等差等比数列综合应用教案
等差数列与等比数列教案

等差数列与等比数列教案本文为等差数列与等比数列教案,按照教案的格式进行书写。
教案主题:等差数列与等比数列一、教学目标1. 了解等差数列和等比数列的定义;2. 掌握求解等差数列和等比数列的通项公式;3. 能够应用等差数列和等比数列解决实际问题;4. 培养学生的逻辑思维和问题解决能力。
二、教学内容及方法1. 等差数列a. 定义:等差数列是指数列中相邻两项之差保持恒定的数列。
b. 公式:第n项公式为an = a1 + (n-1)d。
c. 求和公式:Sn = (a1 + an) * n / 2。
d. 实例演练:通过练习题让学生熟悉等差数列的求解过程。
2. 等比数列a. 定义:等比数列是指数列中相邻两项之比保持恒定的数列。
b. 公式:第n项公式为an = a1 * r^(n-1)。
c. 求和公式:Sn = (a1 * (r^n - 1)) / (r - 1),其中r不等于1。
d. 实例演练:通过练习题让学生掌握等比数列的求解方法。
三、教学步骤1. 等差数列教学a. 引入:通过引入一组连续的数字,介绍等差数列的概念,并引发学生对等差数列的思考。
b. 定义:给出等差数列的定义,并通过示例展示等差数列的规律。
c. 公式推导:由示例引出等差数列的通项公式和求和公式的推导过程,让学生理解推导的思路。
d. 实例演练:让学生通过计算练习题来掌握等差数列的求解方法。
e. 总结归纳:引导学生总结等差数列的性质和应用场景。
2. 等比数列教学a. 引入:通过一组倍增或倍减的数字,介绍等比数列的概念,并引发学生对等比数列的思考。
b. 定义:给出等比数列的定义,并通过示例展示等比数列的规律。
c. 公式推导:由示例引出等比数列的通项公式和求和公式的推导过程,让学生理解推导的思路。
d. 实例演练:让学生通过计算练习题来掌握等比数列的求解方法。
e. 总结归纳:引导学生总结等比数列的性质和应用场景。
四、教学资源1. 教师准备:黑板、彩色粉笔、练习题;2. 学生使用:练习题、作业本。
等差数列与等比数列数学教案

等差数列与等比数列数学教案引言:数列是数学中一种重要的数学概念,是指按照一定规律排列的数的集合。
其中,等差数列和等比数列是数学中最常见的两种数列。
它们是数学中的基础概念,掌握它们的性质与运算方法对深入理解数学知识、提高解决问题的能力具有非常重要的意义。
本教案将通过丰富的案例和实际问题,帮助学生全面掌握等差数列和等比数列的相关知识。
一、等差数列1. 等差数列的定义与公式等差数列是指数列中任意两个相邻项之差都是一个常数的数列。
设等差数列的首项为a1,公差为d,则第n项可表示为an=a1+(n-1)d。
其中,a1为首项,d为公差,n为项数。
案例:一个等差数列的首项为3,公差为4,求该等差数列的第10项。
2. 等差数列的通项公式推导与应用等差数列的通项公式是指可以通过首项、公差和项数,直接求得等差数列的第n项。
通项公式为an=a1+(n-1)d。
案例:已知一个等差数列的第5项为21,公差为7,求该等差数列的前10项和。
3. 等差数列的性质与运算等差数列具有以下性质和运算方法:(1)等差数列的任意两项的和等于这两项所夹项的两倍。
(2)等差数列的前n项和可以通过n(n+1)/2求得。
案例:某等差数列的前5项和为30,公差为2,求该等差数列的首项和第7项。
二、等比数列1. 等比数列的定义与公式等比数列是指数列中任意两个相邻项之比都是一个常数的数列。
设等比数列的首项为a1,公比为q,则第n项可表示为an=a1 * q^(n-1)。
其中,a1为首项,q为公比,n为项数。
案例:一个等比数列的首项为2,公比为3,求该等比数列的第5项。
2. 等比数列的通项公式推导与应用等比数列的通项公式是指可以通过首项、公比和项数,直接求得等比数列的第n项。
通项公式为an=a1 * q^(n-1)。
案例:已知一个等比数列的第3项为16,公比为2,求该等比数列的前6项和。
3. 等比数列的性质与运算等比数列具有以下性质和运算方法:(1)等比数列的任意两项的比等于这两项所夹项的指数幂。
《数列综合应用举例》教案

《数列综合应用举例》教案一、教学目标:1. 让学生掌握数列的基本概念和性质,包括等差数列、等比数列等。
2. 培养学生运用数列知识解决实际问题的能力,提高学生的数学应用意识。
3. 通过对数列的综合应用举例,使学生理解数列在数学和自然科学领域中的重要性。
二、教学内容:1. 等差数列的应用举例:例如计算工资、利息等问题。
2. 等比数列的应用举例:例如计算复利、人口增长等问题。
3. 数列的求和公式及应用:例如求等差数列、等比数列的前n项和等问题。
4. 数列的通项公式的应用:例如求等差数列、等比数列的第n项等问题。
5. 数列在函数中的应用:例如数列与函数的关系、数列的函数性质等问题。
三、教学重点与难点:1. 教学重点:数列的基本概念、性质和求和公式。
2. 教学难点:数列的通项公式的理解和应用。
四、教学方法:1. 采用问题驱动的教学方法,引导学生通过解决实际问题来学习数列知识。
2. 利用多媒体课件,直观展示数列的应用实例,提高学生的学习兴趣。
3. 组织小组讨论,培养学生的合作能力和思维能力。
五、教学安排:1. 第一课时:等差数列的应用举例。
2. 第二课时:等比数列的应用举例。
3. 第三课时:数列的求和公式及应用。
4. 第四课时:数列的通项公式的应用。
5. 第五课时:数列在函数中的应用。
6. 剩余课时:进行课堂练习和课后作业的辅导。
六、教学目标:1. 深化学生对数列求和公式的理解,能够熟练运用求和公式解决复杂数列问题。
2. 培养学生运用数列知识进行数据分析的能力,提高学生的数学素养。
3. 通过对数列图像的观察,使学生理解数列与函数之间的关系。
七、教学内容:1. 数列图像的绘制与分析:学习如何绘制数列图像,并通过图像观察数列的特点。
2. 数列与函数的联系:探讨数列与函数之间的关系,理解数列可以看作是函数的特殊形式。
3. 数列在数据分析中的应用:例如,利用数列分析数据的变化趋势,预测未来的数据。
八、教学重点与难点:1. 教学重点:数列图像的绘制方法,数列与函数的关系,数列在数据分析中的应用。
等差和等比数列的综合应用教案

教学过程一、复习预习师:这节课我们要运用等差、等比数列的概念、性质及有关公式,解决一些等差、数比数列的综合问题.(请学生叙述公式的内容并写在黑板上)生甲:等差、等比数列的通项公式分别是an=a1+(n-1)d,an=a1qn-1.生丙:等比数列的前n项和公式要分成q=1和q≠1两种情况来表示,即生丁:如果m,n,p,q都是自然数,当m+n=p+q时,那么在等差数列中有:am+an=ap+aq,在等比数列中有:am·an=ap·aq.师;在上述公式中,涉及到a1,n,d(q),an,Sn五个量,运用方程思想,已知其中三个量,就可以求另外两个量.二、知识讲解考点1:等差数列{an}的性质(1)am=ak+(m -k )d ,d=k m a a km --.(2)若数列{an}是公差为d 的等差数列,则数列{λan+b}(λ、b 为常数)是公差为λd的等差数列;若{bn}也是公差为d 的等差数列,则{λ1an+λ2bn}(λ1、λ2为常数)也是等差数列且公差为λ1d+λ2d.(3)下标成等差数列且公差为m 的项ak ,ak+m ,ak+2m ,…组成的数列仍为等差数列,公差为md.(4)若m 、n 、l 、k ∈N*,且m+n=k+l ,则am+an=ak+al ,反之不成立. (5)设A=a1+a2+a3+…+an ,B=an+1+an+2+an+3+…+a2n ,C=a2n+1+a2n+2+a2n+3+…+a3n ,则A 、B 、C 成等差数列.(6)若数列{an}的项数为2n (n ∈N*),则S 偶-S 奇=nd ,奇偶S S =n n aa 1+,S2n=n (an+an+1)(an 、an+1为中间两项);若数列{an}的项数为2n -1(n ∈N*),则S 奇-S 偶=an ,奇偶S S =n n 1-,S2n -1=(2n-1)an (an 为中间项).考点2:等比数列{an}的性质(1)am=ak·qm-k.(2)若数列{an}是等比数列,则数列{λ1an}(λ1为常数)是公比为q的等比数列;若{bn}也是公比为q2的等比数列,则{λ1an·λ2bn}(λ1、λ2为常数)也是等比数列,公比为q·q2.(3)下标成等差数列且公差为m的项ak,ak+m,ak+2m,…组成的数列仍为等比数列,公比为qm.(4)若m、n、l、k∈N*,且m+n=k+l,则am·an=ak·al,反之不成立.(5)设A=a1+a2+a3+…+an,B=an+1+an+2+an+3+…+a2n,C=a2n+1+a2n+2+a2n+3+…+a3n,则A、B、C成等比数列,设M=a1·a2·…·an,N=an+1·an+2·…·a2n,P=a2n+1·a2n+2·…·a3n,则M、N、P也成等比数列.考点3:用函数的观点理解等差数列、等比数列1.对于等差数列,∵an=a1+(n-1)d=dn+(a1-d),当d≠0时,an是n的一次函数,对应的点(n,an)是位于直线上的若干个点.当d>0时,函数是增函数,对应的数列是递增数列;同理,d=0时,函数是常数函数,对应的数列是常数列;d<0时,函数是减函数,对应的数列是递减函数.若等差数列的前n项和为Sn,则Sn=pn2+qn(p、q∈R).当p=0时,{an}为常数列;当p≠0时,可用二次函数的方法解决等差数列问题.2.对于等比数列:an=a1qn-1.可用指数函数的性质来理解.当a1>0,q>1或a1<0,0<q<1时,等比数列是递增数列;当a1>0,0<q<1或a1<0,q>1时,等比数列{an}是递减数列.当q=1时,是一个常数列.当q<0时,无法判断数列的单调性,它是一个摆动数列.三、例题精析【例题1】.等比数列{an}的公比为q,则“q>1”是“对于任意自然数n,都有an+1>an”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件【答案】D【解析】当a1<0时,条件与结论均不能由一方推出另一方.【例题2】已知数列{a n}满足a n+2=-a n(n∈N*),且a1=1,a2=2,则该数列前2002项的和为A.0B.-3C.3D.1【答案】C【解析】由题意,我们发现:a1=1,a2=2,a3=-a1=-1,a4=-a2=-2,a5=-a3=1,a6=-a4=2,…,a2001=-a1999=1,a2002=-a2000=2,a1+a2+a3+a4=0.∴a1+a2+a3+…+a2002=a2001+a2002=a1+a2=1+2=3.四、课堂运用【基础】1.若关于x 的方程x 2-x +a =0和x 2-x +b =0(a ≠b )的四个根可组成首项为41的等差数列,则a +b 的值是 A.83B.2411C.2413D.7231【答案】D【解析】依题意设四根分别为a 1、a 2、a 3、a 4,公差为d ,其中a 1=41,即a 1+a 2+a 3+a 4=1+1=2.又a 1+a 4=a 2+a 3,所以a 1+a 4=a 2+a 3=1.由此求得a 4=43,d =61,于是a 2=125,a 3=127.故a +b =a 1a 4+a 2a 3=41×43+125×127=14462=7231.2.在等差数列{a n}中,当a r=a s(r≠s)时,数列{a n}必定是常数列,然而在等比数列{a n}中,对某些正整数r、s(r≠s),当a r=a s时,非常数列{a n}的一个例子是___________________.【答案】a,-a,a,-a…(a≠0)【解析】只需选取首项不为0,公比为-1的等比数列即可.【巩固】1.等差数列{a n}中,a1=2,公差不为零,且a1,a3,a11恰好是某等比数列的前三项,那么该等比数列公比的值等于___________________.【答案】4【解析】设a1,a3,a11成等比,公比为q,a3=a1·q=2q,a11=a1·q2=2q2.又{a n}是等差数列,∴a11=a1+5(a3-a1),∴q=4.2、已知{a n}是等比数列,a1=2,a3=18;{b n}是等差数列,b1=2,b1+b2+b3+b4=a1+a2+a3>20.(1)求数列{b n}的通项公式;(2)求数列{b n}的前n项和S n的公式;(3)设P n=b1+b4+b7+…+b3n-2,Q n=b10+b12+b14+…+b2n+8,其中n=1,2,…,试比较P n与Q n的大小,并证明你的结论.【答案】见解析【解析】(1)设{a n }的公比为q ,由a 3=a 1q 2得q 2=13a a =9,q =±3. 当q =-3时,a 1+a 2+a 3=2-6+18=14<20, 这与a 1+a 2+a 3>20矛盾,故舍去.当q =3时,a 1+a 2+a 3=2+6+18=26>20,故符合题意. 设数列{b n }的公差为d ,由b 1+b 2+b 3+b 4=26得4b 1+234⨯d =26. 又b 1=2,解得d =3,所以b n =3n -1. (2)S n =2)(1n b b n +=23n 2+21n .(3)b 1,b 4,b 7,…,b 3n -2组成以3d 为公差的等差数列, 所以P n =nb 1+2)1(-n n ·3d =29n 2-25n ; b 10,b 12,b 14,…,b 2n +8组成以2d 为公差的等差数列,b 10=29,所以Q n =nb 10+2)1(-n n ·2d =3n 2+26n . P n -Q n =(29n 2-25n )-(3n 2+26n )=23n (n -19).所以,对于正整数n ,当n ≥20时,P n >Q n ; 当n =19时,P n =Q n ; 当n ≤18时,P n <Q n .【拔高】1、已知等差数列{a n }的首项a 1=1,公差d >0,且第二项、第五项、第十四项分别是等比数列{b n }的第二项、第三项、第四项.(1)求数列{an}与{bn}的通项公式;(2)设数列{cn}对任意正整数n 均有11b c +22mb c +323b mc +…+nn nb mc 1 =(n+1)an+1成立,其中m 为不等于零的常数,求数列{cn}的前n 项和Sn.【答案】(1)a n =2n -1(n =1,2,3,…),b n =3n -1(n =1,2,3,…).(2)S n =⎪⎩⎪⎨⎧--+-+-+++222)31(])3()3[(431)3)(14(96132m m m m m n m n n n n .31,31≠=m m【解析】(1)由题意得(a 1+d )(a 1+13d )=(a 1+4d )2,整理得2a 1d =d 2.∵a 1=1,解得d =2(d =0不合题意舍去), ∴a n =2n -1(n =1,2,3,…).由b 2=a 2=3,b 3=a 5=9,易求得b n =3n -1(n =1,2,3,…). (2)当n =1时,c 1=6; 当n ≥2时,nn n b mc 1-=(n +1)a n +1-na n =4n +1,∴c n =(4n +1)m n -1b n =(4n +1)(3m )n -1.∴c n =⎩⎨⎧+-1)3)(14(6n m n .,4,3,2,1⋅⋅⋅==n n 当3m =1,即m =31时, S n =6+9+13+…+(4n +1)=6+2)149)(1(++-n n=6+(n -1)(2n +5)=2n 2+3n +1. 当3m ≠1,即m ≠31时, S n =c 1+c 2+…+c n ,即S n =6+9·(3m )+13·(3m )2+…+(4n -3)(3m )n -2+(4n +1)(3m )n -1.①3mS n =6·3m +9·(3m )2+13·(3m )3+…+(4n -3)(3m )n -1+(4n +1)(3m )n .② ①-②得(1-3m )S n =6+3·3m +4·(3m )2+4·(3m )3+…+4·(3m )n -1-(4n +1)(3m )n =6+9m +4[(3m )2+(3m )3+…+(3m )n -1]-(4n +1)(3m )n=6+9m +m m m n 31])3()3[(42---(4n +1)(3m )n .∴S n =m m n m n 31)3)(14(96-+-++22)31(])3()3[(4m m m n --.∴S n =⎪⎩⎪⎨⎧--+-+-+++222)31(])3()3[(431)3)(14(96132m m m m m n m n n n n .31,31≠=m mcb d a cba c bc a c b a cad a a cd cd d c c d cdd c cd d c >∴>>>>∴>>>>>∴>>>∴>-=-∴>>->∴>>,0d 21)2(,0,01,0)1(,0,0,011,011,01,0,0,0)得)(由(又又课程小结等差数列和等比数列的综合问题,涉及的知识面很宽,题目的变化也很多,但是万变不离其宗,只要抓住基本量a1,d(q),充分运用方程、函数、转化等数学思想方法,合理调用相关知识,这样,任何问题都不能把我们难倒.课后作业【基础】1.在等比数列{a n }中,a 5+a 6=a (a ≠0),a 15+a 16=b ,则a 25+a 26的值是A.abB.22abC.ab 2 D.2ab【答案】C【解析】 由等比数列的性质得三个和成等比数列,由等比中项公式可得选项为C. 【巩固】2.若数列x ,a 1,a 2,y 成等差数列,x ,b 1,b 2,y 成等比数列,则21221)(b b a a ⋅+的取值范围是___________________.【答案】[4,+∞)或(-∞,0]【解析】在等差数列中,a 1+a 2=x +y ;在等比数列中,xy =b 1·b 2.∴21221)(b b a a ⋅+=y x y x ⋅+2)(=y x y xy x ⋅++222=y x +x y +2.当x ·y >0时,y x +x y≥2,故21221)(b b a a ⋅+≥4;当x ·y <0时,y x +x y≤-2,故21221)(b b a a ⋅+≤0.答案:[4,+∞)或(-∞,0]【拔高】3.已知数列{a n }中,a 1=65且对任意非零自然数n 都有a n +1=31a n +(21)n +1.数列{b n }对任意非零自然数n 都有b n =a n +1-21a n .(1)求证:数列{b n }是等比数列; (2)求数列{a n }的通项公式.【答案】见解析【解析】(1)证明:b n =a n +1-21a n =[31a n +(21)n +1]-21a n =(21)n +1-61a n ,b n +1=(21)n +2-61a n +1=(21)n +2-61[31a n +(21)n +1]=21·(21)n +1-181a n -61·(21)n +1=31·(21)n +1-181a n =31·[(21)n +1-61a n ], ∴n n b b 1+=31(n =1,2,3,…). ∴{b n }是公比为31的等比数列. (2)解:∵b 1=(21)2-61a 1=41-61·65=91,∴b n =91·(31)n -1=(31)n +1.由b n =(21)n +1-61a n ,得(31)n +1=(21)n +1-61a n ,解得a n =6[(21)n +1-(31)n +1].5.设{a n }为等比数列,a 1=b 1=1,a 2+a 4=b 3,b 2b 4=a 3,分别求出{a n }及{b n }的前10项的和S 10及T 10.解:设公差为d ,公比为q ,由题意知⎪⎩⎪⎨⎧=+=+,21,4242q d q d∴⎪⎪⎩⎪⎪⎨⎧=-=22,83q d 或⎪⎪⎩⎪⎪⎨⎧-=-=.22,83q d ∴S 10=10+2910⨯(-83)=-855. 当q =22时,T 10=32)22(31+;当q =-22时,T 10=32)22(31-.=a +b ab -2ab2a +b=ab a -b 2a +b>0,∴C >D ,∴A >B >C >D .。
等差数列和等比数列的综合应用

1等差数列和等比数列的综合应用1.等差数列的常用性质:⑴ m ,n ,p ,r ∈N *,若m +n =p +r ,则有 .⑵ {a n }是等差数列, 则{a kn } (k ∈N *,k 为常数)是 数列. ⑶ S n ,S 2n -S n ,S 3n -S 2n 构成 数列.2.在等差数列中,求S n 的最大(小)值,关键是找出某一项,使这一项及它前面的项皆取正(负)值或0,而它后面的各项皆取负(正)值.⑴ a 1> 0,d <0时,解不等式组 ⎩⎨⎧<≥+001n n a a 可解得S n 达到最 值时n 的值. ⑵ a 1<0,d>0时,解不等式组⎪⎩⎪⎨⎧可解得S n 达到最小值时n 的值.3.等比数列的常用性质:⑴ m ,n ,p ,r ∈N *,若m +n =p +r ,则有 . ⑵ {a n }是等比数列,则{a 2n }、{na 1}是 数列. ⑶ 若S n ≠0,则S n ,S 2n -S n ,S 3n -S 2n 构成 数列. 4.求数列的前n 项和,一般有下列几种方法: (1).等差数列的前n 项和公式: S n = = .(2).等比数列的前n 项和公式: ① 当q =1时,S n = . ② 当q≠1时,S n = .(3).倒序相加法:将一个数列倒过来排列与原数列相加.主要用于倒序相加后对应项之和有公因子可提的数列求和.(4).错位相减法:适用于一个等差数列和一个等比数列对应项相乘构成的数列求和.例1. 数列{a n }的前n 项和S n ,且a 1=1,a n +1=31S n ,n =1,2,3…… 求:⑴ a 2、a 3、a 4的值及{a n }的通项公式;⑵ a 2+a 4+a 6+…+a 2n 的值.2解析:(1)由a 1=1,a n +1=31S n ,n =1,2,3,…得a 2=31S 1=31a 1=31,a 3=31S 2=31(a 1+a 2)=94,a 4=31S 3=31(a 1+a 2+a 3)=2716 由a n +1-a n =31(S n -S n -1)=31a n (n≥2),得a n +1=34a n (n≥2),又a 2=31,∴a n =31·(34)n -2(n≥2)∴ {a n }通项公式为a n =⎪⎩⎪⎨⎧≥⋅=-2)34(31112n n n(2) 由(1)可知a 2、a 4、…a 2n 是首项为31,公比为(34)2,项数为n 的等比数列.∴ a 2+a 4+a 6+…+a 2n =31×22)34(1)34(1--n =73[(34)2n -1] 变式训练1.设数列{}n a 的前n 项的和14122333n n n S a +=-⨯+,......3,2,1=n 求首项1a 与通项n a 。
等差数列与等比数列的性质教案

等差数列与等比数列的性质教案一、引言数列是数学中的重要概念,它可以用来描述一系列按照一定规律排列的数。
等差数列和等比数列是最常见的两种数列,它们有着很多有趣的性质和特点。
本教案旨在通过介绍等差数列和等比数列的定义、通项公式以及相关性质,帮助学生深入理解这两种数列的规律和应用。
二、等差数列1. 定义等差数列是指数列中相邻两项之差都相等的数列。
设数列的首项为$a_1$,公差为$d$,则其通项公式为$ a_n = a_1 + (n-1)d$。
其中,$n$表示第$n$项。
2. 性质(1)首项与公差确定一个等差数列;(2)通项公式$ a_n = a_1 + (n-1)d$可以推导出公式$ a_n = a_{n-1}+ d$;(3)等差数列的前$n$项和可以通过求和公式$S_n =\frac{n}{2}(a_1 + a_n)$来计算。
三、等比数列1. 定义等比数列是指数列中相邻两项之比都相等的数列。
设数列的首项为$a_1$,公比为$r$,则其通项公式为$ a_n = a_1 \cdot r^{(n-1)}$。
其中,$n$表示第$n$项。
2. 性质(1)首项与公比确定一个等比数列;(2)通项公式$ a_n = a_1 \cdot r^{(n-1)}$可以推导出公式$a_n =\frac{a_{n-1}}{r}$;(3)等比数列的前$n$项和可以通过求和公式$S_n = \frac{a_1 \cdot (1-r^n)}{1-r}$来计算。
四、等差数列与等比数列的比较1. 基本特点等差数列的相邻两项之差相等,而等比数列的相邻两项之比相等;等差数列的通项公式中有一个常数项$d$,而等比数列的通项公式中有一个常数项$r$;等差数列中的公差$d$可以为任意实数,而等比数列中的公比$r$必须为非零实数。
2. 差异点等差数列的相邻两项之差为定值,而等比数列的相邻两项之比为定值;等差数列的项之间的差值随着项的增加保持不变,而等比数列的项之间的倍数随着项的增加保持不变;等差数列的通项公式中涉及到项的位置$n$,而等比数列的通项公式中涉及到项的幂数$n-1$。
等差数列与等比数列的应用教学方法总结

等差数列与等比数列的应用教学方法总结等差数列和等比数列是数学中常见的两种数列类型,它们在实际生活中的应用非常广泛。
为了更好地教授学生有关等差数列和等比数列的概念、性质以及应用,教师需要采用一些有效的教学方法。
本文将总结几种教学方法,以帮助教师们提高对这两种数列的应用教学效果。
一、引导学生理解等差数列和等比数列的概念和性质在教学过程中,教师首先需要引导学生对等差数列和等比数列的概念进行全面、准确的理解。
可以通过引入一些简单易懂的生活案例,如等差数列可以用来表示每日温度变化,等比数列可以用来表示物体的成倍增长等等。
通过生动形象的例子,帮助学生理解数列的概念及其背后的规律性。
此外,教师还应引导学生发现等差数列和等比数列的性质。
例如,等差数列中,相邻两项之差相等,等比数列中,相邻两项之比相等等。
通过引导学生观察数列中的规律,帮助他们理解数列的性质,并能够运用这些性质解决实际问题。
二、培养学生解决等差数列和等比数列的实际问题能力数列的应用通常包括解决实际问题、模型构建等,为了帮助学生能够应用数列解决实际问题,教师应培养学生的问题解决能力。
可以通过提供一些真实的问题,引导学生分析问题,建立数学模型,并运用等差数列和等比数列的性质解决问题。
例如,某个公司的销售额每年递增10%,假设第一年的销售额为100万元,教师可以引导学生用等比数列的概念和性质计算出第n年的销售额,并通过计算分析出销售额的增长趋势。
通过这样的例子,学生能够将数学知识应用于实际问题中,培养他们解决实际问题的能力。
三、运用多媒体教学手段增强学生的学习兴趣为了提高学生对等差数列和等比数列的学习兴趣,教师可以采用多媒体教学手段。
通过使用投影仪、电子白板等设备,将数列的概念、性质和应用案例以图片、视频等形式展示给学生,以增加学生的视觉感受。
同时,教师还可以利用一些在线学习资源,如数学学习网站、教育应用程序等,为学生提供更加便捷、多样化的学习资源。
通过这些多媒体教学手段,能够激发学生的学习兴趣,加深对等差数列和等比数列的理解。
2024届高考一轮复习数学教案(新人教B版):数列中的综合问题

§6.6数列中的综合问题考试要求数列的综合运算问题以及数列与函数、不等式等知识的交汇问题,是历年高考的热点内容.一般围绕等差数列、等比数列的知识命题,涉及数列的函数性质、通项公式、前n 项和公式等.题型一等差数列、等比数列的综合运算例1(2023·厦门模拟)已知数列{a n }的前n 项和为S n ,且S n =32n 2+12n ,递增的等比数列{b n }满足b 1+b 4=18,b 2·b 3=32.(1)求数列{a n },{b n }的通项公式;(2)若c n =a n ·b n ,n ∈N +,求数列{c n }的前n 项和T n .解(1)当n ≥2时,a n =S n -S n -1=32n 2+12n -32(n -1)2+12(n -1)=3n -1,又∵当n =1时,a 1=S 1=2符合上式,∴a n =3n -1.∵b 2b 3=b 1b 4,∴b 1,b 4是方程x 2-18x +32=0的两根,又∵b 4>b 1,∴解得b 1=2,b 4=16,∴q 3=b4b 1=8,∴q =2,∴b n =b 1·q n -1=2n .(2)∵a n =3n -1,b n =2n ,则c n =(3n -1)·2n ,∴T n =2·21+5·22+8·23+11·24+…+(3n -1)·2n ,2T n =2·22+5·23+8·24+11·25+…+(3n -1)·2n +1,将两式相减得-T n =2·21+3(22+23+24+…+2n )-(3n -1)·2n +1=4+322(1-2n -1)1-2-(3n -1)·2n +1=(4-3n )·2n +1-8,∴T n =(3n -4)·2n +1+8.思维升华数列的综合问题常将等差、等比数列结合,两者相互联系、相互转化,解答这类问题的方法:寻找通项公式,利用性质进行转化.跟踪训练1(2022·全国甲卷)记S n 为数列{a n }的前n 项和.已知2S nn+n =2a n +1.(1)证明:{a n }是等差数列;(2)若a 4,a 7,a 9成等比数列,求S n 的最小值.(1)证明由2S nn+n =2a n +1,得2S n +n 2=2a n n +n ,①所以2S n +1+(n +1)2=2a n +1(n +1)+(n +1),②②-①,得2a n +1+2n +1=2a n +1(n +1)-2a n n +1,化简得a n +1-a n =1,所以数列{a n }是公差为1的等差数列.(2)解由(1)知数列{a n }的公差为1.由a 4,a 7,a 9成等比数列,得a 27=a 4a 9,即(a 1+6)2=(a 1+3)(a 1+8),解得a 1=-12.所以S n =-12n +n (n -1)2=n 2-25n2-6258,所以当n =12或13时,S n 取得最小值,最小值为-78.题型二数列与其他知识的交汇问题命题点1数列与不等式的交汇例2(1)已知数列{a n }满足a 1+12a 2+13a 3+…+1na n =n 2+n (n ∈N +),设数列{b n }满足:b n =2n +1a n a n +1,数列{b n }的前n 项和为T n ,若T n <nn +1λ(n ∈N +)恒成立,则实数λ的取值范围为()A.14,+∞C.38,+∞答案D解析数列{a n }满足a 1+12a 2+13a 3+…+1na n =n 2+n ,①当n ≥2时,a 1+12a 2+13a 3+…+1n -1a n -1=(n -1)2+(n -1),②①-②得1na n =2n ,故a n =2n 2,当n =1时,a 1=2也满足上式.数列{b n }满足:b n =2n +1a n a n +1=2n +14n 2(n +1)2=141n 2-1(n +1)2,则T n =141+…+1n 2-1(n +1)2=141-1(n +1)2,由于T n <nn +1λ(n ∈N +)恒成立,故141-1(n +1)2<n n +1λ,整理得λ>n +24n +4,因为y =n +24n +4=n ∈N +上单调递减,故当n =1=38,所以λ>38.(2)已知数列{a n }满足a 1=37,3a n ,2a n +1,a n a n +1成等差数列.{a n }的通项公式;②记{a n }的前n 项和为S n ,求证:1271S n <7528.①解由已知得4a n +1=3a n +a n a n +1,因为a 1=37≠0,所以由递推关系可得a n ≠0恒成立,所以4a n =3a n +1+1,所以4a n -4=3a n +1-3,即1a n +1-1又因为1a 1-1=73-1=43,所以数列是首项为43,公比为43的等比数列,所以1a n-1,所以a n =11.②证明由①可得a n =111-1=37×-1,所以S n ≥37+37×+…+37×-1=1271n,a n =11<1,S 1=37<7528,当n ≥2时,S n <37++ (37)1-34=7528-3<7528.综上所述,1271n≤S n <7528成立.命题点2数列与函数的交汇例3(1)(2023·龙岩模拟)已知函数f (x )=13x 3+4x ,记等差数列{a n }的前n 项和为S n ,若f (a 1+2)=100,f (a 2022+2)=-100,则S 2022等于()A .-4044B .-2022C .2022D .4044答案A解析因为f (-x )=-13x 3-4x =-f (x ),所以f (x )是奇函数,因为f (a 1+2)=100,f (a 2022+2)=-100,所以f (a 1+2)=-f (a 2022+2),所以a 1+2+a 2022+2=0,所以a 1+a 2022=-4,所以S 2022=2022(a 1+a 2022)2=-4044.(2)数列{a n }是等差数列,a 1=1,公差d ∈[1,2],且a 4+λa 10+a 16=15,则实数λ的最大值为________.答案-12解析因为a 4+λa 10+a 16=15,所以a 1+3d +λ(a 1+9d )+a 1+15d =15,令λ=f (d )=151+9d -2,因为d ∈[1,2],所以令t =1+9d ,t ∈[10,19],因此λ=f (t )=15t -2,当t ∈[10,19]时,函数λ=f (t )是减函数,故当t =10时,实数λ有最大值,最大值为f (10)=-12.思维升华(1)数列与不等式的综合问题及求解策略①判断数列问题的一些不等关系,可以利用数列的单调性比较大小或借助数列对应的函数的单调性比较大小.②以数列为载体,考查不等式恒成立的问题,此类问题可转化为函数的最值.③考查与数列有关的不等式证明问题,此类问题一般采用放缩法进行证明,有时也可通过构造函数进行证明.(2)数列与函数交汇问题的主要类型及求解策略①已知函数条件,解决数列问题,此类问题一般利用函数的性质、图象研究数列问题.②已知数列条件,解决函数问题,解决此类问题一般要利用数列的通项公式、前n 项和公式、求和方法等对式子化简变形.跟踪训练2(1)设{a n }是等比数列,函数y =x 2-x -2023的两个零点是a 2,a 3,则a 1a 4等于()A .2023B .1C .-1D .-2023答案D解析由题意a 2,a 3是x 2-x -2023=0的两根.由根与系数的关系得a 2a 3=-2023.又a 1a 4=a 2a 3,所以a 1a 4=-2023.(2)数列{a n }满足a 1=1,a n +1=2a n (n ∈N +),S n 为其前n 项和.数列{b n }为等差数列,且满足b 1=a 1,b 4=S 3.①求数列{a n },{b n }的通项公式;②设c n =1b n ·log 2a 2n +2,数列{c n }的前n 项和为T n ,证明:13≤T n <12.①解由题意知,{a n }是首项为1,公比为2的等比数列,所以a n =a 1·2n -1=2n -1.所以S n =2n-1.设等差数列{b n }的公差为d ,则b 1=a 1=1,b 4=1+3d =7,所以d =2,b n =1+(n -1)×2=2n -1.②证明因为log 2a 2n +2=log 222n +1=2n +1,所以c n =1b n ·log 2a 2n +2=1(2n -1)(2n +1)=所以T n -13+13-15+…+12n -1-因为n ∈N +,所以T n <12,=n 2n +1.当n ≥2时,T n -T n -1=n 2n +1-n -12n -1=1(2n +1)(2n -1)>0,所以数列{T n }是一个递增数列,所以T n ≥T 1=13.综上所述,13≤T n <12.课时精练1.(2022·汕头模拟)已知各项均为正数的等比数列{a n }的前4项和为15,4a 1,2a 3,a 5成等差数列,则a 1等于()A .52-5B .52+5C .52D .5答案A解析设各项均为正数的等比数列{a n }的公比为q ,q >0,由前4项和为15,4a 1,2a 3,a 5成等差数列,可得a 1+a 1q +a 1q 2+a 1q 3=15,4a 3=4a 1+a 5,即4a 1+a 1q 4=4a 1q 2,即q 2-2=0,解得q =2,a 1=52-5.2.(2023·焦作模拟)直播带货是一种直播和电商相结合的销售手段,目前受到了广大消费者的追捧,针对这种现状,某传媒公司决定逐年加大直播带货的资金投入,若该公司今年投入的资金为2000万元,并在此基础上,以后每年的资金投入均比上一年增长12%,则该公司需经过____年其投入资金开始超过7000万元()(参考数据:lg 1.12≈0.049,lg 2≈0.301,lg 7≈0.845)A .14B .13C .12D .11答案C解析设该公司经过n 年投入的资金为a n 万元,则a 1=2000×1.12,由题意可知,数列{a n }是以2000×1.12为首项,以1.12为公比的等比数列,所以a n =2000×1.12n ,由a n =2000×1.12n >7000可得n >log 1.1272=lg 7-lg 2lg 1.12≈11.1,因此,该公司需经过12年其投入资金开始超过7000万元.3.在正项等比数列{a n }中,3为a 6与a 14的等比中项,则a 3+3a 17的最小值为()A .23B .89C .6D .3答案C解析因为{a n }是正项等比数列,且3为a 6与a 14的等比中项,所以a 6a 14=3=a 3a 17,则a 3+3a 17=a 3+3·3a 3≥2a 3·3·3a 3=6,当且仅当a 3=3时,等号成立,所以a 3+3a 17的最小值为6.4.(2023·岳阳模拟)在等比数列{a n }中,a 2=-2a 5,1<a 3<2,则数列{a 3n }的前5项和S 5的取值范围是()-118,--338,-答案A解析设等比数列{a n }的公比为q ,则q 3=a 5a 2=-12,数列{a 3n }是首项为a 3,公比为q 3=-12的等比数列,则S 51+12=1116a 35.(多选)(2023·贵阳模拟)已知函数f (x )=lg x ,则下列四个命题中,是真命题的为()A .f (2),f (10),f (5)成等差数列B .f (2),f (4),f (8)成等差数列C .f (2),f (12),f (72)成等比数列D .f (2),f (4),f (16)成等比数列答案ABD解析对于A ,f (2)+f (5)=lg 2+lg 5=lg 10=1,2f (10)=2lg 10=1,故f (2),f (10),f (5)成等差数列,故是真命题;对于B ,f (2)+f (8)=lg 2+lg 8=lg 16,2f (4)=2lg 4=lg 16,故f (2),f (4),f (8)成等差数列,故是真命题;对于C ,f (2)·f (72)=lg 2×lg =lg 212=f 2(12),故f (2),f (12),f (72)不成等比数列,故是假命题;对于D ,f (2)f (16)=lg 2×lg 16=4lg 22=(2lg 2)2=lg 24=f 2(4),故f (2),f (4),f (16)成等比数列,故是真命题.6.数学家也有许多美丽的错误,如法国数学家费马于1640年提出了F n =22n+1(n =0,1,2,…)是质数的猜想,直到1732年才被善于计算的大数学家欧拉算出F 5=641×6700417,不是质数.现设a n =log 4(F n -1)(n =1,2,…),S n 表示数列{a n }的前n 项和.若32S n =63a n ,则n 等于()A .5B .6C .7D .8答案B解析因为F n =22n+1(n =0,1,2,…),所以a n =log 4(F n -1)=log 4(22n+1-1)=log 422n=2n -1,所以{a n }是等比数列,首项为1,公比为2,所以S n =1(1-2n )1-2=2n -1.所以32(2n -1)=63×2n -1,解得n =6.7.宋元时期我国数学家朱世杰在《四元玉鉴》中所记载的“垛积术”,其中“落—形”就是每层为“三角形数”的三角锥垛,三角锥垛从上到下最上面是1个球,第二层是3个球,第三层是6个球,第四层是10个球,…,则这个三角锥垛的第十五层球的个数为________.答案120解析∵“三角形数”可写为1,1+2,1+2+3,1+2+3+4,1+2+3+4+5,…,∴“三角形数”的通项公式为a n =1+2+3+…+n =n (n +1)2,∴这个三角锥垛的第十五层球的个数为a 15=15×162=120.8.已知数列{a n }的通项公式为a n =ln n ,若存在p ∈R ,使得a n ≤pn 对任意的n ∈N +都成立,则p 的取值范围为________.答案ln 33,+∞解析数列{a n }的通项公式为a n =ln n ,若存在p ∈R ,使得a n ≤pn 对任意的n ∈N +都成立,故p ,设f (x )=ln x x ,则f ′(x )=1x ·x -ln x x 2,令f ′(x )=1-ln x x 2=0,解得x =e ,故函数f (x )的单调递增区间为(0,e),单调递减区间为(e ,+∞),所以函数在x =e 处取最大值,由于n ∈N +,所以当n =3时函数最大值为ln 33.所以p 的取值范围是ln 33,+9.记关于x 的不等式x 2-4nx +3n 2≤0(n ∈N +)的整数解的个数为a n ,数列{b n }的前n 项和为T n ,满足4T n =3n +1-a n -2.(1)求数列{b n }的通项公式;(2)设c n =2b n -,若对任意n ∈N +,都有c n <c n +1成立,试求实数λ的取值范围.解(1)由不等式x 2-4nx +3n 2≤0可得,n ≤x ≤3n ,∴a n =2n +1,T n =14×3n +1-12n -34,当n =1时,b 1=T 1=1,当n ≥2时,b n =T n -T n -1=12×3n -12,∵b 1=1适合上式,∴b n =12×3n -12.(2)由(1)可得,c n =3n -1+(-1)n -1,∴c n +1=3n +1-1+(-1)n +1,∵c n <c n +1,∴c n +1-c n =2×3n +52(-1)n >0,∴(-1)n λ>-45×2n ,当n 为奇数时,λ<45×2n ,由于45×2n 随着n 的增大而增大,当n =1时,45×2n 的最小值为85,∴λ<85,当n 为偶数时,λ>-45×2n ,由于-45×2n 随着n 的增大而减小,当n =2时,-45×2n 的最大值为-165,∴λ>-165,综上可知,-165<λ<85.10.设n ∈N +,有三个条件:①a n 是2与S n 的等差中项;②a 1=2,S n +1=a 1(S n +1);③S n =2n +1-2.在这三个条件中任选一个,补充在下列问题的横线上,再作答.若数列{a n }的前n 项和为S n ,且________.(1)求数列{a n }的通项公式;(2)若{a n ·b n }是以2为首项,4为公差的等差数列,求数列{b n }的前n 项和T n .注:如果选择多个条件分别解答,那么按第一个解答计分.解(1)选择条件①:因为a n 是2与S n 的等差中项,所以2a n =2+S n ,所以当n ≥2时,2a n -1=2+S n -1,两式相减得,2a n -2a n -1=a n ,即a n =2a n -1(n ≥2),在2a n =2+S n 中,令n =1,可得a 1=2,所以数列{a n }是首项为2,公比为2的等比数列,故a n =2·2n -1=2n .选择条件②:由a 1=2,S n +1=a 1(S n +1),知S n +1=2(S n +1),当n =1时,可求得a 2=4,所以当n ≥2时,S n =2(S n -1+1),两式相减得,a n +1=2a n (n ≥2),又a 1=2,a 2=4也满足上式,所以数列{a n }是首项为2,公比为2的等比数列,故a n =2·2n -1=2n .选择条件③:在S n =2n +1-2中,令n =1,则a 1=21+1-2=2,当n ≥2时,有S n -1=2n -2,两式相减得,a n =2n (n ≥2),当n =1时,a 1=2满足上式,所以a n =2n .(2)因为{a n ·b n }是以2为首项,4为公差的等差数列,所以a n ·b n =2+(n -1)·4=4n -2,由(1)知,a n =2n ,所以b n =2n -12n -1,所以T n =1+3+5+…+2n -12n -1,12T n =1+3+…+2n -32n -1+2n -12n ,两式相减得,12T n =1+2+2+…+2-1-2n -12n =1+2×21-12-2n -12n =3-2n +32n,所以T n =6-2n +32n -1.11.(2022·北京)设{a n }是公差不为0的无穷等差数列,则“{a n }为递增数列”是“存在正整数N 0,当n >N 0时,a n >0”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案C 解析设无穷等差数列{a n }的公差为d (d ≠0),则a n =a 1+(n -1)d =dn +a 1-d .若{a n }为递增数列,则d >0,则存在正整数N 0,使得当n >N 0时,a n =dn +a 1-d >0,所以充分性成立;若存在正整数N 0,使得当n >N 0时,a n =dn +a 1-d >0,即d >d -a 1n对任意的n >N 0,n ∈N +均成立,由于n →+∞时,d -a 1n→0,且d ≠0,所以d >0,{a n }为递增数列,必要性成立.故选C.12.已知a 1,a 2,a 3,a 4成等比数列,且a 1+a 2+a 3+a 4=ln(a 1+a 2+a 3).若a 1>1,则()A .a 1<a 3,a 2<a 4B .a 1>a 3,a 2<a 4C .a 1<a 3,a 2>a 4D .a 1>a 3,a 2>a 4答案B 解析因为ln x ≤x -1(x >0),所以a 1+a 2+a 3+a 4=ln(a 1+a 2+a 3)≤a 1+a 2+a 3-1,所以a 4=a 1·q 3≤-1.由a 1>1,得q <0.若q ≤-1,则ln(a 1+a 2+a 3)=a 1+a 2+a 3+a 4=a 1(1+q )·(1+q 2)≤0.又a 1+a 2+a 3=a 1(1+q +q 2)≥a 1>1,所以ln(a 1+a 2+a 3)>0,矛盾.因此-1<q <0.所以a 1-a 3=a 1(1-q 2)>0,a 2-a 4=a 1q (1-q 2)<0,所以a 1>a 3,a 2<a 4.13.函数y =f (x ),x ∈[1,+∞),数列{a n }满足a n =f (n ),n ∈N +,①函数f (x )是增函数;②数列{a n }是递增数列.写出一个满足①的函数f (x )的解析式________.写出一个满足②但不满足①的函数f (x )的解析式________.答案f (x )=x 2f (x )(答案不唯一)解析由题意,可知在x ∈[1,+∞)这个区间上是增函数的函数有许多,可写为f (x )=x 2.第二个填空是找一个数列是递增数列,而对应的函数不是增函数,可写为f (x ).则这个函数在1,43上单调递减,在43,+∴f (x )在[1,+∞)上不是增函数,不满足①.而对应的数列为a n 在n ∈N +上越来越大,属于递增数列.14.设函数f (x )-4,x ≤-3,x 2+2,x >-3,数列{a n }满足a n +1=f (a n )(n ∈N +),若{a n }是等差数列.则a 1的取值范围是__________.答案(-∞,-3]∪{-2,1}解析画出函数f (x )的图象如图所示,当a 1≤-3时,a 2=f (a 1)=a 1-4≤-7,a 3=f (a 2)=a 2-4≤-11,…,数列{a n }是首项为a 1,公差为-4的等差数列,符合题意,当a 1>-3时,因为{a n }是等差数列,①若其公差d >0,则∃k 0∈N +,使得0k a >2,这与a n +1=f (a n )=2-a 2n ≤2矛盾,②若其公差d =0,则a 2=-a 21+2=a 1,即a 21+a 1-2=0,解得a 1=-2或a 1=1,则当a 1=-2时,a n =-2为常数列,当a 1=1时,a n =1为常数列,此时{a n }为等差数列,符合题意,③若其公差d <0,则∃k 0∈N +,使得0k a >-3且01k a +≤-3,则等差数列的公差必为-4,因此001k k a a +-=-4,所以2-002k k a a -=-4,解得0k a =-3(舍去)或0k a =2.又当0k a =2时,000123k k k a a a +++===…=-2,这与公差为-4矛盾.综上所述,a 1的取值范围是(-∞,-3]∪{-2,1}.15.若数列{a n }对于任意的正整数n 满足:a n >0且a n a n +1=n +1,则称数列{a n }为“积增数列”.已知“积增数列”{a n }中,a 1=1,数列{a 2n +a 2n +1}的前n 项和为S n ,则对于任意的正整数n ,有()A .S n ≤2n 2+3B .S n ≥n 2+4nC .S n ≤n 2+4nD .S n ≥n 2+3n 答案D 解析∵a n >0,∴a 2n +a 2n +1≥2a n a n +1,∵a n a n +1=n +1,∴{a n a n +1}的前n 项和为2+3+4+…+n +1=n (2+n +1)2=n (n +3)2,∴数列{a 2n +a 2n +1}的前n 项和为S n ≥2×n (n +3)2=n 2+3n .16.设{a n }是正数组成的数列,其前n 项和为S n ,并且对于所有的正整数n ,a n 与2的等差中项等于S n 与2的等比中项.(1)求数列{a n }的通项公式;(2)令b nn ∈N +),求证:b 1+b 2+b 3+…+b n <1+n .(1)解由已知a n +22=2S n (n ∈N +),整理得S n =18(a n +2)2,所以S n +1=18(a n +1+2)2.所以a n +1=S n +1-S n =18[(a n +1+2)2-(a n +2)2]=18(a 2n +1+4a n +1-a 2n -4a n ),整理得(a n +1+a n )(a n +1-a n -4)=0,由题意知a n +1+a n ≠0,所以a n +1-a n =4,而a 1=2,即数列{a n }是a 1=2,d =4的等差数列,所以a n =a 1+(n -1)d =4n -2.(2)证明令c n =b n -1,则c n +a n a n +1-=12n -1-12n +1.故b 1+b 2+…+b n -n =c 1+c 2+…+cn…1-12n +1<1.故b 1+b 2+…+b n <1+n .。
等差数列和等比数列的综合应用

城东蜊市阳光实验学校第12课时等差数列和等比数列的综合应用〔二〕教学目的:⑴会运用公式⎩⎨⎧≥-==-)2(111n s s a s a n n n ⑵由an=Kan-1+b ⇒an=难点:递推公式一、问题情境过程:1、复习,等差〔等比〕数列的有关知识。
2、{}n a 的前n 项和是Sn ,假设Sn=3n2-6n+c ,那么an=,当c=时,{}n a 是等差数列。
3、{}n a 的前n 项和是Sn=4n+c ,那么an=,当c=时,{}n a 是等比数列。
4、数列{}n a 满足a1=2,an+1=an+2n(n *N ∈),那么{}n a 的通项公式an= 二、教学运用例1:在等比数列{}n a 中,a1+an=66,a2an-1=128,Sn=126,求n 及q 。
例2:在数列{}n a 中,a1=1,an=2an-1+1(n≥2),求该数列的通项公式。
例3:设{}n a 是正数组成的数列,其前n 项为Sn ,且对于所有正整数n ,an 与2的等差中项等于Sn 与2的等比中项。
⑴求{}n a 的通项公式;⑵求13221111++++n n a a a a a a 的值。
稳固练习〔12〕1、假设数列{}n a 的前n 项和公式为)1(log 3+=n S n,那么a5=() A 、65log B 、563log C 、63log D 、53log2、一个等比数列的首项为1,公比为3,这个数列的前n 项的积为3、等差数列{}n a 中,S4=1,S8=4,求=+++20191817a a a a 〔〕A 、7B 、8C 、9D 、104、数列{}n a 的通项公式是2)1(+-+=n n a nn ,那么此数列中的数是〔〕 A 、1312B 、1713C 、20022001D 、20032002 5、设2a=3,2b=6,2c=12,那么数列a 、b 、c 是数列。
6、设有数列{}n a ,a1,a2-a1,a3-a2,……an -an-1是首项为1,公比为31的等比数列:⑴求通项an ;⑵求数列{}n a 的前n 项和。
专题33 等差、等比数列的性质的综合应用(课件)-2019年高考数学(理)名师揭秘之一轮总复习

则a4a5a6=5 2.
3.在正项等比数列{an}中,lg a3+lg a6+lg a9= 6,则a1a11的值是( A )
A.10 000 B.1 000
C.100
D.10
(2)设函数 f(x)=12x,数列{bn}满足条件 b1=2,f(bn +1)=f(-31-bn),(n∈N*).
①求数列{bn}的通项公式; ②设 cn=bann,求数列{cn}的前 n 和 Tn.
【解析】(1)因为a=λb,所以12Sn=2n-1,
Sn=2n+1-2. 当n≥2时,an=Sn-Sn-1=(2n+1-2)-(2n-2) =2n,
1.等差数列的常用性质 (1)通项公式的推广:an=ak+(n-k)d(n,k∈N*). (2)若{an}为等差数列,且 m+n=p+q(m,n,p, q∈N*),则 am+an=ap+aq. (3)若{an}是等差数列,公差为 d,则 an,an+m,an+ 2m,…(n,m∈N*)是公差为__m_d____的等差数列. (4)数列 Sm,S2m-Sm,S3m-S2m,…也是等差数列. (5)S2n-1=(2n-1)an.
≤49,
∴ak(k∈M)组成首项为211,公比为4的等比数列.
则所有ak(k∈M)的和211(11--4445)=2101-32
048 .
例4已知数列{an}的前 n 项和为 Sn,向量 a=(Sn,
1),b=2n-1,12,满足条件 a=λb,λ ∈R 且 λ≠0. (1)求数列{an}的通项公式;
②cn=bann=3n2-n 1,
Tn=221+252+283+…+32nn--14+3n2-n 1
①
12Tn=222+253+284+…+3n2-n 4+32nn-+11
数列综合应用教案

数列综合应用教案【篇一:《数列的综合应用》教案】个性化教案授课时间年级高三备课时间学生姓名教师姓名课题数列的进一步认识教学目标(1)熟练掌握等差数列、等比数列的前n项和公式,以及非等差数列、等比数列求和的几种常见方法。
教学重点教学设计教学内容(2)理解与掌握“等价转化”、“变量代换”思想(3)能在具体的问题情境中识别数列的相应关系,并能用相关知识解决相应的问题1、数列求和的几种常见方法2、识别数列的相关关系,并能利用“等价转化”、“变量代换”思想解决相关数列问题一、检查并点评学生的作业。
检查过程中,要特别注意反映在学生作业中的知识漏洞,并当场给学生再次讲解该知识点,也可出题让学生做,检查效果。
二、检查学生上节课或在校一周内的知识点掌握情况,帮助学生再次梳理知识。
三、讲授新内容数列求和数列求和的常用方法 1、公式法(1)直接利用等差数列、等比数列的前n项公式求和;(2)一些常见的数列的前n项和:n∑k=n(n+1)k=12n∑k2=16n(n+1)(2n+1)k=1nk3=14n2(n+1)2k=12、倒序相加法如果一个数列{an},首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n项和即可用倒序相加法。
等差数列的前n项和即是用此法推导的。
3、错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和就是用此法推导的;例:sn=1*2+2*4+3*8+??+n*2n①2sn=1*4+2*8+3*16+??+(n-1)*2n+n*2n+1②①-②得 -sn=2-(4+8+16+??+2n)-n*2n+1 即:sn=(n-1)2n+1-64、裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和;注:用裂项相消法求数列前n项和的前提是:数列中的每一项均能分裂成一正一负两项,这是用裂项相消法的前提。
数列综合题和应用性问题教案

数列综合题和应用性问题教案一、教学目标1. 让学生掌握数列的基本概念和性质,包括等差数列、等比数列等。
2. 培养学生解决数列综合题的能力,提高逻辑思维和运算能力。
3. 培养学生将数列知识应用于实际问题的能力,提高解决问题的综合素质。
二、教学内容1. 等差数列的性质及求和公式2. 等比数列的性质及求和公式3. 数列的通项公式及其应用4. 数列的极限概念及数列极限的计算5. 数列综合题的解题策略三、教学重点与难点1. 重点:等差数列和等比数列的性质、求和公式,数列极限的计算。
2. 难点:数列综合题的解题方法,数列知识在实际问题中的应用。
四、教学方法1. 采用案例教学法,以典型例题引导学生掌握数列知识。
2. 运用问题驱动法,激发学生思考,培养学生解决实际问题的能力。
3. 利用数列软件工具,直观展示数列的变化规律,增强学生的直观感受。
4. 组织小组讨论,引导学生相互交流,提高团队合作能力。
五、教学安排1. 第一课时:等差数列的性质及求和公式2. 第二课时:等比数列的性质及求和公式3. 第三课时:数列的通项公式及其应用4. 第四课时:数列的极限概念及数列极限的计算5. 第五课时:数列综合题的解题策略及应用教案内容依次展开,包括每个章节的具体教学目标、教学内容、教学步骤、课堂练习、课后作业等。
请根据实际教学需求进行调整和完善。
六、教学目标1. 让学生掌握数列的通项公式的推导和应用,能够利用通项公式解决实际问题。
2. 培养学生解决数列极限问题的能力,理解数列极限的概念和计算方法。
3. 培养学生运用数列知识分析和解决实际问题的能力,提高解决问题的综合素质。
七、教学内容1. 数列的通项公式的推导和应用2. 数列极限的概念和计算方法3. 数列极限在实际问题中的应用4. 数列综合题的解题策略5. 数列知识在实际问题中的应用案例分析八、教学重点与难点1. 重点:数列通项公式的推导和应用,数列极限的计算方法。
2. 难点:数列极限的理解和应用,数列综合题的解题策略。
教学设计教案等差、等比数列的综合应用

教学设计教案等差、等比数列的综合应用教学设计教案范文等差、等比数列的综合应用一. 教学内容:等差、等比数列的综合应用二、教学目标:综合运用等差、等比数列的定义式、通项公式、性质及前n项求和公式解决相关问题.三、要点:(一)等差数列1. 等差数列的前项和公式1:2. 等差数列的前项和公式2:3. (m, n, p,q ∈N )5. 对等差数列前n项和的.最值问题有两种:(1)利用>0,d<0,前n项和有最大值,可由≤0,求得n的值。
当≤0,且二次函数配方法求得最值时n的值。
(二)等比数列1、等比数列的前n项和公式:∴当① 或②当q=1时,时,用公式②2、是等比数列不是等比数列②当q≠-1或k为奇数时,仍成等比数列3、等比数列的性质:若m n=p k,则【典型例题例1. 在等差数列{ +++。
解:由等差中项公式:+,=2 ++=450,+=180=(++)+()+=9 为项的和。
解:(用错项相消法)①-② 时,当时,例3. 设数列项之和为,若,问:数列,∴即:,∴ ,∴即:例4. 设首项为正数的等比数列,它的前项之和为80,前项中数值最大的项为54,求此数列。
解:由题意代入(1),,从而∴ 项中数值最大的项应为第项∴ ∴∴∴此数列为例5. 求集合M={mm=2n-1,n∈N*,且m<60=的元素个数及这些元素的和。
,又∵n∈N*∴满足不等式n< = =900答案:集合M中一共有30个元素,其和为900。
【模拟1. 已知等比数列的公比是2,且前四项的和为1,那么前八项的和为()A. 15B. 17C. 19D. 212. 已知数列{an=3n-2,在数列{an}中取ak2,akn ,… 成等比数列,若k1=2,k2=6,则k4的值()A. 86B. 54C. 160D. 2563. 数列A. 750 B. 610 C. 510 D. 5054.<0的最小的n值是()A. 5B. 6C. 7D. 85. 若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有()A. 13项B. 12项C. 11项D. 10项6. 数列并且。
高中数学 2-5-2等差、等比数列的综合应用课件 新人教A版必修5

[解析] 设这四个数为:a-d、a、a+d、a+ad2.
∴a-d+a+a d2=16, a+a+d=12.
解之得:ad==44 或ad==-9 6 , ∴这四个数为 0,4,8,16 或 15,9,3,1.
[点评] 本题也可设四个数依次为 2a-aq,a,aq,aq2(a≠0) 或2qa-a,aq,a,aq(a≠0).或依据两个和设未知数,根据等差 等比关系列方程求解.
当 cosα=1 时,sinα=0,由于等比数列的项不能为零,故 cosα=1 应舍去,
当 cosα=-12,α∈[0,2π]时,α=23π或 α=43π, 所以 α=23π,β=43π,γ=83π或 α=43π,β=83π,γ=163π.
命题方向 综合应用
[例 4] n2(n≥4)个正数排成 n 行 n 列:其有公比相 等.将第 i 行第 j 列的数记作 aij.已知 a24=1,a42=18,a43=136, 求 ann.
Sn 等于( ) A.2n+1-1
B.2n-2
C.2n
D.2n+1-2
[答案] D
[解析] 由已知条件可得此等比数列的首项 a1=2,公比 q =42=2,故前 n 项和 Sn=2×1-1-22n=2n+1-2.
2.等差数列{an}中,a3=-5,a6=1,设 Sn 是数列{an}的 前 n 项和,则 S8=________.
A.(44,12) C.(13,45)
[答案] D
B.(45,13) D.(12,44)
[解析] 细心观察图形可以发现,质点到达点(n,n)(n∈ N)时,走过的路程为 2+4+6+…+2n=n(n+1)单位长度.而 2012=44×45+32,故可知此质点到达(44,44)点后,又继续移 动 32 个单位,而且是向左移动,∴到达点为(12,44).
《数列综合应用举例》教案

《数列综合应用举例》教案第一章:数列的概念与性质1.1 数列的定义引导学生理解数列的概念,理解数列是一种特殊的函数。
通过实例让学生了解数列的基本形式,如等差数列、等比数列等。
1.2 数列的性质引导学生学习数列的基本性质,如数列的项数、首项、末项、公差、公比等。
通过实例让学生掌握数列的性质,并能够运用性质解决实际问题。
第二章:数列的求和2.1 等差数列的求和引导学生学习等差数列的求和公式,理解公差、首项、末项与求和的关系。
通过实例让学生掌握等差数列的求和方法,并能够运用求和公式解决实际问题。
2.2 等比数列的求和引导学生学习等比数列的求和公式,理解公比、首项、末项与求和的关系。
通过实例让学生掌握等比数列的求和方法,并能够运用求和公式解决实际问题。
第三章:数列的极限3.1 数列极限的概念引导学生理解数列极限的概念,理解数列极限与数列收敛的关系。
通过实例让学生了解数列极限的性质,如保号性、单调性等。
3.2 数列极限的计算引导学生学习数列极限的计算方法,如夹逼定理、单调有界定理等。
通过实例让学生掌握数列极限的计算方法,并能够运用极限的概念解决实际问题。
第四章:数列的应用4.1 数列在数学分析中的应用引导学生学习数列在数学分析中的应用,如级数、积分等。
通过实例让学生了解数列在数学分析中的重要性,并能够运用数列解决实际问题。
4.2 数列在其他学科中的应用引导学生学习数列在其他学科中的应用,如物理学、经济学等。
通过实例让学生了解数列在不同学科中的作用,并能够运用数列解决实际问题。
第五章:数列的综合应用5.1 数列在经济管理中的应用引导学生学习数列在经济管理中的应用,如库存管理、成本分析等。
通过实例让学生了解数列在经济管理中的重要性,并能够运用数列解决实际问题。
5.2 数列在工程科技中的应用引导学生学习数列在工程科技中的应用,如信号处理、结构分析等。
通过实例让学生了解数列在工程科技中的作用,并能够运用数列解决实际问题。
等差数列与等比数列的应用教案

等差数列与等比数列的应用教案教学目标:1. 理解等差数列和等比数列的概念和特点;2. 掌握等差数列和等比数列的通项公式;3. 学会应用等差数列和等比数列求解实际问题。
教学重点:1. 等差数列和等比数列的概念和特点;2. 等差数列和等比数列的通项公式;3. 实际问题与等差数列和等比数列的应用。
教学步骤:一、导入(10分钟)1. 创设情境,引入等差数列和等比数列的概念。
例如,假设小明每天早上骑自行车上学,每天骑行的距离都比前一天多10公里,问小明第n天骑行的距离是多少?这个问题有没有什么规律可循?2. 引导学生思考,带出等差数列和等比数列的定义。
二、讲解(30分钟)1. 介绍等差数列的概念和特点。
解释等差数列的定义,举例说明等差数列的特点,如公差的定义和作用。
2. 推导等差数列的通项公式。
解释如何从等差数列的特点推导得到通项公式。
3. 介绍等比数列的概念和特点。
解释等比数列的定义,举例说明等比数列的特点,如公比的定义和作用。
4. 推导等比数列的通项公式。
解释如何从等比数列的特点推导得到通项公式。
三、练习(30分钟)1. 提供一些简单的等差数列和等比数列问题,让学生尝试求解。
2. 鼓励学生互相交流讨论,共同解决问题。
3. 教师巡视指导,解答学生疑问。
四、拓展(30分钟)1. 引导学生思考如何将等差数列和等比数列应用到实际生活中。
例如,通过等差数列和等比数列可以解决日常生活中的一些问题,如利润增长、贷款还款等。
2. 提供一些复杂的实际问题,让学生运用等差数列和等比数列的知识进行求解。
五、总结(10分钟)1. 总结等差数列和等比数列的概念、特点和通项公式。
2. 提醒学生重点记忆和应用等差数列和等比数列的方法。
教学反思:通过本节课的教学,学生能够掌握等差数列和等比数列的概念和特点,了解它们在实际生活中的应用,并掌握求解等差数列和等比数列问题的方法。
同时,教师通过引导学生思考和解决问题的方式,培养了学生的思维能力和解决问题的能力。
等差数列与等比数列教学案

等差数列与等比数列教学案一、引言数学是一门重要的学科,对培养学生的逻辑思维、分析问题和解决问题的能力具有重要意义。
在数学教学中,等差数列和等比数列是基础而重要的概念,对学生的数学素养和解题能力有着深远的影响。
本教学案将重点介绍等差数列和等比数列的概念、性质和解题方法,以便帮助学生更好地理解和掌握这两个数列。
二、等差数列的介绍1. 概念等差数列是指数列中每一项与前一项之差都相等的数列。
设数列为a₁,公差为d,则对于任意的正整数n,有递推公式:aₙ = aₙ₋₁+ d。
其中,a₁为首项,d为公差。
2. 性质(1)首项和公差的关系:a₁ = a₂ - d。
(2)通项公式:aₙ = a₁ + (n - 1)d。
(3)求前n项和的公式:Sₙ = (a₁ + aₙ) * n / 2。
3. 解题方法(1)已知首项和公差,求任意项:利用通项公式aₙ = a₁ + (n - 1)d,代入已知的首项和公差,即可求得任意项。
(2)已知首项和公差,求前n项和:利用前n项和的公式Sₙ =(a₁ + aₙ) * n / 2,代入已知的首项和公差,即可求得前n项和。
三、等比数列的介绍1. 概念等比数列是指数列中每一项与前一项的比都相等的数列。
设数列为a₁,公比为q,则对于任意的正整数n,有递推公式:aₙ = aₙ₋₁* q。
其中,a₁为首项,q为公比。
2. 性质(1)首项和公比的关系:a₁ = a₂ / q。
(2)通项公式:aₙ = a₁ * q^(n - 1)。
(3)求前n项和的公式:Sₙ = a₁ * (1 - q^n) / (1 - q),其中q ≠ 1。
3. 解题方法(1)已知首项和公比,求任意项:利用通项公式aₙ = a₁ * q^(n - 1),代入已知的首项和公比,即可求得任意项。
(2)已知首项和公比,求前n项和:利用前n项和的公式Sₙ = a₁* (1 - q^n) / (1 - q),代入已知的首项和公比,即可求得前n项和。
等比数列教案(精选7篇)

等比数列教案等比数列教案什么是教案?教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。
等比数列教案(精选7篇)作为一名辛苦耕耘的教育工作者,很有必要精心设计一份教案,教案是教学活动的总的组织纲领和行动方案。
那么优秀的教案是什么样的呢?下面是小编为大家收集的等比数列教案(精选7篇),希望能够帮助到大家。
等比数列教案1教学目标1.理解等比数列的概念,掌握等比数列的通项公式,并能运用公式解决简单的问题.(1)正确理解等比数列的定义,了解公比的概念,明确一个数列是等比数列的限定条件,能根据定义判断一个数列是等比数列,了解等比中项的概念;(2)正确认识使用等比数列的表示法,能灵活运用通项公式求等比数列的首项、公比、项数及指定的项;(3)通过通项公式认识等比数列的性质,能解决某些实际问题.2.通过对等比数列的研究,逐步培养学生观察、类比、归纳、猜想等思维品质.3.通过对等比数列概念的归纳,进一步培养学生严密的思维习惯,以及实事求是的科学态度.教材分析(1)知识结构等比数列是另一个简单常见的数列,研究内容可与等差数列类比,首先归纳出等比数列的定义,导出通项公式,进而研究图像,又给出等比中项的概念,最后是通项公式的应用.(2)重点、难点分析教学重点是等比数列的定义和对通项公式的认识与应用,教学难点在于等比数列通项公式的推导和运用.①与等差数列一样,等比数列也是特殊的数列,二者有许多相同的性质,但也有明显的区别,可根据定义与通项公式得出等比数列的特性,这些是教学的重点.②虽然在等差数列的学习中曾接触过不完全归纳法,但对学生来说仍然不熟悉;在推导过程中,需要学生有一定的观察分析猜想能力;第一项是否成立又须补充说明,所以通项公式的推导是难点.③对等差数列、等比数列的综合研究离不开通项公式,因而通项公式的灵活运用既是重点又是难点.教学建议(1)建议本节课分两课时,一节课为等比数列的概念,一节课为等比数列通项公式的应用.(2)等比数列概念的引入,可给出几个具体的例子,由学生概括这些数列的相同特征,从而得到等比数列的定义.也可将几个等差数列和几个等比数列混在一起给出,由学生将这些数列进行分类,有一种是按等差、等比来分的,由此对比地概括等比数列的定义.(3)根据定义让学生分析等比数列的公比不为0,以及每一项均不为0的特性,加深对概念的理解.(4)对比等差数列的表示法,由学生归纳等比数列的各种表示法. 启发学生用函数观点认识通项公式,由通项公式的结构特征画数列的图象.(5)由于有了等差数列的研究经验,等比数列的研究完全可以放手让学生自己解决,教师只需把握课堂的节奏,作为一节课的组织者出现.(6)可让学生相互出题,解题,讲题,充分发挥学生的主体作用. 等比数列教案2教学目标1.通过教学使学生理解等比数列的概念,推导并掌握通项公式.2.使学生进一步体会类比、归纳的思想,培养学生的观察、概括能力.3.培养学生勤于思考,实事求是的精神,及严谨的科学态度.教学重点,难点重点、难点是等比数列的定义的归纳及通项公式的推导.教学用具投影仪,多媒体软件,电脑.教学方法讨论、谈话法.教学过程一、提出问题给出以下几组数列,将它们分类,说出分类标准.(幻灯片)①-2,1,4,7,10,13,16,19,②8,16,32,64,128,256,③1,1,1,1,1,1,1,④-243,81,27,9,3,1,,,⑤31,29,27,25,23,21,19,⑥1,-1,1,-1,1,-1,1,-1,⑦1,-10,100,-1000,10000,-100000,⑧0,0,0,0,0,0,0,由学生发表意见(可能按项与项之间的关系分为递增数列、递减数列、常数数列、摆动数列,也可能分为等差、等比两类),统一一种分法,其中②③④⑥⑦为有共同性质的一类数列(学生看不出③的情况也无妨,得出定义后再考察③是否为等比数列).二、讲解新课请学生说出数列②③④⑥⑦的共同特性,教师指出实际生活中也有许多类似的例子,如变形虫分裂问题假设每经过一个单位时间每个变形虫都分裂为两个变形虫,再假设开始有一个变形虫,经过一个单位时间它分裂为两个变形虫,经过两个单位时间就有了四个变形虫,,一直进行下去,记录下每个单位时间的变形虫个数得到了一列数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教育个性化教育教案
教师姓名 学科 数学 上课时间 2011/1/29
学生姓名
年级
时间段
课题名称 等差数列和等比数列
教学目标
等差数列和等比数列
教学重难点
等差数列和等比数列 一、知识回顾
1. 等差数列和等比数列的概念、有关公式和性质
2. 判断和证明数列是等差(等比)数列常有三种方法:(1)定义法. (2)通项公式法.(3)中项公式法.
3. 在等差数列{n a }中,有关S n 的最值问题:(1)当1a >0,d<0时,满足⎩⎨⎧≤≥+00
1m m a a 的项数m 使得m s 取最大值. (2)当
1a <0,d>0时,满足⎩⎨⎧≥≤+0
1m m a a 的项数m 使得m s 取最小值.在解含绝对值的数列最值问题时,注意转化思想的应用。
二、基本训练
1.等差数列的前n 项和为25,前2n 项和为100,则它的前3n 和为 。
2.各项均为正数的等比数列{}n a 中,569a a ⋅=,则3132310log log log a a a ++
+= 。
3.若一个等差数列的前3项和为34,最后3项和为146,且所有项的和为390,则这个数列有 项。
4.在等差数列中,S 11=22,则a 6=__________________.
5.等比数列{}n a 中,①若a 1 +a 4=9,a 2 ·a 3=8,则前六项和S 6=___________;②若a 5+ a 6 =a ,a 15+ a 16 =b ,则a 25+ a 26=__________________.
6.数列{}n a 是等比数列,下列四个命题:①2
{}n
a 、2{}n a 是等比数列;②{ln }n a 是等差数列;③1{}n a 、{||}n a 是等比数列;④{}n ka 、{}n a k +(0)k ≠是等比数列。
正确的命题是 。
三、例题分析
例1、设等差数列{}n a 、{}n b 的前n 项和分别为n S 、n T ,m n ≠,
1)若,m n a n a m ==,求m n a +和m n S +;2)若,m n S n S m ==,求m n S +;3)若71
427
n n S n T n +=+,求n n a b 。
例2、①设等差数列{}n a 中,21512841=+---a a a a a ,求133a a +及S 15的值.
②设等比数列{}n a 中,128,66121==+-n n a a a a ,前n项和S n=126,求n 和公比q.
③等比数列中,q =2,S 99=77,求9963a a a +++ ;
④项数为奇数的等差数列{}n a 中,奇数项和为80,偶数项和为75,求此数列的中间项与项数.
例3.是否存在公差不为零的等差数列{a n },使对任意正整数n ,
n
n
S S 2为常数?若存在,求出这个数列;若不存在,说明理由。
例4.三个实数10a 2+81a+207,a+2,26-2a 经适当排列,它们的常用对数值构成公差为1的等差数列。
求a 的值。
例5.已知递增的等比数列{a n }前三项之积为512,它们分别减去1,3,9后,又构成等差数列.求证
11a +22a +3
3
a +…+
n
a n
<1.
四、作业
1. 已知等差数列{}n a 满足a 1231010a a a a +++
+=,则有
A.11010a a +>
B.21000a a +<
C.3990a a +=
D.5151a = 2. 若n S 是数列{}n a 的前n 项和,且2n S n =,则{}n a 是
A.等比数列,但不是等差数列
B.等差数列,但不是等比数列
C.等差数列,而且也是等比数列 D 既非等差数列也非等比数列 3. 在等差数列{}n a 中,若其前n 项和n n S m =
,前m 项和m m
S n
=(m n ≠,,*m n N ∈),则m n S +的值 A.大于4 B.等于4 C.小于4 D.大于2且小于4
4. 在2与7之间插入n 个数, 使这个以2为首项的数列成等差数列, 并且S 16=56则n =( )
A. 26
B. 25
C. 24
D. 23 5.数列{}n a 中,372,1a a ==,又数列11n a ⎧⎫
⎨
⎬+⎩⎭
是等差数列,则8a =( )
(A )0 (B )
12 (C )2
3
(D )-1 6.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列,则a 2等于 ( )
(A )-4 (B )-6 (C )-8 (D )-10
7.设S n 是等差数列{}n a 的前n 项和,若==5
935,95S S
a a 则( ) A .1 B .-1 C .2 D .2
1
8、等差数列{}n a 的前n 项和为n S ,已知)6(144,324,3666>===-n S S S n n ,则n 为( )
(A) 18
(B) 17
(C) 16
(D) 15
9. 等差数列{}n a 中,首项10a >, n S 是其前n 项和,且1525S S =,则当n S 最大时,n = 。
10. 等差数列{}n a 、{}n b 的前n 项和n S 、n T 满足
3125n n S n T n +=+,则55a
b = ,3
3b a = .
11. 已知0a >且1a ≠,设数列{}n x 满足1log 1log a n a n x x +=+(*)n N ∈,且12100100x x x ++
+=,则
101102200x x x +++= .
12. 等差数列{}n a 中,前n 项和n S ,若m>1,且a m-1+a m+1-a m 2=0,S 2m-1=38,则m =____________.
13. 已知数列{}n a 、{}n b 满足:121,a a a ==(a 为常数),且1n n n b a a +=⋅,其中1,2,3n =
(1)若{}n a 是等比数列,试求数列{}n b 的前n 项和n S 的公式;
(2)当{}n b 是等比数列时,甲同学说:{}n a 一定是等比数列;乙同学说:{}n a 一定不是等比数列,你认为他们的说法是否正确?为什么?
14. {}n a 、{}n b 都是各项为正的数列,对任意的正整数n ,都有21,,n n n a b a +成等差数列,2211,,n n n b a b ++成等比数列。
(1)试问{}n b 是否为等差数列?为什么?
(2)求证:对任意的正整数,()p q p q >,2222p q p q p b b b -++≥成立。
15.已知曲线xy -2kx+k 2=0与x -y+8=0有且只有一个为共点,数列{a n }中,a 1=2k ,n ≥2时,{a n -1,a n }均在曲线xy -2kx+k 2=0上,数列{b n }中,b n =2
1
-n a .
(1)求证:{b n }是等差数列;
(2)求a n
答案:
基本训练:
1、225
2、10
3、13
4、2
5、31或634
;2
b a 6、①③
例题分析:
例1、(1)0 (2)()m n -+ (3)
146
823
n n -+ 例2、(1)133a a +=-4;S 15=-30 (2)6n =,12q =
或2 (3)44 (4)中间项为5,项数为31 例3、a n =21(2n -1)d (d ≠0) 例4、a=2
1
作业:
1—8、CBA CB B A A 9、20 10、2816
;.2315
11、100100a 12、10. 15、a n =2+2n
.。