群同态基本定理讲解
抽象代数基础第一章1.6 群的同构与同态

证明:(1)易知HN是G的子群,又由于N是G的正规子群,自然有N也是HN的正规子群,因而有商群 。令
则f是一个群同态。易知f是满同态,又 ,由同态基本定理有 。
(2)令 ,若aN=bN,则 ,而 ,所以 ,即 ,因而g的定义是合理的,易见g是一个满同态且 ,所以有同态基本定理,
《 抽象代数基础 》教案
复习思考题、作业题:
课本P28 1、4、6、9、10
下次课预习要点
有限群
实施情况及教学效果分析
学院审核意见
学院负责人签字
年月日
教学内容:
对 若 则 ,于是
,因而 ,故 ,所以 是单射,从而 是双射,
又由于,对 有
所以 是群 到 的一个同构,因而 。
10、定理5设G是循环群,如果G的阶无限,则 ;如果G的阶为n,则 。
由同态基本定理,我们可以得到两个重要的同构
11、定理6设G是一个群,N是G的正规 和 是两个群,f是集合G到 的一个映射,如果对 都有
,则称f是群G到 的一个同态。
5、命题1 f是群G到 的一个同态,e和 分别是G和 的单位元,则
(1)
(2)对 有 。
6、命题2 f是群G到 的一个同态,则
(1)Ker(f)是群G的正规子群
(2)Im(f)是群 的子群。
7、定理2 f是群G到 的一个同态,则
(1)如果H是G的子群,则f(H)是 的子群
(2)如果 是 的子群,则 是G的子群;如果 是 的正规子群,则 也是G的正规子群。
8、定理3设f是群G到 的一个满同态,如果H是G的正规子群,则f(H)是 的正规子群。
9、定理4(群的同态基本定理)设f是群G到 的一个满同态,则
第7讲第2篇第4节群同态

定义1:设 G 对于代数运算 是一个群。G
对于代数运算 来说是一个群。若存在
一个 G 到 G 的满射(一一映射)是同态
映射,则称G和 G 是群同态(同构)。
定理2 群G 与 G 同态, 是G 到 G 的同态满射,则
(1) (e) e
(2) (a1 ) (a)1
(3)G中元 a 的阶为n,a 的象a的阶为m,有m|n。
近世 代数
(Abstract Algebra)
主讲教师 : 蔡 炳 苓
(河北师范大学数学与信息科学学院)
第7讲
第4节 群的同态
第4节
群的同态
设 G 是一个非空集合, 是其上一个代数
运算。除用定义证明外,问是否有其它方
法证明G 对于 来说构成群?
定义:假定 是集合 A 到 A 的一个满射,s A ,称
而在同构映射下,两个单位元相互对应,互相对应 的元的逆元也相互对应。
注:群同构是群之间一种等价关系。
1G
(1)G G;
1
(2)G1 G2 G2 G1;
1
2
21
(3)G1 G2 ,G2 G3 G1 G3 .
证明:设
G~G
,由G
是群,有结合律,则
G
也满足结合律。因此群定义中的第1,2条成立。
下证G中左单位元e的象 e 是G 的左单位元。
a G ,因为 是同态满射,存在 a G,使得
(a) a (e) (a) (ea) (a),
e (e) 是 G 的左单位元;
任意给定 G 中元 a ,证明存在左逆元。 (a1) (a) (a1a) (e) e ,
(a) (b) 10 (a) (b)
G {a, b, c}关于运算﹡做成群,其中
群同态基本定理.

( Ng1 Ng 2 ) ( Ng1 g 2 ) N ( f ( g1 g 2 )) N ( f ( g1 ) f ( g 2 )) N f ( g1 ) N f ( g 2 ) ( Ng1 ) ( Ng 2 ) (3) 单射 ( Ng1 ) ( Ng 2 ) N f ( g1 ) N f ( g 2 )
则在 f 之下 (1) G的一个子群G1的像H1是H的子群 (2) G的一个不变子群G2的像H2是H的不变子群 (3) H的一个子群H3的逆像G3是G的子群
(4) H的一个不变子群H4的逆像G4是G的不变子群
证明:(1) h1, h2 H1, g1, g 2 G1 ,使h1=f(g1) h2=f(g2)
h H , h bl 则a l G且f (a l ) bl
满态
例4 如果G和H都是有限群,其阶互素, 则只存在一个G→H的同态映射 证明:设 f 是G→H的同态映射,令k=kerf 由同态基本定理知:
|G| G / k Im f , G / k | Im f | |k| Im f G
Im f 是H的子群, 由Lagrange 定理: Im f ( G , H ) 1 Im f 1 g G, f ( g ) eH
H
例5 设G与G 群同态, N 是G 的一个不变子群, N是N 的逆像, 则 : G / N G / N (群同态基本定理的推广 形式) 证明: 令 f 为 G G 的群同态满射, 由定理5知 : N是不变子群 定义 : G / N G / N , ( Ng ) N f ( g ), 则是一一映射 (1) 映射 (2) 同态
群同态基本定理与同构定理

思路拓展
采用归纳法,将问题划分为小规模子问题,通过递归调用,逐步缩小问题规模,最终得出证明结果。
证明过程细节
在归纳过程中,需要建立递归终止条件和归纳转移条件,并利用群的定义和性质,逐步缩小问题规模,最终得出 $f(a)=f(b)$ 的矛盾结果。
群同态基本定理的证明方法二
应用场景一
应用场景二
群的同构定理的表述与证明
应用一
在有限群表示论中,群的同构定理可以用来判断两个群是否具有相同的表示。
应用二
在代数拓扑中,群的同构定理可以用来判断两个拓扑空间是否同胚。
群的同构定理的应用举例
密码学中的许多算法都涉及到了群结构,如对称加密算法中的有限域等。
同构定理可以用来判断两个有限群是否同构。如果两个有限群同构,则它们具有相同的性质和结构,因此可以用来构造相同的密码学算法。但是,如果两个有限群不同构,则它们具有不同的性质和结构,因此不能用来构造相同的密码学算法。因此,同构定理在密码学中具有重要的作用。
2023
群同态基本定理与同构定理
CATALOGUE
目录
群与群同态基本概念群同态基本定理的证明群的同构定理群同态基本定理与同构定理的应用群同态基本定理与同构定理的推广
01
群与群同态基本概念
群是一个非空集合,其中存在一个二元运算符,满足封闭性、结合律、单位元存在性和逆元存在性。
封闭性:对于任意$a,b\in G$,有$a\cdot b\in G$。
操作系统的权限管理
群同态基本定理可以用于将一些数据结构的设计问题转化为群同构问题,从而设计出更有效的算法。
数据结构与算法设计
在计算机科学中的应用
量子计算
在量子计算中,同构定理可以用于量子态的变换和量子测量等问题。
群同态基本定理与同构定理

群论是数学中的一个重要分支,它研究的是具有某种性质的 元素的集合。群同态基本定理和同构定理是群论中的两个基 础概念,它们为研究群的结构和性质提供了有力的工具。
应用广泛
除了在代数结构中的应用外,群同态基本定理和同构定理在 拓扑学、物理学等各个领域也有广泛的应用。例如,在量子 力学中,它们被用来描述量子态的演化。
THANKS
谢谢您的观看
群同态基本定理的证明方法
证明方法通常采用构造法,即通过构造一个 具体的映射函数来实现同态映射,并证明这 个映射函数保持了群的运算律。
在证明过程中,通常需要使用到群的定义和 性质,以及一些重要的引理和定理。
02
同构定理
同构定理的内容
定义
如果存在一个从集合A到集合B的映射,该映射保持集合A中的元素之间的加 法运算,则称A与B同构。
对群同态基本定理与同构定理的展望
进一步研究与应用
群同态基本定理和同构定理是群论中的经 典理论,对于它们的进一步研究可以促进 我们对群论的理解。同时,这两个定理在 许多其他数学领域中也有着广泛的应用, 例如代数学、拓扑学等。
推广与扩展
目前,群论中的许多概念和定理已经推广 到了更广泛的范围,例如量子群、李群等 。未来,我们可以进一步探索群同态基本 定理和同构定理在这些新领域中的表现和 作用。
04
举例说明群同态基本定理与同构定理的应用Biblioteka 举例说明群同态基本定理的应用
01
群同态基本定理是群论中一个重要的定理,它表明任何两个群之间的同态映射 都可以扩展到从这两个群的陪集的并集上的全映射。这个定理在许多数学领域 中都有应用,例如代数学、拓扑学等。
02
1. 在代数学中的应用:群同态基本定理在代数学中被广泛应用。例如,在模论 中,该定理可以用来证明一些重要的结论,如“任何两个模之间的同态映射都 可以扩展到从它们的张量积上的全映射”。
第10节 群的同态基本定理

第10节 群的同态基本定理
主要内容: 群的同态定义 群的同态基本定理
1
近世代数
群的同态定义
定义1 设(G1,∘)和( G2,)是两个群。如果存在一个从 G1到G2的映射f,使得x, y G1 有 f(x∘y) = f(x) f(y), 则称f 是G1到G2的一个同态(映射), 而称群G1 与G2 同态. 如果同态f是满射,则称f 是G1到G2的一个满同态(映 射),而称群G1 与G2 满同态,并记为G1 ~G2 .
3
近世代数
群的同态性质
定理3 设(G1,∘)和( G2,)是两个群。 f是从G1到G2的满 同态,则G2的单位元e2的完全原象 f -1(e2)={x | x G1, f (x)=e2} 是G1的一个正规子群. 定义2 设(G1,∘)和( G2,)是两个群。 f是从G1到G2的满 同态,e2是G2的单位元,则G1的正规子群f -1(e2)称为 同态f 的核,记为Kerf。f(G1)称为f 下G1的同态象. 显然,当 f是同态(未必是满同态),则G1 ~f(G1).
9
6
近世代数
群的同态基本定理
定理9 设N是G的正规子群,H是G的任一子群,则 N∩H是H的正规子群,且HN/N H/(N∩H). 例1 设G是一个mn阶群,N是G的一个n阶正规子群, m与n互素. 试证: N是G的唯一的n阶正规子群.
7
近世代数
总 结
主要内容 群的定义 群的基本性质 子群的判别定理 变换群、置换群、循环群 陪集的定义及其性质 拉格朗日定理及其应用 正规子群与商群 群的同态基本定理
5
近世代数
群的同态基本定理
定理6(群的同态基本定理) 设(G1,∘)和( G2,)是两个 群。 f 是从G1到G2的满同态,E=Kerf,则 G1/E G自然同态g与一个同构h的合成,即f=hg并且h是唯 一 的. 定理8 设(G1,∘)和( G2,)是两个群。 f 是从G1到G2的满 同态,N2是G2的正规子群, N1 =f -1(N2),则 G1/ N1 G2/ N2 .
近世代数课件-2-9同态基本定理与同构定理

第二章 群
近世代数的主要研究对象是各种各样的代数系, 即具有一些代数运算的集合。
群是具有一种代数运算的代数系,它是近世代数 中一个比较古老,而且内容丰富的重要分支,在数学、 物理、化学、计算机等自然科学的许多领域都有广泛 应用。
2020/4/27
§2.9 同态基本定理与同构定理
本节教学目的与要求: 熟练掌握群同态基本定理和同构定理,并能简单应用,特
2020/4/27
18:18
63页第7题
2020/4/27
18:18
66页第8题
2020/4/27
18:18
18:18
三、群同构定理及其应用Fra bibliotek2020/4/27
18:18
四、满同态的特殊性
2020/4/27
18:18
作业:P65第1,2题。
2020/4/27
18:18
38页第2、8题
2020/4/27
18:18
43页第3题
2020/4/27
18:18
49页第4题
2020/4/27
18:18
54页第6题
别地,要熟练掌握群同态基本定理的证明。 掌握同态基本定理的证明方法是难点。
一、群与商群的同态性质 二、群同态基本定理及其应用 三、群同构基本定理及其应用 四、满同态的特殊性
2020/4/27
一、 群与商群的同态性质
注:定理2.42中规定的同态称为自然同态。
2020/4/27
18:18
二、 群同态基本定理及其应用
2020/4/27
18:18
二、 群同态基本定理及其应用 要证明
2020/4/27
18:18
群同态基本定理与同构定理

在代数学中,同构定理是研究群论的重要工具。例如,可以利用同构定理来研究群的性质、结构以及 群之间的关系。
03
群同态基本定理与同构定 理的关系
两者之间的联系
01
群同态基本定理是同构定理的基础,它为同构定理提供了基本 的理论支持。
02
同构定理是群同态基本定理的推广,它把群同态基本定理中的
群推广到更一般的代数结构。
深入,人们发现非交换群在许多领域中也有着广泛的应用。因此,对非
交换群的同态基本定理的研究也变得十分重要。
定理的深化
精细的同态基本定理
在群同态基本定理的证明过程中,有一些关 键的步骤需要用到一些特殊的技巧和方法。 这些技巧和方法可以被称为精细的同态基本 定理。它们对于理解群的结构和性质具有重 要的意义。
THANKS
感谢观看
限群。无限群是指包含无限个元素的群,其运算并不一定满足封闭性,
因此需要更精细的处理方法。
02
从群到环和域
群同态基本定理的推广并不仅限于群,还可以将其推广到环和域等数学
对象。这些对象在代数学中被广泛研究,因此,对它们的同态基本定理
的研究也具有重要意义。
03
从交换群到非交换群
在最初的研究中,群同态基本定理主要关注的是交换群,但随着研究的
两者都是研究群的结构和性质的重要工具。
03
两者之间的区别
群同态基本定理主要关注的是有限群与其子群之间的映射关系,而同构定理则更注重不同代数结构之 间的映射关系。
群同态基本定理的证明方法相对简单,主要基于群的定义和性质,而同构定理的证明则更加复杂,需要 引入更多的代数工具。
在应用上,群同态基本定理主要用于解决有限群的问题,而同构定理则可以应用于更广泛的代数结构, 包括环、域、模等。
群同态三大基本定理

群同态三大基本定理群同态三大基本定理是群论中的重要结果,包括同态基本定理、同构基本定理和同态映射定理。
这些定理对于研究群及其结构和性质具有重要意义。
本文将分别介绍和阐述这三大基本定理。
一、同态基本定理同态基本定理是群同态理论的基石,它表明了群同态的基本性质。
该定理断言,对于任意群G和H,如果存在一个由G到H的群同态φ,则G的核Ker(φ)是G的一个正规子群,且G/ Ker(φ)与φ(G)同构。
其中,核是指同态映射φ的零空间,即使得φ(g) = e_H的所有元素g构成的子集。
同态基本定理的证明思路是,首先证明Ker(φ)是G的一个正规子群,然后构造一个映射ψ: G/Ker(φ) → φ(G),通过ψ(gKer(φ)) = φ(g)将G/Ker(φ)的元素映射到φ(G)的元素,证明ψ是一个双射,并且保持群运算。
因此,G/Ker(φ)与φ(G)同构。
二、同构基本定理同构基本定理是群论中的一个重要结果,它给出了同构的判定条件。
该定理指出,如果存在一个双射φ: G → H,且满足φ(xy) = φ(x)φ(y),那么G与H是同构的。
换句话说,如果两个群之间存在一个双射,且保持群运算,那么这两个群是同构的。
同构基本定理的证明思路是,首先证明φ是一个同态映射,即φ(xy)= φ(x)φ(y)成立。
然后证明φ的逆映射存在,即存在一个映射ψ: H → G,使得ψ(φ(x)) = x和φ(ψ(y)) = y对于所有的x∈G和y∈H 成立。
最后,证明ψ也是一个同态映射,即ψ(xy) = ψ(x)ψ(y)成立。
因此,φ和ψ构成了G和H之间的同构关系。
三、同态映射定理同态映射定理是群同态理论中的一个重要结果,它给出了同态映射的性质。
该定理指出,如果φ: G → H是一个群同态,那么φ(G)是H的一个子群,且φ(G)的阶是G的核Ker(φ)的阶的整数倍。
同态映射定理的证明思路是,首先证明φ(G)是H的一个子群。
然后证明φ(G)的阶是G的核Ker(φ)的阶的整数倍。
19代数学基础(3)同态基本定理PPT课件

16
循环群的结构
定理: 设G是由a生成的循环群, 则 1.若ord(a)=∞, 则G≌(Z, +); 2.若ord(a)=n, 则G≌(Zn, +).
17
循环群的性质
• 循环群的子群为循环群; • 设G=<a>是一个m阶循环群, k是一个正整数,
则ord(ak) = m/(k,m).
提问与解答环节
1
群同态基本定理
2
群的同态与同构
• 如果存在群G到G’的映射f, 满足 f(ab)=f(a)f(b), 那么称f是G到G’的同态映射;
• 如果f是一个满射, 那么称G和G’同态, 记为G ~ G’;
• 如果f是一个双射, 那么称G和G’同构, 记为G ≌G’.
3
能否对一般的子群定义商群?
• H≤G • 定义: (aH)(bH) = (ab)H ?
19
• 群G/N称为G关于其正规子群N的商群.
9
群同态基本定理
• 定理: 设f: G1→G2是群的满同态映射, 记 Ker(f) = {a∈G1|f(a)=e, e为G2的单位元}, 那么:
1.Ker(f)⊳G1; 2.G1/Ker(f) ≌ G2.
10
例子
• f: Z →Zn, f(a) = a modn • ker(f)=nZ • Z/nZ≌ Zn
11
循环群
12
循环群
• 定义: 群G是称为一个循环群, 如果存在a∈G, 对任意的b ∈G, 都存在整数i , 使得b=ai. a称 为G的生成元. G称为由a生成的群.
• 记为G=<a>
13
例子(1)
• Zn • Zn=<1>
《群同态基本定理》课件

让我们一起探索群同态的基本定理,深入理解它的性质、定义和作用。
群同态的基本概念
什么是群?
群是一种代数结构,具有封 闭性、结合律、存在单位元 和逆元。
什么是同态?
同态是一种保持代数结构相 似性的映射。
群同态是什么?
群同态是一种满足特定条件 的群之间的同态映射。
群同态的性质
群同态基本定理
1
第一同构定理
如果f是G到H的一个满同态,那么同态核
第二同构定理
2
ker(f)为G的一个正规子群,而f(G)和 G/ker(f)同构。
如果N是G的一个正规子群,那么对于G的
任意子群H,NH/N和H/(N∩H)同构。
3
第三同构定理
如果N是G的一个正规子群,那么G/N的 子群全体与G的包含N的子群全体之间存 在一个一一对应。
电路设计
在电路设计中,群同态可用于设 计编码器和解码器。
群同态的定义
1 满性
2 保持运算
对于任何一个群H,同态f: G→H必须是一对一 的。
对于任何群元素x和y,同态f(x*y) = f(x) * f(y)。
3 保持单位元
4 保持逆元
f(e) = e',其中e是G的单位元,e'是H的单位元。
f(x^-1) = f(x)^-1。
群同态基本定理的证明
第一同构定理证明
证明有三部分:
1. 证明f(G)是H的子群; 2. 证明核心ker(f)是G的正
规子群; 3. 证明f(G)和G/ker(f)同构。
第二同构定理证明
通过证明两个同态,使得它们 的核分别为N和H∩N,利用第一 同构定理即可得证。
第三同构定理证明
代数结构与数理逻辑-群的同态与同态基本定理

❖ 一、群同态 ❖ 设有两个代数系统[S;*]与[T;•], 如果存在
到上映射 :ST,使得对任意的 a,bS, 有 : ( a*b)=(a)•(b), 称 [ S;*] 与 [ T;•] 两
个 系 统 同 态 。 如 果 是 双 射 , 则 [ S;*] 与 [T;•]同构。
a*a-1=a-1*a=e 则称 [S;*]为群。 带2个二元运算
❖作业P172 40, 41(1),(3),(5)
❖ 补充1.为群[G;*][G';•]的同态映射,则 [(G); •]为[G';•]的子群。
❖ 2.设是群G到G'的同态映射,证明: (1)若H是G的子群,则(H)也是G'的子群. (2)若H是G的正规子群,且是满同态映射,
故{1,1}的单位元1的象源不止一个。Ker是所有
{1,1}的单位元的象源全体所成的集合
❖ 定理:为群[G;*][G';•]的同态映射,则 (1)[Ker; *]为[G;*]的正规子群。 (2)为一对一当且仅当K={eG} (3)[(G); •]为[G';•]的子群。 ❖ 证明:(1)先证明Ker是子群 封闭:对任意a,bKer,有a*b?Ker,
❖ f(KaKb)=f(Ka)•f(Kb)
❖ (3) f是一一对应映射。 一对一 :即证若有f(Ka)=f(Kb),必有
Ka=Kb.
就是要证明a*b ❖ 推论:若为群[G;*]到群[G';•]的满同
态映射,则: [G/K;][G';•]
❖ 例:[R;+]是实数加法群,[Z;+]是整数加法 群,并且是[R;+]的正规子群。 W={ei|R},*为普通乘法群,则 [R/Z;][W;*]。
3。3同态基本定理

§3.3 群的同态基本定理1.定义;设,G G 是两个群,如果映射:G Gϕ→满足,,a b G ∀∈ 都有()()(),ab a b ϕϕϕ=则ϕ称是G 到G 的一个同态。
若ϕ分别是单射、满射、双射,则称ϕ是单同态,满同态和同构。
用GG≅表示G 到G 的同构。
定理1 设,NG 则GG N。
证明 在G 与G N 之间建立映射如下::GG Nτ→,()a aN τ=,a G ∀∈。
则显然τ是G 到G N 的一个满射。
又,a b G ∀∈,都有 ()()()()()()ab ab N aN bN a b τττ==⋅=, 即τ是G 到G N 的一个同态映射。
所以G G N 。
注:以后将上面的同态映射τ称为G 到G N 的自然同态。
核与像:设ϕ是群G 到群G 的一个同态映射,称 ker {|,()},Na a G a e ϕϕ==∈=为ϕ的核,其中e 为G 的单位元;称Im {()|}a a G ϕϕ=∀∈ 为ϕ的像。
定理2 (同态基本定理) 设ϕ是群G 到群G 的一个同态满射,则ker ,.GN G G Nϕ=≅ 且证明 首先,{}e G ,由上一节定理2有{}1ker -=N e G ϕϕ= 。
其次,在G N 与G 之间建立映射如下: :GGN σ→,()()aN aa σϕ==,a G ∀∈。
(1)设aNbN=,则1a b N -∈,于是1()a b e ϕ-=,即11()()a b a b e ϕϕ--==,从而ab=,即G N 中的每个赔集在σ下的像唯一,因此σ确为G N 到G 的一个映射。
(2)a G ∀∈,因为ϕ是满射,所以存在a G ∈,使得()a a ϕ=, 从而存在G aN N ∈,使得()aN a σ=,即σ是满射。
(3)设()()aN bN σσ=,即11()()()()()a b a b e a b eϕϕϕϕϕ--=⇒=⇒=,所以1ker a b N ϕ-∈=,从而aNbN=,即σ是单射。
同态基本定理与同构定理

第九节 同态基本定理与同构定理重点、难点:同态基本定理,满同态与子群的关系.一 同态基本定理前几节是研究一些定量的东西,下面我们来研究一些定性的东西.本节中的同态基本定理是群论中的研究基础.定理2.9.1 一个群G 与它的每一个商群N G /同态.证 令G a aN a N G G ∈∀→,;/: π显然π是G 到N G /的满射.G b a ∈∀,,)()())(()()(b a bN aN N ab ab πππ=== 故π是一个满同态.注1 定理2.9.1中的π称为自然同态;注2 自然同态π一定是满同态.利用子群来研究群本身,任意给定一个不变子群N ,有两个可以供我们参考的群: N 和N G /,由于0/→→→N G G N ,故更容易推测G 的性质.自然会问:定理2.9.1的逆命题是否成立?即0→'→G G ,G '是否与G 的某个商群是同构的呢?我们说是对的.首先有一个概念.定义2.9.1 设G G '→Φ:为一个群同态.e '为G '的单位元,集合})(|{e a G a Ker '=Φ∈=Φ称为同态映射Φ的核.注1 未必要求Φ为满射,但本书中同态均为满同态;注2 一个同态是单同态⇔G e Ker ⊆=}{φ.推论2.9.2 设π是N G G /→的自然同态,则N Ker =π.证 由于N G /的单位元是N ,则N N a G a N aN G a N a G a Ker =∈∈==∈==∈=}|{}|{})(|{ππ.定理2.9.3 (同态基本定理)设ϕ是群G 到群G '的一个同态满射,则(1)G Ker ϕ;(2)G Ker G '≅ϕ/.证 (1)由于φϕϕ≠⇒∈Ker Ker e .,,,G x Ker b a ∈∀∈∀ϕ则e b a '==)()(ϕϕ为G '的单位元.则e e e e e b a b a ab e e bb b b '='⋅'='⋅'===--'===----11)()()()(11)()()()()()(11ϕϕϕϕϕϕϕϕϕ 即G Ker Ker ab ≤⇒∈-ϕϕ1.又由于e x x x e x x a x xax '=='==----1111)()()()()()()()(ϕϕϕϕϕϕϕϕ,即G Ker Ker xax ϕϕ⇒∈-1.(2)令G a a aKer G Ker G ∈∀'→),(;/:ϕϕϕψ .下证ψ为一个同构映射:(ⅰ)ψ为映射:).()()()()(111b a e a b e a b Ker a b bKer aKer ϕϕϕϕϕϕϕϕ=⇒'=⇒'=⇒∈⇒=--- (ⅱ) ψ为满射:,,G a G a ∈∃'∈'∀使得a a aKer a a '==⇒'=)()()(ϕϕψϕ(ⅲ) ψ为单射:ϕϕϕKer G bKer aKer /,∈∀,则ϕϕϕϕϕϕϕψϕψbKer aKer Ker a b e a b b a bKer aKer =⇒∈⇒'=⇒⇒=--11)()()()()((ⅳ) ψ为一个同态:ϕϕϕKer G bKer aKer /,∈∀,则)()()()()()()(ϕψϕψϕϕϕϕψϕϕψbKer aKer b a ab abKer bKer aKer ====⋅.综上所述,G Ker G '≅ψϕ/. 注 一般地,设G G '→:ϕ为一个群同态,则⎩⎨⎧≅'≤ϕϕϕIm /Im Ker G G我们知道,群在一个群的满同态映射之下,一个群的若干性质会发生改变的,下面讨论哪些性质不发生变化.定义2.9.2 设A A →Φ:为集合之间的一个满射.(1) 设A S ⊆,记A S a a S ⊆∈Φ=Φ}|)({)(称为子集S 在Φ之下的像;(2)设A S '⊆',记})(|{)(1S a A a S '∈Φ∈='Φ-称为子集S '在Φ之下的逆像(或后像).注 一个不能多且一个不能少!定理2.9.4 设G G '→:ϕ是一个群之间的同态满射,(ⅰ),G H ≤∀ 则G H ≤)(ϕ;(ⅱ),G N ∀ 则G N )(ϕ;(ⅲ),G H ≤∀ 则G H ≤-)(1ϕ;(ⅳ),G N ∀ 则G N )(1-ϕ.证 (ⅰ)φϕφ≠⇒≠)(H H .b b a a t s H b a H b a ==∈∃⇒∈∀)(,)(..,,)(,ϕϕϕ, )()()()()()()(11111H b a b a b a b a Hb a ϕϕϕϕϕ∈⇒==-∈----,故G H ≤)(ϕ. (ⅱ).),(G x N a ∈∀∈∀ϕ 则⎩⎨⎧==∈∈∃a a x x t s G x N a )()(..,,ϕϕ .从而 )()()()()(111N xax x a x x a x ϕϕϕϕϕ∈==---,故G N )(ϕ.(ⅲ)由φϕ≠⇒≤-)(1H G H .()(1H e H e -∈⇒∈ϕ) )()()()()(),()(,11111H b a H b a H b a H b a H b a -----∈⇒∈⇒∈⇒∈⇒∈∀ϕϕϕϕϕϕϕ即G H ≤-)(1ϕ.(ⅳ),),(1G x N a ∈∀∈∀-ϕ则 )()()()()()(,)(1111N xax N xax N x a x G x N a G N ----∈⇒∈⇒∈⇒∈∈ϕϕϕϕϕϕϕ 故G N )(1-ϕ.注第(ⅰ)条不需要用道ϕ为满射.由(ⅳ)可知G e Ker )(1'=-ϕϕ.二 同构定理第一同构定理 设G G f '→:为群同态,则f G f Kerf G fIm )(/=≅ 第二同构定理(方块定理)H K H G HK G K G H ⋂≤⇒≤,,且有K H K H HK ⋂≅//.第三同构定理(分式定理) 设G K G H K ,≤≤,则①GH G H ⇔(K G G K H H /,/==) ② H G K H K G ≅.第四同构定理(对应定理) 设G G f '→:为群的满同态,则}{}|{11的子群G H Kerf G H −→←⊆≤- ;Kerf K K f K ≅)(且正规子群对应与正规子群.有兴趣的读者可以参考相关文献书籍.作业:Page 79 第2题,第3题。