物质对光的选择性吸收

合集下载

第三单元紫外可见分光光度法

第三单元紫外可见分光光度法

18:19:17
3.2.2选择合适的空白(参比)溶液
空白(参比)溶液作用 校正仪器的 T 100%或A为零
消除来自于溶剂、 试剂、器皿及试样 的干扰吸收
测得的A真正反映待测溶液吸光强度
18:19:17
常见的空白(参比)溶液
溶剂空白——待测物与显色剂的反应产物有吸收-纯溶剂(水) 试剂空白——显色剂或其他试剂略有吸收
不随c和b的改变而改变; 定性鉴定参数; λmax处εmax最大; εmax越大,吸光能力越强,灵敏度越高。
Instrumental Analysis
18
透光度(透光率T)
吸光度A: 透光度T : 入射光透过溶液的程度
T = I / I0 A、T 关系: A = -lg T
18:19:17
光吸收定律的适用范围
Instrumental Analysis
26
①入射狭缝:光源的光由此进入单色器
②准光装置:透镜或反射镜使入射光成为平行光束 ③色散元件:将复合光分解成单色光-棱镜或光栅
④聚焦装置:透镜或凹面反射镜将单色光聚焦至出射狭缝
⑤出射狭缝 800
λ1
白光
准直 入射 透镜 狭缝
18:19:17
600 500 400
34
三种不同类型分光光度计比较
18:19:17
3 测量条件的选择
3.1显色反应及显色条件的选择
显色反应选择
显色条件选择
干扰及消除
3.2 吸光度测量条件的选择
入射波长 参比溶液 A读数范围
18:19:17
3.1 显色反应及显色条件的选择
显色剂
这种被测元素在某种试剂的作用下,转变成有色化 合物的反应叫显色反应,所加入试剂称为显色剂。

吸光光度法知识点

吸光光度法知识点

第九章吸光光度法知识点吸光光度法是基于分子对光的选择性吸收而建立的一种分析方法,包括比色法、紫外一可见吸光光度法、红外光谱法等。

1.吸光光度法的基本原理①物质对光的选择性吸收:当光照射到物质上时,会产生反射、散射、吸收或透射。

若被照射的物质为溶液,光的散射可以忽略。

当一束白光照射某一有色溶液时,一些波长的光被溶液吸收,另一些波长的光则透过,溶液的颜色由透射光的波长所决定。

吸收光与透射光互为补色光(它们混合在一起可组成白光)。

分子与原子、离子一样,都具有不连续的量子化能级,在一般情况下分子处于最低能态(基态)。

当入射光照射物质时,分子会选择性地吸收某些频率的光子的能量,由基态跃迁到激发态(较高能级),其能级差E激发态一E基态与选择性吸收的光子能量hv的关系为Hv=E激发态一E基态分子运动包括分子的转动、分子的振动和电子的运动。

分子转动、振动能级间隔一般小于1 eV,其光谱处于红外和远红外区。

电子能级间的能量差一般为1~20 eV,由电子能级跃迁而产生的吸收光谱位于紫外及可见光区,其实验方法为比色法和可见-紫外吸光光度法。

②吸收曲线:以波长为横坐标,以吸收光的强度为纵坐标绘制的曲线,称为吸收光谱图,也称吸收曲线。

它能清楚地描述物质对不同波长的光的吸收情况。

③光的吸收定律——朗伯一比尔定律:当一束平行单色光垂直通过一厚度为b、非散射的均匀吸光物质溶液时,吸光物质吸收光能,致使透射光强度减弱。

若用I。

表示入射光强度,I t表示透射光强度,I。

与I t之比称为透光率或透光度T,T=I。

/I t,吸光物质对光的吸收程度,还常用吸光度A表示,A=lgT=log I。

/I t。

实验证明,当一束平行单色光垂直照射某一均匀的非散射吸光物质溶液时,溶液的吸光度A与溶液浓度c和液层厚度b的乘积成正比,此即朗伯一比尔定律,其数学表达式为A=lgT=log I。

/I t =abc式中,a为吸收系数。

溶液浓度以g·L-1为单位、液层厚度以cm 为单位时,a的单位为L·g-1·cm-1。

简述吸收光谱法特征

简述吸收光谱法特征

简述吸收光谱法特征
吸收光谱法是一种光谱分析技术,通过测量物质对特定波长光的吸收程度来研究样品的组成和特性。

吸收光谱法的特征包括以下几个方面:
1. 物质选择性吸收:不同物质对不同波长的光有不同的吸收特性。

通过分析样品在特定波长处的吸收情况,可以推断样品中的物质成分或浓度。

2. 摩尔比尔定律:吸收光谱法的测量结果与浓度成正比。

摩尔比尔定律说明了物质的吸光度与物质的浓度之间的关系,可以用来定量分析样品。

3. 吸收峰:样品在特定波长处的吸收达到最大值形成吸收峰。

吸收峰的位置和形状可以提供有关样品的信息,如吸收峰的强度可以用来定量分析样品中物质的浓度。

4. 形成原因:样品吸收光的原因可以是电子、原子或分子的跃迁以及化学反应等。

吸收光谱法可以通过测量吸收峰的位置和强度来推断样品的电子结构、分子结构和化学反应等信息。

5. 应用广泛:吸收光谱法在化学、生物学、医学等领域都有广泛的应用。

例如,分子吸收光谱可以用来分析有机物、药物和生物分子;原子吸收光谱可以用来分析金属离子的浓度;紫外-可见吸收光谱可以用来测量溶液的浓度和光学性质等。

总之,吸收光谱法特征独特,可以通过测量样品对特定波长光
的吸收情况来研究物质的组成、浓度和性质,并且具有广泛的应用领域。

吸光光度法

吸光光度法

第20 章吸光光度法吸光光度法(light absorption method)是基于物质对光的选择性吸收而建立起来的分析方法。

包括比色法(colorimetric method)和分光光度法(spectrophotometry)。

前者是通过比较有色溶液颜色深浅来确定有色物质的含量;后者是根据物质对一定波长光的吸收程度来确定物质的含量的。

分光光度法包括紫外分光光度法(ultraviolet spectrophotometry)、可见光分光光度法(visible spectrophotometry)、红外分光光度法(infrared spectrophotometry)。

本章主要讨论可见光分光光度法。

20.1 概述20.1.1 物质对光的选择性吸收1. 光的性质光是一种电磁波,具有波粒二象性。

光的偏振、干涉、衍射、折射等现象就是其波动性的反映,波长λ与频率ν之间的关系式:λν=c (c为光速)亦反映光的波动性。

光又是由大量具有能量的粒子流所组成,这些粒子称为光子。

光子的能量则反映微粒性,光子的能量E 与波长λ的关系:E = hν = hc/λ(h为普朗克常量)亦可用来表示光的微粒性。

由上述关系可知,光子的能量与光的波长(或频率)有关,波长越短,光能越大,反之亦然。

光的能量范围很广,在波长或频率上相差大约20个数量级。

不同光的波长范围及其在分析化学中的应用情况见表20-1。

表20-1 各种光的波长范围及其在分析化学中的应用情况光的名称波长范围跃迁类型分析方法X-射线远紫外光近紫外光可见光近红外光中红外光远红外光微波无线电波10-1~ 10nm10 ~ 200nm200 ~ 400nm400 ~ 750nm0.75 ~ 2.5μm2.5 ~ 50μm50 ~ 1000μm0.1 ~ 100cm1 ~ 1000mK和L层电子中层电子价电子价电子分子振动分子振动分子振动和低位振动分子转动X射线光谱法真空紫外光度法紫外光度法比色及可见光度法近红外光谱法中红外光谱法远红外光谱法微波光谱法核自旋共振光谱2. 物质的颜色与其对光的选择性吸收光可分为单色光与复合光,单色光(chromatic light)是仅具有单一波长的光,而复合光(polychromatic light)是由不同波长的光(不同能量的光子)所组成。

(一)物质对光的选择性吸收

(一)物质对光的选择性吸收

第三节 吸光光度法一、测定原理基于物质对光的选择性吸收而建立的分析方法称为吸光光度法,包括比色法、可见分光光度法及紫外分光光度法等。

本章重点讨论可见光区的吸光光度法。

有些物质的溶液是有色的,例如4KMnO 溶液呈紫红色,227K Cr O 水溶液呈橙色。

许多物质的溶液本身是无色或浅色的,但它们与某些试剂发生反应后生成有色物质,例如3Fe +与3Fe +生成血红色配合物; 2Fe +与邻二氮菲生成红色配合物。

有色物质溶液颜色的深浅与其浓度有关,浓度愈大,颜色愈深。

如果是通过与标准色阶比较颜色深浅的方法确定溶液中有色物质的含量,则称为目视比色法,如果是使用分光光度计,利用溶液对单色光的吸收程度确定物质含量,则称为分光光度法。

吸光光度法主要用于测定试样中的微量组分,具有以下特点:(1)灵敏度高。

常可不经富集用于测定质量分数为210-~510-。

的微量组分,甚至可测定低至质量分数为610-~810-的痕量组分。

通常所测试的浓度下限达510-~610-1mol L -⋅。

(2)准确度高。

一般目视比色法的相对误差为5%~l0%,分光光度法为2%~5%。

(3)应用广泛。

几乎所有的无机离子和许多有机化合物都可以直接或间接地用分光光度法进行测定。

不仅用于测定微量组分,也能用于高含量组分的测定及配合物组成、化学平衡等的研究。

如农业部门常用于品质分析、动植物生理生化及土壤、植株等的测定。

(4)仪器简单,操作方便,快速。

近年来,由于新的、灵敏度高、选择性好的显色剂和掩蔽剂的不断出现,以及化学计量学方法的应用,常常可以不经分离就能直接进行比色或分光光度测定。

(一)物质对光的选择性吸收1.光的基本性质光是一种电磁波,同时具有波动性和微粒性。

光的传播,如光的折射、衍射、偏振和干涉等现象可用光的波动性来解释。

描述波动性的重要参数是波长()m λ、频率()Z H υ,它们与光速c 的关系是:341310cc J sm s E h h λυυλ--=⨯==c λυ= (10.1)在真空介质中光速为2.9979810⨯1m s -,约等于81310m s -⨯还有一些现象,如光电效应、光的吸收和发射等,只能用光的微粒性才能说明,即把光看作是带有能量的微粒流。

【分析】第八篇吸光光度法

【分析】第八篇吸光光度法

【关键字】分析第八章吸光光度法基于物质对光的选择性吸收而建立的分析方法称为吸光光度法。

包括比色法、看来及紫外分光光度法等。

本章主要讨论看来光区的吸光光度法。

利用看来光进行分光光度法分析时,通常将被测组分通过化学反应转变成有色化合物,然后进行吸光度的测量。

例如:测量钢样中Mn的含量,在酸性溶液中将Mn 氧化为MnO4-,然后进行吸光度的测量。

与化学分析法比较它具有如下特点:(一)灵敏度高分光光度法常用于测定试样中1-0.001%的微量组分。

对固体试样一般可测至10-4%。

(二)分析微量组分的准确度高例如:含铁量为0.001%的试样,如果用滴定法测定,称量试样,仅含铁0.01mg,无法用滴定分析法测定。

如果用显色剂1,10-邻二氮杂菲与铁生成橙红色的1,10-邻二氮杂菲亚铁配合物就可用吸光光度法来测定。

Fe2+ + 3(1,10-phen) → [ Fe(1,10-phen)3] 2+(三)操作简便,测定快速(四)应用广泛几乎所有的无机离子和许多有机化合物都可直接或间接地用分光光度法测定。

可用来研究化学反应的机理、溶液中配合物的组成、测定一些酸碱的离解常数等。

§8-1 吸光光度法基本原理一、物质对光的选择吸收当光束照射到物质上时,光与物质发生相互作用,产生了反射、散射、吸收或透射(p241, 图9-1)。

若被照射的是均匀的溶液,则光在溶液中的散射损失可以忽略。

当一束由红、橙、黄、绿、青、蓝、紫等各种颜色的光复合而成的白光通过某一有色溶液时,一些波长的光被溶液吸收,另一些波长的光则透过。

当透射光波长在400-700nm范围时,人眼可觉察到颜色的存在,这部分光被称为看来光。

透射光和吸收光呈互补色,即物质呈现的颜色是与其吸收光呈互补色的透射光的颜色。

例如:CuSO4溶液由于吸收了580-600 nm的黄色光,呈现的是与黄色呈互补色的蓝色。

不同波长的光具有不同的颜色,见P294,表9-1。

物质吸收了光子的能量由基态跃迁到较高能态(激发态),这个过程叫做物质对光的吸收。

无机及分析化学 (黄蔷蕾 呼世斌 著) 中国农业出版社 课后答案 第十一章 吸光光度分析法

无机及分析化学 (黄蔷蕾 呼世斌 著) 中国农业出版社 课后答案 第十一章 吸光光度分析法

第十一章吸光光度分析法本章要求1、掌握吸光光度法的基本原理及朗伯比尔定律;2、了解分光光度计的基本构造及功能;3、了解显色反应及条件选择、仪器测量误差及条件选择;了解分光光度法的应用。

基本内容如果将各种波长的单色光依次通过一定浓度的某一溶液,测定该溶液对各种单色光的吸收程度,以波长为横坐标,吸光度为纵坐标作图,可以得到一条曲线,该曲线称为光吸收曲线或吸收光谱曲线。

光吸收程度最大处的波长,称为最大吸收波长,常用λ最大或λmax表示。

4、光吸收的基本定律⑴朗伯—比尔定律透过光的强度It 与入射光的强度I之比为透光率(也称透光度、透射比),用T表示:T=IIt吸光度A与透光率T的关系为:A =lgT 1= –lg T =lg tI I 0溶液的透光率越小,吸光度越大,表明溶液对光的吸收越强;相反溶液的透光率越大,吸光度越小,表明溶液对光的吸收越弱。

光的吸收定律:朗伯—比尔定律,其数学表达式为:A =Kbc式中K 值随浓度c ,液层厚度b 所取单位的不同而不同。

当浓度以g •L -1表示,液层厚度用cm 表示时,则常数K 用a 表示,a 称为吸光系数,其单位为L •g -1•cm -1。

此时朗伯—比尔定律表示为:A =abc当浓度以mol •L -1表示,液层厚度用cm 表示时,则常数K 用ε表示,ε称为摩尔吸光系数,其单位为L •mol -1•cm -1。

此时朗伯—比尔定律表示为:A =εbc (12–7)摩尔吸光系数ε在数值上等于浓度为1moL •L –1、光程(液层厚度)为1cm 溶液的吸光度。

ε是吸光物质在特定波长下的特征常数,它与入射光波长、溶液的性质以及温度等因素有关,而与溶液的浓度及液层厚度无关,ε值愈大,表明物质对此波长光的吸收程度愈强,显色反应的灵敏度愈高。

一般认为,ε<104属低灵敏度,104<ε<5×104属中等灵敏度,ε>5×104属高灵敏度。

在实际分析中,为了提高灵敏度常选择ε值较大的有色化合物为待测物质,通常选择有最大ε值的光波max λ作为入射光。

第四章第1节比色法与色度传感器

第四章第1节比色法与色度传感器

0 10 20 30 40 50 60 70 80 90 100 T%
四、目视比色法( colorimetry )
观察方向
方便、灵敏,
不能定量测定光
的强度,准确度 差。常用于限界
ccc112
cc23
cc3 4
c4
分析。
1 2 4 8 16 40 x
五.色度传感器
色度传感器:用光电比色法测定溶液的吸光度。 用滤光片或特定波长的发光二极管得到较窄波长
第四章 其他传感器的初步应用
第一节 比色法与色度传感器
分光光度计通过比色原理测定浓度
你记得吗? 《化学反应原理》p34
一、方法依据及分类
基于物质对光的选择性吸收而建立起来的分析方 法,包括比色法、可见及紫外光度法及红外光谱法等。
比色分析法: 通过比较或测量有色物质溶液的颜色深度,
确定待测组分含量的分析方法。
4.打开计算机,进入软件系统, 显示色度传感器操作窗口。
5.点击“B”按钮,选择蓝色光源。 6.反复压缩、拉伸针筒,绘制透光率
随时间变化的曲线,记录实验结论。
NO2的制备 实验装置
(四)、实验结论
2NO2⇋N2O4平衡体系中,扩大体积,体系的压强瞬间 增小,透光率增大,平衡随即逆向移动,压强又逐渐增大, 透光率减小。反之,缩小体积,压强瞬间变大,透光率瞬 间变小,然后平衡正移,透光率增大。这说明平衡移动会 削弱,但不能消除外界条件的改变。
(二) 、实验器材
仪器:色度传感器、数据采集器、 比色皿、 计算机、大号针筒、橡皮塞、小刀、布
试剂:浓硝酸、铜片
(三) 、实验过程
1.橡皮塞切成方形,并使之恰好 塞紧比色皿口。
2.利用铜与浓硝酸反应获取NO2气 体,并收集在比色皿和针筒中。

8吸光光度法

8吸光光度法

四、显色反应和显色条件的选择
(2) 显色溶液的pH值
例: pH=1.8~2.5
Fe(ssal)+ 紫红色
pH=4~8
Fe(ssal)-2 橙红色
pH=8~11.5
Fe(ssal) 3 3- 黄色
常用的光源 :
可见光区: 钨灯 (辐射波长为320nm~2500nm) 紫外区: 氢灯、氘灯(辐射波长为185nm~400nm)
31
三. 仪器和方法
* 单色器(滤光片、棱镜或光栅)
作用 :
将光源发射的复合光分解成单色光的光学系统
1. 滤光片----光电比色计的单色器
组成:由有色玻璃制成
作用:只允许和它颜色相同的光通过,得 到的是近似的单色光
选择的原则:滤光片最易通过的光是有色溶液
最易吸收的光
互补色
32
三. 仪器和方法 2. 棱镜或光栅
----分光光度计的单色器
由棱镜或光栅等色散元件及狭缝和透镜等组成
组成 :
入射狭缝:光源的光由此进入单色器
准光装置:透镜或反射镜使入射光成为平行光束
色散元件:将复合光分解成单色光
聚焦装置:将分光后的单色光聚焦至出射狭缝
(透镜或凹面镜)
33
三. 仪器和方法 * 样品室(石英池和玻璃池) 用于放置各种类型的吸收池(比色皿)和相 应的池架附件
石英或玻璃池,紫外区一定要用石英池
厚度(光程): 0.5, 1, 2, 3, …cm
36
三. 仪器和方法
*检测系统 光电管或光电倍增管
将光强度转换成电流来进行测量。光电检测器。 要求:对测定波长范围内的光有快速、灵敏的响应,
17
二 . 吸光光度法的基本原理

光的吸收定律

光的吸收定律

• 解:依据朗伯-比尔定律
ቤተ መጻሕፍቲ ባይዱ
A
1.12
-1
-1
16.4L mol cm
bc
0.50 0.792 1000
1
100
58
• 【例题2-2】0.500g钢样溶解后, 以 Ag+作催化剂, 用过硫酸铵将试样中 的Mn氧化成高锰酸根, 然后将试样 稀释至250.00mL, 于540nm处, 用 1.00cm吸收池测得吸光度为0.393。 若高锰酸根在540nm处的摩尔吸收 系数为2025, 计算钢样中Mn的质量 分数。( Ar(Mn)=54.94 )
• 解:依据朗c伯-比尔A定律
b
• 因为Mn的浓度相当于MnO4-的浓度,所
以:
m(Mn)
M
(Mn)
c
250
M
(Mn)
A
1000
4b
(Mn) m(Mn) 100
0.500
54.94 0.393 100% 0.533% 0.500 4 20251.0
吸光度等于各组分吸光度的加和。
• 即: A总=A1+A2+A3+…+An
• τ%称为百分透射比或百分透光度 • τ%= τ×100
• A 、τ、τ%之间的关系
lg lg 1 lg 100 2 lg %

A= tr = 100
• 【例题2-1】将纯丙酮用环已烷 配成浓度为0.50%的溶液,在波 长279nm处,液层厚度为1cm时 ,测得吸光度为1.12,求在该波 长下的ε值。(丙酮密度为0.792 ,分子量Ar(酮)=58)。
• 2.吸光系数:K 为一常数,它与物质性 质、入射光波长、温度及溶剂性质有关, 而与溶液浓度、液层厚度无关。

吸光光度法 原理:基于物质对光的选择性吸收而建立起来的一种分析方法

吸光光度法 原理:基于物质对光的选择性吸收而建立起来的一种分析方法
2.非平行入射光引起的偏离
2019年6月9
感谢你的观看
9
3.介质不均匀性引起的偏离 (二)化学因素 1.溶液浓度过高引起的偏离
当溶液浓度较高时,吸光物质的分子或离子间 的平均距离减小,从而改变物质对光的吸收能力。 浓度增加,相互作用增强,导致在高浓度范围内 摩尔吸收系数不恒定而使吸光度与浓度之间的线 性关系被破坏。 2. 化学变化所引起的偏离
溶液中吸光物质常因解离、缔合、形成新的化 合物或在光照射下发生互变异构等,从而破坏了 平衡浓度与分析浓度之间的正比关系。
2019年6月9
感谢你的观看
10
第三节 吸光光度法的仪器
一、基本部件 光源 单色器(分光系统) 吸收池 检测系统和 信号显示系统
(一)光源 常用的光源为6-12伏低压钨丝灯,光源具有足够 的强度和稳定性。
I0:入射光的强度;Ia:吸收光的强度; It:透过光的强度;Ir:反射光的强度
I0=Ir+Ia+It
logI0/I=Kbc 令:A=logI0/I A=KbC
2019年6月9
感谢你的观看
6
A:吸光度, K:比例常数 I/I0:为透光率,用T表示。
A=lg1/T (二)吸收系数和桑德尔灵敏度
1.吸收系数 (1) 吸收系数a c的单位为g/L,b的单位为cm时,K用a表示,称 为吸收系数,其单位为L/g·cm,这时朗伯-比耳定 律变为: A=abc (2) 摩尔吸收系数κ c的单位为mol/L,b的单位为cm,κ表示,称 为摩尔吸收系数,其单位为L/mol·cm。
8
3.标准曲线
绘制:配制一系列已知浓度的标准溶液,在一定 条件下进行测定。然后以吸光度为纵坐标,以浓度 为横坐标作图。

光选择定律

光选择定律

光选择定律光选择定律是光学中的一项基本定律,它描述了物质对于不同波长的光会发生怎样的选择性吸收和反射。

本文将从以下几个方面详细介绍光选择定律。

一、什么是光选择定律1.1 定义光选择定律(英文名:Law of Light Absorption)指的是物质对于不同波长的光会发生怎样的选择性吸收和反射。

1.2 原理根据量子力学理论,分子在吸收或发射辐射时只能通过电磁波与分子内部电子进行相互作用,因此分子对辐射的响应与其内部电子状态有关。

当辐射作用于物质时,只有当辐射频率等于分子内部电子跃迁所需的能量时,才会被吸收或发射。

二、为什么会出现光选择定律2.1 分子结构决定了吸收谱分子结构决定了它们能够吸收哪些波长的光。

分子中原子之间的化学键和原子之间电荷密度分布产生了谓之色心(chromophore)的区域。

这些区域吸收光的能力与波长相关,因此分子的吸收谱就是一张描述这些区域对于不同波长光的吸收强度的图。

2.2 电子跃迁导致吸收分子中电子跃迁会产生吸收,而电子跃迁能量与所需波长有关。

当光通过物质时,只有当其频率等于分子内部电子跃迁所需的能量时,才会被吸收。

三、光选择定律的实际应用3.1 光谱学利用光选择定律可以进行物质分析。

通过测量物质在不同波长下吸收或发射光线的强度来确定物质的化学成分和结构。

3.2 光学材料在制造某些特殊材料时,需要控制其对于特定波长的光线进行选择性吸收或反射。

例如,在太阳能电池板中,需要使用特殊材料来选择性地吸收太阳辐射中具有高能量和高频率的紫外线和蓝色光线,并将其转化为电能。

3.3 医学成像医学成像技术如CT、MRI等也利用了光选择定律。

例如,在X光成像中,不同组织对于X射线的吸收能力不同,因此可以通过测量不同组织对于X射线的吸收强度来确定组织的密度和结构。

四、光选择定律存在的局限性4.1 仅适用于分子光选择定律只适用于分子,而无法用于描述固体或液体中原子之间相互作用导致的吸收。

4.2 不适用于宽带光源当使用宽带光源时,由于其包含多种波长的光线,物质对于每种波长吸收的程度不同,因此无法简单地应用光选择定律进行分析。

第九章 吸光光度法

第九章 吸光光度法

2
§8-1 吸光光度法基本原理
比色法介绍
3
一、物质对光的选择性吸收
1.光的基本性质 光是一种电磁波,具有波粒二象性。光的波动性可用波 长、频率、光速c、波数(cm-1)等参数来描述: = c ; 波数 = 1/ = /c 光是由光子流组成,光子的能量: E=h=hc/ (Planck常数:h=6.626 × 10 -34 J .S ) 光的波长越短(频率越高),其能量越大。 白光(太阳光):由各种单色光组成的复合光,是连续光谱。 单色光:单波长的光(由具有相同能量的光子组成) 可见光区:400-750 nm 紫外光区:近紫外区200 - 400 nm 远紫外区10 - 200 nm (真空紫外区)
将Mn2+ 氧化成紫红色的MnO4- 后,在525 nm处进行测 定。
23
4.显色剂 无机显色剂:硫氰酸盐、钼酸铵、过氧化氢等几种。 有机显色剂:种类繁多 偶氮类显色剂:本身是有色物质,生成配合物后,颜色发 生明显变化;具有性质稳定、显色反应灵敏度高、选择性好、 对比度大等优点,应用最广泛。偶氮胂Ⅲ、PAR等。 三苯甲烷类:铬天青S、二甲酚橙等
21
§ 8-3 显色反应及显色条件的选择
一、显色反应的选择 1.选择显色反应时,应考虑的因素 灵敏度高(ε值104~105)、选择性好、生成物稳定、显色 剂在测定波长处无明显吸收,两种有色物最大吸收波长之 差:“对比度”,要求△ > 60nm。 2.配位显色反应 当金属离子与有机显色剂形成配合物时,通常会发生 电荷转移跃迁,产生很强的紫外—可见吸收光谱。 例如:Cu2+与双硫腙配位形成的双硫腙铜在 λ=533nm 处的ε=5×104
27
2. 选择合适的参比溶液
为什么需要使用参比溶液? 调节参比的A=0,使测得的的吸光度真正反映待测物的吸光强 度。扣除待测物的吸收之外的其他所有吸收。 参比溶液的选择一般遵循以下原则: ⑴ 若仅待测组分与显色剂反应产物在测定波长处有吸收,其 它所加试剂均无吸收,用纯溶剂(水) 作参比溶液; ⑵ 若显色剂或其它所加试剂在测定波长处略有吸收,而试液 其它组分无吸收,用“试剂空白”(不加试样溶液)作参比溶液;

第八章 吸光光度法

第八章  吸光光度法

第四节 吸光度测量条件的选择
一、入射光波长的选择
吸收大,灵敏度高 1、原则: 对朗伯-比尔定律偏离小 一般选λ max处 如有干扰,要避开。 “吸收最大,干扰最小”。
选500nm进行测定 选520nm进行测定
2013-7-14
二、参比溶液的选择 显色剂、其他试剂均无色时 用蒸馏水作参比; 显色剂有色、其他试剂无色时 用同样浓度的显色剂作参比; 显色剂无色、其他试剂有色时 用其他试剂作参比; 显色剂、其他试剂均有色时 用不加待测离子的试剂和显色剂混合溶液作参比。
二、光吸收的基本定律(朗伯-比尔定律) 1、透光率和吸光度 透光率 T 取值为0.0 % ~ 100.0 % 全部吸收 T = 0.0 % 全部透射 T = 100.0 % 吸光度 A lg T A 取值为0 ~ +∞ 全部吸收 A = + ∞
2013-7-14
全部透射
A=0
2、朗伯-比尔定律 当单色光通过均匀的溶液 时,吸光度与溶液的浓度 和液层的厚度成正比。 表示为:A=Kbc A——吸光度 光度法定 K——比例常数 量的依据 b——液层厚度,比色皿 厚度 c——溶液浓度 单色光 2013-7-14 均匀溶液
2013-7-14
2、单色器
作用:将光源发出的复合光转变为所需波长的单色光。 分为棱镜和光栅两种。
2013-7-14
光栅的分辨率比棱镜大, 可用的波长范围也较宽。
3、吸收池(比色皿)
作用:用来盛放待测溶液。 光学玻璃制成的无色透明的长方体容器,规格 有0.5,1.0,2.0,5.0cm等。
2013-7-14
显色反应及显色条件的选择
将待测组分转变为有色化合物的反应。 与待测组分形成有色化合物的试剂。

分光光度法物质对光的选择性吸收和吸收光谱光的吸收定律

分光光度法物质对光的选择性吸收和吸收光谱光的吸收定律
(T= 65%)
2. 若将某波长的单色光通过液层厚度为1.00cm 的溶液,则透过光强度为入射光强度的1/4, 问当该溶液液层厚度为2.00cm时,透光率(T) 和吸光度(A)为多少? (A2 = 2A1 = 1.20,T2 = (T1) = 1/16)
2
三、分光光度计
用所需波长单色光照射溶液,测定A或T来计算 溶液中被测物质含量的一种仪器。
第五章 §4 分光光度法
物质对光的选择性吸收和吸收光谱 光的吸收定律 分光光度计
定量分析方法
一、物质对光的选择性吸收和吸收光谱
(一)物质的颜色和光的波长的关系
光是一种电磁波。自然光是由不同的电磁波 组成的混合光。
可见光, 在400~760nm范围。(见表4-5)
互补色光——如:黄光 和蓝光;红光和绿光。
A样 =A标
思考题:
相对分子量为 180 的某物质,其摩尔吸光系 数为6.010 ,若将试液稀释 10倍,与1cm吸收池 中测得吸光度为 0.30,问原试液中该物质的质量
3
浓度(mg· L )为多少?
-1
( 90 mg· L )
-1
同种物质,C不同,但
max都相同。
max
二、光的吸收定律
It TI o
透光率
Io A = -lgT =lg I t
吸光度
A=εbc
摩尔吸光系数
——Lambert-Beer定律
mol· L-1
A=abρ
质量吸光系数 g ·L
-1
ε=aM
例[5-5]
练习:
1. 已知某波长的单色光经过液层厚度为1.00cm的 吸收池后,吸光度为0.19,求该溶液的透光率。
光源
单色光器

物质对光的选择性吸收课件

物质对光的选择性吸收课件
物质对光的选择性吸收
目录
CONTENTS
• 物质对光的选择性吸收概述 • 光吸收的基本原理 • 物质对光的吸收特性 • 光吸收的应用
• 光吸收的实验研究方法 • 光吸收的理论模型与计算方法
01 物质对光的选择性吸收概述
CHAPTER
定义与概念
物质对光的选择性吸收是指物 质对不同波长的光线具有不同 的吸收率。
利用量子化学方法对分子的电子 结构和能量进行精确计算,预测 分子的光吸收性质。
谢谢
THANKS
01
通过测量大气中污染物的吸光度,判断空气质量以及
污染物浓度。
水质监测
02 利用吸光度测量水体中各种污染物的含量,如重金属
、有机物等。
土壤污染监测
03
通过测量土壤样品对光的吸收,评估土壤污染程度和
污染物种类。
光吸收在生物医学中的应用
生物分子检测
利用特定波长的光吸收,检测生物分子如DNA、 蛋白质等的结构和含量。
03
物质的浓度越高,对光的吸收越强烈。
影响光吸收的因素
物质的性质 光的波长 物质的浓度 温度
不同物质由于内部电子结构和分子构型的不同,对光的吸收具 有不同的选择性。
不同波长的光在物质中的穿透能力和被吸收的程度不同,因此 物质的吸收光谱会随着光的波长变化而变化。
物质的浓度越高,对光的吸收越强烈。
温度的变化会影响物质内部电子结构和分子构型,从而影响对 光的吸收。
光的波动性
光在传播过程中表现为波动现象,具有振幅 、频率、相位等波动特性。
光的粒子性
光在传播过程中也可以视为粒子,即光子。
光的色散
不同波长的光在传播过程中速度不同,导致 光的分散现象。

物质对光的选择性吸收

物质对光的选择性吸收

b:液层厚度(光程长度),通常以cm为单位;
c:溶液的摩尔浓度,单位mol· L-1;
ε :摩尔吸光系数,单位L· mol-1· cm-1; 与所用入射光的波长及物质的本性有关。 或: A=a b c
c:溶液的浓度,单位g· L-1
a:吸光系数,单位L· g-1· cm-1 a与ε 的关系为:
A
增 C大
结论:溶液的透光度越大,表示它对光的吸收越小; 相反,透光度越小,表示它对光的吸收越大。
二、吸光度 A
入射光 I0 吸光度定义: 透射光 It
I0 A lg It
吸光度与透光度的关系
I0 1 A lg lg lg T It T
T 10
A
实践证明,溶液吸光度,与溶液浓度、液层厚度及入 射光波长等因素有关。
§11-1 物质对光的选择性吸收
一、光的基本性质
光的电磁波性质 10-2 nm 10 nm
射 线 x 射 线
102 nm 104 nm
紫 外 光 红 外 光
0.1 cm 10cm
微 波
103 cm
无 线 电 波
105 cm
可 见

光的波粒二象性
光的折射
波动性
λν
光的衍射
光的偏振 光的干涉
粒子性
三、吸收曲线 吸收曲线与最大吸收波长 max
用不同波长的单色光照射,测吸光度A值。
吸收曲线的讨论:
①同一种物质对不同波长光的吸光度
不同。吸光度最大处对应的波长称为最
大吸收波长λ max ②不同浓度的同一种物质,其吸收曲 线形状相似λ max不变。而对于不同物质, 它们的吸收曲线形状和λ max则不同。
请注意与定义比较 未考虑吸收池和溶剂对光的作用
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档