随机信号分析实验报告(基于MATLAB语言)
随机信号分析实验报告
随机信号分析实验报告实验一:平稳随机过程的数字特征实验二:平稳随机过程的谱分析实验三:随机信号通过线性系统的分析实验四:平稳时间序列模型预测班级:姓名:学号:一、实验目的1、加深理解平稳随机过程数字特征的概念2、掌握平稳随机序列期望、自相关序列的求解3、分析平稳随机过程数字特征的特点二、实验原理平稳随机过程数字特征求解的相关原理三、实验过程function y = experiment number = 49; %学号49 I = 8; %幅值为8 u = 1/number;Ex = I*0.5 + (-I)*0.5; N = 64; C0 = 1; %计数 p(1) = exp(-u);for m = 2:N k = 1:m/2;p(m) = exp(-u*m) + sum((u*m).^(2*k)./factorial(2*k)*exp(-u*m));2222()[()()]{()()}{()()}X R m E X n X n m I P X n X n m I I P X n X n m I =+=+=-+=-E[X(n)]= I P{X(n)=+I}+(-I)P{X(n)=-I}=0⨯⨯0m >当时,/222(){()()}(2)!m k mk m P X n X n m I e P k λλ⎢⎥⎣⎦-=+===∑222()(1)(21)X R m I P I P I P =--=-2()()X X XC m R m m =-me I m n X n X E m R λ22)]()([)(-=+=end;pp = [fliplr(p) C0 p];Rx = (2*pp - 1)*I^2;m = -N:N;Kx = Rx - Ex*Ex;rx = Kx/25;subplot(211), plot(m,Rx); axis([-N N 0 I*I]); title('自相关序列');subplot(212), plot(m,rx); axis([-N N 0 1]); title('自相关序数');四、实验结果及分析自相关序列的特点分析:m>0时Rx(m)随着m的增大而减小,m<0时Rx(m)随着m的增大而增大。
随机信号分析实验报告
实验一 随机噪声的产生与性能测试一、实验内容1.产生满足均匀分布、高斯分布、指数分布、瑞利分布的随机数,长度为N=1024,并计算这些数的均值、方差、自相关函数、概率密度函数、概率分布函数、功率谱密度,画出时域、频域特性曲线; 2.编程分别确定当五个均匀分布过程和5个指数分布分别叠加时,结果是否是高斯分布; 3.采用幅度为2, 频率为25Hz 的正弦信号为原信号,在其中加入均值为2 , 方差为0.04 的高斯噪声得到混合随机信号()X t ,编程求 0()()tY t X d ττ=⎰的均值、相关函数、协方差函数和方差,并与计算结果进行比较分析。
二、实验步骤 1.程序N=1024; fs=1000; n=0:N —1;signal=chi2rnd (2,1,N); %rand(1,N)均匀分布 ,randn(1,N )高斯分布,exprnd(2,1,N )指数分布,raylrnd (2,1,N)瑞利分布,chi2rnd(2,1,N )卡方分布 signal_mean=mean(signal ); signal_var=var (signal );signal_corr=xcorr(signal,signal ,'unbiased ’); signal_density=unifpdf(signal ,0,1); signal_power=fft(signal_corr); %[s,w]=periodogram (signal); [k1,n1]=ksdensity(signal);[k2,n2]=ksdensity (signal,’function ’,'cdf ’); figure ;hist(signal);title (’频数直方图’); figure ;plot (signal);title(’均匀分布随机信号曲线’); f=n *fs/N ; %频率序列 figure;plot(abs (signal_power)); title('功率幅频’); figure;plot(angle (signal_power)); title ('功率相频'); figure;plot (1:2047,signal_corr); title ('自相关函数’); figure;plot(n1,k1);title('概率密度’);figure;plot(n2,k2);title('分布函数’);结果(1)均匀分布(2)高斯分布(3)指数分布(4)瑞利分布(5)卡方分布2.程序N=1024;signal_1=rand(1,N);signal_2=rand(1,N);signal_3=rand(1,N);signal_4=rand(1,N);signal_5=rand(1,N);signal=signal_1+signal_2+signal_3+signal_4+signal_5; [k1,n1]=ksdensity(signal);figure(1)subplot(1,2,1);hist(signal);title('叠加均匀分布随机数直方图');subplot(1,2,2);plot(n1,k1);title(’叠加均匀分布的概率密度');结果指数分布叠加均匀分布叠加结果:五个均匀分布过程和五个指数分布分别叠加时,结果是高斯分布。
随机信号实验报告(模板)(1)
随机信号实验报告学院通信工程学院专业信息工程班级 1401051班制作人文杰制作人晓鹏一、 摘要根据实验的要求与具体容,我们组做了一下分工,XXX 完成了本次的第一组实验即基于MATLAB 的信号通过线性系统与非线性系统的特性分析,具体容有(高斯白噪声n ,输入信号x ,通过线性与非线性系统的信号a,b,y1,y2的均值,均方值,方差,自相关函数,概率密度,功率谱密度以及频谱并把它们用波形表示出来),XXX 和XXX 两人合力完成了基于QUARTUS II 的2ASK 信号的产生及测试实验具体容有(XXX 负责M 序列发生器以及分频器,XXX 负责载波的产生以及开关函数和管脚配置),最后的示波器调试以及观察2ASK 信号的FFT 变换波形由我们组所有人一起完成的。
二、实验原理及要求实验一、信号通过线性系统与非线性系统的特性分析1、实验原理① 随机过程的均值(数学期望):均值表示集合平均值或数学期望值。
基于随机过程的各态历经性,可用时间间隔T 的幅值平均值表示,即:均值表达了信号变化的中心趋势,或称之为直流分量。
② 随机过程的均方值:信号x(t)的均方值,或称为平均功率,其表达式为:均方值表达了信号的强度,其正平方根值,又称为有效值,也是信号的平均能量的一种表达。
③ 随机信号的方差: 信号x(t)的方差定义为:描述了信号的静态量,方差反映了信号绕均值的波动程度。
在已知均值和均方值的前提下,方差就很容易求得了。
④随机信号的自相关函数信号的相关性是指客观事物变化量之间的相依关系。
对于平稳随机过程X(t)和Y(t)在两个不同时刻t和t+τ的起伏值的关联程度,可以用相关函数表示。
在离散情况下,信号x(n)和y(n)的相关函数定义为:τ,t=0,1,2,……N-1。
⑤随机过程的频谱:信号频谱分析是采用傅立叶变换将时域信号x(t)从另一个角度来了解信号的特征。
时域信号x(t)的傅氏变换为:⑥随机过程的功率谱密度:随机信号的功率普密度是随机信号的各个样本在单位频带的频谱分量消耗在一欧姆电阻上的平均功率的统计均值,是从频域描述随机信号的平均统计参量,表示X(t)的平均功率在频域上的分布。
随机信号分析实验报告
一、实验名称微弱信号的检测提取及分析方法二、实验目的1.了解随机信号分析理论如何在实践中应用2.了解随机信号自身的特性,包括均值、方差、相关函数、频谱及功率谱密度等3.掌握随机信号的检测及分析方法三、实验原理1.随机信号的分析方法在信号与系统中,我们把信号分为确知信号和随机信号。
其中随机信号无确定的变化规律,需要用统计特新进行分析。
这里我们引入随机过程的概念,所谓随机过程就是随机变量的集合,每个随机变量都是随机过程的一个取样序列。
随机过程的统计特性一般采用随机过程的分布函数和概率密度来描述,他们能够对随机过程作完整的描述。
但由于在实践中难以求得,在工程技术中,一般采用描述随机过程的主要平均统计特性的几个函数,包括均值、方差、相关函数、频谱及功率谱密度等来描述它们。
本实验中算法都是一种估算法,条件是N要足够大。
2.微弱随机信号的检测及提取方法因为噪声总会影响信号检测的结果,所以信号检测是信号处理的重要内容之一,低信噪比下的信号检测是目前检测领域的热点,而强噪声背景下的微弱信号提取又是信号检测的难点。
噪声主要来自于检测系统本身的电子电路和系统外空间高频电磁场干扰等,通常从以下两种不同途径来解决①降低系统的噪声,使被测信号功率大于噪声功率。
②采用相关接受技术,可以保证在信号功率小于噪声功率的情况下,人能检测出信号。
对微弱信号的检测与提取有很多方法,常用的方法有:自相关检测法、多重自相法、双谱估计理论及算法、时域方法、小波算法等。
对微弱信号检测与提取有很多方法,本实验采用多重自相关法。
多重自相关法是在传统自相关检测法的基础上,对信号的自相关函数再多次做自相关。
即令:式中,是和的叠加;是和的叠加。
对比两式,尽管两者信号的幅度和相位不同,但频率却没有变化。
信号经过相关运算后增加了信噪比,但其改变程度是有限的,因而限制了检测微弱信号的能力。
多重相关法将当作x(t),重复自相关函数检测方法步骤,自相关的次数越多,信噪比提高的越多,因此可检测出强噪声中的微弱信号。
随机信号分析实验百度
《随机信号分析》试验报告班级班学号姓名实验一1、熟悉并练习使用下列Matlab 的函数,给出各个函数的功能说明和内部参数的意义,并给出至少一个使用例子和运行结果:1)randn()产生随机数数组或矩阵,其元素服从均值为0,方差为1的正态分布(1)Y = randn 产生一个伪随机数(2)Y = randn(n) 产生n×n的矩阵,其元素服从均值为0,方差为1的正态分布(3)Y = randn(m,n) 产生m×n的矩阵,其元素服从均值为0,方差为1的正态分布(4)Y= randn([m n]) 产生m×n的矩阵,其元素服从均值为0,方差为1的正态分布选择(2)作为例子,运行结果如下:>> Y = randn(3)Y =1.3005 0.0342 0.97920.2691 0.9913 -0.8863-0.1551 -1.3618 -0.35622)rand()(1)Y = rand(n) 生成n×n 随机矩阵,其元素在(0,1)内(2)Y = rand(m,n) 生成m×n 随机矩阵(3)Y = rand([m n]) 生成m×n 随机矩阵(4)Y = rand(m,n,p,…) 生成m×n×p×…随机矩阵或数组(5)Y = rand([m n p…]) 生成m×n×p×…随机矩阵或数组(6)Y = rand(size(A)) 生成与矩阵A 相同大小的随机矩阵选择(3)作为例子,运行结果如下:>> Y = rand([3 4])Y =0.0579 0.0099 0.1987 0.19880.3529 0.1389 0.6038 0.01530.8132 0.2028 0.2722 0.74683)normrnd()产生服从正态分布的随机数(1)R = normrnd(mu,sigma) 产生服从均值为mu,标准差为sigma的随机数,mu和sigma可以为向量、矩阵、或多维数组。
随机信号分析实验报告
随机信号分析实验报告实验一:平稳随机过程的数字特征实验二:平稳随机过程的谱分析实验三:随机信号通过线性系统的分析实验四:平稳时间序列模型预测班级:姓名:学号:一、实验目的1、加深理解平稳随机过程数字特征的概念2、掌握平稳随机序列期望、自相关序列的求解3、分析平稳随机过程数字特征的特点二、实验原理平稳随机过程数字特征求解的相关原理三、实验过程function y = experimentnumber = 49; %学号49I = 8; %幅值为8u = 1/number;Ex = I*0.5 + (-I)*0.5;N = 64;C0 = 1; %计数p(1) = exp(-u);for m = 2:Nk = 1:m/2;p(m) = exp(-u*m) + sum((u*m).^(2*k)./factorial(2*k)*exp(-u*m));2222()[()()]{()()}{()()}X R m E X n X n m I P X n X n m I I P X n X n m I =+=+=-+=-E[X(n)]= I P{X(n)=+I}+(-I)P{X(n)=-I}=0⨯⨯0m >当时,/2220(){()()}(2)!m k m k m P X n X n m I e P k λλ⎢⎥⎣⎦-=+===∑222()(1)(21)X R m I P I P I P =--=-2()()X X X C m R m m =-me I m n X n X E m R λ22)]()([)(-=+=end;pp = [fliplr(p) C0 p];Rx = (2*pp - 1)*I^2;m = -N:N;Kx = Rx - Ex*Ex;rx = Kx/25;subplot(211), plot(m,Rx); axis([-N N 0 I*I]); title('自相关序列');subplot(212), plot(m,rx); axis([-N N 0 1]); title('自相关序数');四、实验结果及分析自相关序列的特点分析:m>0时Rx(m)随着m的增大而减小,m<0时Rx(m)随着m的增大而增大。
随机信号分析实验报告
随机信号分析实验报告目录随机信号分析 (1)实验报告 (1)理想白噪声和带限白噪声的产生与测试 (2)一、摘要 (2)二、实验的背景与目的 (2)背景: (2)实验目的: (2)三、实验原理 (3)四、实验的设计与结果 (4)实验设计: (4)实验结果: (5)五、实验结论 (12)六、参考文献 (13)七、附件 (13)1理想白噪声和带限白噪声的产生与测试一、摘要本文通过利用MATLAB软件仿真来对理想白噪声和带限白噪声进行研究。
理想白噪声通过低通滤波器和带通滤波器分别得到低通带限白噪声和帯通带限白噪声。
在仿真的过程中我们利用MATLAB工具箱中自带的一些函数来对理想白噪声和带限白噪声的均值、均方值、方差、功率谱密度、自相关函数、频谱以及概率密度进行研究,对对它们进行比较分析并讨论其物理意义。
关键词:理想白噪声带限白噪声均值均方值方差功率谱密度自相关函数、频谱以及概率密度二、实验的背景与目的背景:在词典中噪声有两种定义:定义1:干扰人们休息、学习和工作的声音,引起人的心理和生理变化。
定义2:不同频率、不同强度无规则地组合在一起的声音。
如电噪声、机械噪声,可引伸为任何不希望有的干扰。
第一种定义是人们在日常生活中可以感知的,从感性上很容易理解。
而第二种定义则相对抽象一些,大部分应用于机械工程当中。
在这一学期的好几门课程中我们都从不同的方面接触到噪声,如何的利用噪声,把噪声的危害减到最小是一个很热门的话题。
为了加深对噪声的认识与了解,为后面的学习与工作做准备,我们对噪声进行了一些研究与测试。
实验目的:了解理想白噪声和带限白噪声的基本概念并能够区分它们,掌握用MATLAB 或c/c++软件仿真和分析理想白噪声和带限白噪声的方法,掌握理想白噪声和带限白噪声的性质。
三、实验原理所谓白噪声是指它的概率统计特性服从某种分布而它的功率谱密度又是均匀的。
确切的说,白噪声只是一种理想化的模型,因为实际的噪声功率谱密度不可能具有无限宽的带宽,否则它的平均功率将是无限大,是物理上不可实现的。
随机信号分析 MATLAB实验2
随机信号分析与处理实验报告2实验二 随机信号处理的工程编程实现一、实验目的1、熟悉各种随机信号分析及处理方法。
2、掌握运用MATLAB 中的统计工具包和信号处理工具包绘制概率密度的方法 二、实验原理1.正态分布:其概率密度为221()()exp ,0,122x m f x m σσπσ⎡⎤--==⎢⎥⎣⎦Matlab 中的功能函数为: x=normpdf(x,mu,sigma)计算正太概率密度在x 处的值,x 为标量或矢量,对于标准正态分布而言,mu=0,sigma=1,这时 x=normpdf(x,mu,sigma),可以简写为 x=normpdf(x);正态分布概率分布函数Matlab 中的功能函数为; x=normcdf(x,mu,sigma)计算正太概率密度在x 处的值,x 为标量或矢量,对于标准正态分布而言,mu=0,sigma=1,这时 x=normcdf(x,mu,sigma),可以简写为 x=normcdf(x). 2.均匀分布0-1分布,其概率密度为101()0x f x <<⎧=⎨⎩其他其概率密度y=unifpdf(x,a,b)计算在[a,b]区间上均匀分布概率密度函数在x 处的值,x,a ,b 为矢量或者标量;均匀分布概率分布函数y=unifcdf(x,a,b)计算在[a,b]区间上均匀分布概率分布函数在x 处的值,x,a ,b 为矢量或者标量。
3.指数分布:其概率密度为1()e x p (),2x f x μμμ=-= 其概率密度y=exppdf(x,mu)计算参数为mu 的指数分布概率密度函数在x 处的值,x,xu 为矢量或者标量;指数分布概率分布函数y=expcdf(x,mu)计算参数为mu 的指数分布概率密度函数在x 处的值,x,xu 为矢量或者标量.4.瑞利分布概率密度y=raylpdf(x,a)计算参数为a(δ)的瑞利分布概率密度函数在x 处的值,x,a 为矢量或者标量;瑞利分布概率f 分布函数y=raylcdf(x,a)计算参数为a(δ)的瑞利分布概率分布函数在x 处的值,x,a 为矢量或者标量。
matlab仿真随机信号的调制与解调
随机信号的调制解调分析实验报告一 实验目的通过对随机信号调制解调的分析,考察其数字特征,以此加深对随机信号通过系统的分析方法地的掌握。
并熟悉常用的信号处理仿真软件平台:matlab 。
二 实验要求1.用matlab 语言编程并仿真。
2.输入信号:sin ωt+n(t),sin ωt 信号频率1KHz ,幅值为1v ,n(t)为白噪声。
输入信号为带限信号,其最大频率c m ωω<。
3.设计低通滤波器: 低通滤波器技术要求: 通带截止频率1KHz 阻带截止频率2KHz 过渡带:1KHz 阻带衰减:>35DB 通带衰减:<1DB 采样频率=32KHz4.载波t c ωcos 的频率为4KHz ,幅值为1v 。
p(t)由t c ωcos 变化而来。
当t c ωcos ≥C ,判为“1”,当t c ωcos <C ,判为“0”。
这样产生的方波频率、相位与t c ωcos 相同。
其中C 为以适当的常数。
5.计算x(t)信号、调制信号、解调信号、y(t)信号的频谱、功率谱密度,自相关函数,并绘出函数曲线。
6.计算输入噪声的概率密度、频谱、功率谱密度,自相关函数,并绘出函数曲线。
三 实验原理在通信系统中,基带信号的有效频带往往具有较低的频率分量,不适宜通过无线直接通过信道传输。
在通信系统的发送端用基带信号去控制一个载波信号的某个或几个参量的变化,将信息荷载在其上形成已调信号传输,这一过程称为调制。
解调是调制的反过程,通过具体的方法从已调信号的参量变化中将恢复原始的基带信号。
调制可实现信道的多路复用,提高信道的利用率。
此外,先进的的调制方式还具有较强的抗干扰能力、抗衰落能力,可以提高系统传输可靠性。
调制可分为线性调制和非线性调制两大类。
本实验主要研究双边带幅度调制。
调制解调器的框图如图1所示:××低通滤波器y(t)c(t)p(t)已调制信号 解调输出信号x(t)图1 调制解调器的框图其中输入信号为()x t ,调制器为正弦幅度调制,正弦载波信号为()c t ,而解调器载波()p t 是与调制载波()c t 相同基波的方波。
信号分析与处理实验报告(基于MATLAB)
武汉工程大学电气信息学院2、四、思考:1、为什么图二中t=0处曲线是间断的,如何使其成为连续的曲线?因为axis函数对纵坐标的的上边界限定过小,使图形在边界处不能完整的显示。
2.3.四、思考:1、代数运算符号*和.*的区别是?*是矩阵相乘,是矩阵A行元素与B的列元素相乘的和.*是数组相乘,表示数组A和数组B中的对应元素相乘实验内容实验三连续时间信号的卷积一、实验内容1、已知两连续时间信号如下图所示,绘制信号f1(t)、f2(t)及卷积结果f(t)的波形;设时间变化步长dt分别取为0.5、0.1、0.01,当dt取多少时,程序的计算结果就是连续时间卷积的较好近似?2.实验内容1.2.实验内容实验五 连续时间信号的频域分析一、实验内容1、如图5.4所示的奇谐周期方波信号,周期为T1=1,幅度为A=1,将该方波信号展开成三角形式Fourier 级数并分别采用频域矩形窗和Hanning 窗加权,绘制两种窗函数加权后的方波合成图像。
时间范围取为-2~2,步长值取为0.01。
2、将图5.5中的锯齿波展开为三角形式Fourier 级数,按(2)式求出Fourier 级数的系数,并在频域分别采用矩形窗、Hanning 窗和三角窗加权,观察其Gibbs 效应及其消除情况。
时间范围取为-2~2,步长值取为0.01。
3、选做:编程计算连续时间周期信号的三角形式傅里叶级数展开的系数二、实验方法与步骤1、将方波信号展开成三角形式Fourier 级数并分别采用频域矩形窗和Hanning 窗加权 方波展开的三角式傅立叶级数为:()()t k k t x L k 1,5,3,1sin 4ωπ⋅∑=∞= 采用频域矩形窗加权,则展开式变为:()()()[]t k k t x K k 1012sin 124ωπ+⋅+∑==a0=2/T*int(f,t,0,T); %求函数f对t从0到T的定积分a0=simplify(a0) %得出结果syms kfa=t*cos(k*w*t);fb=t*sin(k*w*t);ak=2/T*int(fa,t,0,T); %求函数fa对t从0到T的定积分bk=2/T*int(fb,t,0,T); %求函数fb对t从0到T的定积分ak=simplify(ak)bk=simplify(bk)三、实验数据与结果分析1.2.3.根据绘制的幅频特性曲线,系统具有低通滤波特性2.根据绘制的幅频特性曲线,系统具有带通滤波特性。
随机信号分析实验报告(基于MATLAB语言)
随机信号分析实验报告——基于MATLAB语言姓名:_ 班级:_ 学号:专业:目录实验一随机序列的产生及数字特征估计2实验目的 2实验原理 2实验内容及实验结果 3实验小结 6实验二随机过程的模拟与数字特征7实验目的7实验原理7实验内容及实验结果8实验小结11实验三随机过程通过线性系统的分析12实验目的12实验原理12实验内容及实验结果13实验小结17实验四窄带随机过程的产生及其性能测试18实验目的18实验原理18实验内容及实验结果18实验小结23实验总结23实验一随机序列的产生及数字特征估计实验目的1.学习和掌握随机数的产生方法。
2.实现随机序列的数字特征估计。
实验原理1.随机数的产生随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。
进行随机信号仿真分析时,需要模拟产生各种分布的随机数。
在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。
伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。
伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。
(0,1)均匀分布随机数是最最基本、最简单的随机数。
(0,1)均匀分布指的是在[0,1]区间上的均匀分布,U(0,1)。
即实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下:序列为产生的(0,1)均匀分布随机数。
定理1.1若随机变量X 具有连续分布函数,而R 为(0,1)均匀分布随机变量,则有2.MATLAB中产生随机序列的函数(1)(0,1)均匀分布的随机序列函数:rand用法:x = rand(m,n)功能:产生m×n 的均匀分布随机数矩阵。
(2)正态分布的随机序列函数:randn用法:x = randn(m,n)功能:产生m×n 的标准正态分布随机数矩阵。
基于MATLAB的随机信号分析方法
1
ri
xi 1 x
0
e(x/) dx exp (xi / )
xi ( ln ri )
% 产生韦泊分布随机数 N=500; b=1; a=1.2; r=rand(N,1); x=b*(log(r)).^(1/a); subplot(2,1,1); plot(x); y=ksdensity(x) subplot(2,1,2); plot(y);
(2) 变换法
xi 2 ln r1i cos 2r2i yi 2 ln r1i sin 2r2i
N(m,2)的正态随机数的产生
ui m xi m 2ln r1i cos 2r2i
3 MATLAB的随机数生成函数
1) 独立同分布白噪声序列的产生
(1) (0,1)均匀分布的白噪声序列rand()
X=AU+M
其中A由协方差矩阵K确定
K AAT
A可以用矩阵分解函数得到
Chol()
5 相关正态随机序列的产生----已知相关函数
产生一个正态随机序列,要求相关函数满足
RX
(m)
1
2 a
2
a
m
a<1
产生公式
xi axi1 ui
MATLAB程 序
a=0.8; sigma=2; N=500; u=randn(N,1); x(1)=sigma*u(1)/sqrt(1-a^2); for i=2:N
y=ksdensity(x);%概率密度函
数
subplot(2,1,2);
plot(y); xlabel('N'); ylabel('x'); title('概率密度函数');
随机信号分析与处理实验报告
随机信号分析与处理实验题目:对音频信号的随机处理班级:0312412姓名:肖文洲学号:031241217指导老师:钱楷时间:2014年11月25日实验目的:1、学会利用MATLAB模拟产生各类随机序列。
2、熟悉和掌握随机信号数字特征估计的基本方法。
3、熟悉掌握MATLAB的函数及函数调用、使用方法。
4、学会在MATLAB中创建GUI文件。
实验内容:1、选用任意一个音频信号作为实验对象,进行各种操作并画出信号和波形。
2、操作类型:(1)、概率密度;(2)、希尔伯特变换;(3)、误差函数;(4)、randn;(5)、原始信号频谱;(6)、axis;(7)、原始信号;(8)、normpdf;(9)、unifpdf;(10)、unifcdf;(11)、raylpdf;(12)、raylcdf;(13)、exppdf;(14)、截取声音信号的频谱;(15)、expcdf;(16)、periodogram;(17)、weibrnd;(18)、rand;(19)、自相关函数;(20)、截取信号的均方值。
实验步骤:1、打开MATLAB软件,然后输入guide创建一个GUI文件。
2、在已经创建好的GUI文件里面穿件所需要的.fig面板(以学号姓名格式命名)。
入下图所示:图为已经创建好的.fig面板3、右击“概率密度”,查看回调,然后点击“callback”.在相应的位置输入程序。
然后点击运行,出现下图:4、依次对后续操作方式进行类似的操作。
5、当完成所有按键的“callback”后,出现的均为上图。
实验程序:function varargout = xiaowenzhou(varargin)% XIAOWENZHOU M-file for xiaowenzhou.fig% XIAOWENZHOU, by itself, creates a new XIAOWENZHOU or raises the existing% singleton*.%% H = XIAOWENZHOU returns the handle to a new XIAOWENZHOU or the handle to% the existing singleton*.%% XIAOWENZHOU('CALLBACK',hObject,eventData,handles,...) calls the local% function named CALLBACK in XIAOWENZHOU.M with the given input arguments.%% XIAOWENZHOU('Property','Value',...) creates a new XIAOWENZHOU or raises the% existing singleton*. Starting from the left, property value pairs are% applied to the GUI before xiaowenzhou_OpeningFunction gets called. An% unrecognized property name or invalid value makes property application% stop. All inputs are passed to xiaowenzhou_OpeningFcn via varargin.%% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one% instance to run (singleton)".%% See also: GUIDE, GUIDATA, GUIHANDLES% Edit the above text to modify the response to help xiaowenzhou% Last Modified by GUIDE v2.5 02-Dec-2014 23:14:41% Begin initialization code - DO NOT EDITgui_Singleton = 1;gui_State = struct('gui_Name', mfilename, ...'gui_Singleton', gui_Singleton, ...'gui_OpeningFcn', @xiaowenzhou_OpeningFcn, ...'gui_OutputFcn', @xiaowenzhou_OutputFcn, ...'gui_LayoutFcn', [] , ...'gui_Callback', []);if nargin && ischar(varargin{1})gui_State.gui_Callback = str2func(varargin{1});endif nargout[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});elsegui_mainfcn(gui_State, varargin{:});end% End initialization code - DO NOT EDIT% --- Executes just before xiaowenzhou is made visible.function xiaowenzhou_OpeningFcn(hObject, eventdata, handles, varargin)% This function has no output args, see OutputFcn.% hObject handle to figure% eventdata reserved - to be defined in a future version of MATLAB% handles structure with handles and user data (see GUIDATA)% varargin command line arguments to xiaowenzhou (see VARARGIN)% Choose default command line output for xiaowenzhouhandles.output = hObject;% Update handles structureguidata(hObject, handles);% UIWAIT makes xiaowenzhou wait for user response (see UIRESUME)% uiwait(handles.figure1);% --- Outputs from this function are returned to the command line. function varargout = xiaowenzhou_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT);% hObject handle to figure% eventdata reserved - to be defined in a future version of MATLAB% handles structure with handles and user data (see GUIDATA)% Get default command line output from handles structurevarargout{1} = handles.output;% --- Executes on button press in pushbutton1.function pushbutton1_Callback(hObject, eventdata, handles)[y,Fs,bits]=wavread('Íõ·Æ.wav');y=y(1:5000);N=length(y);i=1:N;[f,i]=ksdensity(y);plot(i,f);grid;xlabel('x');ylabel('f(x)');axis();title('¸ÅÂÊÃܶÈ');% hObject handle to pushbutton1 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB% handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton2.function pushbutton2_Callback(hObject, eventdata, handles)x=wavread('Íõ·Æ.wav');x=x(20000:40000);y=hilbert(x);y=real(y);plot(x);% hObject handle to pushbutton2 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton3.function pushbutton3_Callback(hObject, eventdata, handles)x=wavread('Íõ·Æ.wav');x=randn(500,1);plot(x);% hObject handle to pushbutton3 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton4.function pushbutton4_Callback(hObject, eventdata, handles)x=wavread('Íõ·Æ.wav');y=erf(x);plot(y);% hObject handle to pushbutton4 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton5.function pushbutton5_Callback(hObject, eventdata, handles)x=wavread('Íõ·Æ.wav');plot(x);axis([0 5000 -0.01 0.01]);% hObject handle to pushbutton5 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton6.x=wavread('Íõ·Æ.wav');x=x(20000:40000);plot(x);% hObject handle to pushbutton6 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton7.function pushbutton7_Callback(hObject, eventdata, handles)x=wavread('Íõ·Æ.wav');x=-6:0.01:7;y=normpdf(x,1,2);plot(y);% hObject handle to pushbutton7 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton8.function pushbutton8_Callback(hObject, eventdata, handles)x=wavread('Íõ·Æ.wav');x=0:0.1:5;y=unifpdf(x,1,30);plot(y);% hObject handle to pushbutton8 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton9.function pushbutton9_Callback(hObject, eventdata, handles)x=wavread('Íõ·Æ.wav');x=0:0.1:5;y=unifcdf(x,1,5);plot(y);% hObject handle to pushbutton9 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton10.x=wavread('Íõ·Æ.wav');x=0:0.1:3;y=raylpdf(x,2);plot(y);% hObject handle to pushbutton10 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton11.function pushbutton11_Callback(hObject, eventdata, handles)x=wavread('Íõ·Æ.wav');x=0:0.1:3;y=raylcdf(x,10);plot(y);% hObject handle to pushbutton11 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton12.function pushbutton12_Callback(hObject, eventdata, handles)x=wavread('Íõ·Æ.wav');x=0:0.01:5;y=exppdf(x,1);plot(y);% hObject handle to pushbutton12 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton13.function pushbutton13_Callback(hObject, eventdata, handles)x=wavread('Íõ·Æ.wav');x=0:0.01:5;y=expcdf(x,1);plot(y);% hObject handle to pushbutton13 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton14.[y,Fs,bits]=wavread('Íõ·Æ.wav');y1=y(1:1000);t=0:1/Fs:1;y1=periodogram(y1,[],1000,Fs);plot(y1);% hObject handle to pushbutton14 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton15.function pushbutton15_Callback(hObject, eventdata, handles)x=wavread('Íõ·Æ.wav');x=0:0.01:5;x=weibrnd(1,1.5,100,1);plot(x);% hObject handle to pushbutton15 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton16.function pushbutton16_Callback(hObject, eventdata, handles)x=wavread('Íõ·Æ.wav');x=rand(200,1);plot(x);% hObject handle to pushbutton16 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton17.function pushbutton17_Callback(hObject, eventdata, handles)[x,Fs,bits]=wavread ('Íõ·Æ.wav');x=x (:,1);X=fft (x,4096);magX=abs (X);angX=angle (X);plot (X); title ('Ô-ʼÐźÅƵÆ×');% hObject handle to pushbutton17 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton18.function pushbutton18_Callback(hObject, eventdata, handles)[y,Fs,bits]=wavread('Íõ·Æ.wav');y=y(500:1000);h=[ones(1,20) zeros(1,20)];y2=conv(h,y);stem(y2,'.');grid;title('½ØÈ¡ÉùÒôÐźŵľí»ý');% hObject handle to pushbutton18 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton19.function pushbutton19_Callback(hObject, eventdata, handles)[y,Fs,bits]=wavread('Íõ·Æ.wav');y=y(1:5000);R=xcorr(y);plot(R);grid;title('×ÔÏà¹Øº¯Êý');% hObject handle to pushbutton19 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton20.function pushbutton20_Callback(hObject, eventdata, handles)[y,Fs,bits]=wavread('Íõ·Æ.wav');y=y(1:1000);n=length(y);x=randn(50,n);square=zeros(1,50);for i=1:50for j=1:1000square(i)=square(i)+x(i,j).^2;endsquare(i)=square(i)/1000;endRMS=sum(square)/30;plot(square);grid;title('½ØÈ¡ÉùÒôÐźŵľù·½Öµ');% hObject handle to pushbutton20 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB% handles structure with handles and user data (see GUIDATA)% --- Executes during object creation, after setting all properties. function pushbutton1_CreateFcn(hObject, eventdata, handles)% hObject handle to pushbutton1 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB% handles empty - handles not created until after all CreateFcns called 实验结果:(1)概率密度(2)希尔伯特变换(3)randn(4)误差函数(5)axis(6)原始信号(7)normpdfd(8)unifpdf(9)unifcdf(10)raylpdf(11)raylcdf(12)exppdf(13)截取声音信号的卷积(14)expcdf(15)periodogram(16)weibrnd(17)rand(18)原始信号频谱(19)自相关函数(20)截取信号的均方值实验总结:随机信号分析与处理是研究随机信号的特点及其处理方法的专业基础课,是目标检测、估计、滤波等信号处理理论的基础。
随机信号分析实验报告(基于MATLAB语言)
随机信号分析实验报告(基于MATLAB语言)随机信号分析实验报告——基于MATLAB语言姓名: _班级: _学号:专业:目录实验一随机序列的产生及数字特征估计 .. 2 实验目的 (2)实验原理 (2)实验内容及实验结果 (3)实验小结 (6)实验二随机过程的模拟与数字特征 (7)实验目的 (7)实验原理 (7)实验内容及实验结果 (8)实验小结 (11)实验三随机过程通过线性系统的分析 (12)实验目的 (12)实验原理 (12)实验内容及实验结果 (13)实验小结 (17)实验四窄带随机过程的产生及其性能测试18 实验目的 (18)实验原理 (18)实验内容及实验结果 (18)实验小结 (23)实验总结 (23)实验一随机序列的产生及数字特征估计实验目的1.学习和掌握随机数的产生方法。
2.实现随机序列的数字特征估计。
实验原理1.随机数的产生随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。
进行随机信号仿真分析时,需要模拟产生各种分布的随机数。
在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。
伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。
伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。
(0,1)均匀分布随机数是最最基本、最简单的随机数。
(0,1)均匀分布指的是在[0,1]区间上的均匀分布, U(0,1)。
即实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下:序列为产生的(0,1)均匀分布随机数。
定理 1.1 若随机变量X 具有连续分布函数,而R 为(0,1)均匀分布随机变量,则有2.M ATLAB中产生随机序列的函数(1)(0,1)均匀分布的随机序列函数:rand用法:x = rand(m,n)功能:产生m×n 的均匀分布随机数矩阵。
哈尔滨工业大学(威海)随机信号分析实验一报告
《随机信号分析》实验报告班级: 1302502学号:姓名:《随机信号分析》实验报告实验一一、实验目的:熟悉并练习使用随机信号Matlab的函数二、实验内容:1、熟悉并练习使用下列Matlab 的函数,给出各个函数的功能说明和内部参数的意义,并给出至少一个使用例子和运行结果:1)rand() 11)unifpdf()2)randn() 12)unifcdf()3)normrnd() 13)raylpdf()4)mean() 14)raylcdf()5)var() 15)exppdf()6)xcorr() 16)expcdf()7)periodogram() 17)chol()8)fft()18)ksdensity()9)normpdf() 19)hist()10)normcdf() 20)int()用法、功能、程序如下:1)randn(m,n)功能:返回一个从标准正态分布中得到的伪随机标量。
>> r = randn(5) %由标准正态分布随机数组成的5×5 矩阵。
r =-1.0689 -0.7549 0.3192 0.6277 -1.2141-0.8095 1.3703 0.3129 1.0933 -1.1135-2.9443 -1.7115 -0.8649 1.1093 -0.00681.4384 -0.1022 -0.0301 -0.8637 1.53260.3252 -0.2414 -0.1649 0.0774 -0.76972)rand(m,n)功能:返回一个从开区间(0,1) 上的标准均匀分布得到的伪随机标量。
r = rand(5) %生成一个由介于0 和1 之间的均匀分布的随机数组成的5×5 矩阵>>r =0.5469 0.9572 0.9157 0.8491 0.39220.9575 0.4854 0.7922 0.9340 0.65550.9649 0.8003 0.9595 0.6787 0.17120.1576 0.1419 0.6557 0.7577 0.70600.9706 0.4218 0.0357 0.7431 0.03183)normrnd(mu,sigma,m,n)功能:以均值μ和标准差σ为参数的正态分布随机数mxn>> normrnd(0,1,3,4) %生成均值μ=0,σ=1的3x4正态分布随机数ans =0.2761 0.3919 -0.7411 0.0125-0.2612 -1.2507 -0.5078 -3.02920.4434 -0.9480 -0.3206 -0.45704)mean(A,dim)功能:数组的平均值mean(A,dim) dim=1,返回列平均数,默认为1dim=2,返回列平均数dim>2,返回AA = [0 1 1; 2 3 2; 1 3 2; 4 2 2] %M = mean(A) 沿A 的大小不等于1 的第一个数组维度返回均值。
《随机信号分析与处理》实验报告完整版GUI内附完整函数代码
《随机信号分析与处理》实验报告指导教师:班级:学号:姓名:实验一熟悉MATLAB的随机信号处理相关命令一、实验目的1、熟悉GUI格式的编程及使用。
2、掌握随机信号的简单分析方法3、熟悉语音信号的播放、波形显示、均值等的分析方法及其编程二、实验原理1、语音的录入与打开在MATLAB中,[y,fs,bits]=wavread('Blip',[N1 N2]);用于读取语音,采样值放在向量y中,fs表示采样频率(Hz),bits 表示采样位数。
[N1 N2]表示读取从N1点到N2点的值。
2,均匀分布白噪声在matlab 中,有x=rand (a ,b )产生均匀白噪声序列的函数,通过与语言信号的叠加来分析其特性。
3、均值随机变量X 的均值也称为数学期望,它定义为对于离散型随机变量,假定随机变量X 有N个可能取值,各个取值的概率为则均值定义为上式表明,离散型随机变量的均值等于随机变量的取值乘以取值的概率之和,如果取值是等概率的,那么均值就是取值的算术平均值,如果取值不是等概率的,那么均值就是概率加权和,所以,均值也称为统计平均值。
4、方差定义为随机过程的方差。
方差通常也记为D 【X (t )】 ,随机过程的方差也是时间 t 的函数, 由方差的定义可以看出,方差是非负函数。
5、自相关函数设任意两个时刻1t ,2t ,定义为随机过程X (t )的自相关函数,简称为相关函数。
自相关函数可正,可负,其绝对值越大表示相关性越强。
121212121212(,)[()()](,,,)X R t t E X t X t x x f x x t t dx dx +∞+∞-∞-∞==⎰⎰6.哈明(hamming)窗(10.100)(10.101)B = 1.3Δf,A = -43dB,D= -6dB/oct.哈明窗本质上和汉宁窗是一样的,只是系数不同。
哈明窗比汉宁窗消除旁瓣的效果好一些而且主瓣稍窄,但是旁瓣衰减较慢是不利的方面。
随机信号分析实验
实验一 随机序列的产生及数字特征估计一、实验目的1、学习和掌握随机数的产生方法;2、实现随机序列的数字特征估计。
二、实验原理1. 随机数的产生随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。
进行随机信号仿真分析时,需要模拟产生各种分布的随机数。
在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。
伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。
伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。
(0,1)均匀分布随机数是最最基本、最简单的随机数。
(0,1)均匀分布指的是在[0,1]区间上的均匀分布,即U(0,1)。
实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下:Ny x N ky Mod y y n n n n /))((110===-, (1.1)序列{}n x 为产生的(0,1)均匀分布随机数。
下面给出了上式的3组常用参数:(1) 7101057k 10⨯≈==,周期,N ;(2) (IBM 随机数发生器)8163110532k 2⨯≈+==,周期,N ; (3) (ran0)95311027k 12⨯≈=-=,周期,N ;由均匀分布随机数,可以利用反函数构造出任意分布的随机数。
定理1.1 若随机变量X 具有连续分布函数F X (x),而R 为(0,1)均匀分布随机变量,则有)(1R F X x -= (1.2)由这一定理可知,分布函数为F X (x)的随机数可以由(0,1)均匀分布随机数按上式进行变换得到。
2. MATLAB 中产生随机序列的函数(1) (0,1)均匀分布的随机序列 函数:rand用法:x = rand(m,n)功能:产生m ×n 的均匀分布随机数矩阵。
(2) 正态分布的随机序列 函数:randn用法:x = randn(m,n)功能:产生m ×n 的标准正态分布随机数矩阵。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
随机信号分析实验报告——基于MATLAB语言姓名:_班级:_学号:专业:目录实验一随机序列的产生及数字特征估计 (2)实验目的 (2)实验原理 (2)实验内容及实验结果 (3)实验小结 (6)实验二随机过程的模拟与数字特征 (7)实验目的 (7)实验原理 (7)实验内容及实验结果 (8)实验小结 (11)实验三随机过程通过线性系统的分析 (12)实验目的 (12)实验原理 (12)实验内容及实验结果 (13)实验小结 (17)实验四窄带随机过程的产生及其性能测试 (18)实验目的 (18)实验原理 (18)实验内容及实验结果 (18)实验小结 (23)实验总结 (23)实验一随机序列的产生及数字特征估计实验目的1.学习和掌握随机数的产生方法。
2.实现随机序列的数字特征估计。
实验原理1.随机数的产生随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。
进行随机信号仿真分析时,需要模拟产生各种分布的随机数。
在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。
伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。
伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。
(0,1)均匀分布随机数是最最基本、最简单的随机数。
(0,1)均匀分布指的是在[0,1]区间上的均匀分布, U(0,1)。
即实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下:,序列为产生的(0,1)均匀分布随机数。
定理1.1若随机变量X 具有连续分布函数,而R 为(0,1)均匀分布随机变量,则有2.MATLAB中产生随机序列的函数(1)(0,1)均匀分布的随机序列函数:rand用法:x = rand(m,n)功能:产生m×n 的均匀分布随机数矩阵。
(2)正态分布的随机序列函数:randn用法:x = randn(m,n)功能:产生m×n 的标准正态分布随机数矩阵。
如果要产生服从分布的随机序列,则可以由标准正态随机序列产生。
(3)其他分布的随机序列分布函数分布函数二项分布binornd 指数分布exprnd泊松分布poissrnd 正态分布normrnd 离散均匀分布unidrnd 瑞利分布raylrnd 均匀分布unifrnd 分布chi2rnd3.随机序列的数字特征估计对于遍历过程,可以通过随机序列的一条样本函数来获得该过程的统计特征。
这里我们假定随机序列X(n)为遍历过程,样本函数为x(n),其中n=0,1,2,……N-1。
那么,X(n)的均值、方差和自相关函数的估计为利用MATLAB的统计分析函数可以分析随机序列的数字特征。
(1)均值函数函数:mean用法:m = mean(x)功能:返回按1.3式估计X(n)的均值,其中x为样本序列x(n)。
(2)方差函数函数:var用法:sigma2 = var(x)功能:返回按(1.4)式估计X(n)的方差,其中x为样本序列x(n),这一估计为无偏估计。
(3)互相关函数函数:xcorr用法:c = xcorr(x,y)c = xcorr(x)c = xcorr(x,y,'opition')c = xcorr(x,'opition')功能:xcorr(x,y)计算X(n)与Y(n)的互相关,xcorr(x)计算X(n)的自相关。
option 选项可以设定为:'biased' 有偏估计'unbiased' 无偏估计'coeff' m = 0 时的相关函数值归一化为1'none' 不做归一化处理实验内容及实验结果1.采用线性同余法产生均匀分布随机数1000个,计算该序列均值和方差与理论值之间的误差大小。
改变样本个数重新计算。
程序代码:y=1;k=7;N=10^10;xn=[];for i=1:1000y=mod(y*k,N);x=y/N;xn=[xn x];endm=mean(xn)n=var(xn)me=0.5-mne=1/12-n实验结果:m = 0.4813n = 0.0847me= 0.0187ne= -0.00132.参数为的指数分布的分布函数为利用反函数法产生参数为0.5的指数分布随机数1000个,测试其方差和相关函数。
程序代码:j=1:1999;y=1;k=7;N=10^10;xn=[];for i=1:1000y=mod(y*k,N);x=y/N;xn=[xn x];endy=(-2)*log(1-xn);n=var(y)c=xcorr(y,'coeff');plot(j-1000,c);实验结果:方差 n=3.7596自相关函数:3. 产生一组N(1,4)分布的高斯随机数(1000个样本),估计该序列的均值、方差、和相关函数。
程序代码: i=1:1000; j=1:1999;x=normrnd(1,2,1,1000); m=mean(x) n=var(x)c=xcorr(x,'coeff'); subplot(211); plot(i,x);title(‘随机序列’); subplot(212); plot(j-1000,c);title(‘自相关函数’);实验结果: 均值 m=1.0082 方差 n=3.8418-1000-800-600-400-200200400600800100000.10.20.30.40.50.60.70.80.91实验小结本次实验对随机数的生成做了练习。
具体来说,包括线性同余法,生成已知分布函数的随机数,rand 函数等,还有就是有关均值、方差、相关的调用函数。
01002003004005006007008009001000-5510随机序列-1000-800-600-400-20002004006008001000-0.500.51自相关函数实验二随机过程的模拟与数字特征实验目的1.学习利用 MATLAB模拟产生随机过程的方法。
2.熟悉和掌握特征估计的基本方法及其 MATLAB实现。
实验原理1.正态分布白噪声序列的产生MATLAB提供了许多产生各种分布白噪声序列的函数,其中产生正态分布白噪声序列的函数为randn。
函数:randn用法:x = randn(m,n)功能:产生 m×n的标准正态分布随机数矩阵。
如果要产生服从分布的随机序列,则可以由标准正态随机序列产生。
如果则。
2.相关函数估计MATLAB提供了函数 xcorr用于自相关函数的估计。
函数:xcorr用法:c = xcorr(x,y)c = xcorr(x)c = xcorr(x,y,'opition')c = xcorr(x,'opition')功能:xcorr(x,y)计算 X (n)与 Y(n)的互相关,xcorr(x)计算 X (n)的自相关。
Option 选项可以设定为:'biased' 有偏估计。
'unbiased' 无偏估计。
'coeff' m =0时的相关函数值归一化为1。
'none' 不做归一化处理。
3.功率谱估计对于平稳随机序列 X (n),如果它的相关函数满足那么它的功率谱定义为自相关函数的傅里叶变换:功率谱表示随机信号频域的统计特性,有着重要的物理意义。
我们实际所能得到的随机信号的长度总是有限的,用有限长度的信号所得的功率谱只是真实功率谱的估计,称为谱估计或谱分析。
功率谱估计的方法有很多种,以下是两种通用谱估计方法。
(1)自相关法先求自相关函数的估计,然后对自相关函数做傅里叶变换。
其中N表示用于估计样本序列的样本个数。
(2)周期图法先对样本序列 x(n)做傅里叶变换其中,则功率谱估计为MATLAB函数 periodogram实现了周期图法的功率谱估计。
函数:periodogram用法:[Pxx,w] = periodogram(x)[Pxx,w] = periodogram(x,window)[Pxx,w] = periodogram(x,window,nfft)[Pxx,f] = periodogram(x,window,nfft,fs)periodogram(...)功能:实现周期图法的功率谱估计。
其中:Pxx为输出的功率谱估计值;f为频率向量;w为归一化的频率向量;window代表窗函数,这种用法种对数据进行了加窗,对数据加窗是为了减少功率谱估计中因为数据截断产生的截断误差,表 2.1列出了产生常用窗函数的 MATLAB函数窗函数MATLAB函数窗函数MATLAB函数矩形窗boxcar Blackman窗blackman三角窗triang Chebyshev窗chebwinHanning窗hann Bartlett窗bartlettHamming hamming Kaiser窗kaisernfft设定 FFT算法的长度;fs表示采样频率;如果不指定输出参数(最后一种用法),则直接会出功率谱估计的波形。
实验内容及实验结果1.按如下模型产生一组随机序列其中是均值为1,方差为4的正态分布白噪声序列。
估计过程的自相关函数和功率谱。
程序代码:w=normrnd(1,4,1,1024);x(1)=w(1);i=2;while i<1025x(i)=0.8*x(i-1)+w(i); i=i+1;endR=xcorr(x);[S,W]=periodogram(x);subplot(3,1,1); plot(x);title('x(n)');axis tight; subplot(3,1,2); plot(R);title('R(m)');axis tight; subplot(3,1,3); plot(S);title('S(W)');axis tight;实验结果:2. 设信号为其中 , , 为正态分布白噪声序列,试在N=256和N=1024点时,分别产生随机序列 ,画出 的波形并估计 的相关函数和功率谱。
N=256: 程序代码: N=256; n=1:1:N;w=randn(1,N); f1=0.05; f2=0.12;x=sin(2*pi*f1*n)+2*cos(2*pi*f2*n)+w(n);1002003004005006007008009001000-1001020x(n)2004006008001000120014001600180020002464R(m)50100150200250300350400450500100020003000S(W)R=xcorr(x);[S,W]=periodogram(x);subplot(3,1,1); plot(x);title('x(n)');axis tight; subplot(3,1,2); plot(R);title('R(m)');axis tight; subplot(3,1,3); plot(S);title('S(W)');axis tight;实验结果:N=1024: 程序代码: N=1024; n=1:1:N;w=randn(1,N); f1=0.05; f2=0.12;x=sin(2*pi*f1*n)+2*cos(2*pi*f2*n)+w(n); R=xcorr(x);[S,W]=periodogram(x);subplot(3,1,1); plot(x);title('x(n) N=256');axis tight; subplot(3,1,2); plot(R);title('R(m) N=256');axis tight; subplot(3,1,3); plot(S);title('S(W) N=256');axis tight;实验结果:50100150200250-4-2024x(n) N=25650100150200250300350400450500-500500R(m) N=25620406080100120S(W) N=256实验小结本次实验对随机序列的产生进行了复习,对自相关函数与功率谱密度的产生进行了练习。