宜昌中考数学试题及答案中考 .doc
2022年湖北省宜昌市中考数学试卷及答案解析
2022年湖北省宜昌市中考数学试卷一、选择题(下列各题中,只有一个选项是符合题目要求的,请在答题卡上指定的位置填涂符合要求的选项前面的字母代号,每题3分,计33分.)1.(3分)下列说法正确的个数是()①﹣2022的相反数是2022;②﹣2022的绝对值是2022;③的倒数是2022.A.3B.2C.1D.02.(3分)将四个数字看作一个图形,则下列四个图形中,是中心对称图形的是()A.B.C.D.3.(3分)我市围绕创建全国文明典范城市、传承弘扬屈原文化,组织开展了“喜迎二十大、永远跟党走、奋进新征程”等系列活动.在2022年“书香宜昌•全民读书月”暨“首届屈原文化月”活动中,100多个社区图书室、山区学校、农家书屋、“护苗”工作站共获赠了价值100万元的红色经典读物、屈原文化优秀读物和智能书柜.“100万”用科学记数法表示为()A.100×104B.1×105C.1×106D.1×1074.(3分)下列运算错误的是()A.x3•x3=x6B.x8÷x2=x6C.(x3)2=x6D.x3+x3=x6 5.(3分)已知经过闭合电路的电流I(单位:A)与电路的电阻R(单位:Ω)是反比例函数关系.根据下表判断a和b的大小关系为()I/A5...a.........b (1)R/Ω2030405060708090100 A.a>b B.a≥b C.a<b D.a≤b6.(3分)如图,在△ABC中,分别以点B和点C为圆心,大于BC长为半径画弧,两弧相交于点M,N.作直线MN,交AC于点D,交BC于点E,连接BD.若AB=7,AC =12,BC=6,则△ABD的周长为()A.25B.22C.19D.187.(3分)如图,四边形ABCD内接于⊙O,连接OB,OD,BD,若∠C=110°,则∠OBD =()A.15°B.20°C.25°D.30°8.(3分)五一小长假,小华和家人到公园游玩.湖边有大小两种游船.小华发现1艘大船与2艘小船一次共可以满载游客32人,2艘大船与1艘小船一次共可以满载游客46人.则1艘大船与1艘小船一次共可以满载游客的人数为()A.30B.26C.24D.229.(3分)如图是小强散步过程中所走的路程s(单位:m)与步行时间t(单位:min)的函数图象.其中有一时间段小强是匀速步行的.则这一时间段小强的步行速度为()A.50m/min B.40m/min C.m/min D.20m/min 10.(3分)如图是一个教室平面示意图,我们把小刚的座位“第1列第3排”记为(1,3).若小丽的座位为(3,2),以下四个座位中,与小丽相邻且能比较方便地讨论交流的同学的座位是()A.(1,3)B.(3,4)C.(4,2)D.(2,4)11.(3分)某校团支部组织部分共青团员开展学雷锋志愿者服务活动,每个志愿者都可以从以下三个项目中任选一项参加:①敬老院做义工;②文化广场地面保洁;③路口文明岗值勤.则小明和小慧选择参加同一项目的概率是()A.B.C.D.二、填空题(将答案写在答题卡上指定的位置.每题3分,计12分.)12.(3分)中国是世界上首先使用负数的国家.两千多年前战国时期李悝所著的《法经》中已出现使用负数的实例.《九章算术》的“方程”一章,在世界数学史上首次正式引入负数及其加减法运算法则,并给出名为“正负术”的算法,请计算以下涉及“负数”的式子的值:﹣1﹣(﹣3)2=.13.(3分)如图,点A,B,C都在方格纸的格点上,△ABC绕点A顺时针方向旋转90°后得到△AB'C',则点B运动的路径的长为.14.(3分)如图,C岛在A岛的北偏东50°方向,C岛在B岛的北偏西35°方向,则∠ACB 的大小是.15.(3分)如图,在矩形ABCD中,E是边AD上一点,F,G分别是BE,CE的中点,连接AF,DG,FG,若AF=3,DG=4,FG=5,矩形ABCD的面积为.三、解答题(将解答过程写在答题卡上指定的位置.本大题共有9题,计75分.)16.(6分)求代数式+的值,其中x=2+y.17.(6分)解不等式≥+1,并在数轴上表示解集.18.(7分)某校为响应“传承屈原文化•弘扬屈原精神”主题阅读倡议,进一步深化全民阅读和书香宜昌建设,随机抽取了八年级若干名学生,对“双减”后学生周末课外阅读时间进行了调查.根据收集到的数据,整理后得到下列不完整的图表:时间段/分钟30≤x<6060≤x<9090≤x<120120≤x<150组中值75105135频数/人6204数据分组后,一个小组的两个端点的数的平均数,叫做这个小组的组中值.请你根据图表中提供的信息,解答下面的问题:(1)扇形统计图中,120~150分钟时间段对应扇形的圆心角的度数是;a =;样本数据的中位数位于~分钟时间段;(2)请将表格补充完整;(3)请通过计算估计该校八年级学生周末课外平均阅读时间.19.(7分)石拱桥是我国古代人民勤劳和智慧的结晶(如图1),隋代建造的赵州桥距今约有1400年历史,是我国古代石拱桥的代表.如图2是根据某石拱桥的实物图画出的几何图形,桥的主桥拱是圆弧形,表示为.桥的跨度(弧所对的弦长)AB=26m,设所在圆的圆心为O,半径OC⊥AB,垂足为D.拱高(弧的中点到弦的距离)CD=5m.连接OB.(1)直接判断AD与BD的数量关系;(2)求这座石拱桥主桥拱的半径(精确到1m).20.(8分)知识小提示:要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角α一般要满足53°≤α≤72°.(参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33,sin72°≈0.95,cos72°≈0.31,tan72°≈3.08,sin66°≈0.91,cos66°≈0.41,tan66°≈2.25)如图,现有一架长4m的梯子AB斜靠在一竖直的墙AO上.(1)当人安全使用这架梯子时,求梯子顶端A与地面距离的最大值;(2)当梯子底端B距离墙面1.64m时,计算∠ABO等于多少度?并判断此时人是否能安全使用这架梯子?21.(8分)已知菱形ABCD中,E是边AB的中点,F是边AD上一点.(1)如图1,连接CE,CF.CE⊥AB,CF⊥AD.①求证:CE=CF;②若AE=2,求CE的长;(2)如图2,连接CE,EF.若AE=3,EF=2AF=4,求CE的长.22.(10分)某造纸厂为节约木材,实现企业绿色低碳发展,通过技术改造升级,使再生纸项目的生产规模不断扩大.该厂3,4月份共生产再生纸800吨,其中4月份再生纸产量是3月份的2倍少100吨.(1)求4月份再生纸的产量;(2)若4月份每吨再生纸的利润为1000元,5月份再生纸产量比上月增加m%.5月份每吨再生纸的利润比上月增加%,则5月份再生纸项目月利润达到66万元.求m的值;(3)若4月份每吨再生纸的利润为1200元,4至6月每吨再生纸利润的月平均增长率与6月份再生纸产量比上月增长的百分数相同,6月份再生纸项目月利润比上月增加了25%.求6月份每吨再生纸的利润是多少元?23.(11分)已知,在△ABC中,∠ACB=90°,BC=6,以BC为直径的⊙O与AB交于点H,将△ABC沿射线AC平移得到△DEF,连接BE.(1)如图1,DE与⊙O相切于点G.①求证:BE=EG;②求BE•CD的值;(2)如图2,延长HO与⊙O交于点K,将△DEF沿DE折叠,点F的对称点F′恰好落在射线BK上.①求证:HK∥EF′;②若KF′=3,求AC的长.24.(12分)已知抛物线y=ax2+bx﹣2与x轴交于A(﹣1,0),B(4,0)两点,与y轴交于点C.直线l由直线BC平移得到,与y轴交于点E(0,n).四边形MNPQ的四个顶点的坐标分别为M(m+1,m+3),N(m+1,m),P(m+5,m),Q(m+5,m+3).(1)填空:a=,b=;(2)若点M在第二象限,直线l与经过点M的双曲线y=有且只有一个交点,求n2的最大值;(3)当直线l与四边形MNPQ、抛物线y=ax2+bx﹣2都有交点时,存在直线l,对于同一条直线l上的交点,直线l与四边形MNPQ的交点的纵坐标都不大于它与抛物线y=ax2+bx﹣2的交点的纵坐标.①当m=﹣3时,直接写出n的取值范围;②求m的取值范围.2022年湖北省宜昌市中考数学试卷参考答案与试题解析一、选择题(下列各题中,只有一个选项是符合题目要求的,请在答题卡上指定的位置填涂符合要求的选项前面的字母代号,每题3分,计33分.)1.【分析】根据相反数的定义判断①;根据绝对值的性质判断②;根据倒数的定义判断③.【解答】解:①﹣2022的相反数是2022,故①符合题意;②﹣2022的绝对值是2022,故②符合题意;③的倒数是2022,故③符合题意;正确的个数是3个,故选:A.【点评】本题考查了相反数,绝对值,倒数,掌握只有符号不同的两个数互为相反数,负数的绝对值等于它的相反数,乘积为1的两个数互为倒数是解题的关键.2.【分析】根据中心对称的概念和各图形的特点即可求解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.【解答】解:中心对称图形,即把一个图形绕一个点旋转180°后能和原来的图形重合,所以D选项符合题意,故选:D.【点评】本题考查中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.3.【分析】将100写成1×102,1万=104,根据同底数幂的乘法法则即可得出答案.【解答】解:100万=1×102×104=1×106,故选:C.【点评】本题考查了科学记数法﹣表示较大的数,掌握a m•a n=a m+n是解题的关键.4.【分析】根据同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方与积的乘方法则,进行计算逐一判断即可解答.【解答】解:A、x3•x3=x6,故A不符合题意;B、x8÷x2=x6,故B不符合题意;C、(x3)2=x6,故C不符合题意;D、x3+x3=2x3,故D符合题意;故选:D.【点评】本题考查了同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方与积的乘方,熟练掌握它们的运算法则是解题的关键.5.【分析】根据等量关系“电流=”,即可求解.【解答】解:∵闭合电路的电流I(单位:A)与电路的电阻R(单位:Ω)是反比例函数关系,∴40a=80b,∴a=2b,∴a>b,故选:A.【点评】本题考查了反比例函数在实际生活中的应用,熟练掌握电流=”是解决此题的关键.6.【分析】根据题意可知MN垂直平分BC,即可得到DB=DC,然后即可得到AB+BD+AD =AB+DC+AD=AB+AC,从而可以求得△ABD的周长.【解答】解:由题意可得,MN垂直平分BC,∴DB=DC,∵△ABD的周长是AB+BD+AD,∴AB+BD+AD=AB+DC+AD=AB+AC,∵AB=7,AC=12,∴AB+AC=19,∴∵△ABD的周长是19,故选:C.【点评】本题考查线段垂直平分线的性质,三角形的周长,解答本题的关键是明确题意,利用数形结合的思想解答.7.【分析】根据圆内接四边形的性质,可以得到∠A的度数,再根据圆周角和圆心角的关系,可以得到∠BOD的度数,然后根据OB=OD,即可得到∠OBD的度数.【解答】解:∵四边形ABCD是圆内接四边形,∠C=110°,∴∠A=70°,∵∠BOD=2∠A=140°,∵OB=OD,∴∠OBD=∠ODB,∵∠OBD+∠ODB+∠BOD=180°,∴∠OBD=20°,故选:B.【点评】本题考查圆内接四边形的性质、圆周角定理,解答本题的关键是明确题意,利用数形结合的思想解答.8.【分析】设1艘大船可载x人,1艘小船可载y人,依题意:1艘大船与2艘小船一次共可以满载游客32人,2艘大船与1艘小船一次共可以满载游客46人.列出二元一次方程组,求出x+y的值即可.【解答】解:设1艘大船可载x人,1艘小船可载y人,依题意得:,①+②得:3x+3y=78,∴x+y=26,即1艘大船与1艘小船一次共可以满载游客的人数为26,故选:B.【点评】此题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.9.【分析】根据小强匀速步行时的函数图象为直线,根据图象得出结论即可.【解答】解:由函数图象知,从30﹣70分钟时间段小强匀速步行,∴这一时间段小强的步行速度为=20(m/min),故选:D.【点评】本题主要考查函数图象的知识,根据函数图象得出匀速步行的时间段是解题的关键.10.【分析】直接利用点的坐标特点得出与小丽相邻且能比较方便地讨论交流的同学的座位位置.【解答】解:如图所示:与小丽相邻且能比较方便地讨论交流的同学的座位是(4,2).故选:C.【点评】此题主要考查了点的坐标,正确掌握点的坐标特点是解题关键.11.【分析】列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.【解答】解:列表如下:①②③①(①,①)(②,①)(③,①)②(①,②)(②,②)(③,②)③(①,③)(②,③)(③,③)由表知,共有9种等可能结果,其中小明和小慧选择参加同一项目的有3种结果,所以小明和小慧选择参加同一项目的概率为=,故选:A.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.二、填空题(将答案写在答题卡上指定的位置.每题3分,计12分.)12.【分析】先算乘方,再算减法,即可解答.【解答】解:﹣1﹣(﹣3)2=﹣1﹣9=﹣10,故答案为:﹣10.【点评】本题考查了有理数的混合运算,准确熟练地进行计算是解题的关键.13.【分析】根据题意和图形,可以得到∠BAB′=90°,然后根据勾股定理可以得到AB 的长,再根据弧长公式计算即可得到的长.【解答】解:由已知可得,∠BAB′=90°,AB==5,∴的长为:=,故答案为:.【点评】本题考查轨迹、弧长的计算,解答本题的关键是明确弧长公式l=.14.【分析】过点C作CF∥AD,根据平行线的性质,求得∠ACF与∠BCF,再由角的和差可得答案.【解答】解:过点C作CF∥AD,如图,∵AD∥BE,∴AD∥CF∥BE,∴∠ACF=∠DAC,∠BCF=∠EBC,∴∠ACB=∠ACF+∠BCF=∠DAC+∠EBC,由C岛在A岛的北偏东50°方向,C岛在B岛的北偏西35°方向,得∠DAC=50°,∠CBE=35°.∴∠ACB=50°+35°=85°,故答案为:85°.【点评】本题考查了方向角,平行线的性质,利用平行线的性质得出得出∠ACF=50°,∠BCF=35°是解题关键.15.【分析】由矩形的性质得出∠BAE=∠CDE=90°,AD∥BC,由直角三角形斜边上中线的性质及三角形中位线的性质求出BE=6,CE=8,BC=10,由勾股定理的逆定理得出△BCE是直角三角形,∠BEC=90°,进而求出=24,即可求出矩形ABCD的面积.【解答】解:∵四边形ABCD是矩形,∴∠BAE=∠CDE=90°,AD∥BC,∵F,G分别是BE,CE的中点,AF=3,DG=4,FG=5,∴BE=2AF=6,CE=2DG=8,BC=2FG=10,∴BE2+CE2=BC2,∴△BCE是直角三角形,∠BEC=90°,∴==24,∵AD∥BC,=2S△BCE=2×24=48,∴S矩形ABCD故答案为:48.【点评】本题考查了矩形的性质,直角三角形斜边上的中线,三角形中位线,熟练掌握矩形的性质,直角三角形的性质,三角形中位线的性质,勾股定理的逆定理等知识是解决问题的关键.三、解答题(将解答过程写在答题卡上指定的位置.本大题共有9题,计75分.)16.【分析】根据分式的加法法则把原式化简,把x=2+y代入计算即可.【解答】解:原式=﹣==,当x=2+y时,原式==1.【点评】本题考查的是分式的化简求值,掌握分式的加法法则、约分法则是解题的关键.17.【分析】不等式去分母,去括号,移项,合并,把x系数化为1,求出解集,表示在数轴上即可.【解答】解:去分母得:2(x﹣1)≥3(x﹣3)+6,去括号得:2x﹣2≥3x﹣9+6,移项得:2x﹣3x≥﹣9+6+2,合并同类项得:﹣x≥﹣1,系数化为1得:x≤1..【点评】此题考查了解一元一次不等式,在数轴上表示不等式的解集,熟练掌握不等式的解法是解本题的关键.18.【分析】(1)根据表格中的数据和扇形统计图中的数据,可以计算出本次抽取的学生人数,然后即可得到120~150分钟时间段对应扇形的圆心角的度数,a的值以及样本数据的中位数位于哪一时间段;(2)根据(1)中的结果和表格中的数据,可以将表格补充完整;(3)根据表格中的数据,可以计算出该校八年级学生周末课外平均阅读时间.【解答】解:(1)120~150分钟时间段对应扇形的圆心角的度数是:360°×10%=36°,本次调查的学生有:4÷10%=40(人),a%=×100%=25%,∴a的值是25,∴中位数位于60~90分钟时间段,故答案为:36°,25,60,90;(2)∵一个小组的两个端点的数的平均数,叫做这个小组的组中值∴30≤x<60时间段的组中值为(30+60)÷2=45,90≤x<120时间段的频数为:40﹣6﹣20﹣4=10,故答案为:45,10;(3)=84(分钟),答:估计该校八年级学生周末课外平均阅读时间为84分钟.【点评】本题考查频数分布表、扇形统计图、中位数,解答本题的关键是明确题意,利用数形结合的思想解答.19.【分析】(1)根据垂径定理便可得出结论;(2)设主桥拱半径为R,在Rt△OBD中,根据勾股定理列出R的方程便可求得结果.【解答】解:(1)∵OC⊥AB,∴AD=BD;(2)设主桥拱半径为R,由题意可知AB=26,CD=5,∴BD=AB=13,OD=OC﹣CD=R﹣5,∵∠OBD=90°,∴OD2+BD2=OB2,∴(R﹣5)2+132=R2,解得R=19.4≈19,答:这座石拱桥主桥拱的半径约为19m.【点评】此题考查了垂径定理,勾股定理.此题难度不大,解题的关键是方程思想的应用.20.【分析】(1)根据α的取值范围得出,当α=72°时,AO取得最大值,利用三角函数求出此时的AO值即可;(2)根据cos∠ABO=得出函数值,判断出∠ABO的度数,再根据角度得出结论即可.【解答】解:(1)53°≤α≤72°,当α=72°时,AO取最大值,在Rt△AOB中,sin∠ABO=,∴AO=AB•sin∠ABO=4×sin72°=4×0.95=3.8(米),∴梯子顶端A与地面的距离的最大值为3.8米;(2)在Rt△AOB中,cos∠ABO==1.64÷4=0.41,∵cos66°≈0.41,∴∠ABO=66°,∵53°≤α≤72°,∴人能安全使用这架梯子.【点评】本题主要考查解直角三角形的知识,熟练掌握解三角函数的知识是解题的关键.21.【分析】(1)①根据垂直的定义得到∠BEC=∠DFC=90°,根据菱形的性质得到∠B =∠D,BC=CD,根据全等三角形的性质得到CE=CF;②连接AC,如图1,根据菱形的性质得到BC=AC,推出△ABC是等边三角形,得到∠EAC=60°,根据三角函数的定义得到结论;(2)方法一:如图2,延长FE交CB的延长线于M,根据菱形的性质得到AD∥BC,AB=BC,得到∠AFE=∠M,∠A=∠EBM,根据全等三角形的性质得到ME=EF,MB =AF,根据相似三角形的性质得到结论;方法二:延长FE交CB的延长线于M,过点E作EN⊥BC于点N,根据菱形的性质得到AD∥BC,AB=BC,求得∠AFE=∠M,∠A=∠EBM,根据全等三角形的性质得到ME =EF,MB=AF,根据勾股定理得到结论.【解答】(1)①证明:∵CE⊥AB,CF⊥AD,∴∠BEC=∠DFC=90°,∵四边形ABCD是菱形,∴∠B=∠D,BC=CD,∴△BEC≌△DFC(AAS),∴CE=CF;②解:连接AC,如图1,∵E是边AB的中点,CE⊥AB,∴BC=AC,∵四边形ABCD是菱形,∴BC=AC,∴△ABC是等边三角形,∠EAC=60°,在Rt△ACE中,AE=2,∴CE=AE•tan60°=2×=2;(2)解:方法一:如图2,延长FE交CB的延长线于M,∵四边形ABCD是菱形,∴AD∥BC,AB=BC,∴∠AFE=∠M,∠A=∠EBM,∵E是边AB的中点,∴AE=BE,∴△AEF≌△BEM(AAS),∴ME=EF,MB=AF,∵AE=3,EF=2AF=4,∴ME=4,BM2,BE=3,∴BC=AB=2AE=6,∴MC=8,∴==,==,∴=,∵∠M为公共角,∴△MEB∽△MCE,∴==,∵BE=3,∴CE=6;方法二:如图3,延长FE交CB的延长线于M,过点E作EN⊥BC于点N,∵四边形ABCD是菱形,∴AD∥BC,AB=BC,∴∠AFE=∠M,∠A=∠EBM,∵E是边AB的中点,∴AE=BE,∴△AEF≌△BEM(AAS),∴ME=EF,MB=AF,∵AE=3,EF=2AF=4,∴ME=4,BM2,BE=3,∴BC=AB=2AE=6,∴MC=8,在Rt△MEN和Rt△BEN中,ME2﹣MN2=EN2,BE2﹣BN2=EN2,∴ME2﹣MN2=BE2﹣BN2,∴42﹣(2+BN)2=32﹣BN2,解得:BN=,∴CN=6﹣=,∴EN2=BE2﹣BN2=32﹣()2=,在Rt△ENC中,CE2=EN2+CN2=+==36,∴CE=6.【点评】本题考查了四边形的综合题,全等三角形的判定和性质,菱形的性质,相似三角形的判定和性质,勾股定理,正确地作出辅助线是解题的关键.22.【分析】(1)设3月份再生纸的产量为x吨,则4月份再生纸的产量为(2x﹣100)吨,根据该厂3,4月份共生产再生纸800吨,即可得出关于x的一元一次方程,解之即可求出x的值,再将其代入(2x﹣100)中即可求出4月份再生纸的产量;(2)利用月利润=每吨的利润×月产量,即可得出关于m的一元二次方程,解之取其正值即可得出结论;(3)设4至6月每吨再生纸利润的月平均增长率为y,5月份再生纸的产量为a吨,根据6月份再生纸项目月利润比上月增加了25%,即可得出关于y的一元二次方程,化简后即可得出6月份每吨再生纸的利润.【解答】解:(1)设3月份再生纸的产量为x吨,则4月份再生纸的产量为(2x﹣100)吨,依题意得:x+2x﹣100=800,解得:x=300,∴2x﹣100=2×300﹣100=500.答:4月份再生纸的产量为500吨.(2)依题意得:1000(1+%)×500(1+m%)=660000,整理得:m2﹣300m+6400=0,解得:m1=20,m2=﹣320(不合题意,舍去).答:m的值为20.(3)设4至6月每吨再生纸利润的月平均增长率为y,5月份再生纸的产量为a吨,依题意得:1200(1+y)2•a(1+y)=(1+25%)×1200(1+y)•a,∴1200(1+y)2=1500.答:6月份每吨再生纸的利润是1500元.【点评】本题考查了一元一次方程的应用以及一元二次方程的应用,找准等量关系,正确列出一元一次方程(或一元二次方程)是解题的关键.23.【分析】(1)①由平移的性质证出∠CBE=∠ACB=90°,连接OG,OE,证明Rt△BOE ≌Rt△GOE(HL),由全等三角形的性质得出BE=GE;②过点D作DM⊥BE于M,证出四边形BCDM是矩形,由矩形的性质得出CD=BM,DM=BC,由(1)可知BE=GE,同理可证CD=DG,设BE=x,CD=y,由勾股定理得出(x﹣y)2+62=(x+y)2,则可得出答案;(2)①延长HK交BE于点Q,设∠ABC=α,由等腰三角形的性质证出∠BHO=∠OBH =α,由平移及折叠的性质证出∠BQO=∠BEF',则可得出结论;②连接FF',交DE于点N,证明△HBK≌△ENF(AAS),由全等三角形的性质得出BK=NF,证明△HBK∽△FCB,由相似三角形的性质得出,列出方程可求出BK的长,根据锐角三角函数的定义可得出答案.【解答】(1)①证明:∵将△ABC沿射线AC平移得到△DEF,∴BE∥CF,∵∠ACB=90°,∴∠CBE=∠ACB=90°,连接OG,OE,∵DE与⊙O相切于点G,∴∠OGE=90°,∴∠OBE=∠OGE=90°,∵OB=OG,OE=OE,∴Rt△BOE≌Rt△GOE(HL),∴BE=GE;②解:过点D作DM⊥BE于M,∴∠DMB=90°,由(1)知∠CBE=∠BCF=90°,∴四边形BCDM是矩形,∴CD=BM,DM=BC,由(1)可知BE=GE,同理可证CD=DG,设BE=x,CD=y,在Rt△DME中,MD2+EM2=DE2,∴(x﹣y)2+62=(x+y)2,∴xy=9,即BE•CD=9;(2)①证明:延长HK交BE于点Q,设∠ABC=α,∵OB=OH,∴∠BHO=∠OBH=α,∴∠BOQ=∠BHO+∠OBH=2α,∴∠BQO=90°﹣2α,∵△ABC沿射线AC平移得到△DEF,△DEF沿DE折叠得到△DEF',∴∠DEF=∠DEF'=∠ABC=α,∴∠BEF'=90°﹣2α,∴∠BQO=∠BEF',∴HK∥EF';②解:连接FF',交DE于点N,∵△DEF沿DE折叠,点F的对称点为F',∴ED⊥FF',FN=FF',∵HK是⊙O的直径∵,∴∠HBK=90°,点F'恰好落在射线BK上,∴BF'⊥AB,∵△ABC沿射线AC方向平移得到△DEF,∴AB∥DE,BC=EF,∴点B在FF'的延长线上,∵BC是⊙O的直径,∴HK=EF,在△HBK和△ENF中,,∴△HBK≌△ENF(AAS),∴BK=NF,设BK=x,则BF=BK+KF'+FF'=x+3+2x=3x+3,∵OB=OK,∴∠OBK=∠OKB,又∵∠HBK=∠BCF=90°,∴△HBK∽△FCB,∴,∴,解得:x1=3,x2=﹣4(不合题意,舍去),∴BK=3,在Rt△HBK中,sin∠BHK==,∴∠BHK=30°,∴∠ABC=30°,在Rt△ACB中,tan∠ABC=tan30°=,∴AC=6•tan30°=6×=2,即AC的长为2.【点评】本题是圆的综合题,考查了平移的性质,折叠的性质,相似三角形的判定与性质,全等三角形的判定与性质,切线的性质,圆周角定理,矩形的判定与性质,勾股定理,锐角三角函数的定义,熟练掌握相似三角形的判定与性质及切线的性质是解题的关键.24.【分析】(1)将A(﹣1,0),B(4,0)代入y=ax2+bx﹣2,即可求解;(2)求出直线BC的解析式为y=x﹣2,直线l的解析式为y=x+n,再由双曲线y=经过点M(m+1,m+3),可得y=,再联立方程组,整理得x2+2nx﹣2m2﹣8m﹣6=0,由题意可得Δ=0,整理得n2=﹣2(m+2)2+2,根据点M的坐标位置,求出﹣3<m<﹣1,则当m=﹣2时,n2可以取得最大值2;(3)联立方程组,由Δ≥0,可得n≥﹣4,当n=﹣4时,直线y=x﹣4与抛物线的交点为F(2,﹣3);①当m=﹣3时,四边形NMPQ的顶点分别为M(﹣2,0),N(﹣2,﹣3),P(2,﹣3),Q(2,0),当直线l经过点P(2,﹣3)时,此时P点与F点重合,n=﹣4时,符合题意;当直线l经过点A时,n=,当直线l经过点M时,n=1,可得≤n≤1,由此可求解;②当m的值逐渐增大到使矩形MNPQ的顶点M(m+1,m+3)在直线y=x﹣4上时,由m+3=(m+1)﹣4,解得m=﹣13;当m的值逐渐增大到使矩形MNPQ的顶点M(m+1,m+3)在这条开口向上的抛物线上(对称轴左侧)时,由(m+1)2﹣(m+1)﹣2=m+3,解得m=(舍)或m=,即可求m的取值范围为﹣13≤m≤.【解答】解:(1)将A(﹣1,0),B(4,0)代入y=ax2+bx﹣2,∴,解得,故答案为:,﹣;(2)设直线BC的解析式为y=dx+e,∵B(4,0),C(0,﹣2),∴,解得,∴直线BC的解析式为y=x﹣2,∵直线BC平移得到直线l,直线l与y轴交于点E(0,n),∴直线l的解析式为y=x+n,∵双曲线y=经过点M(m+1,m+3),∴k=(m+1)(m+3),∴y=,∵直线l与双曲线y=有且只有一个交点,联立方程组,整理得x2+2nx﹣2m2﹣8m﹣6=0,∴Δ=0,即4n2﹣4(﹣2m2﹣8m﹣6)=0,∴n2+2m2+8m+6=0,∴n2=﹣2m2﹣8m﹣6=﹣2(m+2)2+2,∵M点在第二象限,∴m+1<0,m+3>0,∴﹣3<m<﹣1,∴当m=﹣2时,n2可以取得最大值2;(3)如图1,当直线l与抛物线有交点时,联立方程组,整理得,x2﹣4x﹣4﹣2n=0,∵Δ≥0,即8n+16≥0,∴n≥﹣4,当n=﹣4时,直线y=x﹣4与抛物线的交点为F(2,﹣3);①当m=﹣3时,四边形NMPQ的顶点分别为M(﹣2,0),N(﹣2,﹣3),P(2,﹣3),Q(2,0),如图2,当直线l经过点P(2,﹣3)时,此时P点与F点重合,∴n=﹣4时,直线l与四边形MNPQ、抛物线都有交点,且满足直线l与矩形MNPQ的交点的纵坐标都不大于与抛物线的交点的纵坐标;如图3,当直线l经过点A时,n=,当直线l经过点M时,如图4,n=1,∴≤n≤1,综上所述:n的取值范围为:≤n≤1或n=﹣4;②当m的值逐渐增大到使矩形MNPQ的顶点M(m+1,m+3)在直线y=x﹣4上时,直线l与四边形MNPQ、抛物线同时有交点,且同一直线l与四边形MNPQ的交点的纵坐标都小于它与抛物线的交点的纵坐标,∴m+3=(m+1)﹣4,解得m=﹣13;如图5,当m的值逐渐增大到使矩形MNPQ的顶点M(m+1,m+3)在这条开口向上的抛物线上(对称轴左侧)时,存在直线l(即经过此时点M的直线l)与四边形MNPQ、平行同时有交点,且同一直线l与四边形MNPQ的交点的纵坐标都不大于它与抛物线的交点的纵坐标,∴(m+1)2﹣(m+1)﹣2=m+3,解得m=(舍)或m=,综上所述:m的取值范围为﹣13≤m≤.【点评】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,反比例函数的图象及性质,一次函数的图象及性质,矩形的性质,数形结合,分类讨论是解题的关键.。
湖北省宜昌市中考数学试卷含答案解析版
2017年湖北省宜昌市中考数学试卷一、选择题:本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)有理数﹣15的倒数为( ) A .5 B .15 C .−15 D .﹣52.(3分)如下字体的四个汉字中,是轴对称图形的是( )A .B .C .D .3.(3分)如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“爱”字一面的相对面上的字是( )A .美B .丽C .宜D .昌4.(3分)谜语:干活两腿脚,一腿勤,一腿懒,一脚站,一脚转.打一数学学习用具,谜底为( )A .量角器B .直尺C .三角板D .圆规5.(3分)5月18 日,新华社电讯:我国利用世界唯一的“蓝鲸1号”,在南海实现了可燃冰(即天然气水合物)的安全可控开采.据介绍,“蓝鲸1号”拥有27354台设备,约40000根管路,约50 000个MCC 报验点,电缆拉放长度估计1200千米.其中准确数是( )A .27354B .40000C .50000D .12006.(3分)九一(1)班在参加学校4×100m 接力赛时,安排了甲,乙,丙,丁四位选手,他们的顺序由抽签随机决定,则甲跑第一棒的概率为( )A .1B .12C .13D .14 7.(3分)下列计算正确的是( )A .a 3+a 2=a 5B .a 3?a 2=a 5C .(a 3)2=a 5D .a 6÷a 2=a 38.(3分)如图,在△AEF 中,尺规作图如下:分别以点E ,点F 为圆心,大于12EF 的长为半径作弧,两弧相交于G ,H 两点,作直线GH ,交EF 于点O ,连接AO ,则下列结论正确的是( )A .AO 平分∠EAFB .AO 垂直平分EFC .GH 垂直平分EFD .GH 平分AF9.(3分)如图,要测定被池塘隔开的A ,B 两点的距离.可以在AB 外选一点C ,连接AC ,BC ,并分别找出它们的中点D ,E ,连接ED .现测得AC=30m ,BC=40m ,DE=24m ,则AB=( )A .50mB .48mC .45mD .35m10.(3分)如图,将一张四边形纸片沿直线剪开,如果剪开后的两个图形的内角和相等,下列四种剪法中,符合要求的是( )A .①②B .①③C .②④D .③④11.(3分)如图,四边形ABCD 内接⊙O ,AC 平分∠BAD ,则下列结论正确的是( )A .AB=ADB .BC=CDC .AB̂=AD ̂ D .∠BCA=∠DCA 12.(3分)今年5月21日是全国第27个助残日,某地开展“心手相连,共浴阳光”为主题的手工制品义卖销售活动.长江特殊教育学校将同学们手工制作的手串、中国结、手提包、木雕笔筒的相关销售信息汇总如下表,其中销售率最高的是( )手工制品手串 中国结 手提包 木雕笔筒 总数量(个)200 100 80 70 销售数量(个) 190 100 76 68A .手串B .中国结C .手提包D .木雕笔筒13.(3分)△ABC 在网格中的位置如图所示(每个小正方形边长为1),AD ⊥BC 于D ,下列选项中,错误的是( )A .sin α=cos αB .tanC=2C .sin β=cos βD .tan α=114.(3分)计算(x+y)2−(x−y)24xy 的结果为( ) A .1 B .12 C .14 D .015.(3分)某学校要种植一块面积为100m 2的长方形草坪,要求两边长均不小于5m ,则草坪的一边长为y (单位:m )随另一边长x (单位:m )的变化而变化的图象可能是( )A. B.C. D.二、解答题(本大题共9小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.(6分)计算:23×(1﹣14)×.17.(6分)解不等式组{x2≥−12(1−x)<4−3x..18.(7分)YC市首批一次性投放公共自行车700辆供市民租用出行,由于投入数量不够,导致出现需要租用却未租到车的现象,现随机抽取的某五天在同一时段的调查数据汇成如下表格.请回答下列问题:时间第一天7:00﹣8:00 第二天7:00﹣8:00第三天7:00﹣8:00第四天7:00﹣8:00第五天7:00﹣8:00需要租用自行车却未租到车的人数(人)1500 1200 1300 1300 1200 (1)表格中的五个数据(人数)的中位数是多少?(2)由随机抽样估计,平均每天在7:00﹣8:00:需要租用公共自行车的人数是多少?19.(7分)“和谐号”火车从车站出发,在行驶过程中速度y(单位:m/s)与时间x(单位:s)的关系如图所示,其中线段BC∥x轴.(1)当0≤x≤10,求y关于x的函数解析式;(2)求C点的坐标.20.(8分)阅读:能够成为直角三角形三条边长的三个正整数a,b,c,称为勾股数.世界上第一次给出勾股数通解公式的是我国古代数学着作《九章算术》,其勾股数组公式为:{a=12(m2−n2)b=mnc=12(m2+n2).其中m>n>0,m,n是互质的奇数.应用:当n=1时,求有一边长为5的直角三角形的另外两条边长.21.(8分)已知,四边形ABCD中,E是对角线AC上一点,DE=EC,以AE为直径的⊙O与边CD相切于点D.B点在⊙O上,连接OB.(1)求证:DE=OE;(2)若CD∥AB,求证:四边形ABCD是菱形.22.(10分)某市总预算a亿元用三年时间建成一条轨道交通线.轨道交通线由线路敷设、搬迁安置、辅助配套三项工程组成.从2015年开始,市政府在每年年初分别对三项工程进行不同数额的投资.2015年年初,对线路敷设、搬迁安置的投资分别是辅助配套投资的2倍、4倍.随后两年,线路敷设投资每年都增加b亿元,预计线路敷设三年总投资为54亿元时会顺利如期完工;搬迁安置投资从2016年初开始遂年按同一百分数递减,依此规律,在 2017年年初只需投资5亿元,即可顺利如期完工;辅助配套工程在2016年年初的投资在前一年基础上的增长率是线路敷设2016年投资增长率的倍,2017年年初的投资比该项工程前两年投资的总和还多4亿元,若这样,辅助配套工程也可以如期完工.经测算,这三年的线路敷设、辅助配套工程的总投资资金之比达到3:2.(1)这三年用于辅助配套的投资将达到多少亿元?(2)市政府2015年年初对三项工程的总投资是多少亿元?(3)求搬迁安置投资逐年递减的百分数.23.(11分)正方形ABCD 的边长为1,点O 是BC 边上的一个动点(与B ,C 不重合),以O 为顶点在BC 所在直线的上方作∠MON=90°.(1)当OM 经过点A 时,①请直接填空:ON (可能,不可能)过D 点;(图1仅供分析)②如图2,在ON 上截取OE=OA ,过E 点作EF 垂直于直线BC ,垂足为点F ,作EH ⊥CD 于H ,求证:四边形EFCH 为正方形.(2)当OM 不过点A 时,设OM 交边AB 于G ,且OG=1.在ON 上存在点P ,过P 点作PK 垂直于直线BC ,垂足为点K ,使得S △PKO =4S △OBG ,连接GP ,求四边形PKBG 的最大面积.24.(12分)已知抛物线y=ax 2+bx+c ,其中2a=b >0>c ,且a+b+c=0.(1)直接写出关于x 的一元二次方程ax 2+bx+c=0的一个根;(2)证明:抛物线y=ax 2+bx+c 的顶点A 在第三象限;(3)直线y=x+m 与x ,y 轴分别相交于B ,C 两点,与抛物线y=ax 2+bx+c 相交于A ,D 两点.设抛物线y=ax 2+bx+c 的对称轴与x 轴相交于E .如果在对称轴左侧的抛物线上存在点F ,使得△ADF 与△BOC 相似,并且S △ADF =12S △ADE ,求此时抛物线的表达式.2017年湖北省宜昌市中考数学试卷参考答案与试题解析一、选择题:本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2017?宜昌)有理数﹣15的倒数为()A.5 B.15C.−15D.﹣5【考点】17:倒数.【分析】根据倒数的定义,找出﹣15的倒数为﹣5,此题得解.【解答】解:根据倒数的定义可知:﹣15的倒数为﹣5.故选D.【点评】本题考查了倒数,熟练掌握倒数的定义是解题的关键.2.(3分)(2017?宜昌)如下字体的四个汉字中,是轴对称图形的是()A.B.C.D.【考点】P3:轴对称图形.【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此判断即可.【解答】解:根据轴对称图形的概念可知,A为轴对称图形.故选:A.【点评】本题考查轴对称图形的知识,要求掌握轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.(3分)(2017?宜昌)如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“爱”字一面的相对面上的字是()A.美B.丽C.宜D.昌【考点】I8:专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:∵正方体的表面展开图,相对的面之间一定相隔一个正方形,∴有“爱”字一面的相对面上的字是宜.故选C.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4.(3分)(2017?宜昌)谜语:干活两腿脚,一腿勤,一腿懒,一脚站,一脚转.打一数学学习用具,谜底为()A.量角器B.直尺 C.三角板D.圆规【考点】1O:数学常识.【分析】利用圆规的特点直接得到答案即可.【解答】解:圆规有两只脚,一铁脚固定,另一脚旋转,故选D.【点评】本题考查了简单的数学知识,稍有点数学常识的同学就会做出正确的回答,难度不大.5.(3分)(2017?宜昌)5月18 日,新华社电讯:我国利用世界唯一的“蓝鲸1号”,在南海实现了可燃冰(即天然气水合物)的安全可控开采.据介绍,“蓝鲸1号”拥有27354台设备,约40000根管路,约50 000个MCC报验点,电缆拉放长度估计1200千米.其中准确数是()A.27354 B.40000 C.50000 D.1200【考点】1H:近似数和有效数字.【分析】利用精确数和近似数的区别进行判断.【解答】解:27354为准确数,4000、50000、1200都是近似数.故选A.【点评】本题考查了近似数和有效数字:精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.6.(3分)(2017?宜昌)九一(1)班在参加学校4×100m接力赛时,安排了甲,乙,丙,丁四位选手,他们的顺序由抽签随机决定,则甲跑第一棒的概率为()A.1 B.12C.13D.14【考点】X4:概率公式.【分析】根据概率公式进行解答.【解答】解:甲跑第一棒的概率为14.故选:D.【点评】本题考查了概率公式.随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数.7.(3分)(2017?宜昌)下列计算正确的是()A.a3+a2=a5B.a3?a2=a5C.(a3)2=a5D.a6÷a2=a3【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】由合并同类项、同底数幂的乘法法则、幂的乘方法则、同底数幂的除法法则即可得出结论.【解答】解:A、a3+a2=a5.不正确;B、a3?a2=a5正确;C、(a3)2=a6≠a5,不正确;D、a6÷a2=a4≠a3,不正确;故选:B.【点评】本题考查了合并同类项、同底数幂的乘法法则、幂的乘方法则、同底数幂的除法法则;熟记有关法则是关键.8.(3分)(2017?宜昌)如图,在△AEF中,尺规作图如下:分别以点E,点F为圆心,大EF的长为半径作弧,两弧相交于G,H两点,作直线GH,交EF于点O,连接AO,则下列于12结论正确的是()A.AO平分∠EAF B.AO垂直平分EF C.GH垂直平分EF D.GH平分AF【考点】N2:作图—基本作图;KG:线段垂直平分线的性质.【分析】直接根据线段垂直平分线的作法即可得出结论.【解答】解:由题意可得,GH垂直平分线段EF.故选C.【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法是解答此题的关键.9.(3分)(2017?宜昌)如图,要测定被池塘隔开的A,B两点的距离.可以在AB外选一点C,连接AC,BC,并分别找出它们的中点D,E,连接ED.现测得AC=30m,BC=40m,DE=24m,则AB=()A.50m B.48m C.45m D.35m【考点】KX:三角形中位线定理.【分析】根据中位线定理可得:AB=2DE=48m.【解答】解:∵D是AC的中点,E是BC的中点,∴DE是△ABC的中位线,AB,∴DE=12∵DE=24m,∴AB=2DE=48m,故选B.【点评】本题考查了三角形的中位线定理,属于基础题,熟练掌握三角形的中位线平行于第三边,并且等于第三边的一半.10.(3分)(2017?宜昌)如图,将一张四边形纸片沿直线剪开,如果剪开后的两个图形的内角和相等,下列四种剪法中,符合要求的是()A.①② B.①③ C.②④ D.③④【考点】L3:多边形内角与外角.【分析】根据多边形的内角和定理即可判断.【解答】解:∵①剪开后的两个图形是四边形,它们的内角和都是360°,③剪开后的两个图形是三角形,它们的内角和都是180°;∴①③剪开后的两个图形的内角和相等,故选B.【点评】本题考查了三角形内角和、四边形的内角和以及多边形的内角和定理.11.(3分)(2017?宜昌)如图,四边形ABCD内接⊙O,AC平分∠BAD,则下列结论正确的是()A .AB=ADB .BC=CDC .AB̂=AD ̂ D .∠BCA=∠DCA 【考点】M4:圆心角、弧、弦的关系.【分析】根据圆心角、弧、弦的关系对各选项进行逐一判断即可.【解答】解:A 、∵∠ACB 与∠ACD 的大小关系不确定,∴AB 与AD 不一定相等,故本选项错误;B 、∵AC 平分∠BAD ,∴∠BAC=∠DAC ,∴BC=CD ,故本选项正确;C 、∵∠ACB 与∠ACD 的大小关系不确定,∴AB̂与AD ̂不一定相等,故本选项错误; D 、∠BCA 与∠DCA 的大小关系不确定,故本选项错误.故选B .【点评】本题考查的是圆心角、弧、弦的关系,在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.12.(3分)(2017?宜昌)今年5月21日是全国第27个助残日,某地开展“心手相连,共浴阳光”为主题的手工制品义卖销售活动.长江特殊教育学校将同学们手工制作的手串、中国结、手提包、木雕笔筒的相关销售信息汇总如下表,其中销售率最高的是( )手工制品手串 中国结 手提包 木雕笔筒 总数量(个)200 100 80 70 销售数量(个) 190 100 76 68A .手串B .中国结C .手提包D .木雕笔筒【考点】18:有理数大小比较;1D :有理数的除法.【分析】分别求出各手工制品的销售率,再比较大小即可.【解答】解:∵手串的销售率=190200=1920<1;中国结的销售率=100100=1;手提包的销售率=7680=1920<1;木雕笔筒的销售率=6870=3435<1,∴销售率最高的是中国结.故选B.【点评】本题考查的是有理数的大小比较,熟知有理数大小比较的法则是解答此题的关键.13.(3分)(2017?宜昌)△ABC在网格中的位置如图所示(每个小正方形边长为1),AD⊥BC于D,下列选项中,错误的是()A.sinα=cosαB.tanC=2 C.sinβ=cosβD.tanα=1【考点】T1:锐角三角函数的定义.【分析】观察图象可知,△ADB是等腰直角三角形,BD=AD=2,AB=2√2,AD=2,CD=1,AC=√5,利用锐角三角函数一一计算即可判断.【解答】解:观察图象可知,△ADB是等腰直角三角形,BD=AD=2,AB=2√2,AD=2,CD=1,AC=√5,∴sinα=cosα=√22,故①正确,tanC=ADCD=2,故②正确,tanα=1,故D正确,③∵sinβ=CDAC =√55,cosβ=2√55,∴sinβ≠cosβ,故C错误.故选C.【点评】本题考查锐角三角函数的应用.等腰直角三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.14.(3分)(2017?宜昌)计算(x+y)2−(x−y)24xy 的结果为( ) A .1 B .12 C .14 D .0【考点】66:约分.【分析】分子利用平方差公式进行因式分解,然后通过约分进行化简.【解答】解:(x+y)2−(x−y)24xy =(x+y+x−y)(x+y−x+y)4xy =4xy 4xy =1.故选:A .【点评】本题考查了约分.约分时,分子与分母都必须是乘积式,如果是多项式的,必须先分解因式.15.(3分)(2017?宜昌)某学校要种植一块面积为100m 2的长方形草坪,要求两边长均不小于5m ,则草坪的一边长为y (单位:m )随另一边长x (单位:m )的变化而变化的图象可能是( ) A . B . C .D .【考点】GA :反比例函数的应用.【分析】易知x 、y 是反比例函数,再根据边长的取值范围即可解题.【解答】解:∵草坪面积为100m 2,∴x 、y 存在关系y=100x ,∵两边长均不小于5m ,∴x ≥5、y ≥5,则x ≤20,故选 C .【点评】反比例函数确定y 的取值范围,即可求得x 的取值范围,熟练掌握是解题的关键.二、解答题(本大题共9小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.(6分)(2017?宜昌)计算:23×(1﹣14)×.【考点】1G :有理数的混合运算.【专题】11 :计算题;511:实数.【分析】原式先计算括号中的减法运算,再计算乘方运算,最后算乘法运算即可得到结果.【解答】解:原式=8×34×12=3. 【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.(6分)(2017?宜昌)解不等式组{x 2≥−12(1−x)<4−3x.. 【考点】CB :解一元一次不等式组.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:{x2≥−1①2(1−x)<4−3x②,由①得:x≥﹣2,由②得:x<2,故不等式组的解集为﹣2≤x<2.【点评】此题主要考查了解一元一次不等式组,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.18.(7分)(2017?宜昌)YC市首批一次性投放公共自行车700辆供市民租用出行,由于投入数量不够,导致出现需要租用却未租到车的现象,现随机抽取的某五天在同一时段的调查数据汇成如下表格.请回答下列问题:时间第一天7:00﹣8:00 第二天7:00﹣8:00第三天7:00﹣8:00第四天7:00﹣8:00第五天7:00﹣8:00需要租用自行车却未租到车的人数(人)1500 1200 1300 1300 1200 (1)表格中的五个数据(人数)的中位数是多少?(2)由随机抽样估计,平均每天在7:00﹣8:00:需要租用公共自行车的人数是多少?【考点】W4:中位数;V5:用样本估计总体.【分析】(1)表格中5个数据按从小到大的顺序排列后,中位数应是第3个数据;(2)根据平均数等于数据之和除以总个数求出平均每天需要租用自行车却未租到车的人数,再加上700即可.【解答】解:(1)表格中5个数据按从小到大的顺序排列为1200,1200,1300,1300,1500,所以中位数是1300;(2)平均每天需要租用自行车却未租到车的人数:(1500+1200+1300+1300+1200)÷5=1300,∵YC市首批一次性投放公共自行车700辆供市民租用出行,∴平均每天需要租用公共自行车的人数是1300+700=2000.【点评】本题考查了中位数,平均数以及用样本估计总体.将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.平均数=总数÷总个数.19.(7分)(2017?宜昌)“和谐号”火车从车站出发,在行驶过程中速度y (单位:m/s )与时间x (单位:s )的关系如图所示,其中线段BC ∥x 轴.(1)当0≤x ≤10,求y 关于x 的函数解析式;(2)求C 点的坐标.【考点】FH :一次函数的应用.【分析】(1)根据函数图象和图象中的数据可以求得当0≤x ≤10,y 关于x 的函数解析式;(2)根据函数图象可以得到当10≤x ≤30时,y 关于x 的函数解析式,然后将x=30代入求出相应的y 值,然后线段BC ∥x 轴,即可求得点C 的坐标.【解答】解:(1)当0≤x ≤10时,设y 关于x 的函数解析式为y=kx ,10k=50,得k=5,即当0≤x ≤10时,y 关于x 的函数解析式为y=5x ;(2)设当10≤x ≤30时,y 关于x 的函数解析式为y=ax+b ,{10a +b =5025a +b =80,得{a =2b =30, 即当10≤x ≤30时,y 关于x 的函数解析式为y=2x+30,当x=30时,y=2×30+30=90,∵线段BC ∥x 轴,∴点C 的坐标为(60,90).【点评】本题考查了一次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式,利用一次函数的性质解答.20.(8分)(2017?宜昌)阅读:能够成为直角三角形三条边长的三个正整数a ,b ,c ,称为勾股数.世界上第一次给出勾股数通解公式的是我国古代数学着作《九章算术》,其勾股数组公式为:{a =12(m 2−n 2)b =mn c =12(m 2+n 2).其中m >n >0,m ,n 是互质的奇数. 应用:当n=1时,求有一边长为5的直角三角形的另外两条边长.【考点】KT :勾股数;KQ :勾股定理.【分析】由n=1,得到a=12(m 2﹣1)①,b=m ②,c=12(m 2+1)③,根据直角三角形有一边长为5,列方程即可得到结论.【解答】解:当n=1,a=12(m 2﹣1)①,b=m ②,c=12(m 2+1)③,∵直角三角形有一边长为5,∴Ⅰ、当a=5时,12(m 2﹣1)=5,解得:m=±√11(舍去),Ⅱ、当b=5时,即m=5,代入①③得,a=12,c=13,Ⅲ、当c=5时,12(m 2+1)=5,解得:m=±3,∵m >0,∴m=3,代入①②得,a=4,b=3,综上所述,直角三角形的另外两条边长分别为12,13或3,4.【点评】本题考查了勾股定理的逆定理,分类讨论是解题的关键.21.(8分)(2017?宜昌)已知,四边形ABCD 中,E 是对角线AC 上一点,DE=EC ,以AE 为直径的⊙O 与边CD 相切于点D .B 点在⊙O 上,连接OB .(1)求证:DE=OE ;(2)若CD ∥AB ,求证:四边形ABCD 是菱形.【考点】MC:切线的性质;L9:菱形的判定.【分析】(1)先判断出∠2+∠3=90°,再判断出∠1=∠2即可得出结论;(2)先判断出△ABO≌△CDE得出AB=CD,即可判断出四边形ABCD是平行四边形,最后判断出CD=AD即可.【解答】解:(1)如图,连接OD,∵CD是⊙O的切线,∴OD⊥CD,∴∠2+∠3=∠1+∠COD=90°,∵DE=EC,∴∠1=∠2,∴∠3=∠COD,∴DE=OE;(2)∵OD=OE,∴OD=DE=OE,∴∠3=∠COD=∠DEO=60°,∴∠2=∠1=30°,∵OA=OB=OE,OE=DE=EC,∴OA=OB=DE=EC,∵AB∥CD,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA=30°,∴△ABO≌△CDE,∴AB=CD,∴四边形A∴D是平行四边形,∠DOE=30°,∴∠DAE=12∴∠1=∠DAE,∴CD=AD,∴?ABCD是菱形.【点评】此题是切线的性质,主要考查了同角的余角相等,等腰三角形的性质,平行四边形的判定和性质,菱形的判定,判断出△ABO≌△CDE是解本题的关键.22.(10分)(2017?宜昌)某市总预算a亿元用三年时间建成一条轨道交通线.轨道交通线由线路敷设、搬迁安置、辅助配套三项工程组成.从2015年开始,市政府在每年年初分别对三项工程进行不同数额的投资.2015年年初,对线路敷设、搬迁安置的投资分别是辅助配套投资的2倍、4倍.随后两年,线路敷设投资每年都增加b亿元,预计线路敷设三年总投资为54亿元时会顺利如期完工;搬迁安置投资从2016年初开始遂年按同一百分数递减,依此规律,在 2017年年初只需投资5亿元,即可顺利如期完工;辅助配套工程在2016年年初的投资在前一年基础上的增长率是线路敷设2016年投资增长率的倍,2017年年初的投资比该项工程前两年投资的总和还多4亿元,若这样,辅助配套工程也可以如期完工.经测算,这三年的线路敷设、辅助配套工程的总投资资金之比达到3:2.(1)这三年用于辅助配套的投资将达到多少亿元?(2)市政府2015年年初对三项工程的总投资是多少亿元?(3)求搬迁安置投资逐年递减的百分数.【考点】AD:一元二次方程的应用;B7:分式方程的应用.【分析】(1)由线路敷设三年总投资为54亿元及这三年的线路敷设、辅助配套工程的总投资资金之比达到3:2,可得答案.(2)设2015年年初,对辅助配套的投资为x 亿元,则线路敷设的投资为2x 亿元,搬迁安置的投资是4x 亿元,根据“线路敷设三年总投资为54亿元、辅助配套三年的总投资为36亿元”列方程组,解之求得x 、b 的值可得答案.(3)由x=5得出2015年初搬迁安置的投资为20亿元,设从2016年初开始,搬迁安置投资逐年递减的百分数为y ,根据“2017年年初搬迁安置的为投资5亿”列方程求解可得.【解答】解:(1)三年用于辅助配套的投资将达到54×23=36(亿元);(2)设2015年年初,对辅助配套的投资为x 亿元,则线路敷设的投资为2x 亿元,搬迁安置的投资是4x 亿元,根据题意,得:{2x +2x +b +2x +2b =54x +(1+1.5b 2x )x +x +(1+1.5b 2x )x +4=36, 解得:{x =5b =8, ∴市政府2015年年初对三项工程的总投资是7x=35亿元;(3)由x=5得,2015年初搬迁安置的投资为20亿元,设从2016年初开始,搬迁安置投资逐年递减的百分数为y ,由题意,得:20(1﹣y )2=5,解得:y 1=,y 2=(舍)答:搬迁安置投资逐年递减的百分数为50%.【点评】本题主要考查一元二次方程、二元一次方程组的应用,理解题意、准确梳理题中所涉数量关系,找到题目蕴含的相等关系是解题的关键.23.(11分)(2017?宜昌)正方形ABCD 的边长为1,点O 是BC 边上的一个动点(与B ,C 不重合),以O 为顶点在BC 所在直线的上方作∠MON=90°.(1)当OM 经过点A 时,①请直接填空:ON 不可能 (可能,不可能)过D 点;(图1仅供分析)②如图2,在ON 上截取OE=OA ,过E 点作EF 垂直于直线BC ,垂足为点F ,作EH ⊥CD 于H ,求证:四边形EFCH 为正方形.(2)当OM 不过点A 时,设OM 交边AB 于G ,且OG=1.在ON 上存在点P ,过P 点作PK 垂直于直线BC,垂足为点K,使得S△PKO=4S△OBG,连接GP,求四边形PKBG的最大面积.【考点】LO:四边形综合题.【分析】(1)①若ON过点D时,则在△OAD中不满足勾股定理,可知不可能过D点;②由条件可先判业四边形EFCH为矩形,再证明△OFE≌△ABO,可证得结论;(2)由条件可证明△PKO∽△OBG,利用相似三角形的性质可求得OP=2,可求得△POG面积为定值及△PKO和△OBG的关系,只要△CGB的面积有最大值时,则四边形PKBG的面积就最大,设OB=a,BG=b,由勾股定理可用b表示出a,则可用a表示出△CBG的面积,利用二次函数的性质可求得其最大值,则可求得四边形PKBG面积的最大值.【解答】解:(1)①若ON过点D,则OA>AB,OD>CD,∴OA2>AD2,OD2>AD2,∴OA2+OD2>2AD2≠AD2,∴∠AOD≠90°,这与∠MON=90°矛盾,∴ON不可能过D点,故答案为:不可能;②∵EH⊥CD,EF⊥BC,∴∠EHC=∠EFC=90°,且∠HCF=90°,∴四边形EFCH为矩形,∵∠MON=90°,∴∠EOF=90°﹣∠AOB,在正方形ABCD中,∠BAO=90°﹣∠AOB,∴∠EOF=∠BAO,在△OFE和△ABO中{∠EOF =∠BAO∠EFO =∠BOE =AO∴△OFE ≌△ABO (AAS ),∴EF=OB ,OF=AB ,又OF=CF+OC=AB=BC=BO+OC=EF+OC ,∴CF=EF ,∴四边形EFCH 为正方形;(2)∵∠POK=∠OGB ,∠PKO=∠OBG ,∴△PKO ∽△OBG ,∵S △PKO =4S △OBG ,∴S △PKOS △OBG =(OP OG )2=4, ∴OP=2,∴S △POG =12OG?OP=12×1×2=1,设OB=a ,BG=b ,则a 2+b 2=OG 2=1,∴b=√1−a 2,∴S △OBG =12ab=12a √1−a 2=12√−a 4+a 2=12√−(a 2−12)2+14,∴当a 2=12时,△OBG 有最大值14,此时S △PKO =4S △OBG =1,∴四边形PKBG 的最大面积为1+1+14=94.【点评】本题为四边形的综合应用,涉及矩形的判定和性质、全等三角形的判定和性质、相似三角形的判定和性质、三角形的面积、二次函数的性质及方程思想等知识.在(1)①中注意反证法的应用,在(1)②中证得CE=EF是解题的关键,在(2)中确定出△OBG面积的最大值是解题的关键.本题考查知识点较多,综合性较强,难度适中.24.(12分)(2017?宜昌)已知抛物线y=ax2+bx+c,其中2a=b>0>c,且a+b+c=0.(1)直接写出关于x的一元二次方程ax2+bx+c=0的一个根;(2)证明:抛物线y=ax2+bx+c的顶点A在第三象限;(3)直线y=x+m与x,y轴分别相交于B,C两点,与抛物线y=ax2+bx+c相交于A,D两点.设抛物线y=ax2+bx+c的对称轴与x轴相交于E.如果在对称轴左侧的抛物线上存在点F,使得△ADF与△BOC相似,并且S△ADF=1S△ADE,求此时抛物线的表达式.2【考点】HF:二次函数综合题.【专题】15 :综合题;535:二次函数图象及其性质.【分析】(1)根据a+b+c=0,结合方程确定出方程的一个根即可;(2)表示出抛物线的对称轴,将2a=b代入,并结合a+b+c=0,表示出c,判断顶点坐标即可;(3)根据表示出的b与c,求出方程的解确定出抛物线解析式,由直线y=x+m与x,y轴交于B,C两点,表示出OB=OC=|m|,可得出三角形BOC为等腰直角三角形,确定出三角形三角形ADE面积,根据三角形ADF等于三角形ADE面积的一半求出a的值,即可确定出抛物线解析式.【解答】解:(1)∵抛物线y=ax2+bx+c,a+b+c=0,∴关于x的一元二次方程ax2+bx+c=0的一个根为x=1;(2)证明:∵2a=b,∴对称轴x=﹣b=﹣1,2a把b=2a 代入a+b+c=0中得:c=﹣3a ,∵a >0,c <0,∴△=b 2﹣4ac >0,∴4ac−b 24a <0,则顶点A (﹣1,4ac−b 24a )在第三象限;(3)由b=2a ,c=﹣3a ,得到x=−b±√b 2−4ac 2a =−2a±4a 2a ,解得:x 1=﹣3,x 2=1, 二次函数解析式为y=ax 2+2ax ﹣3a ,∵直线y=x+m 与x ,y 轴分别相交于点B ,C 两点,则OB=OC=|m|,∴△BOC 是以∠BOC 为直角的等腰直角三角形,即此时直线y=x+m 与对称轴x=﹣1的夹角∠BAE=45°,∵点F 在对称轴左侧的抛物线上,则∠DAF >45°,此时△ADF 与△BOC 相似,顶点A 只可能对应△BOC 的直角顶点O ,即△ADF 是以A 为直角顶点的等腰直角三角形,且对称轴为x=﹣1,设对称轴x=﹣1与OF 交于点G ,∵直线y=x+m 过顶点A (﹣1,﹣4a ),∴m=1﹣4a ,∴直线解析式为y=x+1﹣4a ,联立得:{y =x +1−4a y =ax 2+2ax −3a, 解得:{x =−1y =−4a 或{x =1a −1y =1a−4a , 这里(﹣1,﹣4a )为顶点A ,(1a ﹣1,1a﹣4a )为点D 坐标, 点D 到对称轴x=﹣1的距离为1a ﹣1﹣(﹣1)=1a ,AE=|﹣4a|=4a ,∴S △ADE =12×1a ×4a=2,即它的面积为定值,。
【新精品卷】湖北省宜昌市中考数学试卷(内含答案详析)
湖北省宜昌市中考数学试卷(考试时间共分钟,满分分)准考证号:__________ 姓名:________ 座位号:_________【请考生认真审题,争取会做的不要错,不会做的冷静思考】一.选择题(下列各小题中,只有一个选项是符合题目要求的,请在答题卡上指定的位置填涂符合要求的选项前的字母代号,每题3分,计45分)1.(3分)﹣66的相反数是()A.﹣66 B.66 C.D.【解析】选B.﹣66的相反数是66.2.(3分)如下字体的四个汉字中,是轴对称图形的是()A.B.C.D.【解析】选D.A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.3.(3分)如图,A,B,C,D是数轴上的四个点,其中最适合表示无理数π的点是()A.点A B.点B C.点C D.点D【解析】选D.因为无理数π大于3,在数轴上表示大于3的点为点D;4.(3分)如图所示的几何体的主视图是()A. B.C.D.【解析】选D.从正面看易得左边比右边高出一个台阶,故选项D符合题意.5.(3分)在纳木错开展的第二次青藏高原综合科学考查研究中,我国自主研发的系留浮空器于5月23日凌晨达到海拔7003米的高度.这一高度也是已知的同类型同量级浮空器驻空高度的世界纪录.数据7003用科学记数法表示为()A.0.7×104 B.70.03×102 C.7.003×103 D.7.003×104【解析】选C.将7003用科学记数法表示为:7.003×103.6.(3分)如图,将一块含有30°角的直角三角板的两个顶点分别放在直尺的两条平行对边上,若∠α=135°,则∠β等于()A.45°B.60°C.75°D.85°【解析】选C.由题意可得:∵∠α=135°,∴∠1=45°,∴∠β=180°﹣45°﹣60°=75°.7.(3分)下列计算正确的是()A.3ab﹣2ab=1 B.(3a2)2=9a4 C.a6÷a2=a3 D.3a2•2a=6a2【解析】选B.A、3ab﹣2ab=ab,故此选项错误;B、(3a2)2=9a4,正确;C、a6÷a2=a4,故此选项错误;D、3a2•2a=6a3,故此选项错误.8.(3分)李大伯前年在驻村扶贫工作队的帮助下种了一片果林,今年收货一批成熟的果子.他选取了5棵果树,采摘后分别称重.每棵果树果子总质量(单位:kg)分别为:90,100,120,110,80.这五个数据的中位数是()A.120 B.110 C.100 D.90【解析】选C.90,100,120,110,80,从小到大排列为:80,90,100,110,120,则这五个数据的中位数是:100.9.(3分)化简(x﹣3)2﹣x(x﹣6)的结果为()A.6x﹣9 B.﹣12x+9 C.9 D.3x+9【解析】选C.原式=x2﹣6x+9﹣x2+6x=9.10.(3分)通过如下尺规作图,能确定点D是BC边中点的是()A. B.C.D.【解析】选A.作线段BC的垂直平分线可得线段BC的中点.由此可知:选项A符合条件,11.(3分)如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则sin∠BAC的值为()A.B.C.D.【解析】选D.如图,过C作CD⊥AB于D,则∠ADC=90°,∴AC===5.∴sin∠BAC==.12.(3分)如图,点A,B,C均在⊙O上,当∠OBC=40°时,∠A的度数是()A.50°B.55°C.60°D.65°【解析】选A.∵OB=OC,∴∠OCB=∠OBC=40°,∴∠BOC=180°﹣40°﹣40°=100°,∴∠A=∠BOC=50°.13.(3分)在“践行生态文明,你我一起行动”主题有奖竞赛活动中,903班共设置“生态知识、生态技能、生态习惯、生态文化”四个类别的竞赛内容,如果参赛同学抽到每一类别的可能性相同,那么小宇参赛时抽到“生态知识”的概率是()A.B.C.D.【解析】选B.∵共设置“生态知识、生态技能、生态习惯、生态文化”四个类别的竞赛内容,参赛同学抽到每一类别的可能性相同,∴小宇参赛时抽到“生态知识”的概率是:.14.(3分)古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦﹣秦九韶公式:如果一个三角形的三边长分别是a,b,c,记p=,那么三角形的面积为S=.如图,在△ABC中,∠A,∠B,∠C所对的边分别记为a,b,c,若a=5,b=6,c=7,则△ABC的面积为()A.6B.6C.18 D.【解析】选A.∵a=7,b=5,c=6.∴p==9,∴△ABC的面积S==6;15.(3分)如图,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB=∠B =30°,OA=2,将△AOB绕点O逆时针旋转90°,点B的对应点B'的坐标是()A.(﹣1,2+)B.(﹣,3)C.(﹣,2+)D.(﹣3,)【解析】选B.如图,作B′H⊥y轴于H.由题意:OA′=A′B′=2,∠B′A′H=60°,∴∠A′B′H=30°,∴AH′=A′B′=1,B′H=,∴OH=3,∴B′(﹣,3),二.解答题(本大题共有9个小题,共75分)16.(6分)已知:x≠y,y=﹣x+8,求代数式+的值.【解析】原式=+==,当x≠y,y=﹣x+8时,原式=x+(﹣x+8)=8.17.(6分)解不等式组,并求此不等式组的整数解.【解析】,由①得:x,由②得:x<4,不等式组的解集为:<x<4.则该不等式组的整数解为:1、2、3.18.(7分)如图,在△ABC中,D是BC边上的一点,AB=DB,BE平分∠ABC,交AC边于点E,连接DE.(1)求证:△ABE≌△DBE;(2)若∠A=100°,∠C=50°,求∠AEB的度数.【解析】(1)证明:∵BE平分∠ABC,∴∠ABE=∠DBE,在△ABE和△DBE中,,∴△ABE≌△DBE(SAS);(2)解:∵∠A=100°,∠C=50°,∴∠ABC=30°,∵BE平分∠ABC,∴∠ABE=∠DBE=∠ABC=15°,在△ABE中,∠AEB=180°﹣∠A﹣∠ABE=180°﹣100°﹣15°=65°.19.(7分)《人民日报》点赞湖北宜昌“智慧停车平台”.作为“全国智慧城市”试点,我市通过“互联网”、“大数据”等新科技,打造“智慧停车平台”,着力化解城市“停车难”问题.市内某智慧公共停车场的收费标准是:停车不超过30分钟,不收费;超过30分钟,不超过60分钟,计1小时,收费3元;超过1小时后,超过1小时的部分按每小时2元收费(不足1小时,按1小时计).(1)填空:若市民张先生某次在该停车场停车2小时10分钟,应交停车费7元.若李先生也在该停车场停车,支付停车费11元,则停车场按5小时(填整数)计时收费.(2)当x取整数且x≥1时,求该停车场停车费y(单位:元)关于停车计时x(单位:小时)的函数解析式.【解析】(1)若市民张先生某次在该停车场停车2小时10分钟,应交停车费为:3+2×2=7(元);若李先生也在该停车场停车,支付停车费11元,则超出时间为(11﹣3)÷2=4(小时),所以停车场按5小时计时收费.答案:7;5;(2)当x取整数且x≥1时,该停车场停车费y(单位:元)关于停车计时x(单位:小时)的函数解析式为:y=3+(2(x﹣1),即y=2x+1.20.(8分)某校在参加了宜昌市教育质量综合评价学业素养测试后,随机抽取八年级部分学生,针对发展水平四个维度“阅读素养、数学素养、科学素养、人文素养”,开展了“你最需要提升的学业素养”问卷调查(每名学生必选且只能选择一项).小明、小颖和小雯在协助老师进行统计后,有这样一段对话:小明:“选科学素养和人文素养的同学分别为16人,12人.”小颖:“选数学素养的同学比选阅读素养的同学少4人.”小雯:“选科学素养的同学占样本总数的20%.”(1)这次抽样调查了多少名学生?(2)样本总数中,选“阅读素养”、“数学素养”的学生各多少人?(3)如图是调查结果整理后绘制成的扇形图.请直接在横线上补全相关百分比;(4)该校八年级有学生400人,请根据调查结果估计全年级选择“阅读素养”的学生有多少人?【解析】(1)16÷20%=80,所以这次抽样调查了80名学生;(2)设样本中选数学素养的同学数为x人,则选阅读素养的同学数为(x+4)人,x+x+4+16+12=80,解得x=24,则x+4=28,所以本总数中,选“阅读素养”的学生数为28人,选“数学素养”的学生数为24人;(3)选数学素养的学生数所占的百分比为×100%=30%;选阅读素养的学生数所占的百分比为×100%=35%;选人文素养的学生数所占的百分比为×100%=15%;如图,(4)400×35%=140,所以估计全年级选择“阅读素养”的学生有140人.21.(8分)如图,点O是线段AH上一点,AH=3,以点O为圆心,OA的长为半径作⊙O,过点H 作AH的垂线交⊙O于C,N两点,点B在线段CN的延长线上,连接AB交⊙O于点M,以AB,BC为边作▱ABCD.(1)求证:AD是⊙O的切线;(2)若OH=AH,求四边形AHCD与⊙O重叠部分的面积;(3)若NH=AH,BN=,连接MN,求OH和MN的长.【解析】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∵∠AHC=90°,∴∠HAD=90°,即OA⊥AD,又∵OA为半径,∴AD是⊙O的切线;(2)解:如右图,连接OC,∵OH=OA,AH=3,∴OH=1,OA=2,∵在Rt△OHC中,∠OHC=90°,OH=OC,∴∠OCH=30°,∴∠AOC=∠OHC+∠OCH=120°,∴S扇形OAC==,∵CH==,∴S△OHC=×1×=,∴四边形ABCD与⊙O重叠部分的面积=S扇形OAC+S△OHC=+;(3)设⊙O半径OA=r=OC,OH=3﹣r,在Rt△OHC中,OH2+HC2=OC2,∴(3﹣r)2+12=r2,∴r=,则OH=,在Rt△ABH中,AH=3,BH=+1=,则AB=,在Rt△ACH中,AH=3,CH=NH=1,得AC=,在△BMN和△BCA中,∠B=∠B,∠BMN=∠BCA,∴△BMN∽△BCA,∴=即==,∴MN=,∴OH=,MN=.22.(10分)HW公司使用自主研发生产的“QL”系列甲、乙、丙三类芯片共2800万块,生产了2800万部手机,其中乙类芯片的产量是甲类芯片的2倍,丙类芯片的产量比甲、乙两类芯片产量的和还多400万块.这些“QL”芯片解决了该公司生产的全部手机所需芯片的10%.(1)求甲类芯片的产量;(2)HW公司计划生产的手机全部使用自主研发的“QL”系列芯片.从起逐年扩大“QL”芯片的产量,、这两年,甲类芯片每年的产量都比前一年增长一个相同的百分数m%,乙类芯片的产量平均每年增长的百分数比m%小1,丙类芯片的产量每年按相同的数量递增.到,丙类芯片三年的总产量达到1.44亿块.这样,的HW公司的手机产量比全年的手机产量多10%,求丙类芯片的产量及m的值.【解析】(1)设甲类芯片的产量为x万块,由题意得:x+2x+(x+2x)+400=2800,解得:x=400;答:甲类芯片的产量为400万块;(2)万块丙类芯片的产量为3x+400=1600万块,设丙类芯片的产量每年增加的数量为y万块,则1600+1600+y+1600+2y=14400,解得:y=3200,∴丙类芯片的产量为1600+2×3200=8000万块,HW公司手机产量为2800÷10%=28000万部,400(1+m%)2+2×400(1+m%﹣1)2+8000=28000×(1+10%),设m%=t,化简得:3t2+2t﹣56=0,解得:t=4,或t=﹣(舍去),∴t=4,∴m%=4,∴m=400;答:丙类芯片的产量为8000万块,m=400.23.(11分)已知:在矩形ABCD中,E,F分别是边AB,AD上的点,过点F作EF的垂线交DC于点H,以EF为直径作半圆O.(1)填空:点A在(填“在”或“不在”)⊙O上;当=时,tan∠AEF的值是;(2)如图1,在△EFH中,当FE=FH时,求证:AD=AE+DH;(3)如图2,当△EFH的顶点F是边AD的中点时,求证:EH=AE+DH;(4)如图3,点M在线段FH的延长线上,若FM=FE,连接EM交DC于点N,连接FN,当AE=AD时,FN=4,HN=3,求tan∠AEF的值.【解析】(1)连接AO,∵∠EAF=90°,O为EF中点,∴AO=EF,∴点A在⊙O上,当=时,∠AEF=45°,∴tan∠AEF=tan45°=1,答案:在,1;(2)∵EF⊥FH,∴∠EFH=90°,在矩形ABCD中,∠A=∠D=90°,∴∠AEF+∠AFE=90°,∠AFE+∠DFH=90°,∴∠AEF=∠DFH,又FE=FH,∴△AEF≌△DFH(AAS),∴AF=DH,AE=DF,∴AD=AF+DF=AE+DH;(3)延长EF交HD的延长线于点G,∵F分别是边AD上的中点,∴AF=DF,∵∠A=∠FDG=90°,∠AFE=∠DFG,∴△AEF≌△DGF(ASA),∴AE=DG,EF=FG,∵EF⊥FG,∴EH=GH,∴GH=DH+DG=DH+AE,∴EH=AE+DH;(4)过点M作MQ⊥AD于点Q.设AF=x,AE=a,∵FM=FEEF⊥FH,∴△EFM为等腰直角三角形,∴∠FEM=∠FMN=45°,∵FM=FE,∠A=∠MQF=90°,∠AEF=∠MFQ,∴△AEF≌△QFM(ASA),∴AE=EQ=a,AF=QM,∵AE=AD,∴AF=DQ=QM=x,∵DC∥QM,∴,∵DC∥AB∥QM,∴,∴,∵FE=FM,∴,∠FEM=∠FMN=45°,∴△FEN~△HMN,∴,∴.24.(12分)在平面直角坐标系中,正方形ABCD的四个顶点坐标分别为A(﹣2,4),B(﹣2,﹣2),C(4,﹣2),D(4,4).(1)填空:正方形的面积为36;当双曲线y=(k≠0)与正方形ABCD有四个交点时,k的取值范围是:0<k<4或﹣8<k<0;(2)已知抛物线L:y=a(x﹣m)2+n(a>0)顶点P在边BC上,与边AB,DC分别相交于点E,F,过点B的双曲线y=(k≠0)与边DC交于点N.①点Q(m,﹣m2﹣2m+3)是平面内一动点,在抛物线L的运动过程中,点Q随m运动,分别切运动过程中点Q在最高位置和最低位置时的坐标;②当点F在点N下方,AE=NF,点P不与B,C两点重合时,求﹣的值;③求证:抛物线L与直线x=1的交点M始终位于x轴下方.【解析】(1)由点A(﹣2,4),B(﹣2,﹣2)可知正方形的边长为6,∴正方形面积为36;有四个交点时0<k<4或﹣8<k<0;答案:36,0<k<4或﹣8<k<0;(2)①由题意可知,﹣2≤m≤4,yQ=﹣m2﹣2m+3=﹣(m+1)2+4,当m=﹣1,yQ最大=4,在运动过程中点Q在最高位置时的坐标为(﹣1,4),当m<﹣1时,yQ随m的增大而增大,当m=﹣2时,yQ最小=3,当m>﹣1时,yQ随m的增大而减小,当m=4时,yQ最小=﹣21,∴3>﹣21,∴yQ最小=﹣21,点Q在最低位置时的坐标(4,﹣21),∴在运动过程中点Q在最高位置时的坐标为(﹣1,4),最低位置时的坐标为(4,﹣21);②当双曲线y=经过点B(﹣2,﹣2)时,k=4,∴N(4,1),∵顶点P(m,n)在边BC上,∴n=﹣2,∴BP=m+2,CP=4﹣m,∵抛物线y=a(x﹣m)2﹣2(a>0)与边AB、DC分别交于点E、F,∴E(﹣2,a(﹣2﹣m)2﹣2),F(4,a(4﹣m)2﹣2),∴BE=a(﹣2﹣m)2,CF=a(4﹣m)2,∴=﹣,∴a(m+2)﹣a(4﹣m)=2am﹣2a=2a(m﹣1),∵AE=NF,点F在点N下方,∴6﹣a(﹣2﹣m)2=3﹣a(4﹣m)2,∴12a(m﹣1)=3,∴a(m﹣1)=,∴=;③由题意得,M(1,a(1﹣m)2﹣2),∴yM=a(1﹣m)2﹣2(﹣2≤m≤4),即yM=a(m﹣1)2﹣2(﹣2≤m≤4),∵a>0,∴对应每一个a(a>0)值,当m=1时,yM最小=﹣2,当m=﹣2或4时,yM最大=9a﹣2,当m=4时,y=a(x﹣4)2﹣2,∴F(4,﹣2),E(﹣2,36a﹣2),∵点E在边AB上,且此时不与B重合,∴﹣2<36a﹣2≤4,∴0<a≤,∴﹣2<9a﹣2≤﹣,∴yM≤﹣,同理m=﹣2时,y=y=a(x+2)2﹣2,∴E(﹣2,﹣2),F(4,36a﹣2),∵点F在边CD上,且此时不与C重合,∴﹣2<36a﹣2≤4,解得0<a≤,∴﹣2<9a﹣2≤﹣,∴yM≤﹣,综上所述,抛物线L与直线x=1的交点M始终位于x轴下方;。
湖北省宜昌市中考数学试题及答案
题目简单更要仔细哟!九年级生学业考试 数 学 试 卷(课改实验区使用)(考试形式:闭卷 全卷共五大题25小题 卷面分数:120分 考试时限:120分钟)考生注意:1.本试卷分为两卷,解答第I 卷(1~2页)时请将解答结果填写在第II 卷(3~8页)上指定的位置,否则答案无效,交卷时只交第II 卷. 2.答卷时允许使用科学计算器.以下数据和公式供参考:二次函数y =ax 2+bx +c 图象的顶点坐标是)44,2(2ab ac a b -- ;扇形面积S =3602r n π.第Ⅰ卷(选择题、填空题 共45分)一、选择题:(下列各小题都给出了四个选项,其中只有一项是符合题目要求的,请将符合要求的选项前面的字母代号填写在第II 卷上指定的位置. 本大题共10小题,每小题3分,计30分)1. 图中物体的形状类似于( ).(A )棱柱 (B )圆柱 (C )圆锥 (D )球(第1题)2.化简20的结果是( ).(A)25 (B)52 (C) 210. (D)543. 如图所示,BC =6,E 、F 分别是线段AB 和线段AC 的中点, 那么线段EF 的长是( ).(A )6 (B )5 (C )4.5 (D )34.有6张背面相同的扑克牌,正面上的数字分别是4,5,6,7,8,9.若将这六张牌背面朝上洗匀后,从中任意抽取一张,那么这张牌正面上的数字是9的概率为( ).(A)23 (B) 12 (C) 13 (D) 165.在5×5方格纸中将图(1)中的图形N 平移后的位置如图(2)中所示,那么正确的平移方法是( ).(A)先向下移动1格,再向左移动1格 (B)先向下移动1格,再向左移动2格 (C)先向下移动2格,再向左移动1格 (D)先向下移动2格,再向左移动2格图1 图2 (第5题) (第3题)6. 三峡大坝坝顶从7月到9月共92天将对游客开放,每天限接待1000人,在整个开放期间最多能接待游客的总人数用科学记数法表示为( )人. (A )92×103 (B )9.2×104 (C )9.2×103 (D )9.2×1057.如图,希望中学制作了学生选择棋类、武术、摄影、刺绣四门校本 课程情况的扇形统计图. 从图中可以看出选择刺绣的学生为( ). (A)11% (B)12% (C) 13% (D) 14%8.某城市进行旧城区人行道的路面翻新,准备对地面密铺彩色地砖, 有人提出了4种地 砖的形状供设计选用:①正三角形,②正四边形,③正五边形,④正六边形.其中不 能进行密铺的地砖的形状是( ).(A) ① (B) ② (C) ③ (D) ④9.实数m 、n 在数轴上的位置如图所示,则下列不等关系正确的是( ). (A )n <m (B ) n 2<m 2 (C )n 0<m 0(D )| n |<| m | (第9题)10.如图所示的函数图象的关系式可能是( ). (A )y = x (B )y =x 1 (C )y = x 2 (D) y = 1x二、填空题:(请将答案填写在第II 卷上指定的位置.本大题共5小题,每小题3分,计15分)11.如果收入15元记作+15元,那么支出20元记作 元. 12.如图,直线AB 、CD 相交于点O ,若∠1=28°,则∠2= .13.已知,在Rt △ABC 中∠C =90°,∠BAC =30°,AB =10,那么BC = .14.甲、乙、丙三台包装机同时分装质量为400克的茶叶.从它们各自分装的茶叶中分别随机抽取了10盒,测得它们的实际质量的方差如下表所示:15.如图,时钟的钟面上标有1,2,3,……,12共12个数,一条 直线把钟面分成了两部分.请你再用一条直线分割钟面,使钟面被 分成三个不同的部分且各部分所包含的几个数的和都相等,则其 中的两个部分所包含的几个数分别是 和. 。
宜昌中考数学试题及答案
宜昌中考数学试题及答案第一节选择题(共15小题,每小题2分,共30分)1.某数的百位数与个位数之和为5,十位数是9,则这个三位数是()A. 977B. 567C. 695D. 5892.如图,甲、乙两个校园的形状相同,但甲校园比乙校园的每个长度都扩大了2倍,则甲校园建筑面积是乙校园的()A. 2倍B. 4倍C. 8倍D. 16倍3.已知a:b=3:5,且a+b=80,则a的值是()A. 24B. 30C. 36D. 484.已知函数y=5x+2,若x=3,那么y的值等于()A. 5B. 7C. 15D. 175.已知AB是一个直径,圆心角∠ACB的度数是130°,则弧AB的度数是()A. 65°B. 130°C. 260°D. 390°6.某部电视上星期一、星期二、星期三、星期四播放了以5%的比例递增的4个电影。
从星期二到星期四的百分比增长率是()A. 5%B. 15%C. 20%D. 25%7.下列说法正确的是()A. 正方形是长方形B. 长方形是正方形C. 正方形是四边形D. 长方形是四边形8.一个正17边形内角的度数和是( )A. 2430°B. 2520°C. 2620°D. 2700°9.已知正方形的面积是36平方米,边长是()A. 6米B. 12米C. 18米D. 24米10.如图,△ABC与△DEF相似,且边长的比值是1:2,则△DEF 的面积是△ABC的()A. 1/2倍B. 1倍C. 2倍D. 4倍11.三个数的和是60,其中最大的数比另两个数的差的两倍还大6,则这三个数的和是( )A. 30B. 36C. 42D. 4812.下列说法正确的是()A. 结合律适用于加法运算和乘法运算B. 结合律适用于加法运算但不适用于乘法运算C. 结合律适用于乘法运算但不适用于加法运算D. 结合律既不适用于加法运算也不适用于乘法运算13.正方形ABCD,点E是AB边的中点,将正方形四等分,则ADE三角形的面积与正方形ABCD的面积之比是()A. 1/4B. 1/6C. 1/9D. 1/1014.如图,∠A和∠B互余,则∠A的度数是()A. 50°B. 90°C. 130°D. 180°15.晚餐时,小明喝了一碗粥,吃了1/5支香肠,吃了为数的茄子,已知这些食品%都是原先的量的两倍,那么小明吃了几个茄子?A. 5B. 10C. 15D. 20第二节解答题(共5小题,共70分)1.已知△ABC中,角A的角平分线AD和角B的角平分线BE交于点O,若∠AOC=70°,∠BOE=55°,求∠ABC的度数。
宜昌中考数学试题及答案
宜昌中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. $\sqrt{4}$B. $0.\overline{3}$C. $\pi$D. $\frac{22}{7}$答案:C2. 如果一个多边形的内角和为900度,那么这个多边形有多少条边?A. 5B. 6C. 7D. 8答案:C3. 函数$y=2x+3$的图象与x轴的交点坐标是?A. $(-3,0)$B. $(0,3)$C. $(\frac{3}{2},0)$D. $(0,-3)$答案:A4. 下列哪个选项是二次函数?A. $y=x^2+2x+1$B. $y=2x+3$C. $y=\frac{1}{x}$D. $y=x^3-2x^2+3$答案:A5. 一个圆的半径为3厘米,那么它的面积是多少平方厘米?A. 9πB. 18πC. 27πD. 36π答案:C6. 一个等腰三角形的底角为45度,那么它的顶角是多少度?A. 45B. 60C. 90D. 120答案:C7. 一个正方体的体积为64立方厘米,那么它的表面积是多少平方厘米?A. 96B. 128C. 192D. 256答案:B8. 一个数的相反数是-5,那么这个数是多少?A. 5B. -5C. 0D. 10答案:A9. 下列哪个选项是不等式?A. $x+3=7$B. $2x>3$C. $y=5x+2$D. $3x-2=0$答案:B10. 一个数的绝对值是3,那么这个数可以是?A. 3或-3B. 3或0C. -3或0D. 0或1答案:A二、填空题(每题3分,共15分)11. 一个数的平方是25,那么这个数可以是______。
答案:±512. 一个三角形的两边长分别为3和4,第三边的长x满足的不等式是______。
答案:1 < x < 713. 函数$y=x^2-6x+8$的顶点坐标是______。
答案:(3, -1)14. 一个等差数列的首项为2,公差为3,那么第5项的值是______。
湖北省宜昌市数学中考试题及答案(课改实验区使用)
圆柱体A B C D 第2题 A E CBD 甲 乙 第5题AB C O 第9题 年宜昌市数学中考试题(课改实验区使用)(考试形式:闭卷 全卷共五大题25小题 卷面分数:120分 考试时限:120分钟) 考生注意:1.本试卷分为两卷,解答第Ⅰ卷(1~2页)时请将解答结果填写在第Ⅱ卷(3~8页)上指定的位置,否则答案无效,交卷时只交第Ⅱ卷。
2.答卷时允许使用科学计算器。
以下公式供参考:二次函数y =ax 2+bx +c (a ≠0)图象的顶点坐标是)442(2ab ac a b --,;扇形面积3602R n S π=。
第Ⅰ卷 (选择题、填空题 共45分)一.选择题:(在每小题给出的四个选项中,只有一项是符合题目要求的,请将符合要求的选项前面的字母代号填写在第Ⅱ卷上指定的位置。
本大题共10个小题,每小题3分,共30分)01.若2与a 互为倒数,则下列结论正确的是( )。
A 、21=a B 、2-=a C 、21-=a D 、2=a 02.如图,圆柱体的表面展开后得到的平面图形是( )。
03.某电视台举行歌手大奖赛,每场比赛都有编号为1~10号共10道综合素质测试题共选手随机抽取作答。
在某场比赛中,前两位选手分别抽走了2号,7号题,第3位选手抽中8号题的概率是( )。
A 、101 B 、91 C 、81 D 、7104.下列运算正确的是( )。
A 、a 2·a 3=a 6B 、a 8÷a 4=a 2C 、a 3+a 3=2a 6D 、(a 3)2=a 605.如图,小明站在C 处看甲乙两楼楼顶上的点A 和点E 。
C ,E ,A 三点在同一条直线上,点B ,E 分别在点E ,A 的正下方且D ,B ,C 三点在同一条直线上。
B ,C 相距20米,D ,C 相距40米,乙楼高BE 为15米,甲楼高AD 为( )米(小明身高忽略不计)。
A 、40 B 、20 C 、15 D 、3006.据统计,宜昌市2005年财政总收入达到105.5亿元,用科学记数法(保留三个有效数字)表示105.5亿元约为( )元。
湖北省宜昌市2020年中考数学试题(Word版,含答案与解析)
湖北省宜昌市2020年中考数学试卷一、选择题(共11题;共22分)1.下面四幅图是摄影爱好者抢拍的一组照片,从对称美的角度看,拍得最成功的是().A. B. C. D.【答案】B【考点】轴对称图形【解析】【解答】解:A,C,D三幅图都不是轴对称图形,只有B是轴对称图形,故答案为:B【分析】根据轴对称图形的定义可以进行判断;轴对称图形是一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形。
2.我国渤海、黄海、东海、南海海水含有不少化学元素,其中铝、锰元素总量均约为8×106吨.用科学记数法表示铝、锰元素总量的和,接近值是().A. 8×106B. 16×106C. 1.6×107D. 16×1012【答案】C【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:8×106×2= 16×106= 1.6×107.故答案为:C.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是非负数;当原数的绝对值<1时,n是非正数.在这里,要先求出铝、锰元素总量的和,再科学记数法表示即可.3.对于无理数√3,添加关联的数或者运算符号组成新的式子,其运算结果能成为有理数的是().A. 2√3−3√2B. √3+√3C. (√3)3D. 0×√3【答案】 D【考点】二次根式的性质与化简,二次根式的加减法【解析】【解答】解:A. 2√3−3√2不能再计算了,是无理数,不符合题意;B. √3+√3=2√3,是无理数,不符合题意;C. (√3)3=3√3,是无理数,不符合题意;D. 0×√3=0,是有理数,符合题意.故答案为:D.【分析】根据有理数的概念进行判断;有理数是整数(正整数、0、负整数)和分数的统称。
湖北省宜昌市2021年中考数学试卷(word版+答案+解析)
湖北省宜昌市2021年中考数学试卷一、单选题(共11题;共22分)1.-2021的倒数是()A. 2021B. 12021 C. -2021 D. −120212.下列四幅图案是四所大学校徽的主体标识,其中是中心对称图形的是()A.B.C.D.3.2021年5月15月07时18分,“天问一号”火星探测器成功登陆火星表面,开启了中国人自主探测火星之旅.地球与火星的最近距离约为5460万公里.“5460万”用科学记数法表示为()A. 5.46×102B. 5.46×103C. 5.46×106D. 5.46×1074.如图,将一副三角尺按图中所示位置摆放,点F在AC上,其中∠ACB=90°,∠ABC= 60°,∠EFD=90°,∠DEF=45°,AB//DE,则∠AFD的度数是()A. 15°B. 30°C. 45°D. 60°5.下列运算正确的是( )A. x 3+x 3=x 6B. 2x 3−x 3=x 3C. (x 3)2=x 5D. x 3⋅x 3=x 96.在六张卡片上分别写有6, −227 ,3.1415, π ,0, √3 六个数,从中随机抽取一张,卡片上的数为无理数的概率是( )A. 23B. 12C. 13D. 167.某气球内充满了一定质量 m 的气体,当温度不变时,气球内气体的气压 p (单位: kPa )是气体体积 V (单位: m 3 )的反比例函数: p =m V ,能够反映两个变量 p 和 V 函数关系的图象是( ) A. B.C. D.8.我国古代数学经典著作《九章算术》中有这样一题,原文是:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”意思是:今有人合伙购物,每人出八钱,会多三钱;每人出七钱,又差四钱.问人数、物价各多少?设人数为 x 人,物价为 y 钱,下列方程组正确的是( )A. {y =8x −3y =7x +4B. {y =8x +3y =7x +4C. {y =8x −3y =7x −4D. {y =8x +3y =7x −49.如图, △ABC 的顶点是正方形网格的格点,则 cos ∠ABC 的值为( )A. √23B. √22C. 43D. 2√2310.如图,C,D是⊙O上直径AB两侧的两点.设∠ABC=25°,则∠BDC=()A. 85°B. 75°C. 70°D. 65°11.从前,古希腊一位庄园主把一块边长为a米(a>6)的正方形土地租给租户张老汉.第二年,他对张老汉说:“我把这块地的一边增加6米,相邻的另一边减少6米,变成矩形土地继续租给你,租金不变,你也没有吃亏,你看如何?”如果这样,你觉得张老汉的租地面积会()A. 没有变化B. 变大了C. 变小了D. 无法确定二、填空题(共4题;共4分)12.用正负数表示气温的变化量,上升为正,下降为负.登山队攀登一座山峰,每登高1km气温的变化量为−6°C,攀登2km后,气温下降________ °C.13.如图,在平面直角坐标系中,将点A(−1,2)向右平移2个单位长度得到点B,则点B关于x轴的对称点C的坐标是________.14.社团课上,同学们进行了“摸球游戏”:在一个不透明的盒子里装有几十个除颜色不同外其余均相同的黑、白两种球,将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程.整理数据后,制作了“摸出黑球的频率”与“摸球的总次数”的关系图象如图所示,经分析可以推断盒子里个数比较多的是________(填“黑球”或“白球”).15.“莱洛三角形”是工业生产中加工零件时广泛使用的一种图形.如图,以边长为2厘米的等边三角形 ABC 的三个顶点为圆心,以边长为半径画弧,三段圆弧围成的图形就是“莱洛三角形”,该“莱洛三角形”的面积为________平方厘米.(圆周率用 π 表示)三、解答题(共9题;共102分)16.先化简,再求值: 2x 2−1÷1x+1−1x−1 ,从1,2,3这三个数中选择一个你认为适合的 x 代入求值.17.解不等式组 {x −3(x −2)≥42x−13≤x+12 . 18.如图,在 △ABC 中, ∠B =40° , ∠C =50° .(1)通过观察尺规作图的痕迹,可以发现直线 DF 是线段 AB 的________,射线 AE 是 ∠DAC 的________;(2)在(1)所作的图中,求 ∠DAE 的度数.19.国家规定“中小学生每天在校体育活动时间不低于 1h ”.为此,某市就“每天在校体育活动时间”的问题随机调查了辖区内部分初中学生.根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是: A 组: t <0.5h B 组: 0.5h ≤t <1hC 组: 1h ≤t <1.5hD 组: t ≥1.5h请根据上述信息解答下列问题:(1)本次调查的人数是________人;(2)请根据题中的信息补全频数分布直方图;(3)D 组对应扇形的圆心角为________ ° ;(4)本次调查数据的中位数落在________组内;(5)若该市辖区约有80000名初中学生,请估计其中达到国家规定体育活动时间的学生人数约有多少.20.甲超市在端午节这天进行苹果优惠促销活动,苹果的标价为10元/kg,如果一次购买4kg以上的苹果,超过4kg的部分按标价6折售卖. x(单位:kg)表示购买苹果的重量,y(单位:元)表示付款金额.(1)文文购买3kg苹果需付款________元,购买5kg苹果需付款________元;(2)求付款金额y关于购买苹果的重量x的函数解析式;(3)当天,隔壁的乙超市也在进行苹果优惠促销活动,同样的苹果的标价也为10元/kg,且全部按标价的8折售卖.文文如果要购买10kg苹果,请问她在哪个超市购买更划算?21.如图,在菱形ABCD中,O是对角线BD上一点(BO>DO),OE⊥AB,垂足为E,以OE 为半径的⊙O分别交DC于点H,交EO的延长线于点F,EF与DC交于点G.(1)求证:BC是⊙O的切线;(2)若G是OF的中点,OG=2,DG=1.⌢的长;①求HE②求AD的长.22.随着农业技术的现代化,节水型灌溉得到逐步推广.喷灌和滴灌是比漫灌更节水的灌溉方式,喷灌和滴灌时每亩用水量分别是漫灌时的30%和20%.去年,新丰收公司用各100亩的三块试验田分别采用喷灌、滴灌和漫灌的灌溉方式,共用水15000吨.(1)请问用漫灌方式每亩用水多少吨?去年每块试验田各用水多少吨?(2)今年该公司加大对农业灌溉的投入,喷灌和滴灌试验田的面积都增加了m%,漫灌试验田的面积减少了2m%.同时,该公司通过维修灌溉输水管道,使得三种灌溉方式下的每亩用水量都进一步减少了m%,求m的值.m%.经测算,今年的灌溉用水量比去年减少95(3)节水不仅为了环保,也与经济收益有关系.今年,该公司全部试验田在灌溉输水管道维修方面每亩投入30元,在新增的喷灌、滴灌试验田添加设备所投入经费为每亩100元.在(2)的情况下,若每吨水费为2.5元,请判断,相比去年因用水量减少所节省的水费是否大于今年的以上两项投入之和?23.如图,在矩形ABCD中,E是边AB上一点,BE=BC,EF⊥CD,垂足为F.将四边形CBEF绕点C顺时针旋转α(0°<α<90°),得到四边形CB′E′F′. B′E′所在的直线分别交直线BC于点G,交直线AD于点P,交CD于点K. E′F′所在的直线分别交直线BC于点H,交直线AD于点Q,连接B′F′交CD于点O.(1)如图1,求证:四边形BEFC是正方形;(2)如图2,当点Q和点D重合时.①求证:GC=DC;②若OK=1,CO=2,求线段GP的长;(3)如图3,若BM//F′B′交GP于点M,tan∠G=12,求S△GMBS△CF′H的值.24.在平面直角坐标系中,抛物线y1=−(x+4)(x−n)与x轴交于点A和点B(n,0)(n≥−4),顶点坐标记为(ℎ1,k1).抛物线y2=−(x+2n)2−n2+2n+9的顶点坐标记为(ℎ2,k2).(1)写出A点坐标;(2)求k1,k2的值(用含n的代数式表示);(3)当−4≤n≤4时,探究k1与k2的大小关系;(4)经过点M(2n+9,−5n2)和点N(2n,9−5n2)的直线与抛物线y1=−(x+4)(x−n),y2=−(x+2n)2−n2+2n+9的公共点恰好为3个不同点时,求n的值.答案解析部分一、单选题1.【答案】D【考点】有理数的倒数,【解析】【解答】解:-2021的倒数为:−12021故答案为:D.【分析】根据倒数的定义“乘积为1的两个数互为倒数”即可求解.2.【答案】C【考点】中心对称及中心对称图形【解析】【解答】解:A、是轴对称图形,不是中心对称图形,故本选项不合题意;B、是轴对称图形,不是中心对称图形,故本选项不合题意;C、是中心对称图形,故本选项符合题意;D、是轴对称图形,不是中心对称图形,故本选项不合题意.故答案为:C.【分析】中心对称图形是图形绕某一点旋转180°后与原来的图形完全重合,观察各选项中的图形可得答案.3.【答案】D【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:∵5460万=54600000,∴ 54600000=5.46×107 .故答案为:D【分析】根据科学记数法的表示形式为:a×10n,其中1≤|a|<10,此题是绝对值较大的数,因此n=整数数位-1.4.【答案】A【考点】平行线的性质,三角形内角和定理【解析】【解答】解:设AB与EF交于点M,∵AB//DE,∴∠AMF=∠E=45°,∵∠ACB=90°,∠ABC=60°,∴∠A=30°,∴∠AFM=180°−30°−45°=105°,∵∠EFD=90°,∴∠AFD= 15°,故答案为:A.【分析】设AB与EF交于点M,利用平行线的性质求出∠AMF的度数,再利用三角形的内角和定理求出∠A的度数;即可求出∠AFM的度数;然后利用∠AFD=∠AFM-∠EFD,求出∠AFD的度数.5.【答案】B【考点】同底数幂的乘法,合并同类项法则及应用,幂的乘方【解析】【解答】解:A、x3+x3=2x3,故本选项错误;B、2x3−x3=x3,故本选项正确;C、(x3)2=x6,故本选项错误;D、x3⋅x3=x6,故本选项错误,故答案为:B.【分析】利用合并同类项的法则可对A、B作出判断;利用幂的乘方法则,可对C作出判断;利用同底数幂相乘的法则,可对D作出判断.6.【答案】C【考点】无理数的认识,简单事件概率的计算【解析】【解答】解:在6,−227,3.1415,π,0,√3六个数中,是无理数的有π,√3共2个,∴从中随机抽取一张,卡片上的数为无理数的概率是26=13,故答案为:C.【分析】利用无限不循环的小数是无理数,可得到无理数的个数,再利用概率公式可求出卡片上的数为无理数的概率.7.【答案】B【考点】反比例函数的实际应用【解析】【解答】解:当m一定时,p与V之间成反比例函数,则函数图象是双曲线,同时自变量是正数.故答案为:B.【分析】利用已知条件可知p与V之间成反比例函数,由此可得答案.8.【答案】A【考点】二元一次方程组的应用-和差倍分问题【解析】【解答】解:由题设人数为x人,物价为y钱,由每人出八钱,会多三钱;总钱数y=8x-3,每人出七钱,又差四钱:总钱数y=7x+4,∴联立方程组为{y=8x−3y=7x+4.故答案为:A.【分析】抓住已知条件:每人出八钱,会多三钱;每人出七钱,又差四钱;再列方程组即可.9.【答案】B【考点】勾股定理,锐角三角函数的定义【解析】【解答】解:作AD⊥BC于D,由图可知:AD=3,BD=3,在Rt△ABD中,AB=√AD2+BD2=√32+32=3√2,∴cos∠ABC= BDAB =3√2=√22,故答案为:B.【分析】利用勾股定理求出AB的长,再利用锐角三角函数的定义求出cos∠ABC的值.10.【答案】D【考点】圆周角定理【解析】【解答】解:∵C ,D是⊙O上直径AB两侧的两点,∴∠ACB=90°,∵∠ABC=25°,∴∠BAC=90°-25°=65°,∴∠BDC=∠BAC=65°,故答案为:D.【分析】利用直径所对的圆周角是直角,可证得∠ACB=90°,利用三角形的内角和定理求出∠BAC的度数,然后利用同弧所对的圆周角相等,可得到∠BDC的度数.11.【答案】C【考点】列式表示数量关系,整式的混合运算【解析】【解答】原来的土地面积为a2平方米,第二年的面积为(a+6)(a−6)=a2−36∵(a2−36)−a2=−36<0∴所以面积变小了,故答案为:C.【分析】利用已知条件求出原来的土地面积和第二年的面积,然后求差,可作出判断.二、填空题12.【答案】12【考点】运用有理数的运算解决简单问题【解析】【解答】根据“每登高1km气温的变化量为−6°C”知:攀登2km后,气温变化量为:−6×2=−12下降为负:所以下降12 °C故答案为:12.【分析】利用“每登高1km气温的变化量为−6°C”,可列式计算.13.【答案】(1,-2)【考点】关于坐标轴对称的点的坐标特征,用坐标表示平移【解析】【解答】解:∵点A(-1,2)向右平移2个单位得到点B,∴B(1,2).∵点C与点B关于x轴对称,∴C(1,-2).故答案为:(1,-2)【分析】利用点的坐标平移规律:左减右加,可得到点B的坐标;再利用关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,可求出点C的坐标.14.【答案】白球【考点】利用频率估计概率【解析】【解答】解:由图可知:摸出黑球的频率是0.2,根据频率估计概率的知识可得,摸一次摸到黑球的概率为0.2,∴可以推断盒子里个数比较多的是白球,故答案为:白球.【分析】利用统计图可知摸一次摸到黑球的概率为0.2,由此可判断出盒子里个数比较多的是白球. 15.【答案】2π−2√3【考点】等边三角形的性质,扇形面积的计算,解直角三角形【解析】【解答】解:如下图:过点 A 作 AD ⊥BC 于点D ,∵ △ABC 为等边三角形, AD ⊥BC ,∴ ∠BAD =∠CAD =30∘ , ∠A =∠B =∠C =60∘ ,在 Rt △BAD 中, cos ∠BAD =AD AB ,∴ AD =2×√32=√3 , ∴ S △ABC =12BC ·AD =12×2×√3=√3 ,S 扇形ABC =60360×π×22=23π ,∴ S 弓形=S 扇形ABC −S △ABC =23π−√3 ,∴ S 阴影=S △ABC +3S 弓形=√3+3×(23π−√3)=2π−2√3 ,故答案为: 2π−2√3【分析】过点A 作AD ⊥BC 于点D ,利用等边三角形的性质可证得∠BAC=60°,∠BAD=30°,利用解直角三角形求出AD 的长;再利用三角形的面积公式和扇形的面积公式,分别求出△ABC 和扇形ABC 的面积;由此可求出弓形的面积,然后根据阴影部分的面积=3×弓形的面积+△ABC 的面积,代入计算可求解.三、解答题16.【答案】 解:原式 =2(x−1)(x+1)⋅(x +1)−1x−1=1x−1 .∵x 2﹣1≠0,∴当 x =2 时,原式 =1 .或当 x =3 时,原式 =12 .(选择一种情况即可)【考点】分式有意义的条件,利用分式运算化简求值【解析】【分析】先将分式的除法转化为乘法运算,约分化简,再算分式的减法运算,然后将使分母有意义的x 的值代入化简后的代数式求值.17.【答案】 解: {x −3(x −2)≥4①2x−13≤x+12② , 解不等式①得, x ≤1 ,解不等式②得,x≤5,则不等式组的解集为x≤1【考点】解一元一次不等式组【解析】【分析】先求出不等式组中的每一个不等式的解集,再确定出不等式组的解集.18.【答案】(1)垂直平分线;角平分线(2)解:∵DF是线段AB的垂直平分线,∴DB=DA,∴∠BAD=∠B=40°,∵∠B=40°,∠C=50°,∴∠BAC=90°,∴∠DAC=50°.∵射线AE是∠DAC的平分线,∴∠DAE=25°【考点】线段垂直平分线的性质,等腰三角形的性质,作图-角的平分线,作图-线段垂直平分线【解析】【解答】解:(1)由图可知:直线DF是线段AB的垂直平分线,射线AE是∠DAC的角平分线,故答案为:垂直平分线,角平分线;【分析】(1)利用线段垂直平分线和角平分线的作图,可得答案.(2)利用线段垂直平分线的性质可证得DB=AD,利用等边对等角可求出∠BAD的度数;再利用三角形的内角和定理求出∠BAC、∠DAC的度数,然后利用角平分线的定义求出∠DAE的度数.19.【答案】(1)400(2)解:C组人数为400-40-80-40=240,补全统计图如图:(3)36(4)C(5)解:400−40−80=280,280÷400=70%,80000×70%=56000,达到国家规定体育活动时间的学生人数约56000人【考点】用样本估计总体,扇形统计图,条形统计图【解析】【解答】(1)40÷10%=400,(3)40÷400×100%×360°=36°,(4)400个数据,中位数位于第200和201个,所以落在C组内,【分析】(1)利用A组的人数÷A组人数所占的百分比,列式计算可求出本次调查的人数.(2)先求出C组的人数,再补全频数分布直方图.(3)D组的对应的扇形的圆心角的度数=360°×D组的人数所占的百分比,列式计算即可.(4)利用该市辖区初中学生的人数×达到国家规定体育活动时间的学生人数所占的百分比,列式计算即可.20.【答案】(1)30;46(2)解:当0≤x≤4时,y=10x,当x≥4时,设y=kx+b,将(4,40),(5,46)代入解析式解得k=6,b=16,∴y=6x+16(3)解:当x=10时,y甲=6×10+16=76,y乙=10×10×80%=80,∵76<80,∴甲超市比乙超市划算.【考点】一次函数的实际应用【解析】【解答】(1)由题意:3×10=30(元);4×10+(5−4)×10×0.6=46(元);故答案为:30元,46元;【分析】(1)利用已知条件列式计算即可.(2)分情况讨论:当0≤x≤4时,可列出y与x之间的函数解析式;当x>4时,设函数解析式为y=kx+b,将(4,40)和(5,46)代入建立关于k,b的方程组,解方程组求出k,b的值,可得到函数解析式. (3)利用已知条件分别求出当x=10时,甲乙两超市的费用,比较大小,可作出判断.21.【答案】(1)证明:如图,过点O作OM⊥BC于点M,∵BD是菱形ABCD的对角线,∴∠ABD=∠CBD,∵OM⊥BC,OE⊥AB,∴∠OEB=∠OMB=90︒,∵OB=OB,∴△OEB≌△OMB(AAS)∴OE=OM,∴BC是⊙O的切线(2)解:①如图,∵G是OF的中点,OF=OH,∴OG=12OH.∵AB//CD,OE⊥AB,∴OF⊥CD,∴∠OGH=90°,∴sin∠GHO=12,∴∠GHO=30°,∴∠GOH=60°,∴∠HOE=120°,∵OG=2,∴OH=4,∴由弧长公式,得到HE⌢的长:l=120×4×π180=83π.②方法一:如图,过点D作DN⊥AB于点N,∵AB//CD,∴△ODG∼△OBE,∴DGBE =OGOE=OG2OG=12,∴BE=2DG=2,∵DG//NE,DN//GE,∠GEN=90︒∴四边形NEGD是矩形,∴NE=DG=1,BN=3,OE=4,DN=6,在菱形ABCD中,AD=AB,在Rt△ADN中,设AD=AB=x,∴x2=(x−3)2+62,∴x=152.方法二:如图,过A作AN⊥BD于点N,∵DG=1,OG=2,OE=OH=4,∴OD=√5,OB=2√5,DN=3√52,△DOG∼△DAN,∴DOAD =DGDN,∴AD=DO·DNDG,∴AD=152【考点】圆的综合题【解析】【分析】(1)过点O作OM⊥BC于点M,利用菱形的性质可证得∠ABD=∠CBD,再利用AAS证明OEB≌△OMB,利用全等三角形的对应角相等,可证得OE=OM,然后利用切线的判定定理可证得结论. (2)①利用三角形的中位线定理可得到PG与OH之间的数量关系,再利用解直角三角形求出∠GHO的度数,利用直角三角形的性质求出OH的长,然后利用弧长公式求出弧HE的长;② 方法一:如图,过点D作DN⊥AB于点N,易证△ODG∽△OBE,利用相似三角形的额对应边成比例,可得两三角形的相似比,可推出BE=2DG;再证明四边形NEGD是矩形,利用矩形的性质求出相关线段的长,设AD=AB=x,利用勾股定理建立关于x的方程,解方程求出x的值;方法二:如图,过A作AN⊥BD于点N,分别求出OD,OB,DN的长;再证明△DOG∽△DAN,利用相似三角形的对应边成比例,可求出AD的长.22.【答案】(1)解:设漫灌方式每亩用水x吨,则x×100+100×30%x+100×20%x=15000,x=100,漫灌用水:100×100=10000,喷灌用水:30%×10000=3000,滴灌用水:20%×10000=2000,答:漫灌方式每亩用水100吨,漫灌、喷灌、滴灌试验田分别用水10000、3000、2000吨(2)解:由题意得,100×(1−2m%)×100×(1−m%)+100×(1+m%)×30×(1−m%)+100×(1+m%)×20×(1−m%),m%)=15000×(1−95解得m1=0(舍去),m2=20,所以m=20m%×2.5=13500元,(3)解:节省水费:15000×95维修投入:300×30=9000元,新增设备:100×2m%×100=4000元,13500>9000+4000,答:节省水费大于两项投入之和.【考点】一元一次方程的实际应用-和差倍分问题,一元二次方程的实际应用-百分率问题【解析】【分析】(1)设漫灌方式每亩用水x吨,根据采用喷灌、滴灌和漫灌的灌溉方式,共用水15000吨,建立关于x的方程,解方程求出x的值,由此可求解.m%,建立关于m的方程,解方程求出m的(2)抓住已知条件,根据今年的灌溉用水量比去年减少95值即可.(3)利用已知分别求出节省的水费,维修投入,新增设备费,然后求出维修投入和新增设备费的和,将其与节省的水费比较大小可作出判断.23.【答案】(1)证明:在矩形ABCD中,∠B=∠BCD=90°,∵EF⊥AB,则∠EFB=90°,∴四边形BEFC是矩形.∵BE=BC,∴矩形BEFC是正方形(2)解:①如图1,∵∠GCK=∠DCH=90°,∴∠CDF′+∠H=90°,∠KGC+∠H=90°,∴∠KGC=∠CDF′,又∵B′C=CF′,∠GB′C=∠CF′D,∴△CGB′≅△CDF′,∴CG=CD.②方法一:设正方形边长为a,∵PG∥CF′,∴△B′KO~△F′CO,∴B′KCF′=OKCO=12,∴B′K=12B′C=12a,∴在Rt△B′KC中,B′K2+B′C2=CK2,∴a2+(12a)2=32,∴a=6√55.∴B′C=6√55,B′K=3√55,∵∠CB′K=∠GCK=90°,∠B′KC=∠GKC,∴△B′KC∽△CKG,∴CK2=B′K⋅KG,∴KG=3√5,∵B′K=12a=KE′,∠DKE′=∠B′KC,∠DE′K=∠KB′C,∴△B’CK≌△E’KD,∴DK=KC,又∵∠DKP=∠GKC,∠P=∠G,∴△PKD≅△GKC,∴PG=KG,∴PG=6√5;方法二:如图2,过点P作PM⊥GH于点M,由△CGB′≅△CDF′,可得:CG=CD,由方法一,可知CD=2CK,∴CG=6,由方法一,可知K为GP中点,从而PM=2CK=6,GM=12,从而由勾股定理得PG=6√5(3)解:方法一:如图3,延长B′F′与BH的延长线交于点R,由题意可知,CF′//GP,RB′//BM,∴△GBM~△CRF′,∠G=∠F′CR,∴tan∠G=tan∠F′CH=F′HCF′=12,设F′H=x,CF′=2x,则CH=√5x,∴CB′=CF′=E′F′=B′E′=BC=2x,∵CB′//HE′,∴△RB′C~△RF′H,∴F′HB′C =RHRC=RF′RB′=12,∴CH=RH,B′F′=RF′,∴CR=2CH=2√5x,S△CF′R′=2S△CF′H=2x2,∵CB′//HE′,∴△GB′C~△GE′H,∴GCGH =B′CE′H=2x3x=23,∴GB+2x+√5x =B′CE′H=23,∴GB=2(√5−1)x,∵△GBM~△CRF′,∴S△GMBS△CF′R =(GBCR)2=[√5−1)x2√5x2=6−2√55.∵S△CF′R′=2S△CF′H,∴S△GMBS△CF′H =12−4√55.方法二,如图4,过点B作BN⊥PG,垂足为点N.由题意可知,CF′//GP,HE′//BN,∴△GBN~△CHF′,∴S△GBNS△CHF′=(GBCH)2,∵CF′//GP,∴∠NGB=∠F′CH,∴tan∠G=tan∠F′CH=CB′GB′=FHCF=12,设FH=x,则CF′=B′E′=E′F′=BC=2x,GB′=4x,∴CH=√5x,CG=2√5x,则GB=2(√5−1)x,∴S△GBNS△CHF′=(GBCH)2=(√5−1)x√5x)2=4(6−2√5)5,∵S△CF′H =12CF′⋅FH=x2,∴S△GBN =4(6−2√5)5x2,∵HE′//BN,∴△GBN~△GCB′,∴GBGC =BNCB′=√5−1)x2√5x=5−√55,∵CB′//BN,BM//B′F′,CF′//GB′,∴△MBN~△B′F′C,∴S△MBNS△B′F′C =(BNCB′)2=(5−√55)2=6−2√55,∴S△MBN =6−2√55S△B′F′C=2(6−2√5)5x2,∴S△MBG =S△NBG−S△MBN=4(6−2√5)5x2−2(6−2√5)5x2=2(6−2√5)5x2,∴S△GMBS△CF′H =12−4√55.方法三:如图5,设AB与PQ交于N点,设FH=x,则CF=CB′=B′E′=E′F′=BC=2x,GB′=4x,由题意可知,CF′//GP,BM//B′F′,BN//CO,∴△MBN~△F′OC,∴S△MBNS△F′OC =(BNCO)2,由方法(2)可知,GB=2(√5−1)x,所以BN=(√5−1)x,又∵CO=23CK=23√5x,∴S△MBNS△F′OC =(BNCO)2=9(6−2√5)20,∴S△BMN =9(6−2√5)20×43x2=3(6−2√5)5x2,∵S△GBN=12×BG×BN=(√5−1)2x2=(6−2√5)x2,∴S△GBM =S△GBN−S△NBM=(6−2√5)x2−3(6−2√5)5x2=2(6−2√5)5x2,∴S△CF′H =12×CF′×F′H=x2,∴ S △GMBS △CF ′H =12−4√55【考点】相似三角形的判定与性质,锐角三角函数的定义,四边形-动点问题【解析】【分析】(1)利用矩形的性质可证得∠EFB=90°,可证得四边形BEFC 是矩形,再利用有一组邻边相等的矩形是正方形,可证得结论.(2)①利用余角的性质可证得∠KGC=∠CDF ',利用ASA 证明△CGB '≌△CDF ',利用全等三角形的对应边相等,可证得结论;②方法一: 设正方形边长为 a , 利用 PG ∥CF ',可推出△B 'KG ∽△F 'CO ,利用相似三角形的性质可表示出B 'K ;再利用勾股定理求出a 的值,可得到B 'C ,B 'K 的值;再证明△BKC ∽△CKG ,利用相似三角形的性质求出KG 的长;再利用全等三角形的判定和性质,可证得DK=KC ,PG=KG ,从而可求出PG 的长;方法二: 过点 P 作 PM ⊥GH 于点 M ,利用全等三角形的性质可证得CG=CD ,CD=2CK ,可求出CG 的长,再证明K 为GP 的中点,从而可求出PM 、GM 的长,然后利用勾股定理求出PG 的长.(3) 方法一:如图3,延长 B ′F ′ 与 BH 的延长线交于点 R , 易证△ GBM ∽△CRF ',利用锐角三角函数的定义可得到FH 与CF 的比值;设F 'H=x ,表示出CB ',CH 的长;再利用相似三角形的判定和性质,分别求出GB ,CR 的长,然后利用三角形的面积公式可得到 S △GMBS △CF ′H 的值;方法二: 如图4,过点 B 作 BN ⊥PG ,垂足为点 N ,利用相似三角形的判定和性质,求出△MBN 和△BFC 的面积之比,同时可表示出△MBN 的面积,根据△MBG 的面积=△NBG 的面积-△MBN 的面积 ,然后求出S △GMBS △CF ′H 的值;方法三:如图5,设 AB 与 PQ 交于 N 点,利用相似三角形的判定和性质,求出△MBN 个△FOC 的面积之比,可表示出△GBN 的面积,△BMN 的面积,再根据△GBM 的面积=△ GBN 的面积-△NBM 的面积,即可得到△CFH 的面积,然后求出S △GMB S△CF ′H 的值.24.【答案】 (1)解:∵ y 1=−(x +4)(x −n) ,令 y 1=0 , −(x +4)(x −n)=0 ,∴ x 1=−4 , x 2=n ,∴ A(−4,0)(2)解: y 1=−(x +4)(x −n)=−x 2+(n −4)x +4n =−(x −n−42)2+14n 2+2n +4 , ∴ k 1=14n 2+2n +4 ,∵ y 2=−(x +2n)2−n 2+2n +9 ,∴ k 2=−n 2+2n +9(3)解:∵ k 1=14n 2+2n +4 , k 2=−n 2+2n +9 ,当 k 1=k 2 时, 14n 2+2n +4=−n 2+2n +9 ,此时 n =−2 或 n =2 ,y =k 1−k 2=54n 2−5 .由如图1图象可知:当 −4≤n <−2 时, k 1>k 2 ,当 −2<n <2 时, k 1<k 2 ,当 2<n ≤4 时, k 1>k 2 ,当 n =−2 或 n =2 时, k 1=k 2(4)解:设直线 MN 的解析式为: y =kx +b ,则 {(2n +9)k +b =−5n 2 (1)2nk +b =9−5n 2 (2) , 由(1)-(2)得, k =−1 ,∴ b =−5n 2+2n +9 ,直线 MN 的解析式为: y =−x −5n 2+2n +9 .第一种情况:如图3,当直线 MN 经过抛物线 y 1 , y 2 的交点时,联立抛物线 y 1=−x 2+(n −4)x +4n 与 y 2=−x 2−4nx −5n 2+2n +9 的解析式可得:(5n −4)x =−5n 2−2n +9 ①联立直线 y =−x −5n 2+2n +9 与抛物线 y 2=−x 2−4nx −5n 2+2n +9 的解析式可得:x2+(4n−1)x=0,则x1=0,x2=1−4n②当x1=0时,把x1=0代入y1得:y=4n,把x1=0,y=4n代入直线的解析式得:4n=−5n2+2n+9,∴5n2+2n−9=0,∴n=−1±√46.5此时直线MN与抛物线y1,y2的公共点恰好为三个不同点.当x2=1−4n时,把x2=1−4n代入①得:(5n−4)(1−4n)=−5n2−2n+9,该方程判别式Δ<0,所以该方程没有实数根.第二种情况:如图4,当直线MN与抛物线y1或者与抛物线y2只有一个公共点时.当直线MN与抛物线y1=−x2+(n−4)x+4n只有一个公共点时,联立直线y=−x−5n2+2n+9与抛物线y=−x2+(n−4)x+4n可得,∴−x2+(n−3)x+5n2+2n−9=0,此时Δ=0,即(n−3)2+4(5n2+2n−9)=0,∴21n2+2n−27=0,∴n=−1±2√142.21由第一种情况而知直线MN与抛物线y2=−x2−4nx−5n2+2n+9公共点的横坐标为x1=0,x2=1−4n,时,1−4n≠0,∴x1≠x2.当n=−1±2√14221所以此时直线MN与抛物线y1,y2的公共点恰好为三个不同点.如图5,当直线MN与抛物线y2=−x2−4nx−5n2+2n+9只有一个公共点,∵x1=0,x2=1−4n,∴n=14,联立直线y=−x−5n2+2n+9与抛物线y1=−x2+(n−4)x+4n,−x2+(n−3)x+5n2+2n−9=0,Δ=(n−3)2+4(5n2+2n−9)=21n2+2n−27,当n=14时,Δ<0,此时直线MN与抛物线y1,y2的公共点只有一个,∴n≠14.综上所述:∴n1=−1+√465,n2=−1−√465,n3=−1+2√14221n4=−1−2√14221【考点】二次函数与一次函数的综合应用,二次函数图象与一元二次方程的综合应用【解析】【分析】(1)由y=0,建立关于x的方程,解方程求出x的值,根据题意可得到点A的坐标. (2)将y1=-(x+4)(x-n)转化为顶点式,可得到k1,利用y2=-(x+2n)2-n2+2n+9,可得到k2的值. (3)分情况讨论:当k1=k2时,由此建立关于n的方程,解方程求出n的值;再根据y=k1-k2,可得到y与n之间的函数解析式,画出函数图象,利用函数图象,可得到当-4≤n<-2时;-2<n<2时;2<n≤4时k1与k2的大小关系.(4)利用待定系数法由点M,N的坐标可得到直线MN的函数解析式;再分情况讨论:当直线MN经过抛物线y1,y2的交点时;当直线MN与抛物线y1或者与抛物线y2只有一个公共点时;当直线MN与抛物线y1=−x2+(n−4)x+4n只有一个公共点时;当直线MN与抛物线y2=−x2−4nx−5n2+2n+9只有一个公共点,分别求出符合题意的n的值.。
宜昌中考数学试卷真题及答案
宜昌中考数学试卷真题及答案一、选择题1. 计算:$\sqrt{256}$ =A. 12B. 16C. 28D. 64答案:B解析:$\sqrt{256}$表示寻找一个数,使得它的平方等于256。
答案为16,因为$16^2 = 256$。
2. 下列选项中,哪个是质数?A. 4B. 7C. 12D. 15答案:B解析:质数是只能被1和自身整除的数。
选项中,只有7满足这个条件,所以答案为B。
3. 若一个正方形的边长为6cm,则它的面积为:A. 12cm²B. 18cm²C. 24cm²D. 36cm²答案:D解析:正方形的面积等于边长的平方。
所以6cm的正方形的面积为$6^2 = 36$cm²。
二、填空题1. 把$\frac{3}{4}$写成百分数是\_\_\_\_\_。
答案:75%解析:将分数转化为百分数的方法是将分数的分子除以分母,再乘以100。
所以$\frac{3}{4}$转化为百分数为$\frac{3}{4} \times 100 = 75%$。
2. 一年有\_\_\_\_\_个星期。
答案:52解析:根据一年有365天,每个星期有7天,可以用365除以7来得到星期的个数。
所以一年有$365 \div 7 = 52$个星期。
三、解答题1. 请用代数法解方程:$2x + 5 = 17$。
答案:解方程的步骤如下:$2x + 5 = 17$$2x = 17 - 5$$2x = 12$$x = \frac{12}{2}$$x = 6$所以方程的解为$x = 6$。
2. 一辆车从A地到B地,全程100km。
在回程时,因交通堵塞,以每小时20km的速度行驶。
整个回程耗时比去程多1小时。
请问这辆车在去程时的速度是多少?答案:设去程时的速度为$x$ km/h,则去程耗时为$\frac{100}{x}$小时。
回程的速度为20 km/h,回程耗时为$\frac{100}{20} = 5$小时。
初中毕业升学考试(湖北宜昌卷)数学(解析版)(初三)中考真卷.doc
初中毕业升学考试(湖北宜昌卷)数学(解析版)(初三)中考真卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】如果“盈利5%”记作+5%,那么﹣3%表示()A.亏损3% B.亏损8% C.盈利2% D.少赚3%【答案】A.【解析】试题分析:已知盈利5%”记作+5%,根据正负数的意义可得﹣3%表示表示亏损3%.故答案选A.考点:正负数的意义.【题文】下列各数:1.414,,﹣,0,其中是无理数的为()A.1.414 B. C.﹣ D.0【答案】B.【解析】试题分析:根据无理数的定义可得是无理数.故答案选B.考点:无理数的定义.【题文】如图,若要添加一条线段,使之既是轴对称图形又是中心对称图形,正确的添加位置是()【答案】A.【解析】试题分析:根据轴对称图形与中心对称图形的概念可得:选项A是轴对称图形,也是中心对称图形;选项B 不是轴对称图形,也不是中心对称图形;选项C不是轴对称图形,也不是中心对称图形;选项D是轴对称图形,不是中心对称图形.故答案选A.考点:中心对称图形;轴对称图形.【题文】把0.22×105改成科学记数法的形式,正确的是()A.2.2×103 b B.2.2×104 b C.2.2×105 b D.2.2×106【答案】B.【解析】评卷人得分试题分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,n的值为原数的整数位数减1,所以0.22×105=22000=2.2×104.故答案选B.考点:科学记数法.【题文】设四边形的内角和等于a,五边形的外角和等于b,则a与b的关系是()A.a>b B.a=b C.a<b D.b=a+180°【答案】B.【解析】试题分析:根据多边形的内角和定理可得a=(4﹣2)•180°=360°.多边形外角和可得b=360°,所以a=b .故答案选B.考点:多边形内角与外角.【题文】在课外实践活动中,甲、乙、丙、丁四个小组用投掷一元硬币的方法估算正面朝上的概率,其实验次数分别为10次、50次、100次,200次,其中实验相对科学的是()A.甲组 B.乙组 C.丙组 D.丁组【答案】D.【解析】试题分析:大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值.根据模拟实验的定义可知,实验相对科学的是次数最多的丁组.故答案选D.考点:事件概率的估计值.【题文】将一根圆柱形的空心钢管任意放置,它的主视图不可能是()【答案】A.【解析】试题分析:一根圆柱形的空心钢管任意放置,它的三视图始终是,主视图是它们中一个,所以它的主视图不可能是.故答案选A,考点:几何体的三视图.【题文】分式方程=1的解为()A.x=﹣1 B.x= C.x=1 D.x=2【答案】A.【解析】试题分析:去分母得:2x﹣1=x﹣2,解得:x=﹣1,经检验x=﹣1是分式方程的解,所以分式方程的解为x=﹣1.故答案选A.考点:分式方程的解法.【题文】已知M、N、P、Q四点的位置如图所示,下列结论中,正确的是()A.∠NOQ=42° B.∠NOP=132°C.∠PON比∠MOQ大 D.∠MOQ与∠MOP互补【答案】C.【解析】试题分析:如图所示:∠NOQ=138°,选项A错误;∠NOP=48°,选项B错误;如图可得∠PON=48°,∠MOQ=42°,所以∠PON比∠MOQ大,选项C正确;由以上可得,∠MOQ与∠MOP不互补,选项D错误.故答案选C.考点:角的度量.【题文】如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.经过两点,有且仅有一条直线D.两点之间,线段最短【答案】D.【解析】试题分析:已知用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,由此可得线段AB的长小于点A绕点C到B的长度,所以能正确解释这一现象的数学知识是两点之间,线段最短,故答案选D.考点:线段的性质.【题文】在6月26日“国际禁毒日”来临之际,华明中学围绕“珍爱生命,远离毒品”主题,组织师生到当地戒毒所开展相关问题的问卷调查活动,其中“初次吸毒时的年龄”在17至21岁的统计结果如图所示,则这些年龄的众数是()A.18 B.19 C.20 D.21【答案】C.【解析】试题分析:一组数据中出现次数最多的数据叫做众数,由条形图可得年龄为20岁的人数最多,所以众数为20.故答案选C.考点:众数;条形统计图.【题文】任意一条线段EF,其垂直平分线的尺规作图痕迹如图所示.若连接EH、HF、FG,GE,则下列结论中,不一定正确的是()A.△EGH为等腰三角形B.△EGF为等边三角形C.四边形EGFH为菱形D.△EHF为等腰三角形【答案】B.【解析】试题分析:根据线段垂直平分线的性质可得EG=EH=FH=GF,由此可得选项A正确,选项B错误,选项C、正确,选项D正确.故答案选B.考点:线段垂直平分线的性质.【题文】在公园的O处附近有E、F、G、H四棵树,位置如图所示(图中小正方形的边长均相等)现计划修建一座以O为圆心,OA为半径的圆形水池,要求池中不留树木,则E、F、G、H四棵树中需要被移除的为()A.E、F、G B.F、G、H C.G、H、E D.H、E、F【答案】A.【解析】试题分析:由勾股定理求得OA=,OH=2,根据点和圆的位置关系可得OE=2<OA,所以点E在⊙O内,OF=2<OA,所以点F在⊙O内,OG=1<OA,所以点G在⊙O内,OH=2>OA,所以点H在⊙O外,所以需要移除的是位于点E、F、G的三棵树,故答案选A.考点:点与圆的位置关系.【题文】小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分别对应下列六个字:昌、爱、我、宜、游、美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码信息可能是()A.我爱美 B.宜晶游 C.爱我宜昌 D.美我宜昌【答案】C.【解析】试题分析:(x2﹣y2)a2﹣(x2﹣y2)b2=(x2﹣y2)(a2﹣b2)=(x﹣y)(x+y)(a﹣b)(a+b),因为x﹣y,x+y,a+b,a﹣b四个代数式分别对应爱、我,宜,昌,所以结果呈现的密码信息可能是“爱我宜昌”,故答案选C.考点:因式分解.【题文】函数y=的图象可能是()【答案】C.【解析】试题分析:函数y=的图象是反比例y=的图象向左移动一个单位得到的,故答案选C.考点:反比例函数的图象.【题文】计算:(﹣2)2×(1﹣).【答案】1.【解析】试题分析:根据有理数的运算顺序依次计算即可.试题解析:原式=4×(1﹣)=4×=1.考点:有理数的运算.【题文】先化简,再求值:4x•x+(2x﹣1)(1﹣2x).其中x=.【答案】原式=4x﹣1,当x=时,原式=﹣.【解析】试题分析:直接利用整式乘法运算法则计算,再去括号,进而合并同类项,把已知代入求出答案.试题解析:原式=4x2+(2x﹣4x2﹣1+2x)=4x2+4x﹣4x2﹣1=4x﹣1,当x=时,原式=4×﹣1=﹣.考点:整式的化简求值.【题文】杨阳同学沿一段笔直的人行道行走,在由A步行到达B处的过程中,通过隔离带的空隙O,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语,其具体信息汇集如下:如图,AB∥OH∥CD,相邻两平行线间的距离相等,AC,BD相交于O,OD⊥CD.垂足为D,已知AB=20米,请根据上述信息求标语CD的长度.【答案】20m.【解析】试题分析:已知AB∥CD,根据平行线的性质可得∠ABO=∠CDO,再由垂直的定义可得∠CDO=90°,可得OB ⊥AB,根据相邻两平行线间的距离相等可得OD=OB,即可根据ASA定理判定△ABO≌△CDO,由全等三角形的性质即可得CD=AB=20m.试题解析:∵AB∥CD,∴∠ABO=∠CDO,∵OD⊥CD,∴∠CDO=90°,∴∠ABO=90°,即OB⊥AB,∵相邻两平行线间的距离相等,∴OD=OB,在△ABO与△CDO中,,∴△ABO≌△CDO(ASA),∴CD=AB=20(m)考点:全等三角形的判定及性质.【题文】如图,直线y=x+与两坐标轴分别交于A、B两点.(1)求∠ABO的度数;(2)过A的直线l交x轴半轴于C,AB=AC,求直线l的函数解析式.【答案】(1)∠ABO=60°;(2)y=﹣x+.【解析】试题分析:(1)根据一次函数解析式y=x+求出点A、B的坐标,在Rt△ABO中,求出tan∠ABO的值,从而求出∠ABO的度数;(2)根据题意可得,AB=AC,AO⊥BC,可得AO为BC的中垂线,根据点B的坐标,求得点C的坐标,利用待定系数法求出直线l的函数解析式即可.试题解析:(1)对于直线y=x+,令x=0,则y=,令y=0,则x=﹣1,故点A的坐标为(0,),点B的坐标为(﹣1,0),则AO=,BO=1,在Rt△ABO中,∵tan∠ABO==,∴∠ABO=60°;(2)在△ABC中,∵AB=AC,AO⊥BC,∴AO为BC的中垂线,即BO=CO,则C点的坐标为(1,0),设直线l的解析式为:y=kx+b(k,b为常数),则,解得:,即函数解析式为:y=﹣x+.考点:一次函数与坐标轴的交点;待定系数法确定一次函数解析式.【题文】某小学学生较多,为了便于学生尽快就餐,师生约定:早餐一人一份,一份两样,一样一个,食堂师傅在窗口随机发放(发放的食品价格一样),食堂在某天早餐提供了猪肉包、面包、鸡蛋、油饼四样食品.(1)按约定,“小李同学在该天早餐得到两个油饼”是事件;(可能,必然,不可能)(2)请用列表或树状图的方法,求出小张同学该天早餐刚好得到猪肉包和油饼的概率.【答案】(1)不可能事件;(2).【解析】试题分析:(1)根据随机事件的概念即可得“小李同学在该天早餐得到两个油饼”是不可能事件;(2)根据题意画出树状图,再由概率公式求解即可.试题解析:(1)小李同学在该天早餐得到两个油饼”是不可能事件;(2)树状图法即小张同学得到猪肉包和油饼的概率为.考点:列表法与树状图法.【题文】如图,CD是⊙O的弦,AB是直径,且CD∥AB,连接AC、AD、OD,其中AC=CD,过点B的切线交CD 的延长线于E.(1)求证:DA平分∠CDO;(2)若AB=12,求图中阴影部分的周长之和(参考数据:π=3.1,=1.4,=1.7).【答案】(1)详见解析;(2)26.5.【解析】试题分析:(1)根据平行线的性质和等腰三角形的性质可得∠CDA=∠DAO,∠DAO=∠ADO,即可证得结论.(2)易证∠CDA=∠BAD=∠CAD,可得==,再证明∠DOB=60°,即可得△BOD是等边三角形,由此即可解决问题.试题解析:证明:(1)∵CD∥AB,∴∠CDA=∠BAD,又∵OA=OD,∴∠ADO=∠BAD,∴∠ADO=∠CDA,∴DA平分∠CDO.(2)如图,连接BD,∵AB是直径,∴∠ADB=90°,∵AC=CD,∴∠CAD=∠CDA,又∵CD∥AB,∴∠CDA=∠BAD,∴∠CDA=∠BAD=∠CAD,∴==,又∵∠AOB=180°,∴∠DOB=60°,∵OD=OB,∴△DOB是等边三角形,∴BD=OB=AB=6,∵=,∴AC=BD=6,∵BE切⊙O于B,∴BE⊥AB,∴∠DBE=∠ABE﹣∠ABD=30°,∵CD∥AB,∴BE⊥CE,∴DE=BD=3,BE=BD×cos∠DBE=6×=3,∴的长==2π,∴图中阴影部分周长之和为2π+6+2π+3+3=4π+9+3=4×3.1+9+3×1.7=26.5.考点:切线的性质;弧长的计算.【题文】某蛋糕产销公司A品牌产销线,2015年的销售量为9.5万份,平均每份获利1.9元,预计以后四年每年销售量按5000份递减,平均每份获利按一定百分数逐年递减;受供给侧改革的启发,公司早在2104年底就投入资金10.89万元,新增一条B品牌产销线,以满足市场对蛋糕的多元需求,B品牌产销线2015年的销售量为1.8万份,平均每份获利3元,预计以后四年销售量按相同的份数递增,且平均每份获利按上述递减百分数的2倍逐年递增;这样,2016年,A、B两品牌产销线销售量总和将达到11.4万份,B品牌产销线2017年销售获利恰好等于当初的投入资金数.(1)求A品牌产销线2018年的销售量;(2)求B品牌产销线2016年平均每份获利增长的百分数.【答案】(1)8;(2)10%.【解析】(2)试题分析:(1)根据题意列式计算即可得出结果;(2)设B品牌产销线的年销售量递增相同的份数为k万份,由题意得(9.5-0.5)+(1.8+k)=11.4,解得k=0.6;,设A品牌产销线平均每份获利的年递减百分数为x,根据题意得(1.8+2×0.6)×(1+2x)2=10.89),解方程即可得结论.试题解析:(1)9.5﹣(2018﹣2015)×0.5=8(万份);答:品牌产销线2018年的销售量为8万份;(2)设B品牌产销线的年销售量递增相同的份数为k万份,由题意得,(9.5-0.5)+(1.8+k)=11.4解得k=0.6;设A品牌产销线平均每份获利的年递减百分数为x,根据题意得,(1.8+2×0.6)×(1+2x)2=10.89),解得x1=0.05,x2=-1.05(不合题意,舍去),∴2x=10%;答:B品牌产销线2016年平均每份获利增长的百分数为10%.考点:一元二次方程的应用.【题文】在△ABC中,AB=6,AC=8,BC=10,D是△ABC内部或BC边上的一个动点(与B、C不重合),以D 为顶点作△DEF,使△DEF∽△ABC(相似比k>1),EF∥BC.(1)求∠D的度数;(2)若两三角形重叠部分的形状始终是四边形AGDH.①如图1,连接GH、AD,当GH⊥AD时,请判断四边形AGDH的形状,并证明;②当四边形AGDH的面积最大时,过A作AP⊥EF于P,且AP=AD,求k的值.【答案】(1)90°;(2)①四边形AGDH为正方形,理由详见解析;②k=.【解析】试题分析:(1)根据已知条件,由勾股定理的逆定理判定△ABC是直角三角形,即可证得结论;(2)①先判断AB∥DE,DF∥AC,得到平行四边形,再判断出是正方形;②先判断面积最大时点D的位置,由△BGD∽△BAC,找出AH=8﹣GA,得到S矩形AGDH=﹣AG2+8AG,确定极值,AG=3时,面积最大,最后求k得值.试题解析:(1)∵AB2+AC2=100=BC2,∴∠BAC=90°,∵△DEF∽△ABC,∴∠D=∠BAC=90°,(2)①四边形AGDH为正方形,理由:如图1,延长ED交BC于M,延长FD交BC于N,∵△DEF∽△ABC,∴∠B=∠C,∵EF∥BC,∴∠E=∠EMC,∴∠B=∠EMC,∴AB∥DE,同理:DF∥AC,∴四边形AGDH为平行四边形,∵∠D=90°,∴四边形AGDH为矩形,∵GH⊥AD,∴四边形AGDH为正方形;②当点D在△ABC内部时,四边形AGDH的面积不可能最大,理由:如图2,点D在内部时(N在△ABC内部或BC边上),延长GD至N,过N作NM⊥AC于M,∴矩形GNMA面积大于矩形AGDH,∴点D在△ABC内部时,四边形AGDH的面积不可能最大,只有点D在BC边上时,面积才有可能最大,如图3,点D在BC上,∵DG∥AC,∴△BGD∽△BAC,∴,∴,∴,∴AH=8﹣GA,S矩形AGDH=AG×AH=AG×(8﹣AG)=﹣AG2+8AG,当AG=﹣=3时,S矩形AGDH最大,此时,DG=AH=4,即:当AG=3,AH=4时,S矩形AGDH最大,在Rt△BGD中,BD=5,∴DC=BC﹣BD=5,即:点D为BC的中点,∵AD=BC=5,∴PA=AD=5,延长PA,∵EF∥BC,QP⊥EF,∴QP⊥BC,∴PQ是EF,BC之间的距离,∴D是EF的距离为PQ的长,在△ABC中,AB×AC=BC×AQ∴AQ=4.8∵△DEF∽△ABC,∴k=.考点:相似三角形的综合题.【题文】已知抛物线y=x2+(2m+1)x+m(m﹣3)(m为常数,﹣1≤m≤4).A(﹣m﹣1,y1),B(,y2),C(﹣m,y3)是该抛物线上不同的三点,现将抛物线的对称轴绕坐标原点O逆时针旋转90°得到直线a,过抛物线顶点P作PH⊥a于H.(1)用含m的代数式表示抛物线的顶点坐标;(2)若无论m取何值,抛物线与直线y=x﹣km(k为常数)有且仅有一个公共点,求k的值;(3)当1<PH≤6时,试比较y1,y2,y3之间的大小.【答案】(1)顶点坐标(﹣,﹣);(2)k=3;(3)﹣1≤m<﹣或<m≤时,有y2>y1=y3,﹣<m<﹣时,有y2<y1=y3.【解析】试题分析:(1)根据顶点坐标公式表示出顶点坐标即可;(2)把两个解析式联立后得一个一元二次方程,利用△=0即可求k值;(3)首先证明y1=y3,再根据点B的位置,分类讨论,①令<﹣m﹣1,求出m的范围即可判断,②令=﹣m﹣1,则A与B重合,此情形不合题意,舍弃.③令>﹣m﹣1,求出m的范围即可判断,④令﹣≤<﹣m,求出m的范围即可判断,⑤令=﹣m,B,C重合,不合题意舍弃.⑥令>﹣m,求出m的范围即可判断.试题解析:(1)∵﹣=﹣, =﹣,∴顶点坐标(﹣,﹣).(2)由消去y得x2+2mx+(m2+km﹣3m)=0,∵抛物线与x轴有且仅有一个公共点,∴△=0,即(k﹣3)m=0,∵无论m取何值,方程总是成立,∴k﹣3=0,∴k=3,(3)PH=|﹣﹣(﹣)|=||,∵1<PH≤6,∴当>0时,有1<≤6,又﹣1≤m≤4,∴<m≤,当<0时,1<﹣≤6,又∵﹣1≤m≤4,∴﹣1,∴﹣1≤m<﹣或<m≤,∵A(﹣m﹣1,y1)在抛物线上,∴y1=(﹣m﹣1)2+(2m+1)(﹣m﹣1)+m(m+3)=﹣4m,∵C(﹣m,y3)在抛物线上,∴y3=(﹣m)2+(2m+1)(﹣m)+m(m﹣3)=﹣4m,∴y1=y3,①令<﹣m﹣1,则有m<﹣,结合﹣1≤m≤﹣,∴﹣1≤m<﹣,此时,在对称轴的左侧y随x的增大而减小,如图1,∴y2>y1=y3,即当﹣1≤m<﹣时,有y2>y1=y3.②令=﹣m﹣1,则A与B重合,此情形不合题意,舍弃.③令>﹣m﹣1,且≤﹣时,有﹣<m≤﹣,结合﹣1≤m<﹣,∴﹣<m≤﹣,此时,在对称轴的左侧,y随x的增大而减小,如图2,∴y1=y3>y2,即当﹣<m≤﹣时,有y1=y3>y2,④令﹣≤<﹣m,有﹣≤m<0,结合﹣1≤m<﹣,∴﹣≤m<﹣,此时,在对称轴的右侧y随x的增大而增大,如图3,∴y2<y3=y1.⑤令=﹣m,B,C重合,不合题意舍弃.⑥令>﹣m,有m>0,结合<m≤,∴<m≤,此时,在对称轴的右侧,y随x的增大而增大,如图4,∴y2>y3=y1,即当<m≤时,有y2>y3=y1,综上所述,﹣1≤m<﹣或<m≤时,有y2>y1=y3,﹣<m<﹣时,有y2<y1=y3.考点:二次函数综合题.。
湖北省宜昌市中考数学试题与答案(经典珍藏版)
中考数学试题(湖北宜昌卷)(本试卷满分120分,考试时间120分钟)一、选择题(本题共15个小题,每小题3分,计45分)1.根据《国家中长期教育改革和发展规划纲要》,教育经费投入应占当年GDP的4%.若设2012年GDP 的总值为n亿元,则2012年教育经费投入可表示为【】亿元.A.4%n B.(1+4%)n C.(1﹣4%)n D.4%+n【答案】A。
2.在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是【】A.B.C.D.【答案】B。
3.下列事件中是确定事件的是【】A.篮球运动员身高都在2米以上B.弟弟的体重一定比哥哥的轻C.今年教师节一定是晴天D.吸烟有害身体健康【答案】D。
4.2012年4月30日,我国在西昌卫星发射中心用“长征三号乙”运载火箭成功发射两颗北斗导航卫星,其中静止轨道卫星的高度约为36000km.这个数据用科学记数法表示为【】A.36×103km B.3.6×103km C.3.6×104km D.0.36×105km【答案】C。
5.若分式2a+1有意义,则a的取值范围是【】A.a=0 B.a=1 C.a≠﹣1 D.a≠0【答案】C。
6.如图,数轴上表示数﹣2的相反数的点是【】A.点P B.点Q C.点M D.点N【答案】A。
7.爱华中学生物兴趣小组调查了本地区几棵古树的生长年代,记录数据如下(单位:年):200,240,220,200,210.这组数据的中位数是【】A.200 B.210 C.220 D.240【答案】B。
8.球和圆柱在水平面上紧靠在一起,组成如图所示的几何体,托尼画出了它的三视图,其中他画的俯视图应该是【】A.两个相交的圆B.两个内切的圆C.两个外切的圆D.两个外离的圆【答案】C。
9.如图,在10×6的网格中,每个小方格的边长都是1个单位,将△ABC平移到△DEF的位置,下面正确的平移步骤是【】A.先把△ABC向左平移5个单位,再向下平移2个单位B.先把△ABC向右平移5个单位,再向下平移2个单位C.先把△ABC向左平移5个单位,再向上平移2个单位D.先把△ABC向右平移5个单位,再向上平移2个单位【答案】A。
湖北省宜昌市中考数学试卷及答案
(2)若BE平分ABC,且AD=10,求AB的长(7分)
(第 18 题)
19. 如图,华庆号船位于航海图上平面直角坐标系中的点A(10,2)处时,点C、海岛B 的位置在y轴上,且CBA30,CAB60。
(1)求这时船A与海岛B之间的距离;
(2)若海岛B周围16海里内有海礁,华庆号船继续沿AC向C航行有无触礁危险?请说明理由(7分)
又BE平分∠ABC,∴∠ABE=∠EBC5分
∴∠ABE=∠AEB, ∴AB=AE.6分
又AE1AD,∴AB5.7分
2
(说明:合理精简解题步骤不影响评分)
19 .解:
(1)证明:∵∠CBA=30°,∠CAB=60°,ACB90°.1分
在Rt△ACB中,∵cos60AC,AB20.4分
AB
(2)在Rt△ACB中,tan60°=BC,
A.颖颖上学经过十字路口时遇到绿灯
B.不透明袋子中放了大小相同的一个乒乓球、二个玻璃球,从中去摸取出乒乓球
C.你这时正在解答本试卷的第12题
D.明天我市最高气温为60℃
13.如图,菱形ABCD中,AB=15,ADC120°,则B、D两点之间的距离为()。
A.15
B.153
2
C.7.5D.15
(第 13 题)
A
A
A
B
二、解答题(本大题有9小题,计75分)
16.解:原式=(a1)
1
a22a1
···························································2分
=(a1)
1
(a1)2
······························································4分
2023年湖北省宜昌市中考数学真题(word)有答案
2023年湖北省宜昌市初中学业水平考试数学试题(上传校勘:柯老师)(本试卷共24题,满分120分,考试时间120分钟)参考公式:一元二次方程20ax bx c ++=的求根公式是)224402b b ac x b ac a--=-≥二次函数2y cx bx c =++图象的顶点坐标是24,24b ac b aa ⎛⎫-- ⎪⎝⎭,孤长2ππ,180360n r n r l S ==扇形。
一、选择题(下列各题中,只有一个选项是符合题目要求的,请在答题卡上指定的位置填涂符合要求的选项前面的字母代号。
每题3分,计33分。
)1.下列运算正确的个数是( ). ①|2023|2023=;② 20230 =1 ;③1120232023-=220232023=. A .4 B .3 C .2 D .12.我国古代数学的许多创新与发明都曾在世界上有重要影响.下列图形“杨辉三角”“中国七巧板”“刘微割圆术”“赵爽弦图”中,中心对称图形是( ).A .B .C .D .3.“五一”假期,宜昌旅游市场接待游客606.7万人次,实现旅游总收入41.5亿元.数据“41.5亿”用科学记数法表示为( ).A .741510⨯B .841.510⨯C .94.1510⨯D .104.1510⨯4.“争创全国文明典范城市,让文明成为宜昌人民的内在气质和城市的亮丽名片”.如图,是一个正方体的平面展开图,把展开图折叠成正方体后,“城”字对面的字是( ). A .文 B .明 C .典 D .范5.如图,OA ,OB ,OC 都是O 的半径,AC ,OB 交于点D .若86AD CD OD ===,,则BD 的长为( ).A .5B .4C .3D .26.下列运算正确的是( ). A .4322x x x ÷= B .()437xx = C .437x x x += D .3412x x x ⋅=7.某反比例函数图象上四个点的坐标分别为()()()1233,,(2,3),1,,2,y y y --,则,123,,y y y 的大小关系为( ) A .213y y y << B .321y y y << C .231y y y << D .132y y y <<8.如图,小颖按如下方式操作直尺和含30︒角的三角尺,依次画出了直线a ,b ,c .如果170∠=︒,则2∠的度数为( ). A .110︒ B .70︒ C .40︒ D .30︒9.在日历上,某些数满足一定的规律.如图是某年8月份的日历,任意选择其中所示的含4个数字的方框部分,设右上角的数字为,则下列叙述中正确的是( ). 日 一 二 三 四 五 六 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 262728293031A .左上角的数字为1a +B .左下角的数字为7a +C .右下角的数字为8a +D .方框中4个位置的数相加,结果是4的倍数 10.解不等式1413xx +>-,下列在数轴上表示的解集正确的是( ).C .D .11.某校学生去距离学校12km 的博物馆参观,一部分学生骑自行车先走,过了20min 后,其余学生乘汽车出发,结果他们同时到达.己知汽车的速度是骑车学生速度的2倍,汽车的速度是( ). A .0.2km /min B .0.3km /min C .0.4km /min D .0.6km /min二、填空题(将答案写在答题卡上指定的位置。
湖北宜昌市中考数学试题(word版 有答案)
湖北省宜昌市初中毕业生学业考试数 学 试 题本试卷共24小题,满分120分,考试时间120分钟.注意事项:本试卷分试题卷和答题卡两部分,请将答案答在答题卡上每题对应的答题区域内,答在试题卷上无效.考试结束,请将本试题卷和答题卡一并上交. 以下数据、公式供参考:二次函数y =ax 2+bx +c 图象的顶点坐标是2424()b ac b aa--, ;180=n l R π弧长 (R 为半径,l 为弧长); sin30°=12, cos30°2, sin45°=cos45°=2.一、选择题(在各小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡上指定的位置填涂符合要求的选项前面的字母代号. 本大题共10小题,每题3分,计30分) 1. 如下书写的四个汉字,其中为轴对称图形的是( ).A .B . C. D.2. 如果+20%表示增加20%,那么-6%表示( ).A .增加14%B .增加6%C .减少6%D .减少26%3.如图所示的圆柱体,其主视图、左视图和俯视图中至少有一个是( ).A .三角形B .四边形C .五边形D .六边形(第3题)4.2009年国家将为医疗卫生、教育文化等社会事业发展投资1 500亿元.将1 500用科学记数法表示为( ).A .1.5×10-3 B . 0.15×103 C .15×103 D .1.5×1035.某市决定从桂花、菊花、杜鹃花中随机选取一种作为市花,选到杜鹃花的概率是( ).A.1 B.12C.13D.06.按如图方式把圆锥的侧面展开,会得到的图形是( ).A.B.C.D.7.如果ab<0,那么下列判断正确的是( ).A.a<0,b<0 B.a>0,b>0 C.a≥0,b≤0 D.a<0,b>0或a>0,b<0 8.如图,由“基本图案”正方形ABCO绕O点顺时针旋转90°后的图形是( ).基本图案(第8题)A.B.C.D.9.设方程x2-4x-1=0的两个根为x1与x2,则x1x2的值是( ).A.-4 B.-1 C. 1 D.010.由于干旱,某水库的蓄水量随时间的增加而直线下降.若该水库的蓄水量V(万米3)与干旱的时间t(天)的关系如图所示,则下列说法正确的是( ).A.干旱开始后,蓄水量每天减少20万米3B.干旱开始后,蓄水量每天增加20万米3C.干旱开始时,蓄水量为200万米3D.干旱第50天时,蓄水量为1 200万米3(第10题)二、填空题(请将解答结果填写在答题卡上指定的位置.本大题共5小题,每题3分计15分)11.当x23x-没有意义.(第6题)AB B12.“爱心小组”的九位同学为灾区捐款,捐款金额分别为10,10,11,15,17,17,18,20,20 (单位:元)13.如果只用圆、正五边形、矩形中的一种图形镶嵌整个平面,14(第14题) (第15题)15.如图,艳军中学学术报告厅门的上沿是圆弧形,这条弧所在圆的半径为1.8米,所对的圆心角为100(π≈3)三、解答题(本大题共9小题,计75分)16(21. (6分)17.2009年有80名教师参加“城乡教师援助工程”活动,随机调查后发现,平均每位教师可以让150名学生受益.请你估算有多少学生将从这项活动中受益. (6分)18.已知点A (1,-k +2)在双曲线k xy =上.求常数k 的值. (7分)19.已知:如图,在Rt △ABC 和Rt △BAD 中,AB 为斜边,AC =BD ,BC ,AD 相交于点E . (1) 求证:AE =BE ;(2) 若∠AEC =45°,AC =1,求CE 的长.(7分)(第19题)20.已知:如图,⊙O的直径AD =2,BC CD DE ==,∠BAE =90°.E D C B A C(1)求△CAD 的面积;(2)如果在这个圆形区域中,随机确定一个点P ,那么点P 落在四边形ABCD 区域的概率是多少?(8分)(第20题)21.已知:如图, AF 平分∠BAC ,BC ⊥AF , 垂足为E ,点D 与点A 关于点E 对称,PB分别与线段CF , AF 相交于P ,M . (1)求证:AB =CD ;(2)若∠BAC =2∠MPC ,请你判断∠F 与∠MCD 的数量关系,并说明理由.(8分)(第21题)22.【实际背景】预警方案确定:设0000W 月的5克肉价格月的5克玉米价格 当猪当.如果当月W <6,则下个月...要采取措施防止“猪贱伤农”. 【数据收集】今年2月~5月玉米、猪肉价格统计表(1)若今年3月的猪肉价格比上月下降的百分数与5月的猪肉价格比上月下降的百分数相等,求3月的猪肉价格m ;F M PE D CBA(2)若今年6月及以后月份,玉米价格增长的规律不变,而每月的猪肉价格按照5月的猪肉价格比上月下降的百分数继续下降,请你预测7月时是否要采取措施防止“猪贱伤农”;(3)若今年6月及以后月份,每月玉米价格增长率是当月猪肉价格增长率的2倍,而每月的猪肉价格增长率都为a ,则到7月时只用5.5元就可以买到500克猪肉和500克玉米.请你预测8月时是否要采取措施防止“猪贱伤农”.(10分)23.已知:如图1,把矩形纸片ABCD 折叠,使得顶点A 与边DC 上的动点P 重合(P 不与点D ,C 重合), MN 为折痕,点M ,N 分别在边BC , AD 上,连接AP ,MP ,AM , AP 与MN 相交于点F .⊙O 过点M ,C ,P .(1)请你在图1中作出⊙O (不写作法,保留作图痕迹);(2)AF AN与AP AD是否相等?请你说明理由;(3)随着点P 的运动,若⊙O 与AM 相切于点M 时,⊙O 又与AD 相切于点H . 设AB 为4,请你通过计算,画出..这时的图形.(图2,3供参考) (11分)ABCFP MNDF MNDOP CBAABCPONMF图1 图2 图3(第23题)24.已知:直角梯形OABC的四个顶点是O(0,0),A(32,1),B(s,t),C(72,0),抛物线y=x2+mx-m的顶点P是直角梯形OABC内部或边上的一个动点,m为常数.(1)求s与t的值,并在直角坐标系中画出..直角梯形OABC;(2)当抛物线y=x2+mx-m与直角梯形OABC的边AB相交时,求m的取值范围.(第24题)数学试题评分说明及参考答案一、选择题:(每小题3分,计30分)二、填空题:(每小题3分,共15分)说明:第15题如果填写为3.1或3.14均得3分;第12题若填写17元,得3分.三、解答题:(本大题有9小题,计75分)16.解:12(-12-1(3分)=2. (6分) 17.解: 由题意, 15080⨯ (4分)=12 000(名). (6分)答:有12 000名学生将从这项活动中受益.说明:12 000后不带单位不扣分.18.解:由题意,21kk -+=. (4分) 解得 1.k = (7分)19.解:(1) 在Rt △ACE 和Rt △BDE 中,∵∠AEC 与∠BED 是对顶角,∴∠AEC =∠BED . (1分) ∵∠C =∠D =90°, AC =BD .∴Rt △ACE ≌Rt △BDE , (3分) ∴AE =BE . (4分)(2) ∵∠AEC =45°, ∠C =90°,∴∠CAE =45°. (5分) ∴CE =AC =1. (7分)20.解:(1)∵AD 为⊙O 的直径,∴∠ACD =∠BAE =90°. (1分)∵ BC CD DE ==,∴ ∠BAC =∠CAD =∠DAE .(2分) ∴∠BAC =∠CAD =∠DAE =30°.∵在Rt △ACD 中,AD=2,CD =2sin30°=1, AC =2cos30°=.(3分)∴S △ACD =12AC ×CD=2. (4分)(2) 连BD ,∵∠ABD =90°, ∠BAD = =60°,∴∠BDA =∠BCA = 30°,∴BA =BC . 作BF ⊥AC ,垂足为F ,(5分)∴AF=12AC2,∴BF=AF tan30°=12,(6分)∴S△ABC=12AC×BF=4,∴S ABCD=4.(7分)∵S⊙O=π ,∴P点落在四边形ABCD区域的概率=4π4π.(8分)说明:若π取34.(2)解法2:作CM⊥AD,垂足为M.(5分)∵∠BCA=∠CAD(证明过程见解法),∴BC∥AD.∴四边形ABCD为等腰梯形.(6分)∵CM=AC sin30°2,∴S ABCD=12(BC+AD)CM4.(7分)∵S⊙O=π,∴P点落在四边形ABCD区域的概率=4π=4π.(8分)21.解:(1)证明:∵AF平分∠BAC,∴∠CAD=∠DAB=12∠BAC.∵D与A关于E对称,∴E为AD中点.(1分)∵BC⊥AD,∴BC为AD的中垂线,∴AC=CD.(2分)在Rt△ACE和Rt△ABE中,注:证全等也可得到AC=CD∠CAD+∠ACE=∠DAB+∠ABE=90°,∠CAD=∠DAB.∴∠ACE=∠ABE,∴AC=AB.注:证全等也可得到AC=AB∴AB=CD.(3分)(2)∵∠BAC=2∠MPC,又∵∠BAC=2∠CAD,∴∠MPC=∠CAD.∵AC=CD,∴∠CAD=∠CDA,∴∠MPC=∠CDA.(4分)∴∠MP F=∠CDM.(5分)FM PE DCBA∵AC =AB ,AE ⊥BC ,∴CE =BE . 注:证全等也可得到CE =BE ∴AM 为BC 的中垂线,∴CM =BM . (6分) 注:证全等也可得到CM =BM ∵EM ⊥BC ,∴EM 平分∠CMB ,(等腰三角形三线合一)∴∠C ME =∠BME . 注:证全等也可得到∠CME =∠BME ∵∠BME =∠PMF ,∴∠PMF =∠C M E , (7分)∴∠MCD =∠F (三角形内角和). (8分) 注:证三角形相似也可得到∠MCD =∠F 22.解: (1)由题意,7.56 6.257.56.25m --=,解得: m =7.2. (1分)(2)从2月~5月玉米的价格变化知,后一个月总是比前一个月价格每500克增长0.1元.(2分)(或:设y =kx +b ,将(2,0.7),(3,0.8)代入,得到y =0.1x +0.5,把(4,0.9), (5,1)代入都符合,可评2分,再得到(6,1.1)时不再给分) ∴6月玉米的价格是:1.1元/500克;(3分)∵5月增长率:6 6.2516.2525-=-,∴6月猪肉的价格:6(1-125)=5.76元/500克.∴W =5.761.1=5.24<6, 要采取措施. (4分)说明:若答:∵5月的W =6,而6月时W 的分子(猪肉价格下降)减小,且分母(六月的玉米价格增长)增大,∴6月的W <6,未叙述减小和增大理由时可扣1分. (3)7月猪肉价格是:26(1)a +元/500克;7月玉米价格是:21(12)a +元/500克; 由题意,26(1)a ++21(12)a +=5.5, (6分) 解得,13102a a =-=-或 .(7分) 32a =-不合题意,舍去. (8分)∴2216(1)1011(1)5W --=, (9分), (7.59)6W ≈>,∴不(或:不一定)需要采取措施.(10分) 23.解:(1)如图; (1分) (2)AF AN 与APAD不相等. 假设AFAPAN AD =,则由相似三角形的性质,得MN ∥DC . (2分)∵∠D =90°,∴DC ⊥AD ,∴MN ⊥AD .∵据题意得,A 与P 关于MN 对称,∴MN ⊥AP . ∵据题意,P 与D 不重合,∴这与“过一点(A )只能作一条直线与已知直线(MN )垂直”矛盾. ∴假设不成立. ∴AF AP AN AD=不成立. (3分) (2) 解法2:AF AN 与APAD不相等. 理由如下:∵P , A 关于MN 对称,∴MN 垂直平分AP . ∴cos ∠F AN =AFAN. (2分) ∵∠D =90°, ∴cos ∠P AD =ADAP .∵∠F AN =∠P AD ,∴AF AN =ADAP.∵P 不与D 重合,P 在边DC 上;∴AD ≠AP .∴AD AP ≠AP AD ;从而AF AN ≠APAD. (3分) (3)∵AM 是⊙O 的切线,∴∠AMP =90°, ∴∠CMP +∠AMB =90°. ∵∠BAM +∠AMB =90°,∴∠CMP =∠BAM . ∵MN 垂直平分,∴MA =MP , ∵∠B =∠C =90°, ∴△ABM ≌△MCD . (4分) ∴MC =AB =4, 设PD =x ,则CP =4-x , ∴BM =PC =4-x . (5分)连结HO 并延长交BC 于J .( 6分) ∵AD 是⊙O 的切线,∴∠JHD =90°.N∴矩形HDCJ.(7分)∴OJ∥CP,∴△MOJ∽△MPC,(8分) ∴OJ:CP=MO:MP=1:2,∴OJ=12(4-x),OH=12MP=4-OJ=12(4+x).(9分)∵MC2= MP2-CP2,∴(4+x)2-(4-x)2=16.(10分)解得:x=1.即PD=1,PC=3,∴BC=BM+MC=PC+AB=3+4=7.由此画图(图形大致能示意即可).(11分)(3)解法2:连接HO,并延长HO交BC于J点,连接AO.(4分)由切线性质知,JH⊥AD,∵BC∥AD,∴HJ⊥BC,∴OJ⊥MC,∴MJ=JC.(5分)∵AM,AH与⊙O相切于点M,H,∴∠AMO=∠AHO=90°,∵OM=OH,AO=AO,∴Rt△AMO≌Rt△AHO.(6分)∴设AM=x,则AM=AH=x,由切线性质得,AM⊥PM,∴∠AMP=90°,∴∠BMA+∠CMP=90°.∵∠BMA+∠BAM=90°,∴∠BAM=∠CMP,∵∠B=∠MCP=90°,∵MN为AP的中垂线,∴AM=MP.∴△ABM≌△MCP.(7分) ∴四边形ABJH为矩形,得BJ=AH=x,(8分)Rt△ABM中,BM,∴MJ=x=JC,(9分)∴AB=MC.∴4=2(x),∴5x=(10分)∴AD=BC=x x+,∴PC=3.由此画图(图形大致能示意即可).(11分)H N24.解:(1)如图,在坐标系中标出O ,A ,C 三点,连接OA ,OC∵∠AO C≠90°, ∴∠ABC =90°,故BC ⊥OC , BC ⊥AB ,∴B (72,1).(1分,)即s =72,t =1.直角梯形如图所画.(2分)(大致说清理由即可)(2)由题意,y =x 2+mx -m 与 y =1(线段AB )相交,得,12y =x mx m,y =.+-⎧⎨⎩ (3分)∴1=x 2+mx -m ,由 (x -1)(x +1+m )=0,得121,1x x m ==--. ∵1x =1<32,不合题意,舍去. (4分)∴抛物线y =x 2+mx -m 与AB 边只能相交于(2x ,1), ∴32≤-m -1≤72,∴9252m --≤≤ . ①(5分)又∵顶点P (2424,m m m +--)是直角梯形OABC 的内部和其边上的一个动点,∴7022m ≤-≤,即70m -≤≤ . ② (6分)∵2224(2)4(1)44211m m m m ++-+-=-=-+≤,(或者抛物线y =x 2+mx -m 顶点的纵坐标最大值是1)∴点P 一定在线段AB 的下方. (7分) 又∵点P 在x 轴的上方,∴2440m m +-≥,(4)0,m m +≤∴0,0,4040m m m m ≤≥+≥+≤⎧⎧⎨⎨⎩⎩或者 . (*8分)4(9)0. m ∴-≤≤分③(9分)又∵点P 在直线y =23x 的下方,∴242()432m m m +-≤⨯-,(10分)即(38)0.m m +≥0,0,380380.m m m m ≤≥+≤+≥⎧⎧⎨⎨⎩⎩或者 (*8分处评分后,此处不重复评分) 80.3m m ∴≤-≥(11分),或 ④由①②③④ ,得4-≤83m ≤-.(12分)说明:解答过程,全部不等式漏写等号的扣1分,个别漏写的酌情处理.。
宜昌中考数学试题卷及答案
宜昌中考数学试题卷及答案本文为宜昌中考数学试题卷及答案,按照试题卷格式书写。
请阅读并认真解答。
一、选择题(共25小题,每题4分,满分100分)在下列各题A、B、C、D四个选项中只有一项符合题目要求,将其标号填入题前的括号内。
1. 下图是一个校园平面图,其中有一个校园行道,行道宽度是多少?()A. 2.5m B. 3m C. 3.5m D. 4m2. 正方形ABCD的边长为12cm,P、Q分别是BC边和CD边上的两个点,且 PQ = 8cm,连结AP并延长与BC边交于点E,连接BE,求BE的长。
()A. 10cm B. 12cm C. 14cm D. 16cm3. 已知a,b,c是一个等差数列,且c>b>a,若c—b=4,则等差数列的公差为多少?()A. 2 B. 3 C. 4 D. 54. 已知函数y = f(x)的图象为一条直线,其斜率为2,截距为3,那么f(-2)的值为多少?()A. -4 B. -1 C. 1 D. 4......二、解答题(共5小题,每题12分,满分60分)请将解题过程和答案写在答题卡上。
1. 计算下列各式的值:(4x^2)^3 ×(2x^2)^22. 已知等腰梯形ABCD,AB ∥ CD,AB = CD,AD=12cm,BC=8cm,求AB边长的长。
3. 某商品原价为280元,先降价20%,再上调10%后的价格是多少?4. 20个小朋友一起合作清扫学校操场,第1天完成了总工作量的1/5,第2天完成了剩余工作量的1/4,以后每天都完成剩余工作量的1/3,问第几天能够完成清扫操场的工作?5. 用连乘或连加的形式表示下列各式:1.2 × 1.2 × 1.2 × 1.2 × 1.2 和3+6+9+12+…+96+99三、应用题(共2小题,每题20分,满分40分)请阅读并分析题目,然后解答。
1. 某工程队7台机器35天能完成一项工程,如果再增加3台相同的机器,这项工程需要多少天才能完成?2. 一辆长车和一辆短车同时从甲、乙两地相向而行,长车每小时行40km,短车每小时行30km,从甲点出发时,两车相隔140km,两车相遇后还需要行多少km才能到达乙地?四、填空题(共5小题,每题8分,满分40分)填写下表空格中的数值,使各行、各列和对角线上的数之和均相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
:2016年宜昌中考数学试题及答案-中考总结:话题作文与学期梳理课程特色:以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。
学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。
适合学员想扎实写作基础,稳固提高作文水平的初中生赠送《中学语文知识地图—中学必考文学常识一本通》第十五章:学期课程融汇与升华课程特色:以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。
适合学员现代文阅读答题技巧掌握不够全面,想稳固提高的初中生赠送《中学语文知识地图—中学文言文必考140字》课程特色:全面地检测与分析学生考试丢分的问题,让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。
适合学员想夯实语文基础知识,成绩稳步提高的初中生赠送《学生优秀作品及点评指导(2.0版)》第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。
适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。
适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)课程特色:孩子的作文问题,简而言之就是:语言不生动、内容不具体、重点不突出,90%以上的各类作文问题,其实都是以上三大现状的延伸,作文训练营紧紧地抓住了这三大问题,进行专题突破式提高。
适合学员写作不知如何下手而又急需快速突破的3—6级学生赠送《原创作文·专题突破》课程特色:孩子的作文问题,简而言之就是:语言不生动、内容不具体、重点不突出,90%以上的各类作文问题,其实都是以上三大现状的延伸,作文训练营紧紧地抓住了这三大问题,进行专题突破式提高。
适合学员写作不知如何下手而又急需快速突破的3—6级学生赠送《原创作文·专题突破》课程特色:本班是黄老师整个课程的精华。
阅读上,将踩分点进行了系统梳理,列举的各类题型堪称经典;写作上,除了正常讲授作文外,还将当节课学生所写的作文进行现场点评;同时针对文言文和文学常识考点,也进行了精彩的讲解。
适合学员写作基础一般,阅读答题技巧欠缺,急需提高语文成绩直击中考的初中生赠送《语文阅读得高分策略与技巧》(初中卷)课程特色:本班是黄老师整个课程的精华。
阅读上,将踩分点进行了系统梳理,列举的各类题型堪称经典;写作上,除了正常讲授作文外,还将当节课学生所写的作文进行现场点评;同时针对文言文和文学常识考点,也进行了精彩的讲解。
适合学员写作基础一般,阅读答题技巧欠缺,急需提高语文成绩直击中考的初中生赠送《语文阅读得高分策略与技巧》(初中卷)第二讲:秦汉必考文学常识梳理第三讲:魏晋南北朝必考文学常识梳理第四讲:宋代文学常识梳理(上)第五讲:宋代文学常识梳理(下)第六讲:明清文学常识梳理课程特色:帮助同学了解每位作者的其人其文;使原本空洞的文学常识,变得鲜活起来。
本课程将逐篇梳理重点作家作品,每节课都安排诗歌讲解分析。
适合学员希望全面掌握文学常识的中学生赠送课程目标:·小升初一的平稳过渡:提前学习初一知识,实现学习观念的转变,初一领先·掌握正确的初中数学学习方法:提高学习能力,用最短的时间学习更多的知识和方法·培养良好的学习习惯:提倡多思考、多总结、在开心中学习,在学习中收获适合人群适合人群:·初一年级同步学生·学习人教版的学生·程度较好,希望进一步提升、冲刺满分的学生·中上等水平学生,冲刺竞赛的学生课程目标:·小升初一的平稳过渡:提前学习初一知识,实现学习观念的转变,初一领先;·掌握正确的初中数学学习方法:提高学习能力,用最短的时间学习更多的知识和方法;·培养良好的学习习惯:提倡多思考、多总结、在开心中学习,在学习中收获。
适合人群。
适合人群:·初一年级同步学生·学习北师版的学生·程度较好,希望进一步提升、冲刺满分的学生·希望能够2.5年学完中考相关知识,在期中期末考试、中考确保基础、中等题不失分的同时尽可能在难题多拿分的同学。
·提高学习能力,用最短的时间学习更多的知识和方法·培养良好的学习习惯:提倡多思考、多总结、在开心中学习,在学习中收获适合人群:·初一年级同步学生·预习过基础知识的学生·程度较好,希望进一步提升、冲刺满分的学生·适合中上等水平学生,冲刺竞赛的学生。
课程目标:·掌握正确的初中数学学习方法:提高学习能力,用最短的时间学习更多的知识和方法。
·培养良好的学习习惯:提倡多思考、多总结、在开心中学习,在学习中收获。
适合人群:·初一年级同步学生·本课程适用学习人教版数学教材的学生·程度较好,并且希望进一步提升、冲刺满分的学生课程目标:·初二年级容易两级分化,补充和扩展学生所学知识,多积累,多思考,多总结。
·紧跟学校进度,注重提升学生水平和能力。
·开阔思路,逐步提升学生信心,应对竞赛类题目。
适合人群:·初二年级同步学生·本课程适用学习人教版数学教材的学生·程度较好,并且希望进一步提升、冲刺满分的学生课程目标:·初二年级容易两级分化,补充和扩展学生所学知识,多积累,多思考,多总结。
·紧跟学校进度,注重提升学生水平和能力。
·开阔思路,逐步提升学生信心,应对竞赛类题目。
适合人群:·初二年级同步学生·本课程适用学习北师版版数学教材的学生·程度较好,并且希望进一步提升、冲刺满分的学生课程目标:·初二年级容易两级分化,补充和扩展学生所学知识,多积累,多思考,多总结。
·紧跟学校进度,注重提升学生水平和能力。
·开阔思路,逐步提升学生信心,应对竞赛类题目。
适合人群:·初二年级同步学生·本课程适用学习人教版数学教材的学生·程度较好,并且希望进一步提升、冲刺满分的学生课程目标:·初二年级容易两级分化,补充和扩展学生所学知识,多积累,多思考,多总结。
·紧跟学校进度,注重提升学生水平和能力。
·开阔思路,逐步提升学生信心,应对竞赛类题目。
适合人群:·初二年级同步学生·本课程适用学习北师数学教材的学生·程度较好,并且希望进一步提升、冲刺满分的学生课程目标:·使学生较快的适应初三年级知识的程度更深,题目更难,综合性的逐渐上升情况。
·紧跟学校进度,注重提升学生知识水平和解题能力。
·开阔思路,逐步提升学生信心,应对竞赛类题目。
适合人群:·初三年级同步学生·预习过基础知识的学生·适合中上等水平学生,冲刺竞赛的学生·程度较好,希望进一步提升、冲刺满分的学生课程目标:·使学生较快的适应初三年级知识的程度更深,题目更难,综合性的逐渐上升情况。
·紧跟学校进度,注重提升学生知识水平和解题能力。
·开阔思路,逐步提升学生信心,应对竞赛类题目。
适合人群:·初三年级同步学生·预习过基础知识的学生·适合中上等水平学生,冲刺竞赛的学生·程度较好,希望进一步提升、冲刺满分的学生课程目标:·使学生较快的适应初三年级知识的程度更深,题目更难,综合性的逐渐上升情况。
·紧跟学校进度,注重提升学生知识水平和解题能力。
·开阔思路,逐步提升学生信心,应对竞赛类题目。
适合人群:·初三年级同步学生·预习过基础知识的学生·适合中上等水平学生,冲刺竞赛的学生·程度较好,希望进一步提升、冲刺满分的学生课程目标:·使学生较快的适应初三年级知识的程度更深,题目更难,综合性的逐渐上升情况。
·紧跟学校进度,注重提升学生知识水平和解题能力。
·开阔思路,逐步提升学生信心,应对竞赛类题目。
适合人群:·初三年级同步学生·预习过基础知识的学生·适合中上等水平学生,冲刺竞赛的学生·程度较好,希望进一步提升、冲刺满分的学生全国各版本初一学生。
如果该套课程不适合你,可以到选课中心的“知识点课程”选择你需要的知识点进行学习。
知识特点:学习初一的你:是不是计算经常出现问题?掉数字、掉字母、去括号不变号……是不是看到应用题就犯怵,不知未知数该设什么?如何列等式?是不是看到几何问题就犯晕?德智课程帮助你:1.计算题一步一步细致讲解,指出计算的出错点。
教你理解和熟记运算法则,不仅仅会用,还知道如何用!2.大段文字找关键词,教你如何找到题中的数量关系,用什么建立相等的条件,加强你的建模思想的认识!3.反复进行“几何模型→图形→文字→符号”的练习,让你对几何语言不在陌生!学习效果:(1)重点知识的再次学习,加深理解与记忆。
(2)对运算法则更加灵活运用,掌握计算技巧、简便解决问题。
(3)逐步形成几何语言的组织运用和理解能力,为之后的几何学习打下坚实基础。
(4)方程思想,分类讨论思想等数学重要思想的入门学习。
全国各版本初一年级学生如果该套课程不适合你,可以到选课中心的“知识点课程”选择你需要的知识点进行学习。
知识特点:刚升入初一的你们:是不是还沉浸在小学语文学习的内容?是不是对于初中的语文学习一头雾水、茫然无措?是不是渴望找到一种方法能够打牢初中语文学习基础、实现小学到初中的课程衔接?是不是希望摆脱小学灌输式的枯燥无味的学习方式,渴望养成良好的学习习惯?我们的课程特色:初一上学期的语文课程宗旨是:立足基础,科学提升,培养能力。