|()()|||f x f y k x y -≤-, 证明()f x x在[,]a +∞上一致连续.29. 试证明方程11nn x xx -++⋅⋅⋅+=在区间1(,1)2内有唯一实根。

30. 设函数)(x f 在点a 具有连续的二阶导数,试证明:)()(2)()(lim''2a f ha f h a f h a f h =--++→ 31. 设)(x f 在),(b a 上可导,且A x f x f b x a x ==-→+→)(lim )(lim 0.求证:存在),(b a ∈ξ,使0)(='ξf .32. 设)(x f 在],[b a 上连续,在),(b a 内有n 阶导数,且存在1-n 个点),(,,,121b a x x x n ∈- 满足:)()()()()()2()1(121121b f x f x f x f a f b x x x a n n =====<<<<<--求证:存在),(b a ∈ξ,使0)()(=ξn f .33. 设函数f 在点0x 存在左右导数,试证f 在点0x 连续. 34. 设函数f 在],[b a 上可导,证明:存在),(b a ∈ξ,使得)()()]()([222ξξf a b a f b f '-=-.35.应用拉格朗日中值定理证明下列不等式:aab a b b a b -<<-ln ,其中b a <<0.36.证明:任何有限数集都没有聚点. 37.设(){},nna b 是一个严格开区间套,即满足1221n n a a a b b b <<<<<<<,且()lim 0n n n b a →∞-=.证明:存在唯一的一点ξ,使得,1,2,n n a b n ξ<<=.38.设{}n x 为单调数列.证明:若{}n x 存在聚点,则必是唯一的,且为{}n x 的确界. 39.若函数()f x 在闭区间[,]a b 上连续,证明()f x 在[,]a b 上一致连续. 40.若函数()f x 在闭区间[,]a b 上连续, 证明()f x 在[,]a b 上有界. 41.若函数()f x 在闭区间[,]a b 上连续,证明()f x 在[,]a b 上有最大值.42.若函数()f x 在闭区间[,]a b 上连续且单调增加,1(),(,],()(),,x a f t dt x a b x a F x f a x a ⎧∈⎪-=⎨⎪=⎩⎰证明()F x 为[,]a b 上的增函数. 43.函数()f x 在闭区间[0,1]上连续.证明220(sin )(cos )f x dx f x dx ππ=⎰⎰.44.若函数()f x 在闭区间[,]a b 上单调,证明()f x 在[,]a b 上可积. 45.若函数()f x 在闭区间[,]a b 上连续,且()f x 不恒等于零,证明()2()0ba f x dx >⎰.46.设函数()f x 为(,)-∞+∞上以p 为周期的连续周期函数.证明对任何实数a ,恒有()()a ppaf x dx f x dx +=⎰⎰.47.若函数()f x 在[0,)+∞上连续,且lim ()x f x A →+∞=,证明01lim()xx f t dt A x →+∞=⎰.48.若函数()f x 和()g x 在[,]a b 上可积,证明()()()222()()()()bbba aaf x dxg x dx f x g x dx ⋅≥⎰⎰⎰.49.若函数()f x 在[,]a a -上可积,且为偶函数,证明0()2()aaaf x dx f x dx -=⎰⎰.50.若函数()f x 在[,]a b 上可积,证明函数()(),[,]xax f t dt x a b Φ=∈⎰在[,]a b 上连续.51.若函数()f x 在闭区间[,]a b 上连续,且()()f a f b ≠.若μ为介于()f a 与()f b 之间的任何实数,则存在0[,]x a b ∈,使得0()f x μ=. 52. 若函数()f x 在[,]a b 上连续,证明函数()(),[,]xax f t dt x a b Φ=∈⎰在[,]a b 上处处可导,且()()(),[,]xad x f t dt f x x a b dx 'Φ==∈⎰.53.若数列{}n b 有lim n n b →∞=∞,则级数()11n n n bb ∞+=-∑发散.54.设1n n u ∞=∑为正项级数,且存在常数(0,1)q ∈,使得对一切1n ≥,成立1n nu q u +≤.证明级数1nn u∞=∑收敛.55.设1n n u ∞=∑和1n n v ∞=∑为正项级数,且对一切1n ≥,成立11n n n n u v u v ++≤.级数1n n v ∞=∑收敛.证明级数1nn u∞=∑也收敛.56.设正项级数1nn u∞=∑收敛.证明级数21nn u∞=∑也收敛.试问反之是否成立?57.设0,1,2,n a n ≥=,且{}n na 有界,证明级数21nn a∞=∑收敛.58.设级数21n n a ∞=∑收敛.证明级数1(0)nn n a a n ∞=>∑也收敛. 59.若lim 0nn n a k b →∞=≠,且级数1n n b ∞=∑绝对收敛,证明级数1n n a ∞=∑也收敛. 若上述条件中只知道级数1nn b∞=∑收敛,能推得级数1nn a∞=∑也收敛吗?60.设0n a >,证明级数()()()112111nn n a a a a ∞=+++∑收敛.61. 221)(x n xx S n +=. 证明在) , (∞+∞-内)(x S n −→−−→−0, ) (∞→n .62. 设数列}{n a 单调收敛于零.试证明:级数∑nx ancos 在区间] 2 , [απα-)0(πα<<上一致收敛.63. 几何级数∑∞=0n nx在区间] , [a a -)10(<<a 上一致收敛;但在) 1 , 1(-内非一致收敛.64. 设数列}{n a 单调收敛于零 . 证明 : 级数∑nx ancos 在区间] 2 , [απα-)0(πα<<上一致收敛.65. 证明级数∑∞=-+-121) 1(n n nx在R 内一致收敛 .66. 证明函数∑∞==0!2)(n nn n x x f 满足微分方程 R ∈=-'-''x y y y ,02.67. 设⎪⎩⎪⎨⎧=≠=.0, 1,0 ,sin )(x x x xx f 证明对)0( , )(n f n ∀存在并求其值.68. 证明:幂级数∑∞=1n n n x 的和函数为∑∞=1n n n x )1ln(x --=,∈x ) 1 , 1 [-.并求级数∑∞=+1132n n n n和Leibniz 级数∑∞=+-11) 1(n n n 的和.69. 证明:幂级数∑∞=1n nnx的和函数为∑∞=1n nnx2(1)xx =- , 1 ||<x .并利用该幂级数的和函数求幂级数∑∞=+1123n n n nx 的和函数以及数项级数∑∞=-+1121n n n 的和. 70. 证明幂级数∑∞=++-01212) 1 (n n n n x 的和函数为arctgx ,并利用该幂级数的和函数求数项级数∑∞=+-012) 1 (n nn 的和. 71. 设)(x f 是以π2为周期的分段连续函数, 又 )(x f 满足)()(x f x f -=+π.求证 )(x f 的Fourier 系数 满足,0,0220===n n b a a .,2,1 =n72. 设)(x f 是以π2为周期的分段连续函数, 又设 )(x f 是偶函数,且满足()()f x f x =-π.求证: )(x f 的Fourier 系数,012=-n a .,2,1 =n73.求证函数系{} nx x x sin ,,2sin ,sin 是],0[π上的正交函数系. 74.设)(x f 是以2L 为周期的连续的偶函数。

相关文档
最新文档