《秦九韶算法》说课稿
1.3算法案例-秦九韶算法教学设计
1.3算法案例(二)__秦九韶算法一、内容及其解析本节的教学内容是算法案例中的秦九韶算法,它是求一元多项式的值的一种方法.在初中,学生已经学习了多项式的有关知识,那里是把多项式看作代数式.因此在本段内容的教学之前,应当先向学生说明,这里是函数的观点考察多项式,因此,求自变量取某个实数时的函数值问题,即求多项式的值就是一个常规问题.二、教学目标及其解析目标定位知识与技能:了解秦九韶算法的计算过程,并理解利用秦九韶算法可以减少计算次数提高计算效率的实质.过程与方法:模仿秦九韶计算方法,体会古人计算构思的巧妙.了解数学计算转换为计算机计算的途径,从而探究计算机算法与数学算法的区别,体会计算机对数学学习的辅助作用.情感态度与价值观目标:通过对秦九韶算法的学习,了解中国古代数学对世界数学发展的贡献,充分认识到我国文化历史的悠久.目标解析1 秦九韶算法是我国南宋数学家秦九韶在他的代表作《数书九章》中提出的一种用于计算一元n 次多项式的值的方法.三、问题诊断分析在本节主要存在的问题是学生不能对秦九韶算法的先进性及其程序设计的理解,所以教师要强调当多项式的次数增大时,此种方法的先进性就体现出来了,所以教师要找到规律,让学生体会此种解法的先进性.四、教学支持条件分析的一般模式在本节课的教学中准备使用多媒体辅助教学.五、教学过程设计问题一 什么事了解秦九韶算法?小问题1 怎样求多项式1)(2345+++++=x x x x x x f 当x=5时的值呢?(设计意图:通过具体的例子引入秦九韶算法.)结论:第一种一共用了10次乘法运算,5次加法运算.而第二种一共用了5次乘法运算,5次加法运算.小问题2 用秦九韶算法求n 次多项式0111...)(a x a x a x a x f n n n n ++++=--当0x x =(0x 是任意实数)时的值,需要多少次乘法运算,多少次加法运算?小问题 3 如何用秦九韶算法完成一般多项式1110()n n n n f x a x a x a x a --=++++的求值问题?要求多项式的值,我们可以把它改写成:11101210()(()))n n n n n n n f x a x a x a x a a x a x a x a x a ----=++++=+++++.首先计算最内层括号内一次多项式的值,即11n n v a x a -=+,然后由内向外逐层计算一次多项式的值,即212n v v x a -=+,323n v v x a -=+,,10n n v v x a -=+.例题1 (课本第38页例2)(设计意图:从实例到一般,先总结实例进而引申到一般) 变式巩固 用秦九韶算法求多项式1432)(2367+-+-=x x x x x f 当x=2时的函数值.小问题4 你是怎么理解秦九韶算法的?结论:秦九韶算法将求n 次多项式的值转化为求n 个一次多项式的值.课堂小结(提问方式)秦九韶算法计算多项式的值及程序设计上述的整个过程只需n 次乘法运算和n 次加法运算;观察上述n 个一次式,可发出k v 的计算要用到1k v -的值,若令0n v a =,可得到下列递推公式:01,(1,2,,)n k k n k v a v v x a k n --=⎧⎨=+=⎩. 这是一个反复执行的步骤,因此可用循环结构来实现.【程序框图】:六 目标检测1、利用秦九韶算法求多项式1153723+-+x x x 在23=x 的值时,在运算中下列哪个值用不到( )A 、164B 、3767C 、86652D 、851692、利用秦九韶算法求多项式1352.75.38123)(23456-++-++=x x x x x x x f 在2=x 的值,写出详细步骤.七 配餐作业A 组②秦九韶算法计算多项式f(x)=12+35x-8x 2+79x 3+6x 4+5x 5+3x 6,当x=-4时的值时,υ3的值为( )A .-845B .220C .-57D .34③用秦九韶算法,求当x=2时,f(x)=x 5-5x 4+x 3-1的函数值.B 组1.秦九韶算法与直接计算相比较,下列说法错误的是( )A 、秦九韶算法与直接计算相比较,大大减少了乘法的次数,使计算量减少,并且逻辑结构简单.B 、秦九韶算法减少了做乘法的次数,在计算机上也就加快了计算的速度.C 、秦九韶算法减少了做乘法的次数,在计算机上也就降低了计算的速度.D 、秦九韶算法避免对自变量x 单独做幂的计算,而是与系数一起逐次增长幂次,从而可提高计算的精度.2.用秦九韶算法和直接算法求当0x x =时()654323126016024019264f x x x x x x x =-+-+-+的值,做的乘法次数分别为( )A.6,20B.7,20C.7,21D.6,21C 组求15.033.016.041.083.0)(2345+++++=x x x x x x f 当x=5时的值.八、教学反思1、学生还是不会分析运算次数的问题,应该给学生详细讲解.2、学生在多项式 11101210()(()))n n n n n n n f x a x a x a x a a x a x a x a x a ----=++++=+++++按照秦九韶算法写成标准形式是容易出错,且速度很慢,应教会学生快速的写法及检验方法.3、应多给学生介绍一些有关秦九韶算法的背景知识,这样更能吸引学生的注意力和学习兴趣,另外介绍历史名人的大致成就,扩大学生的文化视野.。
秦九韶算法课堂教学省名师优质课赛课获奖课件市赛课一等奖课件
秦九韶算法
f(x)=(…((anx+an-1)x+an-2)x+…+a1)x+a0 要求多项式旳值,应先计算最内层多项式:
v0=an
.
v1=anx+an-1
然后,由内到外逐层计算一次多项式旳值:
v2=v1x+an-2
秦九韶算法
v2=v1x+an-2
v3=v2x+an-3
பைடு நூலகம் ……
.
vn=vn-1x+a0
1
i≥0? N Y 输入ai v=vx+ai i=i-1
输出v
结束
逐项求和法
逐项求和法在直接求和法旳基础上做了改善, 先把多项式写成
f(x)=an·xn+an-1·xn-1+…+a1·x1+a0 旳形式,这么多项式旳每一含x旳幂旳项都是
ak与xk旳乘积(k=1,2,…,n)。在计算ak·xk项时 把xk旳值保存在变量c中,求ak+1·xk+1项时只需 计算ak+1·x·c,同步把x·c=xk+1旳值保存入c中, 继续下一项旳运算,然后把这n+1项旳值相加。
霍纳算法(Horner algorithm或Horner scheme)
《数学九章》——秦九韶算法
设f(x)是一种n次多项式 f(x)=anxn+an-1xn-1+…+a1x+a0
=(anxn-1+an-1xn-2+…+a1)x+a0 =((anxn-2+an-1xn-3+…+a2)x+a1)x+a0 =…… =(…((anx+an-1)x+an-2)x+…+a1)x+a0
人教版数学八年级下册《阅读与思考海伦—秦九韶公式》说课稿2
人教版数学八年级下册《阅读与思考海伦—秦九韶公式》说课稿2一. 教材分析海伦-秦九韶公式是数学八年级下册《阅读与思考》中的一篇文章。
这篇文章主要介绍了海伦公式和秦九韶公式的来源、发展和应用。
通过阅读这篇文章,学生可以了解到数学知识在历史长河中的演变过程,以及数学家们如何通过观察自然现象、分析实际问题,逐渐发现并完善数学公式。
同时,文章中还涉及到了数学符号的发展和数学证明的过程,有助于提高学生的数学素养。
二. 学情分析在八年级下册的学生已经具备了一定的数学基础,对数学知识有一定的认识和理解。
但是,对于数学历史和数学家的故事,他们可能了解不多。
因此,在教学过程中,需要引导学生关注数学知识的发展背景,激发他们对数学的兴趣和好奇心。
同时,学生已经掌握了因式分解、三角形面积等知识,这为学习海伦-秦九韶公式奠定了基础。
三. 说教学目标1.知识与技能:通过阅读文章,使学生了解海伦公式和秦九韶公式的来源、发展和应用,掌握三角形面积的计算方法。
2.过程与方法:培养学生阅读理解能力,提高学生分析问题、解决问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的数学素养,引导学生关注数学知识在实际生活中的应用。
四. 说教学重难点1.重点:海伦公式和秦九韶公式的来源、发展和应用。
2.难点:理解数学符号的发展和数学证明的过程。
五. 说教学方法与手段1.教学方法:采用问题驱动、案例分析、小组讨论等教学方法,引导学生主动探究、积极思考。
2.教学手段:利用多媒体课件、网络资源等手段,为学生提供丰富的学习材料,增强课堂教学的趣味性和生动性。
六. 说教学过程1.导入:以一个问题驱动,引导学生关注三角形面积的计算方法。
2.阅读与思考:让学生阅读文章,了解海伦公式和秦九韶公式的来源、发展和应用。
3.案例分析:分析实际问题,运用海伦-秦九韶公式进行计算。
4.小组讨论:引导学生分组讨论,探讨数学符号的发展和数学证明的过程。
5.总结与拓展:对本节课的内容进行总结,提出拓展性问题,激发学生的思考。
人教A版数学必修三教案:§1.3算法案例(秦九韶算法)
时案例2 秦九韶算法(一)导入新课思路1(情境导入)大家都喜欢吃苹果吧,我们吃苹果都是从外到里一口一口的吃,而虫子却是先钻到苹果里面从里到外一口一口的吃,由此看来处理同一个问题的方法多种多样.怎样求多项式f(x)=x5+x4+x3+x2+x+1当x=5时的值呢?方法也是多种多样的,今天我们开始学习秦九韶算法.思路2(直接导入)前面我们学习了辗转相除法与更相减损术,今天我们开始学习秦九韶算法.(二)推进新课、新知探究、提出问题(1)求多项式f(x)=x5+x4+x3+x2+x+1当x=5时的值有哪些方法?比较它们的特点.(2)什么是秦九韶算法?(3)怎样评价一个算法的好坏?讨论结果:(1)怎样求多项式f(x)=x5+x4+x3+x2+x+1当x=5时的值呢?一个自然的做法就是把5代入多项式f(x),计算各项的值,然后把它们加起来,这时,我们一共做了1+2+3+4=10次乘法运算,5次加法运算.另一种做法是先计算x2的值,然后依次计算x2·x,(x2·x)·x,((x2·x)·x)·x的值,这样每次都可以利用上一次计算的结果,这时,我们一共做了4次乘法运算,5次加法运算.第二种做法与第一种做法相比,乘法的运算次数减少了,因而能够提高运算效率,对于计算机来说,做一次乘法运算所用的时间比做一次加法运算要长得多,所以采用第二种做法,计算机能更快地得到结果.(2)上面问题有没有更有效的算法呢?我国南宋时期的数学家秦九韶(约1202~1261)在他的著作《数书九章》中提出了下面的算法:把一个n次多项式f(x)=a n x n+a n-1x n-1+…+a1x+a0改写成如下形式:f(x)=a n x n+a n-1x n-1+…+a1x+a0=(a n x n-1+a n-1x n-2+…+a1)x+ a0=((a n x n-2+a n-1x n-3+…+a2)x+a1)x+a0=…=(…((a n x+a n-1)x+a n-2)x+…+a1)x+a0.求多项式的值时,首先计算最内层括号内一次多项式的值,即v1=a n x+a n-1,然后由内向外逐层计算一次多项式的值,即v2=v1x+a n-2,v3=v2x+a n-3,…v n=v n-1x+a0,这样,求n次多项式f(x)的值就转化为求n个一次多项式的值.上述方法称为秦九韶算法.直到今天,这种算法仍是多项式求值比较先进的算法.(3)计算机的一个很重要的特点就是运算速度快,但即便如此,算法好坏的一个重要标志仍然是运算的次数.如果一个算法从理论上需要超出计算机允许范围内的运算次数,那么这样的算法就只能是一个理论的算法.(三)应用示例例1 已知一个5次多项式为f(x)=5x5+2x4+3.5x3-2.6x2+1.7x-0.8,用秦九韶算法求这个多项式当x=5时的值.解:根据秦九韶算法,把多项式改写成如下形式:f(x)=((((5x+2)x+3.5)x-2.6)x+1.7) x-0.8,按照从内到外的顺序,依次计算一次多项式当x=5时的值:v0=5;v1=5×5+2=27;v2=27×5+3.5=138.5;v3=138.5×5-2.6=689.9;v4=689.9×5+1.7=3 451.2;v5=3 415.2×5-0.8=17 255.2;所以,当x=5时,多项式的值等于17 255.2.算法分析:观察上述秦九韶算法中的n个一次式,可见v k的计算要用到v k-1的值,若令v0=a n,我们可以得到下面的公式:这是一个在秦九韶算法中反复执行的步骤,因此可用循环结构来实现.算法步骤如下:第一步,输入多项式次数n、最高次的系数a n和x的值.第二步,将v的值初始化为a n,将i的值初始化为n-1.第三步,输入i次项的系数a i.第四步,v=vx+a i,i=i-1.第五步,判断i是否大于或等于0.若是,则返回第三步;否则,输出多项式的值v.程序框图如下图:程序:INPUT “n=”;nINPUT “an=”;aINPUT “x=”;xv=ai=n-1WHILE i>=0PRINT “i=”;iINPUT “ai=”;av=v*x+ai=i-1WENDPRINT vEND点评:本题是古老算法与现代计算机语言的完美结合,详尽介绍了思想方法、算法步骤、程序框图和算法语句,是一个典型的算法案例.变式训练请以5次多项式函数为例说明秦九韶算法,并画出程序框图.解:设f(x)=a5x5+a4x4+a3x3+a2x2+a1x+a0首先,让我们以5次多项式一步步地进行改写:f(x)=(a5x4+a4x3+a3x2+a2x+a1)x+a0=((a5x3+a4x2+ a3x+a2)x+a1)x+a0=(((a5x2+a4x+ a3)x+a2)x+a1)x+a0=((((a5x+a4)x+ a3)x+a2)x+a1)x+a0.上面的分层计算,只用了小括号,计算时,首先计算最内层的括号,然后由里向外逐层计算,直到最外层的括号,然后加上常数项即可.程序框图如下图:例2 已知n次多项式P n(x)=a0x n+a1x n-1+…+a n-1x+a n,如果在一种算法中,计算(k=2,3,4,…,n)的值需要k-1次乘法,计算P3(x0)的值共需要9次运算(6次乘法,3次加法),那么计算P10(x0)的值共需要__________次运算.下面给出一种减少运算次数的算法:P0(x)=a0,P k+1(x)=xP k(x)+a k+1(k=0,1,2,…,n-1).利用该算法,计算P3(x0)的值共需要6次运算,计算P10(x0)的值共需要___________次运算.答案:65 20点评:秦九韶算法适用一般的多项式f(x)=a n x n+a n-1x n-1+…+a1x+a0的求值问题.直接法乘法运算的次数最多可到达,加法最多n次.秦九韶算法通过转化把乘法运算的次数减少到最多n次,加法最多n次.例3 已知多项式函数f(x)=2x5-5x4-4x3+3x2-6x+7,求当x=5时的函数的值.解析:把多项式变形为:f(x)=2x5-5x4-4x3+3x2-6x+7=((((2x-5)x-4)x+3)x-6)x+7.计算的过程可以列表表示为:最后的系数2 677即为所求的值.算法过程:v0=2;v1=2×5-5=5;v2=5×5-4=21;v3=21×5+3=108;v4=108×5-6=534;v5=534×5+7=2 677.点评:如果多项式函数中有缺项的话,要以系数为0的项补齐后再计算.(四)知能训练当x=2时,用秦九韶算法求多项式f(x)=3x5+8x4-3x3+5x2+12x-6的值.解法一:根据秦九韶算法,把多项式改写成如下形式:f(x)=((((3x+8)x-3)x+5)x+12)x-6.按照从内到外的顺序,依次计算一次多项式当x=2时的值.v0=3;v1=v0×2+8=3×2+8=14;v2=v1×2-3=14×2-3=25;v3=v2×2+5=25×2+5=55;v4=v3×2+12=55×2+12=122;v5=v4×2-6=122×2-6=238.∴当x=2时,多项式的值为238.解法二:f(x)=((((3x+8)x-3)x+5)x+12)x-6,则f(2)=((((3×2+8)×2-3)×2+5)×2+12)×2-6=238.(五)拓展提升用秦九韶算法求多项式f (x)=7x7+6x6+5x5+4x4+3x3+2x2+x当x=3时的值.解:f(x)=((((((7x+6)+5)x+4)x+3)x+2)x+1)xv0=7;v1=7×3+6=27;v2=27×3+5=86;v3=86×3+4=262;v4=262×3+3=789;v5=789×3+2=2 369;v6=2 369×3+1=7 108;v7=7 108×3+0=21 324.∴f(3)=21 324.(六)课堂小结1.秦九韶算法的方法和步骤.2.秦九韶算法的计算机程序框图.(七)作业已知函数f(x)=x3-2x2-5x+8,求f(9)的值.解:f(x)=x3-2x2-5x+8=(x2-2x-5)x+8=((x-2)x-5)x+8 ∴f(9)=((9-2)×9-5)×9+8=530.。
秦九邵算法 说课稿 教案 教学设计
课题秦九邵算法课型新课教学目标(一)了解秦九韶算法的计算过程,并理解利用秦九韶算法可以减少计算次数提高计算效率的实质。
(二)模仿秦九韶计算方法,体会古人计算构思的巧妙。
(三)通过对秦九韶算法的学习,了解中国古代数学家对数学的贡献,充分认识到我国文化历史的悠久。
充分认识信息技术对数学的促进。
教学过程教学内容备注一、自主学习阅读教材思考以下问题:(1)秦九邵算法的运算原理(2)秦九邵算法的程序框图和程序二、质疑提问1.辗转相除法和更相减损术,是求两个正整数的最大公约数的优秀算法,我们将算法转化为程序后,就可以由计算机来执行运算,实现了古代数学与现代信息技术的完美结合.2.对于求n次多项式的值,在我国古代数学中有一个优秀算法,即秦九韶算法,我们将对这个算法作些了解和探究.三、问题探究知识探究:秦九邵算法思考1 ).5(,12345)(2345fxxxxxxf求已知+++++= 21325算法1:需要(5+4+3+2)=14次乘法,5次加法算法2:需要5次乘法,5次加法秦九韶算法思考2).3(,1234567)(234567fxxxxxxxxf求已知+++++++=18556思考3:利用后一种算法求多项式f(x)=a n x n+a n-1x n-1+…+a1x+a0的值,这个多项式应写成哪种形式?f(x)=a n x n+a n-1x n-1+…+a1x+a0=(a n x n-1+a n-1x n-2+…+a2x+a1)x+a0=((a n x n-2+a n-1x n-3+…+a2)x+a1)x+a0=…=(…((a n x+a n-1)x+a n-2)x+…+a1)x+a0.思考4:对于f(x)=(…((a n x+a n-1)x+a n-2)x+…+a1)x+a0,由内向外逐层计算一次多项式的值,其算法步骤如何?第一步,计算v1=a n x+a n-1.第二步,计算v2=v1x+a n-2.第三步,计算v3=v2x+a n-3.…第n步,计算v n=v n-1x+a0.思考5:上述求多项式f(x)=a n x n+a n-1x n-1+…+a1x+a0的值的方法称为秦九韶算法,利用该算法求f(x0)的值,一共需要多少次乘法运算,多少次加法运算?思考6:在秦九韶算法中,记v0=a n,那么第k步的算式是什么?v k=v k-1x+a n-k (k=1,2,…,n)例1 阅读下列程序,说明它解决的实际问题是什么?。
算法案例秦九韶算法 PPT学习教案
为什么说 前一趟的 比较中交 换为0次时 ,排序完 成?
3,2,5, 8, 6 , 9
S3:如果前一趟的比较中交换的次数为0,说明排序 已完成,否则回到S2。
第8页/共14页
排序的算法 将下面数字按由小到大的顺序排列
8,3,2,5,9,6 请将每一趟的结果写出来
第1趟
8
3
3
3
3
3
3
8
2
2
2
2
2
2
8
所以,当x = 5时,多项式的值等于17255.2
你从中看到了 怎样的规律? 怎么用程序框 图来描述呢?
第4页/共14页
开始 输入f (x)的系数: a0、a1、a2、a3、a4、a5
输入x0
n=0
v=a5
v= v·x0+a5-n
n < 5? 否 输出v
结束
n=n+1 是
秦九韶算法检验
注意:要想第使5页用/检共验14功页能,请使用前,先要减低宏的安全限制
算法案例秦九韶算法
会计学
1
《数书九章》——秦九韶算法
设 f (x) 是一个n次的多项式
f (x) an xn an1xn1 a1x a0
对该多项式按下面的方式进行改写:
f (x) an xn an1xn1 a1x a0 (an xn1 an1xn2 a1)x a0
这是怎样的一 种改写方式? 最后的结果是
6
2
3
5
8
9
6
2
3
5
6
8
9
第7页/共14页
排序的算法 将下面数字按由小到大的顺序排列 8,3,2,5,9,6
秦九韶算法 新课标教案
高一数学 序号10 课题:算法案例————秦九韶算法一、教学目标(一)知识与能力目标了解秦九韶算法的计算过程,并理解利用秦九韶算法可以减少计算次数提高计算效率的实质。
(二)过程与方法目标:模仿秦九韶计算方法,体会古人计算构思的巧妙。
(三)情感态度和价值观目标:通过对秦九韶算法的学习,了解中国古代数学家对数学的贡献,充分认识到我国文化历史的悠久。
二、教学重点秦九韶算法的特点 三、教学难点秦九韶算法的先进性理解 四、教学过程 (一)知识回顾用辗转相除法和更相减损术求225和135的最大公约数(二)探究新知探究一、秦九韶算法的基本思想思考1:对于多项式{ EMBED Equation.3 |1)(2345+++++=x x x x x x f ,求的值. 若先计算各项的值,然后再相加,那么一共要做多少次乘法运算和多少次加法运算?思考2:在上述问题中,若先计算的值,然后依次计算,,的值,这样每次都可以利用上一次计算的结果,那么一共做了多少次乘法运算和多少次加法运算?小结:第二种做法和第一种做法相比,乘法的运算次数减少了,因而能提高运算效率。
而且对于计算机来说,做一次乘法运算所需的时间比做一次加法运算需要的时间要长得多,因此第二种算法能更快的得到结果。
思考3:对于多项式表示为的形式,则由内向外逐层计算一次多项式的值,其算法步骤如何?一共做多少次乘法运算和多少次加法运算?思考4:上述求多项式 的值的方法称为秦九韶算法,利用该算法求的值,一共需要多少次乘法运算,多少次加法运算?思考5:在秦九韶算法中,记那么第步的算式是什么?探究二、秦九韶算法的程序设计思考1:用秦九韶算法求多项式的值,可以用什么逻辑结构来构造算法?其算法步骤如何设计?第一步, 第二步, 第三步, 第四步, 第五步,思考2:该算法的程序框图如何表示? 思考3:该程序框图对应的程序如何表述?(三)实践感知例1、已知一个5次多项式为 ,用秦九韶算法求的值.练习1、已知多项式,用秦九韶算法求这个多项式当x=-2时的值。
《海伦-秦九韶公式》说课稿
海伦-秦九韶公式教学内容:人教版数学八年级下册第十六章“阅读与思考”内容教学对象:八年级学生教材分析:本节内容是初中数学八年级下册第十六章,是阅读与思考部分中的内容,《初中数学新课程标准》中并没有做要求。
教材中只占用一页篇幅,叙述了秦九韶公式与海伦公式的记载历史,并未给出证明和应用。
本节内容之前学生已经学习了解三角形,二次根式等相关知识,它是三角形面积公式的延续与拓展。
本节课的主要设置对象为数学学习程度较好的学生――在完成《初中数学新课程标准》中要求的学习之后仍有余力的同学,意在引领学生运用所学知识对海伦公式与秦九韶公式进行转换,并会有简单应用,让同学们从中体会到数学之美。
学情分析:八年级学生在进入本节课的学习之前,需要熟悉前面已学过的二次根式、三角形面积公式以及平方差公式和完全平方公式等知识。
教学目标:1、知识与技能:(1)了解秦九韶公式与海伦公式历史及意义。
(2)会对秦九韶公式与海伦公式进行转换,理解秦九韶公式与海伦公式的本质相同;(3)会用海伦-秦九韶公式解决简单的涉及到三角形三边与面积之间关系的问题。
2、过程与方法:(1)经历转换秦九韶公式及海伦公式的全过程,培养学生严谨的数学逻辑思维;(2)提高学生应用海伦公式解决涉及三角形三边与面积之间关系问题的能力。
3、情感态度价值观:(1)体会到数学的简洁美;(2)体会数学以不变应万变的魅力。
教学重难点:1、重点:转换秦九韶海伦公式的过程2、难点:海伦-秦九韶公式的应用教学准备:多媒体课件教学方法:引导探究、实例运用。
教学过程:一、回顾旧知引出新知1、回顾三角形面积公式。
通过提问,让学生回答出已经学习过的公式。
板书:1/2*底*高2、已知三边a,b,c,求三角形面积(1)已知三边具体值你会求三角形面积吗?(2)适时出示海伦公式设计意图:直接以古希腊数学家海伦发现的公式作为问题背景,让学生对S 作出猜想.S是三角形的周长还是面积? 教师适时引导学生根据公式的特点,作出合理的猜想.例如可以从等式的右边根号里量纲的特征,开根号的结果是边长的平方,应该和面积有关;还可以根据对称性,使根号里面的每一条边地位平等,培养学生敏锐的观察能力,发展学生的合情推理和概括能力.二、介绍海伦公式与秦九韶公式的历史与意义(PPT)1、海伦公式的历史与意义、古希腊的数学发展到亚历山大里亚时期,数学的应用得到了很大的发展,其突出的一点就是三角术的发展,在解三角形的过程中,其中一个比较难的问题是如何利用三角形的三边直接求出三角形面积。
《算法案例:秦九韶算法》教学教案
《算法案例:秦九韶算法》教学教案第一篇:《算法案例:秦九韶算法》教学教案秦九韶算法学习目标1.了解秦九韶算法的计算过程,并理解利用秦九韶算法可以减少计算次数提高计算效率的实质。
2.掌握数据排序的原理能使用直接排序法与冒泡排序法给一组数据排序,进而能设计冒泡排序法的程序框图及程序,理解数学算法与计算机算法的区别,理解计算机对数学的辅助作用。
学习重难点重点:1.秦九韶算法的特点2.两种排序法的排序步骤及计算机程序设计难点:1.秦九韶算法的先进性理解2.排序法的计算机程序设计学法与学习用具学法:1.探究秦九韶算法对比一般计算方法中计算次数的改变,体会科学的计算。
2.模仿排序法中数字排序的步骤,理解计算机计算的一般步骤,领会数学计算在计算机上实施的要求。
学习用具:电脑,计算器,图形计算器学习设想(一)创设情景,揭示课题我们已经学过了多项式的计算,下面我们计算一下多项式f(x)=x5+x4+x3+x2+x+1当x=5时的值,并统计所做的计算的种类及计算次数。
根据我们的计算统计可以得出我们共需要10次乘法运算,5次加法运算。
我们把多项式变形为:f(x)=x2(1+x(1+x(1+x)))+x+1再统计一下计算当x=5时的值时需要的计算次数,可以得出仅需4次乘法和5次加法运算即可得出结果。
显然少了6次乘法运算。
这种算法就叫秦九韶算法。
(二)研探新知/ 41.秦九韶计算多项式的方法f(x)=anxn+an-1xn-1+an-2xn-2+Λ+a1x+a0=(anxn-1+an-1xn-2+an-2xn-3+Λ+a1)x+a0=((anxn-2+an-1xn-3+Λ+a2)x+a1)x+a0=ΛΛ=(Λ((anx+an-1)x+an-2)x+Λ+a1)+a0例1 已知一个5次多项式为f(x)=5x5+2x4+3.5x3-2.6x2+1.7x-0.8 用秦九韶算法求这个多项式当x=5时的值。
解:略思考:(1)例1计算时需要多少次乘法计算?多少次加法计算?(2)在利用秦九韶算法计算n次多项式当x=x0时需要多少次乘法计算和多少次加法计算?练习:利用秦九韶算法计算f(x)=0.83x5+0.41x4+0.16x3+0.33x2+0.5x+1 当x=5时的值,并统计需要多少次乘法计算和多少次加法计算?例2 设计利用秦九韶算法计算5次多项式f(x)=a5x5+a4x4+a3x3+a2x2+a1x+a0当x=x0时的值的程序框图。
《算法案例秦九韶算法》教学教案
《算法案例秦九韶算法》教学教案教学目标:1.理解秦九韶算法的原理和应用场景;2.掌握秦九韶算法的详细步骤;3.能够实现秦九韶算法的代码;4.能够对秦九韶算法进行分析和优化。
教学重点:1.秦九韶算法的原理和应用场景;2.秦九韶算法的详细步骤;3.秦九韶算法代码的实现。
教学难点:1.秦九韶算法的详细步骤;2.秦九韶算法代码的实现。
教学准备:1.讲义资料;2.演示程序;3.物理实例。
教学过程:一、导入(5分钟)教师利用一个简单的问题引入,例如:求多项式的值f(x)=2x^3+3x^2-5x+1,当x=2时,计算f(x)。
二、提问(5分钟)教师提问学生在计算多项式的值时的一般方法是什么,学生回答:将x的值代入多项式中的每一项并相加。
三、引入秦九韶算法(10分钟)教师引入秦九韶算法,并解释该算法可以大大减少计算量和运算时间的原理。
教师给出一个示例多项式f(x)=2x^3+3x^2-5x+1,当x=2时,计算f(x),并演示传统的计算方法和秦九韶算法的计算方法的对比。
四、秦九韶算法的详细步骤(20分钟)教师逐步讲解秦九韶算法的详细步骤:1.将多项式表达式改写成累加表达式,例如:f(x)=((2x+3)x-5)x+1;2.从内层开始计算并求解,逐步向外推算;3.计算每一层的累加结果,并将结果保存在一个变量中。
五、练习(15分钟)教师提供多个多项式表达式和对应的x值,让学生尝试用秦九韶算法计算结果,并对结果进行验证。
六、算法优化(15分钟)教师指导学生对秦九韶算法进行分析和优化,例如:是否存在重复计算的部分,可以通过建立一个字典来记录已经计算过的结果,以便在后续计算中直接使用。
七、总结(10分钟)教师帮助学生总结秦九韶算法的优点和适用场景,并与传统计算方法进行对比。
教学延伸:将秦九韶算法应用到实际问题中,例如多项式插值、图像处理等,并引导学生进行深入的研究和讨论。
教学反思:在教学过程中,要注意对秦九韶算法的详细步骤进行清晰的讲解,引导学生理解其原理和应用场景。
高中数学《秦九韶算法与排序》教案7 北师大版必修3
1.3 算法案例——秦九韶算法与排序【知识与技能】(一)秦九韶算法1.特点:通过一次式的反复计算,逐步得出高次多项式的值,对于一个n 次多项式,只需做n 次乘法和n 次加法即可。
2.算法步骤:第一步:计算最内层1n n a x a -+的值,将1n n a x a -+的值赋给一个变量1v (为方便将n a 赋给变量0v );第二步:计算12()n n n a x a x a --++的值,可以改写为12n v x a -+,将12n v x a -+的值赋给一个变量2v .依此类推,即每一步的计算之后都赋予一个新值k v ,即从最内层的括号到最外层括号的值依次赋予变量123,,,,,,.k n v v v v v L L 第n 步所求值10n n v v x a -=+即为所求多项式的值。
因此得到以下公式:(二)排序排序就是按照一定的规则,对数据加以排序整理,从而提高查找效率。
排序的方法有很多,主要掌握两种直接插入排序法和冒泡排序法。
(1)直接插入排序法。
这是从部分到全体,从局部到整体的排序方法,它是先将前两个数按要求的顺序排好,然后把第3个数与这两个排好的数进行大小比较,按其大小关系将第3个数插到已排好的两个数中的适当位置,使之符合要求,然后再将第4个数按同样的方法插到已排好序的三12121012312102312101210()()(())((()))n n n n n n n n n n n n n n n n n n n f x a x a x a x a x a a x a x a x a x a a x a x a x a x a a x a x a x a a --------------=+++++=+++++=+++++==+++++L L L L L L L {01(1,2,)n k k n k v a v v x v k n --==+=L个数中适当的位置上,依次下去,直到把最后一个数插到前面已排好的数中适当的位置为止,这时各数的顺序就是符合要求的最终顺序。
辗转相除法与更相减损术、秦九韶算法 说课稿 教案 教学设计
辗转相除法与更相减损术、秦九韶算法●三维目标1.知识与技能(1)理解辗转相除法与更相减损术中蕴含的数学原理,并能根据这些原理进行算法分析.(2)基本能根据算法语句与程序框图的知识设计完整的程序框图并写出算法程序.(3)了解秦九韶算法的计算过程,并理解利用秦九韶算法可以减少计算次数提高计算效率的实质.2.过程与方法(1)在辗转相除法与更相减损术求最大公约数的学习过程中对比我们常见的约分求公因式的方法,比较它们在算法上的区别,并从程序的学习中体会数学的严谨,领会数学算法计算机处理的结合方式,初步掌握把数学算法转化成计算机语言的一般步骤.(2)模仿秦九韶算法,体会古人计算构思的巧妙.(3)通过对秦九韶算法的学习,了解中国古代数学家对数学的贡献,充分认识到我国文化历史的悠久.通过对排序法的学习,领会数学计算与计算机计算的区别,充分认识信息技术对数学的促进.3.情感、态度与价值观(1)通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献.(2)在学习古代数学家解决数学问题的方法的过程中培养严谨的逻辑思维能力,在利用算法解决数学问题的过程中培养理性的精神和动手实践的能力.●重点难点重点:理解辗转相除法与更相减损术求最大公约数的方法及秦九韶算法的特点.难点:把辗转相除法与更相减损术的方法转换成程序框图与程序语言.●教学建议在学生学习了算法的初步知识,理解了表示算法的算法步骤、程序框图和程序三种不同方式以后,再结合典型算法案例,让学生经历设计算法解决问题的全过程,体验算法在解决问题中的重要作用,体会算法的基本思想,提高逻辑思维能力,发展有条理地思考与数学表达能力.建议充分发挥学生的主体作用和教师的主导作用,采用启发式,并遵循循序渐进的教学原则.这有利于学生掌握从现象到本质,从已知到未知逐步形成概念的学习方法,有利于发展学生抽象思维能力和逻辑推理能力.以问题为载体,让学生经历知识的形成过程和发展过程,从而突出教学重点,通过各种教学媒体(计算机)调动学生参与课堂教学的主动性与积极性,增加课堂容量,有利于学生活动的充分展开.学生在课堂上要多观察、讨论、思考、分析、动手操作、自主探索、合作学习多种形式相结合,教师要引导学生多角度、多层面认识事物,突破教学难点.●教学流程创设情境引入问题:228与1 195的最大公约数如何求⇒引导学生结合初中学习过的求最大公约数的方法,观察比较、分析、采取从特殊到一般的分析方法⇒通过引导学生回答所提问题,引入用辗转相除及更相减损术最大公约数的方法⇒通过例1及变式训练使学生掌握用辗转相除法求最大公约数的方法⇒通过例2及变式训练使学生掌握用更相减损术求最大公约数的方法⇒通过例3及变式训练使学生对秦九韶算法有了一定认识并学会其应用⇒归纳整理,进行课堂小结,整体把握本节知识⇒完成当堂双基达标,巩固所掌握的知识,并进行反馈矫正2.理解辗转相除法、更相减损术、秦九韶算法的原理.(重点)3.三种算法的框图及程序应用.(难点)辗转相除法【问题导思】1.36与60的最大公约数是多少?你是如何得到的?【提示】先用两个数公有的质因数连续去除,一直除到所得的商是互质数为止,然后把所有的除数连乘起来即为最大公约数.由于,故36与60的最大公约数为2×2×3=12.2.观察下列等式8 251=6 105×1+2 146,那么8 251与6 105这两个数的公约数和6 105与2 146的公约数有什么关系?【提示】8 251的最大约数是2 146的约数,同样6 105与2 146的公约数也是8 251的约数,故8 251与6 105的最大公约数也是6 105与2 146的最大公约数.辗转相除法的算法步骤第一步,给定两个正整数m、n.第二步,计算m除以n所得的余数r.第三步,m=n,n=r.第四步,若r=0,则m、n的最大公约数等于m,否则返回第二步.更相减损术【问题导思】设两个正整数m>n(m>n),若m-n=k,则m与n的最大公约数和n与k的最大公约数相等,反复利用这个原理,可求得98与63的最大公约数是多少?【提示】98-63=35,63-35=28,35-28=7,28-7=21,21-7=14,14-7=7,∴98与63的最大公约数为7.更相减损术的算法步骤第一步,任意给定两个正整数,判断它们是否都是偶数.若是,用2约简;若不是,执行第二步.第二步,以较大的数减去较小的数,接着把所得的差与较小的数比较,并以大数减小数.继续这个操作,直到所得的差与减数相等为止,则这个数(等数)或这个数与约简的数的乘积就是所求的最大公约数.秦九韶算法将f(x)改写成如下形式:f(x)=(…((a n x+a n-1)x+a n-2)x+…+a1)x+a0.具体算法如下:(1)计算最内层括号内一次多项式的值,即v1=a n x+a n-1.(2)由内向外逐层计算多项式的值,即v2=v1x+a n-2,v3=v2x+a n-3,…v n=v n-1x+a0.用辗转相除法求最大公约数用辗转相除法求228与1 995的最大公约数.【思路探究】使用辗转相除法可根据m=nq+r,反复相除直到r=0为止.【自主解答】 1 995=8×228+171,228=1×171+57,171=3×57,∴228与1 995的最大公约数为57.利用辗转相除法求给定的两个数的最大公约数,即利用带余除法,用数对中较大的数除以较小的数,若余数不为零,则将余数和较小的数构成新的数对,再利用带余除法,直到大数被小数除尽,则这时的较小数就是原来两个数的最大公约数.用辗转相除法求779和209的最大公约数.【解】∵779=209×3+152,209=152×1+57,152=57×2+38,57=38×1+19,38=19×2,∴779与209的最大公约数为19.用更相减损术求最大公约数(2013·福州高一检测)用更相减损术求154,484的最大公约数.【思路探究】解答本题可先将两数约简然后按更相减损术的步骤反复相减直至得出结果.【自主解答】154÷2=77,484÷2=242,下面用更相减损术,求77与242的最大公约数.242-77=165,165-77=88,88-77=11,77-11=66,66-11=55,55-11=44,44-11=33,33-11=22,22-11=11,故77与242的最大公约数为11,则154与484的最大公约数为11×2=22.更相减损术的步骤:1.判断两数是否为偶数,若是,则都除以2直到所得的两数不全为偶数;2.用较大的数减去较小的数,将差和较小的数构成一对新数继续用较大的数减去较小数,重复执行;3.当差和较小数相等时,结束执行,此时差(或较小数)为不全为偶数的两数的最大公约数.注意:原先两数的最大公约数是两式相减所得公约数与约简的因数的乘积.用更相减损术求576与246的最大公约数.【解】用2约简576和246得288与123.288-123=165,165-123=42,123-42=81,81-42=39,42-39=3,39-3=36,36-3=33,33-3=30,30-3=27,27-3=24,24-3=21,21-3=18,18-3=15,15-3=12,12-3=9,9-3=6,6-3=3.∴576与246的最大公约数为3×2=6.秦九韶算法的应用用秦九韶算法求多项式f(x)=7x7-6x6+4x4+3x3-2x2+x-5,当x=3时的值.【思路探究】解答本题首先要将原多项式化成f(x)=((((((7x-6)x+0)x+4)x+3)x-2)x+1)x-5的形式.其次再弄清v0,v1,v2,…,v7分别是多少,最后进行计算.【自主解答】f(x)=((((((7x-6)x+0)x+4)x+3)x-2)x+1)x-5,v0=7,v1=7×3-6=15;v2=15×3+0=45;v3=45×3+4=139;v4=139×3+3=420;v5=420×3-2=1 258;v6=1 258×3+1=3 775;v7=3 775×3-5=11 320.∴当x=3时,多项式的值为11 320.秦九韶算法的步骤:用秦九韶算法计算多项式f(x)=x6-12x5+60x4-160x3+240x2-192x+64,当x=2时的值.【解】将f(x)改写为f(x)=(((((x-12)x+60)x-160)x+240)x-192)x+64,由内向外依次计算一次多项式当x=2时的值,v0=1,v1=1×2-12=-10,v2=-10×2+60=40,v3=40×2-160=-80,v4=-80×2+240=80,v5=80×2-192=-32,v6=-32×2+64=0.∴f(2)=0,即x=2时,原多项式的值为0。
《秦九韶算法》优质课比赛说课教案
秦九韶算法说案一、教材分析1、教材地位与作用算法是数学的重要组成部分,是计算机理论和技术的基础.随着现代信息技术的飞速发展,算法思想已经成为现代人应具备的一种数学素养,新课标已将算法列为高中数学的必修内容,是培养学生逻辑思维的有力工具。
而算法教学必须通过案例进行,教材通过《秦九韶算法》案例,有效地帮助学生在学习算法的基础知识后进一步体会算法的特点,有条理地、清晰地表达算法,并了解中国古代数学对世界数学发展的贡献,培养学生的爱国主义精神。
因此本节课在教材中具有及其重要的地位和作用。
2、教学目标(1)知识目标:以秦九韶算法为载体进一步体会算法的特点及基本思想。
(2)能力目标:经历设计算法解决问题的全过程,提高逻辑思维能力,发展有条理的思考与数学表达能力。
(3)情感目标:了解中国古代数学对世界数学发展的贡献。
培养严谨的科学态度和勇于探索、敢于创新的精神。
3、重点难点重点:理解秦九韶算法的基本思想,感受算法在解决实际问题中的作用难点:用循环结构表示算法步骤4、教学方法设计启发、诱导、点拨、探究式教学方法创设问题情境,采用问题驱动,层层递进,从特殊到一般启发学生对秦九韶算法思想进行抽象、概括。
让学生体会到对问题的探究,从而形成认知的过程,建立和发展学生的分析模式、应用模式、建构模式与鉴赏模式的能力,以达到新课标的要求。
二、教学过程(一)秦九韶算法的概念1、引入:(两张图片)设计意图:通过图片点明课题,激发学生的学习兴趣,了解中国古代数学对世界数学发展的贡献,培养学生的爱国主义情操。
2、出示学习目标:设计意图:明确学习目标。
3、创设问题情境:思考1 怎样求多项式5432()254367f x x x x x x =--+-+当x=5时的值?你所采用的方法共用了几次乘法和几次加法?组织形式:学生自主探究,举手回答。
教师引导:观察运算次数的不同。
(大屏幕展示两种常见算法)点拨:特别是对计算机而言,做一次乘法所用时间要比做一次加法所用时间要多得多。
1.3.2秦九韶算法教案
1、已知一个4次多项式为f(x)=3x4+5x3+x2-3x+1,
用秦九韶算法求这个多项式当x=2时的值。
2令v0=an,则可得到下面的公式:
v0=an
vk=(k=1,2,…,n)
这个步骤可用循环结构来实现。
3、在理解秦九韶算法的思想后,用程序框图、程序把算法表示出来。
2、对于计算机来说,做一次乘方运算所用的时间比做一次加法运算所用的时间要
得多,故减少乘法运算的次数,能使算法更优。
3、对于第一题中的问题,有没有更好的算法呢?
4、如果把第一题中的问题一般化:求多项式f(x)=anxn+an-1xn-1…+a1x+a0的值,能把我国南宋时期的数学家秦九韶在《数书九章》中提出的算法叙述出来吗?他解决这类问题需做次乘方运算,次加法运算。
课题
秦九韶算法
中心备课人
王大喜
三维目标
1、理解秦九韶算法的数学原理,并能根据原理进行算法分析;
2、体会中国古代数学对世界数学发展的贡献。
教学重点
理解秦九韶算法的思想
教学难点
用循环结构表示算法步骤
教
学
过
程
教
学
过
程
教学内容
教师批注
【自学提纲】
1、求多项式f(x)=x5+x4+x3+x2+1当x=5时的值时,如果把5代入多项式f(x),计算各项的值,然后相加,需做次乘方运算,次加法运算。
课堂总结
1、计算机的速度快,但算法好坏的一个重要标志仍然是运算的次数,如果一个算法从理论上需要超出计算机允许范围内的运算次数,这个算法就只能是一个理论上的算法。
高中数学1.3.2《算法案例---秦九韶算法》教案1(新人教B版必修3)
1.3.2 算法案例---秦九韶算法教学要求:了解秦九韶算法的计算过程,并理解利用秦九韶算法可以减少计算次数、提高计算效率的实质;理解数学算法与计算机算法的区别,理解计算机对数学的辅助作用. 教学重点:秦九韶算法的特点及其程序设计.教学难点:秦九韶算法的先进性理解及其程序设计.教学过程:一、复习准备:1. 分别用辗转相除法和更相减损术求出两个正数623和1513的最大公约数.2. 设计一个求多项式5432()254367f x x x x x x =--+-+当5x =时的值的算法. (学生自己提出一般的解决方案:将5x =代入多项式进行计算即可)提问:上述算法在计算时共用了多少次乘法运算?多少次加法运算?此方案有何优缺点?(上述算法一共做了5+4+3+2+1=15次乘法运算,5次加法运算. 优点是简单、易懂;缺点是不通用,不能解决任意多项式的求值问题,而且计算效率不高.)二、讲授新课:1. 教学秦九韶算法:① 提问:在计算x 的幂值时,可以利用前面的计算结果,以减少计算量,即先计算2x ,然后依次计算2x x ⋅,2()x x x ⋅⋅,2(())x x x x ⋅⋅⋅的值,这样计算上述多项式的值,一共需要多少次乘法,多少次加法?(上述算法一共做了4次乘法运算,5次加法运算)② 结论:第二种做法与第一种做法相比,乘法的运算次数减少了,因而能提高运算效率,而且对于计算机来说,做一次乘法所需的运算时间比做一次加法要长得多,因此第二种做法能更快地得到结果.③ 更有效的一种算法是:将多项式变形为: 5432()254367((((25)4)3)6)7f x x x x x x x x x x x =--+-+=--+-+,依次计算2555⨯-=,55421⨯-=,2153108⨯+=,10856534⨯-=,534572677⨯+=故(5)2677f =. ――这种算法就是“秦九韶算法”. (注意变形,强调格式)④ 练习:用秦九韶算法求多项式432()2351f x x x x x =+-++当4x =时的值.(学生板书→师生共评→教师提问:上述算法共需多少次乘法运算?多少次加法运算?) ⑤ 如何用秦九韶算法完成一般多项式1110()n n n n f x a x a x a x a --=++++L 的求值问题? 改写:11101210()(()))n n n n n n n f x a x a x a x a a x a x a x a x a ----=++++=+++++L L L . 首先计算最内层括号内一次多项式的值,即11n n v a x a -=+,然后由内向外逐层计算一次多项式的值,即212n v v x a -=+,323n v v x a -=+,L ,10n n v v x a -=+.⑥ 结论:秦九韶算法将求n 次多项式的值转化为求n 个一次多项式的值,整个过程只需n 次乘法运算和n 次加法运算;观察上述n 个一次式,可发出k v 的计算要用到1k v -的值,若令0n v a =,可得到下列递推公式:01,(1,2,,)n kk n k v a v v x a k n --=⎧⎨=+=⎩L . 这是一个反复执行的步骤,因此可用循环结构来实现.⑦ 练习:用秦九韶算法求多项式5432()52 3.5 2.6 1.70.8f x x x x x x =++-+-当5x =时的值并画出程序框图.2. 小结:秦九韶算法的特点及其程序设计三、巩固练习:1、练习:教材P35第2题四、作业:教材P36第2题。
人教版高中数学必修3第一章算法初步-《1.3算法案例:秦九韶算法》教案
1.3算法案例:秦九韶算法1、利用秦九韶算法求多项式1153723+-+x x x 在23=x 的值时,在运算中下列哪个值用不到( )A 、164B 、3767C 、86652D 、851692、利用秦九韶算法计算多项式1876543x f(x)23456++++++x x x x x = 当x=4的值的时候,需要做乘法和加法的次数分别为( )A 、6,6B 、5,6C 、5,5D 、6,53、利用秦九韶算法求多项式1352.75.38123)(23456-++-++=x x x x x x x f 在6=x 的值,写出详细步骤。
4、下图的框图是一古代数学家的一个算法的程序框图,它输出的 结果s 表示( )A 、3210a a a a +++的值B 、300201032x a x a x a a +++的值 C 、303202010x a x a x a a +++的值 D 、以上都不对5、已知n 次多项式1011()n n n n n P x a x a x a x a --=++++,如果在一种算法中,计算0k x (k =2,3,4,…,n )的值需要k -1次乘法,(1)计算30()P x 的值需要9次运算(6次乘法,3次加法),那么计算0()n P x 的值需要多少次运算?(2)若采取秦九韶算法:0011(),()()k k k P x a P x xP x a ++==+(k =0, 1,2,…,n -1),计算30()P x 的值只需6次运算,那么计算0()n P x 的值共需要多少次运算?(3)若采取秦九韶算法,设a i =i+1,i=0,1,…,n ,求P 5(2)(写出采取秦九韶算法的计算过程)答案:1、D2、A3、解:13)5)2.7)5.3)8)123((((()(-++-++=x x x x x x x f2.243168)6(2.2431681362.40530562.67542.765.11245.36188863012635645342312010==-⨯==+⨯==+⨯==-⨯==+⨯==+⨯==f v v v v v v v v v v v v v4、C5、n +3)(2)2n ;(3)∵0011(),()()k k k P x a P x xP x a ++==+,∴P0(2)=1,P1(2)=2P0(2)+2=4;P2(2)=2P1(2)+3=11;P3(2)=2P2(2)+4=26;P4(2)=2P3(2)+5=57;P5(2)=2P4(2)+6=120。
算法案例秦九韶算法讲课文档
所以,当x=5时,多项
式的值是2677.
第7页,共20页。
xxxxx 挑战1:计算 fx 6 2 5 3 4 4 3 5 2 6 x 7 当x=2时的值时多项式的值。
解: f x x 2 x 3 x 4 x 5 x 6 x 7
v0 1,v1 v0 x 2 0, v2 v1x 3 3,v3 v2 x 4 2, v4 v3 x 5 9,v5 v4 x 6 12, v6 v5 x 7 31
f(x)=2x5-5x4-4x3+3x2-6x+7 =(2x4-5x3-4x2+3x-6)x+7
=((2x3-5x2-4x+3)x-6)x+7
=(((2x2-5x-4)x+3)x-6)x+7
=((((2x-5)x-4)x+3)x-6)x+7
v0=2 v1=v0x-5=2×5-5=5 v2=v1x-4=5×5-4=21 v3=v2x+3=21×5+3=108 v4=v3x-6=108×5-6=534
第10页,共20页。
第11页,共20页。
v1=anx+an-1,
v2=v1x+an-2,
v3=v2x+an-3, ……, vn=vn-1x+a0.
观察上述秦九韶算法中的n个一次式,可见vk
的计算要用到vk-1的值.
若令v0=an,得
v0=an,
vK=vK-1x+an-k(k=1,2,……,n
这是一个在秦九韶算法中反复执行的步骤,
值.
解:根据秦九韶算法,把多项式改写成如下形式: f(x)=x5+0·x4+x3+x2+x+1
=(((x+0)x+1)x+1)x+1)x+1. 按照从内到外的顺序,依次计算一次多项式当 x=3 时的 值:v0=1,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《秦九韶算法》说课稿
各位老师:
大家好!我叫***,来自**。
我说课的题目是《秦九韶算法》,内容选自于新课程人教A版必修3第一章第三节,课时安排为一个课时。
下面我将从教材分析、教学目标分析、教学方法与手段分析、学法分析和教学过程分析等五大方面来阐述我对这节课的分析和设计:
一、教材分析
1.教材所处的地位和作用
本节课是继上节课学习了算法案例的案例一之后,继续学习的算法案例二,学生们在学习中国古代数学中的算法案例二时,进一步体会算法的特点。
学习了秦九韶算法之后,能使许多复杂的算法简单化,减少计算次数提高计算效率。
2.教学的重点和难点
重点:秦九韶算法的特点及其程序设计(理解秦九韶算法的思想。
)
难点:秦九韶算法的先进性理解及其程序设计(用循环结构表示算法步骤。
)
二、教学目标分析
1.知识与技能目标:
了解秦九韶算法的计算过程,并理解利用秦九韶算法可以减少计算次数提高计算效率的实质。
2.过程与方法目标:
模仿秦九韶计算方法,体会古人计算构思的巧妙。
了解数学计算转换为计算机计算的途径,从而探究计算机算法与数学算法的区别,体会计算机对数学学习的辅助作用。
3.情感,态度和价值观目标
通过对秦九韶算法的学习,了解中国古代数学家对数学的贡献,充分认识到我国文化历史的悠久。
三、教学方法与手段分析
1.教学方法:充分发挥学生的主体作用和教师的主导作用,采用启发式,并遵循循序渐进的教学原则。
这有利于学生掌握从现象到本质,从已知到未知逐步形成概念的学
习方法,有利于发展学生抽象思维能力和逻辑推理能力。
2.教学手段:通过各种教学媒体(计算机)调动学生参与课堂教学的主动性与积极性。
四、学法分析
探究秦九韶算法,对比一般计算方法中计算次数的改变,体会科学的计算方法。
五、教学过程分析
㈠创设情景
在课的开始,给出一个例题:
例1 设计求多项式f(x)=2x5-5x4-4x3+3x2-6x+7当x=5时的值的算法。
(学生自己提出一般的解决方案:将x=5代入多项式进行计算即可)
然后提出问题1:例1计算时需要多少次乘法计算?多少次加法计算?有什么优缺点?
学生回答后教师点评:上述算法一共做了15次乘法运算,5次加法运算,优点是简单,易懂。
缺点是不通用,不能解决任意多项式的求值问题,而且计算效率不高。
㈡探索新知
1.提问2:有没有更高效的算法?
计算x的幂时,可以利用前面的计算结果,以减少计算量,即先计算x2,然后依次计
算x2.x,(x2.x).x, ((x2.x).x).x的值,这样计算上述多项式的值,一共需要多
少次乘法,多少次加法?(学生思考之后作出回答)
得出结论:第二种做法与第一种做法相比,乘法的运算次数减少了,因而能提高运算效率,而且对于计算机来说,做一次乘法所需的运算时间比做一次加法要长得多,因此
第二种做法更快地得到结果。
2.用第二种做法将多项式变形,之后告诉学生们这种算法就是秦九韶算法。
3提问3:秦九韶算法适用一般的多项式f(x)=a n x n+a n-1x n-1+….+a1x+a0的求值问题吗?
. 教师引导学生思考,把n次多项式的求值问题转化成求n个一次多项式的值的问题(这里将问题由特殊上升到一般,得出用秦九韶算法求多项式的值的一般方法)4.提问4:怎样用程序框图表示秦九韶算法
观察秦九韶算法的数学模型,可以得到一个递推公式。
这是一个在秦九韶算法中反
复执行的步骤,可以用循环结构来实现。
(用程序框图来表示秦九韶算法,为秦九
韶算法在计算机上的应用打下基础,)
㈢知识应用
例2 已知一个五次多项式f(x)=5x5+2x4+3.5x3-2.6x2+1.7x-0.8,用秦九韶算法求当x=5时多项式的值并画出程序框图。
(根据新学习的知识,师生共同完成解题步骤,先画出程序框图,再在图形计算器上
运行,其中{}
5,2,3.5, 2.6,1.7,0.8
--
表示f(x)=5x5+2x4+3.5x3-2.6x2+1.7x-0.8的系
数,可以随意改变,通过图形计算器,学生很快的把系数的输入换成用数组来代替,从而得到更普遍的程序,激发学生的求学创新精神)
㈣课堂小结:秦九韶算法的特点及其程序设计
通过小结使学生们对知识有一个系统的认识,突出重点,抓住关键,培养概括能力。
㈤布置作业
习题1.3A组第2题。