固相反应动力学

合集下载

第五章 固相反应动力学

第五章 固相反应动力学
按反应机理划分:分为扩散控制、化学反应控制、 晶核成核速率控制和升华控制过程等等。
5.1 固相反应热力学:
1. 固相反应最后的产物有最低的ΔG。
如果可能发生的几个反应,生成几个变体(A1、A2、 A3……An),若相应的自由能变化值大小的顺序为ΔG1< △G2<△G3……△Gn,则最终产物将是自由能最小的变体, 即A1相。
化学反应---属化学反应动力学范围
(2)化学反应速率 >>扩散速率(kC0>>DC0/),反应阻力主要来源于
扩散---属扩散动力学范围 (3) nR≈nD,属过渡范围,反应阻力同时考虑两方面
推广 1 1 1 1 + n nD nR n结晶
......
5.4.2 固相反应率
反应基本条件:反应物间的机械接触,即在界面上进行反应 与接触面积A有关。
例:以金属氧化为例,建立整体反应速度与各阶段
反应速度间的定量关系
MO O2
C0 C
M
过程: 1、 M-O界面反应生成MO;
2、O2通过产物层(MO)扩散到新界面;
3、 继续反应,MO层增厚
假定界面化学反应速度为:nR kC C为氧化物与金属界面的氧浓度
氧化物中氧的扩散速度为:
nD=D(
dC dx
MgO
Al2O3
MgAl2O4
MgAl2O4
x
dx/dt ~ 1/x
5.4 固相反应动力学方程
5.4.1 一般固相反应动力学关系 固相反应特点:反应通常由几个简单的物理化学过
程组成。
如:扩散、吸附、化学反应、脱附、结晶、熔融、
升华等。 对于一个存在多个步骤的固相反应过程,其中速度 最慢的步骤对整体反应速度起控制作用。

7-4固相反应及其动力学特征

7-4固相反应及其动力学特征

R 0 -(R0-x) x G= 1 (1-G) x R0 [1 (1 G) ] 3 R0 R0
3
3
1 3
1 3
代入方程 x Kt得
2 2 2 1 3 2
k x R0 [1 (1 G ) ] kt [1 (1 G ) ] 2 t R0
FJ (G ) [1 (1 G ) ] K J t
G
d (1 G ) 1 G K '1 dt 0 t
0
(7-11b)
F1 (G ) ln(1 G ) K1 t
碳酸钠Na2CO3和二氧化硅SiO2在740C下进行固相反应:
Na2 CO3( S ) SiO2( S Na2 O SiO2( S ) CO2( g )

综上所述,可以认为固相反应是固相直 接掺于的化学反应,除固体间的反应外, 也包括有气相或液相掺于。同时,在固相 反应的过程中,至少在固体内部或外部的 一个过程,对整个固相反应速率起关键的 控制作用。这个控制速率的过程不仅仅限 于化学反应,还包括物质的迁移扩散过程, 传热过程,能量的输送过程,新相晶格缺 陷的调整速率,晶粒生长速率等过程。

VD
C0 C= K 1+ D
K C C0 C D
K 1 KC 0 1 D 1= 1 + 1 V=KC= K V KC 0 V KC0 DC0 / 1 D
1 1 和 KC0 DC0 /
分别为界面上的最大的氧化速度和界面上 的最大的扩散速度。反应总速率的倒数由各个反应的速 率的倒数和决定。
4、 固相反应的步骤
(1) 反应物扩散到界面 (2) 在界面上进行反应
A A B B

固相反应

固相反应

§7.5 固相反应及其机理
一,固相反应的定义
广义:凡是有固相参与的化学反应,都可称为固 广义:凡是有固相参与的化学反应, 相反应 .
如:固体热分解,氧化及固-固,固-液间的化学反应 固体热分解,氧化及固-
狭义: 狭义:固体与固体间发生化学反应生成新的固体 产物的过程. 产物的过程.
二,固相反应的特点
则,过程为扩散速度控制,称为扩散动力学范围 过程为扩散速度控制,称为扩散动力学范围 (3)当扩散速度远和化学反应速度相当时,即 K ~ D/ δ )当扩散速度远和化学反应速度相当时, 1 1 V= = 1 δ 1 1 + + KC0 DC0 VR max VD max 则,过程速度由上式确定,称为过渡范围 过程速度由上式确定,称为过渡范围 固相反应总速度: 固相反应总速度:
F1 (G) = (1 G) 1 = K1t ′ F2 (G) = ln(1 G) = K1 t
实验验证: 实验验证:
[
2 3
]
(球形模型) 球形模型) (平板模型) 平板模型)
如 NaCO3:SiO2=1:1 ,在740℃下进行固相反应:
Na2CO3 ( s ) + SiO2 ( s ) → Na2 SiO3 + CO2 ( g )
V = VR = VD
则:
KC = D
C0 C
δ
M-MO界面氧浓度: - 界面氧浓度: 界面氧浓度
C0 C= 1 + Kδ D
1 δ + KC0 DC0 1
得:
V = VR = KC =
1 1 1 ∴ = + V KC0 DC0 δ
讨论: 讨论:(1)当扩散速度远大于化学反应速度时,即 K << D/δ 当扩散速度远大于化学反应速度时, 当扩散速度远大于化学反应速度时

《气固相反应动力学》课件

《气固相反应动力学》课件
《气固相反应动力学》ppt课件
目录
• 气固相反应动力学概述 • 气固相反应动力学的基本原理 • 气固相反应的动力学实验研究 • 气固相反应的动力学模拟研究 • 气固相反应动力学的应用研究 • 总结与展望
01
气固相反应动力学概述
定义与特点
定义
气固相反应动力学是研究气体与固体 物质之间反应速率和反应机制的学科 。
科学研究
气固相反应动力学是化学反应工 程和物理化学等领域的重要分支 ,对于深入理解反应机制和探索 新反应路径具有重要意义。
气固相反应动力学的发展历程
早期研究
早在19世纪,科学家就开始研究气固相反应,初期主要关注燃烧和氧 化等简单反应。
理论模型建立
随着实验技术的发展,20世纪初开始建立气固相反应的动力学模型, 如扩散控制模型和化学反应控制模型等。
工业粉尘治理
通过气固相反应技术对工业生产过程中产生的粉尘进行控制和处理 ,减少空气污染。
土壤修复
利用气固相反应技术对受污染的土壤进行修复,如通过化学氧化还原 反应降低土壤中的重金属含量。
在新材料研发中的应用
纳米材料制备
气固相反应技术可用于制备纳米材料,如纳米碳管、纳米氧化物 等,具有广泛的应用前景。
实验技术进步
20世纪中叶以后,实验技术的进步为气固相反应动力学研究提供了更 多手段,如激光诱导荧光、质谱仪等技术的应用。
当前研究热点
目前,气固相反应动力学的研究重点包括新型催化剂的设计与制备、 反应机理的深入研究以及计算机模拟在动力学研究中的应用等。
02
气固相反应动力学的基本 原理
化学反应动力学基础
跨学科合作
气固相反应动力学涉及多个学科领域,需要加强跨学科合 作,促进多学科交叉融合,共同推动气固相反应动力学的 发展。

气(液)固相反应动力学

气(液)固相反应动力学
或改写成:
v2
' CS CS
2
(式13-2)
D2
32
步骤3:界面化学反应
假设正、逆反应均为一级反应,则界面化学反应 的速率可表示为:
' v3 kCS kC(' D) S
' CS (k / k ) C(' D ) S v3 (式13-3) 1 k
或:
k+、k——分别为正反应和逆反应的速度常数; C(D)S——可溶性生成物(D)在反应区的浓度。
(2)推导过程思路:
对反应
aA( s ) bB( g ,l ) eE( s ) dD( g ,l ) 而言,由于内扩散控制
dm J 单位时间B的扩散量 故:单位时间A的反应量 dt dm dr1 2 4r1 dt dt
根据菲克第一定律求出在Cs = C0时
r0 r1 J 4 D2 C0 r0 r1
28
◆ 界面化学反应的基本步骤:
i) 扩散到A表面的B被A吸附 ii) 固相A转变为固相E
A + B = A· B A· B = E· D
iii) D在固体E上解吸
E· D=E+D
步骤i)、iii)称为吸附阶段;步骤ii)通称结晶化学反应阶段。 ◆ 结晶化学反应的自催化特征(图13-2)。
◇ 诱导期——反应只在固体表面上某些活性点进行,由于新相晶
33
步骤4:可溶性生成物(D)通过固膜的扩散 设可溶性生成物(D)在固膜中的浓度梯度为 常数,则D通过固膜的扩散速度为:
v( D ) 4
' C C( D ) S ' ( D)S D2 2

第八章-固相反应(1)

第八章-固相反应(1)

C0 V KC K (1 K / D)
1 1 1 V KC 0 DC0 /
(8-19)
12
讨论:
1 1 1 V KC0 DC0 /
(1)D>>K时,扩散快,相界面反应慢,δ/DC0很小, V= KC0=KC= VR (C≈C0)
属于界面反应控制范围(即化学反应动力学范围)。
(2)一级反应(n=1):
VR=dG/dt = KF(1-G)
对于球形颗粒
F= N4πR02(1-G)2/3
dG/dt= KN4πR02(1-G)2/3(1-G) =K1(1-G)5/3 (微分式 8-25)
积分式:

3K1 (1 G)5 / 3 dR0
dG

dt
当t=0时,G=0时,
得F(G)=
b)反应物分解AB(s)→A(g) +B(g)
例:ZnO(s)→ZnO(g) ;
ZnO(g) + Al2O3→ZnO·Al2O3
3
(2)按反应的性质分(有五种类型,如表7-3)。
(3)按反应机理分有: 扩散控制过程;化学反应控制过程;晶体长大控制过程; 升华速度控制过程等。
4
二.固相反应的基本特征 1.固相反应属于非均相反应,参与反应的固相相互接 触是反应物间发生化学反应和物质输送的前提; 2.固相反应一般需在较高温度下进行,但反应开始的 温度远低于反应物的熔点或系统低共熔点温度。这一温 度与系统内部出现明显扩散的温度一致,称为泰曼温度 或烧结开始温度。 泰曼(Tamman)温度——系统内部出现明显扩散的温度 ( 为固相反应开始温度)。 泰曼温度与熔点(TM)之间的关系: 一般金属: 0.3~0.4 TM ; 盐类:0.57 TM ; 硅酸盐:0.8~0.9 TM ; 海德华定律——反应物之一的多晶转变温度标志着固相 反应开始的温度。

第五章 气-固相催化反应动力学

第五章  气-固相催化反应动力学
注意:覆盖率和空位率都是相对值,只是个过渡变量。
5.2.2 吸附等温方程 思考1:吸附等温方程?
第五章 气-固相催化反应动力学 5.1 气-固相催化反应 5.2 气-固相催化反应本征动力学 5.3 气-固相催化反应宏观动力学
5.1 气-固相催化反应
5.1.1 气-固相催化反应概述 1、气-固相催化反应——非均相反应——发生在气-固界面。
2、气-固相催化反应的特征
(1)在操作条件下反应物和产物都为气体;
图例 外层气膜 内孔结构 向内传递 向外传递
气 流 主 体
反应物 生成物
气 膜 界 面
反应物 生成物
颗 粒 外 表 面
孔 反应物 道
内 生成物 表

气-固相催化反应过程基本概念
● 气流主体——对流过固体催化剂颗粒的气体物料的统称。 ● 气 膜——气流主体流过固体颗粒催化剂外表面所形成的
层流边界层。 ● 外扩散过程——反应组分在气膜中的扩散过程。
(2)反应主要在固体颗粒催化剂内表面上进行;
ri
1 S
dni dt
或ri
1 W
dni dt
(3)反应速率与固体颗粒催化剂内的扩散速率有关。
5.1.2 固体催化剂的表面积、外表面积和内表面积
S108型二氧化硫氧 A202型氨合成催 化制硫酸催化剂 化剂
C307型中低压合 成甲醇催化剂
T-504型常温COS 水解催化剂
① ②
Hale Waihona Puke B① ②③ M
① A A B B
② A B L M
A+B
L+M
气-固相催化反应本证动力学 过程示意图
③ L L M M
5.2.1 本证动力学过程速率方程

气液固相反应动力学

气液固相反应动力学
气液固相反应动力学
• 气液固相反应动力学概述 • 气液相反应动力学 • 固相反应动力学 • 气液固三相反应动力学 • 气液固相反应动力学应用
01
气液固相反应动力学概述
定义与特点
定义
气液固相反应动力学是研究气液固三 相反应过程中反应速率和反应机制的 学科。
特点
气液固相反应通常涉及多相混合物, 反应过程复杂,影响因素众多,需要 深入研究和理解。
指导反应器设计
了解气液固相反应动力学有助于设计更高效的反应器,提高生产效 率和产品质量。
促进新工艺开发
通过研究气液固相反应动力学,可以发现新的反应路径和机理,促 进新工艺和技术的开发。
02
气液相反应动力学
液相传质过程
扩散
01
物质在液相中的传递主要依靠扩散作用,扩散速率取决于浓度
梯度、分子扩散系数和扩散路径长度。
太阳能利用
太阳能是一种清洁可再生的能源,气液固相反应动力学在太阳能利用领域中用于研究光催 化反应机理和光电转换效率,推动太阳能技术的进步。
核能利用
核能是一种高效能源,气液固相反应动力学在核能利用中用于研究放射性废物的处理和转 化,提高核能利用的安全性和效率。
THANKS
感谢观看
究土壤中污染物的迁移转化规律,为土壤修复技术提供理论依据。
03
废物资源化
通过气液固相反应动力学研究,实现废物的资源化利用,如废弃物的焚
烧、生物质能源转化等,降低环境污染,提高资源利用效率。
在能源领域的应用
燃料燃烧
燃烧是能源转化中的重要环节,气液固相反应动力学研究燃料在燃烧过程中的反应机理和 动力学参数,有助于提高燃烧效率,降低污染物排放。
对流
02
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验20 固相反应动力学
一、实验目的
验证固相反应理论,通过本实验达到进一步了解固相反应机理。

通过测定BaCO3-SiO2系统中给定组成的固相反应速度常数,熟悉测定固相反应速度的仪器及方法。

二、实验内容
1.原理
固态物质中的质点(分子、原子或离子)是不断振动的(除绝对零度外),随着温度升高,振幅增大,当达到一定温度时(各种物质不同),由于存在热起伏,使某些质点具有了一定的能量,以至于可以跳离其原来的位置,而产生质点的迁移。

这一过程对于单元系统来说就是烧结的开始。

这一过程在无气相和液相时也能进行,这就是狭义的固相反应。

从广义上讲,所谓固相反应就是有固体物质参加的反应。

固相反应全部过程可分为扩散过程、反应过程及晶核形成过程这三个部分。

其中进行得最慢的一个过程控制着整个过程的进行。

许多固相反应是由扩散过程控制的,在这种情况下,等温固相反应动力学有三种可能性:
1. 1.新形成的反应产物层阻碍扩散作用:此时反应速度与产物层的厚度y成反比:
dy/dt=K/y (1)
2. 2.新形成的反应产物层与扩散作用无关:
dy/dt=K (2)
3..新形成的反应产物层能促进扩散作用:
dy/dt=Ky (3)
实际上大部分固相反应属于第一种类型.由(1)式积分得:
y2=Kt (4)
由于实际测量反应产物层厚度比较困难,因此,通常用反应产物百分数x来表示反应程度.设颗粒为球形且反应物与产物的比重相等,则可推得如下方程:
[1-3
100
100x
]2=Kt
对于BaCO3-SiO2系统,可以用测量反应时放出得气体体积或系统重量损失(重量法)来计算反应产物百分数。

但因重量法灵敏度差,故常采用量气法。

量气法一般都在负压下(-40mmHg)进行,这样实验结果准确度高。

本实验为便于控制和操作,在常压下进行。

2. 实验装置
实验装置如图20-1所示。

3. 实验步骤
(1) 在分析天平上称0.4~0.5克样品于白金小筒内,塌实,接上悬丝,然后置于炉内反应管中,挂于小钩上。

(2) 检查仪器密封情况,不漏气方可进行实验。

采用提高(或降低)水准瓶,使之产生一个水位差(压力差)的方法来检查漏气情况。

(3) 检查线路后,接通电源,按10℃/min的升温速度升温至800℃,并保温10分钟,旋三通开关使反应管与量气筒接通(到指定温度前,反应管放空),记下量气筒的起始读数。

(4) 作好准备工作后,将悬丝脱开,使白金小量筒落到反应管中,同时按动秒表记录时间。

第一分钟内每20秒记录一次量气管上的读数。

注意读数时应将水准瓶与量气管中的液面保持在同一水平上(为什么?),一分钟以后,每分钟读一次,10分钟后二分钟读一次,20分钟后每5分钟读一次,至60分钟实验结束。

注意整个实验中应严格控制温度,波动范围为<5℃。

1. 高温炉;
2. 反应管;
3. 反应小筒;
4. 热电偶;
5. 挂筒钩;
6. 三通开关;
7. 温度控制器;
8. 水银温度计;9. 量气筒;10. 水套管;11. 水准瓶;12. 电流表;13. 调压变压器
图20-1 量气法装置线路图
样品制备
将BaCO 3和石英砂研细,过4900孔筛,SiO 2在空气中加热至800℃,保温5小时,BaCO 3在CO 2气氛中加热到400℃,保温4小时,除去其颗粒表面的吸附水和其它气体,并消除研磨时表面产生的应力。

把热处理后BaCO 3和SiO 2按分子比1:2配好混匀,防于干燥器内备用。

4. 实验结果与处理
(1) 根据实验时的气压及水温,将记录的气体体积换算成为标准状态下气体的体积。

(2) 按反应方程式计算反应的x 和2
31001001⎥⎦⎤⎢⎣⎡
--
x x 的求法:
因BaCO 3:SiO 2=1:2,
RT PV n CO =2 , 2332S i O B a C O B a C O M M W n +=试样 有: 10032⨯=BaCO CO n n x
其中: n CO 2、n BaCO3分别为CO 2和BaCO 3的摩尔数
M BaCO3、M SiO2分别为BaCO 3和SiO 2的分子量
W 试样表示试样的重量。

(3) 以231001001⎥⎦⎤⎢⎣⎡
--
x 为纵坐标,时间t 为横坐标作图。

并由所作曲线的斜率计算在给定温度下反应速度常数K 。

三、思考题
1. 把BaCO 3与SiO 2的分子比由1:2改为2:1对实验有何影响?
2. 影响本实验准确性的因素有哪些?在实验的后期数据为什么偏离直线?
3. 根据本实验可以获得固相反应动力学中哪些数据?如何获得?。

相关文档
最新文档