小学奥数简单逻辑推理习题

合集下载

小学奥数---逻辑推理

小学奥数---逻辑推理

小学奥数---逻辑推理一.选择题(共6小题)1.现在从甲、乙、丙、丁四个人中选出两个人参加一项活动.规定:如果甲去,那么乙也去;如果丙不去,那么乙也不去;如果丙去;那么丁不去.最后去参加活动的两个人是()A.甲、乙B.乙、丙C.甲、丙D.乙、丁2.森林里举行比赛,要派出狮子、老虎、豹子、大象中的两个动物去参加,如果派狮子去,那么也要派老虎去;如果不派豹子去,那么也不能派老虎去;要是豹子参加的话,大象可不愿意去.那么,最后能去参加比赛的是()A.狮子、老虎B.老虎、豹子C.狮子、豹子D.老虎、大象3.6人参加乒乓球赛,每两人都要比赛一场,胜者的2分,负者的0分,比赛结果有两人并列第二名,两人并列第5名,那么,第4名得()分.A.3 B.4 C.5 D.64.六名同学参加围棋比赛,每两个人都要比赛一场,胜者得2分,负者得0分,比赛结果有两个并列第二名,两个并列第五名,则第一名得了()分.A.10 B.12 C.8 D.65.甲、乙、丙、丁四人比赛乒乓球,每两人要赛一场,结果甲胜了丁,并且甲、乙、丙三人胜的场数相同,则丁胜了()场.A.1 B.2 C.3 D.06.甲、乙、丙、丁坐在同一排1号至4号的座位上,小红看着他们说:“甲的两边不是乙,丙的两边不是丁,甲的座位号比丙大.”那么,坐在1号座位的是()A.甲B.乙C.丙D.丁二.填空题(共5小题)7.甲、乙、丙、丁4人站成一排,从左至右依次编号是1、2、3、4号,他们有如下对话:甲:我左右两人都比我高.乙:我左右两人都比我矮.丙:我是最高的.丁:我右边没有人.如果他们4人都是诚实的好孩子,那么甲、乙、丙、丁的编号按顺序组成的4位数是.8.小明、小亮、小光三人昨天和今天连续两天去肯德基吃饭.吃饭时,他们每人要的不是鸡块就是汉堡,并且(1)如果小明要的是鸡块,那么小亮要的就是汉堡;(2)小明或小光要的是鸡块,但是不会两人都要鸡块;(3)小亮和小光不会两人都要汉堡.已知三人中有一人昨天要鸡块,今天要汉堡.这个人是.9.小明碰到了三个人,其中一位是牧师、一位是骗子、一位是疯子.牧师只说真话,骗子只说假话,疯子有时说真话,有时说假话.第一位说:“我是疯子.”第二位说:“你胡说,你才不是疯子呢!”第三位说:“别说了,我是疯子.”一那么.这三个人中第位是疯子.10.有排成一排的四张扑克牌,正好是四种花色都有,A、K、Q、J各一张.并且已知(1)A的左边是红桃,右边是J;(2)K在Q的左边;(3)黑桃的左边是J,并且与方块不相邻.这四张牌分别是黑桃,红桃,方块,梅花.11.甲、乙、丙、丁四人中只有1人会开汽车.甲说:“我会开”.乙说:“我不会开”.丙说:“甲不会开”.丁什么也没说.已知甲、乙、丙三人的话中只有一句是真话.会开车的是.三.解答题(共4小题)12.小力比小強小兩歲,小強比小傑大4歲,小虎比小傑大3歲.小虎和小力誰大?13.动物大会上,小兔、小鹿、乌龟比高矮.小鹿说:“我比小兔高!”,乌龟说:“我不比小兔高!”猜一猜,三个小动物谁高谁矮.14.有四个嫌疑犯;甲、乙、丙、丁,他们的话如下,甲说,我不是罪犯乙说,丁是罪犯丙说,乙说罪犯丁说,我不是罪犯以上四人只有一个人说假话,请问:谁是罪犯?15.甲、乙、丙、丁四个小朋友在楼下玩球,不小心把王奶奶家的玻璃打碎了,王奶奶问他们四人是谁打碎的,甲说:“是乙打碎了玻璃”.乙说:“是丁打的.”丙说:“不是我打的.”丁说:“乙说得不对.”如果这四人中只有丁说了实话,那么是谁打碎了玻璃?小学奥数---逻辑推理参考答案与试题解析一.选择题(共6小题)1.现在从甲、乙、丙、丁四个人中选出两个人参加一项活动.规定:如果甲去,那么乙也去;如果丙不去,那么乙也不去;如果丙去;那么丁不去.最后去参加活动的两个人是()A.甲、乙B.乙、丙C.甲、丙D.乙、丁【分析】①根据如果甲去,那么乙也去,可得甲在,乙必然也在;②又根据如果丙不去,那么乙也不去,可得如果乙去了,丙也一定去了,同时满足①②的条件和“如果丙去;那么丁不去”只能是乙、丙参加了活动,据此解答即可.【解答】解:根据如果甲去,那么乙也去,可得甲在,乙必然也在,又根据如果丙不去,那么乙也不去,可得如果乙去了,丙也一定去了,如果丙去;那么丁不去,可得:如果丙不去;那么丁去,同时乙也不去,则根据“甲去,那么乙也去”可得甲也不去,这样只有丁去,这与两个人参加一项活动相矛盾.同时满足条件只能是乙、丙参加了活动.故选:B.2.森林里举行比赛,要派出狮子、老虎、豹子、大象中的两个动物去参加,如果派狮子去,那么也要派老虎去;如果不派豹子去,那么也不能派老虎去;要是豹子参加的话,大象可不愿意去.那么,最后能去参加比赛的是()A.狮子、老虎B.老虎、豹子C.狮子、豹子D.老虎、大象【分析】通过分析可知:从题意出发:(1)狮子去则老虎去,逆否命题:老虎不去则狮子也不去,(2)不派豹子则不派老虎,逆否命题:派老虎则要派豹子,(3)派豹子则大象不愿意去,逆否命题:大象去则不能派豹子从(2)出发可以看出答案为B.据此解答即可.【解答】解:题目要求有两个动物去,可以使用假设法,若狮子去,则老虎去,老虎去则豹子也去.三个动物去,矛盾,所以狮子不去.若豹子不去则老虎不去,那么只有大象去,矛盾,所以豹子去.豹子去则大象不去,由两种动物去得到结论,老虎要去.所以答案是B,豹子和老虎去.故选:B.3.6人参加乒乓球赛,每两人都要比赛一场,胜者的2分,负者的0分,比赛结果有两人并列第二名,两人并列第5名,那么,第4名得()分.A.3 B.4 C.5 D.6【分析】6人参加乒乓球赛,每两人都要比赛一场,即每人都要与另外5人赛一场,又比赛是在两人之间进行的,所以共需要赛6×(6﹣1)÷2=15场,所以总分是15×2=30分,最高分为一人五场全胜5×2=10分,又比赛结果有两人并列第二名,两人并列第5名,由于30=10+6+6+4+2+2,所以第四名是4分.【解答】解:共需要赛6×(6﹣1)÷2=15场,所以总分是15×2=30分,最高分5×2=10分,由于30=10+6+6+4+2+2,所以第四名是4分.故选:B.4.六名同学参加围棋比赛,每两个人都要比赛一场,胜者得2分,负者得0分,比赛结果有两个并列第二名,两个并列第五名,则第一名得了()分.A.10 B.12 C.8 D.6【分析】第一名胜五场,得10分;第二名两人并列,都是胜3场,得6分;第四名胜2场,得4分;第五名两人并列,只胜一场,得2分.【解答】解:第一名胜五场,得10分;第二名两人并列,都是胜3场,得6分;第四名胜2场,得4分;第五名两人并列,只胜一场,得2分.因此第一名得了胜五场,因此得2×5=10(分)故选:A.5.甲、乙、丙、丁四人比赛乒乓球,每两人要赛一场,结果甲胜了丁,并且甲、乙、丙三人胜的场数相同,则丁胜了()场.A.1 B.2 C.3 D.0【分析】四人比赛乒乓球,每两人要赛一场,则每人都要和其他三人赛一场,每人要赛三场,共比赛4×3÷2=6场,由于没有平局,则每场都有一队胜,一队负.由于甲,乙,丙三人胜的场数相同,若甲,乙,丙各胜1场,则丁胜6﹣1×3=3场,即丁全胜,不合题意(甲胜了丁).若甲,乙,丙各胜2场,则丁胜6﹣2×3=0场,即丁全输,符合题意.【解答】解:由题意可知,每人要赛三场,共比赛4×3÷2=6场,由于甲,乙,丙三人胜的场数相同,若甲,乙,丙各胜1场,则丁胜6﹣1×3=3场,即丁全胜,不合题意(甲胜了丁).若甲,乙,丙各胜2场,则丁胜6﹣2×3=0场,即丁全输,符合题意.故选:D.6.甲、乙、丙、丁坐在同一排1号至4号的座位上,小红看着他们说:“甲的两边不是乙,丙的两边不是丁,甲的座位号比丙大.”那么,坐在1号座位的是()A.甲B.乙C.丙D.丁【分析】由题意知,一排1号至4号的座位上分别坐一人,由“甲的两边不是乙”可知甲跟丙、丁相邻,由“丙的两边不是丁”可知丙的两边是甲和乙,由此可得甲和丙是紧挨着的,再由“甲的座位号比丙大”可得甲和丙的位置关系应是“丙﹣甲”,再结合“丙的两边是甲和乙”可得:“乙﹣丙﹣甲”,由于甲跟丙、丁相邻,所以丁只能在4号座位上,这样四人在1号至4号的座位上的顺序就是:“乙﹣丙﹣甲﹣丁”,所以坐在1号座位的是乙;据此解答.【解答】解:由“甲的两边不是乙”可知甲跟丙、丁相邻,由“丙的两边不是丁”可知丙的两边是甲和乙,由此可得甲和丙是紧挨着的,再由“甲的座位号比丙大”可得甲和丙的位置关系应是“丙﹣甲”,再结合“丙的两边是甲和乙”可得:“乙﹣丙﹣甲”,由于甲跟丙、丁相邻,所以丁只能在4号座位上,这样四人在1号至4号的座位上的顺序就是:“乙﹣丙﹣甲﹣丁”,所以坐在1号座位的是乙;故选:B.二.填空题(共5小题)7.甲、乙、丙、丁4人站成一排,从左至右依次编号是1、2、3、4号,他们有如下对话:甲:我左右两人都比我高.乙:我左右两人都比我矮.丙:我是最高的.丁:我右边没有人.如果他们4人都是诚实的好孩子,那么甲、乙、丙、丁的编号按顺序组成的4位数是2314.【分析】4人都是诚实的好孩子,也就是4人都是说真话,丁说它的右边没有人,那么丁排在4号;再从甲乙的话可知甲乙都不排在1号,那么丙排在1号;又丙是最高的,所以他比排在2号的人要高,甲符合这个特征,所以甲排在2号,从而求解.【解答】解:首先根据“丁:我右边没有人”可以得出丁在4号;再根据“甲:我左右两人都比我高.乙:我左右两人都比我矮.”可知,甲乙两边都有人,那么丙排在1号;又丙是最高的,所以他比排在2号的人要高,甲符合这个特征,所以甲排在2号;剩下的乙排在3号;综上可知:甲、乙、丙、丁的编号按顺序组成的4位数是2314.故答案为:2314.8.小明、小亮、小光三人昨天和今天连续两天去肯德基吃饭.吃饭时,他们每人要的不是鸡块就是汉堡,并且(1)如果小明要的是鸡块,那么小亮要的就是汉堡;(2)小明或小光要的是鸡块,但是不会两人都要鸡块;(3)小亮和小光不会两人都要汉堡.已知三人中有一人昨天要鸡块,今天要汉堡.这个人是小亮.【分析】若小明要的是鸡块,则小亮与小光都要了汉堡,与(3)矛盾,所以小明要的是汉堡;则小光要的是鸡块,然后进一步解答即可.【解答】解:若小明要的是鸡块,则小亮与小光都要了汉堡,与(3)矛盾,所以小明要的是汉堡;则根据(1)小光只要的是鸡块,那么小亮要的是汉堡,也可以是鸡块;所以,已知三人中有一人昨天要鸡块,今天要汉堡.这个人是小亮.故答案为:小亮.9.小明碰到了三个人,其中一位是牧师、一位是骗子、一位是疯子.牧师只说真话,骗子只说假话,疯子有时说真话,有时说假话.第一位说:“我是疯子.”第二位说:“你胡说,你才不是疯子呢!”第三位说:“别说了,我是疯子.”一那么.这三个人中第3位是疯子.【分析】按题意,运用假设法,(1)假设第一位是疯子,则第二位是骗子,第三位也是骗子,矛盾;(2)假设第二位是疯子,则第一位是骗子,第三位也是骗子,矛盾;(3)假设第三位是疯子,则第一位是骗子,第二位是牧师,成立,最后不难得出结论.【解答】解:根据分析,(1)假设第一位是疯子,则第二位是骗子,第三位也是骗子,矛盾;(2)假设第二位是疯子,则第一位是骗子,第三位也是骗子,矛盾;(3)假设第三位是疯子,则第一位是骗子,第二位是牧师,成立,所以第三位是疯子.故答案是:3.10.有排成一排的四张扑克牌,正好是四种花色都有,A、K、Q、J各一张.并且已知(1)A的左边是红桃,右边是J;(2)K在Q的左边;(3)黑桃的左边是J,并且与方块不相邻.这四张牌分别是黑桃A,红桃Q,方块K,梅花J.【分析】由(1)(2)(3)先排出个别扑克牌的顺序,再根据它们之间的位置关系,推出问题的答案.【解答】解:由(1)可知顺序为:红桃,A,J;由(2)可知顺序:Q,K由(3)可知顺序:黑桃,J由(1)(3)知,A是黑桃.由(1)(2)(3)可知顺序:K,Q,A,J,由A的左边是红桃,可知Q是红桃.又因为黑桃与方块不相邻,因此J不是方块,只能是梅花,因此,K是方块.黑桃是A 红桃是Q,方块是K,梅花是J.故答案为:A,Q,K,J.11.甲、乙、丙、丁四人中只有1人会开汽车.甲说:“我会开”.乙说:“我不会开”.丙说:“甲不会开”.丁什么也没说.已知甲、乙、丙三人的话中只有一句是真话.会开车的是乙.【分析】据题意,假设结论(即会开车的分别是甲、乙或丙),然后根据他们所说的话,推出与题意矛盾的即为错误结论,从而得出正确答案.【解答】解:假设甲会开车,那么,甲和乙说的是真话,所以和已知矛盾,所以甲不会开车,假设乙会开车,那么甲和乙说的是假话,丙说的是真话,符合题意,假设丙会开车,那么乙和丙说的是真话,也和题意矛盾,所以,乙会开车.故答案为:乙.三.解答题(共4小题)12.小力比小強小兩歲,小強比小傑大4歲,小虎比小傑大3歲.小虎和小力誰大?【分析】小强比小杰大4岁,小虎比小杰大3岁,则小强比小虎大4﹣3=1岁,又小力比小强小两岁,2>1,所以小虎大.【解答】解:小强比小虎大4﹣3=1岁,又小力比小强小两岁,2>1,答:小虎大.13.动物大会上,小兔、小鹿、乌龟比高矮.小鹿说:“我比小兔高!”,乌龟说:“我不比小兔高!”猜一猜,三个小动物谁高谁矮.【分析】由小鹿说:“我比小兔高!”,乌龟说:“我不比小兔高!”,我们用大于号进行排列,小鹿>小兔,小兔>乌龟,所以,小鹿>小兔>乌龟.据此解答即可.【解答】解:由题意可知:小鹿>小兔小兔>乌龟所以小鹿>小兔>乌龟.所以小鹿最高,乌龟最矮.答:小鹿最高,乌龟最矮.14.有四个嫌疑犯;甲、乙、丙、丁,他们的话如下,甲说,我不是罪犯乙说,丁是罪犯丙说,乙说罪犯丁说,我不是罪犯以上四人只有一个人说假话,请问:谁是罪犯?【分析】因为他们中只有一个人讲的话错了,也就是只有一个人说了假话,从题中分析,因为乙、丙说的相矛盾,所以肯定乙和丙中有一人说了假话,如果是乙说真话,则和丁说的相矛盾,不符合题意,所以是乙说了假话,那么就说明其他三人说了真话,所以推断是乙是罪犯.【解答】解:乙、丙说的相矛盾,所以肯定乙和丙中有一人说了假话,如果是乙说真话,则和丁说的相矛盾,不符合题意,所以是乙说了假话,那么就说明其他三人说了真话,所以推断乙是罪犯.综上所述,罪犯一定是乙.答:乙是罪犯.15.甲、乙、丙、丁四个小朋友在楼下玩球,不小心把王奶奶家的玻璃打碎了,王奶奶问他们四人是谁打碎的,甲说:“是乙打碎了玻璃”.乙说:“是丁打的.”丙说:“不是我打的.”丁说:“乙说得不对.”如果这四人中只有丁说了实话,那么是谁打碎了玻璃?【分析】这四人中只有丁说了实话,那么根据“乙说是丁打的”可得:不是丁打的,那么只能是甲、乙、丙三个人中的一个,然后根据甲和丙说的话进行判断(甲丙说谎),从而得出结论.【解答】解:这四人中只有丁说了实话,那么根据丁说:“乙说得不对.”、乙说:“是丁打的.”可得:不是丁打的,那么只能是甲、乙、丙三个人中的一个;又因为甲说谎,所以可能是甲或丙;又因为丙也说谎,且丙说:“不是我打的.”,从而可以肯定是丙打碎了玻璃.答:是丙打碎了玻璃.第11页(共11页)。

小学奥数思维训练-逻辑推理问题(通用,含答案)

小学奥数思维训练-逻辑推理问题(通用,含答案)

小学奥数思维训练-逻辑推理问题学校:___________姓名:___________班级:___________考号:___________一、填空题1.填数使下列竖式成立:(1)(2)二、排序题2.200米赛跑,张强比李军快0.2秒,王明的成绩是39.4秒,赵刚的成绩比王明慢0.9秒,但比张强快0.1秒,林林比张强慢3秒,请你给这五人排出名次来。

三、解答题3.有三个和尚,一个讲真话,一个讲假话,另外一个有时讲真话,有时讲假话。

一天,一位智者遇到这三个和尚,他先问左边的那个和尚:“你旁边的是哪一位?”和尚回答说“讲真话的。

”他又问中间的和尚:“你是哪一位?”和尚答:“我是半真半假的。

”他最后问右边的和尚:“你旁边是哪一位?”答:“讲假话的。

”根据他们的回答,智者马上分清了他们,你能分清吗?4.一次全校数学竞赛,A、B、C、D、E五位同学取得了前五名,发奖后有人问他们的名次,回答是:A说:“B是第三名,C是第五名.”B说:“D是第二名,E是第四名.”C说:“A是第一名,E是第四名.”D说:“C是第一名,B是第二名.”E说:“D是第二名,A是第三名.”最后,他们都补充说:“我们的话半真半假.”请你判断一下他们每个人的名次.5.老师有一黑两白三顶帽子,给两个学生看后,让他们闭上眼睛,从中取出两顶给他们戴上,然后让他们睁开眼睛,互相看清对方戴的帽子,并立即说出自己头上戴的帽子是什么颜色,两位同学都不能立即说出,请问你知道这两位学生戴的各是什么颜色的帽子吗?6.曾实、张晓、毛梓青在一起,一位是工程师、一位是医师、一位是教师。

现在只知道:(1)毛梓青比教师年龄大;(2)曾实和医师不同岁;(3)医师比张晓年龄小。

你能确定谁是工程师?谁是医师?谁是教师吗?7.某公安人员需查清甲、乙、丙三人谁先进办公室,三人口供如下:甲:丙第二个进去,乙第三个进去。

乙:甲第三个进去,丙第一个进去。

丙:甲第一个进去,乙第三个进去。

小学奥数逻辑推理题及答案

小学奥数逻辑推理题及答案

【导语】逻辑推理能⼒是⼀种以敏锐的思考分析、快捷的反应、迅速地掌握问题的核⼼,在最短时间内作出合理正确选择的能⼒。

以下是⽆忧考整理的《⼩学奥数逻辑推理题及答案》相关资料,希望帮助到您。

1.⼩学奥数逻辑推理题及答案 A、B、C、D四⼈进⾏象棋⽐赛,每两⼈都要赛⼀场,结果A胜了D,并且A、B、C三⼈⽣的场数相同。

问D胜了机场? 解答: D⼀场没胜: 每两⼈都要赛⼀场,共有6场⽐赛。

A、B、C三⼈胜的场数相同,因此,A、B、C不可能全胜。

也不可能只胜⼀场,否则,D就胜了三场。

因此,A、B、C只可能各胜2场。

因此,D胜场数=6-2-2-2=0 2.⼩学奥数逻辑推理题及答案 1、张、王、吴三位⽼师都在某校任教,他们分别教⾳乐、体育、美术中的⼀科,其中: (1)张⽼师不教美术 (2)吴⽼师不会画画也不会唱歌。

你能说出三位⽼师各教什么课程吗? 2、三个盒⼦中有⼀个盒⼦放着珍珠,每个盒⼦上各写着⼀句话,但只有⼀句真话,其余都是谎话。

第⼀个盒⼦是红⾊的,上⾯写着:“珍珠在这⾥”;第⼆个盒⼦是蓝⾊的,上⾯写着“珍珠不在红盒⼦⾥”;第三个盒⼦是黄⾊的,上⾯写着:“珍珠不在这⾥”请问,珍珠到底在哪个盒⼦⾥? 答案解析: 1、吴⽼师教体育,张⽼师教⾳乐,王⽼师教美术。

2、珍珠在第三个盒⼦中;假设法,通过分析,第⼀个盒⼦与第⼆个盒⼦写的正好相反,说明⼀个是真话,⼀个是假话。

假设第⼀个盒⼦说的是对的,则第三个盒⼦“珍珠不在这⾥”也是对的,所以⽭盾,所以第⼀个盒⼦错的,第⼆个盒⼦对的,那么第三个盒⼦是错的,所以珍珠在第三个盒⼦中。

3.⼩学奥数逻辑推理题及答案 四年级有三个班,每班有两个班长,开班会时,每次每班只要⼀个班长参加。

第⼀次到会的有A,B,C;第⼆次到会的`有B,D,E;第三次到会的有A,E,F。

请问哪两位班长是同班的? ⽤数字"1"表⽰到会,⽤数字"0"表⽰没到会,可列下表 从第⼀次到会的情况看,A只能和D,E,F同班 从第⼆次到会的情况看,A只能和D,E同班 从第三次到会的情况看,A只能和D同班 利⽤上述表格,仿照上述⽅法,推出与B,C分别同班的同学。

小学奥数 逻辑推理 知识点+例题+练习 (分类全面)

小学奥数 逻辑推理 知识点+例题+练习 (分类全面)

拓展、□=○+○+○+○○×□=16 □=()○=()
例3、下面三块正方体的六个面都是按相同的规律涂有红、黄、蓝、白、绿、黑六种颜色。

请判断黄色的对面是什么颜色?白色的对面是什么颜色?红色的对面是什么颜色?
(A)



(B)


绿
(C)



拓展:一个正方体6个面上分别写着1、2、3、4、5、6。

根据下图摆放的三种情况,判断每个数字对面上的数字是几。

二、文字推理
例1、小王、小张和小李一位是工人,一位是农民,一位是教师,现在只知道:小李比教师年龄大;小王与农民不同岁;农民比小张年龄小。

问:谁是工人?谁是农民?谁是教师?
课后作业
1、☆+○=18 ☆=○+○☆=()○=()
2、○×□=16 □÷○=4 ○=()□=()
3、甲、乙、丙分别是来自中国、日本和英国的小朋友。

甲不会英文,乙不懂日语却与英国小朋友热烈交谈。

问:甲、乙、丙分别是哪国的小朋友?
4、根据一个正方体的三种不同的摆法,判断出相对的两个面上的字母各是什么?。

小学奥数之逻辑推理专题训练(附详解)

小学奥数之逻辑推理专题训练(附详解)

三年级奥数之逻辑推理专题训练:1、在三只盒子里,一只装有两个黑球,一只装有两个白球,还有一只装有黑球和白球各一个.现在三只盒子上的标签全贴错了.你能否仅从一只盒子里拿出一个球来,就确定这三只盒子里各装的是什么球?从标签为(黑+白)箱子里抽出一个球来,如果是黑球(白球),那么这个箱子里应该是两个黑球(白球),贴了(2黑)标签的箱子里应该是2白球(白+黑),贴了(2白)的箱子里应该是黑+白(2黑)2.甲、乙、丙、丁4位同学的运动衫上印有不同的号码.赵说:“甲是2号,乙是3号.”钱说:“丙是4号,乙是2号.”孙说:“丁是2号,丙是3号.”李说:“丁是l号,乙是3号.”又知道赵、钱、孙、李每人都只说对了一半.那么丙的号码是几号?应该是4号,假设甲是2号,则丁是1号,丙是3号,乙是2号,与甲重复,假设不成立。

假设乙是3号,则丙是4号,丁是2号,甲是1号。

符合要求。

3.某校数学竞赛,A,B,C,D,E,F,G,H这8位同学获得前8名.老师让他们猜一下谁是第一名.A说:“或者F是第一名,或者H是第一名.”B说:“我是第一名.”C说:“G 是第一名.”D说:“B不是第一名.”E说:“A说得不对.”F说:“我不是第一名,H也不是第一名.”G说:“C不是第一名.”H说:“我同意A的意见.”老师指出:8个人中有3人猜对了.那么第一名是谁?B和D两个人中一个对一个错,假设A对则H对E和F错,并且C、G错。

那么C是第一名,这样就和A说的矛盾,所以假设不成立。

所以A错且H错,则E 对F对,C、G也错,同样推出C是第一名。

4.某参观团根据下列条件从A,B,C,D,E这5个地方中选定参观地点:①若去A地,则也必须去B地;②B,C两地中至多去一地;③D,E两地中至少去一地;④C,D两地都去或者都不去;⑤若去E地,一定要去A,D两地.那么参观团所去的地点是哪些?假设C、D两地都去,则没去B地,再假设去了E地,则一定去了A地,也必须去B地,矛盾,所以没去E地,同样也没有去A地;假设C、D两地都不去,则去了E地,去了E地,一定要去A、D地,矛盾。

小学奥数逻辑推理题及答案

小学奥数逻辑推理题及答案

几道逻辑推理题(含答案)1.世界级的马拉松选手每天跑步不超过6公里。

因此,如果一名选手每天跑步超过6公里,它就不是一名世界级马拉松选手。

以下哪项与上文推理方法相同?(A)跳远运动员每天早晨跑步。

如果早晨有人跑步,则他不是跳远运动员。

(B)如果每日只睡4小时,对身体不利。

研究表明,最有价值的睡眠都发生在入睡后第5小时。

(C)家长和小孩做游戏时,小孩更高兴。

因此,家长应该多做游戏。

(D)如果某汽车早晨能起动,则晚上也可能起动。

我们的车早晨通常能启动,同样,它晚上通常也能启动。

(E)油漆三小时之内都不干。

如果某涂料在三小时内干了,则不是油漆。

2.19世纪有一位英国改革家说,每一个勤劳的农夫,都至少拥有两头牛。

那些没有牛的,通常是好吃懒做的人。

因此它的改革方式便是国家给每一个没有牛的农夫两头牛,这样整个国家就没有好吃懒做的人了。

这位改革家明显犯了一个逻辑错误。

下列选项哪个与该错误相类似?(A)天下雨,地上湿。

现在天不下雨,所以地也不湿。

(B)这是一本好书,因为它的作者曾获诺贝尔奖。

(C)你是一个犯过罪的人,有什么资格说我不懂哲学?(D)因为他躺在床上,所以他病了。

(E)你说谎,所以我不相信你的话;因为我不相信你的话,所以你说谎。

3.有一天,某一珠宝店被盗走了一块贵重的钻石。

经侦破,查明作案人肯定在甲、乙、丙、丁之中。

于是,对这四个重大嫌疑犯进行审讯。

审讯所得到的口供如下:甲:我不是作案的。

乙:丁是罪犯。

丙:乙是盗窃这块钻石的罪犯。

丁:作案的不是我。

经查实:这四个人的口供中只有一个是假的。

那么,以下哪项才是正确的破案结果?(A)甲作案。

(B)乙作案。

(C)丙作案。

(D)丁作案。

(E)甲、乙、丙、丁共同作案。

4.古代一位国王和他的张、王、李、赵、钱五位将军一同出外打猎,各人的箭上都刻有自己的姓氏。

打猎中,一只鹿中箭倒下,但不知是何人所射。

张说:"或者是我射中的,或者是李将军射中的。

"王说:"不是钱将军射中的。

小学奥数 逻辑推理 题集含答案

小学奥数 逻辑推理 题集含答案

小学奥数逻辑推理题集含答案一、填空题1. 甲、乙、丙三人进行跑步比赛.A、B、C三人对比赛结果进行预测.A说:“甲肯定是第一名.”B说:“甲不是最后一名.”C说:“甲肯定不是第一名.”其中只有一人对比赛结果的预测是对的.预测对的是 .2. A、B、C、D、E和F六人一圆桌坐下.B是坐在A右边的第二人.C是坐在F右边的第二人.D坐在E的正对面,还有F和E不相邻.那么,坐在A和B之间的是 .3. 甲、乙、丙、丁与小明五位同学进入象棋决赛.每两人都要比赛一盘,每胜一盘得2分,和一盘得1分,输一盘得0分.到现在为止,甲赛了4盘,共得了2分;乙赛了3盘,得了4分;丙赛了2盘,得了1分;丁赛了1盘,得了2分.那么小明现在已赛了盘,得了分.4. 曹、钱、刘、洪四个人出差,住在同一个招待所.一天下午,他们分别要找一个单位去办事.甲单位星期一不接待,乙单位星期二不接待,丙单位星期四不接待,丁单位只在星期一、三、五接待,星期日四个单位都不接待.曹:“两天前,我去误了一次,今天再去一次,还可以与老洪同走一条路.”钱:“今天我一定得去,要不明天人家就不接待了.”刘:“这星期的前几天和今天我去都能办事.”洪:“我今天和明天去,对方都接待.”那么,这一天是星期 ,刘要去单位,钱要去单位,曹要去单位,洪要去单位.5. 四位外国朋友住在十八层高的饭店里,他们分别来自埃及、法国、朝鲜和墨西哥.(1)A住的层数比C住的层数高,但比D住的层数低;(2)B住的层数比朝鲜人住的层数低;(3)D住的层数恰好是法国人住的层数的5倍;(4)如果埃及人住的层数增加2层,他与朝鲜人相隔的层数,恰好和他与墨西哥人相隔的层数一样;(5)埃及人住的层数是法国人和朝鲜人住的层数的和.根据上述情况,请你确定A是人,住在层;B是人,住在层;C是人,住在层;D是人,住在层.6. 小赵的电话号码是一个五位数,它由五个不同的数字组成.小张说:“它是84261.”小王说:“它是26048.”小李说:“它是49280.”小赵说:“谁说的某一位上的数字与我的电话号码上的同一位数字相同,就算谁猜对了这个数字.现在你们每人都猜对了位置不相邻的两个数字.”这个电话号码是 .7. 小赵的电话号码是一个五位数,它由五个不同的数字组成.小王说:“它是93715.”小张说:“它是79538.”小李说:“它是15239.”小赵说:“谁说的某一位上的数字与我的电话号码上的同一位数字相同,就算谁猜对了这个数字.现在你们三人猜对的数字个数都一样,并且电话号码上的每一个数字都有人猜对.而每个人猜对的数字的数位都不相邻”.这个电话号码是 .8. A、B、C、D四人定期去图书馆,四人中A、B二人每隔8天(中间空7天,下同)、C每隔6天、D每隔4天各去一次,在2月份的最后一天,四人刚好都去了图书馆,那么从3月1日到12月31日只有一个人来图书馆的日子有____ 天.9. 六年级六个班组织乒乓球单打比赛,每班派甲、乙两人参赛,根据规则每两人之间至多赛一场,且同班的两人之间不进行比赛.比赛若干场后发现,除一班队员甲以外,其他每人已比赛过的场数各不相同,那么一班队员乙已赛过____场.10. 人的血型通常为A型,B型,O型,AB型.子女的血型与其父母血型间的关系如下表所示:父母的血型子女可能的血型O,O OO,A A,OO,B B,OO,AB A,BA,A A,OA,B A,B,AB,OA,AB A,B,ABB,B B,OB,AB A,B,ABAB,AB A,B,AB现有三个分别身穿红,黄,蓝上衣的孩子,他们的血型依次为O,A,B.每个孩子的父母都戴着同颜色的帽子,颜色也分红,黄,蓝三种,依次表示所具有的血型为AB,A,O.那么穿红、黄、蓝上衣的孩子的父母戴帽子的颜色是、、 .二、解答题11. 刘毅、马宏明、张健三个男孩都有一个妹妹,六人在一起打乒乓球,进行男女混合双打,事先规定:兄妹不搭档.第一盘:刘毅和小萍对张健和小英;第二盘:张健和小红对刘毅和马宏明的妹妹.小萍、小红和小英各是谁的妹妹?12. 四位运动员分别来自北京、上海、浙江和吉林,在游泳、田径、乒乓球和足球四项运动中,每人只参加了一项,且四人的运动项目各个不相同,除此以外,只知道一些零碎情况:(1)张明是球类运动员,不是南方人;(2)胡老纯是南方人,不是球类运动员;(3)李勇和北京运动员、乒乓球运动员三人同住一个房间;(4)郑永禄不是北京运动员,年龄比吉林运动员和游泳运动员两人的年龄小;(5)浙江运动员没有参加游泳比赛.根据这些条件,请你分析一下:这四名运动员各来自什么地方?各参加什么运动?13. 老吴、老周、老杨分别是工程师、会计师和农艺师,还分别是业余作家、画家和音乐家,但不知道每人的职业及业余爱好,只知道:(1)业余音乐家、作家常和老吴一起看电影;(2)画家常请会计师讲经济学的道理;(3)老周一点也不爱好文学;(4)工程师埋怨自己对绘画、音乐一窍不通. 请你指出每个人的职业和爱好.14. 四个人聚会,每人各带了2件礼品,分赠给其余三个人中的二人,试证明:至少有两对人,每对人是互赠过礼品的.———————————————答 案——————————————————————1. CA 、C 的预测截然相反,必一对一错.因为只有一人对,不论A 、C 谁对,B 必 错,所以甲是最后一名,C 对. 2. E如右图,E 坐在A 、B 之间.3. 2,3.由题意可画出比赛图,已赛过的两人之间用线段引连(见右图).由图看出小明赛了2盘.因 为一共赛了六盘,共得12分,所以小明得了12-(2+4+1+2)=3(分).4. 三,丙,丁,甲,乙.由刘的讲话,知这一天是星期三,刘要去丙单位.钱要去丁单位,曹去的是甲单位,洪去的是乙单位.5. 埃及,8;法国,3;朝鲜,5;墨西哥,15.容易知道,墨西哥人住得最高,埃及人次之,朝鲜人又次之,法国人最低,各层次分别15,8,5和3.由(2)知B 是法国人,由(3)和D 是墨西哥人,由(1)知A 是埃及人,而C 是朝鲜人.6. 86240.因为每人猜对两个数字,三人共猜对 张:842±1 2⨯3=6(个)数字,而电话号码只有5位, 王:26048 所以必有一位数字被两人同对猜对.如右 李:49↑80图所示,猜对的是左起第三位数字2.因为每人猜对的两个数字不相邻,所以张、 李猜对的另一个数字分别在两端,推知王猜对的数字是6和4,进一步推知张猜对8,李猜对0.电话号码是86240. 7. 19735.因为每个数字都有人猜对,所以每人至少猜对两个数字.下页右上图中,同一甲丁小明位数中只有方框中的两个数相同,如果每人猜对的数字多于两位,相同的数字至少有3⨯3-5=4(组),所以每人恰好猜对两个数字. 王: 9 3 7 1 5三人共猜对2⨯3=6(个)数字,因为电话号码只有张: 7 9 5 3 85位,所以相同的一组是正确的,即左起第四位是李: 1 5 2 3 93.因为每人猜对的数字不相邻,所以张、李猜对的另一个数字都在前两位,王猜对的两个数字是7和5,进而推知张猜对9,李猜对1.电话号码是19735.8. 51天.):天, 306÷24=12…18,所以所求天数为4⨯12+3=51(天).9. 5根据题意,有11名队员比赛场数各不相同,并且每人最多比赛10场,所以除甲外的11名队员比赛的场数分别为0~10.已赛10场的队员与除已赛0场外的所有队员都赛过,所以已赛10场的队员与已赛0场的队员同班;已赛9场的队员与除已赛0、1场外的所有队员都赛过,所以已赛9场的队员与已赛1场的队员同班;同理,已赛8、7、6场的队员分别与已赛2、3、4场的队员同班;所以甲与已赛5场的队员同班,即乙赛过5场.注本题可以求出甲也赛了5场,分别与已赛10、9、8、7、6场的队员各赛1场.10. 蓝、黄、红.解法一题中表明,每个孩子的父母是同血型的.具有B型血的孩子,其父母同血型时,由表中可见,只能是B型或AB型,但题中没有同具B型血的父母,所以戴红帽子的父母的孩子穿蓝上衣.具有A型血的孩子的同血型的父母,只可能同为A型血或同为AB型血.今已知有一对父母为AB型血者,所以穿黄上衣的孩子的父母戴黄帽子.由表中可见,其孩子为O型血时,父母血型只能同为A型或B型或O型.今已知不具有同为B型血的父母,而同为A型血的父母的孩子已知具有A型血.把代表孩子的点与他的可能双亲的代表点之间连一直线段,便可得下面的图;由于孩子与其父母之间是唯一搭配的,所以,保存下来的只有连着红、蓝;黄,黄及蓝,红的三条边.所以,穿红上衣(O型血)孩子的父母戴蓝帽子.孩子衣服颜色父母帽子颜色(O型血)(AB型血)(A型血)(A型血)(B型血)(O型血)所以,穿红上衣的孩子的父母戴蓝帽子;穿黄上衣的孩子的父母戴黄帽子;穿蓝上衣的孩子的父母戴红帽子.,张健和小萍分别是兄妹.12.13.表解如下:由(3)北京运动员是乒乓球运动员, 故张是足球运动员郑是乒乓球运动员由(4)吉林运动员不是游泳运动员,故李是田径运动员,而胡是游泳运动员由(5)知胡是上海 运动员而郑是浙江运动员.张明是北京选手 李勇是吉林选手14. 设此四人为甲、乙、丙、丁并用画在平面上的四个点分别表示他们,称为它们的代表点,当某人(例如甲)赠了1件礼品给另一个(例如乙)时,就由甲向乙的代表点画一条有指向的线,无非有以下两个可能:(1)甲、乙、丙、丁每人各收到了2件礼品.(2)上面的情形不发生.这时只有以下一个可能,即有一个人接受了3件礼品 (即多于2件礼品;因为一人之外总共还有三个人,所以至多收到3件礼品).(或许会有人说,还有两个可能:有人只收到1件礼品及有人什么礼品也没收到.其实,这都可归以“有一人接受了3件礼品”这个情形.因为,当有一人(例如甲)只接受了1件礼品的情形发生时,四人共带来的8件礼品中还剩下7件在甲以外的三个人中分配,如果他们每人至多只收到2件礼品,则收受礼品数将不超过6件,这不可能,所以至少有一人收到2件以上(即3件)礼品,同样,当甲未收到礼品时,8件礼品分给乙、丙、丁三人,也必定有人收到3件礼品).当(1)发生时,例如甲收到乙、丙的礼品,由于甲发出的礼品中至少有1件给了乙或丙,为确切计,设乙收到了甲的礼品,于是我们先有了一对人:(甲、乙),他们互赠了礼品,如果丙也收到甲的礼品,那么又有了第二对互赠了礼品的人(甲、丙);如果收到甲礼品的另一人是丁(如右图)丁的2件礼品必定分赠了乙及丙(甲已收足了本情形中限定的2件礼品)丙或乙的另一件礼品给了丁,则问题也解决(这时另一对互赠了礼品的人便是(乙、丁)或(丙、丁)但丙的另一件礼品只能给丁,因为这时乙已收足了2件礼品,所以,当本情形发生时,至少能找到两对互赠过1件礼品的人.当(2)发生时,不失一般性,设甲收到了来自乙、丙、丁的各1件礼品,但甲又应向他们之中的某两人(例如乙、丙)各赠送1件礼品,于是(甲、乙),(甲、丙)便是要找的两对人.总上可知,证明完毕.老吴是业余画家,老周是业余音乐家,老杨是业余作家.工程师是老杨,会计师是老周农艺师是老吴.十八逻辑推理(B)一、填空题1. 从前一个国家里住着两种居民,一个叫宝宝族,他们永远说真话;另一个叫毛毛族,他们永远说假话.一个外地人来到这个国家,碰见三位居民,他问第一个人:“请问,你是哪个民族的人?”“匹兹乌图”.那个人回答.外地人听不懂,就问其他两个人:“他说的是什么意思?”第二个人回答:“他说他是宝宝族的.”第三个人回答:“他说他是毛毛族的.”那么,第一个人是族,第二个人是族,第三个人是族.2. 有四个人各说了一句话.第一个人说:“我是说实话的人.”第二个人说:“我们四个人都是说谎话的人.”第三个人说:“我们四个人只有一个人是说谎话的人.”第四个人说:“我们四个人只有两个人是说谎话的人.”请你确定第一个人说话,第二个人说话,第三个人说___ 话,第四个人说话.3. 某地质学院的三名学生对一种矿石进行分析.甲判断:不是铁,不是铜.乙判断:不是铁,而是锡.丙判断:不是锡,而是铁.经化验证明,有一个人判断完全正确,有一人只说对了一半,而另一人则完全说误了.那么,三人中是对的, 是错的, 只对了一半.4. 甲、乙、丙、丁四人参加一次数学竞赛.赛后,他们四个人预测名次的谈话如下:甲:“丙第一名,我第三名.”乙:“我第一名,丁第四名.”丙:“丁第二名,我第三名.”丁没说话.最后公布结果时,发现他们预测都只对了一半.请你说出这次竞赛的甲、乙、丙、丁四人的名次.甲是第名,乙是第名,丙是第名,丁是第名.5. 王春、陈则、殷华当中有一人做了件坏事,李老师在了解情况中,他们三人分别说了下面几句话:陈:“我没做这件事.殷华也没做这件事.”王:“我没做这件事.陈刚也没做这件事.”殷:“我没做这件事.也不知道谁做了这件事.”当老师追问时,得知他们都讲了一句真话,一句假话,则做坏事的人是 .6. 三个班的代表队进行N(N 2)次篮班比赛,每次第一名得a分,第二名得b分,第三名得c分(a、b、c为整数,且a>b>c>0).现已知这N次比赛中一班共得20分,二班共得10分,三班共得9分,且最后一次二班得了a分,那么第一次得了b分的是班.7. A、B、C、D四个队举行足球循环赛(即每两个队都要赛一场),胜一场得3分,平一场得1分,负一场得0分.已知:(1)比赛结束后四个队的得分都是奇数;(2)A队总分第一;(3)B队恰有两场平局,并且其中一场是与C队平局.那么,D队得分.8. 六个足球队进行单循环比赛,每两队都要赛一场.如果踢平,每队各得1分,否则胜队得3分,负队得0分.现在比赛已进行了四轮(每队都已与4个队比赛过),各队4场得分之和互不相同.已知总得分居第三位的队共得7分,并且有4场球赛踢成平局,那么总得分居第五位的队最多可得分,最少可得分.9. 甲、乙、丙、丁四个队参加足球循环赛,已知甲、乙、丙的情况列在下表甲与丁的比分为 ,丙与丁的比分为 .10. 某俱乐部有11个成员,他们的名字分别是A~K.这些人分为两派,一派人总说实话,另一派人总说谎话.某日,老师问:“11个人里面,总说谎话的有几个人?”那天,J和K休息,余下的9个人这样回答:A说:“有10个人.”B说:“有7个人.”C说:“有11个人.”D说:“有3个人.”E说:“有6个人.”F说:“有10个人.”G说:“有5个人.”H说:“有6个人.”I 说:“有4个人.”那么,这个俱乐部的11个成员中,总说谎话的有个人.二、解答题11. 甲、乙、丙三人,一个姓张,一个姓李和一个姓王,他们一个是银行职员,一个是计算机程序员,一个是秘书.又知甲既不是银行职员也不是秘书;丙不是秘书;张不是银行职员;王不是乙,也不是丙.问:甲、乙、丙三人分别姓什么?12. ←世界杯足球小组赛,每组四个队进行单循环比赛.每场比赛胜队得3分,败队记0分.平局时两队各记1分.小组全赛完以后,总积分最高的两个队出线进入下轮比赛.如果总积分相同,还要按小分排序.问:一个队至少要积几分才能保证本队必然出线?简述理由.↑在上述世界杯足球小组赛中,若有一个队只积3分,问:这个队有可能出线吗?为什么?13.有一个如图那样的方块网,每1个小方块里有1个人,在这些人中间,有人戴着帽子,有人没戴.每一个人都只能看见自己前方,后方和斜方的人的头,如图1所示A 方块里的人能看见8个人的头,B 方块里的人能看见5个人的头,C 方块里的人能看见3个人的头,自己看不见自已的头.在图2的方格中,写着不同方块里的人能看见的帽子的数量,那么,请在图中找出有戴帽子的人的方块,并把它涂成黑色.14. 某校学生中,没有一个学生读过学校图书馆的所有图书,又知道图书馆内任何两本书至少被一个同学都读过,问:能不能找到两个学生甲、乙和三本书A 、B 、C ,甲读过A 、B ,没读过C ,乙读过B 、C ,没读过A ?说明判断过程.———————————————答 案——————————————————————1. 宝宝,宝宝,毛毛.如果第一个人是宝宝族的,他说真话,那么他说的是“我是宝宝族的”.如果这个人是毛毛族的,他说假话,他说的还是“我是宝宝族的”.所以第二个人是宝宝族的,第三个人是毛毛族的.”2. 真,假,假,不确定.第二个人显然说的是假话.如果第三个人说的是真话,那么第四个人说的也是真话,产生矛盾.所以第三个人说假话.如果第四个人说真话,那么第一个人也说真话.如果第四个人说假话,那么只有第一个人说真话.所以可以确定第一个人主真话,第二、第三个人说假话,第四个人不能确定.3. 丙,乙,甲.如果甲的判断完全正确,那么乙说对了一半“不是铁,”所以这矿石也不是锡,这样丙也说对了一半,矛盾.如果乙的判断完全正确,那么甲对了一半,这矿石应是铜,丙也说对了一半,矛盾.所以丙的判断完全正确,而乙完全错了,甲只说对了一半.图1 图24. 三,一,四,二.假设甲说的“丙是第一名”正确,结果推出丙是第三名,矛盾,故甲说的第二句话是正确.由表中可知乙第一名,丁第二名,甲第三名,则第四名是丙.×5. 陈刚.如果王春做了坏事,则陈刚的两句话都是真话,不合题意;如果殷华做了坏事,则王春的两句话都是真话,不合题意;如果陈刚做了坏事,符合题意.所以陈刚做了坏事.6. 三.N次比赛共得20+10+9=39(分),39=3⨯13,所以共进行了3次比赛,每次比赛共得13分,即a+b+c=13.因为一班3次比赛共得20分,20÷3=6…2,所以a≥7,a,b,c可能组合为7、5、1;7、4、2;8、4、1;8、3、2;9、3、1,考虑到3次比赛得20分,只有a=8、b=4、c=1时才有可能,由此推知三个班3次比赛7. 3B队得分是奇数,并且恰有两场平局,所以B队是平2场胜1场,得5分.A队总分第1,并且没有胜B队,只能是胜2场平1场(与B队平),得7分.因为C队与B队平局,负于A队,得分是奇数,所以只能得1分.D队负于A、B队,胜C队,得3分.8. 3,1.共赛了4⨯6÷2=12(场),其中平了4场,分出胜负的8场,共得3⨯8+2⨯4=32(分).因为前三位的队至少共得7+8+9=24(分),所以后三位的队至多共得32-24=8(分).又因为第四位的队比第五位的队得分多,所以第五位的队至多得3分.因为第六位的队可能得0分,所以第五位的队至少得1分(此时这两队之间必然没有赛过).9. 3:2,3:4.由乙队共进2球,胜2场平1场推知,乙队胜的两场都是1:0,平的一场是0:0.由甲队与乙队是0:0,甲队与丙队未赛,推知甲队所有的进球都来自与丁队的比赛,所以甲队与丁队是3:2.由丙队与乙队是0:1,丙队与甲队未赛,所以丙队与丁队是3:4.10 9.因为9个人回答出了7种不同的人数,所以说谎话的不少于7人.若说谎话的有7人,则除B外,其他回答问题的8人均说了谎话,与假设出现矛盾;若说谎话的有8人,则回答问题的9人均说了谎话,出现矛盾;若说谎话的有10人,则只能1人说实话,而A和F都说了实话,出现了矛盾;若说谎话的有11人,则没有说实话的,而E说了实话,出现矛盾;显然说谎话的有9人,回答问题的9人均说谎话,休息的两人说实话.11. 根据题意有关条件,用“√”表示是、“Х”表示不是,列表所示.这样,可12. ←四个队单循环赛共6场比赛,每场均有胜负,6场最多共计18分.若该队积7分,剩下的11分被3个队去分,那么,不可能再有两个队都得7分,即至多再有一个队可得7分以上.这样该队可以出线.其次,如果该队积6分,则剩下12分,可能有另两队各得6分.如果这另两队小分都比该队高,该队就不能出线了.所以,一个队至少要积7分才能保证必然出线.↑有可能出线.当6场比赛都是平局时,4个队都得3分,这时两个小分最高的队可以出线.如果这个队恰属于两个小分最高的队,那么这个队就会出线.13.答案如右图所示←站在第一行第五列的人能看见1顶帽子,说明他周围的3人中有2人没戴帽子.↑站在第二行第四列的人能看见7顶帽子,说明他周围的8人中只有1人没戴帽子,综合结论←可知他本人没有戴帽子.→站在第二行第五列的人能看到4顶帽子,且他周围的五人中已有1人没戴帽子,说明其余4人均戴帽子,根据结论←可知他本人没戴帽子.↓利用上下对称原理可以分析出:站在第四行、第五行后三列的6个人中,只有第四行第四列、第五列两人没戴帽子,其他人均戴帽子.︒站在第四行第二列的人能看到7顶帽子,说明他周围的8人中只有1人没戴帽子.±站在第三行第1列的人能看见1顶帽子,说明他周围的5人中只有1人戴帽子.综合结论︒可知:这1人不可能是第二行第1、2列的人,也不可能是第四行第二列的人.所以只能是站在第三行第二列的人或第四行第1列的人."站在第五行第1列的人能看到2顶帽子,说明结论±所说戴帽子的人站在第四行第一列.≥站在第二行第二列的人能看到6顶帽子,说明站在第一行第1、2列的2人都戴帽子.14. 解法一首先从读书数最多的学生中找一人叫他为甲,由题设,甲至少有一本书C未读过,设B是甲读过的书中的一本,根据题设,可找到学生乙,乙读过B、C.由于甲是读书数最多的学生之一,乙读书数不能超过甲的读书数,而乙读过C书,甲未读过C书,所以甲一定读过一本书A,乙没读过A书,否则乙就比甲至少多读过一本书,这样一来,甲读过A、B,未读过C;乙读过B、C,未读过A.因此可以找到满足要求的两个学生.解法二将全体同学分成两组.若某丙学生所读的所有的书,都被另一同学全部读过,而后一同学读过的书中,至少有一本书,丙未读过,则丙同学就分在第一组.另外,凡一本书也未读过的同学也分在第一组,其余的同学就分在第二组.按照以上分组方法,不可能将全体同学都分在第一组,因为读书数最多的同学一定在第二组.在第二组中,任找一位同学叫做甲,由题设有书C,甲未读过.再从甲读过的书中任找一本书叫做B,由题设,可找到同学乙,乙读过B、C书,由于甲属于第二组,所以甲一定读过一本书A,乙未读过A,否则甲只能分在第一组.这样,甲读过A、B,未读过C;乙读过B、C,未读过A.。

趣味奥数题6年级逻辑推理

趣味奥数题6年级逻辑推理

趣味奥数题6年级逻辑推理一、题目。

1. 甲、乙、丙三人进行跑步比赛。

甲说:“我跑得不是最快的,但比丙快。

”请你说出他们三人的跑步速度顺序。

- 解析:根据甲说的话,甲不是最快的且比丙快,那么最快的只能是乙,其次是甲,最后是丙。

所以三人的速度顺序为乙>甲>丙。

2. 有A、B、C、D四位同学参加数学竞赛。

他们对自己的成绩进行了预测。

A 说:“我肯定得第一名。

”B说:“我不会得最后一名。

”C说:“我不可能得第一名。

”D说:“我肯定得最后一名。

”竞赛结果出来后,发现他们四人中只有一人预测错误。

那么谁预测错误了呢?- 解析:假设A预测错误,那么A不是第一名,C说自己不可能得第一名是正确的,D说自己肯定得最后一名是正确的,B说自己不会得最后一名也是正确的,这样就符合只有一人预测错误;假设B预测错误,那么B就是最后一名,可是D说自己是最后一名,这样就矛盾了;假设C预测错误,那么C就是第一名,这与A说自己是第一名矛盾;假设D预测错误,那么D不是最后一名,B说自己不是最后一名,这样就没有人是最后一名了,也矛盾。

所以A预测错误。

3. 张、王、李三位老师分别教语文、数学、英语。

已知:张老师不教英语;王老师不教语文;教英语的老师不教数学;教语文的老师和王老师是好朋友。

请问三位老师分别教什么科目?- 解析:由可知张老师不教英语;由可知王老师不教语文;由可知王老师不教语文。

从知道教英语的老师不教数学,那么英语老师只能教语文或者英语。

假设张老师教语文,因为王老师不教语文,教英语的老师不教数学,所以王老师教数学,李老师教英语;假设张老师教数学,因为张老师不教英语,王老师不教语文,所以王老师教英语,李老师教语文。

4. 有红、黄、蓝、白、黑五种颜色的小球,它们之间的关系是:红色球比白色球大;蓝色球比黄色球大且比黑色球小;黄色球比白色球大;黑色球比红色球小。

请按照球的大小顺序排列这五种颜色的球。

- 解析:由可知黄<蓝<黑;由可知白<红;由可知白<黄;由可知黑<红。

小学奥数逻辑推理题及答案

小学奥数逻辑推理题及答案

小学奥数逻辑推理题及答案1.世界级的马拉松选手每天跑步不超过6公里。

因此,如果一名选手每天跑步超过6公里,它就不是一名世界级马拉松选手。

推理方法相同的选项是:(E) 油漆三小时之内都不干。

如果某涂料在三小时内干了,则不是油漆。

改写:油漆一般需要三小时以上才能干透,如果某种涂料在三小时内干了,那么它就不是油漆。

2.19世纪有一位英国改革家说,每一个勤劳的农夫,都至少拥有两头牛。

那些没有牛的,通常是好吃懒做的人。

因此它的改革方式便是国家给每一个没有牛的农夫两头牛,这样整个国家就没有好吃懒做的人了。

相类似的选项是:(B) 这是一本好书,因为它的作者曾获诺贝尔奖。

改写:这本书的作者曾获得诺贝尔奖,因此它是一本好书。

3.有一天,某一珠宝店被盗走了一块贵重的钻石。

经侦破,查明作案人肯定在甲、乙、丙、丁之中。

于是,对这四个重大嫌疑犯进行审讯。

审讯所得到的口供如下:甲:我不是作案的。

___:丁是罪犯。

丙:乙是盗窃这块钻石的罪犯。

___:作案的不是我。

经查实:这四个人的口供中只有一个是假的。

那么,以下哪项才是正确的破案结果?正确的破案结果是:(B) 乙作案。

改写:在四个嫌疑犯的口供中,只有一个是假的,而乙嫌疑犯说丁是罪犯,因此乙是作案人。

4.古代一位国王和他的___、___、___、___、钱五位将军一同出外打猎,各人的箭上都刻有自己的姓氏。

打猎中,一只鹿中箭倒下,但不知是何人所射。

___说:"或者是我射中的,或者是___射中的。

"___:"不是___射中的。

"___:"如果不是___射中的,那么一定是王将军射中的。

"___:"既不是我射中的,也不是___射中的。

"钱说:"既不是___射中的,也不是___射中的。

"国王让人把射中鹿的箭拿来,看了看,说:"你们五位将军的猜测,只有两个人的话是真的。

"正确的结论是:(A) ___射中此鹿。

小学奥数之逻辑推理题(详细解析)

小学奥数之逻辑推理题(详细解析)

小学奥数之逻辑推理题(详细解析)1、有500人聚会,其中至少有一人说假话,这500人里任意两个人总有一个(即总有人)说真话。

说真话的有多少人?说假话的有多少人?分析:任意2个人都有人说真话,说明说假话的必须≤1人,又因为题目说了,至少有一人说假话即说假话的人≥1人,所以满足≤1和人≥1,可见说假话的只能是1人,所以说真话的有500-1=499人。

2、某次考试考完后,A、B、C、D四个同学猜测他们的考试成绩。

A说:“我肯定考得最好”。

-------(1)|B说:“我不会是最差的”。

-------(2)C说:“我没有A考得好,但也不是最差的”。

--------(3)D说:“可能我考得最差。

”-------(4)成绩一公布,只有一人说错了。

请你按照考试分数由高到低排出他们的顺序。

分析:假设法。

假设A是最差的,那么第(1)和(2)都是错的话。

矛盾了。

假设B是最差的,那么第(2)和(4)都是错的话。

矛盾了。

假设C是最差的,那么第(3)和(4)都是错的话。

矛盾了。

、所以证明了D是最差的。

那么第(4)句话是对的。

第(2)句话也是对的,第(1)句话和第(3)句话必须一个对一个错,如果第(1)是对的,那么第(3)一定对,那么四个都是对的话,矛盾了。

所以:第(1)句话是错的,第(3)必须对的。

根据D是最差的,A不是最好的,C是对的,C比A差,所以只有B才是最好的。

所以A 是第二好,C是第三好,D是最差的。

由高到低排列为:B、A、从、D。

3、王涛、李明、江兵三人在一起谈话。

他们当中一位是校长,一位是老师,一位是学生家长。

现在只知道:(1)江兵比家长年龄大。

(2)王涛和老师不同岁。

(3)老师比李明年龄小。

你能确定谁是校长、谁是老师、谁是家长吗?:分析:第(2)和第(3)中,老师不是李明也不是王涛,所以老师是江兵。

因为江兵是老师,所以第(3)句话中证明了:江兵比李明小,结合第(1)句话中“江兵比家长大”,说明“李明”不是家长,是校长。

小升初数学奥数必考(逻辑推理题)

小升初数学奥数必考(逻辑推理题)

小升初数学奥数必考(逻辑推理题)
1.有三个盒子,分别标有“苹果”、“橙子”、“苹果和橙子”,但实际上每个盒
子的标签都错了。

你只能打开一个盒子看里面的东西,然后重新贴上正确的标签,怎么做?
2.有三个开关,分别控制三盏灯,你只能进入房间一次,如何确定哪个开关
控制哪盏灯?
3.有10个球,其中9个重量相同,1个较重,用天平称三次,找出那个较重
的球。

4.有100个囚犯和100个盒子,每个盒子里有一张纸条,上面写着一个囚犯
的名字。

每个囚犯可以打开最多50个盒子,如果所有囚犯都能找到自己的名字,他们就能全部获释。

设计一种策略,使他们获胜的概率尽可能大。

5.有100个瓶子,其中一瓶有毒,毒药在24小时内会致死。

你有10只小白
鼠,如何在24小时内找出那瓶有毒的瓶子?
6.甲乙两人同时从A地出发前往B地,甲的速度是每小时5公里,乙的速度
是每小时4公里,甲比乙早到1小时,求AB两地的距离。

7.一辆汽车以每小时60公里的速度行驶,行驶了3小时后,速度提高到每
小时80公里,再行驶2小时,求总行驶距离。

8.一个水池有两个进水管,单独开第一个管需要4小时注满水池,单独开第
二个管需要6小时注满水池,两个管同时开需要多少时间注满水池?9.一家商店打折销售商品,原价100元的商品打8折后再打9折,最终售价
是多少?
10.一个长方体的长、宽、高分别为3、4、5,求其体积和表面积。

小学奥数逻辑推理练习题及答案

小学奥数逻辑推理练习题及答案

小学奥数逻辑推理练习题及答案1. 问题:下列是一道逻辑推理题,请选择正确的答案。

问题:蓝色、黄色和红色的旗帜分别代表国家A、B和C,以下是三个旗帜的信息:- A国的旗帜不是蓝色。

- B国的旗帜不是黄色。

- C国的旗帜不是红色。

结论:根据以上信息,以下结论正确的是:A. A国的旗帜是黄色。

B. B国的旗帜是蓝色。

C. C国的旗帜是红色。

D. A国的旗帜是蓝色。

答案:B. B国的旗帜是蓝色。

2. 问题:下列是一道逻辑推理题,请选择正确的答案。

问题:五位老师正在一起讨论他们教的学科和身高的关系,以下是一些信息:- 老师A比老师B矮,但比老师C高。

- 老师D比老师C矮,但比老师E高。

结论:根据以上信息,以下结论正确的是:A. 老师B比老师E矮。

B. 老师A比老师D矮。

C. 老师C比老师B高。

D. 老师A比老师C高。

答案:C. 老师C比老师B高。

3. 问题:下列是一道逻辑推理题,请选择正确的答案。

问题:请根据下面的数字序列推断下一个数字:1, 4, 9, 16, 25, __结论:根据以上数字序列,下一个数字应该是:A. 30B. 36C. 42D. 49答案:B. 364. 问题:下列是一道逻辑推理题,请选择正确的答案。

问题:小明、小红、小李和小刚四人排成一排,以下是一些信息: - 小明在小李的左边。

- 小红在小刚的右边。

结论:根据以上信息,以下结论正确的是:A. 小刚在小红的左边。

B. 小红在小李的右边。

C. 小明在小刚的左边。

D. 小红在小明的左边。

答案:C. 小明在小刚的左边。

5. 问题:下列是一道逻辑推理题,请选择正确的答案。

问题:请根据下面的图形选择正确的图形以继续图形序列:图形序列:△, ▢, ◯, __结论:根据以上图形序列,以继续序列的正确图形是:A. △B. ▢C. ◯D. ■答案:D. ■通过以上五个小学奥数逻辑推理练习题及答案的讲解,我们可以锻炼孩子们的逻辑思维和推理能力。

这些题目涵盖了不同类型的逻辑推理问题,包括旗帜推理、身高排列、数字序列推断、人物排列和图形推理。

小学生奥数逻辑推理练习题(精选)

小学生奥数逻辑推理练习题(精选)

1.小学生奥数逻辑推理练习题1、有三个小朋友们在谈论谁做的好事多。

冬冬说:“兰兰做的比静静多。

”兰兰说:“冬冬做的比静静多。

”静静说:“兰兰做的比冬冬少。

”这三位小朋友中,谁做的好事最多?谁做的好事最少?分析与解答:我们用“>”来表示每个小朋友之间做好事多少的关系。

兰兰>静静冬冬>静静冬冬>兰兰所以,冬冬>兰兰>静静,冬冬做的好事最多,静静做的最少。

2、甲、乙、丙、丁四个人同时参加数学竞赛。

最后:甲说:“丙是第一名,我是第三名。

”乙说:“我是第一名,丁是第四名。

”丙说:“丁是第一名,我是第三名。

”丁没有说话。

成绩揭晓时,大家发现甲、乙、丙三个人各说对了一半。

你能说出他们的名次吗?分析与解答:推理时,必须以“他们都只说对了一半”为前提。

为了帮助分析,我们可以借助图表进行分析。

(1)乙说“我是第一名”也是错的,而乙说“丁是第四名”是对的。

(2)由丁是第四名推出丙说“丁是第二名”是错的,根据条件,丙说“我是第三名”是对的。

(3)这样,丙既是第一名,又是第三名,自然是错的。

重新推理:(1)由甲说的“我是第一名”推出丙说的“我是第三名”是错的,而丙说的“我是第一名”是对的。

2.小学生奥数逻辑推理练习题A、B、C、D四人在一场比赛中得了前4名。

已知D的名次不是,但它比B、C 都高,而C的名次也不比B高。

问:他们各是第几名?解答:D名次不是,但比B、C高,所以它是第2名,A是第1名。

C的名次不比B 高,所以B是第3名,C是第4名。

3.小学生奥数逻辑推理练习题甲乙丙丁各自参加篮球、排球、足球和象棋。

现在知道:(1)甲的身材比排球运动员高。

(2)几年前,丁由于事故,失去了双腿。

(3)足球运动员比丙和篮球运动员都矮。

猜猜就甲乙丙丁各参加什么项目?解:由(2)可知丁肯定是象棋运动员,由(1)(3)可知甲不是排球和足球运动员,那么甲只能是篮球运动员,由(3)可知丙不是足球运动员,那么只能是排球运动员了,剩下的乙就是足球运动员了。

小学生奥数逻辑推理练习题5篇

小学生奥数逻辑推理练习题5篇

【导语】逻辑思维是指将思维内容联结、组织在⼀起的⽅式或形式。

思维是以概念、范畴为⼯具去反映认识对象的。

以下是⽆忧考整理的《⼩学⽣奥数逻辑推理练习题5篇》相关资料,希望帮助到您。

1.⼩学⽣奥数逻辑推理练习题 1.有五个⼈各说了⼀句话。

第⼀个⼈说:“我们中间每个⼈都说谎”。

第⼆个⼈说:“我们中间只有⼀个⼈说谎”。

第三个⼈说:“我们中间有两个⼈说谎”。

第四个⼈说:“我们中间有三个⼈说谎”。

第五个⼈说:“我们中间有四个⼈说谎”。

请问,他们谁说谎话,谁说真话? 2.某地质学院的三名学⽣对⼀种矿⽯进⾏分析。

甲判断:不是铁,不是铜。

⼄判断:不是铁,不是锡。

丙判断:不是锡,⽽是铁。

经化验证明,有⼀个⼈判断完全正确,有⼀个⼈只说对了⼀半,⽽另⼀个则完全说错了。

你知道三⼈中谁是对的,谁是错的,谁是只对了⼀半的吗? 2.⼩学⽣奥数逻辑推理练习题 1.五个旅游者在海滨交谈。

甲:“我从A城来,⼄A城来,丙从B城来”。

⼄:“我从C城来,戊从C城来,丙从B城来”。

丙:“我不从B城来,甲不从D城来,丁从E城来”。

丁:“我⽗亲从A城来,我母亲从D城来,我从F城来”。

戊:“甲从A城来,⼄从A城来,我从F城来”。

如果他们每⼈都说了两句真话,⼀句假话,你能判断每⼀个⼈各来⾃哪个城市吗? 2.在⼀次有3⼈参加的讲话中,⼩张指责⼩王和⼩李:“你们都在说谎。

”⼩李却说:“⼩张正在说谎。

”⼩王则说:“⼩李正在说谎。

”试判断他们谁讲的是真话,谁讲的是假话? 前⼋名,⽼师让他们猜⼀下谁是第⼀名。

A:“或者F是第⼀名,或者H是第⼀名。

” B:“我是第⼀名。

” C:“G是第⼀名。

” D:“B不是第⼀名。

” E:“A说的不对。

” F:“我不是第⼀名,H也不是第⼀名”。

G:“C不是第⼀名。

” H:“我同意A的意见。

” ⽼师指出,⼋⼈中有三⼈猜对了,那么谁是第⼀名?3.⼩学⽣奥数逻辑推理练习题 1.A、B、C、D、E、F六年⾜球队进⾏⽐赛,每队都已赛过三场。

小学奥数部分—简单的逻辑推理及习题答案全解

小学奥数部分—简单的逻辑推理及习题答案全解

简单的逻辑推理1、A、B、C、D四人,已知B不是最高的,但他比A、D高,而A不比D高,请把他们按高矮排列。

2、甲、乙、丙、丁四人同时参加了读书竞赛,赛后他们各自预测名次,甲说:“丙第一名,我第三名。

”乙说:“我第一名,丁第四名。

”丙说:“丁第二名,我第三名。

”丁没说话。

最后成绩公布时,发现他们的预测都只对了一半。

那么,这次竞赛他们的名次分别是什么?3、有一次上课坐在一个小组的三个人中有人讲话,小张指责小王和小李:“你们都在说谎。

”小李却说:“小张正在说谎。

”小王则说:“小李正在说谎。

”他们中只有1个人讲的是真话,试问:谁讲的是真话,谁讲的是假话?4、甲、乙、丙、丁四位同学的校服上印有不同的号码。

赵同学说:甲是2号,乙是3号。

钱同学说:丙是2号,乙是4号。

孙同学说:丁是2号,丙是3号。

李同学说:丁是1号,乙是3号。

已知赵、钱、孙、李每人都说对了一半,那么丙是几号?5、甲、乙、丙三人对晓明的藏书数目作了一个估计,甲说:他至少有1000本书。

乙说:他的书不到1000本。

丙说:他最少有1本书。

这三个人的估计中只有一句是对的。

晓明究竟有多少本书?6、小利、小江、小敏、小磊四个同学,有一个同学在英语竞赛中获奖,其余同学问他们谁是获奖者,小利说:我不是,小江说:是小磊,小敏说:是小江,小磊说:不是我。

他们当中只有一个人没有说真话,那么获奖者是谁?7、有三名学生在看1、2、3号运动员进行“羽毛球冠军争夺赛。

”赛前,对于谁会得“冠军”称号,三名学生都说了两句话:甲说:不是2号,是3号。

乙说:不是2号,是1号。

丙说:不是3号,是2号。

比赛结果表明,他们的话有一人全对,有一人对一半错一半,另一人全错。

请你想一想,冠军是谁?8、有三位老师比年龄,他们每人说的3句话中有2句是对的,请你分析一下他们各有多少岁?刘老师:我22岁,比小陈小2岁,比小李大1岁。

陈老师:我不是年龄最小的,小李和我相差3岁,小李是25岁。

李老师:我比小刘小,小刘23岁,小陈比小刘大3岁。

四年级逻辑推理题目

四年级逻辑推理题目

四年级逻辑推理题目
一、简单的人物关系推理
1. 题目
- 甲、乙、丙三人分别是医生、教师和警察。

已知甲不会看病,丙不会上课,乙经常抓小偷。

请你判断甲、乙、丙三人的职业。

2. 解析
- 根据“乙经常抓小偷”,可以直接判断出乙是警察。

- 然后,因为甲不会看病,那么甲就不是医生,又因为乙已经是警察了,所以甲只能是教师。

- 丙不是教师(甲是教师),也不是警察(乙是警察),所以丙是医生。

二、数字推理中的逻辑
1. 题目
- 在下面的数列中,1,3,6,10,15,(),28。

请找出括号里的数字。

2. 解析
- 观察这个数列,可以发现:
- 3 - 1 = 2;
- 6 - 3 = 3;
- 10 - 6 = 4;
- 15 - 10 = 5。

- 由此可以推断出这个数列的规律是相邻两个数的差依次递增1。

那么括号里的数与15的差应该是6。

- 所以括号里的数是15 + 6 = 21。

三、关于物体特征的逻辑推理
1. 题目
- 有红、黄、蓝三个盒子,其中一个盒子里有一个苹果。

红盒子上写着“苹果不在我这里”,黄盒子上写着“苹果在红盒子里”,蓝盒子上写着“苹果不在我这里”。

已知只有一个盒子上写的是真话,那么苹果在哪个盒子里?
2. 解析
- 红盒子说“苹果不在我这里”,黄盒子说“苹果在红盒子里”,这两句话相互矛盾。

- 因为矛盾关系必有一真一假,而题目中说只有一个盒子上写的是真话,所以真话就在红盒子和黄盒子的话中。

- 那么蓝盒子上写的“苹果不在我这里”就是假话,所以苹果在蓝盒子里。

小学奥数系列8-3-1逻辑推理(三)及参考答案

小学奥数系列8-3-1逻辑推理(三)及参考答案

小学奥数系列8-3-1逻辑推理(三)一、1. 、、、、五人参加乒乓球比赛,每两个人都要赛一盘,并且只赛一盘,规定胜者得分,负者不得分,已知比赛结果如下:①与并列第一名②是第三名③和并列第四名。

求得多少分?2. 班上四名同学进行跳棋比赛,每两名同学都要赛一局.每局胜者得分,平者各得分,负者得分.已知甲、乙、丙三名同学得分分别为分、分、分,且丙同学无平局,甲同学有胜局,乙同学有平局,那么丁同学得分是多少?3. 甲、乙、丙、丁四人进行象棋比赛,每两个都比赛一场,规定胜者得分,平局各得分,输者得分.结果甲第一,乙、丙并列第二,丁最后一名,那么乙得几分?4. 10个队进行循环赛,胜队得2分,负队得1分,无平局.其中有两队并列第一,两队并列第三,有两个队并列第五,以后无并列情况.请计算出各队的得分.5. 四个同学参加网上棋类比赛,每两个人都要赛一场.规定如下:胜者得分,负者不得分,平局得分.比赛结果如下:两名同学并列第一名,两名同学并列第三名.已知比赛中有平局,那么第一名同学得多少分?6. 四名棋手两名选手都要比赛一局,规则规定胜一局得分,平一局得分,负一局得分.比赛结果,没有人全胜,并且各人的总分都不相同,那么至少有几局平局?7. 、、、、、六个足球队进行单循环比赛,每两个队之间都要赛一场,且只赛一场.胜者得3分,负者得0分,平局每队各得1分.比赛结果,各队得分由高到低恰好为一个等差数列,获得第3名的队得了8分,那么这次比赛中共有________场平局.8. 五个运动队参加商业足球比赛.原计划每两个队都要比赛一场,但由于经费不足,取消了其中一些比赛场次,最终发现各个队所得的积分各不相同,而且从积分表上看,没有一个队的积分为0.积分的计算办法是:每赢一场得3分,每输一场得0分,每平一场得1分.试问,这次比赛最少可能有________场.9. 三(一)班的同学在周末举行象棋比赛,规定赢局得分,输局倒扣分,平局各得分.小晴共参加了局比赛,结果胜了局,平了局,那么小晴的最后得分是多少?10. 、、、四个队举行足球循环赛(即每两个队都要赛一场),胜一场得3分,平一场得1分,负一场得0分.已知:⑴比赛结束后四个队的得分都是奇数;⑵队总分第一;⑶队恰有两场平局,并且其中一场是与队平局.那么,队得________分.11. 5个足球队进行比赛,每个球队都与其他球队各比一场,胜方得3分,负方得0分,平局各得1分.最后四个队分别得1分、2分、5分和7分,那么第五个队得________分.12. 甲、乙、丙、丁四个足球队进行单循环赛,就是每两个队之间都要比一场,胜者得3分,负者得0分,平者各得1分.比赛结束后,甲队共得6分,乙队共得4分,丙队共得2分,那么丁队共得________分.13. 四个足球队进行单循环比赛,规定胜一场得分,平一场得分,负一场得分,有一个队没输过,但却排名倒数第一,你觉得有可能吗?如果可能,请举出这种情况何时出现,如果不可能,请你说明理由.14. 德国队、意大利队、荷兰队进行一次足球比赛,每队与另两支队各赛一场。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学奥数简单逻辑推理练习
一、填空题
1、甲、乙、丙三名教师分别来自北京、上海、广州,分别教数学、语文和英语。

已知(1)甲不是北京人,乙不是上海人;(2)北京的教师不教英语;(3)上海的教师教数学;(4)乙不教语文。

那么丙教。

2、三人的运动衫上印有不同的号码,孙说:“甲是1号,乙是3号”;李说:“乙是2号,丙是1号”;王说:“丙是3号,乙是1号”。

已知每人只说对一半,那么甲是号,乙是号,丙是号。

3、丁丁把两张纸片团起来握在手中,请甲、乙、丙三个小朋友猜哪只手里有纸片。

甲说:“左手没有,右手有。

”乙说:“右手没有,左手有。

”丙说:“不会两手都没有,我猜左手没有。

”丁说,三人中有一个全说错了,一人全说对了,一人对一半错一半,那么纸片在丁
4、如右图有四个立方体,每个立方体的六个面上A、B、
C、D、E、F六个字母的排列顺序完全相同。

那么字母A
的对面是。

字母B的对面是。

字母C的对面
是。

5、四张扑克牌排成一排,四种花色都有,A、K、Q、J各一张。

(1)A的左边是红桃,右边是J;(2)K在Q的左边;(3)黑桃的左边是J,且与方块不相邻。

这四张牌分别是黑桃,红桃,方块,梅花。

6、甲、乙、丙三个班比赛足球和篮球,每个班得到的两项特别奖都不相同,甲班足球第一,乙班篮球第一,丙班的足球赢了乙班。

获得篮球第三的是班。

7、A、B、C、D四人进行围棋比赛,每人都在与其它三人各赛一盘。

比赛是在两张棋盘上同时进行的,每人每天只赛一盘。

第一天A
与C比赛,第二天C与D比赛,第三天B与比赛。

8、小刚在纸条上写了一个四位数,让小明猜,小明问:“是9876吗?”小刚答:“猜对了一个数字,且位置正确。

”小明问:“是5432吗?”小刚答:“猜对了3个数字,但位置都不正确。

”小明问:“是9374吗?”小刚答:“1个数字对,且位置正确,另有2个数字对,但位置都不正确。

“小明问:“是3475吗?”小刚答:“还是一个数字对且位置正确;另有2个数字对但位置都不正确。

”根据以上信息,小刚所写的四位数是。

二、解答题
1、甲、乙、丙、丁象棋比赛,决出了一、二、三、四名。

已知(1)甲比乙名次靠前;(2)丙丁经常在一起踢球;(3)第一、第三名以前不认识;(4)第二名不会骑车,也不爱踢球;(5)乙、丁每天一起骑车上班。

判断他们各自的名次。

2、A、B、C、D分别是中国、日本、美国和法国人,已知(1)A 和中国人是医生;(2)B和法国人是教师;(3)C和日本人职业不同;(4)D不会看病。

那么他们各是哪国人?
3、一次测验共10道题,每题10分。

正确的画“√”,错误的画“×”。

甲、乙、丙、丁四人的解答及甲乙丙三人的得分如下,问丁的得分。

相关文档
最新文档