2018考研数学重难点之二阶常系数线齐次差分方程通解分析、
6考研数学大纲知识点解析(第六章微分方程和差分方程(数学一))
满足初始条件
的特
【解析】令
,则
,原方程化为
,即
,
于是 因
,得
,故
,由
,
知,应取
.
即
,解得
,又由
,得
,故
.
(3)型如: 间变量,即
.方程的特点是不显含自变量 .令 ,由复合函数求导的链式法,则有
,视 为中
将之代入方程,得 这是函数 关于变量 的一阶微分方程.若能求出其通解
则可再由方程
或
两边积分后求得方程的通解
【解析】 将
代入方程
(D)
.
,得
由题设可知 从而有
类似地,将
代入方程
解得
,故选(A).
.
,得
,
【例题】(89 年,数学一/数学二/数学三)设线性无关的函数
都是二阶非齐次线性
方程 .
的解,
是任意常数,则该非齐次方程的通解是
(A)
.
(B)ቤተ መጻሕፍቲ ባይዱ
.
(C)
. (D)
.
【答案】(D).
【解析】根据解的性质,
均为齐次方程的解,且线性无关,因此
;
(2) 求出特征根 和 ;
(3) 根据特征根的不同情形按下表写出方程(1)的通解:
表 二阶常系数线性齐次微分方程的通解
特征根情形
通解形式
相异实根 相同实根 共轭复根
【例题】求微分方程 【解析】特征方程为 故齐次微分方程的通解为
的通解.
,解特征根为
.
.其中
为任意常数.
【例题】求微分方程 【解析】特征方程为 故齐次方程的通解为
.
设非齐次方程
考研数学二公式高数线代费了好大的劲技巧归纳
考研数学二公式高数线代(费了好大的劲)技巧归纳————————————————————————————————作者: ————————————————————————————————日期:ﻩ高等数学公式一、常用的等价无穷小当x →0时x ~si nx ~tan x ~arc sin x ~arct an x ~l n(1+x ) ~ e x -1a x -1~x ln a(1+x )α-1 ~ αx (α为任意实数,不一定是整数)1-cosx ~21x 2增加x -si nx ~61x 3 对应 arcsin x –x ~ 61x 3 tan x –x ~ 31x 3 对应 x - a rctan x ~ 31x 3二、利用泰勒公式ex = 1 + x ++!22x o(2x ) ) (33 o !3sin x x x x +-=c osx = 1 – +!22x o(2x ) ln (1+x )=x – +22x o(2x ) 导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x xctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:函数角A si ncos tg c tg-α -sinα cosα -tgα -ctgα 90°-α c osα sinα ct gα tgα 90°+α cosα -sinα -ctgα -t gα 180°-α sinα -c osα -tgα -c tgα 180°+α -si nα -cosα tgα ctgα 270°-α -cosα -s inα ctgα tgα 270°+α -co sα sinα -ctgα -t gα 360°-α -sinα cosα -tgα -ctgα 360°+αsinαcosαtgαctgα·和差角公式: ·和差化积公式:·倍角公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leib niz)公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
2018考研数学模拟题完整版及参考答案(数二)
2018考研数学模拟题完整版及参考答案(数二)一、选择题:1-8小题,每小题4分,共32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在点0x 处的增量,d y y ∆与分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则( )(A) 0d y y <<∆. (B) 0d y y <∆<.(C) d 0y y ∆<<. (D) d 0y y <∆< .(2)设()f x 是奇函数,除0x =外处处连续,0x =是其第一类间断点,则()d x f t t ⎰是(A )连续的奇函数.(B )连续的偶函数(C )在0x =间断的奇函数(D )在0x =间断的偶函数. ( )(3)设函数()g x 可微,1()()e ,(1)1,(1)2g x h x h g +''===,则(1)g 等于( ) (A )ln 31-. (B )ln 3 1.--(C )ln 2 1.--(D )ln 2 1.-(4)函数212e e e x x x y C C x -=++满足的一个微分方程是 [ ] (A )23e .x y y y x '''--= (B )23e .x y y y '''--=(C )23e .x y y y x '''+-=(D )23e .x y y y '''+-=(5)设(,)f x y 为连续函数,则140d (cos ,sin )d f r r r r πθθθ⎰⎰等于()(A)(,)d xx f x y y . (B )0(,)d x f x y y .(C)(,)d yy f x y x . (D)(,)d y f x y x .(6)设(,)(,)f x y x y ϕ与均为可微函数,且(,)0y x y ϕ'≠,已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是()(A) 若00(,)0x f x y '=,则00(,)0y f x y '=. (B) 若00(,)0x f x y '=,则00(,)0y f x y '≠.(C) 若00(,)0x f x y '≠,则00(,)0y f x y '=.(D) 若00(,)0x f x y '≠,则00(,)0y f x y '≠. (7)设12,,,s ααα 均为n 维列向量,A 为m n ⨯矩阵,下列选项正确的是 [ ](A) 若12,,,s ααα 线性相关,则12,,,s A A A ααα 线性相关. (B) 若12,,,s ααα 线性相关,则12,,,s A A A ααα 线性无关. (C) 若12,,,s ααα 线性无关,则12,,,s A A A ααα 线性相关.(D) 若12,,,s ααα 线性无关,则12,,,s A A A ααα 线性无关.(8)设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的1-倍加到第2列得C ,记110010001P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则()(A)1C P AP -=. (B)1C PAP -=. (C)T C P AP =. (D)T C PAP =.一.填空题 (9)曲线4sin 52cos x xy x x+=- 的水平渐近线方程为(10)设函数2301sin d ,0(),0x t t x f x x a x ⎧≠⎪=⎨⎪=⎩⎰ 在0x =处连续,则a =(11)广义积分22d (1)x xx +∞=+⎰. (12) 微分方程(1)y x y x-'=的通解是 (13)设函数()y y x =由方程1e yy x =-确定,则d d x y x==(14)设矩阵2112A ⎛⎫= ⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足2BA B E =+,则=B .三 、解答题:15-23小题,共94分.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分10分) 试确定,,A B C 的值,使得23e (1)1()x Bx Cx Ax o x ++=++,其中3()o x 是当0x →时比3x 高阶的无穷小. (16)(本题满分10分)求 arcsin e d e xxx ⎰. (17)(本题满分10分)设区域{}22(,)1,0D x y x y x =+≤≥, 计算二重积分221d d .1Dxyx y x y +++⎰⎰ (18)(本题满分12分)设数列{}n x 满足110,sin (1,2,)n n x x x n π+<<== (Ⅰ)证明lim n n x →∞存在,并求该极限;(Ⅱ)计算11lim n x n n n x x +→∞⎛⎫ ⎪⎝⎭. (19)(本题满分10分) 证明:当0a b π<<<时,sin 2cos sin 2cos b b b b a a a a ππ++>++.(20)(本题满分12分)设函数()f u 在(0,)+∞内具有二阶导数,且z f=满足等式22220z zx y∂∂+=∂∂. (I )验证()()0f u f u u'''+=; (II )若(1)0,(1)1f f '==,求函数()f u 的表达式. (21)(本题满分12分)已知曲线L 的方程221,(0)4x t t y t t⎧=+≥⎨=-⎩(I )讨论L 的凹凸性;(II )过点(1,0)-引L 的切线,求切点00(,)x y ,并写出切线的方程;(III )求此切线与L (对应于0x x ≤的部分)及x 轴所围成的平面图形的面积. (22)(本题满分9分) 已知非齐次线性方程组1234123412341435131x x x x x x x x ax x x bx +++=-⎧⎪++-=-⎨⎪+++=⎩ 有3个线性无关的解.(Ⅰ)证明方程组系数矩阵A 的秩()2r A =; (Ⅱ)求,a b 的值及方程组的通解. (23)(本题满分9分)设3阶实对称矩阵A 的各行元素之和均为3,向量()()TT121,2,1,0,1,1αα=--=-是线性方程组0Ax =的两个解.(Ⅰ) 求A 的特征值与特征向量;(Ⅱ) 求正交矩阵Q 和对角矩阵Λ,使得T Q AQ =Λ.2018可锐考研数学答案(四)1. A 【分析】 题设条件有明显的几何意义,用图示法求解. 【详解】 由()0,()0f x f x '''>>知,函数()f x 单调增加,曲线()y f x =凹向,作函数()y f x =的图形如右图所示,显然当0x ∆>时,00d ()d ()0y y f x x f x x ''∆>==∆>,故应选(A).【评注】 对于题设条件有明显的几何意义或所给函数图形容易绘出时,图示法是求解此题的首选方法.本题还可用拉格朗日定理求解:0000()()(),y f x x f x f x x x x ξξ'∆=+∆-=∆<<+∆因为()0f x ''>,所以()f x '单调增加,即0()()f f x ξ''>,又0x ∆>, 则 0()()d 0y f x f x x y ξ''∆=∆>∆=>,即0d y y <<∆.定义一般教科书均有,类似例题见《数学复习指南》(理工类)P .165【例6.1】,P .193【1(3)】.2. B 【分析】由于题设条件含有抽象函数,本题最简便的方法是用赋值法求解,即取符合题设条件的特殊函数()f x 去计算0()()d x F x f t t =⎰,然后选择正确选项.【详解】取,0()1,0x x f x x ≠⎧=⎨=⎩. 则当0x ≠时,()2220011()()d lim d lim 22x xF x f t t t t x x εεεε++→→===-=⎰⎰, 而0(0)0lim ()x F F x →==,所以()F x 为连续的偶函数,则选项(B)正确,故选(B).【评注】对于题设条件含抽象函数或备选项为抽象函数形式结果以及数值型结果的选择题,用赋值法求解往往能收到奇效.符合题设条件的函数在多教科书上均可见到,完全类似例题见2006文登最新模拟试卷(数学三)(8).3. C 【分析】题设条件1()()e g x h x +=两边对x 求导,再令1x =即可. 【详解】1()()e g x h x +=两边对x 求导,得1()()e ()g x h x g x +''=.上式中令1x =,又(1)1,(1)2h g ''==,可得1(1)1(1)1(1)e (1)2e (1)ln 21g g h g g ++''===⇒=--,故选(C ).【评注】本题考查复合函数求导,属基本题型. 完全类似例题见文登暑期辅导班《高等数学》第2讲第2节【例12】,《数学复习指南》理工类P.47【例2.4】,《数学题型集粹与练习题集》理工类P.1【典例精析】.4. D 【分析】本题考查二阶常系数线性非齐次微分方程解的结构及非齐次方程的特解与对应齐次微分方程特征根的关系.故先从所给解分析出对应齐次微分方程的特征方程的根,然后由特解形式判定非齐次项形式.【详解】由所给解的形式,可知原微分方程对应的齐次微分方程的特征根为121,2λλ==-.则对应的齐次微分方程的特征方程为2(1)(2)0,20λλλλ-+=+-=即. 故对应的齐次微分方程为 20y y y '''+-=.又*e xy x =为原微分方程的一个特解,而1λ=为特征单根,故原非齐次线性微分方程右端的非齐次项应具有形式()e x f x C =(C 为常数).所以综合比较四个选项,应选(D ). 【评注】对于由常系数非齐次线性微分方程的通解反求微分方程的问题,关键是要掌握对应齐次微分方程的特征根和对应特解的关系以及非齐次方程的特解形式..完全类似例题见文登暑期辅导班《高等数学》第7讲第2节【例9】和【例10】,《数学复习指南》P .156【例 5.16】,《数学题型集粹与练习题集》(理工类)P .195(题型演练3),《考研数学过关基本题型》(理工类)P.126【例14】及练习.5. C 【分析】 本题考查将坐标系下的累次积分转换为直角坐标系下的累次积分,首先由题设画出积分区域的图形,然后化为直角坐标系下累次积分即可.【详解】 由题设可知积分区域D 如右图所示,显然是Y 型域,则原式0(,)d yy f x y x =.故选(C).【评注】 本题为基本题型,关键是首先画出积分区域的图形.完全类似例题见文登暑期辅导班《高等数学》第10讲第2节例4,《数学复习指南》(理工类)P.286【例10.6】,《考研数学过关基本题型》(理工类)P .93【例6】及练习.6. D 【分析】 利用拉格朗日函数(,,)(,)(,)F x y f x y x y λλϕ=+在000(,,)x y λ(0λ是对应00,x y 的参数λ的值)取到极值的必要条件即可.【详解】 作拉格朗日函数(,,)(,)(,)F x y f x y x y λλϕ=+,并记对应00,x y 的参数λ的值为0λ,则000000(,,)0(,,)0x y F x y F x y λλ⎧'=⎪⎨'=⎪⎩, 即0000000000(,)(,)0(,)(,)0x x y y f x y x y f x y x y λϕλϕ⎧''+=⎪⎨''+=⎪⎩ .消去0λ,得00000000(,)(,)(,)(,)0x y y x f x y x y f x y x y ϕϕ''''-=, 整理得 000000001(,)(,)(,)(,)x y x y f x y f x y x y x y ϕϕ'''='.(因为(,)0y x y ϕ'≠),若00(,)0x f x y '≠,则00(,)0y f x y '≠.故选(D).【评注】 本题考查了二元函数极值的必要条件和拉格朗日乘数法.相关定理见《数学复习指南》(理工类)P.251定理1及P.253条件极值的求法.7. A 【分析】 本题考查向量组的线性相关性问题,利用定义或性质进行判定.【详解】 记12(,,,)s B ααα= ,则12(,,,)s A A A AB ααα= .所以,若向量组12,,,s ααα 线性相关,则()r B s <,从而()()r AB r B s ≤<,向量组12,,,s A A A ααα 也线性相关,故应选(A).【评注】 对于向量组的线性相关问题,可用定义,秩,也可转化为齐次线性方程组有无非零解进行讨论.8. B 【分析】利用矩阵的初等变换与初等矩阵的关系以及初等矩阵的性质可得.【详解】由题设可得110110110110,010********1001001001B AC B A --⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ , 而 1110010001P --⎛⎫⎪= ⎪ ⎪⎝⎭,则有1C PAP -=.故应选(B).【评注】(1)每一个初等变换都对应一个初等矩阵,并且对矩阵A 施行一个初等行(列)变换,相当于左(右)乘相应的初等矩阵.(2)牢记三种初等矩阵的转置和逆矩阵与初等矩阵的关系. 完全类似例题及性质见《数学复习指南》(理工类)P.381【例2.19】,文登暑期辅导班《线性代数》第2讲例12.9. 【分析】 直接利用曲线的水平渐近线的定义求解即可.【详解】 4s i n 14s i n1l i m l i m 2c o s 52c o s 55x x x x x x xx x x →∞→∞++==--.故曲线的水平渐近线方程为 15y =.【评注】本题为基本题型,应熟练掌握曲线的水平渐近线,垂直渐近线和斜渐近线的求法.注意当曲线存在水平渐近线时,斜渐近线不存在,为什么?完全类似例题见文登暑期辅导班《高等数学》第6讲第4节【例12】,《数学复习指南》(理工类)P.180【例6.30】,【例6.31】.10. 【分析】本题为已知分段函数连续反求参数的问题.直接利用函数的连续性定义即可.【详解】 由题设知,函数()f x 在 0x =处连续,则 0lim ()(0)x f x f a →==,又因为 2203200sin d sin 1lim ()limlim 33xx x x t t x f x x x →→→===⎰. 所以 13a =. 【评注】遇到求分段函数在分段点的连续性问题,一般从定义入手.本题还考查了积分上限函数的求导,洛必达法则和等价无穷小代换等多个基本知识点,属基本题型.完全类似例题见文登暑期辅导班《高等数学》第1讲第1节【例13】,《数学复习指南》(理工类)P.35【例1.51】.88年,89年,94年和03年均考过该类型的试题,本题属重点题型.11. 【分析】利用凑微分法和牛顿-莱布尼兹公式求解.【详解】2022222200d 1d(1+)111111lim lim lim (1)2(1)21+21+22b bb b b x x x x x xb +∞→∞→∞→∞==-=-+=++⎰⎰.【评注】 本题属基本题型,对广义积分,若奇点在积分域的边界,则可用牛顿-莱布尼兹公式求解,注意取极限.完全类似例题见文登暑期辅导班《高等数学》第5讲第6节【例1】,《数学复习指南》(理工类)P.119【例3.74】.12 .【分析】本方程为可分离变量型,先分离变量,然后两边积分即可【详解】 原方程等价为d 11d y x y x ⎛⎫=- ⎪⎝⎭, 两边积分得 1ln ln y x x C =-+,整理得e xy Cx -=.(1e CC =)【评注】 本题属基本题型.完全类似公式见《数学复习指南》(理工类)P .139.13. 【分析】本题为隐函数求导,可通过方程两边对x 求导(注意y 是x 的函数),一阶微分形式不变性和隐函数存在定理求解.【详解】 方法一:方程两边对x 求导,得e e y y y xy ''=--.又由原方程知,0,1x y ==时.代入上式得d e d x x y y x=='==-.方法二:方程两边微分,得d e d e d yyy x x y =--,代入0,1x y ==,得0d e d x y x==-.方法三:令(,)1e yF x y y x =-+,则()0,10,10,10,1ee,1e 1yy x y x y x y x y F F x xy========∂∂===+=∂∂,故0,10,1d e d x y x x y F y xF xy=====∂∂=-=-∂∂.【评注】 本题属基本题型.求方程确定的隐函数在某点处的导数或微分时,不必写出其导数或微分的一般式完全类似例题见文登暑期辅导班《高等数学》第2讲第2节【例14】,《数学复习指南》(理工类)P.50【例2.12】.14. 【分析】 将矩阵方程改写为AX B XA B AXB C ===或或的形式,再用方阵相乘的行列式性质进行计算即可.【详解】 由题设,有()2B A E E -= 于是有 4B A E -=,而11211A E -==-,所以2B =. 【评注】 本题关键是将其转化为用矩阵乘积形式表示.类似题2005年考过.完全类似例题见文登暑期辅导班线性代数第1讲例6,《数学复习指南》(理工类)P .378【例2.12】15.【分析】题设方程右边为关于x 的多项式,要联想到e x 的泰勒级数展开式,比较x 的同次项系数,可得,,A B C 的值.【详解】将e x的泰勒级数展开式233e 1()26xx x x o x =++++代入题设等式得 233231()[1]1()26x x x o x Bx Cx Ax o x ⎡⎤++++++=++⎢⎥⎣⎦整理得233111(1)()1()226B B x B C x C o x Ax o x ⎛⎫⎛⎫+++++++++=++ ⎪ ⎪⎝⎭⎝⎭比较两边同次幂系数得11021026B A B C B C ⎧⎪+=⎪⎪++=⎨⎪⎪++=⎪⎩,解得132316A B C ⎧=⎪⎪⎪=-⎨⎪⎪=⎪⎩. 【评注】题设条件中含有高阶无穷小形式的条件时,要想到用麦克劳林公式或泰勒公式求解.要熟练掌握常用函数的泰勒公式.相应公式见《数学复习指南》理工类P .124表格.16.【分析】题设积分中含反三角函数,利用分部积分法.【详解】arcsin e d arcsin e de e arcsin e e e x x x x x x xx x x --=-=-+⎰⎰⎰-e arcsin e x x x -=-+.令t =221ln(1),d d 21tx t x t t =-=--, 所以21111d d 1211x t t t t t ⎛⎫==- ⎪--+⎝⎭⎰⎰111ln ln 212t C t -=+=+.【评注】被积函数中为两种不同类型函数乘积且无法用凑微分法求解时,要想到用分部积分法计算;对含根式的积分,要想到分式有理化及根式代换.本题为基本题型,完全相似例题见文登暑期辅导班《高等数学》第3讲第3节【例6】,《数学复习指南》理工类P.79【例3.21】.17. 【分析】 由于积分区域D 关于x 轴对称,故可先利用二重积分的对称性结论简化所求积分,又积分区域为圆域的一部分,则将其化为极坐标系下累次积分即可.【详解】 积分区域D 如右图所示.因为区域D 关于x 轴对称,函数221(,)1f x y x y=++是变量y 的偶函数,函数22(,)1xyg x y x y =++是变量y 的奇函数.则112222220011ln 2d d 2d d 2d d 1112DD r x y x y r xy x y r ππθ===+++++⎰⎰⎰⎰⎰⎰22d d 01Dxyx y x y =++⎰⎰, 故22222211ln 2d d d d d d 1112D D Dxy xy x y x y x y x y x y x y π+=+=++++++⎰⎰⎰⎰⎰⎰. 【评注】只要见到积分区域具有对称性的二重积分计算问题,就要想到考查被积函数或其代数和的每一部分是否具有奇偶性,以便简化计算.完全类似例题见文登暑期辅导班《高等数学》第10讲第1节例1和例2,《数学复习指南》(理工类)P .284【例10.1】18. 【分析】 一般利用单调增加有上界或单调减少有下界数列必有极限的准则来证明数列极限的存在. (Ⅱ)的计算需利用(Ⅰ)的结果.【详解】 (Ⅰ)因为10x π<<,则210sin 1x x π<=≤<. 可推得 10sin 1,1,2,n n x x n π+<=≤<= ,则数列{}n x 有界. 于是1sin 1n nn nx x x x +=<,(因当0sin x x x ><时,), 则有1n n x x +<,可见数列{}n x 单调减少,故由单调减少有下界数列必有极限知极限lim n n x →∞存在.设lim n n x l →∞=,在1s i n n n x x +=两边令n →∞,得 sin l l =,解得0l =,即l i m 0n n x →∞=.(Ⅱ) 因 22111sin lim lim nn x x n n n n n n x x x x +→∞→∞⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭,由(Ⅰ)知该极限为1∞型, 令n t x =,则,0n t →∞→,而222sin 111111sin 1000sin sin sin lim lim 11lim 11tt t t t t t t t t t t t t t t -⋅-→→→⎡⎤⎛⎫⎛⎫⎛⎫⎢⎥=+-=+- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,又 33233000()1sin sin 13!lim 1lim lim 6t t t t t o t tt t t t t t t →→→-+--⎛⎫-===- ⎪⎝⎭. (利用了sin x 的麦克劳林展开式)故 2211116sin lim lim e nn x x n n n n n n x x x x -+→∞→∞⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭.19. 【详解】 令()sin 2cos sin 2cos ,0f x x x x x a a a a a x b πππ=++---<≤≤<,则 ()sin cos 2sin cos sin f x x x x x x x x ππ'=+-+=-+,且()0f π'=. 又 ()cos sin cos sin 0f x x x x x x x ''=--=-<,(0,s i n 0x x x π<<>时),故当0a x b π<≤≤<时,()f x '单调减少,即()()0f x f π''>=,则()f x 单调增加,于是()()0f b f a >=,即sin 2cos sin 2cos b b b b a a a a ππ++>++.20利用复合函数偏导数计算方法求出2222,z z x y ∂∂∂∂代入22220z zx y∂∂+=∂∂即可得(I ).按常规方法解(II )即可.【详解】 (I )设u =((z z f u f u x y ∂∂''==∂∂. 22()()z f u f u x ∂'''=+∂()22322222()()x y f u f u x y x y '''=⋅+⋅++,()2223222222()()z y x f u f u y x yxy∂'''=⋅+⋅∂++.将2222,z z x y ∂∂∂∂代入22220z zx y∂∂+=∂∂得 ()()0f u f u u'''+=. (II ) 令()f u p '=,则d d 0p p u p u p u'+=⇒=-,两边积分得1ln ln ln p u C =-+,即1C p u =,亦即 1()C f u u'=. 由(1)1f '=可得 11C =.所以有 1()f u u'=,两边积分得 2()ln f u u C =+, 由(1)0f =可得 20C =,故 ()ln f u u =.【评注】 本题为基础题型,着重考查多元复合函数的偏导数的计算及可降阶方程的求解.完全类似例题见文登暑期辅导班《高等数学》第8讲第1节【例8】,《数学复习指南》(理工类)P.336【例12.14】,P .337【例12.15】21. 【分析】 (I )利用曲线凹凸的定义来判定;(II )先写出切线方程,然后利用 (1,0)-在切线上 ; (III )利用定积分计算平面图形的面积.【详解】 (I )因为d d d d 422d 2,421d d d d 2d yx y y t t t t x t t x t tt-==-⇒===-2223d d d 12110,(0)d d d d 2d y y t x x t x t tt t⎛⎫⎛⎫=⋅=-⋅=-<> ⎪ ⎪⎝⎭⎝⎭故曲线L 当0t ≥时是凸的.(II )由(I )知,切线方程为201(1)y x t ⎛⎫-=-+⎪⎝⎭,设2001x t =+,20004y t t =-,则220000241(2)t t t t ⎛⎫-=-+⎪⎝⎭,即23200004(2)(2)t t t t -=-+ 整理得 20000020(1)(2)01,2(t t t t t +-=⇒-+=⇒=-舍去).将01t =代入参数方程,得切点为(2,3),故切线方程为231(2)1y x ⎛⎫-=-- ⎪⎝⎭,即1y x =+.(III )由题设可知,所求平面图形如下图所示,其中各点坐标为(1,0),(2,0),(2,3),(1,0)A B C D -,设L 的方程()x g y =,则()3()(1)d S g y y y =--⎡⎤⎣⎦⎰ 由参数方程可得2t =,即(221x =+.由于(2,3)在L 上,则(2()219x g y y ==+=--.于是(309(1)d S y y y ⎡⎤=----⎣⎦⎰3(102)d 4y y y =--⎰⎰()()3233208710433y yy =-+-=. 【评注】 本题为基本题型,第3问求平面图形的面积时,要将参数方程转化为直角坐标方程求解.完全类似例题和公式见《数学复习指南》(理工类)P.187【例6.40】.22. 【分析】 (I )根据系数矩阵的秩与基础解系的关系证明;(II )利用初等变换求矩阵A 的秩确定参数,a b ,然后解方程组.【详解】 (I ) 设123,,ααα是方程组Ax β=的3个线性无关的解,其中111114351,1131A a b β-⎛⎫⎛⎫⎪ ⎪=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭.则有 1213()0,()0A A αααα-=-=. 则1213,αααα--是对应齐次线性方程组0Ax =的解,且线性无关.(否则,易推出123,,ααα线性相关,矛盾).所以 ()2n r A -≥,即4()2()2r A r A -≥⇒≤.又矩阵A 中有一个2阶子式111043=-≠,所以()2r A ≤. 因此 ()2r A =. (II ) 因为11111111111143510115011513013004245A a b a a b a a b a ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=-→--→-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪----+-⎝⎭⎝⎭⎝⎭.又()2r A =,则42024503a a b a b -==⎧⎧⇒⎨⎨+-==-⎩⎩. 对原方程组的增广矩阵A 施行初等行变换,111111024243511011532133100000A --⎛⎫⎛⎫ ⎪ ⎪=--→-- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,故原方程组与下面的方程组同解.13423424253x x x x x x =-++⎧⎨=--⎩.选34,x x 为自由变量,则134234334424253x x x x x x x x x x =-++⎧⎪=--⎪⎨=⎪⎪=⎩. 故所求通解为12242153100010x k k -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪=++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,12,k k 为任意常数.【评注】 本题综合考查矩阵的秩,初等变换,方程组系数矩阵的秩和基础解系的关系以及方程组求解等多个知识点,特别是第一部分比较新颖. 这是考查综合思维能力的一种重要表现形式,今后类似问题将会越来越多.完全类似例题见《数学复习指南》(理工类)P .427【例4.5】,P.431【例4.11】.23. 解: 由矩阵A 的各行元素之和均为3及矩阵乘法可得矩阵A 的一个特征值和对应的特征向量;由齐次线性方程组0Ax =有非零解可知A 必有零特征值,其非零解是0特征值所对应的特征向量.将A 的线性无关的特征向量正交化可得正交矩阵Q .【详解】 (Ⅰ) 因为矩阵A 的各行元素之和均为3,所以1311331131A ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则由特征值和特征向量的定义知,3λ=是矩阵A 的特征值,T (1,1,1)α=是对应的特征向量.对应3λ=的全部特征向量为k α,其中k 为不为零的常数.又由题设知 120,0A A αα==,即11220,0A A αααα=⋅=⋅,而且12,αα线性无关,所以0λ=是矩阵A 的二重特征值,12,αα是其对应的特征向量,对应0λ=的全部特征向量为 1122k k αα+,其中12,k k 为不全为零的常数.(Ⅱ) 因为A 是实对称矩阵,所以α与12,αα正交,所以只需将12,αα正交. 取11βα=,()()21221111012,3120,61112αββαβββ⎛⎫-⎪-⎛⎫⎛⎫⎪- ⎪ ⎪=-=--= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭ ⎪⎝⎭. 再将12,,αββ单位化,得1212312,,0ββαηηηαββ⎛⎛ ⎪====== ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭, 令 []123,,Q ηηη=,则1T Q Q -=,由A 是实对称矩阵必可相似对角化,得T300Q AQ ⎡⎤⎢⎥==Λ⎢⎥⎢⎥⎣⎦.。
第6节一阶和二阶常系数线性差分方程
8/8/2024 1:07 AM
第7章 微分方程与差分方程
当 a 1时,取 s 1,此时将
y x x(B0 B1x Bn xn )
代人方程,比较同次系数,确定出 B0, B1, B2, , Bn 得到方程的特解。这种情况下,方程的左端为 yx , 方程为 yx cxn ,可将 xn化成 x(n) 的形式 求出它的一个特解。
2 , 1
对应的齐次方程的通解为 yx A1(2)x A2 因为 1 a b 1 1 2 0 ,a 1 2 所以特解为
yx
12 x 21
4x
故原方程的通解为
yx 4x A1(2)x A2 ( A1, A2为任意常数)
8/8/2024 1:07 AM
第7章 微分方程与差分方程
其中 r
2 2
b , tan
4b a2 ,
A1, A2 为任意常数。
a
8/8/2024 1:07 AM
第7章 微分方程与差分方程
2.方程(4)中 f ( x)取某些特殊形式的 函数时的特解(利用待定系数法求出)
(1) f ( x) c (c 为常数)
方程(4)为
yx2 a yx1 byx c (6)
8/8/2024 1:07 AM
第7章 微分方程与差分方程
利用待定系数法 设方程具有yx kxs形式 的特解。
当 a 1时,取 s 0 ,代人方程得 k ak c
k c , 1a
所以方程的特解为
yx
c 1
a
又因对应的齐次方程的通解为 yx Aa x
二阶变系数齐次微分方程通解的求法
假设 2 ( * %) &" ( ( + %) & (( , %)5 $ , , 即 " %& . " ( % ( !) & ( ( 5 $, ( & . ") ( &% . " )5 $ 6 因为 & 为常数, 所以 & # " , 由此得方程的一个特解 !! # #"% ,
% 再设 !" # $ ( %) #特解, 则
! ( ( ) &( "
参考文献
+ 张清芳, 库在强0 用观察法求某些二阶系数齐次方程的通解 [ ,] , 高等数学研究, "’’- , . (&) : /0 —/. [!]
-----------------------------------------( 上接第 !. 页) + 所以原方程组的通解为: " & 2 0 & $ ! $ &20 $ " - 2 0 $ " "20 (!! ("! (&! (!! ("! (&! 1 %( !! !" ) # ’ # ’ ’ % ! ’ (!" ("" (&" (!" ("" (&" ’ % 2 0 ’ ! -20 ’ ’ ’ ’ ! " % & ("! $ ("" & 2 0 % & (&! $ (&" $ & 2 0 % & (!! $ (!" " 2 0 $ - (!! % " (!" $ " $ - ("! % " ("" - 2 0 $ -& (&! % " (&" (!! ("! (&! - 2 0 % (!" ("" % 2 0 % (&" (!" ("" (&"
《高等数学B》第十章___微分方程与差分方程__第8节__二阶常系数线性差分方程
(4)
第三步 根据特征方程 (4) 的两个根的不同情形,写 出差分方程 (2) 的通解. (可见教材 P441 的表)
例1 求差分方程 y x 2 y x 1 6 y x 0 的通解 .
解 特征方程
2 6 0
有两个不相等的实根 1 3 , 2 2 , 从而原方程的通 解为
y x C1 3 x C2 ( 2) x . ( C1 , C 2 为任意常数 )
例2 求差分方程 2 y x y x 3 y x 1 4 y x 0的通解 .
解 原方程可改写成如下形式
y x 2 4 y x 1 4 y x 0
其特征方程为
2 4 4 0
它有两个相等的实根 1 2 2 , 所以原方程的通解 为
y x (C1 C2 x ) 2 x . ( C1 , C 2 为任意常数 )
例3 求差分方程 y x 2 4 y x 1 16 y x 0的满足初始条
件 y0 1, y1 2 2 3 的特解 .
1 i , 2 i
这时 , 可以验证差分方程 (2) 有两个线性无关的解 :
y (x1) r x cos x , y (x2 ) r x sin x 2 2 其中 r , tan (0 , 0) , 从而差 分方程(2)的通解为 y x r (C1 cos x C2 sin x )
x
( C1 , C 2 为任意常数 )
从上面的讨论看出,求解二阶常系数齐次线性差分 方程的步骤和求解二阶常系数齐次线性微分方程的步 骤完全类似,我们将它总结如下: 第一步 写出差分方程 (2) 的特征方程
考研数学重难点之二阶常系数线性非齐次差分方程的通解分析
2018考研数学重难点之二阶常系数线性非齐次差分方程的通解分析
差分方程除了用于对离散变量建立离散数学模型外,也可用于将连续变量及其连续数学模型离散化,换句话说,就是将微分方程离散化为差分方程,这对于难以求出精确解的微分方程来说具有重要的作用,事实上微分方程的数值解法就是如此,它通过差分方程来求出微分方程的近似解。
下面本文对二阶常系数线性非齐次差分方程的求解方法做些分析总结,供有兴趣的2018考研的同学拓展思路参考。
一、二阶常系数线性非齐次差分方程的通解
从前面的分析我们看到,二阶常系数线性非齐次差分方程的通解与二阶常系数线性非齐次微分方程的通解有非常相似的结论,比如其通解都是其特解与对应齐次方程的通解之和,而齐次方程的通解可以通过特征根求出,对于几类常见的自由项blob.png类型,包括:多项式、指数函数及二者乘积,其相应差分方程的特解也与微分方程的情形很类似,当然,二者还是有有些差别的,这一点希望大家注意。
7-13 二阶常系数线性差分方程解析
通解为
yx
x( 7 50
1 10
x)
A1 (4) x
A2
三、小结
1.二阶常系数齐次线性差分方程求通解 2.二阶常系数非齐次线性差分方程求通解
练习题
1.求下列差分方程的通解及特解. (1) yx2 4 yx1 16 yx 0,( y0 1, y1 1) (2) yx2 2 yx1 2 yx 0,( y0 2, y1 2)
的和组成:
一 项 是 该 方 程 的 一 个 特解yx, 另一项是对应的齐次差分方程的通解Yx .
即差分方程(2)的通解为y x
Yx
y
x
.
(1) f ( x) c(c为常数),即方程为 yx2 ayx1 byx c
可设
其
特解
形
式为y
x
kxs .
i)当1
a
b
练习题答案
1.(1) yx
4x ( Acos
3
x
B sin
3
x),
yx
4x ( 1 )sin
23 3
x;
(2) yx (
2)x ( Acos x B sin x),
4
4
yx (
2)x 2 cos x 1
4
§7-13 二阶常系数线性差分方程
一、二阶常系数齐次线性差分方程的求解 二、二阶常系数非齐次线性差分方程的求解 三、小结
1.定义
形如yx2 ayx1 byx f ( x)
(其中a, b 0均为常数,f ( x)为已知函数)
10.6二阶常系数齐次线性微分方程
微积分
二阶常系数齐次微分方程
―、特征方程法
二阶常系数齐次线性方程解法
特征方程法
y" + py' + qy = 0
设y = /x,将其代入上方程,
(r2 + pr + q )erx = 0
得
故有 r °+ pr + q = 0
主 ・.・e’x 特征0方, 程
特征根 % =~P2 -4q, 2
微积分
例2求微分方程y" -2y -8y=0
解特征方程为
r2 一 2r 一 8 = (r 一 4)(r + 2) = 0
解得 “=4g=_2
故所求通解为
一 y = c1 e4 x + c 2 e
2x
经济数学
微积分
例 , 3求方程y" + 2y + 5y = 0的通
解. 解 特征方程为r2 + 2r + 5 = 0 ,
3)有一对共轭复根(A< 0)
伊 特征根为 r = a + ip, r2 = a- ,
( 伊 ) y1 = e a+ )% y2 = e(a-ip x,
1
重新组合yi = 2顷1 + y 2) =e" * p,
_i
y2 =
(yi - y2) =e"sin p,
2i
(注:利用欧拉公式eliC = cosx + isinx.)
二阶常系数齐次线性微分 方
第6节二阶常系数齐次线性微分方程 第十章微分方程与差分方程
主讲 韩华
第八节二阶常数系数线性差分方程
比较方程两边同次幂的系数,得
6 A 1;5 A 3B 0
1 A 6
B
5 18
于是
1 2 5 y x x 6 18
* x
机动 目录 上页 下页 返回 结束
从而原方程的通解为
1 2 5 yx C1 2 C2 x x 6 18
y yx kyx (K为常数),即 yx 与 x 线性无关,那么
1 2
1
1
2
Yx C1 yx C2 yx C2 是两 是方程(9-2)的通解,其中 C1 ,
2
个互相独立的任意常数。 根据特征根的三种不同情况,我们可以分别确定方程(9-2) 的通解形式。
故设非齐次方程的特解为
2 y* xQ ( x ) x ( Ax B ) Ax Bx (A,B为待定系数) x n
则
2 * 2 y* A ( x 1) B ( x 1), y A ( x 2) B( x 2) x 1 x 2
代入得
A( x 2)2 B( x 2) A( x 1)2 B( x 1) 2( Ax2 Bx) x
p Yx C1 C2 x 2
p ,此时差分方程(9-2)的通解为 2
x
( C1 , C2为任意常数)(9-5)
2 p (3)若 4q 0 ,即特征方程(9-3)有两个共轭的复特征
根: r1,2 1 p i 1 4q p 2 i ( , 均为实数)
机动
目录
上页
下页
返回
结束
例3 求差分方程
yx2 2 yx1 4 yx 0 的通解。
差分方程
当 为常数时, yx = x和它的各阶差商有倍数关系,
所以可设 yx = x为方程(11)的解. 代如方程(11)得 x+2 + ax+1 + bx = 0,
2 + a + b = 0,
方程(12)称为齐次差分方程(11)的特征方程.
(12)
由特征方程的根的情况可得齐次方程的通解:
第八节 差分方程
一、差分 二、差分方程的概念 三、一阶常系数线性差分方程 四、二阶常系数线性差分方程
一、差分 微分方程是自变量连续取值的问题, 但在很多实际问 题中, 有些变量不是连续取值的. 例如, 经济变量收入、储
蓄等都是时间序列, 自变量 t 取值为0, 1, 2, , 数学上把这
种变量称为离散型变量. 通常用差商来描述因变量对自变 量的变化速度.
其中B0 , B1 , , Bm为待定系数.
例10 求差分方程 yx+2 + yx+1 2yx = 12x的通解.
解 对应的齐次方程的特征方程为
2 + 2 = 0.
方程的根为
1 = 2, 2 = 1,
y* C1 C2 (2) x . x
齐次方程的通解为
因为 a = 1, b = 2, 1+a+b = 0, 但 a+2 = 3 0,所以, 设
例如, yx+2 + yx+1 = 0为差分方程, yx = x不是差分方
程. 差分方程式(2)中, 未知函数下标的最大差数为 n, 则 称差分方程为n 阶差分方程.
定义4 如果一个函数代入差分后, 方程两边恒等, 则 称此函数为该差分方程的解. 例3 验证函数 yx = 2x + 1是差分方程 yx+1 yx = 2的 解. 解 yx+1 = 2(x + 1) + 1 = 2x +3, yx+1 yx = 2x + 3 (2x +1) = 2, 所以yx = 2x + 1是差分方程 yx+1 yx = 2的解. 定义5 差分方程的解中含有任意常数, 且任意常数
第3节 二阶常系数线性差分方程
yt 2 ayt 1 byt f (t )
对应齐次方程 yt 2 ayt 1 byt 0
(1) (2)
1.方程(1)的任意一个解加上方程(2)的任意一个解 是(1)的解; 2.方程(1)的任意两个解之差是(2)的解 . 定理2 设 yt 是方程(1)的一个特解,
yc (t ) 是(2)的通解, 那么方程(1)的通解为
t 而 0 ,于是有
a b 0
2
(3)
代数方程(3)称为差分方程(2)的特征方程, 它的根称为特征根(或特征值).
4
a b 0
2
(3)
记
a 4b ,
2
情形1 若 0 , 则特征方程(3)有两个相异的实根
a , 1, 2 2 t t 得到方程(2)的两个特解 y1 ( t ) 1 ,y2 ( t ) 2 ,
特征方程为 2 4 4 0
解得 1, 2 , 2
t 故所求通解为 yc (C1 C2t )2
9
例3 求差分方程 yt 2 yt 1 yt 0 的通解.
解 特征方程为
2 1 0
3 0 ,
故所求通解为 yc ( t ) C1 cos t C 2 si n t 3 3
于是(2)的通解为
情形2 若 0 , 则特征方程(3)有两个相等的实根 a a t 1, 2 , 只得到方程(2)的一个特解 y1 ( t ) ( ) , 2 2
a t yc ( t ) (C1 C 2 t )( ) 2
6
情形3 若 0 , 则特征方程(3)有一对共轭复根
y t yc ( t ) y t .
考研数学高等数学复习方法和重点
2018考研数学高等数学复习方法和重点考研数学之高等数学复习方法第一、要将数学基础备考进行到底数学150分,基础性的题目占到70%,也就是105分,这分数对于考生来讲是非常重要的,只要大家把基本概念、性质、公式和定理以及基本解题方法掌握了,这部分分数还是比较容易能拿到手的。
但是复习到现在,很多考生已经把基本知识点抛之脑后了,一味地在做题,甚至只是在看题。
但是我们必须清楚,不管做多少题,考场上都不会遇见你做过的题目,我们做题的目的是巩固知识点,检测对知识点的掌握程度、复习的效果,重要的是知识点本身,万变不离其宗,考场上题目无论如何变化都离不了知识点,所以如果你对基础知识还没用掌握,就一定要对照考试大纲对基本概念、基本理论和基本方法准确把握,或者对基础班的讲义进行复习。
因为只有对基本概念有深入理解,对基本定理和公式牢牢记住,才能找到解题的突破口和切入点。
第二、要处理好全面和重点的关系,不同层次的考生,要求不同考研预报名后,绝大部分学生已经确定好了院校和专业,那么数学这一学科到底要考多少分基本上也是确定的。
如果考生的分数要求比较高,130、140以上,那么在掌握常考的题型和解题方法的基础上,对照考试大纲对考研不常考的内容也要进行复习,比如说差分方程,只对数三同学做要求,这部分内容虽然已很久没考查,但是这确实是考试大纲上要求的内容,也要复习到。
况且这部分内容只要是花半个小时就可以掌握的,可以与二阶常系数线性微分方程的解法对比记忆。
如果考生的分数要求并不高,只要100-120分就可以的话,还是要对照暑期强化班的讲义重点把常考题型和解题方法掌握好,一些不常考的内容可以适当地放弃,比如说数一的估计的一致性、假设检验。
第三、重视真题,总结题型,熟练掌握常见的解题方法和技巧根据对历年真题的研究,我们发现每年的试卷高等数学内容都有较大的重复率,所以一定要重视对真题的研习,真题至少要做两遍,第一遍按年份做,第二份按章节做。
2018考研数学二大纲
2018年考研数学二考试大纲原文考试科目:高等数学、线性代数考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟二、答题方式答题方式为闭卷、笔试三、试卷内容结构高等教学约78%线性代数约22%四、试卷题型结构单项选择题8小题,每小题4分,共32分填空题6小题,每小题4分,共24分解答题(包括证明题)9小题,共94分高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限及函数极限的定义及其性质函数的左极限及右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限;函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1、理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系2、了解函数的有界性、单调性、周期性和奇偶性3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念4、掌握基本初等函数的性质及其图形,了解初等函数的概念5、理解极限的概念,理解函数左极限及右极限的概念以及函数极限存在及左极限、右极限之间的关系6、掌握极限的性质及四则运算法则7、掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法8、理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限9、理解函数连续性的概念(含左连续及右连续),会判别函数间断点的类型10、了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质二、一元函数微分学考试内容导数和微分的概念导数的儿何意义和物理意义函数的可导性及连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达([/Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值及最小值弧微分曲率的概念曲率圆及曲率半径考试要求1、理解导数和微分的概念,理解导数及微分的关系,理解导数的儿何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性及连续性之间的关系2、掌握导数的四则运算法则和复合函数的求导法则,学握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分3、了解高阶导数的概念,会求简单函数的高阶导数4、会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数5、理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理6、掌握用洛必达法则求未定式极限的方法7、理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数的最大值和最小值的求法及其应用8、会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形9、了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿- 莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法及分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分定积分的应用考试要求1、理解原函数的概念,理解不定积分和定积分的概念2、掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法及分部积分法3、会求有理函数、三角函数有理式和简单无理函数的积分4、理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式5、了解反常积分的概念,会计算反常积分6、掌握用定积分表达和计算一些儿何量及物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数平均值四、多元函数微积分学考试内容多元函数的概念二元函数的儿何意义二元函数的极限及连续的概念有界闭区域上二元连续函数的性质多元函数的偏导数和全微分多元复合函数、隐函数的求导法二阶偏导数多元函数的极值和条件极值、最大值和最小值二重积分的概念、基本性质和计算考试要求1、了解多元函数的概念,了解二元函数的儿何意义2、了解二元函数的极限及连续的概念,了解有界闭区域上二元连续函数的性质3、了解多元函数偏导数及全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数4、了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题5、了解二重积分的概念及基本性质,掌握二重积分的计算方法(直角坐标、极坐标)五、常微分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程微分方程的简单应用考试要求1、了解微分方程及其阶、解、通解、初始条件和特解等概念2、掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程3、会用降阶法解下列形式的微分方程4、理解二阶线性微分方程解的性质及解的结构定理5、掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程6、会解自由项为多项式、指数函数、正弦函: 、余弦函数以及它们的和及积的二阶常系数非齐次线性微分方程7、会用微分方程解决一些简单的应用问题线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1、了解行列式的概念,掌握行列式的性质2、会应用行列式的性质和行列式按行(列)展开定理计算行列式二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幕方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1、理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵、反对称矩阵和正交矩阵以及它们的性质2、掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幕及方阵乘积的行列式的性质3、理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件.理解伴随矩阵的概念,会用伴随矩阵求逆矩阵4、了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,学握用初等变换求矩阵的秩和逆矩阵的方法5、了解分块矩阵及其运算三、向量考试内容向量的概念向量的线性组合和线性表示向量组的线性相关及线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩及矩阵的秩之间的关系向量的内积线性无关向量组的的正交规范化方法考试要求1、理解维向量、向量的线性组合及线性表示的概念2、理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法3、了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩4、了解向量组等价的概念,了解矩阵的秩及其行(列)向量组的秩的关系5、了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法四、线性方程组考试内容线性方程组的克拉默(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解非齐次线性方程组的通解考试要求1、会用克拉默法则2、理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件3、理解齐次线性方程组的基础解系及通解的概念,掌握齐次线性方程组的基础解系和通解的求法4、理解非齐次线性方程组的解的结构及通解的概念5、会用初等行变换求解线性方程组五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1、理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量2、理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵3、理解实对称矩阵的特征值和特征向量的性质六、二次型考试内容二次型及其矩阵表示合同变换及合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1、了解二次型的概念,会用矩阵形式表示二次型,了解合同变换及合同矩阵的概念2、了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形3、理解正定二次型、正定矩阵的概念,并掌握其判别法。
考研高等数学重难点的解析
考研高等数学重难点的解析考研高等数学重难点的解析我们在准备考研数学的复习时,需要把高等数学的重难点知识掌握好。
店铺为大家精心准备了考研高等数学重难点的分析,欢迎大家前来阅读。
考研高等数学知识点的总结高等数学:从科目上看,从数一到数三,分量最重的都是高等数学,它在数一、数三中占了56%,在数二中更是占了百分之78%,因此科目上的重头戏在高数。
通过对2013考研数学考纲以及历年真题的分析,新东方在线的老师对高数的重难点进行了梳理、总结:一、函数、极限、连续部分:极限的运算法则、极限存在的准则(单调有界准则和夹逼准则)、未定式的极限、主要的等价无穷小、函数间断点的判断以及分类,还有闭区间上连续函数的性质(尤其是介值定理),这些知识点在历年真题中出现的概率比较高,属于重点内容,但是很基础,不是难点,因此这部分内容一定不要丢分。
二、微分学部分:主要是一元函数微分学和多元函数微分学,其中一元函数微分学是基础亦是重点。
一元函数微分学,主要掌握连续性、可导性、可微性三者的关系,另外要掌握各种函数求导的方法,尤其是复合函数、隐函数求导。
微分中值定理也是重点掌握的内容,这一部分可以出各种各样构造辅助函数的证明,包括等式和不等式的证明,这种类型题目的技巧性比较强,应多加练习。
函数的凹凸性、拐点及渐近线,也是一个重点内容,在近几年考研中常出现。
曲率部分,仅数一考生需要掌握,但是并不是重点,在考试中很少出现,记住相关公式即可。
多元函数微分学,掌握连续性、偏导性、可微性三者之间的关系,重点掌握各种函数求偏导的方法。
多元函数的应用也是重点,主要是条件极值和最值问题。
方向导数、梯度,空间曲线、曲面的切平面和法线,仅数一考生需要掌握,但是不是重点,记忆相关公式即可。
三、积分学部分:一元函数积分学的一个重点是不定积分与定积分的计算。
这个对于有些来说可能不难,但是要想用简便的方法解答还是需要多花点时间的。
在计算过程中,会用到不定积分/定积分的基本性质、换元积分法、分部积分法。
(优选)高数第七章二阶差分方程
A1 (4) x
A2
三、小结
1.二阶常系数齐次线性差分方程求通解 2.二阶常系数非齐次线性差分方程求通解
练习题
1、 求 下 列 差 分 方 程 的 通解 及 特 解 . (1) yx2 4 yx1 16 yx 0, ( y0 1, y1 1) (2) yx2 2 yx1 2 yx 0, ( y0 2, y1 2)
iii)当1 a b 0,且a 2时,取s 2.
分别就以上情形,将设定特解代入原方程, 可确定 其特解.
例 1 求差分方程 yx2 5 yx1 4 yx x的特解.
解 1 a b 1 5 4 10 0
可
设y
x
B0
B1 x
代入方程 B0 B1( x 2) 5B0 5B1( x 1) 4B0 4B1 x x 比较两端同次项系数有
的和组成:
一 项 是 该 方 程 的 一 个 特解yx, 另一项是对应的齐次差分方程的通解Yx .
即差分方程(2)的通解为y x
Yx
y
x
.
(1) f ( x) c(c为常数),即方程为 yx2 ayx1 byx c
可设
其
特解
形
式为y
x
kxs .
i)当1
a
b
0时,取s
0,即y
x
k,代入原方程得
a 2
)
x
(
A1
,
A2为 任 意 常 数)
(3)第三种情形 a2 4b时
方程有一对共轭的复特征根,
1
1 2
a
i
4b a2 i
2
1 2
a
i
4b a2 i
把它们化为三角表示式:
常系数线性差分方程的求解
1
比较两边系数得
33DD12
2 2D
1
1
解得
D1
2 3
,
D2
1 9
完全解为 y(n) c(2)n 2 n 1
39
代入边界条件y(1) ,求1 c
1 c(2)n 2 (1) 1
3
9
y(n) 8 (2)n 2 n 1
Байду номын сангаас
9
39
得 c8 9
经典法不足之处
(1).若激励信号发生变化,则须全部重新求解。 (2).若差分方程右边激励项较复杂,则难以处理。 (3).若初始条件发生变化,则须全部重新求解。 (4).这种方法是一种纯数学方法,无法突出系统响 应的物理概念。
上式称为k齐0 次微分方程的特征方程,其根 1,2, N
称为差分方程的特征根。
非重根时的齐次解 N
C11n
C2
n 2
C
N
n N
Ck
n k
k 0
K次重根时的齐次解
K
(C1nK1 C2nK2 CK1n CK )1n
Ci
n
K
i n 1
i 1
共轭根时的齐次解 1,2 a jb e j0
差分方程的边界条件不一定由 y(0), y(1), y(2), , y(N 1) 这一组数字给出。对于因果系统,常给定
y(1), y(2), y(3), , y(N) 为边界条件。 若激励信号在n=0时接入系统,所谓零状态是指 y(1), y(2), y(3都),等,于y(零N,) 而不是指
y(0), y(1), y(2),等,于y(零N。1)
a0 y(n) a1y(n 1) aN1y(n N 1) aN y(n N) 0
考研数学重难点之二阶常系数线齐次差分方程通解分析
2018考研数学重难点之二阶常系数线齐次差分方程通解分析、
差分方程是研究离散变量及离散变量满足的方程的求解问题,从本质上讲,差分方程就是用递推关系定义一系列的方程式,通过这些方程式将后面的项用前面的项表示出来。
按照差分方程中差分的最高阶数或方程中未知项的跨度,差分方程分为一阶差分方程、二阶差分方程等,常见的差分方程是常系数线性差分方程。
在考研数学中,仅数学三的考生要求了解一阶差分方程的求解,下面本文对二阶常系数线性齐次差分方程的求解方法做些分析介绍,供有兴趣的2018考研的同学拓展思路参考。
一、二阶常系数线性差分方程
从上面的分析我们容易看出,二阶常系数线性齐次差分方程的通解与二阶常系数线性齐次微分方程的通解有很多相似或者说平行之处,比如说它们的通解都是由两个线性无关的解的线性组合构成,而要求出其通解只要求出其特征方程的根即可相应得到通解,当然,差分方程与微分方程的通解还是有些区别的,这一点希望大家注意,不要把二者完全弄混了。
二阶常系数线性差分方程ppt课件
等于对应齐次方程的通解加上非齐次方程的一个
特解.即
yx
yx
y
x
.
一 、二阶常系数齐次线性差分方程的求解
设Yx x ( 0)为对应齐次方程一个解,代入得
x2 ax1 bx 0
即2 a b 0
此方程称为对应齐次方程的特征方程, 其根
1 a
a2 2
4b
, 2
a
a2 4b 2
称为相应方程的特征根.
b
ii)当q2 aq b 0但2q a 0时,取s 1得其特解为
y
x
cx qx1 2q a
iii)当q2 aq b 0但2q a 0时,取s 2得其特解为
y
x
cx qx1 4q a
(3) f ( x) cxn (c为常数),即方程为
yx2 ayx1 byx cxn 设其具有形式为yx x s (B0 B1 x Bn xn ) 的特解(其中B0 , B1,, Bn为待定系数). i)当1 a b 0时,取s 0; ii)当1 a b 0且a 2时,取s 1;
解 2 2 0
即( 2)( 1) 0 解得1 2,2 1
yx A1(2)x A2
1 a b 1 1 2 0,但a 1 2,
y
x
12x 1 2
4x
所给方程通解为yx 4x A1(2)x A2
由y0 A1 A2 ,即A1 A2 0 y1 4 2A1 A2 ,即2A1 A2 4
a 2
)
x
(
A1
,
A2为 任 意 常 数)
(3)第三种情形 a2 4b时
方程有一对共轭的复特征根,
1
1 2
a
i
4b a2 i
考研数学二模拟题2018年(65)_真题无答案
考研数学二模拟题2018年(65)(总分100, 做题时间90分钟)一、填空题1.微分方程y"+y=-2x的通解为______.SSS_FILL2.微分方程y"+2y"+5y=0的通解为______.SSS_FILL3.微分方程y"-4y=e 2x的通解为______.SSS_FILL4.二阶常系数非齐次线性微分方程y"-4y"+3y=2e 2x的通解为______.SSS_FILL5.3阶常系数线性齐次微分方程y"""-2y"+y"-2y=0的通解为y=______.SSS_FILL6.已知y1 =e 3x -xe 2x,y2=e x -xe 2x =-xe 2x是某二阶常系数非齐次线性微分方程的3个解,则该方程满足条件y|x=0 =0,y"|x=0=1的解为y=______.SSS_FILL7.设函数y=y(x)是微分方程y"+y"-2y=0的解,且在x=0处y(x)取得极值3,则y(x)=______.SSS_FILL二、解答题1.已知y1 =xe x +e 2x,y2=xe x -e -x,y3=xe x +e 2x -e -x是某二阶线性非齐次微分方程的三个解,求此微分方程.SSS_TEXT_QUSTI2.利用代换将方程y"cosx-2y"sinx+3ycosx=e x化简,并求出原方程的通解.SSS_TEXT_QUSTI3.用变量代换x=cost(0<t<π)化简微分方程(1-x 2 )y"-xy"+y=0,并求其满足y|x=0 =1,y"|x=0=2的特解.SSS_TEXT_QUSTI4.已知y1 (x)=e x,y2(x)=u(x)e x是二阶微分方程(2x-1)y"-(2x+1)y"+2y=0的两个解.若u(-1)=e,u(0)=-1,求u(x),并写出该微分方程的通解.SSS_TEXT_QUSTI5.设,其中f(x)为连续函数,求f(x).SSS_TEXT_QUSTI6.已知函数f(x)在(0,+∞)内可导,f(x)>0,,且满足求f(x).SSS_TEXT_QUSTI7.设y=y(x)是区间(-π,π)内过点的光滑曲线.当-π<x<0时,曲线上任一点处的法线都过原点;当0≤x<π时,函数y(x)满足y"+y+x=0.求y(x)的表达式.SSS_TEXT_QUSTI8.设函数y=f(x)由参数方程所确定,其中ψ(t)具有2阶导数,且,ψ"(1)=6,已知,求函数ψ(t).SSS_TEXT_QUSTI已知函数f(x)满足方程f"(x)+f"(x)-2f(x)=0及f"(x)+f(x)=2e x.SSS_TEXT_QUSTI9.求f(x)的表达式;SSS_TEXT_QUSTI10.求曲线的拐点.11.设函数y=y(x)满足微分方程y"-3y"+2y=2e x,且其图形在点(0,1)处的切线与曲线y=x 2 -x+1在该点的切线重合,求函数y=y(x).SSS_TEXT_QUSTI12.设y=y(x)是一向上凸的连续曲线,其上任意一点(x,y)处的曲率为,且此曲线上点(0,1)处的切线方程为y=x+1,求该益线的方程,并求函数y=y(x)的极值.SSS_TEXT_QUSTI设L是一条平面曲线,其上任意一点P(x,y)(x>0)到坐标原点的距离,恒等于该点处的切线在y轴上的截距,且L经过点.SSS_TEXT_QUSTI13.试求曲线L的方程;SSS_TEXT_QUSTI14.求L位于第一象限部分的一条切线,使该切线与L以及两坐标轴所围图形的面积最小.15.设函数y(x)具有二阶导数,且曲线l:y=y(x)与直线y=x相切于原点.记α为曲线l在点(x,y)处切线的倾角,若,求y(x)的表达式.SSS_TEXT_QUSTI16.设曲线L的极坐标方程为r=r(θ),M(r,θ)为L上任一点,M(2,0)为L上一定点.若极径OM0、OM与曲线L所围成的曲边扇形面积值等于L上M、M两点间弧长值的一半,求曲线L的方程.SSS_TEXT_QUSTI17.设函数y(x)(x≥0)二阶可导,且y"(x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1 -S2恒为1,求此曲线y=y(x)的方程.SSS_TEXT_QUSTI18.如图所示,C1和C2分别是和y=e x的图像,过点(0,1)的曲线C3是一单调增函数的图像.过C2上任一点M(x,y)分别作垂直于x轴和y轴的直线lx 和ly.记C1,C2与lx所围图形的面积为S1(x);C2,C3与ly 所围图形的面积为S2(y).如果总有S1(x)=S2(y),求曲线C3的方程x=φ(y).SSS_TEXT_QUSTI19.设f(x)是区间[0,+∞)上具有连续导数的单调增加函数,且f(0)=1.对任意的t∈[0,+∞),直线x=0,x=t,曲线y=f(x)以及x轴所围成的曲边梯形绕x轴旋转一周生成一旋转体.若该旋转体的侧面积在数值上等于其体积的2倍,求函数f(x)的表达式.SSS_TEXT_QUSTI20.设单位质点在水平面内作直线运动,初速度v|t=0 =v.已知阻力与速度成正比(比例常数为1),问t为多少时此质点的速度为?并求到此时刻该质点所经过的路程.SSS_TEXT_QUSTI21.某湖泊的水量为V,每年排入湖泊内含污染物A的污水量为,流入湖泊内不含A的水量为,流出湖泊的水量为.已知1999年底湖中A的含量为5m,超过国家规定指标.为了治理污染,从2000年初起,限定排入湖泊中含A污水的浓度不超过.问至多需经过多少年,湖泊中污染物A的含量降至m以内?(注:设湖水中A的浓度是均匀的.)SSS_TEXT_QUSTI22.一个半球体状的雪堆,其体积融化的速率与半球面面积S成正比,比例常数K>0.假设在融化过程中雪堆始终保持半球体状,已知半径为r的雪堆在开始融化的3小时内,融化了其体积的,问雪堆全部融化需要多少小时?SSS_TEXT_QUSTI23.有一平底容器,其内侧壁是由曲线x=φ(y)(y≥0)绕y轴旋转而成的旋转曲面(如图所示),容器的底面圆的半径为2m.根据设计要求,当以3m 3 /min的速率向容器内注入液体时,液面的面积将以πm 2 /min的速率均匀扩大(假设注入液体前,容器内无液体).(Ⅰ)根据t时刻液面的面积,写出t与φ(y)之间的关系式;(Ⅱ)求曲线x=φ(y)的方程.(注:m表示长度单位米,min表示时间单位分.)SSS_TEXT_QUSTI24.已知高温物体置于低温介质中,任一时刻该物体温度对时间的变化率与该时刻物体和介质的温差成正比.现将一初始温度为120℃的物体在20℃恒温介质中冷却,30min后该物体温度降至30℃,若要将该物体的温度继续降至21℃,还需冷却多长时间?SSS_TEXT_QUSTI25.从船上向海中沉放某种探测仪器,按探测要求,需确定仪器的下沉深度y(从海平面算起)与下沉速度v之间的函数关系.设仪器在重力作用下,从海平面由静止开始垂直下沉,在下沉过程中还受到阻力和浮力的作用.设仪器的质量为m,体积为B,海水比重为ρ,仪器所受的阻力与下沉速度成正比,比例系数为k(k>0).试建立y与v所满足的微分方程,并求出函数关系式y=y(v).SSS_TEXT_QUSTI26.某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg的飞机,着陆时的水平速度为700km/h.经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为k=6.0×10 6 ).问从着陆点算起,飞机滑行的最长距离是多少?SSS_TEXT_QUSTI1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018考研数学重难点之二阶常系数线齐次差分方程通解分析、
差分方程是研究离散变量及离散变量满足的方程的求解问题,从本质上讲,差分方程就是用递推关系定义一系列的方程式,通过这些方程式将后面的项用前面的项表示出来。
按照差分方程中差分的最高阶数或方程中未知项的跨度,差分方程分为一阶差分方程、二阶差分方程等,常见的差分方程是常系数线性差分方程。
在考研数学中,仅数学三的考生要求了解一阶差分方程的求解,下面本文对二阶常系数线性齐次差分方程的求解方法做些分析介绍,供有兴趣的2018考研的同学拓展思路参考。
一、二阶常系数线性差分方程
从上面的分析我们容易看出,二阶常系数线性齐次差分方程的通解与二阶常系数线性齐次微分方程的通解有很多相似或者说平行之处,比如说它们的通解都是由两个线性无关的解的线性组合构成,而要求出其通解只要求出其特征方程的根即可相应得到通解,当然,差分方程与微分方程的通解还是有些区别的,这一点希望大家注意,不要把二者完全弄混了。