应用运筹学复习卷
运筹学考试试题
运筹学考试试题一、选择题(每题2分,共10分)1. 线性规划的标准形式中,目标函数的系数应为:A. 正数B. 负数C. 任意非零数D. 零2. 在单纯形法中,如果某个非基变量的检验数大于零,则:A. 该变量不能进入基B. 该变量必须进入基C. 该变量的值可以增加D. 该变量的值可以减少3. 下列哪项不是运输问题的特殊矩阵?A. 平衡矩阵B. V型矩阵C. U型矩阵D. 散布矩阵4. 对于一个确定的线性规划问题,下列哪项是正确的?A. 只有一个最优解B. 有多个最优解C. 可能没有可行解D. 所有选项都是正确的5. 在动态规划中,状态转移方程的作用是:A. 确定初始状态B. 确定最终状态C. 确定中间状态D. 确定最优解二、简答题(每题5分,共20分)1. 简述单纯形法的基本步骤。
2. 解释什么是灵敏度分析,并说明其在运筹学中的应用。
3. 什么是网络流问题?请举例说明其在实际中的应用。
4. 描述动态规划的基本原理及其与分阶段决策过程的关系。
三、计算题(每题10分,共30分)1. 给定如下线性规划问题,请找出其最优解,并计算目标函数的最小值。
Maximize Z = 3x1 + 2x2Subject tox1 + 2x2 ≤ 103x1 + x2 ≤ 15x1, x2 ≥ 02. 考虑一个有三个仓库(A、B、C)和三个市场(D、E、F)的运输问题。
运输成本矩阵如下:| D E F ||--|--|--|A | 2 3 4 || B | 1 2 3 || C | 5 6 7 |每个仓库的供应量和每个市场的需求量如下:Supply/Demand: A: 10, B: 8, C: 5, D: 8, E: 10, F: 7使用北街角规则找出初始可行解。
3. 一个公司想要在三个城市(城市1、城市2、城市3)之间运输货物。
运输成本和需求量如下表所示:| 城市1 城市2 城市3 ||--|--|--|| 2 3 5 || 1 2 4 || 3 4 6 |需求量:城市1: 4, 城市2: 3, 城市3: 2请使用匈牙利算法解决此问题。
运筹学复习题——考试题
运筹学复习题——考试题《运筹学》复习题一、填空题(1分×10=10分)1.运筹学的主要研究对象就是(组织系统的管理问题)。
2.运筹学的核心主要就是运用(数学)方法研究各种系统的优化。
3.模型就是一件实际事物或现实情况的代表或抽象。
4.通常对问题中变量值的限制称为(约束条件),它可以表示成一个等式或不等式的集合。
5.运筹学研究与解决问题的基础就是(最优化技术),并强调系统整体优化功能。
6.运筹学用(系统)的观点研究(功能)之间的关系。
7.运筹学研究与解决问题的优势就是应用各学科交叉的方法,具有典型综合应用特性。
8.运筹学的发展趋势就是进一步依赖于计算机的应用与发展。
9.运筹学解决问题时首先要观察待决策问题所处的环境。
10.用运筹学分析与解决问题,就是一个科学决策的过程。
11.运筹学的主要目的在于求得一个合理运用人力、物力与财力的最佳方案。
12.运筹学中所使用的模型就是数学模型。
用运筹学解决问题的核心就是(建立数学模型),并对模型求解。
13.用运筹学解决问题时,要分析,定义待决策的问题。
14.运筹学的系统特征之一就是用系统的观点研究功能关系。
15.数学模型中,“s、t、”表示约束。
16.建立数学模型时,需要回答的问题有性能的客观量度,可控制因素,不可控因素。
17.运筹学的主要研究对象就是各种有组织系统的管理问题及经营活动。
18、1940年8月,英国管理部门成立了一个跨学科的11人的运筹学小组,该小组简称为OR。
19.线性规划问题就是求一个(线性目标函数),在一组(线性约束)条件下的极值问题。
20.图解法适用于含有两个变量的线性规划问题。
21.线性规划问题的可行解就是指满足所有约束条件的解。
22.在线性规划问题的基本解中,所有的(非基变量)等于零。
23.在线性规划问题中,基可行解的非零分量所对应的列向量线性无关24.若线性规划问题有最优解,则最优解一定可以在可行域的顶点(极点)达到。
25.线性规划问题有可行解,则必有基可行解。
运筹学考试试题
运筹学考试试题一、选择题(每题 5 分,共 25 分)1、线性规划问题的可行域是()A 凸集B 凹集C 无界集合D 空集2、下列哪种情况不能用单纯形法求解线性规划问题()A 存在无界解B 存在唯一最优解C 存在无穷多最优解D 无可行解3、对于运输问题,若总产量等于总销量,则一定存在()A 唯一最优解B 无穷多最优解C 无界解D 最优解4、在动态规划中,以下说法正确的是()A 最优策略的子策略一定是最优的B 状态转移方程是唯一的C 阶段数是固定的D 决策变量的取值是连续的5、排队论中,M/M/1 排队系统的平均队长 Lq 为()A λ/(μ λ)B λ^2/(μ(μ λ))C (λ/μ)^2D (λ/μ)/(1 λ/μ)二、填空题(每题 5 分,共 25 分)1、线性规划问题的标准形式中,约束条件为_____。
2、求解整数规划问题的方法有_____、_____等。
3、运输问题中,若产销平衡,且单位运价表中每行每列都有一个零元素,则最优解中一定有_____个数字格。
4、用分支定界法求解整数规划问题时,若子问题无可行解,则该子问题对应的上界值为_____。
5、在存储论中,不允许缺货,生产时间很短的模型称为_____模型。
三、简答题(每题 10 分,共 20 分)1、简述单纯形法的基本思想和计算步骤。
答:单纯形法的基本思想是从可行域的一个顶点(基本可行解)开始,按照一定的规则转移到另一个顶点,使得目标函数值不断改进,直到找到最优解或判定无最优解。
计算步骤如下:(1)将线性规划问题化为标准形式。
(2)找出一个初始可行基,得到一个初始基本可行解。
(3)检验当前基本可行解是否最优。
如果是,则停止计算;否则,进行换基迭代。
(4)确定换入变量和换出变量。
(5)进行换基运算,得到新的基本可行解,返回步骤3 继续检验。
2、简述动态规划的基本思想和求解步骤。
答:动态规划的基本思想是将多阶段决策问题转化为一系列相互关联的单阶段决策问题,通过求解每个单阶段决策问题的最优解,从而得到整个多阶段决策问题的最优解。
运筹学复习题目加答案
一、单选题1.目标函数取极小(minZ )的线性规划问题可以转化为目标函数取极大的线性规划问题求解,原问题的目标函数值等于( )。
A. maxZB. max(-Z)C. –max(-Z)D.-maxZ2. 下列说法中正确的是( )。
A .基本解一定是可行解B .基本可行解的每个分量一定非负C .若B 是基,则B 一定是可逆D .非基变量的系数列向量一定是线性相关的3.在线性规划模型中,没有非负约束的变量称为 ( )A.多余变量 B .松弛变量 C .人工变量 D .自由变量4. 当满足最优解,且检验数为零的变量的个数大于基变量的个数时,可求得( )。
A .多重解B .无解C .正则解D .退化解 5.对偶单纯型法与标准单纯型法的主要区别是每次迭代的基变量都满足最优检验但不完全满足 ( )。
A .等式约束B .“≤”型约束C .“≥”约束D .非负约束6. 原问题的第i个约束方程是“=”型,则对偶问题的变量i y 是( )。
A .多余变量B .自由变量C .松弛变量D .非负变量7.在运输方案中出现退化现象,是指数字格的数目( )。
A.等于m+nB.大于m+n-1C.小于m+n-1D.等于m+n-1二、判断题1.线性规划问题的一般模型中不能有等式约束。
2.对偶问题的对偶一定是原问题。
3.产地数与销地数相等的运输问题是产销平衡运输问题。
4.对于一个动态规划问题,应用顺推或逆解法可能会得出不同的最优解。
5.线性规划问题的每一个基本可行解对应可行域上的一个顶点。
6.线性规划问题的基本解就是基本可行解。
三、填空题1.如果某一整数规划:MaxZ=X 1+X 2 X 1+9/14X 2≤51/14 -2X 1+X 2≤1/3X 1,X 2≥0且均为整数所对应的线性规划(松弛问题)的最优解为X 1=3/2,X 2=10/3,MaxZ=6/29,我们现在要对X 1进行分枝,应该分为 和 。
2.如希望I 的2 倍产量21x 恰好等于II 的产量2x ,用目标规划约束可表为:3. 线性规划解的情形有4. 求解指派问题的方法是 。
运筹学复习资料_普通用卷
运筹学课程一单选题 (共170题,总分值170分 )1. 约束矩阵A中任何一组m个线性无关的列向量构成的子矩阵称为该问题的一个( )(1 分)A. 基B. 最优解C. 基本解D. 基向量2. 线性规划的标准型中P称为( )(1 分)A. 技术向量B. 价值向量C. 资源向量D. 约束矩阵3. 决策问题的构成要素不包含()(1 分)A. 决策者B. 策略C. 收益D. 约束4. 去掉整数约数条件后得到的线性规划称为原整数规划的()(1 分)A. 松弛问题B. 增益问题C. 对偶问题D. 反问题5. X、Y分别是原问题和对偶问题的可行解,且,则X、Y分别是原问题和对偶问题的( ) (1 分)A. 基本可行解B. 最优解C. 基本解D. 不知6. A是m×n矩阵,则共有多少个非基向量( )(1 分)A. m×nB. mC. nD. n-m7. 约束矩阵A中任何一组m个线性无关的列向量构成的子矩阵称为该问题的一个( ) (1 分)A. 基B. 最优解C. 基本解D. 基向量8. 在排队系统的符号表示[A/;/;]:[;/E/F]中,A对应的是()(1 分)A. 顾客到达的时间间隔B. 分布服务时间的分布C. 服务台数D. 顾客源总体数目9. 下面不属于决策类型的是()(1 分)A. 战略决策B. 非常决策C. 静态决策D. 动态决策10. Kruskal算法属于哪种思路的方法()(1 分)A. 破圈B. 避圈C. 智能搜索D. 枚举11. 不属于按问题性质和条件分类的决策类型是()(1 分)A. 确定性决策B. 非确定决策C. 连续性决策D. 风险性决策12. 哪个不是常用的存贮策略有()(1 分)A. T-循环策略B. (s,S)策略C. (s,Q)策略D. (T,s,S)策略13. 线性规划在转化标准型时,转换约束条件时新增非负变量称为( )(1 分)A. 决策变量B. 松弛变量C. 资源变量D. 凸变量14. 线性规划问题的可行域是( ) (1 分)A. 四边形B. 凸集C. 不规则形D. 任意集15. 对于无后效性的多阶段决策过程,系统由阶段k到阶段k+1的状态转移方程是()(1 分)A.B.C.D.16. 1947年谁得到了线性规划的单纯形法( )(1 分)A. ErlangB. HarrisC. ShewhartD. Dantzig17. 图G中既无环又无平行边,则称作()(1 分)A. 有向图B. 简单图C. 初级图: 子图18. 在排队系统的符号表示[A/B/C]:[D/E/F]中,A对应的是()。
运筹学试题及答案
运筹学试题及答案大家不妨来看看小编推送的运筹学试题及答案,希望给大家带来帮助!《运筹学》复习试题及答案(一)一、填空题1、线性规划问题是求一个线性目标函数_在一组线性约束条件下的极值问题。
2、图解法适用于含有两个变量的线性规划问题。
3、线性规划问题的可行解是指满足所有约束条件的解。
4、在线性规划问题的基本解中,所有的非基变量等于零。
5、在线性规划问题中,基可行解的非零分量所对应的列向量线性无关6、若线性规划问题有最优解,则最优解一定可以在可行域的顶点(极点)达到。
7、线性规划问题有可行解,则必有基可行解。
8、如果线性规划问题存在目标函数为有限值的最优解,求解时只需在其基可行解_的集合中进行搜索即可得到最优解。
9、满足非负条件的基本解称为基本可行解。
10、在将线性规划问题的一般形式转化为标准形式时,引入的松驰数量在目标函数中的系数为零。
11、将线性规划模型化成标准形式时,“≤”的约束条件要在不等式左_端加入松弛变量。
12、线性规划模型包括决策(可控)变量,约束条件,目标函数三个要素。
13、线性规划问题可分为目标函数求极大值和极小_值两类。
14、线性规划问题的标准形式中,约束条件取等式,目标函数求极大值,而所有变量必须非负。
15、线性规划问题的基可行解与可行域顶点的关系是顶点多于基可行解16、在用图解法求解线性规划问题时,如果取得极值的等值线与可行域的一段边界重合,则这段边界上的一切点都是最优解。
17、求解线性规划问题可能的结果有无解,有唯一最优解,有无穷多个最优解。
18、19、如果某个变量Xj为自由变量,则应引进两个非负变量Xj , Xj,同时令Xj=Xj- Xj。
20、表达线性规划的简式中目标函数为ijij21、、(2、1 P5))线性规划一般表达式中,aij表示该元素位置在二、单选题1、如果一个线性规划问题有n个变量,m个约束方程(m<n),系数矩阵的数为m,则基可行解的个数最为_C_。
运筹学试卷及参考答案
运筹学试卷及参考答案运筹学试卷一、选择题(每小题2分,共20分)1、下列哪个不是线性规划的标准形式?() A. min z = 3x1 + 2x2B. max z = -4x1 - 3x2C. s.t. 2x1 - x2 <= 1D. s.t. x1 + x2 >= 0答案:C2、以下哪个是最小生成树的Prim算法?() A. 按照权值从小到大的顺序选择顶点 B. 按照权值从大到小的顺序选择顶点 C. 按照距离从小到大的顺序选择顶点 D. 按照距离从大到小的顺序选择顶点答案:B3、下列哪个不是网络流模型的典型应用?() A. 道路交通流量优化 B. 人员部署 C. 最短路径问题 D. 生产计划答案:C4、下列哪个是最小化问题中常用的动态规划解法?() A. 自顶向下的递推求解 B. 自底向上的递推求解 C. 分治算法 D. 回溯法答案:A5、下列哪个是最大流问题的 Ford-Fulkerson 算法?() A. 增广路径的寻找采用深度优先搜索 B. 增广路径的寻找采用广度优先搜索 C. 初始流采用最大边的二分法求解 D. 初始流采用最小边的二分法求解答案:B二、简答题(每小题10分,共40分)1、请简述运筹学在现实生活中的应用。
答案:运筹学在现实生活中的应用非常广泛。
例如,线性规划可以用于生产计划、货物运输和资源配置等问题;网络流模型可以用于解决道路交通流量优化、人员部署和生产计划等问题;动态规划可以用于解决最短路径、货物存储和序列安排等问题;图论模型可以用于解决最大流、最短路径和最小生成树等问题。
此外,运筹学还可以用于医疗资源管理、金融风险管理、军事战略规划等领域。
总之,运筹学的理论和方法可以帮助人们更好地解决实际生活中的问题,提高决策的效率和准确性。
2、请简述单纯形法求解线性规划的过程。
答案:单纯形法是一种求解线性规划问题的常用方法。
它通过不断迭代和修改可行解,最终找到最优解。
具体步骤如下: (1) 将线性规划问题转化为标准形式; (2) 根据标准形式构造初始可行基,通常选取一个非基变量,使其取值为零,其余非基变量的取值均为零; (3) 根据目标函数的系数,计算出目标函数值; (4) 通过比较目标函数值和已选取的非基变量的取值,选取最优的非基变量进行迭代; (5) 在迭代过程中,不断修正基变量和非基变量的取值,直到找到最优解或确定无解为止。
《运筹学》课程考试试卷试题(含答案)
《运筹学》课程考试试卷试题(含答案)一、选择题(每题5分,共25分)1. 运筹学的核心思想是()A. 最优化B. 系统分析C. 预测D. 决策答案:A2. 在线性规划中,约束条件可以用()表示。
A. 等式B. 不等式C. 方程组D. 矩阵答案:B3. 以下哪个不是运筹学的基本模型?()A. 线性规划B. 整数规划C. 非线性规划D. 随机规划答案:D4. 在目标规划中,以下哪个术语描述的是决策变量的偏离程度?()A. 目标函数B. 约束条件C. 偏差变量D. 权重系数答案:C5. 在动态规划中,以下哪个概念描述的是在决策过程中,某一阶段的最优决策对后续阶段的影响?()A. 最优子结构B. 无后效性C. 最优性原理D. 阶段性答案:B二、填空题(每题5分,共25分)1. 运筹学是一门研究在复杂系统中的______、______和______的科学。
答案:决策、优化、实施2. 在线性规划中,若目标函数为最大化,则其标准形式为______。
答案:max z = c^T x3. 在非线性规划中,若目标函数和约束条件均为凸函数,则该规划问题为______。
答案:凸规划4. 在目标规划中,若决策变量x_i的权重系数为w_i,则目标函数可以表示为______。
答案:min Σ(w_i d_i^+ + w_i d_i^-)5. 在动态规划中,若状态变量为s_n,决策变量为u_n,则状态转移方程可以表示为______。
答案:s_{n+1} = f(s_n, u_n)三、判断题(每题5分,共25分)1. 线性规划问题的最优解一定在可行域的顶点处取得。
()答案:正确2. 在整数规划中,若决策变量为整数,则目标函数和约束条件也必须为整数。
()答案:错误3. 目标规划中的偏差变量可以是负数。
()答案:正确4. 在动态规划中,最优策略具有最优子结构。
()答案:正确5. 在非线性规划中,若目标函数为凸函数,则约束条件也必须为凸函数。
运筹学考试试卷及答案
运筹学考试试卷及答案一、选择题(每题2分,共20分)1. 线性规划问题的标准形式是:A. 所有变量都非负B. 目标函数是最大化C. 所有约束条件都是等式D. 所有约束条件都是不等式答案:A2. 单纯形法中,如果某个变量的检验数为负数,那么:A. 该变量可以增大B. 该变量可以减小C. 该变量保持不变D. 该变量不能进入基答案:A3. 在运输问题中,如果某种资源的供应量大于需求量,那么应该:A. 增加供应量B. 减少需求量C. 增加需求量D. 减少供应量答案:C4. 动态规划的基本原理是:A. 递归B. 迭代C. 回溯D. 分解答案:D5. 决策树中,每个节点代表:A. 一个决策B. 一个状态C. 一个结果D. 一个概率答案:A6. 排队论中,M/M/1队列的特点是:A. 到达时间服从泊松分布,服务时间服从指数分布,且只有一个服务台B. 到达时间服从指数分布,服务时间服从泊松分布,且只有一个服务台C. 到达时间服从泊松分布,服务时间服从指数分布,且有两个服务台D. 到达时间服从指数分布,服务时间服从泊松分布,且有两个服务台答案:A7. 网络流问题中,最大流最小割定理说明:A. 最大流等于最小割B. 最大流小于最小割C. 最大流大于最小割D. 最大流与最小割无关答案:A8. 整数规划问题中,分支定界法的基本思想是:A. 将问题分解为多个子问题B. 将问题转化为线性规划问题C. 将问题转化为非线性规划问题D. 将问题转化为动态规划问题答案:A9. 在多目标决策中,如果目标之间存在冲突,通常采用的方法是:A. 目标排序B. 目标加权C. 目标合并D. 目标替换答案:B10. 敏感性分析的目的是:A. 确定最优解的稳定性B. 确定最优解的唯一性C. 确定最优解的可行性D. 确定最优解的最优性答案:A二、填空题(每题2分,共20分)1. 线性规划问题的可行域是由所有_________约束条件构成的集合。
答案:可行2. 在单纯形法中,如果目标函数的系数都是正数,则该问题为_________问题。
《 运筹学》复习题
《运筹学》复习题一、单项选择题1、()运筹学的主要内容包括: [单选题] *A.线性规划B.非线性规划C.存贮论D.以上都是(正确答案)2、()下面是运筹学的实践案例的是: [单选题] *A.丁谓修宫B.田忌赛马C.二战间,英国雷达站与防空系统的协调配合D.以上都是(正确答案)5、()运筹学模型: [单选题] *A.在任何条件下均有效B.只有符合模型的简化条件时才有效(正确答案)C.可以解答管理部门提出的任何问题D.是定性决策的主要工具8、()图解法通常用于求解有()个变量的线性规划问题。
[单选题] *A.1B.2(正确答案)C.4D.510、 (D)将线性规划问题转化为标准形式时,下列说法不正确的是: [单选题] *A.如为求z的最小值,需转化为求-z的最大值(正确答案)B.如约束条件为≤,则要增加一个松驰变量C.如约束条件为≥,则要减去一个剩余变量D.如约束条件为=,则要增加一个人工变量12、()关于主元的说法不正确的是: [单选题] *A.主元所在行称为主元行B.主元所在列称为主元列C.主元列所对应非基变量为进基变量D.主元素可以为零(正确答案)13、()求解线性规划的单纯形表法中所用到的变换有: [单选题] *A.两行互换B.两列互换C.将某一行乘上一个不为0的系数(正确答案)D.都正确14、()矩阵的初等行变换不包括的形式有: [单选题] *A. 将某一行乘上一个不等于零的系数B.将任意两行互换C. 将某一行乘上一个不等于零的系数再加到另一行上去D.将某一行加上一个相同的常数(正确答案)17、()关于标准线性规划的特征,哪一项不正确: [单选题] *A.决策变量全≥0B.约束条件全为线性等式C.约束条件右端常数无约束(正确答案)D.目标函数值求最大18、()线性规划的数学模型的组成部分不包括: [单选题] *A.决策变量B.决策目标函数C.约束条件D.计算方法(正确答案)19、()如果在线性规划标准型的每一个约束方程中各选一个变量,它在该方程中的系数为1,在其它方程中系数为零,这个变量称为: [单选题] *A.基变量(正确答案)B.决策变量C.非基变量D.基本可行解21、 (C)关于线性规划的最优解判定,说法不正确的是: [单选题] *A.如果是求最小化值,则所有检验数都小于等于零的基可行解是最优解。
运筹学试题及答案
运筹学试题及答案考试时间:120分钟命题人:XXX一、选择题(共60分)1. 运筹学的核心思想是:A. 尽可能地满足需求B. 确定最优决策C. 提高运营效率D. 预测未来趋势答案:B2. 下列哪个不是运筹学的应用领域?A. 生产调度B. 金融风险管理C. 市场营销D. 交通规划答案:C3. 线性规划是研究下列问题的数学方法:A. 最大化目标函数B. 最小化目标函数C. 求解等式系统D. 优化约束条件答案:D4. 整数规划是线性规划的扩展,其特点是:A. 变量只能取整数值B. 变量可以取任意实数值C. 目标函数必须是整数D. 约束条件必须是整数答案:A5. 运筹学中的最短路径问题是指:A. 在有向图中找到从起点到终点的最短路径B. 在无向图中找到连接所有节点的最短路径C. 在网络中找到连接所有节点的最短路径D. 在带权图中找到权值最小的路径答案:A二、计算题(共40分)1. 某工厂有3个生产车间,分别需要完成4个任务。
完成每个任务所需时间如下:车间1:10小时车间2:8小时车间3:6小时为了提高效率,每个车间只能同时进行一个任务。
请问应如何分配任务,才能使得所有任务完成的时间最短?答案:将任务按照时间从大到小排序分配,先将任务分配给车间1和车间2,然后再将任务分配给车间3。
具体分配如下:车间1:10小时(任务1)车间2:8小时(任务2)车间3:6小时(任务3)车间1:18小时(任务1+任务4)车间2:16小时(任务2+任务4)车间3:12小时(任务3)总时间为18小时。
2. 某物流公司需要将货物从发货仓库A送至目的地仓库B。
货物可通过3条不同的路径运送,分别需要的运输时间为:路径1:6小时路径2:8小时路径3:10小时若考虑各路径的运输成本,路径1的运输成本为100元/小时,路径2的运输成本为150元/小时,路径3的运输成本为120元/小时。
请问应如何选择路径,使得运输成本最低?答案:计算各路径的单位成本,并选择单位成本最低的路径。
运筹学复习题
运筹学补考复习题一、判断题(每小题2.5分,共计50分)1.求目标函数最小值问题不可能转换为求目标函数最大值问题。
(×)2.不平衡运输问题不一定有最优解。
(×)3.部分变量要求是整数的规划问题称为纯整数规划。
(×)4.在任一图G中,当点集V确定后,树图是G中边数最少的连通图。
(√)5.对于一个动态规划问题,应用顺推或者逆推解法可能会得出不同的最优解。
(×)6.排队系统中,顾客等待时间的分布不受排队服务规则的影响。
(×)7.在折中主义准则中,乐观系数a的确定与决策者对风险的偏好有关。
(√)8.用层次分析法解决问题,构造好问题的层次结构图是解决问题的关键。
(√)9.目标规划模型中的目标函数按问题要求分别表示为求min或max。
(×)10.所谓主观概率基本上是对事件发生可能性做出的一种主观猜想和臆测,缺乏必要科学依据。
(×)11.任何线性规划问题一定有最优解.(×)12.若运输问题中的产量和销量为整数,则其最优解也一定为整数.(×)13.整数规划的可行解集合是离散型集合.(√)14.求网络最大流的问题可归结为求解一个线性规划模型.(√)15.在动态规划模型中,问题的阶段数等于问题中子问题的数目.(√)16.若到达排队系统的顾客为泊松流,则依次到达的两名顾客之间的间隔时间服从负指数分布.(√)17.风险情况下采用EMV决策准则的前提是决策应重复相当大的次数.(√)18.根据决策者对物体之间两两相比的关系,主观做出比值的判断,这样得到的矩阵称作判断矩阵.(√)19.目标规划的目标函数中既包含决策变量,又包含偏差变量.(×)20.先验概率和后验概率是相对的概念.如对先验概率在调查后进行修正得到的后验概率,再次调查修正,则修正前的后验概率又成了先验概率.(√)二、选择题(每小题2.5分,共50分)1.关于互为对偶的两个模型的解的存在情况,下列说法不正确的是( C )。
运筹学复习题——考试题
《运筹学》复习题一、填空题(1分×10=10分)1.运筹学的主要研究对象是(组织系统的管理问题)。
2.运筹学的核心主要是运用(数学)方法研究各种系统的优化。
3.模型是一件实际事物或现实情况的代表或抽象。
4.通常对问题中变量值的限制称为(约束条件),它可以表示成一个等式或不等式的集合。
5.运筹学研究和解决问题的基础是(最优化技术),并强调系统整体优化功能。
6.运筹学用(系统)的观点研究(功能)之间的关系。
7.运筹学研究和解决问题的优势是应用各学科交叉的方法,具有典型综合应用特性。
8.运筹学的发展趋势是进一步依赖于计算机的应用和发展。
9.运筹学解决问题时首先要观察待决策问题所处的环境。
10.用运筹学分析与解决问题,是一个科学决策的过程。
11.运筹学的主要目的在于求得一个合理运用人力、物力和财力的最佳方案。
12.运筹学中所使用的模型是数学模型。
用运筹学解决问题的核心是(建立数学模型),并对模型求解。
13.用运筹学解决问题时,要分析,定义待决策的问题。
14.运筹学的系统特征之一是用系统的观点研究功能关系。
15.数学模型中,“s.t.”表示约束。
16.建立数学模型时,需要回答的问题有性能的客观量度,可控制因素,不可控因素。
17.运筹学的主要研究对象是各种有组织系统的管理问题及经营活动。
18. 1940年8月,英国管理部门成立了一个跨学科的11人的运筹学小组,该小组简称为OR。
19.线性规划问题是求一个(线性目标函数),在一组(线性约束)条件下的极值问题。
20.图解法适用于含有两个变量的线性规划问题。
21.线性规划问题的可行解是指满足所有约束条件的解。
22.在线性规划问题的基本解中,所有的(非基变量)等于零。
23.在线性规划问题中,基可行解的非零分量所对应的列向量线性无关24.若线性规划问题有最优解,则最优解一定可以在可行域的顶点(极点)达到。
25.线性规划问题有可行解,则必有基可行解。
26.如果线性规划问题存在目标函数为有限值的最优解,求解时只需在其基可行解的集合中进行搜索即可得到最优解。
运筹学考试题
运筹学考试题一、选择题(每题2分,共10分)1. 运筹学的主要目标是:A. 最大化利润B. 最小化成本C. 优化决策D. 以上都是2. 线性规划问题的解的特性是:A. 唯一最优解B. 多个最优解C. 无界解D. 可能无解3. 动态规划主要用于解决:A. 线性问题B. 非线性问题C. 静态问题D. 多阶段决策问题4. 在整数规划中,决策变量必须是:A. 连续的B. 离散的C. 非负的D. 正整数5. 运输问题通常使用哪种方法求解:A. 单纯形法B. 动态规划C. 整数规划D. Vogel's近似法二、填空题(每题2分,共10分)1. 运筹学中,_________方法是一种通过逐步逼近最优解的方法。
2. 在运筹学中,目标函数表示了决策方案的_________或_________。
3. _________图是一种用于求解最大流最小割问题的图形化方法。
4. 排队论主要研究等待服务的对象的_________和_________。
5. 多目标决策分析中,常用的决策方法是_________法和_________法。
三、简答题(每题10分,共30分)1. 请简述单纯形法的基本思想及其在解决线性规划问题中的应用。
2. 描述动态规划的基本步骤,并给出一个实际问题的例子说明其应用。
3. 解释整数规划的概念,并讨论其在实际问题中的重要性。
四、计算题(每题20分,共40分)1. 某工厂生产两种产品A和B,每个单位产品A的利润为20元,每个单位产品B的利润为30元。
生产一个产品A需要2小时的加工时间和1小时的装配时间,生产一个产品B需要3小时的加工时间和2小时的装配时间。
工厂每天有16小时的加工时间和12小时的装配时间,请使用线性规划方法确定每天生产多少个产品A和B以最大化利润。
2. 一个项目需要采购材料,有两种供应商可供选择。
供应商X提供的材料单价为100元,供应商Y提供的材料单价为80元。
项目需要至少采购200个单位的材料,且供应商X最多只能提供100个单位。
运筹学复习试题和参考答案解析
《运筹学》一、判断题:在下列各题中,你认为题中描述的内容为正确者,在题尾括号内写“T”,错误者写“F”。
1. T2. F3. T4.T5.T6.T7. F8. T9. F10.T 11. F 12. F 13.T 14. T 15. F1. 线性规划问题的每一个基本可行解对应可行域的一个顶点。
( T )2. 用单纯形法求解一般线性规划时,当目标函数求最小值时,若所有的检验数C j-Z j≤0,则问题达到最优。
( F )3. 若线性规划的可行域非空有界,则其顶点中必存在最优解。
( T )4. 满足线性规划问题所有约束条件的解称为可行解。
( T )5. 在线性规划问题的求解过程中,基变量和非机变量的个数是固定的。
( T )6. 对偶问题的对偶是原问题。
( T )7. 在可行解的状态下,原问题与对偶问题的目标函数值是相等的。
( F )8. 运输问题的可行解中基变量的个数不一定遵循m+n-1的规则。
( T )9. 指派问题的解中基变量的个数为m+n。
( F )10. 网络最短路径是指从网络起点至终点的一条权和最小的路线。
( T )11. 网络最大流量是网络起点至终点的一条增流链上的最大流量。
( F)12. 工程计划网络中的关键路线上事项的最早时间和最迟时间往往是不相等。
( F )13. 在确定性存贮模型中不许缺货的条件下,当费用项目相同时,生产模型的间隔时间比订购模型的间隔时间长。
(T )14. 单目标决策时,用不同方法确定的最佳方案往往是不一致的。
( T )15. 动态规则中运用图解法的顺推方法和网络最短路径的标号法上是一致的。
( F )二、单项选择题1.A2.B3.D4.B5.A6.C7.B8.C9. D 10.B11.A 12.D 13.C 14.C 15.B1、对于线性规划问题标准型:maxZ=CX, AX=b, X≥0, 利用单纯形法求解时,每作一次迭代,都能保证它相应的目标函数值Z必为( A )。
运筹学试题及答案4套
运筹学试题及答案4套《运筹学》试卷一一、(15分)用图解法求解下列线性规划问题二、(20分)下表为某求极大值线性规划问题的初始单纯形表及迭代后的表,、为松弛变量,试求表中到的值及各变量下标到的值。
-1311611-2002-111/21/21407三、(15分)用图解法求解矩阵对策,其中四、(20分)(1)某项工程由8个工序组成,各工序之间的关系为工序a b c d e f g h 紧前工序——a a b,c b,c,d b,c,d e试画出该工程的网络图。
(2)试计算下面工程网络图中各事项发生的最早、最迟时间及关键线路(箭线下的数字是完成该工序的所需时间,单位:天)五、(15分)已知线性规划问题其对偶问题最优解为,试根据对偶理论求原问题的最优解。
六、(15分)用动态规划法求解下面问题:七、(30分)已知线性规划问题用单纯形法求得最优单纯形表如下,试分析在下列各种条件单独变化的情况下,最优解将如何变化。
2 -1 1 0 02 3 11311111610 0 -3 -1 -2 0(1)目标函数变为;(2)约束条件右端项由变为;(3)增加一个新的约束:八、(20分)某地区有A、B、C三个化肥厂向甲、乙、丙、丁四个销地供应同一种化肥,已知产地产量、销地需求量和各产地运往不同销地单位运价如下表,试用最小元素法确定初始调运方案,并调整求最优运输方案销地产地甲乙丙丁产量A41241116B2103910C8511622需求量814121448《运筹学》试卷二一、(20分)已知线性规划问题:(a)写出其对偶问题;(b)用图解法求对偶问题的解;(c)利用(b)的结果及对偶性质求原问题的解。
二、(20分)已知运输表如下:销地产地B1B2B3B4供应量A1503 2 7 6A275 2 360A3 2 5 4 5 25需求量60 40 20 15(1)用最小元素法确定初始调运方案;(2)确定最优运输方案及最低运费。
运筹学期末试题及答案
运筹学期末试题及答案一、单项选择题(每题2分,共20分)1. 线性规划的最优解一定在可行域的哪个位置?A. 边界上B. 内部C. 顶点D. 不确定答案:A2. 动态规划的基本原理是什么?A. 贪心算法B. 分而治之C. 动态规划D. 回溯算法答案:B3. 整数规划问题中,变量的取值范围是?A. 连续的B. 离散的C. 整数D. 任意实数答案:C4. 以下哪个不是网络流问题?A. 最短路径问题B. 最大流问题C. 旅行商问题D. 线性规划问题答案:D5. 用单纯形法求解线性规划问题时,如果目标函数的系数矩阵是奇异的,则会出现什么情况?A. 无解B. 多解C. 无界解D. 有唯一解答案:C6. 以下哪个算法不是启发式算法?A. 遗传算法B. 模拟退火算法C. 动态规划D. 贪心算法答案:C7. 以下哪个是多目标优化问题?A. 只有一个目标函数B. 有多个目标函数C. 目标函数是线性的D. 目标函数是凸的答案:B8. 以下哪个是确定性决策方法?A. 决策树B. 随机模拟C. 蒙特卡洛方法D. 马尔可夫决策过程答案:A9. 以下哪个是排队论中的基本概念?A. 服务时间B. 到达率C. 队列长度D. 以上都是答案:D10. 以下哪个是存储论中的基本概念?A. 订货点B. 订货周期C. 订货量D. 以上都是答案:D二、多项选择题(每题3分,共15分)1. 以下哪些是线性规划问题的解?A. 可行解B. 基本解C. 基本可行解D. 非基本解答案:ABC2. 以下哪些是整数规划问题的解?A. 整数解B. 混合整数解C. 连续解D. 非整数解答案:AB3. 以下哪些是动态规划的步骤?A. 确定状态B. 确定决策C. 确定状态转移方程D. 确定目标函数答案:ABC4. 以下哪些是排队论中的基本概念?A. 到达过程B. 服务过程C. 等待时间D. 服务台数量答案:ABCD5. 以下哪些是图论中的基本概念?A. 节点B. 边C. 路径D. 环答案:ABCD三、简答题(每题5分,共20分)1. 请简述线性规划的几何意义。
运筹学考试试题
运筹学考试试题一、选择题(每题2分,共20分)1、运筹学的创立时间是在()A. 1900年B. 1910年C. 1920年D. 1930年答案:D. 1930年2、下列哪一位学者不属于运筹学的创始人?()A.贝尔曼B.丹捷格C.哈恩D.朱世博答案:D.朱世博3、最优解是()A.使目标函数值最大的解B.使目标函数值最小的解C.使约束条件成立的解D.使目标函数和约束条件同时成立的解答案:A.使目标函数值最大的解4、下列哪一项不是线性规划的应用领域?()A.生产计划B.金融规划C.交通运输D.社会科学研究答案:D.社会科学研究5、对于一个线性规划问题,如果存在可行解,则一定存在()A.最优解B.基可行解C.唯一解D.非可行解答案:B.基可行解二、填空题(每题3分,共30分)6.运筹学的主要研究内容包括_________、_________、_________、_________等五大领域。
答案:数学规划、图论、线性规划、排队论、对策论等五大领域。
7.在运筹学中,我们将_________称为系统的“输入”,将_________称为系统的“输出”。
答案:系统的各种资源、系统的各种活动等称为系统的“输入”,将系统的各种目标、系统的各种效果等称为系统的“输出”。
8.在运筹学中,_________是指对系统进行科学、合理、有效地筹划和安排,以便使系统能够更好地实现其目标。
答案:运筹帷幄运筹学典型考试试题及答案以下是一些运筹学的典型考试试题以及它们的答案:试题一:线性规划问题假设有一个工厂,它有两个生产部门,每个部门都可以生产两种产品。
每种产品的生产量取决于部门的员工数量、设备的可用性以及原材料的供应量。
现在,我们需要确定每个部门应生产多少每种产品以最大化总收入。
答案:这是一个线性规划问题。
我们可以通过构建一个线性规划模型来解决这个问题。
设x1和x2为每个部门生产的两种产品的数量,y 为每个部门的员工数量,z为每个部门的设备可用性,w为每个部门的原材料供应量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
研究生应用运筹学复习试卷一.问答题1. 左边图1能否一笔画出?为什么?2. 用单纯型法求解极大化线性规划时,当检验数σj 满足什么条件时,所得解为最优解?当检验数σj 满足什么条件时,线性规划所得解为有无穷多最优解之一?3. 某一求目标函数极大值线性规划用单纯形法求解得到的某一步的单纯形表如下:x 1和x 2为非人工变量,问(1)当c 、d 满足什么条件时,表中解为惟一最优解?(2) 当表中 a ,b 满足什么条件时,表中解为无穷多最优解之一?4. 已知2*=i y 为线性规划的对偶问题的最优解,说明在最优生产计划中第i 中资源的影子价格等于2,在最优生产计划中第i 中资源是什么资源?这种资源是否耗尽?5. 已知线性规划 max z =2x 1+5x 2 ;s.t x 1≤4,2x 2≤12, 3x 1+2x 2≤18x 1, x 2 ≥的可行域、等值线和梯度如图1所示,求线性规的最优解及最优值。
二.根据要求建立下列问题的数学建模(不需要求解)1. 某工厂生产Ⅰ、Ⅱ、Ⅲ 三种产品,已知生产单位产品所需设备台时以及A 、B 两种原材料的消耗数据如下表又Ⅰ、Ⅱ、Ⅲ 三种产品的销售价格为80元、120元和168元。
假定要求产品Ⅱ的数量不少于三种产品总数的40%,试建立使工厂利润最大的产品生产数学模型。
2. 某工厂要做100套钢架,每套用长为2米、1.6米、1.4米的钢材各一根。
已知所用原料每根长6米,问应如何下料,可使所用原料最省(建立数学模型)。
三.银鸽公司有2亿资金可供投资,根据市场调研,发现有12个值得投资的项目,每个项目只能投资一次,每个项目的预计的收益(净现值)和所需的投资资金各不相同,这些信息在下表中给出。
单位:百万元v 5假定投资项目选择要满足下列限制:(1)投资项目7、8和12中至多选一个投资。
(2)投资项目5、6、10选择一个投资。
(3)投资项目1、2、3、4、9和11中至少选两个投资。
(4)项目5和项目11不同时投资。
(5)项目10只有在选择项目2投资的前提下才能投资;(6)如果选择了项目4或项目6,就不选择项目12;反之,如果选择了项目12,就不选择项目4和项目6。
试建立投资项目选择的0—1规划模型,使总投资收益最大。
4.某工厂生产A、B二种型号的电机,它们均需经过两道主要工序加工。
二种电机生产所需的工厂期望经营目标的各优先级为:第1优先权P1:每周利润不低于120000元;第2优先权P2:工序一每周的生产时间要充分利用,但尽量不加班,工序二生产时间要充分利用,可适当加班;第3优先权P3:两种电机应尽量满足市场的需求,按产品利润比率来确定相应的权系数;第4优先权P4:资金控制在80000元以内,第5优先权P5:工序二加班生产时间不超过90小时试建立该问题的目标规划模型。
5.邮局一周中每天需要不同数目的雇员,设一周每天所需要雇员数如下表又规定应聘者需连续工作五天,然后连续休息两天,每天雇员的工资为100元。
建立邮局能满足需求,又使聘用费用最少的每天聘用雇员数量的数学模型。
6.投资者有资金8万元,在未来3年内有4种投资选择,第一种投资方案:3年内每年年初购买债券,于当年年末归还,并加息8%;第二种方案:第1年年初投资,第2年年末可获利35%,并将本金收回,但该项投资金额不得超过3万元;第3种方案:在第2年年初投资,第3年年末可获利45%,并将本金收回,该项投资不得超过2万元;第4种投资方案:在第3年年初投资,年底收回本金,并可获利20%,但该项投资金额不得超过1.5万元。
问投资者应如何安排他的资金,确定这些方案的投资额,使到第3年年末本利最大。
(建立数学模型.。
设)4,3,2,1;3,2,1(==j i x j i 为第i 年投资第j 种投资方案的投资金额)。
7. 某工厂用A 、B 、C 三种原料生产三种不同牌号的产品甲、乙、丙。
已知各种产品中对原料A 、B 、C 的含量要求,原料成本,原料每月可供量,三种产品的单位加工费用及售价见下表,问8. 高压容器公司制造小、中、大三种尺寸的金属容器,所用资源为金属板、劳动力和机器设备,制造一个容器所需的各种资源的数量如下表所示。
不考虑固定费用,每种容器售出一只所得的利润分别为 4万元、5万元、6万元,可使用的金属板有500吨,劳动力有300人/月,机器有100台/月,此外不管每种容器制造的数量是多少,都要支付一笔固定的费用:小号是l009. 某公司经营一种家电产品,公司仓库可容纳库存5000台。
在一月一日,公司已拥有库存1000台,并拥有资金200万元。
据估计,一季度这种家电的进货价和销售价分别为:一月份进价280元/台,销价305元/台;二月份进价300元/台,销价320元/台;三月份进价290元/台,销价298元/台。
公司进货后,需在下月才能卖出,进货时规定“货到付款”。
公司希望到季末(三月末)库存不超过2000台,问公司应在每月进货和销货多少(经营策略)使三个月的总的获利最大。
(设每月的进货量为x i ,销货量为x j 。
考虑库存约束,即销量小于库存量;资金约束;库容约束。
) 三.计算与分析1.已知线性规划问题max z = ―2x 1+2x 2 ; s.t . ―x 1+2x 2 ≤10,3x 1―2x 2 ≤4,x 1, x 2,≥0 用单纯形法求最优解2.求下列网络图从v 1到v 7的最短路和路长。
3.求下图所示网络的最大流与流量,写出最小截集。
4(1) 绘制网络图;(2) 计算各事项最早时间)(i T E ,事项最迟时间)(i T L 和各工序的最早开始时间),(j i T ES 、最早结束时间),(j i T EF 、最迟开始时间),(j i T S L 、最迟结束时间),(j i T F L 和总时差,并找出关键路线。
5.某企业生产一种易变质的食品,单位产品成本为20元,售价为60元,每件售出可获利40元,如果销售不完,就要损失20元(即产品报废无用)。
这种食品的销量预计为10000只、11000只、12000只和13000只。
(1)写出收益矩阵,分别用乐观准则和悲观准则求最优决策方案; ( 2 ) 具统计资料,这种食品销售量的概率如下表v sv 7答 案一.1.能,所有点均为偶点。
2.当所有检验数σj ≤0时,所得解为最优解。
当所有检验数σj ≤0,且有一个非基变量的检验数等于零时,线性规划有无穷多最优解。
3.(1)当d ≥0,c <0;(2)d ≥0,c=0。
4.说明在最优生产计划中第i 中资源是稀缺资源,这种资源已全部耗尽; 5.当等值线沿着梯度正方向移动到与可行域交于B 点时,等值线的值最大,故B 点为最优解,B点为方程组⎩⎨⎧=+=18236 212x x x 的解,解方程得x 1=2,x 2=6。
最优值34*=z 。
二.建立下列问题的数学建模1.设Ⅰ、Ⅱ、Ⅲ 三种产品的产量分别为x 1、x 2和x 3。
Ⅰ、Ⅱ、Ⅲ 三种产品的单位利润分别为27、24和36。
数学模型为:max z =27x 1+24x 2+36x 3 ; s.t . 3x 1+4x 2+8x 3≤100,5x 1+9x 2+12x 3≤210, 4x 1+8x 2+10x 3≤150, 0.6x 2-0.4x 1-0.4x 3≥0x 1, x 2, x 3≥0 2设x j (j=1,…,5,8 )为第j 方案所用钢材的根数,数学模型为:min z =0.2x 3+0.4 x 4+0.6 x 5+0.8 x 6+0.4 x 7+x 8;s.t . 3x 2+ 2x 4+2 x 5+x 6 +x 8=100,2x 1+ x 3+ x 4+ +2x 6 +x 8=100, 2x 1+ 3x 3 + x 5 +4 x 7 =100,x 1, x 2, x 3 ,x 4, x 5 , x 6≥0 且为整数 3.)1221( 0 1 ,,, =⎩⎨⎧=j jjx j 不投资项目投资项目设, 数学模型为:max z = 35x 1 + 28x 2 + 26x 3 + 30x 4 +32x 5+ 36x 6+29x 7 +42x 8 +22x 9+ 30x 10+45x 11 +38x 12 s. t. x 7+ x 8 +x 12 ≤ 1 x 5+ x 6+x 10 = 1x 1+ x 2+ x 3+x 4 +x 9 +x 11 ≥2 x 5 + x 11 ≤1 x 10≤ x 2x 4+x 12 ≤ 1 x 6+x 12 ≤ 1 27x 1 + 20x 2 + 19x 3 + 23x 4 +25x 5+ 28x 6+18x 7 +32x 8 +17x 9+ 22x 10+35x 11 +29x 12≤200x i (i =1,2,…,12)等于0或1 4.设生产电机A 、B 的数量分别为x 1、x 2,数学模型为1122233454657121112221233144min ()(23)()() s.t. 500 1200 12000046 800 32 600z Pd P d d d P d d P d P d x x d d x x d d x x d d x d d --+---++-+-+-+-+=+++++++++-=++-=++-=+-=255126637712 90 110300450 80000 90, 0; ,0 (1,,7)j j x d d x x d d d d d x x d d j -+-++-+-++-=++-=+-=≥≥= 5.设周一,周二,…,周日开始工作的雇员为x 1,x 2,…,x 7,则数学模型为: min z = 100(x 1+x 2+x 3+x 4+x 5+x 6+x 7) s.t. x 1+ +x 4+x 5+x 6+x 7≥16 x 1+x 2 +x 5+x 6+x 7≥15x 1+x 2+x 3+ x 6+x 7≥16 x 1+x 2+x 3+x 4 +x 7≥19 x 1+x 2+x 3+x 4+x 5 ≥14x 2+x 3+x 4+x 5+x 6 ≥12 x 3+x 4+x 5+x 6+x 7 ≥18 x 1,x 2,…,x 7≥0 6.设)4,3,2,1;3,2,1(==j i x j i 为第i 年投资第j 种投资方案的投资金额,数学模型为)4,3,2,1;3,2,1( ;0 5.1 008.135.1 2008.1 3 8 s.t. 2.108.145.1max 342112343123112321121211343123==≥≤=--+≤=-+≤=+++=j i x x x x x x x x x x x x x x x x z j i7.解:设 x ij 表示第 i 种(甲、乙、丙)产品中含原料 j (分别用j=1、2、3表示原料A 、B 和C )的含量。