所有行程问题综合解析(全而精)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有关停走的行程问题解析
2009-10-30 11:23 来源:互联网作者:佚名 [打印] [评论] 停走问题
这类题抓住一个关键--假设不停走,算出本来需要的时间。
【例1】龟兔赛跑,全程5.4千米,兔子每小时跑25千米,乌龟每小时跑4千米,乌龟不停的跑,但兔子却边跑边玩,它先跑1分,然后再玩15分,又跑2分,玩15分,再跑3分,玩15分,……,那么先到达终点的比后到达终点的快几分钟呢?
【例2】在一条公路上,甲、乙两个地点相距600米。张明每小时行走4千米,李强每小时5千米。8点整,他们两人从甲、乙两地同时出发相向而行,1分钟后他们都的掉头反向而行,再过3分钟,他们又掉头相向而行,依次按照1,3,5,7,9,……分钟数掉头行走,那么,张、李二人相遇时间是8点几分呢?
5.多人行程---这类问题主要涉及的人数为3人,主要考察的问题就是求前两个人相遇或追及的时刻,第三个人的位置,解题的思路就是把三人问题转化为寻找两两人之间的关系。
【例1】有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲于乙、丙背向而行。甲每分40米,乙每分38米,丙每分36米。出发后,甲和乙相遇后3分钟又与丙相遇。这花圃的周长是多少?
【例2】甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走50米,丙每分钟走40米。甲从A地,乙和丙从B出发相向而行,甲和乙相遇后,过了15分钟又与丙相遇,求A、B两地的距离。
有关时钟的行程问题解析
2009-10-30 11:21 来源:互联网作者:佚名 [打印] [评论] 两个速度单位:分针每分钟走6度,时针每分钟走0.5度
时钟问题主要有3大类题型:第一类是追及问题(注意时针分针关系的时候往往有两种情况);第二类是相遇问题(时针分针永远不会是相遇的关系,但是当时针分针与某一刻度夹角相等时,可以求出路程和);第三种就是走不准问题,这一类问题中最关键的一点:找到表与现实时间的比例关系。
【例1】四点到五点之间,时钟的时针与分针在什么时刻成直角?
【例2】爷爷在晚上7点多出去散步,出去的时候时针与分针正好在一条直线上,回来的时候时针与分针恰好重合,问爷爷出去散步了多长时间?
【例3】一只钟表的时针与分针均指在4和6之间,且钟面上的"5"恰好在时针与分针的正中央,问这是什么时刻?
【例4】小亮晚上9点整将手表对准,他在早晨8点到校时,却迟到了10分钟,那么小明的手表每小时慢几分钟?
有关多次相遇的行程问题解析
2009-10-30 11:22 来源:互联网作者:佚名 [打印] [评论] 多次相遇
1)2倍的关系(两头同时出发相向而行):对于单个人来讲,从一次相遇到相邻的下一次相遇走了他从出发到第一次相遇的2倍。(关注2倍的关系,是因为很多题目,只告诉第一次相遇地点距离一段的路程)
【例1】小明和小英各自在公路上往返于甲、乙两地。设开始时他们分别从两地相向而行,若在距离甲地3千米处他们第一次相遇,第二次相遇的地点在距离乙地2千米处,则甲、乙两地的距离为多少千米?
2)对于一头同时出发同向行驶或者环型行程中,思路是从路程和或者某一个人在不同时间段的关系找到对应的时间关系,再找到单个人或另外一个人两个时间段的路程关系。(路程关系~~~时间关系~~~~路程关系)
【例2】一列客车和货车从甲同时同向出发开往乙地,货车速度是80千米/时,经过1小时两车在丙地相遇,两车到达了两端后都立即返回,第二次相遇的地点也在丙地。求客车的速度。
【例3】甲乙二人以匀速绕圆形跑道相向跑步,出发点在圆直径的两端。如果他们同时出发,并在甲跑完60米时第一次相遇,在乙跑一圈还差80米时两人第二次相遇,求跑道的长度?
3)根据速度比m:n,设路程为m+n份
【例4】甲、乙两车分别从AB两地出发,在AB之间不断的往返行驶,已知甲车的速度是每小时15千米,乙车的速度是每小时35千米,并且甲、乙两车第3次与第4次相遇点恰好为100千米,那么AB两地之间的距离是多少千米?
【例5】甲、乙两车分别从A、B两地同时出发,在A、B两地之间不断往返行驶。甲、乙两车的速度比为3:7,并且甲、乙两车第1996次相遇的地点和1997次相遇的地点恰好相距120千米(这里指面对面的相遇),那么A、B两地之间的距离是多少千米?
4)n次相遇---画平行线并结合周期性分析
【例6】甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒钟3米,乙的速度是每秒钟2米。如果他们同时分别从直路的两端出发,10分钟内共相遇了几次?(平行线+周期性分析)
【例7】A、B两地相距1000米,甲从A地、乙从B地同时出发,在A、B间往返锻炼。甲跑步每分钟行150米,乙步行每分钟60米。在30分钟内,甲、乙两人第几次相遇时距A 地最近
2009-09-15 15:07 来源:互联网作者:佚名 [打印] [评论]
行程问题之多次相遇解析2(六年级奥数)
2009-09-15 15:12 来源:互联网作者:佚名 [打印] [评论]
2009-09-15 15:43 来源:互联网作者:佚名 [打印] [评论]
有关火车的行程问题解析
2009-10-30 11:17 来源:互联网作者:佚名 [打印] [评论] 火车车长问题:
1)基本题型:这类问题需要注意两点:火车车长记入总路程;重点是车尾:火车与人擦肩而过,即车尾离人而去。
【例1】火车通过一条长1140米的桥梁用了50秒,火车穿过1980米的隧道用了80秒,求这列火车的速度和车长。(过桥问题)
【例2】一列火车通过800米的桥需55秒,通过500米的隧道需40秒。问该列车与另一列长384、每秒钟行18米的列车迎面错车需要多少秒钟?(火车相遇)
2)错车或者超车:看哪辆车经过,路程和或差就是哪辆车的车长
【例3】快、慢两列火车相向而行,快车的车长是50米,慢车的车长是80米,快车的速度是慢车的2倍,如果坐在慢车的人见快车驶过窗口的时间是5秒,那么,坐在快车的人见慢车驶过窗口的时间是多少?
3)综合题:用车长求出速度;虽然不知道总路程,但是可以求出某两个时刻间两人或车之间的路程关系
【例4】铁路旁有一条小路,一列长为110米的火车以每小时30千米的速度向南驶去,8点时追上向南行走的一名军人,15秒后离他而去,8点6分迎面遇到一个向北走的农民,12秒后离开这个农民。问军人与农民何时相遇?