加群 的全体自同态构成环共44页

合集下载

05 商环、欧氏环

05 商环、欧氏环
a1 x a2 x an x
n 1
作成 R x 的一个理想。 注:以上是常数项为零的多项式的集合,关于多 项式的加法与乘法。 以上两个理想显然既不是零理想也不是单位理想。
7
理想的性质
8

推论 域是单环。
9
10
11
12
13
14
15
16
17
理想的交与和
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191


192
19
20
21
22
理想的传递
设 N 是 R 的理想, I 是 N 的理想, 那么 I 不一定是 R 的理想。
x y 例.设 R z w | x , y , z , w Z M 2 ( Z ) ,
a1 , a2 2a1 a2 N | ai 2 Z 是 R 的理想,而 I | ai 2Z 是 N 的理想, a3 , a4 a3 a4
近世代数及其应用

罗守山 教授 博士生导师

北京邮电大学计算机学院
1
第5章 商环、欧氏环




群是只有一种二元运算的代数系统。第2章群 之后介绍第3章特殊子群,由正规子群引出商 群,得到群同态基本定理。 环是建立在群基础上的代数系统,有二种二元 运算。第4章环之后介绍第5章特殊子环:理想, 由理想引出商环,得到环同态基本定理。 整数环上整数相除有余数和商,推广引出欧氏 环。 学习环知识应随时与群的相应概念与理论进行 比较,即复习群的内容,又学习新的知识。

信息安全数学基础ch10环

信息安全数学基础ch10环

第九章 环
定义 设R是至少含有两个元素的环, 1如果R中每个非零元均可逆,则称R是一个除环。 2交换的除环称为域。 除环中所有非零元素构成的集合在乘法下构成一个群。
第九章 环
例 设p是一个素数,则(Zp,+,.)是一个域。 1假定[a]≠[0],有(a,p)=1; 2存在s,t∈Z使得 as+pt=1; 3as≡1(modp); 4[as]=[1]=>[a].[s]=[1]。
第九章 理想商环
定义 设(R,+,.)是一个环,S是R的非空子集,如果S关于R的 运算也构成环,则称S是R的子环. 例 整数环Z是有理数环Q的子环。 例 (mZ,+,.)={mk|k∈Z}是整数环Z的子环; mZ在Z的加法和乘法下封闭; 容易看出mZ在Z的加法和乘法下构成一个环; mZ是Z的子环。
第九章 理想商环
定义 设(R,+,.)是环,I是R的一个子环,如果对任意的a∈I 和任意r∈R,均有ra∈I;ar∈I,则称I是R的一个理想。 一个环至少有两个理想,即环R本身及{0},这两个理 想称为环R的平凡理想。
第九章 理想商环
定理 设I是环R的理想,在加法商群R=I上定义如下的乘法 (x+I)+(y+I)=(x+y)+I (x+I).(y+I)=(xy)+I 则上述定义是R/I上一个乘法运算,且R/I关于加法, 乘法构成一个环。 1根据前面的讨论,这里的加、乘运算定义是自恰的。 2环R=I称为R关于理想I的商环。 3在讨论商环时,我们一般把x+I记为x。
f(x)g(x)的m+n次项的系数为anbm; 由于R无零因子,所以anbm≠0; f(x)g(x)≠0。

同构及同态和环3

同构及同态和环3
证明: 设G=(g)是无限循环群,Z为整数加法群 ,则对aG,nZ,使得a=gn,则令 f:an。
不难验证f是G到Z上的同构映射。因此,GZ。
定义6.5.3 设G是一个群,若σ是G到G上的同构 映射,则称σ为自同构映射。
自同构映射的最简单的例子就是恒等映射,称为 恒等自同构映射。在恒等自同构映射下,群中每 个元素都保持不变。下面再举几个自同构映射的 例子。
例6.5.6 设(Z,+)是整数加法群, 令σ:n-n,nZ,
则σ是Z的一个自同构映射。
例6.5.7 设G是一个Abel群,将G的每个元素都映 到其逆元素的映射 σ:aa-1,aG,
是G的一个自同构映射。
此例包含上例为特例。如果G包含元数大于2, 那么该自同构映射不一定是恒等自同构映射。
下面看同态映射下子群的变化。 设G是群,同态映射,G~G’,N是同态核
。 (1) H是G的子群,则H’=(H)是G’的子群
。 (2)设H’是G’的子群,则-1(H’)=H为G的子
群. 证明: H=-1(H’)显然非空。 对任意a,bH,必有(a),(b)H’,因
H’是子群,所以(a)(b)-1=(ab-1)H’ ,所以ab-1H,故H是G的子群。
即,σ是Z到C*的同态映射,Z~σ(Z)。σ(Z) ={1,-1,i,-i}是C*的一个子群。
6.5.2 同 构 映 射
定义6.5.2 设G是一个群,K是一个乘法系统,σ 是G到K内的一个同态映射,如果σ是G到σ(G)
上的1-1映射,则称σ是同构映射。称G与σ(G) 同构,记成GG′。
同构的群或代数系统,抽象地来看可以说毫无差 别。如果G只和G′同态,则由于G中两个或多个 元素可能变成G′的一个元素,所以不能说是G和 G′构造一样,但因为G中的乘法关系在G′中仍 对应地成立,所以,可以说G′是G的一个缩影。

大学数学《近世代数》课件

大学数学《近世代数》课件

3.推移律:
a bb a
a a,不管a是A的哪一个元。
a b, b c a c
定义:若把一个集合A分成若干个叫做类的子集,使得A的每一个元属于而 且只属于一个类,那么这些类的全体叫做集合A的一个分类。
定理1:集合A的一个分类决定A的元间的一个等价关系。
定理2:集合A 的元间的一个等价关系决定A的一个分类。
III.
,方程 和
在G中都有解。
例1 G={g},乘法规定gg=g, 则G是一个群。
例2 G={全体整数};G中运算为普通加法,则G是一个群。
例3 G={所有非整数},G对于普通乘法不作成一个群。
定义1 同态:S , 与 T , 为两个代数系
统, :S T 为同态映射,若对 a ,b S
有:a b=ab
S , 定义2 同态满射: 与 为两个代数系统 ,
该映射为同态满射, ,
:S T
T , 为同态映射,且为满射,则 同态
S , T ,
定理1 假定,对于代数运算 和 来说, S与T 同态则:
二元代数运算“
”适合结合律和交换律
则 ai S,i 1,2,n, n个元素
a , a ,, a 1 2
n 的乘积仅与这n个元素
有关而与它们的次序无关。
例 仅满足结合律而不满足交换律:
1)矩阵乘法 2)映射的复合运算 3)字符串的复合运算 同时满足结合律与交换律:
1)普通乘法 2)集合的并、交 3)逻辑与、逻辑或 两者均不满足:
[本章主要内容]
1)群、子群及相关性质; 2)置换群、循环群; 3)子群的陪集、正规子群; 4)群的同态;
2.1半群与群的概念
定义1 设“
”时非空集合S上的一个二元

【word】带有限性条件Abel群的自同态环和自同构群

【word】带有限性条件Abel群的自同态环和自同构群

带有限性条件Abel群的自同态环和自同构群数学年刊2011,32A(6):665—678带有限性条件Abel群的自同态环和自同构群冰廖军杨艳刘合国.提要给出了带极大或极小条件的Abel群A的自同构群以及自同态环的相伴Lie环是可解或幂零的充要条件.同时也给出了群A=Q0Q0…0Q的自同构群是可解或幂零的充要条件,以及群A的自同态环的相伴Lie环是可解或幂零的充要条件.关键词自同构群,自同态环,可解,幂零MR(2000)主题分类20K30,20F16,20F18中图法分类O152.2文献标志码A文章编号1000—8314(2011)06—0665—141引言本文采用文f121的术语和符号,一般情况下计算群的自同构群和研究群的自同构群的性质是很困难的,即使对Abel群也是如此.从结合环R出发,自然地可以构造一个Lie环L,方法如下:定义L的加群为_R的加法群(R,+)以及Lie积为[X,Y]=xy—yx,通常记为_R(~,称为的相伴Lie环.Abel群的自同态环EndA是结合环,则可以构造Lie环End(一.因此我们可以研究Abel群的自同态环的相伴Lie 环的可解,幂零性质对群结构的影响.同样地,也可以通过研究Abel群的白同构群AutA的可解,幂零性质来分析群A的结构.本文将对几类带有有限性条件的Abel 群进行讨论,并给出了它们的自同态环的相伴Lie环是可解,幂零以及自同构群是可解,幂零的充要条件.在多数情况下它们具有相似性.其实这也并不偶然,正是由于这些Abel群是由它的自同态环或者自同构群所确定.第2节首先给出了有限AbelP一群的自同构群AutA可解的充要条件,接着利用自同构群的稳定自同构的一个结论(见引理2.3),分别给出了带极大和极小条件的Abel群的自同构群是可解,幂零的充要条件.在定理2.6一定理2.10中,分别给出了有限AbelP一群,带极大条件的Abel群和带极小条件的Abelp-群的自同态环的相伴Lie环是可解,幂零的充要条件.当P≠3时,有限Abelp-群的自同构群AutA可解当且仅当群A的自同态环的相伴Lie环End(一)可解.对于带极大,极小条件的Abel群的自同构群AutA的可解性和群的自同态环的相伴Lie环End(一)的可解性,定理2.2一定理2.3和定理2.8一定理2.9分别相对应,在它们的幂零性的论述中,定理2.4和定理2.10相对应.设A=Q0Q.0…④Q,其中Q={丌pmI?Tti,m∈Z},这里7rk为某pi∈k 些素数的集合.第3节对群A讨论了类似的问题:定理3.1和定理3.2分别给出了A的本文2011年2月25日收到,2011年6月18日收到修改稿.北京大学数学科学学院,北京100871.E—mail:*************.ca0湖北大学数学系,武汉430062.E—mail:******************0通讯作者.湖北大学数学系,武汉430062.E—mail:**************.cn国家自然科学基金(No.10971054)资助的项目.数学年刊32卷A辑自同构群AutA是可解,幂零的充要条件,定理3.4给出了群A的自同态环的相伴Lie环EndA(一)是可解,幂零的充要条件.此时AutA是可解(幂零)的当且仅当EndA㈠是可解(幂零)的.定理3.3表明,A的自同构群AutA可解和B1是一致的.除去P=2的情况,比较定理2.4,定理2.10,定理3.2和定理3.4可以知道,对于我们所讨论的Abel群A,的自同构群AutA和自同态环的相伴Lie环EndA(一)是幂零的当且仅当它们是交换的.而且此时它们都具有相对简单的结构:AutA和EndA【一)是幂零(交换)的,如果A是满足极大条件的Abel群,当且仅当A是循环的;如果是满足极小条件的Abel群,当且仅当A是循环的或者是拟循环群的直和;如果A=Q0Q0…0Q当且仅当每一个Q是全不变的.2带极大或极小条件的Abel群设有限Abelp-群有分解A=(zpn)h0(n.)0…0(nr),其中r,ft是正整数,0<nl<n2<…<n.记群A的自同态环EndA=,群A的自同构群为AutA.下列的事实,见文【3-6】.(a)群A的自同态环=EndA可以表示成r×r矩阵环(岛),其中岛=Hom((nt)”,(n));(b)环有Jaeobson根=(),其中=pCi~;当i≠J时,J=(C)AutA的极大正规子群是△=1+.引理2.1【】除了n=2,IFI=2,3外,GL(F)是不可解的.以下总约定P为素数,z为整数环,Zp为进整数环,n=Z/(pZ)为模P剩余类环或P阶循环群.引理2.2(i)群GL2(Z)以及GL2(Zp)不可解;(ii)当素数P>2时,上的上三角可逆矩阵群()不是幂零的;(iii)当素数P>3时,Aut(m0n)不是幂零的.证记[,Y]=[z,Y,Y,…,],其中Y出现n次.环的满同态:Z一诱导群的满同态GL2(Z)一GL2(),同态像GL2()在P>3时是不可解的,因而GL~(Z)不可解.类似地,GL2(Zp)不可解.GL2(Z2)&,是可解的,而中一5-是平凡的,因此不是幂零的.考虑上的上三角可逆矩阵群(zp),由于[(G0o)]=(.1),当P>2时,取a:2,则[(((.1)组因此()不是幂零的.不妨设m≠佗(否则GL2(n)不可解),Aut(m0n)在Q1(m0n)上的限制同构于(),因此Aut(m0n)不是幂零的.6期廖军杨艳刘合国带有限性条件Abel群的自同态环和自同构群667定理2.1设是有限Abelp-群,且A=(n)”0(n).0…0(n),其中r是正整数,n1<n2<…<礼,ft都是正整数.则(1)当P>3时,AutA可解当且仅当f1:f2=…=0=1;(2)当P=2或3时,Aut可解当且仅当li≤2(1≤i≤r)证(1)当P>3,ll=12=…=f=1时,由文【8]中推论2.9知AutA△(一1),这里△=(AutA)是AutA的极大正规子群,因此是幂零群,则是可解群,(zp一1)是Abel群,即AutA是可解子群△=Op(AutA)被Abel群的扩张,因而是可解的.反之,假设存在某个li>1,则GL2(zpn.)≤AutA,但是GL2(nt)的商群GL2()是不可解的,矛盾.所以?1=f2=…=0=1.(2)当P=2或3时,ct≤2(1≤i≤r),由文[8】中定理1.1和命题2.2知rAutA△×lJGLt(),t=1这里△=(AutA),它是幂零的因而是可解的.由引理 2.1,当2t≤2时,GLl(zp)是可解群,则兀GLt()是可解的.则AutA是可解子群△=Op(AutA)被可解群0=lr兀GLf,()的扩张,因而是可解的.反之,假设存在某个fi>2,则GL3(nt)≤AutA,但是GL3(nt)的商群GL3()是不可解的,矛盾.所以li≤2.事实上,对于有界Abelp-群也有同样的结论,定理2.1的证明也同样适用.另一方面,有限Abel群可以分解为有限Abelp-群的直和,每个分支都是全不变的,则是特征子群,所以有限Abel群的自同构群可以分解为有限Abelp-群自同构群的直积.因此对有限Abel群总可以约化到定理2.1的情形,类似地对有界Abel群也一样.为便于叙述,我们首先给出下面的引理,它是本文计算某些自同构群的基础.引理2.3设是Abel群,B是的特征子群,且A=B0,则AutA=Horn(C,B)(AutB×Aut).证的所有稳定B的自同构构成AutA的一个子群,记为Aut(A)B,即Aut()B={∈AutAIB”=B).由于是A的特征子群,所以AutA=Aut(A)B.由文f9]中定理2.1知Aut(A)8=Der,B)Pair(C,B).由于A是Abel群B与C的直和,即A=B0C,因此平凡地作用在Abel 群B上,则导子就是它们之间的同态,即Der(C,B)=Hom(C,),668数学年刊32卷A辑并且由直接验算Pair(C,B)满足的条件,可知Pair(C,B)=AutB×AutC,因此AutA=Hom(C,B)(AutB×Aut),AutB×AutC在Hom(C,B)上的作用为(,(,))一&.定理2.2设是满足极大条件的Abel群,则AutA可解的充要条件是的挠子群的白同构群是可解的且ro(A)≤1.证若AutA可解,由引理2.2,GL2(Z)不可解,知ro(A)≤1,并且A的挠子群的自同构群是AutA的子群,因此是可解的,必要性已证.下证充分性.注意到的挠子群是A的特征子群,设为,如果TO(A):0,则A是有限群,此时归为定理2.1的情形.不妨设TO(A)=1,则A=T0Z,由引理2.3,可得AutA=Hom(Z,T))日(AutTXAutz),其中Hom(Z,T)T,AutZ=Z2.由假设,有AutT可解,因此AutA可解.类似地,对于满足极小条件的Abel群有下面的定理.定理2.3设4是满足极小条件的Abelp-群,则AutA可解的充要条件是A的既约子群R的自同构群是可解的且的极大可除子群D的秩r(D)≤1.证设A是满足极小条件的Abelp-群,的极大可除子群为D,既约子群为R,则‘A=D0R且D是A的特征子群.由引理2.3,可得AutA=Hom(R,D)>日(AutD×AutR),而Horn(R,D)是Abel群,因此AutA可解的充要条件是AutD,AutR是可解的,引理2.2说明GL2(Zp)不可解,其中z是P一进整数环.因此的极大可除子群D的秩r(D)≤1.若r(D)=1,即D=z..,熟知当P>2时,AutZp..~10zp.当P=2 时,AutZ2..Z20z2,其中z是进整数环.反之,4的既约子群R的自同构群是可解的且的极大可除子群D的秩r(D)≤1时,AutA可解.注意到满足极小条件的Abel群的自同构群是其P一子群自同构群的直积,因此满足极小条件的Abel群的自同构群是可解的充要条件是其所有子群的自同构群都是可解的.于是,结合定理2.1和定理2.3我们可以得到满足极小条件的Abel 群的自同构群是可解的充要条件.由引理2.2和引理2.3可以得到下面的定理.定理2.4(i)有限Abel2’-群A的白同构群AutA幂零的充要条件是rp(A)≤1,当且仅当是循环群;(ii)满足极大条件的Abel群且其挠子群是2一群的自同构群AutA 幂零的充要条件是有限且(A)≤1或A=Z,即为循环群;(iii)满足极小条件的Abel2/_群的自同构群AutA幂零的充要条件是A有限且rv(A)≤l或A=0...6期廖军杨艳刘合国带有限性条件Abel群的自同态环和自同构群669证(i)不妨设是有限AbelP一群,由引理2.2,当P>2时,T2()不是幂零的,因此不含形如m0的子群,即是循环群,rp(A)≤1.反之显然.(ii)假设Z=n0Z,则AutAn(AutnX),计算[(1,(1,1)),(0,(1,))]l其中Oz是z的二阶自同构,注意到它的作用方式把它写成矩阵形式[((呈)]=(.12)这里(一2)≠0是因为是2一群,因此AutA不是幂零的,所以或者有限或者自由循环,当有限时,由(i)知也是循环的.(iii)此时的证明方法同(为了处理P=2的情形,我们需要下面定理,见文『1O].稳定性定理设群G忠实地作用在群上,G稳定的如下长度为2的正规群列1≤W<记Z:=41(W)是的中f1.,它自然地作成一个一模,则G≤Der(v/z),其中Der(Z)是到z的所有导子作成的Abel群.定理2.5(i)设是有限Abel2-群,且A=(Z2n)0(Z2n2).0…0(Z2)L,这里nl<?22<…<几,l是正整数,则AutA幂零的充要条件是l=1.(ii)设是自由Abel群与Abel2-群的直和,则A的自同构群AutA幂零当且仅当A=2r2n0Z2nz0?-?0Z2n0Z,这里礼1<礼2<…<72r.(iii)满足极小条件的Abel2-群A的自同构群AutA幂零当且仅当A=Z2n①Z2nz0…0n0..,这里札1<佗2<-??<竹r.证(i)设是有限Abel2-群,且A=(Z2n)h0(Z2n.)120?-?0(Z2n),这里几1<?22<…<n,ll是正整数.当所有的i,1=1时,群4的自同构群AutA是一个2一群,因此是幂零的.反之假设存在某个ft>1,则GL2(n)≤AutA 且它的一个商群是GL(),由引理2.2是非幂零的,矛盾.(ii)设是自由Abel群与Abel2一群的直和,且自由子群是自由循环群z若Abel2一子群B=Z2n0Z2n①…0Z2(其中?21<礼2<…<礼),它是特征子群,由引理2.3,可得AutA=Hom(Z,B)×(AutB×Autz),其中Horn(Z,B)B,AutB是一个2一群,AutZZ2,则AutA是一个2一群,因此是幂零的.670数学年刊32卷A辑当A=Z2n0Z2n.0…0n0z时,证明其自同构群是幂零的另一个方法是:设C=2”A={2”aIa∈),其中n>n,则C2Z,它是的特征子群,A/Cz2n10Z2n20…0Z2n0zn.考虑G=AutA在0≤C<A上的自然作用.记ca(c)={∈GIc.=c,c∈), Cc(A/C):{∈Gl(a+)=a+C,a+C∈A/C},贝0c/ca(c)≤AutC,C/Ca(A/C)≤Aut(A/C),且c/ca(c)rhCa(A/C)≤c/cc(c)XG/Ca(A/C),又cc(c)nCc(A/C)稳定,0<C<A,故根据稳定性定理知cc(c)nCG(A/C)≤Der(A/C,),A/C是有限的,而C是自由循环群,因此Der(A/C,C):Hom(A/C,C)=0.AutA/C是一个2一群,AutC,则G≤AutC×Aut(A/C)是幂零群.反之若AutA是幂零群,则AutA的子群AutB是幂零的,当且仅当B=Z2n0Z2”0…0…由于GL2(Z)不是幂零的,因此自由子群是自由循环群z,因此A=z2n0Z2n20…0n0Z,其中nl<n2<…<nr.(iii)由(ii)以及引理2.2知条件是必要的,下证充分性.设A=Z2n0Z2n20…0n0..,这里仡1<n2<…<nr,设B:Q2n(A)={0∈Al2ha=0),其中n>n,则Bz2n10z2n20…0n0n,它是A的特征子群.考虑G=AutA在0≤B<A上的自然作用.记Ca(B)=fQ∈G1b.=b,b∈B),Cc(A/B)={∈Gl(a+B)”=a+B,a+B∈A/B},则C/Ca(B)≤AutB,C/CG(A/B)≤Aut(A/B),且C/CG(B)nCc(A/B)≤C/Cc(B)×C/Cc(A/B).又Cc(B)nCc(A/B)稳定,0<B<A,故根据稳定性定理知Cc(B)nCc(A/B)≤Der(A/B,B),A/BZ2o.是可除的,而B有限,因此Der(A/B,B)=Hom(A/B,B)=0.AutA/B(o.)=Z20Z2是Abel群,由(i)知AutB是一个2一群,则C≤AutBXAut(A/B)是幂零群.下面讨论带极大,极小条件的Abel群的自同态环构成的Lie环是可解,幂零的条件,为此需要下面的引理.引理2.4(m)(一)可解,坞()(一)不可解.证直接计算可得[(),()]=(c—brz+-cyd一.6cr一一d).6期廖军杨艳刘合国带有限性条件Abel群的自同态环和自同构群671设L=M2(Z2)(一,则由上面的计算知则则)lm)为了计算,在上式中令d=一a,r=一x,有[),G)]=(2.b…z-cyn名一),{(m).令b=2b1,c:2c1,Y=2yl,=2zl,有),()]一blz…l-cly哪yza-bmlx/,)c∈m)归纳地,知M2(Z2m)(一)可解.记K=M3(Z2)(_.,则K=(e),其中表示(J)位置为1,其它位置全为0的矩由于当i≠J时,,eij1=eij,[eij,eft]=eli—ejj,有K=(eij,eii—eli≠歹).又因n>2,存在k满足k≠i,k≠J,i≠J,则eij=【eik,ekj],eii一jJ=【eij,e所以K=K≠0,因此不可解,即M3(Z2)(一)不可解引理2.5当P>2时,()(一)不可解;相伴Lie环(z)(一)和(zp)(一)不可解.证取L=(el2,e21>,由于(e12,e21】=ell—e22,【611一e22,el2】=2e12,【ell—e22,e21】=一2e21, 则el1一e22,e12,e21∈L,归纳地,对任意的正整数此()(一)不可解.m,有el1一e22,e12,e21∈(,则()≠0,L不可解,因()(一)是(z)(一)和Mn(Zp)(一)在自然同态z一以及zp一下诱导的Lie环同态像,因此(z)(一)和(zp)(一)不可解.定理2.6设P是奇素数,记A=(n)ll④(n.)④…0(),这里扎1<n2<…<n,如是正整数,则End(一)可解的充要条件是如=1672数学年刊32卷A辑证如果End(一)可解,由引理2.5知1=1,否则存在一个子环()(一)不可解,矛盾.另一方面,如果li=1,则A=n10zpn20 0EndA{(aij)laijEHorn(,’))且i<J,Pln巧.记L=End(_.,Cij=∑(aikakj—bikakj),如果cij∈L,则PlCij,i≤J.归纳地, Cij∈(,对任意的i,J,有PI.,且当i<J时,P.l,继续重复上述过程,直到Cij=0,因此可解.也可以用另外一种方法来证明可解:EndA在【21(A)上的限制就是n一诱导的环同态,即对每一位置模P,同态像是上的一个三角矩阵,同态的核是每个位置元素都能被P整除的数,即0Mod(p).由环的同态得到Lie环的一个同态,结合可解Lie环在扩张下封闭的性质得到Lie环L=End(一)是可解的.定理2.7设A=(Z2n)/10(Z2)120…0(Z2),这里n1<Tt2<…<n,f是正整数,则End(一)可解的充要条件是ft≤2证设fi≤2,自然同态z2n.一z2诱导的环同态,End(一)的同态像是一个下对角矩阵,并且对角线上是1阶或2阶可解块,因此同态像可解,同时核满足2Ia同上述定理相同的证明方式,知其可解,得到End(一)可解.反之,由引理2.4,如果End(一)可解,则li≤2.定理2.8设A是满足极大条件的Abel群,则End(一)可解的充要条件是EndA可解且_r0(A)≤1.证设A=0A0Z,0A是A的全不变子群,).(~EndAEndZEndA【H.m(z)J(,z/),又(0EndAp)~0EndA和z(一)都是可解的,按分块矩阵计算知EndA(一)是可解的.反之,End是End(一)的子环显然可解,且()(一)不可解,因此ro()≤1.类似的方法可以得到下面极小条件下的定理.定理2.9设是满足极小条件的Abel群,则End(一)可解的充要条件是EndA可解.End可解当且仅当End磷可解且rank(Dp)≤1,其中Rp和Dp分别是A的既约子群和极大可除子群.的引理2.6(z)(一)不是幂零的,若=n0m,n<m,则EndA(一)不是幂零证注意到对任意的正整数n,[el2,?tc22]=el2≠0由引理2.5和引理2.6,立即可得下面的定理6期廖军杨艳刘合国带有限性条件Abel群的自同态环和自同构群673定理2.10(i)有限Abel群的自同态环的相伴Lie环幂零的充要条件是rp(A)≤1;(ii)满足极大条件的Abel群A的自同态环的相伴Lie环幂零的充要条件是有限且口(A)≤1或A=z;(iii)满足极小条件的Abel群的自同态环的相伴Lie环幂零的充要条件是有限且rp(A)≤1或A=0..;P(iv)满足极大或极小条件的Abel群4的自同态环的相伴Lie环幂零的充要条件是的自同态环的相伴Lie环是Abel的.3完全分解的无挠Abel群下面考虑这样一类Abel群,首先介绍符号和一些简单的结论:记丌为某些素数的集合,设Q={兀.mIm,m∈Z}.对群Q有下列简单事Pl∈7r实:(a)Q的元具有无限丌一高,有限丌一高,即任意的P∈7r,P高为0(3,否则为有限.(b)Q的任意一个自同态可以由1的像完全决定.事实上,m=(m?1)妒=m?1;由(pp)=1,知p?(p)=1,因此(p)妒=p1妒,所以(兀m)妒=兀m?1;pp(c)如果71”17I”2,则Horn(Q,Q.)=0,否贝0Horn(Q,Q.)Q.事实上,如果丌17r2,存在P∈丌1一丌2,Q中的任意元具有无限71”1一高,特别地,1具有无限高,若∈Hom(QQ.),则1∈Q.也具有无限p一高,则1=0,因此Horn(Q丌l1Q)=0.如果71”171-2,任意的∈Hom(Q丌¨Q.),由1的像1完全决定,而1∈Q.,因此Horn(Q,Q.)Q..特别地,EndQ=Horn(Q,Q)Q.(d)AutQQ={l=士11p.,Pi∈7r,仃∈z)z2①ZI.特别地,AutQpQ=r,oZ2④Z.这是因为EndQ=Horn(Q,Q)Q,因此AutQQ.若兀m∈Q,则存在p:.兀他∈Q,使1=兀m兀n=兀m佗,贝0mn=1,m=土1.pppp设A:Q0Q.0…0Q此时称是”完全分解”的,首先我们讨论秩为2即=Q0Q.的情形.A=Q0Q的自同态环和自同构群具有下面的矩阵表达形式:EndA竺{I兰三}I∈Itom(p,Q),{,J=1,2},AutA』【【2()可逆,∈H.m(Q,Q)下面按集合71”1和71”2的包含关系分别讨论群A=Q0Q.的白同构群以及自同构群的可解幂零性.(i)当71”171”2,71”271”1时,记71”1=71”2=7r.End[g>(,AutGL2(674数学年刊32卷A辑由于GL2(Z)≤GL2(Q),而GL2(Z)是不可解群,因此GL2(Q)也不可解.GL2(Q)的中5-为CGL2(Q)=)aEQA),铡).易知O.charA,而A=Q0O由引理2.3,知AutAHom(O,O)>日(AutOXAutO)O.(Q.×Q)是可解的,但不是幂零的,事实上,Aut(!)f.∈AutQ.,c∈AutQ~,bEHom(Q,Q:>.若(!)∈~AutA,则()=)=I1c+)=(舌,6=..取是嵌入同态,则.限制在Q等于c,记为..所以()a01),即(~AutA=()I.).若1)∈(~2AutA,则对任意的)∈AutA,有[(6)j(舌tA又(=(.一)一[(),(吾)]=(n0一一ac一-16.)(0一一X--一1)(a..b)(苦Y) =(.1).由于(01)∈<Aut,其中=一a-1bc+X--1yz+a-ix一(6一y)zc=0,对任意的∈Q.,∈Q,Y∈Q成立.若Y=0,即一a-1bc+a-ix_1bzc=0,则b=0,且2C--lyz—a-1-1yzc=0,则a】=c.因此()=()∈(AutA,AutA=(AutA≤AutA,AutA不是幂零群.6期廖军杨艳刘合国带有限性条件Abel群的自同态环和自同构群675当I71-2J<..时,AutA=Q.(AutQ×AutQ.)是有限生成的可解群,但不是多循环的,由于Q.不是有限生成的.而超可解是多循环的,因此它不是超可解的.(iii)当71”171”2,7r27r1时,E..%OZI#ll~.,此时AutA是Abel群.因此若AutA是超可解或多循环的,则AutA是幂零的且是Abel的.当且仅当7rl丌2,7r27r1.一般地,有下面定理.定理3.1设A=Q0Q.0…0Q其中Q:{nm}mi,m∈Z},这里.1rk为某些素数的集合,则AutA可解当且仅当对任意的i≠J,71”i≠7rj.证当7’=2时,由前面的叙述(i)一(iii)知AutA可解当且仅当71”1≠71”2.先证充分性.假设对某个i≠J,7I”i=,当k≠i,时,设A1={∈AutAl使在Q上的限制为1,即lQ:1Q),则1是AutA的子群,且A1GL2(Q.),而GL2(Q)是不可解的,从而1是不可解的,于是AutA不可解,与已知矛盾.再证必要性.如果对任意的i≠J,亿≠,那么存在一个元,不妨记为丌,满足对任意的i≠r,有丌,否则,必有某两个集合相等,与已知矛盾.这样的丌称为集合{『1≤i≤r)的极大元.显然QcharA,则.r一1,,r一1,AutAHorn(0QQ)>日(Aut0Q×AutQ~r)jt=1i=1,r一1,r一1其中Horn(0QQ)0Horn(QQ)与AutQ都是Abel的,对r进行归,i=1=1 r一1纳,知Aut0Q是可解的,因此AutA是可解的.=1定理3.2设A;Q0Q.0…0Q其中Q:{npmIIYt,,m∈Z},这,pt∈丌’里丌为某些素数的集合,则AutA幂零当且仅当对任意的i≠J,死.证当r=2时,由前面的叙述知道AutA幂零当且仅当丌1/1”2,丌2丌1.先证充分性.如果对某个i≠J,7ri7r{,当k≠i,J时,设A1={∈AutAI使在Q上的限制为1,即lQ=1Q),则A1是AutA的子群,当死:时,A1GL~(Q);当时,AutAQ)日(AutQ×AutQ),而aL2(Q)和Q丌j(AutQ×AutQ丌j)都不是幂零群,因此A1不是幂零的,与AutA幂零矛盾.再证必要性.如果对任意的i≠J,7ri,则Horn(QQ)=0.676?数学年刊32卷A辑因此EndAA,AutA(Q)×(Q)×-??×(Q)日≥(z2.z’z’),=1AutA是Abel的,因而是幂零的.推论3.1设A=Q0Q0…0Q其中Q:{兀pmI?gti,m∈Z},这Pl∈.a-k. 里丌为某些素数的集合.则下列条件等价:fa)AutA是多循环的;(b)AutA是超可解的;fC]CAutA是幂零的;(d)AutA是Abel的.注意到群G称为是B的,如果G有一个正规列G=G1>G2>>Gn=1,即G司G,且Gi/Gi+1≤Q或Gi/Gi+l≤Q/z.定理3.3设A=Q0Q0…0Q其中Q={兀pmImt,仇∈z},这Pi∈7rk0里7r为某些素数的集合,则AutA是B1的当且仅当AutA是可解的. 证充分性显然,因为由定义B是可解的.下证必要性.当r=2时,AutAQ>日(AutQ×AutQ.)或AutA=r-oAutQl×AutQ2.若AutAQ:(AutQ×AutQ.),贝40<Q2<QZ2<Q.(Z20Z2)<Q.(Z20Z20Z)<Q>日(Z20Z20Z)<<Q.(Z20Z20Z/】+l.I)=AutA是AutA=Q.(AutQ×AutQ.)的一个正规列,其商因子分别为QZ2,Z2,Z,-? z,而QZ是Q的子群,是O,/Z的子群,因此AutA是B1的.如果AutA=e-,4AutQ1×AutQ2Zg.0Zl10Z20Zl,则AutA是Abel群,且可以分解为和z的直和,因此也是B1的.所以当r=2时,AutA是可解的则是B1的.当r≥3时,由定理3.1,存在一个极大元丌,使QcharA,则AutAHorn((~QQ)×(Al1t0QAutQ).记s=ml7r,1≤i<r)l,有r一1r一1Horn(Q,Q)Horn(Q,Q)Q,6期廖军杨艳刘合国带有限性条件Abel群的自同态环和自同构群677可以得到,r一1,AutAQ(Aut≥Q×AutQ).因Q,AutQ是B1的,由归纳假设Aut0Q是B1的,易知AutA是B1的. 定理3.4设A=Q0Q.0…0Q其中Q={兀pmlmi,m∈Z},这里丌k为某些素数的集合,则(a)EndA(一)可解的充要条件是7i”i≠对任意的i≠J;(b)EndA(一)幂零的充要条件是71”i对任意的i≠J,此时它是Abel的,其中End(一)是由自同态环EndA的加法群以及Lie积Y]=xy—yx构成的相伴Lie环.证先讨论r:2的情形:(i)当71”1=71”2时,EndA=(Q),由于(z)(一)≤(Q)(一)是不可解的,所以M2(Q)(一)不可解;(ii)当丌丌.,7r2丌时,End(Q~l.Q.)(%g),此时它构造的Lie环是可解的不是幂零的,因为[e12,n~22】:e12;(iii)当7r1丌z,7r271”1时,End(Q.Q.)(%.),此时的Lie环是幂零的,并且是交换的.一般地,如果71”i≠对任意的i≠J,则存在一个极大元丌,即7r,设A=B0Q,那么Q是全不变的,Ena(EBH.m),由于EndB(一)是可解的,因此EndA(一)可解.反之,显然有≠霄j对任意的i≠J.这就证明了第一部分.71”i对任意的i≠J,此时EndA0EndQAi是Abel的,因此是幂零的.反之由r=2情形易得对任意的i≠J,7ri参考文献[1]RobinsonDJS.Acourseinthetheoryofgroups[M].2nded.NewY ork:Spri nger—V erlag,1995.【2]KhukhroEI.p-AutomorphismsoffiniteP—groups[M】.Cambridge:Ca mbridgeUniver—sityPress,1998.[31Avifi6MA,SchultzP.Theuppercentralseriesofap-groupactingonaboun dedAbelianP—Group[EB/OL].arXiv:math.GR/0606605.『41Avifi6MA,SchultzP.TheendomorphismringofaboundedAbelianp-gro up[M]//678数学年刊32卷A辑AbelianGroups,RingsandModules,ContemporaryMathematics.V ol273,P rovidence,RI:AmerMathSoc,2001:75—84.[5】FuchsL.InfiniteAbeliangroupsV olI[M].NewY ork:AcademicPress,1970.[6]HausenJ,SchultzP.Themaximalnormalp-subgroupoftheautomorphism groupofanAbelianp-group[J】_ProcAmerMathSoc,1998,216:2525—2533. [7]AlperinJL,BellRB.Groupsandrepresentations[M】.NewY ork:Springe r—V erlag,1995.[8]Avifi6MA.SplittingtheautomorphismgroupofanAbelianp-group 【EB/OL].arXiv:math.GR/0603747.【9]樊恽,黄平安.分裂扩张的稳定自同构群[J].数学年刊,2001,22A(6):791—796.[10】SegalD.Polycyclicgroups[M】.Cambridge:CambridgeUniversityPress,19 83.EndomorphismRingsandAutomorphismGroupsof AbelianGroupswithFinitenessConditionsLIAOJunYANGY an.LIUHeguo. SchoolofMathematicalSciences,PekingUniversity,Beijing100871,China. E—mail:*************.an2DepartmentofMathematics,HubeiUniversity,Wuhan430062,China. E—mail:unicornyy~163.corn3Correspondingauthor.DepartmentofMathematics,HubeiUniversity,Wlu han430062,China.E—mail:ghliu~.ca AbstractLetAbeanAbeliangroupwithmaximumorminimumcondition.Th eauthors givenecessaryandsufficientconditionsfortheautomorphismgroup(resp.Li eringasso—ciatedwiththeendomorphismring)beingsolvable(resp.nilpotent).Moreove r,necessary andsufficientconditionsfortheautomorphismgroup(resp.Lieringassociate dwiththeendomorphismring)beingsolvable(resp.nilpotent)forA=Q7r10Q20…0Q 7rarealsogiven.KeywordsAutomorphismgroup,Endomorphismring,Solvable,Nilpotent 2000MRSubjectClassification20K30,20F16,20F18。

西北工业大学《离散数学》课件-第14章

西北工业大学《离散数学》课件-第14章
{a} {a}{b} {b{}a,b{}a,b} x x ∼x ∼x {a} {a}{b} {b}{a,b{}a,b} {a,b{}a,b} {a} {a} {a} {a} {a.b{}a.b{}b} {b} {a} {a} {a} {a} {b} {b} {b} {b{}a,b{}a,b} {a} {a} {b} {b} {b} {b} {a,b{}a,b}{a,b{}a,{bb}} {b}{a} {a} {a,b{}a,b}
的逆元
12
实例
集合 运算
Z,Q,R 普通加法+ 普通乘法
单位元
0 1
零元 无 0
Mn(R) P(B)
矩阵加法+ 矩阵乘法
并 交 对称差
n阶全0矩阵 n阶单位矩阵
B
无 n阶全0
矩阵
B 无
逆元
x逆元x x逆元x1 (x1给定集合)
X逆元X X的逆元X1 (X可逆)
的逆元为 B的逆元为B X的逆元为X
交与对称差 对可分配 无
10
特异元素:单位元、零元
定义14.7-9 设◦为S上的二元运算, (1) 如果存在el (或er)S,使得对任意 x∈S 都有
el◦x = x (或 x◦er = x), 则称el (或er)是S中关于◦运算的左(或右)单位元. 若e∈S关于◦运算既是左单位元又是右单位元,则称e为S上 关于◦运算的单位元. 单位元也叫做幺元.
2
14.1 代数系统的基本概念
定义14.1 设S为集合,函数f:SSS 称为S上的二元运算, 简称为二元运算.函数 f:S→S 称为S上的一元运算,简 称一元运算. S 中任何元素都可以进行运算,且运算的结果惟一. S 中任何元素的运算结果都属于 S,即 S 对该运算封闭.

群的基本概念ppt课件

群的基本概念ppt课件
由此可得到 S3 置换群的乘法表。
S3 置换群表:
S3
E (132) (123) (23) (13) (12)
E E (132) (123) (23) (13) (12)
(132) (132) (123) E (12) (23) (13)
(123) (123) E (132) (13) (12) (23)
Eˆ ECˆ31
Cˆ32
Aˆˆvv((12)) ˆv(3)
同构与同态在构造群表和群的特征标表中作用很大。
2.4 群的直积:直积群
2.4.1 子群 若一个群 H 的群元素皆包含于另一个群 G 之中,就称群 H 是群 G 的子群。 或者说,群 H 的阶为 h,群 G 的阶为 g,且 h ≤ g,H ∈ G。就称群 H 是群 G 的子群。 因为有相同的乘法关系,子群 H 与群 G 有相同的单位元素。
例 1 C6 群包含 C2 子群和 C3 子群。
C 6:
E ˆ C ˆ6 2(C ˆ3 1) C ˆ6 3(C ˆ2 1) C ˆ6 5
C ˆ6 4(C ˆ3 2) C ˆ6 1
C 6 C 3 C 2
例 1 C6 群包含 C2 子群和 C3 子群。

C2v Eˆ Cˆ 2 (Z)
ˆ XZ
ˆYZ
Eˆ Eˆ Cˆ 2 (Z)
ˆ XZ ˆYZ
Cˆ 2 (Z) Cˆ 2 (Z)

ˆYZ
ˆ XZ
ˆ XZ
ˆ XZ
ˆYZ
Eˆ Cˆ 2 (Z)
ˆYZ
ˆYZ
ˆ XZ
Cˆ 2 (Z) Eˆ
例 2-5 S3 置换群
S3 置换群是三个数码 1,2,3 的所有可能的置换,共有 6 个群 元素:

域ppt课件 (1)

域ppt课件 (1)

单位原根:n阶循环群中,每一个n级元素称为n次单位原

n阶循环群中有 n 个单位原根
n 欧拉函数:0, 1, …, n-1中与n互素的个数
s
n
p1 1
p2 2
ps s
n
pi 1 i
pi 1
i 1
如n=12=3×22,则 12 221(2 1)311(3 1) 4
有限域的乘法结构
域的乘法群必为某一个元素生成的循环群,即q阶域中必 能找到一个,其级为q-1。即所有有限域元素都能表示成 生成元的幂次的形式,此时的生成元称为本原元。
素之间的关系; 4. 有一组假定。
同态与同构:
➢ 设f是代数系统(A, ·)到(B,*)的映射,如果它满足条件 f(a1 ·a2) =f(a1) *f(a2) a1 ,a2 ∈A, f(a1) ,f(a2) ∈B
则称f是A到B的同态映射,集合A与B同态。如果同 态 映射f又是双射,则称为同构映射,集合A与B同构。 若f是A 到A自身的同构映射,则称为自同构。
➢ 在可换环R中,由一个元素a ∈R所生成的理想I(a)={ra + na|r ∈R, n ∈Z}称为环R的一个主理想,称元素a为 该主理想的生成元
剩余类环
定义
➢ 设R是可换环,I为R的一个理想,于是R模I构成一 个可换环,称它为环R以理想I为模的剩余类环

➢ R=Z,I3={…, -3, 0, +3, …},R以I划分陪集为
首一多项式
➢ 最高次数的系数为1的多项式
既约多项式
➢ 设f(x)是次数大于零的多项式,若除常数和常数与本 身则的称乘f(x积)为以域外F,p上再的不既能约被多域项F式p上的其他多项式整除,

3-5群的自同构群.ppt

3-5群的自同构群.ppt
2018/1/10 16:35
于是易知 1 n(A) : A 0 1 是G到自身的一个映射 .又由于 1 ( AB) ( 0 n( AB) 1 ) 0 1 n( A) n( B ) 1
1 n( A) 1 n( B ) ( A) ( B ), 0 1 0 1 故是群G的一个自同态映射 .但是, 把中心元素 2 0 1 0 2 却变成非中心元素 0 不是全特征子群 .
2018/1/10 16:35
(H ) H ,
则称H为群G的一个全特征子群. 全特征子群一定是特征子群.
例2 群G的中心C是G的一个特征子群. 证 : 任取c C, x G, AutG, 则
(c)x (c) [ (x)] [c (x)]
-1 -1
由于无限循环群有两个生成元,n阶循环群有 (n) 个生成元,从而其自同构群分别为2阶循环
2018/1/10 16:35
群和
(n) 阶群.
推论2 无限循环群的自同构群与三阶循环群的自同 构群同构. 定理3 设G是一个群, a G. 1)

a : x axa1 ( x G)
是G的一个自同构,称为G的一个内自同构;
2018/1/10 16:35
小结 1.群的自同构群的概念,循环群的自同构群。 2.内自同构群,特征子群,全特征子群。 作业: 5.6
2018/1/10
16:35
2018/1/10
2 ,因此, G的中心 1
16:35
例4 证明:循环群G=<a>的子群都是全特征子群.
全特征子群、特征子群和正规子群间的关系是
全特征子群 特征子群 正规子群

商环与环同态基本定理

商环与环同态基本定理
1)若 char R= ,则 R 有子环与 Z 同构; 2)若 char R=p(p 是素数),则 R 有子环与 Z p 同构.
3. 设 是环 R 到环 R 的一个同态满射,K 为其同态核,N R.
4. 令 R a bi a,b Q , R 由一切形如

a b
b a
下面我们将说明在商加群 R I 中可以合理地引入一个乘法并使 R I ,, 做
成一环.这个乘法即前面定义的
[a][b] [ab] (或 (a I)(b I) ab I ) 现在我们来证明定义的合理性.设[a] [a' ] 且[b] [b' ] ,则 a a' I 且 b b' I ,于是 ab a'b (a a' )b I ,从而 a'b a'b' a' (b b' ) I ,所 以 [ab] [a'b'] ,即 ab a'b' I .所以定义是合理的. 很容易验证 R I , 是一个环.
习题 9 一个环 的非空子集 叫做 的一个左理想,假如 (i) (ii) 你能不能在有理数域 上的 矩阵环里找到一个不是理想的左理想? 解:考虑有理数域 上的 矩阵
是 的子环, 是 的左理想。
习题二十一
1.设 N 是环 R 到环 R 的同态满射 的核.证明:
是同构映射 N=0.
2. 设 R 是有单位元的整环(可换,无零因子).证明:
第 21 讲
第 三 章 环与域
§6 商环与环同态基本定理
一、 商环的定义与性质
1 商环的构造: 设 为环, 为 的理想.
(1)

离散数学第7章群、环和域

离散数学第7章群、环和域
所以,(x∗y)∗z=x∗(y∗z),故<R,*>是一个半群。 7.1.2 独异点 定义7.1.3 设G,*是半群,如果运算*的单位元eG,
则称半群G,*为含幺半群或独异点。
第7章 群、环和域
若G,*为独异点,且*是可交换的,则称G,*为可换 的独异点。
例如,设A是任一集合,P (A)是A的幂集合。集合并运算 ∪在P (A)上是封闭的,并运算∪的单位元P (A),所以半 群<P (A),∪>是独异点;交运算∩在P (A)上也是封闭的,交运 算∩的单位元AP (A),所以半群<P (A),∩>也是独异点。显
第7章 群、环和域
⑴ (a–1)–1=a ⑵ a*b有逆元,且(a*b)–1=b–1*a–1 证明:⑴ 因a*a–1=a–1*a =e,故(a–1)–1=a ⑵ 因(a*b)*(b–1* a–1)=(a*(b*b–1)*a–1
=a*e*a–1=a*a–1=e 又
(b–1* a–1)*(a*b)=(b–1*a–1)*(a*b) =b–1*(a–1*a)*b=b–1*e*b=b–1*b=e
第7章 群、环和域
返回总目录
第7章 群、环和域
第7章 群、环和域
7.1半群和独异点
7.1.1广群和半群 代数系统<S,*>又称为广群。 定义7.1.1 设<S,*>是代数系统,*是S上的二元运算,如 果*满足结合律,则称代数系统<S,*>为半群。
例如,代数系统<I,+>、R,·、<P(a),∪>、<P(a),∩>、
则称该群为阿贝尔(Abel)群,或称可交换群。 整数加法群I,+中的加法运算是可交换的,所以,整
数加法群是阿贝尔群,群R-0,·中的乘法运算也是可交 换的,所以,R-0,·也是阿贝尔群。

信息安全数学群

信息安全数学群
信息安全数学(shùxué)群
2021/11/5
第一页,共73页。
第二章 群
第二页,共73页。
第二章 群
• 2.1 群的定义(重要) • 2.2 子群(zǐ qún)(掌握) • 2.3 同构和同态(重要) • 2.4 变换群与置换群(掌握)
第三页,共73页。
2.1 群的定义(dìngyì)
定义2.1.1 设G是一非空集合.如果在G上定义了一个 代数运算,称为乘法,记为ab,而且这个运算满足下 列条件,那么G称为一个群:
第二十七页,共73页。
2.2 子群(zǐ qún)
定义2.2.1 一个群G的一个子集H如果 (rúguǒ)对于G的乘法构成一个群,则称为 G的子群也记作H≤G.
一个群G至少有两个子群:G本身;只包含单 位元的子集{e},它们称为G的平凡子群, 其他子群成为真子群(H<G).
第二十八页,共73页。
2.2 子群(zǐ qún)


我们还将a的逆元a 1的n次幂记为a n,即
群的逆元(a 1) 1=a
第十九页,共73页。
群的阶、元素(yuán sù)的幂
若ab=ba,则(ab)n = anbn 另外(lìnɡ wài): a nan = e, aman = am+n, (an)m = anm
第二十页,共73页。
群的等价(děngjià)性质
群的定义(dìngyì)
群的定义可以简单的归结为带有运算的集合 (jíhé),在集合(jíhé)上的运算满足 1)封闭性; 2)结合性; 3)单位元; 4)逆元;
第五页,共73页。
群的定义(dìngyì)
例2.1.1 整数对于加法(jiāfǎ)构成了整数加法(jiāfǎ)群,由我

第十一章群、环、域

第十一章群、环、域

第十一章群、环、域11.1半群内容提要11.1.1半群及独异点定义11.1 称代数结构<S,*>为半群(semigroups),如果*运算满足结合律.当半群<S,*>含有关于*运算的么元,则称它为独异点(monoid),或含么半群.定理11.1设<S,*>为一半群,那么(1)<S,*>的任一子代数都是半群,称为<S,*>的子半群.(2)若独异点<S,*,e>的子代数含有么元e,那么它必为一独异点,称为<S,* , e>的子独异点.定理11.2设<S,*>,<S’,*’>是半群,h为S到S’的同态,这时称h为半群同态.对半群同态有(1)同态象<h(S),*’>为一半群.(2)当<S,*>为独异点时,则<h(S),*’>为一独异点.定理11.3设<S,*>为一半群,那麽(1)<S S,○ >为一半群,这里S S为S上所有一元函数的集合,○为函数的合成运算.(2)存在S到S S的半群同态.11.1.2自由独异点定义11.2称独异点<S,*,e>为自由独异点(free monoid),如果有A⊆S使得(1)e∉A.(2)对任意u∈S,x∈A,u*x≠ e .自由独异点(free monoid),如果有A⊆S使得(3)对任意u,v∈S,x,y∈A,若u*x = v*y,那么u = v,x = y.(4)S由A生成,即S中元素或者为e,或者为A的成员,或者为A的成员的“积”:a i1*a i2*…*a ik (a i1,a i2,…,a ik∈A)集合A称为S的生成集.顺便指出,当半群<S,* >有生成集A={a}时,称<S,* >为循环半群(cyclic semigroups)。

<N,+,0>是循环半群。

环的同态与同构

环的同态与同构

例5
设 R (a, b) a, b Z .在 R 中定义运算
a1, b1 a2 , b2 a1 a2 , b1 b2 . a1, b1 a2 , b2 a1a2 , b1b2 .
可以验证: R 是一个环.现作一个对应:
: R Z , 其中 , a, b a . 则 是一个环同态满
f
下面证②也成立( 即 S 是 R 的子环).
现设 R 中加法和乘法分别记为“ ”和“ ”, 又 S 设与 S 中的加法和乘法分别记为“ + ”和“· ”. 以下 将证明若局限在 S 内,“ ”与“+”, 与·是一致的.
xS , yS S 于是 xS yS Z S S ,所以 S S .则
定理 3.4.3
若 R 和 R 都是环,且 R R , 那么

不仅能传递所有的代数性质,而且 R 是整环(除环, 域) 当且仅当 R 是整环(除环,域).
利用环同构的性质 , 可以得到下面一个有趣 的事实.
引理
设R, , 是一个环, 而 : R A 是一个双
射 , 其中 A 仅是一个集合 . 那么, 可以给集合 A 定义加 法和乘法,使得 成为 R 到 A 的同构映射(即环同构).
为同态 的核.
例 3 一些常见的同态. (1) 零同态: : R R ', (a ) 0, ker ( ) R .
(2) 自然同态: 设 I 是环 R 的理想,
:R R
aa
自然同态为满同态, 且 ker ( ) I .
(3) 恒等同构:
ker ( ) {0}.
(4) 设 知, 存在 使 及
, 由多项式的带余除法 ,

环的定义与性质

环的定义与性质

定理8:R中非零元如果与n互素,则为可逆元;否则为零因子。 证明:数论中互素的充要条件 (m,n)=1 等价于am+bn=1。
思考题:R 中所有可逆元是否构成一个群?其阶是多少? (群论的应用中我们讲过)
更一般的,一个含幺环的全体可逆元对乘法构成群,成为环的乘群。
Euler 定理:n 是正整数,(a,n)=1, 则 a φ(n)=1
(4)证明思路:
用归纳法证明a1,a2,...,an 有
n
n
( ai )b j ai2,...,bm 有
于是
m
m
ai (b j ) aib j
j 1
j 1
n
m
n
m
nm
( ai )(b j ) ai (b j ) aib j
i1
j 1
i1 j1
i1 j1
数论中可以用既约剩余系的概念证明,这里我们可以用群的概念证明。
第四节 除环
定义 一个环R叫做一个除环,若 1、R至少包含一个不等于零的元; 2、R有一个单位元; 3、R每一个非零的元都有逆元。
除环的性质
1、除环没有零因子 2、除环的特征只能为零或者素数。
一个交换除环叫做一个域。(我们将在下一章详细讨论)
3. 环与子环的单位元
设 S 是 R 的一个子环,当 R 有单位元时,S 不一定有;当 S 有单位元 时,R 不一定有;即使两者都有单位元,此两单位元也不一定相同。
1、考虑 R为整数环<Z,+,·> ,S 为偶数环<2Z,+,·> 。 2、考虑 R为偶数环<2Z,+,·>, S为零环。 3、考虑实数环 R,S为零环,两个环的单位元不同。

第1章群论基础

第1章群论基础

1.6.1 Abel群的分类 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.6.2 非Abel群的分类 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.6.3 小阶群表 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
参考文献
25
文件生成时间: 2013年9月28日 试用讲义. 请不要在网上传播.
第 1 章 群论基础
§1.1 基本概念
§1.1.1 群的定义
1.2.2 共轭类 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.3 子群和陪集 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
b = a−1 = a, ; b = e, ; a = e, .
• a2 = a a = e, .
• a2 = b, ab = e, ba = e, b2 = a.
所以三元群只有一种, 其乘法表列于表 1.2 中.
很明显, 以这种方式来确定乘法表非常不方便. 后面讲述的一系列定理将帮助我们有
1.2.4 Lagrange定理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.5 不变子群和商群 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

环同态基本定理

环同态基本定理

11
前页
后页
目录
返回
定理3.5.3 设 为环R到环R '的环同态, 则Ker 为 R 的理想. 证 对任意的a, b Ker , r R , 有
(a b) (a) (b) 0 0 0
(ra) (r ) (a) (r )0 0
20
前页
后页
目录
返回
例6 由本节例2和例4知, 是Z到Z m的满同态, 且 Ker m, 则由环同态基本定理得
Z / m Zm
21
前页
后页
目录
返回
例7
在本节例5中, 是 Q[ x ]到 Q[ 2] 的满同态且
Ker x 2 2
从而由环同态基本定理得
证 (1) 对任意的 f ( x) Q[ x] , 存在 q( x) Q[ x] ,
a, b Q ,使
f ( x) ( x 2 2)q( x) a bx
14
前页 后页 目录 返回

f ( 2) ( 2 2)q( 2) a b 2 a b 2 Q[ 2]
r ' e ' r ' (e) (ee) (e) (e) r ' (e)
因为 R '无零因子, 所以消去律成立. 在上式两边消去 r ' 得 (e) e '.
9
前页 后页 目录 返回
(3) 设 u 为 R 的任一单位, 则
e ' (e) (uu 1 ) (u) (u 1 ) e ' (e) (u 1u) (u 1 ) (u)
从而 为 Z 到 Z m 的满同态.

近世代数之环与域

近世代数之环与域
Z m , , 是一个环.
证 (1)由第一章知,剩余类的加法是 Z m 的代 数运算. 由第二章知 Z m , 是加群. 下面证明乘法 “·” :
[i ] [ j ] [i j ] 是 Z m 的代数运算.
假设 i [i ], j [ j ],那么 按照定义,有
[i[ [i],[ j] [ j ]
[i] [ j] [i j]
(2)
(1) , ( 2 )两式的左端是相等的, 即
[i] [ j] [i ] [ j ].
如果它们的右端不一样,就有
[i] [ j] [i ] [ j ],
那么,规则“· ”就不是 Z m 的代数运算, 就是说 Z m 中两个元素,按照规则“· ”得到 两个不同的值了.
a a a (a) (a) a 0, a R; (a ) a, a R;
a b c b a c, a, b, c R;
性质5 (a b) a b, (a b) a b, a, b R; 性质6 m(na) (mn)a, n(a b) na nb, m, n Z , a, b R;
In our classes, all the mobile phones should be switched off !
上课啦!
The class is begin!
第 三 章
环 和 域
群是有一个代数运算的代数系统 但是, 我们在数学特别是在高等代数中,遇到过很 重要的讨论对象,例如,数、多项式、函数 以及矩阵和线性变换等,都有两个代数运算, 这一事实说明,在近世代数中研究有两个代 数运算的代数系统,也具有非常重要的现实 意义。在有两个代数运算的代数系统 “· ” R, , 中设 Z 为整数集,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档