D单调性与极值最值
高等数学自考3.3函数的单调性与极值
上单调增加; 在 上单调增加 (i)如果在 b)内f ′(x) > 0,则f (x)在[a, b]上单调增加; )如果在(a, 内 , 上单调减少。 (ii)如果在 b)内f ′(x) <0,则f (x)在[a, b]上单调减少。 )如果在(a, 内 , 在 上单调减少
例1 讨论函数 y = e x − x − 1的单调性 . 的单调性 解 Q y′ = e x − 1. 又 Q D : ( −∞ ,+∞ ).
的极值点与极值。 例4 求 f (x) = (x −1) x 的极值点与极值。
3 2
解
定义域( 定义域(−,+)
2 5x − 2 f ′( x) = x + ( x −1) x = 3 , 3 3 x 2 当 x = 时 , f ′( x ) = 0; 5 当 x = 0时 , f ′( x )不存在
4 3
′(x) = 12x3 −12x2 = 12x2 ( x −1), 解 f
令 得驻点: f ′( x) = 0 得驻点 x = 0, 1.
′′( x) = 36x2 − 24x = 12x(3x − 2) f
f ′′(0) = 0, f ′′(1) = 12 > 0.
由极值第二判别法, 由极值第二判别法 ξ=1时, 时 f (ξ)有极小值 f (1)=4. 有极小值: ξ 有极小值 由于 f ′′( 0 ) = 0 所以,需用极值第一判别法判定 所以 需用极值第一判别法判定: 需用极值第一判别法判定
O x
y = x3
定理2 极值存在的一阶充分条件) 定理2(极值存在的一阶充分条件) 在该邻域( 可除外)可导, 在该邻域(x0可除外)可导, 设f (x)在x0的某邻域内连续, 在 的某邻域内连续, 不存在的点。 x0为f (x)的驻点或使 ′(x) 不存在的点。 的驻点或使f 的驻点或使 (i) 若当 < x0 时,f ′(x) > 0;当x > x0 时,f ′(x) < 0, 若当x ; , 则 f (x0) 是f (x)的极大值; 的极大值; 的极大值 (ii) 若当 < x0 时,f ′(x) < 0; 当x > x0 时,f ′(x) >0, 若当x ; , 的极小值; 则 f (x0) 是f (x)的极小值; 的极小值 (iii) 若在 0的两侧,f ′(x)不变号, 若在x 的两侧, 不变号, 不变号 不是极值。 则f (x0)不是极值。 不是极值
函数的单调性与极值 最值
例8
判断函数 y = x − ln x 的单调性
解
函数的定义域为 (0,+∞ ) x −1 1 Q y′ = 1 − = x x 当 0 < x < 1 时数在 ( 0,1) 内单调减少。 单调减少。
内单调增加。 在 (1, +∞ ) 内单调增加。
x >1
时, y′ > 0,
y
f ( x1 )
( 2)
则称函数 f ( x )在区间 I上是单调减少的 ;
f ( x2 )
y = f ( x)
o
x1
x2
x
I
一、函数的单调性
y
2.判别方法 判别方法
y A y = f (x) B
y = f (x)
A
B
o
a
f ′( x ) ≥ 0
b
x
o a
f ′( x ) ≤ 0
b x
在区间(a,b)上单调上升 若 y = f (x)在区间 上单调上升 在区间(a,b)上单调下降 若 y = f (x)在区间 上单调下降
y
间断
∴ 单增区间为 (−∞, −2) , ( 2, +∞ ) 单减区间为 (−2, 0) , (0, 2)
x < ln(1 + x ) < x . 复习 证明当 x > 0 时, 1+ x 课本P124 课本 证法一设 f ( t ) = ln(1 + t ) t ∈ [0, x ]
足拉格朗日中值定理的条件. 则 f ( x ) 在 [0, x ]上满足拉格朗日中值定理的条件. 故
∴ 在(−∞ ,1]上单调增加; −∞ 上单调增加;
f ′( x ) < 0, ∴ 在[1,2]上单调减少; 上单调减少;
函数的单调性与极值点求解
函数的单调性与极值点求解函数的单调性是指函数在定义域上的增减情况,即在整个定义域上是递增还是递减。
而极值点则是指函数在定义域上的最大值或最小值所对应的点。
在数学中,我们经常需要确定一个函数的单调性以及求解其极值点,这对于研究函数的性质及应用具有重要的意义。
函数的单调性判断在求解函数的单调性时,我们可以通过函数的导数来进行判断。
对于一个函数f(x),如果在定义域内存在任意两个点x1和x2,且满足x1<x2,则有以下情况:1. 当f'(x)>0时,函数f(x)在区间(x1,x2)上是递增的;2. 当f'(x)<0时,函数f(x)在区间(x1,x2)上是递减的;3. 当f'(x)=0时,函数f(x)在该点处可能存在极值点。
根据以上判断准则,我们可以利用函数的导数来确定函数的单调性。
例如,对于函数f(x)=x^3+2x^2-3x+4,我们可以先求出它的导函数f'(x),即f'(x)=3x^2+4x-3。
然后我们可以通过求解f'(x)=0来确定函数f(x)的极值点。
极值点的求解在确定函数的极值点时,我们可以通过求导数为零的点来进行求解。
具体步骤如下:1. 对于给定的函数f(x),求出其导函数f'(x);2. 解方程f'(x)=0,得到函数f(x)的极值点的横坐标;3. 将横坐标代入原函数f(x)中,求出相应的纵坐标,得到函数f(x)的极值点。
以函数f(x)=x^3+2x^2-3x+4为例,我们已经得到了导函数f'(x)=3x^2+4x-3。
现在我们将f'(x)=0转化为方程,即3x^2+4x-3=0。
通过解这个方程,我们可以得到函数f(x)的极值点的横坐标。
假设解的结果为x1和x2,则将x1和x2分别代入原函数f(x)中,求出相应的纵坐标,即可得到函数f(x)的极值点。
需要注意的是,在某些情况下,函数的极值点可能不只是导数为零的点,还可能存在于定义域的边界上或者无穷远处。
大学高等数学上册:4-1单调性与极值
(非严格意义的) 注意
闭区间[a, b]上上述结论不一定成立. o a
bx
y
y
oa
bx o a
bx
1.闭区间上连续函数的最值
闭区间[a, b]上连续函数f (x) 的最大最小值 M,m 的求法. (1) 求出f (x) 在(a, b) 内的所有临界点:x1, x2 , , xn. (2) 求出函数值 f ( x 1), f ( x 2), , f ( x n) 及 f (a),f (b). (3) 比较以上这些函数值的大小即可得:
令 f ( x) 0 得驻点x = -1, 0, 1. f ( x) 6( x2 1)(5 x2 1)
x ( ,1) 1 (1,0) 0 (0, 1) 1
(1, )
f ( x) -
0
-
0
+
0
+
f ( x)
0
+
0
f (x)
非极值
极小值 f (0) = 0
非极值
三、最值
最值是整体概念而极值是局部概念. 结论:若f (x) 在 (a, b) 内有最值点 x0,则 x0 必是极值点.
例如
y x3
y x
x = 0 是驻点但非极值点 x = 0 是极小值点但 y (0) 不存在
结论:极值点必是临界点
极值点的必要条件
问题:如何判别临界点是否为极值点?
3.极值点的充分条件
y x2
y x3
y 3 x2
(1)一阶充分条件:
设 x0 是f ( x )的临界点, f ( x )在某N ( x0 )内连续,在
f ( x )的驻点.
(4) 函数的单调性是一个区间上的性质,不能用一点
函数的单调性,极值与最值
(4)确定 f ( x ) 的间断点、 f ' ( x ) 不存在的点xk;
(5)用 xi、xk把函数的定义域划分为单调区间; (6)把以上结果制成表格。
5
3 2 例4 确定f x 2 x 9 x 12 x 3的单调区间
解 定义域 ,
f x 6 x 2 18 x 12 6( x 1)( x 2)
2x1 1, x 2 3时,y 0
法1
3x在 1的左侧附近时, x 0 f f 1 10为极大值。 x在 1的右侧附近时, x 0 f
. f 3 22为极小值 x在3的右侧附近时, x 0 f
a x1
o
x2 x3
x4
x5
x6
b
x
设 f f 定理1(必要条件) f x 在x 0点可导, x 0 为极值,则 x 0 0.
驻点:使导数为零的点(即方程 f ' ( x ) 0的实根)。 可导函数的极值点一定是驻点,但驻点不一定是极值点。
问题:怎样才能从驻点中找出极值点?
令y 0, 得x 15km.
y
x0
400k , y x 15 380k ,
sin x x
只有一个实根
是一个根
f ( x ) sin x x , x 0
函数单调性和最大值最小值
考点二 求函数的单调区间 1.求函数的单调区间 (1)利用已知函数的单调性. (2) 定义法:先求定义域,再利用单调性定 义. (3)图象法:如果 f(x)是以图象给出的,或 者 f(x)的图象易作出,可直接由图象的直观性 写出它的单调区间. (4) 导数法:利用导函数取值的正负确定原 函数的单调区间.
②由 x2-3x+2≥0 得 x≥2 或 x≤1 设 u(x)=x2-3x+2,则 y=1- u x∈(-∞,1]时,u(x)为减函数 x∈[2,+∞)时,u(x)为增函数 而 u≥0 时,y=1- u为减函数 ∴y=1- x2-3x+2的单调增区间为(-∞,1],单调减区 间为[2,+∞). ③y′=3x2-3=3(x+1)(x-1) 令 y′>0 得 x>1 或 x<-1,
5.(2010 年江苏省苏北四市期末联考模拟试题)函数 y= x2+2x-3的单调减区间是________.
解析:∵y= x2+2x-3,∴x2+2x-3≥0,∴x∈(-∞, -3]∪[1,+∞), ∴y= x2+2x-3的单调减区间为(-∞,-3].
答案:(-∞,-3]
考点一 函数单调性的判断与证明
由 y′<0 得-1<x<1,
∴y=x3-3x 的增区间为(-∞,-1)和(1,+∞),减区间 为(-1,1).
1 变式迁移 2 (2010 年天津模拟)求函数 y=log (-x2-2x 2 +3)的单调区间.
解析:由-x2-2x+3>0,得-3<x<1, 1 所以函数 y=log (-x2-2x+3)的定义域是{x|-3<x<1}. 2 又函数 μ=-x2-2x+3 在区间(-3,-1)上单调递增,在 区间(-1,1)上单调递减,由复合函数单调性的判定方法知函数 1 y=log (-x2-2x+3)的单调递减区间是(-3,-1),单调递增 2 区间是(-1,1).
导数与函数的单调性、极值与最值-讲义(学生版)
导数与函数的单调性、极值与最值一、课堂目标1.掌握利用导数求解函数单调区间的方法步骤 .2.掌握极值与极值点的概念,能够结合函数与导数图象找出极值点与极值 .3.掌握利用导数求解函数极值的方法步骤.4.掌握利用导数求解给定区间上可导函数最值的方法步骤.二、知识讲解1. 导数与函数单调性知识精讲(1)导数与函数单调性①如果在区间内,,则曲线在区间对应的那一段上每一点处切线的斜率都大于,曲线呈上升状态,因此在上是增函数,如下图所示;,()(),(),②如果在区间内,,则曲线在区间对应的那一段上每一点处切线的斜率都小于,曲线呈下降状态,因此在上是减函数,如下图所示.,()(),(),(2)导数绝对值的大小与函数图象的关系一般地,如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化得较快,这时函数的图象就比较“陡峭”(向上或向下);反之,函数在这个范围内变化得较慢,函数的图象就比较“平缓.知识点睛函数在区间可导.(1)若,则函数在此区间内单调递增;(2)若,则函数在此区间内单调递减;(3)若,则函数在此区间内为常数函数.经典例题A.① B.② C.③ D.④1.已知函数的导函数的图象如图所示,那么函数的图象最有可能的是().巩固练习2.是函数的导函数,的图像如图所示,则的图像最有可能是下列选项中的( ).A.B.C. D.经典例题A. B.C.D.3.函数的图象如图所示,则的图像可能是( ).A.4.已知函数的图像如图所示,则等式的解集为( ).B.C.D.巩固练习A.B.C.D.5.如果函数的图像如右图,那么导函数的图像可能是().2. 利用导数求函数的单调区间的步骤知识精讲(1)确定的定义域;(2)求导数;(3)由(或)解出相应的的取值范围.当时,在相应区间上是增函数;当时,在相应区间上是减函数.知识点睛需要注意的是:1.在利用导数求函数的单调区间时,首先要确定函数的定义域,解决问题是必须在定义域内进行;2.在对函数划分单调区间时,除了必须确定使导数等于零的点(即导函数的零点)外,还要注意定义域内的不连续点和不可导点.经典例题A. B.C.D.6.函数的单调递增区间是().巩固练习A. B.C. D.7.函数的单调递增区间为().A.B.C.D.8.函数,的单调递减区间是( ).和和和和经典例题A. B.C.D.9.函数在上是减函数,则的取值范围是().巩固练习A. B.C. D.10.若为函数的递增区间,则的取值范围为().A. B.C.D.11.若函数为增函数,则实数的取值范围为( ).经典例题12.已知在区间上不单调,实数的取值范围是( ).A. B.C.D.巩固练习A. B.C. D.13.已知函数在上不单调,则的取值范围是().经典例题14.函数在上存在单调增区间,则实数的范围是.巩固练习A. B.C.D.15.若函数存在单调递增区间,则的取值范围是().3. 导数与函数的极值知识精讲函数极值与极值点的定义一般地,设函数的定义域为,设,如果对于附近的任意不同于的,都有:①,则称为函数的一个极大值点,且在处取极大值;②,则称为函数的一个极小值点,且在处取极小值.极大值点与极小值点都称为极值点,极大值与极小值都称为极值.显然,极大值点在其附近函数值最大,极小值点在其附近函数值最小.()()()()()()()()()知识点睛极值点的判断一般地,设函数在处可导,且.①如果对于左侧附近的任意,都有,对于右侧附近的任意,都有,那么此时是的极大值点;②如果对于左侧附近的任意,都有,对于右侧附近的任意,都有,那么此时是的极小值点;()()()()()()()()③如果在的左侧附近与右侧附近均为正号(或均为负号),则一定不是的极值点.()()经典例题A.B.C. D.16.函数在上的极小值点为().A.B.C.D.17.已知,在处有极值,则,的值为( ).,或,,或,,以上都不正确巩固练习A.B.C.D.18.函数的极大值为,那么等于().4. 求函数的极值的方法知识精讲求极值的步骤:(1)求导数;(2)求方程的所有实数根;(3)检验在方程的根的左右两侧的值的符号:①如果是左正右负,则在这个根处去的极大值;②如果是左负右正,则在这个根处去的极小值;③如果是左右同号,则在这个根处无极值.知识点睛导数与极值的关系:如果函数在区间上是单调递增的,在区间上是单调递减的,则是极大值点,是极大值.如果函数在区间上是单调递减的,在区间上是单调递增的,则是极小值点,是极小值.经典例题(1)(2)19.求下列函数的极值...巩固练习(1)(2)20.求下列函数的极值...A. B. C.D.21.设函数,则函数的极小值为().经典例题22.判断下列函数是否有极值,如果有极值,请求出其极值;若无极值,请说明理由..巩固练习23.判断下列函数是否有极值,如果有极值,请求出其极值;若无极值,请说明理由..经典例题24.设函数在和处有极值,且,求,,的值及函数的极值.25.若有极大值和极小值,则的取值范围是 .巩固练习26.已知函数在处取得极值,求的值.5. 求函数在上的最值的步骤知识精讲(1)函数的最大(小)值一般地,如果在上函数的图象是一条连续不断的曲线,那么它必有最大值和最小值,且函数的最值必在极值点或区间端点处取得.(2)求函数在上的最值的步骤①求函数在区间上的极值;②将函数的各极值点与端点处的函数值比较,其中最大的一个是最大值,最小的一个是最小值.知识点睛最值与极值的区别与联系(1)函数的最值是一个整体性的概念,反映的是函数在整个定义域上的情况,是对整个区间上的函数值的比较;函数的极值是在局部上对函数值的比较,具有相对性;(2)函数在一个闭区间上若存在最大值或最小值,则最大值或最小值只能各有一个,具有唯一性;而极大值和极小值可能多于一个,也可能没有;(3)极值只能在区间内取得,最值则可以在区间端点处取得;函数有极值时不一定有最值,有最值时也未必有极值;极值有可能成为最值,最值只要不在区间端点处取得必定是极值.经典例题27.已知函数,求函数在上的最大值和最小值.巩固练习28.函数的最大值为.A., B.,C.,D.,29.函数在区间上的最大值,最小值分别为().30.函数,的最小值等于.经典例题A. B.C.D.31.函数在上最大值为,最小值为,则实数取值范围为().巩固练习A. B.C. D.32.若函数在内有最小值,则的取值范围是().经典例题(1)(2)33.已知函数.求曲线在点处的切线方程.求函数在区间上的最大值和最小值.巩固练习(1)(2)34.已知函数,曲线在处的切线经过点.求实数的值.设,求在区间上的最大值和最小值.三、思维导图你学会了吗?画出思维导图总结本节课所学吧!四、出门测(1)(2)35.已知函数.写出函数的单调递减区间.求函数的极值.11(1)(2)36.已知函数.求曲线在点处的切线方程;求在区间上的最小值和最大值.。
单调性极值及判定最大值最小值
思考题解答 结论不成立. 因为最值点不一定是内点.
例 y f ( x) x x [0,1] 在 x 0 有最小值,但 f (0) 1 0
y
y
y
oa
bx o a
bx o a
bx
步骤:
1.求驻点和不可导点;
2.求区间端点及驻点和不可导点的函数值,比 较大小,那个大那个就是最大值,那个小那个 就是最小值;
注意:如果区间内只有一个极值,则这个极值就 是最值.(最大值或最小值)
二、应用举例
例1 求函数 y 2x3 3x2 12x 14 的在[3,4] 上的最大值与最小值.
驻点和不可导点统称为临界点.
函数的极值必在临界点取得.
第一充分条件;
判别法
(注意使用条件)
第二充分条件;
函数的最大值 与最小值
一、最值的求法
若函数 f ( x) 在 [a, b] 上连续,除个别点外处处可导, 并且至多有有限个导数为零的点,则 f ( x) 在 [a, b] 上的最大值与最小值存在 .
1 x f ( x)在[0,)上连续,且(0,)可导,f ( x) 0,
在[0,)上单调增加; f (0) 0,
当x 0时,x ln(1 x) 0, 即 x ln(1 x).
试证当x 0时, x arctanx.
证 : 设f (x) x, g(x) arctanx,
G(x) f (x) g(x),则
解 f ( x) 6( x 2)(x 1)
解方程 f ( x) 0,得 x1 2, x2 1.
计算 f (3) 23;
f (2) 34;
f (1) 7;
f (4) 142;
y 2x3 3x2 12x 14
新高考数学二轮复习知识点总结与题型归纳 第6讲 导数的应用之单调性、极值和最值(解析版)
第6讲 导数的应用之单调性、极值和最值1.函数单调性与导函数符号的关系一般地,函数的单调性与其导数正负有以下关系:在某个区间(,)a b 内,如果()0f x '>,那么函数()y f x =在该区间内单调递增;如果()0f x '<,那么函数()y f x =在该区间内单调递减.2.求可导函数单调区间的一般步骤 (1)确定函数()f x 的定义域;(2)求()f x ',令()0f x '=,解此方程,求出它在定义域内的一切实数; (3)把函数()f x 的间断点(即()f x 的无定义点)的横坐标和()0f x '=的各实根按由小到大的顺序排列起来,然后用这些点把函数()f x 的定义域分成若干个小区间;(4)确定()f x '在各小区间内的符号,根据()f x '的符号判断函数()f x 在每个相应小区间内的增减性.注①使()0f x '=的离散点不影响函数的单调性,即当()f x '在某个区间内离散点处为零,在其余点处均为正(或负)时,()f x 在这个区间上仍旧是单调递增(或递减)的.例如,在(,)-∞+∞上,3()f x x =,当0x =时,()0f x '=;当0x ≠时,()0f x '>,而显然3()f x x =在(,)-∞+∞上是单调递增函数.②若函数()y f x =在区间(,)a b 上单调递增,则()0f x '≥(()f x '不恒为0),反之不成立.因为()0f x '≥,即()0f x '>或()0f x '=,当()0f x '>时,函数()y f x =在区间(,)a b 上单调递增.当()0f x '=时,()f x 在这个区间为常值函数;同理,若函数()y f x =在区间(,)a b 上单调递减,则()0f x '≤(()f x '不恒为0),反之不成立.这说明在一个区间上函数的导数大于零,是这个函数在该区间上单调递增的充分不必要条件.于是有如下结论: ()0f x '>⇒()f x 单调递增; ()f x 单调递增()0f x '⇒≥; ()0f x '<⇒()f x 单调递减; ()f x 单调递减()0f x '⇒≤.3.函数极值的概念设函数()y f x =在点0x 处连续且0()0y f x '==,若在点0x 附近的左侧()0f x '>,右侧()0f x '<,则0x 为函数的极大值点;若在0x 附近的左侧()0f x '<,右侧()0f x '>,则0x 为函数的极小值点.函数的极值是相对函数在某一点附近的小区间而言,在函数的整个定义区间内可能有多个极大值或极小值,且极大值不一定比极小值大.极大值与极小值统称为极值,极大值点与极小值点统称为极值点. 4.求可导函数()f x 极值的一般步骤 (1)先确定函数()f x 的定义域; (2)求导数()f x ';(3)求方程()0f x '=的根;(4)检验()f x '在方程()0f x '=的根的左右两侧的符号,如果在根的左侧附近为正,在右侧附近为负,那么函数()y f x =在这个根处取得极大值;如果在根的左侧附近为负,在右侧附近为正,那么函数()y f x =在这个根处取得极小值.注①可导函数()f x 在点0x 处取得极值的充要条件是:0x 是导函数的变号零点,即0()0f x '=,且在0x 左侧与右侧,()f x '的符号导号.②0()0f x '=是0x 为极值点的既不充分也不必要条件,如3()f x x =,(0)0f '=,但00x =不是极值点.另外,极值点也可以是不可导的,如函数()f x x =,在极小值点00x =是不可导的,于是有如下结论:0x 为可导函数()f x 的极值点0()0f x '⇒=;但0()0f x '=⇒0x 为()f x 的极值点. 5.函数的最大值、最小值若函数()y f x =在闭区间[],a b 上的图像是一条连续不间断的曲线,则该函数在[],a b 上一定能够取得最大值与最小值,函数的最值必在极值点或区间端点处取得.6.求函数的最大值、最小值的一般步骤设()y f x =是定义在区间[],a b 上的函数,()y f x =在(,)a b 可导,求函数()y f x =在[],a b 上的最大值与最小值,可分两步进行:(1)求函数()y f x =在(,)a b 内的极值;(2)将函数()y f x =的各极值与端点处的函数值(),()f a f b 比较,其中最大的一个是最大值,最小的一个是最小值.注①函数的极值反映函数在一点附近情况,是局部函数值的比较,故极值不一定是最值;函数的最值是对函数在整个区间上函数值比较而言的,故函数的最值可能是极值,也可能是区间端点处的函数值;②函数的极值点必是开区间的点,不能是区间的端点; ③函数的最值必在极值点或区间端点处取得.1.已知0x 是函数()e ln x f x x =-的极值点,若()00,a x ∈, ()0,b x ∈+∞,则 A. ()0f a '>, ()0f b '< B. ()0f a '<, ()0f b '< C. ()0f a '>, ()0f b '> D. ()0f a '<, ()0f b '> 【答案】D【解析】因为()1(0)x f x e x x '=->,令()1=0x f x e x '=-,即1=x e x ,在平面直角坐标系画出1,x y e y x==的图象,如图:根据图象可知, ()()()()000,,0,,,0x x f x x x f x '∞'∈∈+,所以 ()0f a '<, ()0f b '>,故选D.2.已知20a b =≠,且关于x 的函数()321132f x x a x a bx =++⋅在R 上有极值,则a 与b 的夹角范围为( )A. 0,6π⎛⎫⎪⎝⎭B. ,6ππ⎛⎤ ⎥⎝⎦C. ,3ππ⎛⎤ ⎥⎝⎦D. 2,33ππ⎛⎤ ⎥⎝⎦【答案】C【解析】()321132f x x a x a bx =++⋅在R 有极值, ()2'0f x x a x a b ∴=++⋅=有不等式的根, 0∴∆>,即2240,4cos 0a a b a a b θ-⋅>∴->,120,cos 2a b θ=≠∴<, 0,3πθπθπ≤≤∴<≤,即向量,a b 夹角范围是,3ππ⎛⎤⎥⎝⎦,故选C. 【方法点睛】本题主要考查向量的模及平面向量数量积公式、利用导数研究函数的极值,属于难题.平面向量数量积公式有两种形式,一是cos a b a b θ⋅=,二是1212a b x x y y ⋅=+,主要应用以下几个方面:(1)求向量的夹角, ·cos ·a ba bθ=(此时·a b 往往用坐标形式求解);(2)求投影, a 在b 上的投影是a b b⋅;(3),a b 向量垂直则0a b ⋅=;(4)求向量ma nb + 的模(平方后需求a b ⋅).3.在ABC ∆中, ,,a b c 分别为,,A B C ∠∠∠所对的边,若函数()()3222113f x x bx a c ac x =+++-+有极值点,则sin 23B π⎛⎫- ⎪⎝⎭的最小值是( ) A. 0 B. 32- C. 32D. -1 【答案】D【解析】()()3222113f x x bx a c ac x =+++-+,∴f′(x )=x 2+2bx+(a 2+c 2-ac ),又∵函数()()3222113f x x bx a c ac x =+++-+有极值点,∴x 2+2bx+(a 2+c 2-ac )=0有两个不同的根,∴△=(2b )2-4(a 2+c 2-ac )>0,即ac >a 2+c 2-b 2,即ac >2accosB ;即cosB <12,故∠B 的范围是(π3π,),所以23B π- 5,33ππ⎛⎫∈ ⎪⎝⎭,当3112B 326B πππ-==,即 时sin 23B π⎛⎫- ⎪⎝⎭的最小值是-1 故选D4.设定义在(0,+∞)上的函数f(x)满足xf′(x)-f(x)=xlnx , 11f e e⎛⎫= ⎪⎝⎭,则f(x)( )A. 有极大值,无极小值B. 有极小值,无极大值C. 既有极大值,又有极小值D. 既无极大值,又无极小值 【答案】D【解析】因为xf ′(x )-f (x )=x ln x ,所以()()2ln xf x f x x x x -=',所以()'ln ()f x xx x=,所以f (x )=12x ln 2x +cx .因为f (1e )=12e ln 21e +c ×1e =1e ,所以c =12,所以f ′(x )=12ln 2x +ln x +12=12(ln x +1)2≥0,所以f (x )在(0,+∞)上单调递增,所以f (x )在(0,+∞)上既无极大值,也无极小值,故选D.点睛:根据导函数求原函数,常常需构造辅助函数,一般根据导数法则进行:如()()f x f x '-构造()()x f x g x e =, ()()f x f x '+构造()()x g x e f x =,()()xf x f x '-构造()()f xg x x=, ()()xf x f x '+构造()()g x xf x =等 5.设a R ∈,若函数,x y e ax x R =+∈有大于零的极值点,则( )A. 1a e<- B. 1a e >- C. 1a >- D. 1a <-【答案】D【解析】()x f x e a '=+(x>0),显然当0a ≥时, ()0f x '>,f(x)在R 上单调递增,无极值点,不符。
函数的单调性与极值
函数的单调性与极值在数学中,函数的单调性是指函数在定义域内的变化趋势。
它描述了函数图像是上升、下降还是具有其他类似的性质。
而函数的极值则表示函数在某个特定点上取得的最大值或最小值。
函数的单调性与极值是函数分析中常用的重要概念,可用于求解最优化问题、验证数学定理等。
一、函数的单调性函数的单调性分为递增和递减。
当函数随着自变量的增大而增大,或者随着自变量的减小而减小时,称为递增函数。
相反,当函数随着自变量的增大而减小,或者随着自变量的减小而增大时,称为递减函数。
我们以一些常见的函数类型为例,来说明函数的单调性:1. 线性函数:线性函数是指函数的表达式是一次方程的函数,即$f(x)=ax+b$,其中$a$和$b$是常数。
线性函数的单调性取决于斜率$a$的正负性。
当$a>0$时,函数递增;当$a<0$时,函数递减。
2. 幂函数:幂函数是指函数的表达式是$x$的幂次方,即$f(x)= x^n$,其中$n$是常数。
当$n>0$且$n$是奇数时,函数是递增的;当$n>0$且$n$是偶数时,函数是递减的。
3. 指数函数:指数函数是指函数的表达式是以常数为底数的指数函数,即$f(x)=a^x$,其中$a$是常数且$a>0$且$a\neq1$。
当$a>1$时,函数递增;当$0<a<1$时,函数递减。
4. 对数函数:对数函数是指函数的表达式是对数函数,即$f(x)=\log_a x$,其中$a$是常数且$a>0$且$a\neq1$。
当$a>1$时,函数递增;当$0<a<1$时,函数递减。
二、函数的极值函数的极值包括最大值和最小值。
当函数在某个点上取得最大值时,称为函数的最大值;当函数在某个点上取得最小值时,称为函数的最小值。
极值点也被称为驻点。
函数的极值可以通过求导数的方法来获得。
首先,求函数的导数,然后令导数等于零,解方程得到极值点的横坐标。
进一步,通过二阶导数的正负性来判断极值点的类型。
高中数学 2.2函数的单调性与最值
高中数学导学案 | 《第二章:函数》第二课时:函数的单调性与最值思维升华确定函数单调性的方法(1)定义法和导数法,证明函数单调性只能用定义法和导数法.(2)复合函数法,复合函数单调性的规律是“同增异减”.(3)图象法,图象不连续的单调区间不能用“∪”连接.(4)具有单调性函数的加减.高中数学导学案 | 《 第二章:函数 》 第二课时:函数的单调性与最值姓名: 学校: 年级: 备课人:题型二 函数的最值(值域)1.若函数f (x )=x 2+ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M -m ( ) A .与a 有关,且与b 有关 B .与a 有关,但与b 无关 C .与a 无关,且与b 无关 D .与a 无关,但与b 有关2.设函数f (x )=log 2x +ax +b (a >0),若存在实数b ,使得对任意的x ∈[t ,t +2](t >0)都有|f (x )|≤1+a ,则t 的最小值是( )A .2B .1 C.34 D.233.已知函数f (x )=⎩⎪⎨⎪⎧x 2,x ≤1,x +6x -6,x >1,则f (x )的最小值是________.4.若函数f (x )=⎩⎪⎨⎪⎧a 2+ln x ,x >1,2x +a ,x ≤1的值域为R ,则实数a 的取值范围是________.题型三 函数单调性的应用命题点1 比较大小例3 已知函数f (x )的图象向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,[f (x 2)-f (x 1)]·(x 2-x 1)<0恒成立,设a =f ⎝⎛⎭⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( ) A .c >a >b B .c >b >a C .a >c >b D .b >a >c 命题点2 解函数不等式例4 若f (x )是定义在(0,+∞)上的单调增函数,且满足f (xy )=f (x )+f (y ),f (3)=1,则当f (x )+f (x -8)≤2时,x 的取值范围是( )A .(8,+∞)B .(8,9]C .[8,9]D .(0,8) 命题点3 求参数范围(或值)例5 (1)已知f (x )=⎩⎪⎨⎪⎧(3a -1)x +4a ,x <1,log ax ,x ≥1是(-∞,+∞)上的减函数,则a 的取值范围是( )A .(0,1) B.⎝⎛⎭⎫0,13 C.⎣⎡⎭⎫17,13 D.⎣⎡⎭⎫17,1 (2)已知e x +x 3+x +1=0,1e3y -27y 3-3y +1=0,则e x +3y 的值为________.跟踪训练2 (1)如果函数f (x )=⎩⎪⎨⎪⎧(2-a )x +1,x <1,a x ,x ≥1满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0成立,那么a 的取值范围是________.求函数最值的五种常用方法及其思路 (1)单调性法:(2)图象法:(3)基本不等式法:先对解析式变形,使之具备“一正二定三相等”后用基本不等式求出最值. (4)导数法:先求导,然后求出在给定区间上的极值,最后结合端点值,求出最值.(5)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值.单调性应用的类型 (1)比较大小.比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决.(2)解不等式.求解与抽象函数有关的不等式时,利用函数的单调性将“f ”符号脱掉,转化为不等式求解.此时应特别注意函数的定义域. (3)利用单调性求参数. ①视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数; ②需注意若函数在区间(2)定义在R 上的奇函数y =f (x )在(0,+∞)上单调递增,且f ⎝⎛⎭⎫12=0,则不等式f (19log x )>0的解集为________________.1.如果函数f (x )=x 2+2(a -1)x +2在区间(-∞,4]上单调递减,那么实数a 的取值范围是( ) A .a ≤-3 B .a ≥-3 C .a ≤5 D .a ≥5 2.已知函数f (x )=x 2-2x -3,则该函数的单调递增区间为( )A .(-∞,1]B .[3,+∞)C .(-∞,-1]D .[1,+∞)3.已知函数f (x )=⎩⎪⎨⎪⎧(1-2a )x,x ≤1,log a x +13,x >1,当x 1≠x 2时,f (x 1)-f (x 2)x 1-x 2<0,则a 的取值范围是( ) A.⎝⎛⎦⎤0,13 B.⎣⎡⎦⎤13,12 C.⎝⎛⎦⎤0,12 D.⎣⎡⎦⎤14,13 4.已知f (x )是(0,+∞)上的增函数,若f ()f (x )-ln x =1,则f (e)等于( ) A .2 B .1 C .0 D .e5.已知定义在R 上的奇函数f (x )在[0,+∞)上单调递减,若f (x 2-2x +a )<f (x +1)对任意的x ∈[-1,2]恒成立,则实数a 的取值范围为( )A.⎝⎛⎭⎫-∞,134 B .(-∞,-3) C .(-3,+∞) D.⎝⎛⎭⎫134,+∞ 6.若函数f (x )=⎩⎪⎨⎪⎧x 2-2x +4,x ≤3,2+log ax ,x >3(a >0,且a ≠1)的值域为[3,+∞),则实数a 的取值范围为( )A .(1,3]B .(1,3)C .(3,+∞)D .[3,+∞)7.已知奇函数f (x )在R 上是增函数.若a =-f ⎝⎛⎭⎫log 215,b =f ()log 24.1,c =f (20.8),则a ,b ,c 的大小关系为________________. 8.设函数f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的单调递减区间是________.9.函数f (x )=4-2x +x 的值域为________.10.设函数f (x )=⎩⎪⎨⎪⎧-x 2+4x ,x ≤4,log 2x ,x >4.若函数y =f (x )在区间(a ,a +1)上单调递增,则实数a 的取值范围是__________________.[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的; ③分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.高中数学导学案 | 《第二章:函数》第二课时:函数的单调性与最值10.已知函数f(x)=2x高中数学导学案 | 《第二章:函数》第二课时:函数的单调性与最值。
高中数学高考第2节 函数的单调性与最值 课件
限
时
课
即当a>0时,f(x)在(-1,1)上为单调减函数,
集 训
堂
考 点
当a<0时,f(x)在(-1,1)上为单调增函数.
探
究
返 首 页
32
考点2 函数的最值
课
前 自
求函数最值的五种常用方法及其思路
主
回 顾
(1)单调性法:先确定函数的单调性,再由单调性求最值.
课 后
(2)图象法:先作出函数的图象,再观察其最高点、最低点,求
D
上是增函数;
课 后
限
课 fxx11--xf2x2<0⇔f(x)在 D 上是减函数.
时 集 训
堂
考 点 探
(2)对勾函数 y=x+ax(a>0)的增区间为(-∞,- a]和[ a,+
究
∞),减区间为[- a,0)和(0, a].
返
首
页
9
(3)在区间D上,两个增函数的和仍是增函数,两个减函数的和
课
前 自
点
探
究
返 首 页
21
(2)令u=x2+x-6,
课 前
则y= x2+x-6 可以看作是由y= u 与u=x2+x-6复合而成的
自
主 函数.
回
课
顾
令u=x2+x-6≥0,得x≤-3或x≥2.
后 限
易知u=x2+x-6在(-∞,-3]上是减函数,在[2,+∞)上是增
时 集
课
训
堂 考
函数,而y=
u在[0,+∞)上是增函数,
限 时 集
课
堂
即f(x2)>f(x1),
训
考
点 探
故当a∈(1,3)时,f(x)在[1,2]上单调递增.
函数的单调性及极值
一、函数单调性的判定
二、函数的极值及其求法
三、函数的最值及其求法
上一页 下一页 返回
一、函数单调性的判定
单调性是函数的重要性态之一,在第1 章中我们已经给出了函数单调性的定义,可 以看出,用定义判定函数的单调性是比较困 难的,这里我们将利用导数来判定函数的单 调性.
上一页
分界点.另外,导数不存在的点也可能是单调区 间的分界点. 例如,函数y=︱x︱在点x=0处连续,但它在
x=0处不可导.在区间(-∞, 0)内,y′<0,函数单
调减少;而区间(0,+∞)内y′>0,函数单调增加, 所以点 x=0是函数单调区间的分界点.
上一页 下一页 返回
例2 证明当 1时, e x ex. x 证明 设 f ( x ) e ex,
上一页
下一页
返回
x f (x) f (x)
(-, 1) -
-1 0 无极值
1, 0
-
0
0
极小值 2
0,1
+
1 0;
所以,函数在点 x=0 取得极小值 f(0)=-2 ,
函数没有极大值.
上一页
下一页
返回
定理 4( 极值的第二充分条件 )
设函数 f (x) 在点 x0 的二阶导数存在,若 若 f (x0) = 0,且 f (x0) 0,则函数f (x)在点x0
3 2 1 3
(3)列表讨论如下:
上一页 下一页 返回
x f (x) f (x)
(-, 0)
+
0
不存在 极大值0
2 0, 5
2 5
2 , 5
函数的单调性与最值 课件(共20张PPT)
求出在给定区间上的极值,最后结合端点值,求出最值.
课堂小结
单调性
定义
图象特征 判断方法
应用
定义法 图象变换 求导法 求最值 求参数范围 解不等式
祝同学们前程似锦!
专题一:判断、证明函数的单调性
例 1:(3)已知 f x 2x , x 2,6. (1)判断 f x 的单调性,并加以证明;(2)求 f x 的最值.
x 1
专题一:判断、证明函数的单调性
变式 3:讨论 f x ax a 0, 的单调性.
x 1
小结: 确定函数单调性的四种方法 (1)定义法;(2)导数法;(3)图象法;(4)性质法.
【学习目标】
01
理解函数的单调性、最大值、最小值及其 几何意义;
02
会运用函数图象理解和研究函数的单调性, 并利用单调性求最值或者求参数范围;
03
培养抽象概括、逻辑推理、运算求解等能 力.
复习回顾 1.函数的单调性 (1)单调函数的定义
增函数
减函数
一般地,设函数f(x)的定义域为I,区间D⊆I,如果∀x1,x2∈D 定义 当x1<x2时,都有__f_(x_1_)_<_f(_x_2)_, 当x1<x2时,都有_f_(_x_1)_>_f_(x_2_),
自左向右看图象是下降的
复习回顾
(2)单调区间的定义 如果函数y=f(x)在区间D上_单__调__递__增__或_单__调__递__减__,那么就说函数y=f(x) 在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.
复习回顾 2.函数的最值
前提
设函数y=f(x)的定义域为I,如果存在实数M满足
函数的单调性与极值、最值
THANKS FOR WATCHING
感谢您的观看
金融问题
在投资组合理论中,凹凸性可以用来描述投资组合的风险和回报之间的关系。投资者可以根据自己的风 险承受能力和投资目标,选择合适的投资组合策略。
05 函数的拐点
函数拐点定义
函数拐点是指函数图像上凹凸 性发生变化的点,即函数的一 阶导数在该点为零或不存在的 点。
在数学上,函数拐点的定义是 函数在某点的二阶导数为零的 点,即$f''(x)=0$。
最值的求法
代数法
通过求导数、找驻点、判断单调性等方法来求解 最值。
无穷区间法
利用极限的思想,将函数在无穷区间上的最值转 化为有限区间上的最值。
几何法
通过函数图像,直观地观察函数的最大值和最小 值。
最值在实际问题中的应用
01
优化问题
在生产、运输、分配等实际问题 中,常常需要通过求解最值来达 到最优解。
定义法
通过比较任意两点之间的函数值来判断函数的单调性。如 果任意两点之间的函数值都满足增减性条件,则函数在该 区间内单调。
图像法
通过观察函数的图像来判断函数的单调性。如果在图像上 随着$x$的增大,$y$的值也增大(或减小),则函数在该 区间内单调递增(或递减)。
Hale Waihona Puke 单调性在实际问题中的应用单调性与最值
单调性与优化问题
在解决优化问题时,可以利用函数的单调性来找到最优解。例如,在求解最大值或最小值 问题时,可以利用函数的单调性来确定搜索区间,从而缩小搜索范围,提高求解效率。
02 函数的极值
函数极值的定义
极值点
函数在某点的值比其邻近点的值大或小的点。
极大值
函数在某点的值比其左侧邻近点的值大,比 其右侧邻近点的值小。
函数单调性及其极值、最值
1
f(x)1x 3
3
x1
令
3x f(x)0,得驻点x 1,而x0 时
f
(x)不存在。
因此函数只可能在这两点取得极值,列表讨论如下:
x (,0) 0
f (x) 不存在
f (x)
极大值1
(0,1)
1
0
极小值 1 2
(1,)
由表可知,f (x) 在 x0处取得极大值f (0)1, f (x) 在 x 1处取得极小值 f ( x) 1 。
(2)求出 f(x).
(3)求f出 (x)的所有f驻 (x)不 点存 和在的点 x1, , xk.
(4)判定每个驻点和导数不存在的点 xi(i1 ,2,,k)两 侧(在xi较小的邻域内) f (x)的符号,依定理3判定 xi是否为f(x)的极值点.
例5 求函数 f (x)x3x32 1 的极值。 2
列表得
x (,0)
0
(0
,
2 5
)
2 5
(52, )
f (x) 无意义 0
f (x)
极大值0
极小值 0.33
x0是极大点,其极大值为 f(0)0
x
2 5
是极小点,其极小值为
f(52)0.33
定理4(判定极值的第二充分条件) 设函数f(x)在点x0处 具有二阶导数,且 f(x 0 ) 0 ,f(x 0 ) 0 ,则
例7 利用判定极值的第 分二 条充 件 ,求 y x4 8x3 6x2的极值与极.值点 3
解 所给的函数定义域为 (,). y4x38x21x2 4 x(x 1 )x ( 3 ).
导数与函数的单调性、极值、最值
§3.2导数与函数的单调性、极值、最值1.函数的单调性在某个区间(a,b)内,如果f′(x)>0,那么函数y=f(x)在这个区间内单调递增;如果f′(x)<0,那么函数y=f(x)在这个区间内单调递减.2.函数的极值(1)判断f(x0)是极值的方法一般地,当函数f(x)在点x0处连续时,①如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值;②如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值.(2)求可导函数极值的步骤①求f′(x);②求方程f′(x)=0的根;③检查f′(x)在方程f′(x)=0的根附近的左右两侧导数值的符号.如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值.3.函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.(3)设函数f(x)在[a,b]上连续,在(a,b)内可导,求f(x)在[a,b]上的最大值和最小值的步骤如下:①求f(x)在(a,b)内的极值;②将f(x)的各极值与f(a),f(b)进行比较,其中最大的一个是最大值,最小的一个是最小值.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)若函数f(x)在(a,b)内单调递增,那么一定有f′(x)>0.(×)(2)如果函数f(x)在某个区间内恒有f′(x)=0,则f(x)在此区间内没有单调性.(√)(3)函数的极大值不一定比极小值大.(√)(4)对可导函数f(x),f′(x0)=0是x0点为极值点的充要条件.(×)(5)函数的最大值不一定是极大值,函数的最小值也不一定是极小值.(√)(6)函数f (x )=x sin x 有无数个极值点.( √ )1.函数f (x )=x 2-2ln x 的单调减区间是( ) A .(0,1) B .(1,+∞) C .(-∞,1) D .(-1,1)答案 A解析 ∵f ′(x )=2x -2x =2(x +1)(x -1)x (x >0).∴当x ∈(0,1)时,f ′(x )<0,f (x )为减函数; 当x ∈(1,+∞)时,f ′(x )>0,f (x )为增函数.2.(2013·浙江)已知e 为自然对数的底数,设函数f (x )=(e x -1)(x -1)k (k =1,2),则( ) A .当k =1时,f (x )在x =1处取到极小值 B .当k =1时,f (x )在x =1处取到极大值 C .当k =2时,f (x )在x =1处取到极小值 D .当k =2时,f (x )在x =1处取到极大值 答案 C解析 当k =1时,f ′(x )=e x ·x -1,f ′(1)≠0, ∴x =1不是f (x )的极值点.当k =2时,f ′(x )=(x -1)(x e x +e x -2), 显然f ′(1)=0,且x 在1附近的左边f ′(x )<0, x 在1附近的右边f ′(x )>0, ∴f (x )在x =1处取到极小值.故选C.3.函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为( ) A .(-1,1) B .(-1,+∞) C .(-∞,-1) D .(-∞,+∞) 答案 B解析 设m (x )=f (x )-(2x +4), ∵m ′(x )=f ′(x )-2>0, ∴m (x )在R 上是增函数.∵m (-1)=f (-1)-(-2+4)=0, ∴m (x )>0的解集为{x |x >-1}, 即f (x )>2x +4的解集为(-1,+∞).4.设1<x <2,则ln x x ,(ln x x )2,ln x 2x 2的大小关系是__________________.(用“<”连接)答案 (ln x x )2<ln x x <ln x 2x 2解析 令f (x )=x -ln x (1<x <2), 则f ′(x )=1-1x =x -1x >0,∴函数y =f (x )(1<x <2)为增函数, ∴f (x )>f (1)=1>0,∴x >ln x >0⇒0<ln xx <1,∴(ln x x )2<ln x x.又ln x 2x 2-ln x x =2ln x -x ln x x 2=(2-x )ln x x 2>0,∴(ln x x )2<ln x x <ln x 2x2.题型一 利用导数研究函数的单调性 例1 已知函数f (x )=e x -ax -1. (1)求f (x )的单调增区间;(2)是否存在a ,使f (x )在(-2,3)上为减函数,若存在,求出a 的取值范围,若不存在,请说明理由.思维点拨 函数的单调性和函数中的参数有关,要注意对参数的讨论. 解 f ′(x )=e x -a ,(1)若a ≤0,则f ′(x )=e x -a ≥0, 即f (x )在R 上单调递增,若a >0,令e x -a ≥0,则e x ≥a ,x ≥ln a . 因此当a ≤0时,f (x )的单调增区间为R ,当a >0时,f (x )的单调增区间为[ln a ,+∞). (2)∵f ′(x )=e x -a ≤0在(-2,3)上恒成立. ∴a ≥e x 在x ∈(-2,3)上恒成立. ∴e -2<e x <e 3,只需a ≥e 3.当a =e 3时,f ′(x )=e x -e 3<0在x ∈(-2,3)上恒成立, 即f (x )在(-2,3)上为减函数,∴a ≥e 3.故存在实数a ≥e 3,使f (x )在(-2,3)上为减函数. 思维升华 (1)利用导数的符号来判断函数的单调性;(2)已知函数的单调性求参数范围可以转化为不等式恒成立问题;(3)f (x )为增函数的充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0且在(a ,b )内的任一非空子区间上f ′(x )不恒为零.应注意此时式子中的等号不能省略,否则漏解.(1)设函数f (x )=13x 3-(1+a )x 2+4ax +24a ,其中常数a >1,则f (x )的单调减区间为_____________________.(2)已知a >0,函数f (x )=x 3-ax 在[1,+∞)上是单调递增函数,则a 的取值范围是________. 答案 (1)(2,2a ) (2)(0,3]解析 (1)f ′(x )=x 2-2(1+a )x +4a =(x -2)(x -2a ), 由a >1知,当x <2时,f ′(x )>0, 故f (x )在区间(-∞,2)上是增函数; 当2<x <2a 时,f ′(x )<0, 故f (x )在区间(2,2a )上是减函数; 当x >2a 时,f ′(x )>0,故f (x )在区间(2a ,+∞)上是增函数. 综上,当a >1时,f (x )在区间(-∞,2)和(2a ,+∞)上是增函数, 在区间(2,2a )上是减函数.(2)∵f ′(x )=3x 2-a ,f (x )在[1,+∞)上是单调递增函数,∴f ′(x )≥0,∴a ≤3x 2,∴a ≤3. 又a >0,可知0<a ≤3.题型二 利用导数求函数的极值例2 (2014·福建)已知函数f (x )=e x -ax (a 为常数)的图象与y 轴交于点A ,曲线y =f (x )在点A 处的切线斜率为-1.(1)求a 的值及函数f (x )的极值; (2)证明:当x >0时,x 2<e x .(1)解 由f (x )=e x -ax ,得f ′(x )=e x -a . 又f ′(0)=1-a =-1,得a =2. 所以f (x )=e x -2x ,f ′(x )=e x -2. 令f ′(x )=0,得x =ln 2.当x <ln 2时,f ′(x )<0,f (x )单调递减; 当x >ln 2时,f ′(x )>0,f (x )单调递增. 所以当x =ln 2时,f (x )取得极小值, 且极小值f (ln 2)=e ln 2-2ln 2=2-ln 4, f (x )无极大值.(2)证明 令g (x )=e x -x 2,则g ′(x )=e x -2x . 由(1)得g ′(x )=f (x )≥f (ln 2)>0.故g (x )在R 上单调递增,又g (0)=1>0, 因此,当x >0时,g (x )>g (0)>0,即x 2<e x .思维升华 (1)导函数的零点并不一定就是原函数的极值点.所以在求出导函数的零点后一定要注意分析这个零点是不是原函数的极值点.(2)若函数y =f (x )在区间(a ,b )内有极值,那么y =f (x )在(a ,b )内绝不是单调函数,即在某区间上单调函数没有极值.设f (x )=e x1+ax 2,其中a 为正实数.(1)当a =43时,求f (x )的极值点;(2)若f (x )为R 上的单调函数,求a 的取值范围. 解 对f (x )求导得f ′(x )=e x·1+ax 2-2ax(1+ax 2)2.①(1)当a =43时,若f ′(x )=0,则4x 2-8x +3=0,解得x 1=32,x 2=12.结合①,可知所以x 1=32是极小值点,x 2=12是极大值点.(2)若f (x )为R 上的单调函数,则f ′(x )在R 上不变号,结合①与条件a >0,知ax 2-2ax +1≥0在R 上恒成立,即Δ=4a 2-4a =4a (a -1)≤0,由此并结合a >0,知0<a ≤1.所以a 的取值范围为{a |0<a ≤1}.题型三 利用导数求函数的最值例3 (2014·四川改编)已知函数f (x )=e x -ax 2-bx -1,其中a ,b ∈R ,e =2.718 28…为自然对数的底数.设g (x )是函数f (x )的导函数,求函数g (x )在区间[0,1]上的最小值. 解 由f (x )=e x -ax 2-bx -1, 有g (x )=f ′(x )=e x -2ax -b . 所以g ′(x )=e x -2a .因此,当x ∈[0,1]时,g ′(x )∈[1-2a ,e -2a ]. 当a ≤12时,g ′(x )≥0,所以g (x )在[0,1]上单调递增,因此g (x )在[0,1]上的最小值是g (0)=1-b ;当a ≥e2时,g ′(x )≤0,所以g (x )在[0,1]上单调递减,因此g (x )在[0,1]上的最小值是g (1)=e -2a -b ;当12<a<e2时,令g′(x)=0得x=ln(2a)∈(0,1),所以函数g(x)在区间[0,ln(2a)]上单调递减,在区间[ln(2a),1]上单调递增.于是,g(x)在[0,1]上的最小值是g(ln(2a))=2a-2a ln(2a)-b.综上所述,当a≤12时,g(x)在[0,1]上的最小值是g(0)=1-b;当12<a<e2时,g(x)在[0,1]上的最小值是g(ln(2a))=2a-2a ln(2a)-b;当a≥e2时,g(x)在[0,1]上的最小值是g(1)=e-2a-b.思维升华(1)求解函数的最值时,要先求函数y=f(x)在(a,b)内所有使f′(x)=0的点,再计算函数y=f(x)在区间内所有使f′(x)=0的点和区间端点处的函数值,最后比较即得.(2)可以利用列表法研究函数在一个区间上的变化情况.已知函数f(x)=(x-k)e x.(1)求f(x)的单调区间;(2)求f(x)在区间[0,1]上的最小值.解(1)由题意知f′(x)=(x-k+1)e x.令f′(x)=0,得x=k-1.f(x)与f′(x)的情况如下:x (-∞,k-1)k-1(k-1,+∞)f′(x)-0+f(x)-e k-1所以,f(x)(2)当k-1≤0,即k≤1时,f(x)在[0,1]上单调递增,所以f (x )在区间[0,1]上的最小值为f (0)=-k ; 当0<k -1<1,即1<k <2时,f (x )在[0,k -1]上单调递减,在[k -1,1]上单调递增, 所以f (x )在区间[0,1]上的最小值为f (k -1)=-e k -1; 当k -1≥1,即k ≥2时,f (x )在[0,1]上单调递减, 所以f (x )在区间[0,1]上的最小值为 f (1)=(1-k )e.综上,当k ≤1时,f (x )在[0,1]上的最小值为f (0)=-k ; 当1<k <2时,f (x )在[0,1]上的最小值为 f (k -1)=-e k -1;当k ≥2时,f (x )在[0,1]上的最小值为f (1)=(1-k )e.利用导数求函数的最值问题典例:(12分)已知函数f (x )=ln x -ax (a ∈R ). (1)求函数f (x )的单调区间;(2)当a >0时,求函数f (x )在[1,2]上的最小值.思维点拨 (1)已知函数解析式求单调区间,实质上是求f ′(x )>0,f ′(x )<0的解区间,并注意定义域.(2)先研究f (x )在[1,2]上的单调性,再确定最值是端点值还是极值.(3)由于解析式中含有参数a ,要对参数a 进行分类讨论. 规范解答解 (1)f ′(x )=1x-a (x >0),①当a ≤0时,f ′(x )=1x -a >0,即函数f (x )的单调增区间为(0,+∞).[2分]②当a >0时,令f ′(x )=1x -a =0,可得x =1a ,当0<x <1a 时,f ′(x )=1-ax x>0;当x >1a 时,f ′(x )=1-ax x <0,故函数f (x )的单调递增区间为⎝⎛⎦⎤0,1a , 单调递减区间为⎣⎡⎭⎫1a ,+∞.[4分] (2)①当1a ≤1,即a ≥1时,函数f (x )在区间[1,2]上是减函数,所以f (x )的最小值是f (2)=ln 2-2a .[5分]②当1a ≥2,即0<a ≤12时,函数f (x )在区间[1,2]上是增函数,所以f (x )的最小值是f (1)=-a .[6分]③当1<1a <2,即12<a <1时,函数f (x )在⎣⎡⎦⎤1,1a 上是增函数,在⎣⎡⎦⎤1a ,2上是减函数.又f (2)-f (1)=ln 2-a ,所以当12<a <ln 2时,最小值是f (1)=-a ;当ln 2≤a <1时,最小值为f (2)=ln 2-2a .[10分] 综上可知,当0<a <ln 2时,函数f (x )的最小值是-a ; 当a ≥ln 2时,函数f (x )的最小值是ln 2-2a .[12分] 答题模板用导数法求给定区间上的函数的最值问题一般可用 以下几步答题第一步:(求导数)求函数f (x )的导数f ′(x );第二步:(求极值)求f (x )在给定区间上的单调性和极值; 第三步:(求端点值)求f (x )在给定区间上的端点值;第四步:(求最值)将f (x )的各极值与f (x )的端点值进行比较,确定f (x )的最大值与最小值; 第五步:(反思)反思回顾,查看关键点,易错点和解题规范.温馨提醒 (1)本题考查求函数的单调区间,求函数在给定区间[1,2]上的最值,属常规题型. (2)本题的难点是分类讨论.考生在分类时易出现不全面,不准确的情况. (3)思维不流畅,答题不规范,是解答中的突出问题.方法与技巧1.注意单调函数的充要条件,尤其对于已知单调性求参数值(范围)时,隐含恒成立思想.2.求极值、最值时,要求步骤规范、表格齐全;含参数时,要讨论参数的大小.3.在实际问题中,如果函数在区间内只有一个极值点,那么只要根据实际意义判定是最大值还是最小值即可,不必再与端点的函数值比较.失误与防范1.求函数单调区间与函数极值时要养成列表的习惯,可使问题直观且有条理,减少失分的可能.2.求函数最值时,不可想当然地认为极值点就是最值点,要通过认真比较才能下结论.3.解题时要注意区分求单调性和已知单调性的问题,处理好f′(x)=0时的情况;区分极值点和导数为0的点.A组专项基础训练(时间:45分钟)1.函数y=(3-x2)e x的单调递增区间是()A.(-∞,0) B.(0,+∞)C.(-∞,-3)和(1,+∞) D.(-3,1)答案 D解析y′=-2x e x+(3-x2)e x=e x(-x2-2x+3),由y′>0⇒x2+2x-3<0⇒-3<x<1,故函数y=(3-x2)e x的单调递增区间是(-3,1).2.若函数y=f(x)的导函数y=f′(x)的图象如图所示,则y=f(x)的图象可能为()答案 C解析 根据f ′(x )的符号,f (x )图象应该是先下降后上升,最后下降,排除A ,D ;从适合f ′(x )=0的点可以排除B.3.设a ∈R ,若函数y =e x +ax 有大于零的极值点,则( )A .a <-1B .a >-1C .a >-1eD .a <-1e答案 A解析 ∵y =e x +ax ,∴y ′=e x +a .∵函数y =e x +ax 有大于零的极值点,则方程y ′=e x +a =0有大于零的解,∵x >0时,-e x <-1,∴a =-e x <-1.4.设函数f (x )=12x 2-9ln x 在区间[a -1,a +1]上单调递减,则实数a 的取值范围是( ) A .1<a ≤2B .a ≥4C .a ≤2D .0<a ≤3 答案 A解析 ∵f (x )=12x 2-9ln x ,∴f ′(x )=x -9x(x >0), 当x -9x≤0时,有0<x ≤3,即在(0,3]上原函数是减函数, ∴a -1>0且a +1≤3,解得1<a ≤2.5.已知函数f (x )=-x 3+ax 2-4在x =2处取得极值,若m 、n ∈[-1,1],则f (m )+f ′(n )的最小值是( )A .-13B .-15C .10D .15 答案 A解析 对函数f (x )求导得f ′(x )=-3x 2+2ax ,由函数f (x )在x =2处取得极值知f ′(2)=0,即-3×4+2a ×2=0,∴a =3.由此可得f (x )=-x 3+3x 2-4,f ′(x )=-3x 2+6x ,易知f (x )在[-1,0)上单调递减,在(0,1]上单调递增,∴当m ∈[-1,1]时,f (m )min =f (0)=-4.又∵f ′(x )=-3x 2+6x 的图象开口向下,且对称轴为x =1,∴当n ∈[-1,1]时,f ′(n )min =f ′(-1)=-9.故f (m )+f ′(n )的最小值为-13.6.函数y =12x 2-ln x 的单调递减区间为________. 答案 (0,1]解析 y ′=x -1x =x 2-1x =(x -1)(x +1)x(x >0). 令y ′≤0,得0<x ≤1.∴函数的单调递减区间为(0,1].7.函数f (x )=x 33+x 2-3x -4在[0,2]上的最小值是________. 答案 -173解析 f ′(x )=x 2+2x -3,令f ′(x )=0,x ∈[0,2],得x =1.比较f (0)=-4,f (1)=-173, f (2)=-103,可知最小值为-173. 8.已知函数f (x )的导数f ′(x )=a (x +1)(x -a ),若f (x )在x =a 处取得极大值,则a 的取值范围是________.答案 (-1,0)解析 当a =0时,则f ′(x )=0,函数f (x )不存在极值.当a ≠0时,令f ′(x )=0,则x 1=-1,x 2=a .若a =-1,则f ′(x )=-(x +1)2≤0,函数f (x )不存在极值;若a >0,当x ∈(-1,a )时,f ′(x )<0,当x ∈(a ,+∞)时,f ′(x )>0,所以函数f (x )在x =a 处取得极小值,不符合题意;若-1<a <0,当x ∈(-1,a )时,f ′(x )>0,当x ∈(a ,+∞)时,f ′(x )<0,所以函数f (x )在x =a 处取得极大值;若a <-1,当x ∈(-∞,a )时,f ′(x )<0;当x ∈(a ,-1)时,f ′(x )>0,所以函数f (x )在x =a 处取得极小值,不符合题意.所以a ∈(-1,0).9.已知函数f (x )=1x+ln x ,求函数f (x )的极值和单调区间. 解 因为f ′(x )=-1x 2+1x =x -1x 2, 令f ′(x )=0,得x =1,又f (x )的定义域为(0,+∞),f ′(x ),f (x )随x 的变化情况如下表:所以x =1时,f (x )f (x )的单调递增区间为(1,+∞),单调递减区间为(0,1).10.设函数f (x )=12x 2+e x -x e x . (1)求f (x )的单调区间;(2)若x ∈[-2,2]时,不等式f (x )>m 恒成立,求实数m 的取值范围.解 (1)函数f (x )的定义域为(-∞,+∞),f ′(x )=x +e x -(e x +x e x )=x (1-e x ).若x <0,则1-e x >0,∴f ′(x )<0;若x >0,则1-e x <0,∴f ′(x )<0;若x =0,则f ′(x )=0.∴f (x )在(-∞,+∞)上为减函数,即f (x )的单调减区间为(-∞,+∞).(2)由(1)知f (x )在[-2,2]上单调递减,∴[f (x )]min =f (2)=2-e 2.∴当m <2-e 2时,不等式f (x )>m 恒成立.B 组 专项能力提升(时间:30分钟)11.函数f (x )的定义域是R ,f (0)=2,对任意的x ∈R ,f (x )+f ′(x )>1,则不等式e x ·f (x )>e x +1的解集是( )A .{x |x >0}B .{x |x <0}C .|x |x <-1或x >1|D .{x |x <-1或0<x <1}答案 A解析 构造函数g (x )=e x ·f (x )-e x -1,求导得到g ′(x )=e x ·f (x )+e x ·f ′(x )-e x =e x [f (x )+f ′(x )-1].由已知f (x )+f ′(x )>1,可得到g ′(x )>0,所以g (x )为R 上的增函数;又g (0)=e 0·f (0)-e 0-1=0,所以e x ·f (x )>e x +1,即g (x )>0的解集为{x |x >0}.12.已知f (x )是可导的函数,且f ′(x )<f (x )对于x ∈R 恒成立,则( )A .f (1)<e f (0),f (2 016)>e 2 016f (0)B .f (1)>e f (0),f (2 016)>e 2 016f (0)C .f (1)>e f (0),f (2 016)<e 2 016f (0)D .f (1)<e f (0),f (2 016)<e 2 016f (0)答案 D解析 令g (x )=f (x )e x , 则g ′(x )=(f (x )e x )′=f ′(x )e x -f (x )e x e 2x =f ′(x )-f (x )e x<0, 所以函数g (x )=f (x )e x 是单调减函数, 所以g (1)<g (0),g (2 016)<g (0),即f (1)e 1<f (0)1,f (2 016)e 2 016<f (0)1, 故f (1)<e f (0),f (2 016)<e 2 016f (0).13.已知f (x )=x 3-6x 2+9x -abc ,a <b <c ,且f (a )=f (b )=f (c )=0.现给出如下结论: ①f (0)f (1)>0;②f (0)f (1)<0;③f (0)f (3)>0;④f (0)f (3)<0.。
函数的单调性、最值
函数的单调性、最值函数的单词性:函数的单调性也叫函数的增减性.函数的单调性是对某个区间而言的,它是一个局部概念.单调性的单词区间:若函数y=f(x)在某个区间是增函数或减函数,则就说函数在这一区间具有(严格的)单调性,这一区间叫做函数的单调区间.此时也说函数是这一区间上的单调函数。
在单调区间上,增函数的图像是上升的,减函数的图像是下降的。
注:在单调性中有如下性质↑(增函数)↓(减函数)↑(增函数)+↑(增函数)= ↑(增函数)↑(增函数)-↓(减函数)=↑(增函数)↓(减函数)+↓(减函数)=↓(减函数)↓(减函数)-↑(增函数)=↓(减函数)用定义证明函数的单词性步骤:(1) 、取值即取x1,x2是该区间崆的任意两个值且x1<x2(2)、作差变形即求f(x1)-f(x2),通过因式分解,配方、有理化等方法(3)、定号即根据给定的区间和x2-x1的符号确定f(x1)-f(x2)的符号(4)、判断根据单词性的定义得出结论判断函数f(x)在区间D上的单调性的方法:(1)定义法:其步骤是:①任取x1,x2∈D,且x1<x2;②作差f(x1)-f(x2)或作商,并变形;③判定f(x1)-f(x2)的符号,或比较与1的大小;④根据定义作出结论。
(2)复合法:利用基本函数的单调性的复合。
(3)图象法:即观察函数在区间D上部分的图象从左往右看是上升的还是下降的。
函数最值 (upper bound/lower bound):函数最值分为函数最小值(lower bound)与函数最大值(upper bound)。
函数最小值(lower bound)设函数y=f(x)的定义域为d,如果存在M∈R满足:①对于任意实数x∈d,都有f(x)≥M,②存在x0∈d。
使得f (x0)=M,那么,我们称实数M 是函数y=f(x)的最小值。
函数最大值(upper bound)设函数y=f(x)的定义域为d,如果存在M∈R满足:①对于任意实数x∈d,都有f(x)≤M,②存在x0∈d。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f (x) 方程f (x) 0 有且仅有一个正根。
第12页/共45页
第四节
第三章
函数的极值与
最大值最小值
一、函数的极值及其求法 二、最大值与最小值问题
第14页/共45页
一、函数的极值及其求法
定义:
在其中当
时,
(1)
则称 为 的极大值点 ,
称 为函数的极大值 ;
第6页/共45页
一般步骤 (1)确定函数定义域; (2)求出 f (x) 0 及 f 的(x)点不,存以在 这些点为分界点划分
定义域为多个子区间; (3)确定 f (在x) 各子区间内的符号, 从而定出ƒ(x) 在各子区间的单调性。
第7页/共45页
例1. 确定函数
的单调区间.
解: f (x) 6x2 18x 12 6(x 1)(x 2)
而函数的最大值与最小值则是指整个定义域内区间
[a , b]的整体性态, 可在[a, b]的内点取得,也可在[a, b]的
端点取得。 (2)一个函数可能有若干个极小值或极大值;但在定
义区间内却最多只有一个最大最小值。(个数)
(3)极小值可能比极大值还大;函数的最大值大于等于最
小值。(大小)
第16页/共45页
第2页/共45页
说明:
1、定理1的结论对无穷区间也成立.
例如 f ( x) ex f ( x) ex 0, x (, )
ex 在 (, )
又如:f (x) ex
f ( x) ex 0, x (, )
ex 在 (, )
第3页/共45页
2、如果函数的导数仅在个别点处(甚至无数个点,
只要它们不构成一个区间)为 0, 而在其余的点处均
满足定理1, 则定理1仍成立。 如:
y f (x) x3
y
y x3
f ( x) 3x2 0( f (0) 0)
o
x
但 y x3 在 (, )
又如:y x sin x
y 1 cos x 0
y 0,(n 0, 1, 2,...) x2n
(1)ex x 1 ,(x 0)
证明: (1)令 f (x) ex x 1
f (x) ex 1 0(x 0), f ( x)
f (0) 0, f (x) f (0)(x 0) 故 ex x 1.
第10页/共45页
(2). 证明
时, 成立不等式
证: 令 f (x) sin x 2 , xπ
y y=|x|
ox
第5页/共45页
结论: 如果函数在定义区间上连续,除去有限个 导数不存在的点(甚至无数个点,只要它们不 构成一个区间)外,导数都存在且连续, 那么 只要用方程:
f (x) 0 的解及 f (x) 不存在
的点(单调区间分界点)来划分函数的定义区间, 就能保证函数的导数在各个部分区间内保持固定 符号, 从而可得单调区间及函数的单调性。
解 定义域为 (, )
f
( x)
2 3
1
x 3(x
1)
2
x3
5x
2,由 1
f
( x)
0
有
x1
2 5
3x3
而 x2 0是 f ( x) 的不可导点
列表讨论如下:
x
f ( x)
(, 0) 0
(0, 2) 5
2
(2 , )
5
5
f (x)
第9页/共45页
二、简单应用
下面利用函数的单调性, 来证明不等式和判断方 程的根的存在性及其个数。 1.证明不等式:关键是根据所证不等式及所给区间 构造辅助函数,并讨论它在指定区间内的单调性。 例3 证明不等式
定理1(极值的必要条件)设函数 y =ƒ(x) 在点 x0处
可导。 若 为函x0 数的极值点 (即 为极f (值x0 )),
则
f ( x0 ) 0
注意: 对常见函数, 极值可能出现在导数为 0 或 不存在的点.
y O a x1 x2 x3 x4 x5 b x
x1 , x4 为极大值点 x 2 , x5 为极小值点 x3 不是极值点
(2)
则称 为 的极小值点 ,
称 为函数的极小值 .
极大值点与极小值点统称为极值点 .
第15页/共45页
问题:请指出右图中的极值及极值点。 y
注意:
M y= ƒ(x)
(1)由极值定义知:极值
是函数的局部性态。即只
是函数在一个邻域内最大的
a
1 o
3
b
2
x
值和最小的值, 故它只可能在(a, b)的内点m 处取得。
但 y x sin x 在 R
第4页/共45页
3、有些函数在它y f (x) x2
y y x2
f
(
x)
2
x
0 , 0 ,
x [0, ) x (,0)
o
x
但它在部分区间上单调, 那么怎么 来求它的单调区间呢?
4、函数y=|x|, x = 0为其连续不可 导点。但它在部分区间上单调。那 么,又怎么来求它的单调区间呢?
令 f (x) 0 , 得 x 1, x 2
x ( , 1) 1 (1 , 2) 2 (2, )
f (x)
0
0
f (x)
2
1
y
故
的单调增区间为 ( , 1), (2, );
2 1
的单调减区间为(1 , 2).
O
12x
第8页/共45页
2
例2 讨论函数 f ( x) ( x 的 1单)x 3调性。
第17页/共45页
定理 2 (极值第一判别法)
设函数 f (x) 在 x0 的某邻域内连续 , 且在空心邻域 内有导数, 当x由小到大通过 x0 时 ,
(1) f (x) “左正右负” ,则 f (x) 在 x0 取极大值 . (2) f (x) “左负右正” ,则 f (x) 在 x0 取极小值 ;
且
f (x)
x cos x sin x x2
cos x2
x
(
x
tan
x)
0
证
tan x
x 1
因此
从而
第11页/共45页
证明
2.讨论方程根的问题 例4 证明方程 x3 x 有1且 0仅有一个正根。
证 f (x) x3 x 1
且 f (0) 1, f (1) 1
由零值定理得:
至少存在一点 0,1,使得f ( ) 0
第18页/共45页
求极值的一般步骤为: (1)给出定义域; (2)并找出定义域内所有驻点及连续不可导点; (3)考察这些点两侧导函数的符号,从而确定极值点; (4)求出极值点的函数值,即为极值。
可见函数的单调性与导数的符号有关. 反之, 能否用导数的符号来判断函数的单调性呢?
第1页/共45页
一、 函数单调性的判定法
定理 1. 设函数
在开区间 I 内可导, 若
( f (x) 0), 则
证: 无妨设
在 I 内单调递增 (递减) . 任取
由拉格朗日中值定理得
0
故
这说明 在 I 内单调递增.
证毕