初中数学二元一次方程组的应用题型分类汇编——销售利润问题1(附答案)

合集下载

二元一次方程组的运用3(商品销售利润问题)

二元一次方程组的运用3(商品销售利润问题)

解得:
答:存教育储蓄的钱为1500元,存一年定期的钱为500元.
5、 某工厂去年的利润(总产值—总支出) 为200万元,今年总产值比去年增加了20%, 总支出比去年减少了10%,今年的利润为780 万元,去年的总产值、总支出各是多少万元?
思路点拨:设去年的总产值为x万元,总支出为y万元,则有
去年 今年
3.小明的妈妈为了准备小明一年后上高中的费用,现在以两种方式 在银行共存了2000元钱,一种是年利率为2.25%的教育储蓄,另一种 是年利率为2.25%的一年定期存款,一年后可取出2042.75元,问这两 种储蓄各存了多少钱? (利息所得税=利息金额×20%,教育储蓄没有利息所得税) 解:设存一年教育储蓄的钱为x元,存一年定期存款的钱为y元, 则列方程:
答:两件商品的进价分别为600元和400元。
3.小明的妈妈为了准备小明一年后上高中的费用,现在以两种方式 在银行共存了2000元钱,一种是年利率为2.25%的教育储蓄,另一种 是年利率为2.25%的一年定期存款,一年后可取出2042.75元,问这两 种储蓄各存了多少钱? (利息所得税=利息金额×20%,教育储蓄没有利息所得税) 思路点拨: 设教育储蓄存了x元,一年定期存了y元,我们可以根据题 意可列出表格:
二元一次方程组的应用
商品销售利润问题、
银行储蓄问题、增长率问题
例1、一件商品如果按定价打九折出售可以盈利20%;如果 打八折出售可以盈利10元,问此商品的定价是多少?
分析:商品的利润涉及到进价、定价和卖出价,因此,设此商品的 定价为x元,进价为y元,则打九折时的卖出价为0.9x元,获利 (0.9x-y)元,因此得方程0.9x-y=20%y;打八折时的卖出价为0.8x元, 获利(0.8x-y)元,可得方程0.8x-y=10.

二元一次方程组应用题经典题及答案

二元一次方程组应用题经典题及答案

二元一次方程组应用题经典题及答案一、商品销售问题例 1:某商店购进一批衬衫,成本价每件 40 元,按每件 50 元出售,一个月内可售出 500 件。

已知这种衬衫每件涨价 1 元,其销售量就减少 10 件。

为了在一个月内赚取 8000 元的利润,售价应定为每件多少元?解:设售价应定为每件 x 元,每件的利润为(x 40)元。

因为每件涨价 1 元,销售量就减少 10 件,所以销售量为500 10(x 50)件。

根据总利润=每件利润×销售量,可列方程:(x 40)500 10(x 50) = 8000(x 40)(500 10x + 500) = 8000(x 40)(1000 10x) = 80001000x 10x² 40000 + 400x = 8000-10x²+ 1400x 48000 = 0x² 140x + 4800 = 0(x 60)(x 80) = 0解得 x₁= 60,x₂= 80答:售价应定为每件 60 元或 80 元。

二、行程问题例 2:A、B 两地相距 18 千米,甲、乙两人分别从 A、B 两地同时相向而行,2 小时后在途中相遇;相遇后甲返回 A 地,乙继续向 A 地前进,甲回到 A 地时,乙离 A 地还有 2 千米。

求甲、乙两人的速度。

解:设甲的速度为 x 千米/小时,乙的速度为 y 千米/小时。

根据相遇问题的公式:路程=速度和×时间,可列方程:2(x + y) = 18甲返回 A 地所用的时间也为 2 小时,这 2 小时乙走的路程为 2y 千米。

因为甲回到 A 地时,乙离 A 地还有 2 千米,所以可列方程:18 2y = 2x将第一个方程变形为 x + y = 9,即 x = 9 y,代入第二个方程得:18 2y = 2(9 y)18 2y = 18 2y方程恒成立。

将 x = 9 y 代入第一个方程得:2(9 y + y) = 1818 = 18所以原方程组有无数组解。

二元一次方程组经典应用题及答案

二元一次方程组经典应用题及答案

二元一次方程组经典应用题及答案实际问题与二元一次方程组题型归纳一、行程问题甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果___比甲先走2小时,那么他们在甲出发3小时后相遇。

甲、乙两人每小时各走多少千米?解:设甲、乙速度分别为x、y千米/时,依题意得:2.5+2)x+2.5y=363x+(3+2)y=36解得:x=6,y=3.6答:甲的速度是6千米/每小时,乙的速度是3.6千米/每小时。

二、工程问题___家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元。

若只选一个公司单独完成,从节约开支的角度考虑,___家应选甲公司还是乙公司?请说明理由。

解:略三、商品销售利润问题大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,大叔去年甲、乙两种蔬菜各种植了多少亩?解:设甲、乙两种蔬菜各种植了x、y亩,依题意得:①x+y=10②2000x+1500y=解得:x=6,y=4答:大叔去年甲、乙两种蔬菜各种植了6亩、4亩。

四、其他问题略。

该市的城镇人口为14万人,农村人口为28万人。

游泳池中有男孩和女孩,男孩戴蓝色游泳帽,女孩戴红色游泳帽。

设男孩有X人,女孩有Y人,则根据题意可得到以下方程组:X = Y + 12(Y-1) = X解方程组可得X=4,Y=3,即男孩有4人,女孩有3人。

略。

一个两位数减去它的各位数字之和的3倍的结果是23,这个两位数除以它的各位数字之和,商是.5,余数是1.设这个两位数十位数是x,个位数是y,则这个数可以表示为10x+y。

根据题意可以列出以下方程组:10x + y - 3(x + y) = 2310x + y = 5(x + y) + 1解方程组可得x=5,y=6,即这个两位数是56.一个两位数,十位上的数字比个位上的数字大5.设个位是X,十位是Y,则这个两位数可以表示为10Y+X。

部编数学七年级下册专题12销售、利润问题(二元一次方程组的应用)(解析版)含答案

部编数学七年级下册专题12销售、利润问题(二元一次方程组的应用)(解析版)含答案

2022-2023学年人教版七年级数学下册精选压轴题培优卷专题12 销售、利润问题(二元一次方程组的应用)考试时间:120分钟 试卷满分:100分评卷人得分一、选择题(每题2分,共20分)1.(本题2分)(2023春·七年级课时练习)欣欣服装店某天用相同的价格()0a a ³卖出了两件服装,其中一件盈利20%,另一件亏损20%,那么该服装店卖出这两件服装的盈利情况是( )A .亏损B .盈利C .不盈不亏D .不确定【答案】A【思路点拨】设第一件衣服的进价为x 元,第二件衣服的进价为y 元,根据题意,可得()()120%120%x y +=-=,进而即可求解.【规范解答】设第一件衣服的进价为x 元,第二件衣服的进价为y 元,由题意得:()()120%120%x a y a +=-=,∴()()120%120%x y +=-=,整理得:3=2x y∴ 1.5y x=∴该服装店卖出这两件服装的盈利情况是:20%20%0.20.2 1.50.10x y x x x -=-´=-<,即赔了0.1x 元.故选:A .【考点评析】本题主要考查二元一次方程的应用,根据等量关系,列出方程是关键.2.(本题2分)(2022秋·广东佛山·八年级校考期中)某商店将某种碳酸饮料每瓶的价格下调了10%.将某种果汁饮料每瓶的价格上调了5%,已知调价前买这两种饮料各一瓶共花费8元,调价后买上述碳酸饮料3瓶和果汁饮料2瓶共花费19.8元,若设上述碳酸饮料、果汁饮料在调价前每瓶分别为x 元和y 元,则可列方程组为( )A .830.92 1.0519.8x y x y +=ìí´+´=îB .83 1.120.9519.8x y x y +=ìí´+´=îC.83 1.0520.919.8x yx y+=ìí´+´=îD.830.952 1.119.8x yx y+=ìí´+´=î【答案】A【思路点拨】设上述碳酸饮料、果汁饮料在调价前每瓶分别为x元和y元,根据题意,列出方程组即可.【规范解答】解:设上述碳酸饮料、果汁饮料在调价前每瓶分别为x元和y元,由题意得,830.92 1.0519.8x yx y+=ìí´+´=î.故选A.【考点评析】本题考查二元一次方程组的应用.根据题意,正确的列出二元一次方程组,是解题的关键.3.(本题2分)(2023春·浙江·七年级专题练习)第24届冬季奥林匹克运动会将于2022年02月04日至2022年02月20日在中华人民共和国北京市和张家口市联合举行,这是中国历史上第一次举办冬季奥运会冬奥会吉祥物“冰墩墩”和“雪容融”陶制品分为小套装和大套装两种已知购买2个小套装和购买1个大套装,共需220元;购买3个小套装和2个大套装,共需390元,则大套装的单价为( )元A.50B.70C.90D.120【答案】D【思路点拨】设大套装的单价为x元,小套装的单价为y元,根据购买2个小套装和购买1个大套装,共需220元;购买3个小套装和2个大套装,共需390元,即可得出关于x,y的二元一次方程组,解之即可得到结论.【规范解答】解:设大套装的单价为x元,小套装的单价为y元,依题意可得:2220 23390x yx y+=ìí+=î,解得:12050xy=ìí=î,∴大套装的单价为120元.故选D.【考点评析】本题考查了一元二次方程组的应用,找准等量关系,正确列出二元一次方程组.4.(本题2分)(2023春·浙江·七年级专题练习)某商场购进商品后,加价40%作为销售价.某日商场搞优惠促销,由顾客抽奖决定折扣.某顾客购买甲、乙两种商品,分别抽到七折和八折,共付款499元,两种商品原售价之和为590元,设两种商品的进价分别为x 元和y 元,根据题意所列方程组为( )A .590,0.7 1.40.8 1.4499x y x y +=ìí´+´=îB .499,0.7 1.40.8 1.4590x y x y +=ìí´+´=îC . 1.4 1.4590,0.7 1.40.8 1.4499x y x y +=ìí´+´=îD . 1.4 1.4499,0.7 1.40.8 1.4590x y x y +=ìí´+´=î【答案】C 【思路点拨】设两种商品的进价分别为x 、y 元,根据等量关系:两种商品原销售价之和为590元,七折和八折,共付款499元,列方程组即可.【规范解答】解:设两种商品的进价分别为x 、y 元,两种商品的售价分别为(1+40%)x =1.4x ,(1+40%)y =1.4y ,∵两种商品原销售价之和为590元,∴1.4x +1.4y =590,两种商品优惠促销价分别为0.7×1.4x ,0.8×1.4y ,∴0.7×1.4x +0.8×1.4y =499,∴列方程组得 1.4 1.45900.7 1.40.8 1.4499+=ìí´+´=îx y x y ,故选C .【考点评析】本题考查列二元一次方程组解销售问题应用题,掌握列方程组的方法,抓住等量关系是解题关键.5.(本题2分)(2022·浙江舟山·九年级专题练习)某商店对一种商品进行促销,促销方式:若购买不超过10件,按每件a 元付款:若一次性购买10件以上,超出部分按每件b 元付款.小明购买了14件付款90元;小聪购买了19件付款115元,则a ,b 的值为( )A .7,5a b ==B .5,7a b ==C .8,5a b ==D .7,4a b ==【答案】A【思路点拨】根据题意可列出关于a 、b 的二元一次方程组,解方程组即可.【规范解答】解:由题意得:10490109115a b a b +=ìí+=î①②,由②−①得:525=b ,解得:5b =,将5b =代入①得:104590+´=a ,解得:7a =,∴方程组的解为75a b =ìí=î,故选:A .【考点评析】此题考查了二元一次方程组的应用,解题的关键是读懂题意,找出题目中的数量关系,列出方程组.6.(本题2分)(2021春·全国·七年级专题练习)根据图中提供的信息,可知一个杯子的价格是( )A .6元B .8元C .10元D .12元【答案】B 【思路点拨】设一盒杯子x 元,一个暖瓶y 元,根据图示可得:一个杯子+一个暖瓶=43元,3个杯子+2个暖瓶=94元,列方程组求解.【规范解答】设一盒杯子x 元,一个暖瓶y 元,由题意得,433294x y x y ++ìíî==,解得:835x y ìíî==,即一个杯子为8元.故选:B .【考点评析】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.7.(本题2分)(2020秋·山东枣庄·八年级统考期末)小岩打算购买气球装扮学校“毕业典礼”活动会场气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位.已知第一束,第二束气球的价格如图所示,则第三束气球的价格为( )A .15元B .16元C .17元D .18元【答案】D 【思路点拨】设一个笑脸气球的单价为x 元/个,一个爱心气球的单价为y 元/个,根据前两束气球的价格,即可得出关于x 、y 的方程组,用前两束气球的价格相加除以2,即可求出第三束气球的价格.【规范解答】解:设一个笑脸气球的单价为x 元/个,一个爱心气球的单价为y 元/个,根据题意得:316320x y x y +ìí+î=①=②,方程(①+②)÷2,得:2x+2y=18,即第三束气球的价格为18元.故选:D .【考点评析】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.8.(本题2分)(2022秋·全国·八年级专题练习)某商店用300元购进A ,B 两种商品,A 商品的利润率是10%,B 商品的利润率是11%,售出后共获利32.5元,则A ,B 两种商品各获利( )A .5元,27.5元B .6元,26.5元C .7元,25.5元D .9元,23.5元【答案】A【思路点拨】设A 、B 两种商品进价分别为x ,y 元,可得其利润分别为10%x ,11%y 元,根据购进共花300元,售出后共获利32.5元列出方程组,求得x ,y 后再求各获利多少元.【规范解答】设A 、B 两种商品进价分别为x ,y 元,根据题意得:30010%11%32.5x y x y +=ìí+=î解得50250x y =ìí=î所以10%x=5 ,11%y=27.5故选A【考点评析】此题主要考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.9.(本题2分)(2019·湖北·校联考一模)某店在开学初用880元购进若干个学生专用科学计算器,按每个50元出售,很快就销售一空,据了解学生还急需3倍数量这种计算器,由于量大,每个进价比上次优惠1元,该店又用2580元购进所需计算器,该店第一次购进计算器的单价为( )A .20元B .42元C .44元D .46元10.(本题2分)(2020秋·陕西西安·八年级统考期末)某商场新购进一种服装,每套售价1000元,若将裤子降价10%,上衣涨价5%,调价后这套服装的单价比原来提高了2%,则调价前上衣的单价是( )A .200元B .480元C .600元D .800元【答案】D【思路点拨】设调价前上衣的单价是x 元,裤子的单价是y 元,根据“调价前每套售价1000元,若将裤子降价10%,上衣涨价5%,调价后这套服装的单价比原来提高了2%”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论.【规范解答】解:设调价前上衣的单价是x 元,裤子的单价是y 元,依题意,得:()()()100015%110%100012%x y x y +=ìí++-=´+î,解得:800200x y =ìí=î.故选:D .【考点评析】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.评卷人得分二、填空题(每题2分,共20分)11.(本题2分)(2022秋·重庆沙坪坝·七年级统考期末)2022年冬,重庆新冠疫情期间,某火锅店举办“云端火锅,共抗疫情”活动,将火锅底料及菜品打包成“便利火锅包”送至附近小区大门处,由居民自行前往提取.根据菜品种类分为A 、B 、C 三类,三个品类成本价分别是125元,100元,75元.且A 类和B 类火锅的标价一样,该店对这三个品类全部打8折销售.若三个品类的销量相同,则火锅店能获得30%的利润,此时A 品类利润率为20%.若A 、B 、C 三类销量之比是2:1:2,则火锅店销售A 、B 、C 类便利火锅包的总利润率为_______.(利润率100-=´%售价成本成本)12.(本题2分)(2023秋·重庆沙坪坝·八年级重庆八中校考期末)三月初某书店销售A 、B 两种书籍,销售36本A 书籍和25本B 书籍收入3495元,销售24本A 书籍和30本B 书籍收入3330元,月底发现部分书籍有污迹,决定对有污迹的书籍进行打六折促销,张老师根据实际购买了原价或打折的两种书籍,共花费3150元,其中购买的A种打折书籍的本数是购买所有书籍本数的14,张老师购买A种打折书籍________本.13.(本题2分)(2022秋·八年级课时练习)在餐馆里,王伯伯买了5个菜,3个馒头,老板少收3元,只收60元,李太太买了10个菜,5个馒头,老板以售价的八折优惠,只收100元,则馒头每个_____元.【答案】1【思路点拨】设馒头每个x 元,菜每个y 元,由题意:王伯伯买了5个菜,3个馒头,老板少收3元,只收60元,李太太买了10个菜,5个馒头,老板以售价的八折优惠,只收100元,列出二元一次方程组,解方程组即可.【规范解答】解:设馒头每个x 元,菜每个y 元,由题意得:356035101000.8x y x y +=+ìí+=¸î,解得:112x y =ìí=î,即馒头每个1元,故答案为:1.【考点评析】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.14.(本题2分)(2022秋·重庆江北·八年级重庆十八中校考阶段练习)2022年北京冬奥会已经越来越近了,这是我国重要历史节点的重大标志性活动,更是全国人民的一次冰雪运动盛宴,与此同时北京冬奥会吉祥物冰墩墩也受到人们的喜爱,关于冰墩墩的各种周边纪念品:徽章、风铃、抱枕、公仔正在某商场火热销售中.已知徽章和抱枕的价格相同,公仔的单价是风铃的两倍,且徽章和风铃的单价之和不超过120元.元旦节期间,徽章的销售数量是公仔数量的2倍,风铃和抱枕的销售数量相同,其中徽章和风铃共卖出120件,抱枕和公仔的销售总额比风铃和徽章的销售总额多2200元,则徽章和风铃销售总额的最大值是______元.【答案】6100【思路点拨】设徽章和抱枕的价格为a 元,风铃的价格为b 元,公仔的价格为2b 元,公仔的销售数量为m 件,徽章的销售数量为2m 件,则风铃和抱枕的销售数量为(120-2m )件,根据题意列出方程求解即可.【规范解答】解:设徽章和抱枕的价格为a 元,风铃的价格为b 元,公仔的价格为2b 元,公仔的销售数量为m 件,徽章的销售数量为2m 件,则风铃和抱枕的销售数量为(120-2m )件,根据题意列方程得,(120)2(1202)22200a m bm b m ma -+---=,化简得,2260601100am bm a b -=--;徽章和风铃销售总额为2(1202)22120ma b m ma bm b +-=-+,把2260601100am bm a b -=--代入得,60601100a b +-;∵120a b +£,当120a b +=时,徽章和风铃销售总额的最大,最大值是6012011006100´-=(元);故答案为:6100.【考点评析】本题考查了方程和不等式的应用,解题关键是根据题意中的数量关系,设未知数,列出方程,根据等式的性质进行变形,整体代入求解.15.(本题2分)(2021·重庆·九年级专题练习)每年7月上中旬是早稻的成熟季节,粮食批发商都会大量采购A 、B 、C 三种水稻,为了获得最大利润,批发商需要统计数据,更好地囤货.7月份某粮食批发商统计销量后发现,A 、B 、C 三种水稻销量之比为3: 4: 5,随着市场的扩大,预计8月份粮食总销量将在7月份基础上有所增加,其中C 种水稻增加的销量占总增加的销量的27,则C 种水稻销量将达到8月份总销量的719,为使A 、B 两种水稻8月份的销量相等,则8月份B 种水稻还需要增加的销量与8月份总销量之比为________.16.(本题2分)(2022春·全国·八年级假期作业)打折前,买60件A商品和30件B商品用了1080元,买50件A商品和10件B商品用了840元.打折后,买500件A商品和500件B商品用了9600元,比不打折少花__元.【答案】400【思路点拨】设打折前A商品的单价为x元,B商品的单价为y元,根据“打折前,买60件A商品和30件B商品用了1080元,买50件A商品和10件B商品用了840元”,即可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再将其代入(500x+500y﹣9600)中即可求出结论.【规范解答】解:设打折前A商品的单价为x元,B商品的单价为y元,依题意,得:60301080 5010840x yx y+=ìí+=î,解得:164xy=ìí=î,∴500x+500y﹣9600=400.故答案为:400.【考点评析】本题考查了打折问题,二元一次方程组的应用,根据题意正确布列方程组是解题的关键.17.(本题2分)(2022春·重庆北碚·八年级西南大学附中校考期末)某文具店九月初进行开学大酬宾活动,将A、B、C三种学习文具以甲、乙两种方式进行搭配销售,两种方式均需要用到成本价为4元的精美包装袋,甲方式每袋含A文具2支,B文具2支,C文具3支;乙方式每袋含A文具3支,B文具2支,C 文具2支;已知每支C比每支A成本价低2元,甲种方式(含包装袋)每袋成本为30元,现甲,乙两种方式分别在成本价基础上提高20%,40%进行销售,两种方式销售完毕后利润率达到30%,则甲,乙两种方式的销售量之比为____.【答案】16:15【思路点拨】根据甲、乙两种方式各种文具的个数配比以及已知条件“每支C比每支A成本价低2元;甲种方式每袋成本为30元,可以得到乙种方式的成本为32元”,再设两种方式销售量分别是未知数,列方程求解即可.【规范解答】解:∵两种方式均需要用到成本价为4元的精美包装袋,甲方式每袋含A文具2支,B文具2支,C文具3支;乙方式每袋含A文具3支,B文具2支,C文具2支;已知每支C比每支A成本价低2元,∴乙种方式每袋成本价比甲种方式每袋成本高2元,∵甲种方式(含包装袋)每袋成本为30元,∴乙种方式(含包装袋)每袋成本为32元,设甲、乙两种方式的销量分别为x袋、y袋.根据题意得,30×0.2x+32×0.4y=(30x+32y)×0.3,化简整理得,16y=15x,∴x:y=16:15.故答案为:16:15.【考点评析】本题主要考查了二元一次方程的应用,把销售问题转化成方程问题是解答本题的关键.18.(本题2分)(2022秋·重庆·八年级重庆市育才中学校考阶段练习)某奶茶店有多肉芒芒甘露(甲)、芝芝莓莓(乙)、芋泥波波鲜奶(丙)三款招牌饮品.4月份甲和丙销量相同,乙的销量占四月招牌饮品总销量14,2杯甲加1杯乙的利润和好正是2杯丙的利润.五月由于天气转热该奶茶店各款饮品销量暴增,甲、乙、丙三款饮品五月销量之比为1:2:2,甲销售增量占招牌饮品总销售增量的16,但三种饮品的原价格上升,每杯甲、乙、丙的利润较四月分别下降30%,20%,40%..结果五月总利润恰好是四月总利润的4倍,则四月份每杯乙和丙的利润之比是______.19.(本题2分)(2021秋·重庆南川·九年级期中)某个“卡通玩具”自动售货机出售A、B、C三种玩具,A、B、C三种玩具的单价分别是3元/个、5元/个,6元/个,工作日期间,每天上货量是固定的,且能全部售出,其中,A玩具的数量(单位:个)是B玩具数量的2倍,B玩具的数量(单位:个)是C玩具数量的2倍.某个周六,A、B、C三种玩具的上货量分别比一个工作日的上货量增加了50%,70%、50%,且全部售出.但是由于软件出错,发生了一起错单(即消费者按某种玩具一个的价格投币,但是取得了另一种玩具1个),结果这个周六的销售收入比一个工作日的销售收入多了958元,则这个“卡通玩具”自动售货机一个工作日的销售收入是____元.【答案】1680【思路点拨】设C玩具数量工作日时有x个,表示出A、B两种玩具数量工作日数量为4x个、2x个,A、B、C三种玩具周六数量分别为:6x(个),3.4x(个),1.5x(个),继而得出工作日销售收入和周六销售收入及不发生任何故障时多出的钱数,而由于发生故障,周六销售额变化,据此设变化了y元,得16x+y=958,其中x为整数,进而求得工作日销售收入,即可求得y的值.【规范解答】解:设C玩具数量工作日时有x个,根据题意,得A、B两种玩具数量工作日时4x个、2x个,A、B、C三种玩具周六数量分别为:4x(1+50%)=6x(个),2x(1+70%)=3.4x(个),x(1+50%)=1.5x(个),∴工作日销售收入:3×4x+5×2x+6x=28x(元),周六销售收入:3×6x+5×3.4x+6×1.5x=44x(元),当不发生任何故障时,多出44x-28x=16x(元),其中x为整数,由于发生了故障,周六的销售额发生了变化,设变化了y元,则16x+y=958,其中x为整数,y=1、2、3、-1、-2、-3,当y=-2时,x=60,所以工作日销售收入为:28×60=1680(元).故答案为:1680.【考点评析】本题考查了一元一次方程的应用以及二元一次方程的应用,解决本题的关键是根据题意设未知数找到等量关系.20.(本题2分)(2021·重庆·统考二模)今年春节某超市组装了甲、乙两种礼品盆,他们都是由,,a b c 三种零食组成,其中甲礼品盒装有3千克a零食,1千克b零食,1千克c零食,乙礼品盒装有2千克a零食,2千克b零食,2千克c零食,甲、乙两种礼品盒的成本均为盆中,,a b c三种零食的成本之和.已知每千克a的成本为10元,乙种礼品盒的售价为60元,每盒利润率为25%,甲种每盒的利润率为50%,当甲、乙两种礼盒的销售利润率为13时,该商场销售甲、乙两种礼盒的数量之比是____.【答案】6:11【思路点拨】先根据乙种礼品盒的售价和利润率求出乙种礼品盒的成本,进而推出每种零食的成本,再得评卷人得分三、解答题(共60分)21.(本题6分)(2022·河南郑州·郑州外国语中学校考模拟预测)某超市促销,决定对A、B两种商品进行打折销售.打折前,买6件A商品和3件B商品需要54元,买3件A商品和4件B商品需要32元;打折后,买50件A商品和40件B商品仅需368元,已知A商品是8折销售,请问B商品是几折销售?【答案】六折【思路点拨】设A商品的销售单价为x元,B商品的销售单价为y元,根据题意列出二元一次方组,解方程即可求解.【规范解答】解:设A商品的销售单价为x元,B商品的销售单价为y元,依题意得:6354 3432x yx y+=ìí+=î,22.(本题6分)(2023秋·辽宁阜新·八年级校考期末)某中学用1000元资金为全校在大型药店购进普通医用口罩、N95口罩两种口罩共350个,该大型药店的普通医用口罩、N95口罩成本价和销售价如表所示:类别/单价成本价(元/个)销售价(元/个)普通医用口罩0.82N95口罩48(1)该校在大型药店购进普通医用口罩、N95口罩各多少个?(2)销售完这350个普通医用口罩、N95口罩,该大型药店共获得多少利润?【答案】(1)购进普通医用口罩300个,N 95口罩50个(2)560元【思路点拨】(1)设该校在大型药店购进普通医用口罩x 个,95N 口罩y 个,依据题意可得方程组,解方程组即可求;(2)根据总利润=销量´(售价-进价)进行计算即可得.【规范解答】(1)解:设该校在大型药店购进普通医用口罩x 个,N 95口罩y 个,依题意,得:350281000x y x y +=ìí+=î,解得:30050x y =ìí=î.答:该校在大型药店购进普通医用口罩300个,N 95口罩50个.(2)解:()()30020.85084560´-+´-=(元)答:销售完这300个普通医用口罩、95N 口罩,该大型药店共获得利润560元.【考点评析】此题考查二元一次方程组的应用,理解题意设未知数列出方程是解此题的关键.23.(本题8分)(2023春·浙江·七年级专题练习)某天,一蔬菜经营户用180元从蔬菜批发市场购进土豆和黄瓜共60千克到菜市场去卖,土豆和黄瓜这天的进价和售价如下表所示:品名进价(单位:元/千克)售价(单位:元/千克)土豆 3.55黄瓜23(1)该蔬菜经营户当天购进土豆和黄瓜各多少千克?(2)他当天卖完全部土豆时发现黄瓜才卖了一半,为了尽快售完,决定八折销售剩下的黄瓜,很快一售而空,请问他一共赚了多少钱?24.(本题8分)(2023秋·山西大同·八年级校考期末)盲盒顾名思义就是盒子中放置不同的物品,消费者凭运气抽中商品,正是这种随机化的体验,让消费者产生消费欲望,成为当下最热门的营销方法之一.某葡萄酒酒庄为回馈新老客户,也推出了盲盒式营销.商家计划在每件盲盒中放入A,B两种类型的酒.销售人员先包装了甲、乙两种盲盒.甲盲盒中装了A种酒4瓶,B种酒4瓶;乙盲盒中装了A种酒2瓶,B种酒5瓶;经过测算,甲盲盒的成本价为每件280元,乙盲盒的成本价为每件200元.请计算A种酒和B种酒的成本价为每瓶多少元?【答案】A种酒的成本价为每瓶50元,B种酒的成本价为每瓶20元.【思路点拨】设A种酒的成本价为每瓶x元,B种酒的成本价为每瓶y元,由题意:甲盲盒中装了A种酒4瓶,B种酒4瓶;乙盲盒中装了A种酒2瓶,B种酒5瓶;经过测算,甲盲盒的成本价为每件280元,乙盲盒的成本价为每件200元.列出二元一次方程组,解方程组即可.【规范解答】解:设A种酒的成本价为每瓶x元,B种酒的成本价为每瓶y元,由题意得:44280 25200x yx y+=ìí+=î,解得:5020xy=ìí=î,答:A种酒的成本价为每瓶50元,B种酒的成本价为每瓶20元.【考点评析】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.25.(本题8分)(2023秋·安徽合肥·七年级合肥市第四十五中学校考期末)某鞋店正举办开学特惠活动,如图为活动说明.小李打算在该店同时购买两双鞋,且他有一张所有购买的商品定价皆打8折的折价券.(1)若小李参加特惠活动需花费420元,比使用折价券多花20元,则两双鞋的原件为多少元?(2)若小李计算后发现使用折价券与参加特惠活动两者的花费相差60元,则两双鞋的原价相差多少元?【答案】(1)设两双鞋的原价分别为300元和200元(2)两双鞋的原价相差300元【思路点拨】(1)设两双鞋的原价分别为x元和y元,x y>,根据“参加特惠活动需花费420元,比使用折价券多花20元”列方程组求解即可;(2)设两双鞋的原价分别为a元和b元,且a b>,然后分两种情况列式求解.【规范解答】(1)设两双鞋的原价分别为x 元和y 元,x y >.由题意得0.64200.80.842020x y x y +=ìí+=-î,解得300200x y =ìí=î,答:设两双鞋的原价分别为300元和200元.(2)设两双鞋的原价分别为a 元和b 元,且a b >.①当使用折价券比参加特惠活动花费多60元时,由题意得()()0.80.80.660a b a b +-+=,整理得300b a -=,与a b >矛盾,此情况不成立.②当参加特惠活动比使用折价券花费多60元时,由题意得()()0.60.80.860a b a b +-+=,整理得300a b -=,答:两双鞋的原价相差300元.【考点评析】本题考查了二元一次方程组的应用,仔细审题,找出题目的已知量和未知量,设两个未知数,并找出两个能代表题目数量关系的等量关系,然后列出方程组求解即可.26.(本题8分)(2023秋·福建三明·八年级统考期末)某商场用相同的价格分两次购进A 型和B 型两种型号的电脑,前两次购进情况如下表.A 型(台)B 型(台)总进价(元)第一次2030210000第二次1020130000(1)求该商场购进A 型和B 型电脑的单价各为多少元?(2)已知商场A 型电脑的标价为每台4000元,B 型电脑的标价为每台6000元,两种电脑销售一半后,为了促销,剩余的A 型电脑打九折,B 型电脑打八折全部销售完,问两种电脑商场获利多少元?【答案】(1)A 型电脑单价为3000元,B 型电脑的单价为5000元(2)两种电脑商场获利44000元27.(本题8分)(2023秋·重庆沙坪坝·八年级重庆一中校考期末)据气象局预报,12月初重庆市将有一次强降温雨雪天气.某服装店决定购进A 、B 两种品牌鹅绒服.购进A 种品牌鹅绒服8件,B 种品牌鹅绒服3件,需9200元;若购进A 种品牌鹅绒服5件,B 种品牌鹅绒服6件,需9050元.(1)求购进A 、B 两种品牌鹅绒服每件各需多少元?(2)元旦临近,服装店决定再次购买A 、B 两种品牌鹅绒服共20件,且A 种品牌鹅绒服的数量不超过B 种品牌鹅绒服数量的4倍,A 种品牌鹅绒服以每件350元的利润销售,B 种品牌鹅绒服按照进价提高25%进行销售,怎样进货才能使该服装店在销售完这批品牌鹅绒服时获利最多,最多为多少元?(用函数知识解决)【答案】(1)购进A 种品牌鹅绒服每件需850元,购进B 种鹅绒服每件需800元;(2)即购进A 种品牌鹅绒服4件,购进B 种鹅绒服16件时,获利最多为4600元.【思路点拨】(1) 设购进A 种品牌鹅绒服每件需x 元,购进B 种鹅绒服每件需y 元,根据题意列方程组求解即可;(2) 设购进A 种品牌鹅绒服a 件,购进B 种鹅绒服()20a -件,根据题意列方程,利用函数性质和不等式求出最大值.。

题型专题训练:7_2 二元一次方程组的应用——销售、利润问题

题型专题训练:7_2 二元一次方程组的应用——销售、利润问题

7.2 二元一次方程组的应用——销售、利润问题【题型销售、利润问题】【例】2018年某歌手地表最强巡回演唱会于11月17日在贵阳奥林匹克体育中心举行,小颖购买了一张票价为四位数的场地票(动感地带专属),而小明一张购买了票价为三位数的看台票(动感地带专属).小颖说,“在你的票价前面多写个1,都还比我的便宜200元”;小明说,“只需在我的票价后多写个0,就比你的贵3120元”.请问小颖和小明购买的演唱会门票各是多少元?【变式1】(2022·江西吉安·八年级期末)2018年10月,吉州区井冈蜜柚节迎来了四方游客,游客李先生选购了井冈蜜柚和井冈板栗各一箱需要200元.他还准备给4位朋友每人送同样的井冈蜜柚一箱,6位同事每人送同样的井冈板栗一箱,就还需要1040元.(1)求每箱井冈蜜柚和每箱井冈板栗各需要多少元?(2)李先生到收银台才得知井冈蜜柚节期间,井冈蜜柚可以享受6折优惠,井冈板栗可以享受8折优惠,此时李先生比预计的付款少付了多少元?【变式2】(2022·江苏南通·七年级期末)小瑞去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元.(1)若小瑞所带的钱是51元,请分别求出玫瑰和百合单价是多少元?(2)若小瑞所带的钱是m元,且一共只买8支玫瑰,请直接写出小瑞所带的钱还剩下多少元?【变式3】(2022·广西南宁·七年级期中)为响应国家“足球进收园”的号召,满足学校对足求的需求.某商家第一次购进了38个A类足球和20个B类足球进行销售,共花费了5580元,已知商家购进一个B类足球的价格是购进一个A类足球价格的1.2倍.(1)求商家购进一个A类足球和一个B类足球各需多少元?(2)若一个A类足球的售价为110元.两类足球销售完毕,商家要获得1880元的利铜,则B 类足球的总售价为多少元?(3)为了回馈客户,商家决定进行打折销售,若商家第二次又以原进价购进A、B两类足球,购进A类足球的件数不变,而购进B类足球的件数是第一次的2倍,A类足球按原售价销售,而B类足球打折销售,若第二次两类足球全部销售完毕,要使得第二次销售获得利润1688元,则B类足球是打几折销售的?(解析版)【题型 销售、利润问题】【例】2018年某歌手地表最强巡回演唱会于11月17日在贵阳奥林匹克体育中心举行,小颖购买了一张票价为四位数的场地票(动感地带专属),而小明一张购买了票价为三位数的看台票(动感地带专属).小颖说,“在你的票价前面多写个1,都还比我的便宜200元”;小明说,“只需在我的票价后多写个0,就比你的贵3120元”.请问小颖和小明购买的演唱会门票各是多少元? 【答案】1680元,480元.【分析】设小颖的票价为x 元,小明的票价为y 元,根据“小颖说,“在你的票价前面多写个1,都还比我的便宜200元”;小明说,“只需在我的票价后多写个0,就比你的贵3120元”.”找到等量关系,列出方程组,解方程组即可.【详解】设小颖的票价为x 元,小明的票价为y 元,根据题意得:{x −(1000+y )=20010y −x =3120解得:{x =1680y =480答:小颖和小明购买的演唱会门票分别为:1680元,480元.【点睛】本题考查二元一次方程组的应用,正确的找到等量关系是解答关键.【变式1】(2022·江西吉安·八年级期末)2018年10月,吉州区井冈蜜柚节迎来了四方游客,游客李先生选购了井冈蜜柚和井冈板栗各一箱需要200元.他还准备给4位朋友每人送同样的井冈蜜柚一箱,6位同事每人送同样的井冈板栗一箱,就还需要1040元.(1)求每箱井冈蜜柚和每箱井冈板栗各需要多少元?(2)李先生到收银台才得知井冈蜜柚节期间,井冈蜜柚可以享受6折优惠,井冈板栗可以享受8折优惠,此时李先生比预计的付款少付了多少元?【答案】(1)每箱井冈蜜柚需要80元,每箱井冈板栗需要120元;(2)李先生比预计的付款少付了328元【分析】(1)、根据“井冈蜜柚和井冈板栗各一箱需要200元,4箱井冈蜜柚和6箱井冈板栗需要1040元”列二元一次方程组,解之即可得.(2)根据节省的钱数=原价×数量﹣打折后的价格×数量,即可求出结论.【详解】解:(1)设每箱井冈蜜柚需要x 元,每箱井冈板栗需要y 元,依题意,得:{x +y =2004x +6y =1040, 解得:{x =80y =120. 答:每箱井冈蜜柚需要80元,每箱井冈板栗需要120元.(2)200+1040﹣80×0.6×(4+1)﹣120×0.8×(6+1)=328(元).答:李先生比预计的付款少付了328元.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.【变式2】(2022·江苏南通·七年级期末)小瑞去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元.(1)若小瑞所带的钱是51元,请分别求出玫瑰和百合单价是多少元?(2)若小瑞所带的钱是m 元,且一共只买8支玫瑰,请直接写出小瑞所带的钱还剩下多少元? 【答案】(1)玫瑰和百合单价分别是每支2.5元和每支9.5元(2)小瑞所带的钱还剩下31元【分析】(1)设每支玫瑰x 元,每支百合y 元,利用总价=单价×数量,结合小瑞带的钱数不变,即可得出关于x ,y 的二元一次方程,化简后可得出;(2)设玫瑰的单价是每支x 元,百合单价是每支y 元,因为小瑞带的钱为m 元,所以列方程{5x +3y =m −10①5x +5y =m +4②,用含m 的代数式解出x 和y ,又因为且一共只买8支玫瑰,所以剩下的钱为:m -8x 即可求解;(1)解:设玫瑰的单价是每支x 元,百合单价是每支y 元.由题意可得{5x +3y =51−10,3x +5y =51+4.解之得{x =2.5,y =9.5.答:玫瑰和百合单价分别是每支2.5元和每支9.5元.(2)解:设玫瑰的单价是每支x 元,百合单价是每支y 元,因为小瑞带的钱为m 元【变式3】(2022·广西南宁·七年级期中)为响应国家“足球进收园”的号召,满足学校对足求的需求.某商家第一次购进了38个A类足球和20个B类足球进行销售,共花费了5580元,已知商家购进一个B类足球的价格是购进一个A类足球价格的1.2倍.(1)求商家购进一个A类足球和一个B类足球各需多少元?(2)若一个A类足球的售价为110元.两类足球销售完毕,商家要获得1880元的利铜,则B 类足球的总售价为多少元?(3)为了回馈客户,商家决定进行打折销售,若商家第二次又以原进价购进A、B两类足球,购进A类足球的件数不变,而购进B类足球的件数是第一次的2倍,A类足球按原售价销售,而B类足球打折销售,若第二次两类足球全部销售完毕,要使得第二次销售获得利润1688元,则B类足球是打几折销售的?【答案】(1)一个A类足球需90元,一个B类足球需108元(2)3280(3)八折【分析】(1)设商家购进一个A类足球需x元,购进一个B类足球需y元,由题意:某商家第一次进了38个A类足球和20个B类足球进行出售,共花费了5580元,已知商家购进一个B类足球的价格是购进一个A类足球价格的1.2倍.列出二元一次方程组,解方程组即可;(2)设B类足球的售价为m元,由题意:一个A类足球的售价为110元,两类足球销售完毕,商家要获得1880元的利润,列出一元一次方程,解方程即可;(3)B类足球是打n折销售的,由题意:购进A类足球的件数不变,而购进B类足球的件数是第一次的2倍,A 类足球按原售价销售,使得第二次销售获得利润1688元,列出一元一次方程,解方程即可.(1)解:设商家购进一个A 类足球需x 元,购进一个B 类足球需y 元,由题意得:{38x +20y =5580y =1.2x, 解得:{x =90y =108, 答:商家购进一个A 类足球需90元,购进一个B 类足球需108元;(2)解∶ 设B 类足球的售价为m 元,由题意得:(110-90)×38+(m -108)×20=1880,解得:m =164,则20×164=3280,答:B 类足球的总售价为3280元;(3)解∶设B 类足球是打n 折销售的,由题意得:(110-90)×38+(164×0.1n -108)×20×2=1688,解得:n =8,答:B 类足球是打八折销售的.【点睛】本题考查了二元一次方程组的应用以及一元一次方程的应用,找准等量关系,正确列出二元一次方程组和一元一次方程是解题的关键.。

八年级二元一次方程组实际问题3 经济利润问题

八年级二元一次方程组实际问题3 经济利润问题

【板块三】经济利润问题方法技巧1.利润问题:利润=售价一进价=进价x利润率,利润率=(售价一进价)÷进价x100%,实际售价=标价x打折率。

2. 储蓄问题:利息=本全×利率×期数,利息税=利息×利息税率。

题型一利润率问题【例1】有甲、乙两件商品,甲商品的利润率为5%, 乙商品的利润率为4%, 共可获利46元,价格调整后,甲商品的利润率为4%, 乙商品的利润率为5%, 共可获利44元,则两件商品的进价分别是多少元?题型二存款利息问题【例2】小明的妈妈为了准备小明一年后上高中的费用,现在以两种方式在银行共存了2000元钱,一种是年利率为2. 25%的教育储蓄,另一种是年利率为2. 25%的一年定期存款(存款利息要交利息所得税),一年后可取出2042. 75元,问这两种储蓄各存了多少钱? (利息所得税=利息金额x20%, 教育储蓄没有利息所得税)题型三分段计费问题【例3】某超市在“五一”期间对顾客实行优惠,规定如下:一次性购物优惠方法少于200元不予优惠低于500元但不低于200元九折优惠500元或大于500元其中500元部分给予九折优惠,超过500部分给予八折优惠(1) 王老辆一次购物600元,他实际付款_元:(2) 若顾客在该超市一次性购物 元,当小于500元但不小于200元时,他实际付款元;当文大于或等于500元时,他实际付款元(用的代数式表示)。

(3) 如果王老师两次购物合计820元,他实际付款共计728元,且第一次购物的货款少于第二次购物的,求两次购物各多少元?针对练习31.某商店购进商品后,都加价40%作为销售价,元旦期间搞优惠促销,决定由顾客抽奖确定折扣,某顾客购买甲、乙两种商品,分别抽到七折和九折,共付款399元,商场共赢利49元,甲、乙两种商品的进价分别为多少元!2.李明以两种形式分别储蓄了2000元和1000元,一年后全部取出,扣除利息所得税后可得利息43.92元,已知这两种储蓄的年利率的和为3. 24%, 问这两种储蓄的年利率各是多少?3. 某市的出租车是这样收费的:起步价所包含的路程为0~1. 5千米,超过1. 5千米的部分按每千米另收费。

二元一次方程销售利润问题知识点及典型题练习

二元一次方程销售利润问题知识点及典型题练习

销售问题基本关系:盈利:售价>进价 利润=售价-进价>0亏损:售价<进价 利润=售价-进价<0利润=售价-成本 亏损额=成本-售价、利润=成本×利润率 亏损额=成本×亏损率售价=标价×10折数 售价=进价×(1+利润率) 1、 如果全组共有20名同学,若每人各买1支A 型毛笔和2支B 型毛笔,共支付140元;若每人各买2支A 型毛笔和1支B 型毛笔,共支付160元.这家文具店的A 、B•两种类型毛笔的零售价各是多少?2、小芳和小亮买学习用品,小芳用18元买1支笔和3本笔记本;小亮用31元买了一样的2支钢笔和笔记本5本,问题如下:(1)求每之钢笔和每本笔记本的价格。

(2)校运动会后,班主任拿出200元学校奖励基金交给班长,购买上述价格的钢笔和笔记本共48件,要求笔记本数不少于钢笔笔数 。

3、打折前,买60件A 商品和30件B 商品用了1080元,买50件A 商品和10件B 商品用了840元;打折后,买500件A 商品和500件B 商品用了9600元,比不打折少花多少钱?%100⨯=成本利润利润率%100⨯=成本亏损额亏损率4、商场按标价销售某商品,每件可获利45元,按标价的8.5折销售8件与将标价降价35元销售12件的利润相同。

求该商品的进价和标价各多少元?4、某商场购进商品后,均加价10%作为销售价。

现商场搞优惠促销活动,决定由顾客抽奖确定折扣。

某顾客购买甲、乙两种商品分别抽到7折和9折,共付款399无。

已知这两种商品原销价之各为490元。

问这两种商品的进价分别为多少元?5、甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50﹪的利润定价,乙服装按40﹪的利润定价。

在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元?5、某市场购进甲、乙两种商品共50件,甲种商品进价每件35元,利润率是20%,乙种商品进价每件20元,利润率是15%,共获利278元,问甲、乙两种商品各购进了多少件?6、已知甲、乙两种商品的原单价和为100元,因市场变化,甲商品降价10%,乙商品提价5%,调价后,甲、乙两种商品的单价和比原单价和提高了2%,求甲、乙两种商品的原单价各是多少元?。

人教版七年级下册第八章二元一次方程实际应用-利润问题(有简答)

人教版七年级下册第八章二元一次方程实际应用-利润问题(有简答)

人教版七年级下册第八章二元一次方程实际应用-利润问题1.某电器超市销售每台进价分别为2000元、1700元的A、B两种型号的空调,如表是近两周的销售情况:(进价、售价均保持不变,利润=销售总收入进货成本)(1)求A、B两种型号的空调的销售单价;(2)若超市准备用不多于54000元的金额再采购这两种型号的空调共30台,求A种型号的空调最多能采购多少台?答案:(1)A、B两种型号的空调的销售单价分别为2500元,2100元;(2)A种型号的空调最多能采购10台.2.某商场第1次用39万元购进A、B两种商品,销售完后获得利润6万元,它们的进价和售价如下表:(总利润=单件利润×销售量)、1)该商场第1次购进A、B两种商品各多少件?的件数是第1次的2倍,A商品按原价销售,而B商品打折销售,若两种商品销售完毕,要使得第2次经营活动获得利润等于54000元,则B种商品是打几折销售的?答案:(1)商场第1次购进A种商品200件,购进A种商品150件;(2)9.3.某手机经销商计划同时购进一批甲、乙两种型号的手机,若购进2部甲型号手机和1部乙型号手机,共需要资金2800元;若购进3部甲型号手机和2部乙型号手机,共需要资金4600元(1) 求甲、乙型号手机每部进价为多少元?(2) 该店计划购进甲、乙两种型号的手机销售,预计用不多于1.8万元且不少于1.74万元的资金购进这两部手机共20台,请问有几种进货方案?请写出进货方案(3) 售出一部甲种型号手机,利润率为40%,乙型号手机的售价为1280元、为了促销,公司决定每售出一台乙型号手机,返还顾客现金m元,而甲型号手机售价不变,要使(2)中所有方案获利相同,求m的值答案:(1) 甲种型号手机每部进价为1000元,乙种型号手机每部进价为800元、(2) 共有四种方案、(3) 当m、80时,w始终等于8000,取值与a无关4.喜迎新年,某社区超市第一次用5000元购进甲、乙两种商品,其中甲商品件数是品的件数的2倍,甲、乙两种商品的进价和售价如下表:(1)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(2)能市第二次以第一次的进价又购进甲、乙两种商品,其中购进乙种商品的件数不变,购进甲种商品的件数是第一次购进甲种商品件数的2倍;乙商品按原价销售,甲商品打折销售,第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多600元,求第二次甲种商品按原价打几折销售答案:(1)4000元;(2)8折.5.某电器商场销售A,B两种型号计算器,两种计算器的进货价格分别为每台30元,40元. 商场销售5台A型号和1台B型号计算器,可获利润76元;销售6台A 型号和3台B型号计算器,可获利120元.(1)求商场销售A,B两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)(2)商场准备用不多于2500元的资金购进A,B两种型号计算器共70台,问最少需要购进A型号的计算器多少台?答案:A型42元,B型56元;30台.6.在元旦期间,某商场计划购进甲、乙两种商品.(1)已知甲、乙两种商品的进价分别为30元,70元,该商场购进甲、乙两种商品共50件需要2300元,则该商场购进甲、乙两种商品各多少件?(2)该商场共投入9500元资金购进这两种商品若干件,这两种商品的进价和售价如表所示:若全部销售完后可获利5000元(利润=(售价﹣进价)×销量),则该商场购进甲、乙两种商品各多少件?答案:(1)商场购进甲商品30件,乙商品20件;(2)商场购进甲商品130件,乙商品80件7.某通讯器材商场,计划从一厂家购进若干部新型手机以满足市场需求,已知该厂家生产三种不同型号的手机,出厂价分别是甲种型号手机1800元/部,乙种型号手机600元/部,丙种型号手机1200元/部.商场在经销中,甲种型号手机可赚200元/部,乙种型号手机可赚100元/部,丙种型号手机可赚120元/部.(1)若商场用6万元同时购进两种不同型号的手机共40部,并恰好将钱用完,请你通过计算分析进货方案;(2)在(1)的条件下,求盈利最多的进货方案;(3)若该商场同时购进三种手机,且购进甲,丙两种手机用了3.9万元,预计可获得5000元利润,问这次经销商共有几种可能的方案?最低成本(进货额)多少元?答案:(1)有两种购买方案:甲种型号手机30部,乙种手机10部;或甲种型号手机20部,丙种手机20部;(2)购买甲种型号手机30部,乙种手机10部所获盈利较大;(3)这次经销商共有2种可能的方案,最低成本(进货额)43800元.8.丽江布农铃,是一种极富特色的、形状同马帮的马铃的挂件.这种马帮文化商品,是纯手工制作.精致小巧的青铜铃铛下系有一块圆形木块,手绘着各种各样的画.某商店需要购进甲、乙两种布农铃共300件,一件甲种布农铃进价为340元,售价为400元,一件乙种布农铃进价为380元,售价为460元.(注:利润=售价-进价)(1)若商店计划销售完这批布农铃后能获利21600元,问甲、乙两种布农铃应分别购进多少件?(2)若商店计划投入资金110000元,则能购进甲种布农铃多少件?答案:(1)购进甲种布农铃120件,乙种布农铃180件;(2)购进甲种布农铃100件.9.某商场准备购进两种型号的摩托车共25辆,预计投资10万元.现有甲、乙、丙三种摩托车,甲种每辆4200元,可获利400元;乙种每辆3700元,可获利350元;丙种每辆3200元,可获利320元,且10万元资本全部用完.、1)请你帮助该商场设计进货方案;、2)从销售利润上考虑,应选择哪种方案?答案:(1)进货方案有两种:①甲种进15辆,乙种进10辆;②甲种进20辆,乙种进5辆;(2)从销售利润上看要选择方案2.10.某体育文化用品商店购进篮球和排球共30个,进价和售价如下表,若全部销售完后共可获利润1680元.、1)请利用二元一次方程组求购进篮球和排球各多少个?、2)“双11”快到了,这个体育文化用品商店也准备搞促销活动,计划篮球9折销售,排球8折销售,则销售8个篮球的利润与销售几个排球的利润相等?答案:(1)购进篮球12个,购进排球18个、、2、销售8个篮球的利润与销售10个排球的利润相等.11.某电器商场销售A、B两种型号计算器,两种计算器的进货价格分别为每台30元,40元,商场销售5台A型号和1台B型号计算器,可获利润76元;销售6台A 型号和3台B型号计算器,可获利润120元.求商场销售A、B两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)答案:A种型号计算器的销售价格是42元,B种型号计算器的销售价格是56元.12.某商场准备购进两种摩托车共25辆,预计投资10万元,现有甲、乙、丙三种摩托车供选购,甲种每辆4200元,可获利400元;乙种每辆3700元,可获利350元;丙种每辆3200元,可获利200元.要求10万元资金全部用完.(1)请你帮助该商场设计进货方案;(2)从销售利润上考虑,应选择哪种方案?答案:(1)进货方案有两种方案: 第一种甲种摩托车为15辆,乙种摩托车为10辆,第二种甲种摩托车为20辆,丙种摩托车为5辆;(2)从销售利润上考虑,应选择第一种方案.13.(1)机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?(2)某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行粗加工,每天可加工16吨,如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行,受季节等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工.方案二:尽可能多地对蔬菜进行精加工,没来得及进行加工的蔬菜,在市场上直接销售.方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.你认为哪种方案获利最多?为什么?答案:(1)需安排25名工人加工大齿轮、安排60名工人加工小齿轮;(2)该公司可以。

1.3.4-二元一次方程组的应用(销售利润问题)

1.3.4-二元一次方程组的应用(销售利润问题)
解:设此商品的定价是y元,进价是x元, 由题意得:
解方程组,得
答:此商品的定价是200元,进价是150元。
例3:某商场购进甲、乙两种商品后,甲商品加价 50%,乙商品加价40%作为标价,适逢元旦,商 场举办促销活动,甲商品打八折销售,乙商品打 八五折酬宾,某顾客购买甲、乙商品各1件,共付 款538元,已知商场共盈利88元,求甲、乙两种商 品的进价各是多少?
3千米后,每千米的车费多少元?
分析 本问题涉及的等量关系有:
总车费=0~3km的车费(起步价)+超过3km的车费
解:设出租车的起步价是x元,超过3km后每千米收费y元.
由题意得:
x
+(11-
3)y
=
17,
x
+(23
-
3)y
=
35.解Biblioteka 程组,得x=5,
y
=
1.5.
答:这种出租车的起步价是5元,超过3km后每千米收
费1.5元.
巩固练习: 1、某市为了鼓励居民节约用水,规定:若每月 用水不超 过10立方米,按每立方米a元收费, 若每月超过10立方米,则超过部分按每立方米b 元收费,如果小头儿子家去年11月份用水15吨收 费30元;12月份用水17吨缴水费36元,求a、b。
2、为了缓解用电紧张局面,某地出台峰谷 电收费方案:每天8:00至22:00叫峰电, 每度电0.56元,每晚22:00至次日8:00叫 谷电,每度电0.28元,八月份小头儿子家 总用电为125度,总电费为49元,请问小头 儿子家八月份峰电、谷电各多少度?
类型
A
B
进价(元/件)
60
100
标价(元/件)
100
160

二元一次方程应用,利润问题专项练习附答案

二元一次方程应用,利润问题专项练习附答案

二元一次方程应用——利润问题专项练习题(附答案)1.某宾馆有客房90间,当每间客房的定价为每天140元时,客房会全部住满.经调查发现,每间客房每天的定价每涨10元,就会有5间客房空闲,如果旅客居住客房,宾馆需对每间客房每天支出60元的各种费用,若在尽可能节约资源的前提下,每天想获利8000元,每间客房应涨价多少元?2.某单位组织职工观光旅游,旅行社的收费标准是:如果人数不超过25人,人均旅游费用为100元;如果超过25人,每增加1人,人均旅游费用降低2元,但人均旅游费用不得低于70元.该单位按旅行社的收费标准组团,结束后,共支付给旅行社2700元.求该单位这次共有多少人参加旅游?3.金丰商场在服装销售旺季购进某服装1000件,以每件超出进价50元的价格出售,在一个月中销售此服装800件,之后由于进入淡季,每件降价20%,这样的售价比进价低10%,结果全部售出,请你帮助算一下,该商场在这一次买卖中共获利多少元?4.某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元?5.某商店如果将进货价8元的商品按每件10元出售,每天可销售200件,现采用提高售价,减少进货量的方法增加利润,已知这种商品每涨0.5元,其销售量就可以减少10件,问应将售价定为多少时,才能使所赚利润最大,并求出最大利润?6.某水果经销商销售一种新上市的水果,进货价为5元/千克,售价为10元/千克,月销售量为1000千克.(1)经销商降价促销,经过两次降价后售价定为8.1元/千克,请问平均每次降价的百分率是多少?(2)为增加销售量,经销商决定本月降价促销,经过市场调查,每降价0.1元,能多销售50千克,请问降价多少元才能使本月总利润达到6000元?7.高盛超市准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.(1)设每个小家电定价增加x元,每售出一个小家电可获得的利润是多少元?(用含x的代数式表示)(2)当定价增加多少元时,商店获得利润6000元?8.广州塔是广州的新地标,旅行社为吸引游客推出了广州塔一日游,具体资费标准如下:如果人数不超过25人,人均消费180元;如果人数超过25人,每增加1人,则全体参加人员人均费用降低4元,但人均费用不得低于130元.某公司组织员工参加广州塔一日游,共支付旅行社一日游费用4800元,请问该公司这次共组织了多少员工参加广州塔一日游?9.秋末冬初,慈善人士李先生到某商场购买一批棉被准备送给偏远山区的孩子.该商场规定:如果购买棉被不超过60条,那么每条售价120元;如果购买棉被超过60条,那么每增加1条,所出售的这批棉被每条售价均降低0.5元,但每条棉被最低售价不得少于100元,最终李先生共支付棉被款8800元,请问李先生一共购买了多少条棉被?10.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克。

初中数学二次函数的应用题型分类——商品销售利润问题(附答案).docx

初中数学二次函数的应用题型分类——商品销售利润问题(附答案).docx

初中数学二次函数的应用题型分类一商品销售利润问题(附答案)I.某网店经营一种品牌水果,其进价为10元/T•克,保鲜期为25天,每天销售量克)与销售单价兀(元/T•克)之间的函数关系如图所示.⑴求y与x的函数关系式;(2)当该品牌水果定价为多少元时,每天销售所获得的利润最人?(3)若该网店一次性购进该品牌水果3000「克,根据(2)中每天获得最人利润的方式进行销售,发现在保鲜期内不能及时销售完毕,于是决定在保鲜期的最后5天一次性降价销售,求最后5天每千克至少降价多少元才能全部售完?2.特产店销售一种水果,其进价每「克40元,按60元出售,平均每天可售100千克, 后来经过市场调查发现,单价每降低2元,则平均每天可增加20千克销量.(1)若该专卖店销售这种核桃要想平均每天获利2240元,每「克水果应降多少元?(2)若该专卖店销售这种核桃要想平均每天获利最大,每T•克水果应降多少元?3.某文具店购进A, B两种钢笔,若购进A种钢笔2支,B种钢笔3支,共需90元;购进A 种钢笔3支,B种钢笔5支,共需145元.(1)求该文具店购进4、B两种钢笔每支各多少元?(2)经统计,3种钢笔售价为30元时,每月可卖64支;每涨价3元,每月将少卖12 支,求该文具店3种钢笔销售单价定为多少元时,每月获利最大?最人利润是多少元?4.某公司可投入研发费用80万元(80万元只计入第一年成本),成功研发出一种产品, 公司按订单生产(产量=销售量),第一年该产品正式投产后,生产成本为8元/件,此产品年销售量),(万件)与售价x (元/件)之间满足函数关系式),=「计2&(1)求这种产品第一年的利润M (万元)与售价%(元/件)满足的函数关系式;(2)该产品第一年的利润为20万元,那么该产品第一年的售价是多少?(3)第二年,该公司将第一年的利润20万元(20万元只计入第二年成本)再次投入研发,使产品的生产成本降为6元/件,为保持市场占有率,公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过14万件,请计算该公司第二年的利润“2至少为多少万元.5.某实验器材专营店为迎接我市理化生实验的到来,购进一批电学实验盒子,一台电学实验盒的成本是30元,当售价定为每盒50元时,每天可以卖出20盒.但由于电学实验盒是特殊时期的销售产品,专营店准备对它进行降价销售.根据以往经验,售价每降低3元,销量增加6盒.设售价降低了x(元),每天销量为y (盒).(1)求y与*之间的函数表达式:(2)总利润用用(元)来表示,请说明售价为多少元时获得最人利润,最大利润是多少?6.某公司推出一款产品,经市场调查发现,该产品的口销售量y(个)与销售单价x(元)之间满足一次函数关系,关于销售单价,口销售量,口销售利润的几组对应值如表:(注:口销售利润=口销售量X (销售单价-成本单价))(1)求y与”的函数关系式:(2 )当销售单价X为多少元时,口销售利润w最大?最大利润是多少元?(3)当销售单价X为多少元时,口销售利润W在1500元以上?(请直接写出x的范围)7.某公司销售一批产品,进价每件50元,经市场调研,发现售价为60元时,可销售800件,售价每提高1元,销售量将减少25件.公司规定:售价不超过70元.(1)若公司在这次销售中要获得利润10800元,问这批产品的售价每件应提高多少元?(2)若公司要在这次销售中获得利润最大,问这批产品售价每件应定为多少元?8.某公司开发了一种新型的家电产品,又适逢“家电下乡”的优惠政策.现投资40万元用于该产品的广告促销,已知该产品的本地销售量儿(万台)与本地的广告费用X (万元)之间的函数关系满足)1={;:丫盧着?!<40)・该产品的外地销售量儿(万台)与外地广告费用/ (万元)之间的函数关系可用如图所示的抛物线和线段43来表示.其中点A为抛物线的顶点.(1)结合图彖,求出儿(万台)与外地广告费用/ (万元)之间的函数关系式;(2)求该产品的销售总量y (万台)与本地广告费用x (万元)之间的函数关系式;⑶如何安排广告费用才能使销售总量最人?9.某电子厂生产一种新型电子产品,每件制造成本为20元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y= - 2x+100.(利润=售价■制造成本)(1)写出每月的利润z (万元)与销售单价x (元)之间的函数关系式;(2 )当销售单价为多少元时,厂商每月获得的利润为400万元?(3)根据相关部门规定,这种电子产品的销售单价不能高于40元,如果厂商每月的制造成本不超过520万元,那么当销售单价为多少元时,厂商每月获得的利润最人?最人利润为多少万元?10.某灯具厂生产并销售A, B两种型号的智能台灯共100盏,生产并销售一盏4型智能台灯可以获利30元;如果生产并销售不超过20盏B型台灯,则每盏B型台灯可以获利90元,如果超出20盏B型台灯,则每超出1盏,每盏B型台灯获利将均减少2 元设生产并销售B型台灯x盏.(其中x>20)(1)完成下列表格:(2)当人型台灯所获得的利润比B型台灯所获得利润少200元时,求生产并销售A,B两种台灯各多少盏?(3)如何设计生产销售方案可以获得最人利润,最大的利润为多少元?11.某商场销售一批名牌衬衫:平均每天可售出20件,每件盈利40元,为了扩大销售量,增加盈利,尽快减少库存,商场决定采取适当的降价促销措施,经市场调查发现:如果每件衬衫降价1元,那么平均每天就可多售出2件.(1)求出商场盈利与每件衬衫降价之间的函数关系式:(2)若每天盈利达1200元,那么每件衬衫应降价多少元?12.某人学生利用暑假40天社会实践参与了一家网店经营,了解到一种新型商品成本为20元/件,第;I天销售量为卩件,销售单价为q元,经跟踪调查发现,这40天中卩与%的关系保持不变,前20天(包含第20天),q与x的关系满足关系式q=30+祇;从第21天到第40天中,q是基础价与浮动价的和,其中基础价保持不变,浮动价与x 成反比.且得到了表中的数据.(1)请直接写出a的值为_______ ;(2 )从第21天到第40天中,求g与x满足的关系式;(3)若该网店第*天获得的利润y元,并且已知这40天里前20天中),与x的函数关系式为)=--x2+l5x4-5002门青直接写出这40天中"与;i的关系式为:_______ :H求这40天里该网店第几天获得的利润最大?13.某工厂生产甲、乙两种产品,已知生产1吨产品甲需要2吨原材料A;生产1吨产品乙需要3吨原材料A.根据市场调研,产品甲、乙所获利润y (万元)与其产量x(吨)之间分别满足函数关系:产品甲:y=ax2+bx且x=2 时,y=2.6; x=3 时,y=3.6产品乙)=0.3“(1)求产品甲所获利润V (万元)与其产量* (吨)之间满足的函数关系;(2)若现原材料A共有20吨,请设计方案,应怎样分配给甲、乙两种产品组织生产,才能使得最终两种产品的所获利润最人.14.某商场销售一批衬衫,平均每天可售出20件,每件盈利40元.为了扩人销售,增加盈利,商场采取了降价措施.假设在一定范I制内,衬衫的单价每降1元,商场平均每天可多售出2件,设衬衫的单价降x元,每天获利y元.(1)如果商场里这批衬衫的库存只有44件,那么衬衫的单价应降多少元,才能使得这批衬衫一天内售完,且获利最人,最大利润是多少?(2)如果商场销售这批衬衫要保证每天盈利不少于1200元,那么衬衫的单价应降多少元?15.某大学生利用暑假40天社会实践进行创业,他在网上开了一家微店,销售推广一种成本为25元/件的新型商品.在40天内,其销售单价"(元/件)与时间"(天)的关系式是:当1乂20时,n = 36 + \;当21<A<40时,n = 25 +罗.这40天中的口销售量m(件)与时间x (天)符合函数关系,具体情况记录如卞表(天数为整数):(1)请求出口销售量川(件)与时间x (天)之间的函数关系式:(2)若设该同学微店口销售利润为w元,试写出口销售利润w (元)与时间x (天)的函数关系式:16.某体育用品商店试销一款成本为50元的排球,规定试销期间单价不低于成本价,且获利不得高于40%.经试销发现,销售量y (个)与销售单价x (元)之间满足如图所示的一次函数关系.(1)试确定y与x之间的函数关系式;(2)若该体育用品商店试销的这款排球所获得的利润0元,试写出利润0 (元)与销售单价X (元)之间的函数关系式:当试销单价定为多少元时,该商店可获最人利润?最人利润是多少元?(3 )若该商店试销这款排球所获得的利润不低于600元,请确定销售单价x的取值范I亂17.某商场销售同型号A、E两种品牌节能灯管,它们进价相同,A品牌售价可变,最低售价不能低于进价,最高利润不超过4元,E品牌售价不变.它们的每只销售利润与每周销售量如下表:(售价=进价+利润)(1)当A品牌每周销售量为300只时,B品牌每周销售多少只?(2)A品牌节能灯管每只利润定为多少元时?可获得最人总利润,并求最大总利润.18.大学生小张利用暑假50天在一超市勤工俭学,被安排销售一款成本为40元/件的新型商品,此类新型商品在第x天的销售量p件与销售的天数x的关系如下表:销售单价q (元/件)与x满足:当l<x<25时q=x+60;当25<x<50时q=40+ x .(1)请分析表格中销售量P与x的关系,求出销售量p与x的函数关系.(2)求该超市销售该新商品第x天获得的利润y元关于x的函数关系式.(3)这50天中,该超市第几天获得利润最人?最大利润为多少?19.某商店以8元/个的价格收购1600个文具盒进行销售,为了得到口销售量),(个)与销售价格X (元/个)之间的关系,经过市场调查获得部分数据如下表:(1)请你根据表中的数据,用所学知识确定)'与X之间的函数表达式:(2)该商店应该如何确定这批文具盒的销售价格,才能使口销售利润最人?(3)根据(2)中获得最人利润的方式进行销售,判断一个月能否销售完这批文具盒,并说明理由.20.某工厂加工一种商品,每天加工件数不超过100件时,每件成本80元,每天加工超过100件时,每多加工5件,成本下降2元,但每件成本不得低于70元.设工厂每天加工商品x (件),每件商品成本为y (元),(1)求出每件成本y (元)与每天加工数量x (件)之间的函数关系式,并注明自变量的取值范围;(2)若每件商品的利润定为成本的20%,求每天加工多少件商品时利润最人,最人利润是多少?21•家用电器开发公司研制出一种新型电子产品,每件的生产成本为18元,按定价40 元出售:,每月可销售20万件,为了增加销量,公司决定采取降价的办法,经过市场调研,每降价1元,月销售量可增加2万件.(1)求出月销售利润W (万元)与销售单价;I (元)之间的函数关系式.(2)为了获得最大销售利润,每件产品的售价定为多少元?此时最人月销售利润是多少?(3)请你通过(1)中函数关系式及其大致图象帮助公司确定产品的销售单价范怜I,使月销售利润不低于480万元.22.城隍庙是宁波市的老牌商业中心,城隍庙商业步行街某商场购进一批品牌女装,购进时的单价是600元,根据市场调查,在一段时间内,销售单价是800元时,销售量是200件,销售单价每降低10元,就可多售出20件.(1)求出销售量$(件)与销售单价"(元)之间的函数关系式;(2)求出销售该品牌女装获得的利润W(元)与销售单价x(元)之间的函数关系式;(3)若服装厂规定该品牌女装的销售单价不低于760元且不高于800元,则商场销售该品牌女装获得的最人利润是多少?23.某公司生产的A种产品,它的成本是2元,售价是3元,年销售量为100万件,为了获得更好的效益,公司准备拿出一定的资金做广告.根据经验,每年投入的广告费是x (10万元)时,产品的年销售量将是原销售量的y倍,且y是x的二次函数,它们的关系如卜•表:(1)求y与x的函数关系式;(2)如果把利润看做是销售总额减去成本费和广告费,试写出年利润S (10万元)与广告费x (10万元)的函数关系式;(3)如果投入的年广告费为10~30万元,问广告费在什么范围内,公司获得的年利润随广告费的增大而增大?24.绿色生态农场生产并销售某种有机产品,每口最多生产130kg,假设生产出的产品能全部售出,每千克的销售价刃(元)与产量x (kg)之间满足一次函数关系Y1=-3-x+168,生产成本y,(元)与产量x (kg)之间的函数图象如图中折线ABC所示.(1)求生产成本刃(元)与产量X (kg)之间的函数关系式;(2)求口利润为W (元)与产量x (kg)之间的函数关系式;(3)当产量为多少kg时,这种产品获得的口利润最大?最人口利润为多少元?25.新鑫公司投资3000万元购进一条生产线生产某产品,该产品的成本为每件40元, 市场调查统计:年销售量(万件)与销售价格x (元)(40SE80,且x为整数)之间的函数关系如图所示.(1)直接写出V与*之间的函数关系式;(2)如何确定售价才能使每年产品销售的利润W (万元)最人?(3)新鑫公司计划五年收回投资,如何确定售价(假定每年收回投资一样多)?26.某商品的进价是每件40元,原售价每件60元.进行不同程度的涨价后,统计了商品调价当天的售价和利润情况,以下是部分数据:(1)____________________________________ 当售价为每件60元时,当天售出件;(2)若对该商品原售价每件涨价x元(x为正整数)时当天售出该商品的利润为y元.①用所学过的函数知识直接写出y与x之间满足的函数表达式:________ .②如何定价才能使当天的销售利润不等于6200元?27.服装厂批发某种服装,每件成本为65元,规定不低于10件可以批发,其批发价y(元/件)与批发数量X (件)(X为正整数)之间所满足的函数关系如图所示.(1)求y与x之间所满足的函数关系式,并写出x的取值范闱;(2 )设服装厂所获利润为w (元),若10<x<50 (x为正整数),求批发该种服装多少件时,服装厂获得利润最大?最人利润是多少元?28.某种商品的进价为40元/件,以获利不低于25%的价格销售时,商品的销售单价y(元/件)与销售数量x (件)(x是正整数)之间的关系如下表:(1)_________________________________ 由题意知商品的最低销售单价是元,当销售单价不低于最低销售单价时,y是x的一次函数.求出y与x的函数关系式及x的取值范围;(2)在(1)的条件卞,当销售单价为多少元时,所获销售利润最人,最人利润是多少元?29.某店只销售某种进价为40元/kg的产品,已知该店按60元kg出售时,每天可售出100kg,后来经过市场调查发现,单价每降低1元,则每天的销售量可增加10kg.(1)_____________________________________ 若单价降低2元,则每天的销售量千克,每天的利润为________________________________ 元;若单价降低x元,则每天的销售量是_____ 千克,每天的利润为______ 元;(用含x的代数式表示)(2)若该店销售这种产品计划每天获利2240元,单价应降价多少元?(3)当单价降低多少元时,该店每天的利润最人,最大利润是多少元?30.某文具店出售一种文具,每个进价为2元,根据长期的销售情况发现:这种文具每个售价为3元时,每天能卖出500个,如果售价每上涨0.1元,其销售量将减少10个.物价局规定售价不能超过进价的240%.(1)如呆这种文具要实现每天800元的销售利润,每个文具的售价应是多少?(2)该如何定价,才能使这种文具每天的利润最人?最大利润是多少?31.某制衣企业直销部直销某类服装,价格加(元)与服装数量〃(件)之间的关系如图所示,现有甲乙两个服装店,计划在“五一”前到该直销部购买此类服装,两服装店所需服装总数为120件,乙服装店所需数量不超过50件,设甲服装店购买X件,如果甲、乙两服装店分别到该直销部购买服装,两服装店需付款总和为)'元.(1)求)'关于X的函数关系式,并写出X的取值范围.(2)若甲服装店购买不超过100件,请说明甲、乙两服装店联合购买比分别购买最多可节约多少钱?32.某企业接到生产一批手工艺品订单,须连续工作15天完成.产品不能叠压,需专门存放,第x天每件产品成本p (元)与时间x (天)之间的关系为p=0.5x+7 (l<x<5, x为整数).约定交付产品时每件20元.李师傅作了记录,发现每天生产的件数y (件)与时间X (天)满足关系:y ¥第常爰贽(1)写出李师傅第x天创造的利润W (不累计)与x之间的函数关系式.(只要结果, 并注明自变量的取值范怜I.)(2)李师傅第几天创造的利润最人?是多少元?(3)这次订单每名员工平均每天创造利润299元.企业奖励办法是:员工某天创造利润超过平均值,当天计算奖金30元.李师傅这次获得奖金共多少元?33.某手机专营店,第一期进了品牌手机与老年机各50部,售后统计,品牌手机的平均利润是160元/部,老年机的平均利润是20元/部,调研发现:①品牌手机每增加1部,品牌手机的平均利润减少2元/部:②老年机的平均利润始终不变.该店计划第二期进货品牌手机与老年机共100部,设品牌手机比第一期增加x部.(1)第二期品牌手机售完后的利润为8400元,那么品牌手机比第一期要增加多少部?(2) 当x 取何值时,第二期进的品牌手机与老年机售完后获得的总利润W 最大,最大 总利润是多少?34. 某公司经销一种水产品,在一段时间内,该水产品的销售量WCT •克)随销售单价 A-(元/下克)的变化情况如图所示.(1) 求用与X 的关系式;(2) 若该水产品每千克的成本为50元,则当销售单价定为多少元时,可获得最人利润?(3) 若物价部门规定这种水产品的销售单价不得高于90元/T •克,且公司想要在这段 时间内获得2250元的销倍利润,则销售单价应定为多少元?35・某种蔬菜的销售单价y 】与销售月份x 之间的关系如图1所示,成本旳与销售月份 x 之间的关系如图2所示(图1的图彖是线段,图2的图彖是抛物线)(!)已知6月份这种蔬菜的成本最低,此时出售每T •克的收益是多少元?(收益=售价 -成本)(2) 哪个月出售这种蔬菜,每千克的收益最人?简单说明理由.(3) 已知市场部销售该种蔬菜4、5两个月的总收益为22万元,且5月份的销售量比 (1) 设每天该商品的销售利润为y 元,销售单价为x 元(x>30),求y 与x 的函数解析式;(2) 求销售单价为多少元时,该商品每天的销售利润最人,最人利润是多少?37・数学兴趣小组几名同学到商场调查发现,一种纯牛奶进价为每箱40元,厂家要求 售价在40〜70元之间,若以每箱70元销售平均每天销售30箱,价格每降低1元平均每天可4月份的销售量多2万T •克,求4、5两个月的销售量分别是多少万千克?每天可销售100件;若销售单价每上涨1元,每天的销售就减少5件.多销售3箱・(1)现该商场要保证每天盈利900元,同时又要使顾客得到实惠,那么每箱售价为多少元?(2)若每天盈利为W元,请利用配方法直接写出每箱售价为多少元时,每天盈利最多. 38.某超市为了销售一种新型“吸水拖把”,对销售情况作了调查,结呆发现每月销售量y (只)与销售单价x (元)满足一次函数关系,所调查的部分数据如表:(已知每只进价为10元,销售单价为整数,每只利润=销售单价-进价)(1)求出y与X之间的函数表达式(2)该新型“吸水拖把”每月的总利润为⑷(元),求w关于x的函数表达式,并指出销售单价为多少元时利润最人,最大利润是多少元?(3)由于该新型“吸水拖把”市场需求量较人,厂家又进行了改装,此时超市老板发现进价提高了m元,当每月销售量与销售单价仍满足上述一次函数关系,随着销量的増人,最人利润能减少1750元,求m的值.39.某花店用3600元按批发价购买了一批花卉.若将批发价降低10%,则可以多购买该花卉20盆.市场调查反映,该花卉每盆售价25元时,每天可卖出25盆.若调整价格,每盆花卉每涨价1元,每天要少卖出1盆.(1)该花卉每盆批发价是多少元?(2)若每天所得的销售利润为200元时,且销量尽可能人,该花卉每盆售价是多少元?(3)为了让利给顾客,该花店决定每盆花卉涨价不超过5元,问该花卉一天最人的销售利润是多少元?40.某商店经营一种小商品,进价为3元,据市场调查,销售单价是13元时平均每天销售量是400件,而销售价每降低一元,平均每天就可以多售出100件.(【)假定每件商品降低x元,商店每天销售这种小商品的利润y元,请写出y与x之间的函数关系.(注:销售利润=销售收入-购进成本)(1【)当每件小商品降低多少元时,该商店每天能获利4800元?(III)每件小商品销售价为多少时,商店每天销售这种小商品的利润最人?最人利润是多少?41.某商场经营某种品牌的玩具,购进时的单价是40元,根据市场调查:在一段时间内,销售单价是50元时,销售量是600件,而销售单价每涨2元,就会少售出20件玩具.(1)不妨设该种品牌玩具的销售单价为x元(x>50),请你分别用x的代数式来表示销售量v件和销售该品牌玩具获得利润CD元,并把结果填写在表格中:(2)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于54元,且商场要完成不少于400件的销售任务,求商场销售该品牌玩具获得的最犬利润是多少元?42•如图,某工厂与人尸两地有铁路相连,该工厂从4地购买原材料,制成产品销往33地.己知每吨进价为600元(含加工费),加工过程中1吨原料可生产产品一吨,当预4计销售产品不超过120吨时,每吨售价1600元,超过120吨,每增加1吨,销售所有产品的价格降低2元•设该工厂有加吨产品销往B地.(利润=售价一进价一运费)/歹铁路40千米”铁路50千米、_累工厂铁路运价2每吨每千米L5元.(1)用加的代数式表示购买的原材料有—吨.(2)从4地购买原材料并加工制成产品销往B地后,若总运费为9600元,求加的值, 并直接写出这批产品全部销售后的总利润.(3)现工厂销往B地的产品至少120吨,且每吨售价不得低于1440元,记销完产品的总利润为元,求⑷关于加的函数表达式,及最大总利润.43.水产经销商以10元/T•克的价格收购了1000千克的骗鱼闱养在湖塘中(假设围养期每条輪鱼的重量保持不变),据市场推测,经过湖塘鬧养后的骗鱼的市场价格每I判养一天能上涨1元/千克,在围养过程中(最多围养20天),平均每围养一天有10 T•克的骗鱼会缺氧浮水。

初中数学一次函数的应用题型分类汇编——销售最大利润问题(附答案详解)

初中数学一次函数的应用题型分类汇编——销售最大利润问题(附答案详解)

初中数学一次函数的应用题型分类汇编——销售最大利润问题(附答案详解)1.随着“中国诗词大会”节目的热播,《唐诗宋词精选》一书也随之热销.如果一次性购买10本以上,超过10本的那部分书的价格将打折,并依此得到付款金额y(单位:元)与一次性购买该书的数量x(单位:本)之间的函数关系如图所示,则下列结论错误的是()A.一次性购买数量不超过10本时,销售价格为20元/本B.a=520C.一次性购买10本以上时,超过10本的那部分书的价格打八折D.一次性购买20本比分两次购买且每次购买10本少花80元2.小卖部从批发市场购进一批李子,在销售了部分李子之后,余下的每千克降价3元,直至全部售完.销售金额(元)与李子销售量(千克)之间的关系如图所示.若销售这批李子一共赢利220元,那么这批李子的进价是_____元.3.某商店卖水果,数量x(千克)与售价y(元)之间的关系如下表,(y是x的一次函数): x/(千克) 0.51 1.52···y/(元) 1.60.1+ 6.40.1+···+ 3.20.1+ 4.80.1x=千克时,售价_______________元当74.某蔬菜公司收到某种绿色蔬菜20吨,准备一部分进行精加工,其余部分进行粗加工,加工后销售获利的情况如下表:销售方式粗加工后销售精加工后销售每吨获利(元)1000 2000设该公司精加工的蔬菜为x吨,加工后全部销售获得的利润为y元.(1)求y与x间的函数表达式;(2)若该公司加工后全部销售获得的利润为28000元,求该公司精加工了多少吨蔬菜?5.某校计划组织1920名师生研学,经过研究,决定租用当地租车公司一共40辆A、B 两种型号客车作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量和租金信息.(注:载客量指的是每辆客最多可载该校师生的人数)设学校租用A型号客车x辆,租车总费用为y元.(1)求y与x的函数关系式,并求出x的取值范围;(2)若要使租车总费用不超过25200元,一共有几种租车方案?哪种租车方案最省钱,并求此方案的租车费用.6.某鱼塘中养了某种鱼5000条,为了估计该鱼塘中该种鱼的总质量,从鱼塘中捕捞了3次,取得的数据如下:数量/条平均每条鱼的质量/kg第1次捕捞20 1.6第2次捕捞15 2.0第3次捕捞15 1.8(1)求样本中平均每条鱼的质量;(2)估计鱼塘中该种鱼的总质量;(3)设该种鱼每千克的售价为14元,求出售该种鱼的收入y(元)与出售该种鱼的质量x(kg)之间的函数关系,并估计自变量x的取值范围.7.某商人进货时,进价已按原价a扣去了25%,他打算对此货订一新价销售,以便按新价让利20%销售后,还可获得售价的25%的利润.试写出此商人经销这种货物时按新价让利总额与货物售出件数之间的函数关系式.8.某县盛产苹果,春节期问,一外地经销商安排15辆汽年装运A、B、C三种不同品质的苹果120吨到外地销售,按计划15辆汽年都要装满且每辆汽车只能装同一种品质的苹果,每辆汽车的运载量及每吨苹果的获利如下表:苹果品种A B C 每辆汽车运载数9 8 7 每吨获利(元)600 1000 800(1)设装运A 种苹果的车辆数为x 辆,装运B 种苹果车辆数为y 辆,据上表提供的信息,求出y 与x 之间的函数关系式;(2)为了减少苹果的积压,县林业局制定出台了促进销售的优惠政策,在外地经销商原有获利不变情况下,政府对外地经销商按每吨50元的标准实行运费补贴若A 种苹果的车辆数x 满足36x ≤≤.若要使该外地经销商所获利W (元)最大,应采用哪种车辆安排方案并求出最大利润W (元)的最大值.9.某种蔬菜的销售单价y 1与销售月份x 之间的关系如图(1)所示,成本y 2与销售月份之间的关系如图(2)所示(图(1)的图象是线段图(2)的图象是抛物线)(1)分别求出y 1、y 2的函数关系式(不写自变量取值范围);(2)通过计算说明:哪个月出售这种蔬菜,每千克的收益最大?10.某养殖户长期承包一口鱼糖养鱼,每年养殖一批,从鱼苗放入养到成品需要300天,鱼糖承包费用每年5000元,他记录了前几年平均每天投入饲料量(单位:kg )与年底成品鱼(达到一定规格可以销售)产量之间的关系如下表:平均每天投入饲料(kg )2025 30 40 50 60 70 80 成品鱼产量(kg )2800 3000 3200 3600 3900 4000 3900 3600(1)请用适当的函数模型描述平均每天投入饲料数量与成品鱼产量之间的关系;(2)如果今年的饲料价格为1.6元/kg ,成品鱼销售价为20元/kg ,鱼苗费用4000元,假设养成的成品鱼全部都能按此价格卖出.请建立适当的函数模型分析:平均每天投入饲料多少千克时,该养殖户当年在该鱼糖养殖这种鱼获得的利润最多,最多利润是多少元?(利润=销售收入﹣饲料成本﹣鱼糖承包费﹣鱼苗成本).11.我市某公司用800万元购得某种产品的生产技术后,进一步投入资金1550万元购买生产设备,进行该产品的生产加工,已知生产这种产品每件还需成本费40元.经过市场调研发现:该产品的销售单价需要定在200元到300元之间较为合理.销售单价x (元)与年销售量y (万件)之间的变化可近似的看作是如下表所反应的一次函数: 销售单价x (元) 200 230250 年销售量y (万件) 1411 9(1)请求出y 与x 之间的函数关系式,并直接写出自变量x 的取值范围;(2)请说明投资的第一年,该公司是盈利还是亏损?若盈利,最大利润是多少?若亏损,最少亏损是多少?12.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量y (件)与销售单价x (元)之间存在一次函数关系,如图所示.(1)求y 与x 之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围. 13.某县积极响应市政府加大产业扶贫力度的号召,决定成立草莓产销合作社,负责扶贫对象户种植草莓的技术指导和统一销售,所获利润年底分红.经市场调研发现,草莓销售单价y (万元)与产量x (吨)之间的关系如图所示()0100x ≤≤.已知草莓的产销投入总成本p (万元)与产量x x (吨)之间满足1p x =+.(1)直接写出草莓销售单价y (万元)与产量x (吨)之间的函数关系式;(2)求该合作社所获利润w (万元)与产量x (吨)之间的函数关系式;(3)为提高农民种植草莓的积极性,合作社决定按0.3万元/吨的标准奖励扶贫对象种植户,为确保合作社所获利润'w (万元)不低于55万元,产量至少要达到多少吨?14.某超市计划购进甲、乙两种商品,两种商品的进价、售价如下表: 商品甲 乙 进价(元/件)60x + x 售价(元/件)200 100若用360元购进甲种商品的件数与用180元购进乙种商品的件数相同.(1)求甲、乙两种商品的进价是多少元?(2)若超市销售甲、乙两种商品共50件,其中销售甲种商品为a 件(30a ≥),设销售完50件甲、乙两种商品的总利润为w 元,求w 与a 之间的函数关系式,并求出w 的最小值.15.为加快“智慧校园”建设,某市准备为试点学校采购一批,A B 两种型号的一体机,经过市场调查发现,每套B 型一体机的价格比每套A 型一体机的价格多0.6万元,且用960万元恰好能购买500套A 型一体机和200套B 型一体机.(1)列二元一次方程组解决问题:求每套A 型和B 型一体机的价格各是多少万元? (2)由于需要,决定再次采购A 型和B 型一体机共1100套,此时每套A 型体机的价格比原来上涨25%,每套B 型一体机的价格不变.设再次采购A 型一体机()600m m ≤套,那么该市至少还需要投入多少万元?16.为落实“绿水青山就是金山银山”的发展理念,某市政部门招标一工程队负责在山脚下修建一座水库的土方施工任务.该工程队有,A B 两种型号的挖掘机,已知3台A 型和5台B 型挖掘机同时施工一小时挖土165立方米;4台A 型和7台B 型挖掘机同时施工一小时挖土225立方米.每台A 型挖掘机一小时的施工费用为300元,每台B 型挖掘机一小时的施工费用为180元.(1)分别求每台A 型, B 型挖掘机一小时挖土多少立方米?(2)若不同数量的A 型和B 型挖掘机共12台同时施工4小时,至少完成1080立方米的挖土量,且总费用不超过12960元.问施工时有哪几种调配方案,并指出哪种调配方案的施工费用最低,最低费用是多少元?17.为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉.经市场调查,甲种花卉的种植费用y (元)与种植面积()2x m之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当0300x ≤≤和300x >时,y 与x 的函数关系式;(2)广场上甲、乙两种花卉的种植面积共21200m ,若甲种花卉的种植面积不少于2200m ,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植费用最少?最少总费用为多少元?18.某市扶贫办在精准扶贫工作中,组织30辆汽车装运花椒、核桃、甘蓝向外地销售.按计划30辆车都要装运,每辆汽车只能装运同一种产品,且必须装满,根据下表提供的信息,解答以下问题: 产品名称核桃 花椒 甘蓝 每辆汽车运载量(吨)10 6 4 每吨土特产利润(万元)0.7 0.8 0.5若装运核桃的汽车为x 辆,装运甘蓝的车辆数是装运核桃车辆数的2倍多1,假设30辆车装运的三种产品的总利润为y 万元.(1)求y 与x 之间的函数关系式;(2)若装花椒的汽车不超过8辆,求总利润最大时,装运各种产品的车辆数及总利润最大值.19.某游泳馆每年夏季推出两种游泳付费方式,方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元.设小明计划今年夏季游泳次数为x (x 为正整数).(I )根据题意,填写下表:(Ⅱ)若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多?(Ⅲ)当x>20时,小明选择哪种付费方式更合算?并说明理由.20.为迎接“世界华人炎帝故里寻根节”,某工厂接到一批纪念品生产订单,按要求在15天内完成,约定这批纪念品的出厂价为每件20元,设第x 天(1≤x≤15,且x 为整数)每件产品的成本是p 元,p 与x 之间符合一次函数关系,部分数据如表:任务完成后,统计发现工人李师傅第x 天生产的产品件数y (件)与x (天)满足如下关系:y=()()220110401015x x x x x ⎧+≤<⎪⎨≤≤⎪⎩,且为整数,且为整数, 设李师傅第x 天创造的产品利润为W 元.(1)直接写出p 与x ,W 与x 之间的函数关系式,并注明自变量x 的取值范围: (2)求李师傅第几天创造的利润最大?最大利润是多少元?(3)任务完成后.统计发现平均每个工人每天创造的利润为299元.工厂制定如下奖励制度:如果一个工人某天创造的利润超过该平均值,则该工人当天可获得20元奖金.请计算李师傅共可获得多少元奖金?21.某水果商计划购进甲、乙两种水果进行销售,经了解,甲种水果的进价比乙种水果的进价每千克少4元,且用800元购进甲种水果的数量与用1000元购进乙种水果的数量相同.(1)求甲、乙两种水果的单价分别是多少元?(2)该水果商根据该水果店平常的销售情况确定,购进两种水果共200千克,其中甲种水果的数量不超过乙种水果数量的3倍,且购买资金不超过3420元,购回后,水果商决定甲种水果的销售价定为每千克20元,乙种水果的销售价定为每千克25元,则水果商应如何进货,才能获得最大利润,最大利润是多少?22.某商场计划销售甲、乙两种产品共200件,每销售1件甲产品可获得利润0.4万元, 每销售1件乙产品可获得利润0.5万元,设该商场销售了甲产品x(件),销售甲、乙两种产品获得的总利润为y(万元).(1)求y与x之间的函数表达式;(2)若每件甲产品成本为0.6万元,每件乙产品成本为0.8万元,受商场资金影响,该商场能提供的进货资金至多为150万元,求出该商场销售甲、乙两种产品各为多少件时,能获得最大利润.23.为建设最美恩施,一旅游投资公司拟定在某景区用茶花和月季打造一片人工花海,经市场调查,购买3株茶花与4株月季的费用相同,购买5株茶花与4株月季共需160元. (1)求茶花和月季的销售单价;(2)该景区至少需要茶花月季共2200株,要求茶花比月季多400株,但订购两种花的总费用不超过50000元,该旅游投资公司怎样购买所需总费用最低,最低费用是多少. 24.某校为奖励学习之星,准备在某商店购买A、B两种文具作为奖品,已知一件A种文具的价格比一件B种文具的价格便宜5元,且用600元买A种文具的件数是用400元买B种文具的件数的2倍.(1)求一件A种文具的价格;(2)根据需要,该校准备在该商店购买A、B两种文具共150件.①求购买A、B两种文具所需经费W与购买A种文具的件数a之间的函数关系式;②若购买A种文具的件数不多于B种文具件数的2倍,且计划经费不超过2750元,求有几种购买方案,并找出经费最少的方案,及最少需要多少元?25.某商品的进价为每件10元,现在的售价为每件15元,每周可卖出100件,市场调查反映:如果每件的售价每涨1元(售价每件不能高于20元),那么每周少卖10件.设每件涨价x元(x为非负整数),每周的销量为y件.(1)求y与x的函数关系式及自变量x的取值范围;(2)如果经营该商品每周的利润是560元,求每件商品的售价是多少元?26.已知某服装厂现有A 种布料70米,B 种布料52米,现计划用这两种布料生产M 、N 两种型号的时装共80套.已知做一套M 型号的时装需用A 种布料1.1米,B 种布料0.4米,可获利50元;做一套N 型号的时装需用A 种布料0.6米,B 种布料0.9米,可获利45元.设生产M 型号的时装套数为x ,用这批布料生产两种型号的时装所获得的总利润为y 元.(1)求y (元)与x (套)的函数关系式.(2)有几种生产方案?(3)如何生产使该厂所获利润最大?最大利润是多?27.某商店分两次购进A 、B 两种商品进行销售,每次购进同一种商品的进价相同,具体情况如下表所示:(1)求A 、B 两种商品每件的进价分别是多少元?(2)商店计划用5300元的资金进行第三次进货,共进A 、B 两种商品100件,其中要求B 商品的数量不少于A 商品的数量,有几种进货方案?(3)综合考虑(2)的情况,商店计划对第三次购进的100件商品全部销售,A 商品售价为30元/件,每销售一件A 商品需捐款a 元(1≤a≤10)给希望工程,B 商品售价为100元/件,每销售一件B 商品需捐款b 元给希望工程,a+b =14.直接写出当b = 时,销售利润最大,最大利润为 元.28.为响应市政府“创建国家森林城市”的号召,某小区计划购进A 、B 两种树苗共17棵,已知A 种树苗每棵80元,B 种树苗每棵60元.(1)若购进A 、B 两种树苗刚好用去1220元,问购进A 、B 两种树苗各多少棵? (2)若购买B 种树苗的数量少于A 种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.29.某生产商存有1200千克A 产品,生产成本为150元/千克,售价为400元千克.因市场变化,准备低价一次性处理掉部分存货,所得货款全部用来生产B 产品,B 产品售价为200元/千克.经市场调研发现,A 产品存货的处理价格y (元/千克)与处理数量x (千克)满足一次函数关系(01000x ),且得到表中数据. x (千克)y (元/千克) 200 350400 300(1)请求出处理价格y (元千克)与处理数量x (千克)之间的函数关系;(2)若B 产品生产成本为100元千克,A 产品处理数量为多少千克时,生产B 产品数量最多,最多是多少?(3)由于改进技术,B 产品的生产成本降低到了a 元/千克,设全部产品全部售出,所得总利润为W (元),若5001000x <≤时,满足W 随x 的增大而减小,求a 的取值范围.30.(2017黑龙江省龙东地区,第27题,10分)由于雾霾天气频发,市场上防护口罩出现热销.某药店准备购进一批口罩,已知1个A 型口罩和3个B 型口罩共需26元;3个A 型口罩和2个B 型口罩共需29元.(1)求一个A 型口罩和一个B 型口罩的售价各是多少元?(2)药店准备购进这两种型号的口罩共50个,其中A 型口罩数量不少于35个,且不多于B 型口罩的3倍,有哪几种购买方案,哪种方案最省钱?31.草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y (千克)与销售单价x (元)符合一次函数关系,如图是y 与x 的函数关系图象.(1)求y 与x 的函数关系式;(2)直接写出自变量x 的取值范围.32.为节能减排,某公交公司计划购买A 型和B 型两种环保节能公交车共10辆,若购买A 型公交车2辆,B 型公交车3辆,共需650万元;若购买A 型公交车3辆,B 型公交车2辆,共需600万元.(1)求购买A 型和B 型公交车每辆各需多少万元?(2)预计在该线路上A 型和B 型公交车每辆年均载客量分别为80万人次和100万人次.若该公司购买A 型和B 型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于830万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?33.为加强校园文化建设,某校准备打造校园文化墙,需用甲、乙两种石材经市场调查,甲种石材的费用y (元)与使用面积x ()2m 间的函数关系如图所示,乙种石材的价格为每平方米50元.(1)求y 与x 间的函数解析式;(2)若校园文化墙总面积共2600m ,其中使用甲石材x 2m ,设购买两种石材的总费用为w 元,请直接写出w 与x 间的函数解析式;(3)在(2)的前提下,若甲种石材使用面积多于2300m ,且不超过乙种石材面积的2倍,那么应该怎样分配甲、乙两种石材的面积才能使总费用最少?最少总费用为多少元?34.某水果经销商到水果种植基地采购葡萄,经销商一次性采购葡萄的采购单价y (元/千克)与采购量x (千克)之间的函数关系图象如图中折线AB BC CD →→所示(不包括端点A ).(1)当5001000x <≤时,写出y 与x 之间的函数关系式;(2)葡萄的种植成本为8元/千克,某经销商一次性采购葡萄的采购量不超过1000千克,当采购量是多少时,水果种植基地获利最大,最大利润是多少元?35.某大型水果超市销售无锡水蜜桃,根据前段时间的销售经验,每天的售价x (元/箱)与销售量y(箱)有如表关系:每箱售价x(元) 68 67 66 65 (40)每天销量y(箱) 40 45 50 55 (180)已知y与x之间的函数关系是一次函数.(1)求y与x的函数解析式;(2)水蜜桃的进价是40元/箱,若该超市每天销售水蜜桃盈利1600元,要使顾客获得实惠,每箱售价是多少元?(3)七月份连续阴雨,销售量减少,超市决定采取降价销售,所以从7月17号开始水蜜桃销售价格在(2)的条件下,下降了m%,同时水蜜桃的进货成本下降了10%,销售量也因此比原来每天获得1600元盈利时上涨了2m%(m<100),7月份(按31天计算)降价销售后的水蜜桃销售总盈利比7月份降价销售前的销售总盈利少7120元,求m的值.36.佳佳商场卖某种衣服每件的成本为80元,据销售人员调查发现,每月该衣服的销售量y(单位:件)与销售单价x(单位:元/件)之间存在如图中线段AB所示的规律:(1)求y与x之间的函数关系式,并写出x的取值范围;(2)若某月该商场销售这种衣服获得利润为1350元,求该月这种衣服的销售单价为每件多少元?37.瑞安市曹村镇“八百年灯会”成为温州“申遗”的宝贵项目.某公司生产了一种纪念花灯,每件纪念花灯制造成本为18元.设销售单价x(元),每日销售量y(件)每日的利润w(元).在试销过程中,每日销售量y(件)、每日的利润w(元)与销售单价x (元)之间存在一定的关系,其几组对应量如下表所示:(元)19 20 21 30(1)根据表中数据的规律,分别写出毎日销售量y (件),每日的利润w (元)关于销售单价x (元)之间的函数表达式.(利润=(销售单价﹣成本单价)×销售件数). (2)当销售单价为多少元时,公司每日能够获得最大利润?最大利润是多少? (3)根据物价局规定,这种纪念品的销售单价不得高于32元,如果公司要获得每日不低于350元的利润,那么制造这种纪念花灯每日的最低制造成本需要多少元? 38.某文具店计划购进A ,B 两种笔记本共60本,每本A 种笔记本比B 种笔记本的利润高3元,销售2本A 种笔记本与3本B 种笔记本所得利润相同,其中A 种笔记本的进货量不超过进货总量的23,B 种笔记本的进货量不少于30本. (1)每本A 种笔记本与B 种笔记本的利润各为多少元?(2)设购进B 种笔记本m 本,销售总利润为W 元,文具店应如何安排进货才能使得W 最大?(3)实际进货时,B 种笔记本进价下降n (35n ≤≤)元.若两种笔记本售价不变,请设计出笔记本销售总利润最大的进货方案.39.某公司欲将m 件产品全部运往甲,乙,丙三地销售(每地均有产品销售),运费分别为40元/件,24元/件,7元/件,且要求运往乙地的件数是运往甲地件数的3倍,设安排x (x 为正整数)件产品运往甲地. (1)根据信息填表:(2)若总运费为6300元,求m 与x 的函数关系式并求出m 的最小值.40.为了“还城市一片蓝天”,市政府决定大力发展公共交通,鼓励市民乘公交车或地铁出行.设每天公交车和地铁的运营收入为y 百万元,客流量为x 百万人,以(x ,y )为坐标的点都在左图中对应的射线上.其中,运营收入=票价收入﹣运营成本.交通部门经过调研,采取了如图所示的调整方案.(1)在左图中,代表公交车运营情况的(x,y)对应的点在射线上,公交车的日运营成本是百万元,当客流量x满足时,公交车的运营收入超过4百万元;(2)求调整后地铁每天的运营收入和客流量之间的函数关系,不要求写自变量的取值范围.参考答案1.D【解析】【分析】A、根据单价=总价÷数量,即可求出一次性购买数量不超过10本时,销售单价,A选项正确;C、根据单价=总价÷数量结合前10本花费200元即可求出超过10本的那部分书的单价,用其÷前十本的单价即可得出C正确;B、根据总价=200+超过10本的那部分书的数量×16即可求出a值,B正确;D,求出一次性购买20本书的总价,将其与400相减即可得出D错误.此题得解.【详解】解:A、∵200÷10=20(元/本),∴一次性购买数量不超过10本时,销售价格为20元/本,A选项正确;C、∵(840﹣200)÷(50﹣10)=16(元/本),16÷20=0.8,∴一次性购买10本以上时,超过10本的那部分书的价格打八折,C选项正确;B、∵200+16×(30﹣10)=520(元),∴a=520,B选项正确;D、∵200×2﹣200﹣16×(20﹣10)=40(元),∴一次性购买20本比分两次购买且每次购买10本少花40元,D选项错误.故选D.【点睛】考查了一次函数的应用,根据一次函数图象结合数量关系逐一分析四个选项的正误是解题的关键.2.10【解析】【分析】观察函数图象,利用单价=总价÷数量及数量=总价÷单价,可分别求出李子的原价及降价后销售的数量,设这批李子的进价是x元/千克,根据利润=销售收入−成本,即可得出关于x的一元一次方程,解之即可得出结论.【详解】李子的原价为600÷40=15(元/千克),降价后销售的数量为(720﹣600)÷(15﹣3)=10(千克). 设这批李子的进价是x 元/千克, 依题意,得:720﹣(40+10)x =220, 解得:x =10. 故答案为:10. 【点睛】本题考查了一元一次方程的应用以及一次函数的应用,找准等量关系,正确列出一元一次方程是解题的关键. 3.22.5 【解析】 【分析】根据表格可直接得到数量x (千克)与售价y (元)之间的关系式,然后把7x =代入计算,即可得到答案. 【详解】解:根据表格,设一次函数为:y kx b =+,则1.60.1=0.5+b3.20.1k k b+⎧⎨+=+⎩, 解得: 3.20.1k b =⎧⎨=⎩,∴ 3.20.1y x =+; 把7x =代入,得:3.270.1=22.5y =⨯+;∴当7x =千克时,售价为22.5元. 【点睛】本题考查了一次函数的性质,求一次函数的解析式,解题的关键是熟练掌握待定系数法求一次函数的解析式.4.(1)y 100020000x =+;(2)该公司精加工了8吨蔬菜. 【解析】 【分析】。

(完整word版)二元一次方程利润问题

(完整word版)二元一次方程利润问题

二元一次方程利润应用题解答题1、基本知识点例1:单价为100的玩具赛车在儿童节一天销售500个,请问童节赛车的总销售价是多少?【解题关键点】总售价=单价×销售量2、基本知识点例2:现在有100台冰箱,每台售价是1500元,这样每一台冰箱可获得利润25%,问可获得的总利润是多少?【解题关键点】总利润=单件利润×销售量3、基本知识点例3:张老师向商店订购某种商品,共买60件,定价100元/件,张老师对经理说:“如果减价,每件减价1元,就多买3件.”经理一算,如减价4元,由于张老师多买,仍可获得与原来一样多总利润,问这种商品的成本多少元?【解题关键点】总利润=总售价—总成本4、进价为100元,售价为300元的MP3,出售后的利润率是多少?【解题关键点】利润率=利润/成本=(售价-成本)/成本=售价/成本—15、某商店购进360个玻璃制品,运输时损坏了40个,剩下的按进价117%出售,问此商品可盈利百分之几?【解题关键点】求利润率6、某商品进价50元,盈利25%,则出售该商品的利润和售价各为多少?6、一商店把某商品按标价的九折出售,仍可获得20%的利润.若该商品的进价是每件30元,问该商品的标价是多少元?【解题关键点】售价=成本×(1+利润率), 成本=售价/ (1+利润率)设该商品的标价是x7、混合商品的售价: 有A、B两种商品,如果A的利润增长20%,B的利润减少10%,那么A、B两种商品的利润就相同了。

问原来A商品的利润是B商品利润的百分之几?8、总利润=单件利润×销售量+单件利润×销售量某商店为了处理积压商品,实行亏本销售,已知购进甲乙两种商品原价之和共为880,甲种商品按原价的八折出售,乙种商品按原价的七五折出售,结果两种商品共亏196元,求甲乙两种商品的原价分别是多少?9、甲、乙两种商品,如果购买甲3件、乙7件共需27元,如果购买甲商品40件、乙商品50件,则可以按批发价计算,共需付189元,已知甲商品每件批发价比零售价低0。

人教版七年级下册第八章二元一次方程实际应用-利润问题(有简答)

人教版七年级下册第八章二元一次方程实际应用-利润问题(有简答)

人教版七年级下册第八章二元一次方程实际应用-利润问题1.某电器超市销售每台进价分别为2000元、1700元的A、B两种型号的空调,如表是近两周的销售情况:(进价、售价均保持不变,利润=销售总收入进货成本)(1)求A、B两种型号的空调的销售单价;(2)若超市准备用不多于54000元的金额再采购这两种型号的空调共30台,求A种型号的空调最多能采购多少台?答案:(1)A、B两种型号的空调的销售单价分别为2500元,2100元;(2)A种型号的空调最多能采购10台.2.某商场第1次用39万元购进A、B两种商品,销售完后获得利润6万元,它们的进价和售价如下表:(总利润=单件利润×销售量)、1)该商场第1次购进A、B两种商品各多少件?的件数是第1次的2倍,A商品按原价销售,而B商品打折销售,若两种商品销售完毕,要使得第2次经营活动获得利润等于54000元,则B种商品是打几折销售的?答案:(1)商场第1次购进A种商品200件,购进A种商品150件;(2)9.3.某手机经销商计划同时购进一批甲、乙两种型号的手机,若购进2部甲型号手机和1部乙型号手机,共需要资金2800元;若购进3部甲型号手机和2部乙型号手机,共需要资金4600元(1) 求甲、乙型号手机每部进价为多少元?(2) 该店计划购进甲、乙两种型号的手机销售,预计用不多于1.8万元且不少于1.74万元的资金购进这两部手机共20台,请问有几种进货方案?请写出进货方案(3) 售出一部甲种型号手机,利润率为40%,乙型号手机的售价为1280元、为了促销,公司决定每售出一台乙型号手机,返还顾客现金m元,而甲型号手机售价不变,要使(2)中所有方案获利相同,求m的值答案:(1) 甲种型号手机每部进价为1000元,乙种型号手机每部进价为800元、(2) 共有四种方案、(3) 当m、80时,w始终等于8000,取值与a无关4.喜迎新年,某社区超市第一次用5000元购进甲、乙两种商品,其中甲商品件数是品的件数的2倍,甲、乙两种商品的进价和售价如下表:(1)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(2)能市第二次以第一次的进价又购进甲、乙两种商品,其中购进乙种商品的件数不变,购进甲种商品的件数是第一次购进甲种商品件数的2倍;乙商品按原价销售,甲商品打折销售,第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多600元,求第二次甲种商品按原价打几折销售答案:(1)4000元;(2)8折.5.某电器商场销售A,B两种型号计算器,两种计算器的进货价格分别为每台30元,40元. 商场销售5台A型号和1台B型号计算器,可获利润76元;销售6台A 型号和3台B型号计算器,可获利120元.(1)求商场销售A,B两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)(2)商场准备用不多于2500元的资金购进A,B两种型号计算器共70台,问最少需要购进A型号的计算器多少台?答案:A型42元,B型56元;30台.6.在元旦期间,某商场计划购进甲、乙两种商品.(1)已知甲、乙两种商品的进价分别为30元,70元,该商场购进甲、乙两种商品共50件需要2300元,则该商场购进甲、乙两种商品各多少件?(2)该商场共投入9500元资金购进这两种商品若干件,这两种商品的进价和售价如表所示:若全部销售完后可获利5000元(利润=(售价﹣进价)×销量),则该商场购进甲、乙两种商品各多少件?答案:(1)商场购进甲商品30件,乙商品20件;(2)商场购进甲商品130件,乙商品80件7.某通讯器材商场,计划从一厂家购进若干部新型手机以满足市场需求,已知该厂家生产三种不同型号的手机,出厂价分别是甲种型号手机1800元/部,乙种型号手机600元/部,丙种型号手机1200元/部.商场在经销中,甲种型号手机可赚200元/部,乙种型号手机可赚100元/部,丙种型号手机可赚120元/部.(1)若商场用6万元同时购进两种不同型号的手机共40部,并恰好将钱用完,请你通过计算分析进货方案;(2)在(1)的条件下,求盈利最多的进货方案;(3)若该商场同时购进三种手机,且购进甲,丙两种手机用了3.9万元,预计可获得5000元利润,问这次经销商共有几种可能的方案?最低成本(进货额)多少元?答案:(1)有两种购买方案:甲种型号手机30部,乙种手机10部;或甲种型号手机20部,丙种手机20部;(2)购买甲种型号手机30部,乙种手机10部所获盈利较大;(3)这次经销商共有2种可能的方案,最低成本(进货额)43800元.8.丽江布农铃,是一种极富特色的、形状同马帮的马铃的挂件.这种马帮文化商品,是纯手工制作.精致小巧的青铜铃铛下系有一块圆形木块,手绘着各种各样的画.某商店需要购进甲、乙两种布农铃共300件,一件甲种布农铃进价为340元,售价为400元,一件乙种布农铃进价为380元,售价为460元.(注:利润=售价-进价)(1)若商店计划销售完这批布农铃后能获利21600元,问甲、乙两种布农铃应分别购进多少件?(2)若商店计划投入资金110000元,则能购进甲种布农铃多少件?答案:(1)购进甲种布农铃120件,乙种布农铃180件;(2)购进甲种布农铃100件.9.某商场准备购进两种型号的摩托车共25辆,预计投资10万元.现有甲、乙、丙三种摩托车,甲种每辆4200元,可获利400元;乙种每辆3700元,可获利350元;丙种每辆3200元,可获利320元,且10万元资本全部用完.、1)请你帮助该商场设计进货方案;、2)从销售利润上考虑,应选择哪种方案?答案:(1)进货方案有两种:①甲种进15辆,乙种进10辆;②甲种进20辆,乙种进5辆;(2)从销售利润上看要选择方案2.10.某体育文化用品商店购进篮球和排球共30个,进价和售价如下表,若全部销售完后共可获利润1680元.、1)请利用二元一次方程组求购进篮球和排球各多少个?、2)“双11”快到了,这个体育文化用品商店也准备搞促销活动,计划篮球9折销售,排球8折销售,则销售8个篮球的利润与销售几个排球的利润相等?答案:(1)购进篮球12个,购进排球18个、、2、销售8个篮球的利润与销售10个排球的利润相等.11.某电器商场销售A、B两种型号计算器,两种计算器的进货价格分别为每台30元,40元,商场销售5台A型号和1台B型号计算器,可获利润76元;销售6台A 型号和3台B型号计算器,可获利润120元.求商场销售A、B两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)答案:A种型号计算器的销售价格是42元,B种型号计算器的销售价格是56元.12.某商场准备购进两种摩托车共25辆,预计投资10万元,现有甲、乙、丙三种摩托车供选购,甲种每辆4200元,可获利400元;乙种每辆3700元,可获利350元;丙种每辆3200元,可获利200元.要求10万元资金全部用完.(1)请你帮助该商场设计进货方案;(2)从销售利润上考虑,应选择哪种方案?答案:(1)进货方案有两种方案: 第一种甲种摩托车为15辆,乙种摩托车为10辆,第二种甲种摩托车为20辆,丙种摩托车为5辆;(2)从销售利润上考虑,应选择第一种方案.13.(1)机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?(2)某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行粗加工,每天可加工16吨,如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行,受季节等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工.方案二:尽可能多地对蔬菜进行精加工,没来得及进行加工的蔬菜,在市场上直接销售.方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.你认为哪种方案获利最多?为什么?答案:(1)需安排25名工人加工大齿轮、安排60名工人加工小齿轮;(2)该公司可以。

七年级下册第八章实际问题与二元一次方程组8.3利润问题(有简答)

七年级下册第八章实际问题与二元一次方程组8.3利润问题(有简答)

人教版七年级下册第八章二元一次方程实际应用-利润问题1.某电器超市销售每台进价分别为2000元、1700元的A、B两种型号的空调,如表是近两周的销售情况:(进价、售价均保持不变,利润=销售总收入进货成本)(1)求A、B两种型号的空调的销售单价;(2)若超市准备用不多于54000元的金额再采购这两种型号的空调共30台,求A种型号的空调最多能采购多少台?答案:(1)A、B两种型号的空调的销售单价分别为2500元,2100元;(2)A种型号的空调最多能采购10台.2.某商场第1次用39万元购进A、B两种商品,销售完后获得利润6万元,它们的进价和售价如下表:(总利润=单件利润×销售量)、1)该商场第1次购进A、B两种商品各多少件?、2)商场第2次以原价购进A、B两种商品,购进A商品的件数不变,而购进B商品的件数是第1次的2倍,A商品按原价销售,而B商品打折销售,若两种商品销售完毕,要使得第2次经营活动获得利润等于54000元,则B种商品是打几折销售的?答案:(1)商场第1次购进A种商品200件,购进A种商品150件;(2)9.3.某手机经销商计划同时购进一批甲、乙两种型号的手机,若购进2部甲型号手机和1部乙型号手机,共需要资金2800元;若购进3部甲型号手机和2部乙型号手机,共需要资金4600元(1) 求甲、乙型号手机每部进价为多少元?(2) 该店计划购进甲、乙两种型号的手机销售,预计用不多于1.8万元且不少于1.74万元的资金购进这两部手机共20台,请问有几种进货方案?请写出进货方案(3) 售出一部甲种型号手机,利润率为40%,乙型号手机的售价为1280元、为了促销,公司决定每售出一台乙型号手机,返还顾客现金m元,而甲型号手机售价不变,要使(2)中所有方案获利相同,求m的值答案:(1) 甲种型号手机每部进价为1000元,乙种型号手机每部进价为800元、(2) 共有四种方案、(3) 当m、80时,w始终等于8000,取值与a无关4.喜迎新年,某社区超市第一次用5000元购进甲、乙两种商品,其中甲商品件数是品的件数的2倍,甲、乙两种商品的进价和售价如下表:(1)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(2)能市第二次以第一次的进价又购进甲、乙两种商品,其中购进乙种商品的件数不变,购进甲种商品的件数是第一次购进甲种商品件数的2倍;乙商品按原价销售,甲商品打折销售,第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多600元,求第二次甲种商品按原价打几折销售?答案:(1)4000元;(2)8折.5.某电器商场销售A,B两种型号计算器,两种计算器的进货价格分别为每台30元,40元. 商场销售5台A型号和1台B型号计算器,可获利润76元;销售6台A 型号和3台B型号计算器,可获利120元.(1)求商场销售A,B两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)(2)商场准备用不多于2500元的资金购进A,B两种型号计算器共70台,问最少需要购进A型号的计算器多少台?答案:A型42元,B型56元;30台.6.在元旦期间,某商场计划购进甲、乙两种商品.(1)已知甲、乙两种商品的进价分别为30元,70元,该商场购进甲、乙两种商品共50件需要2300元,则该商场购进甲、乙两种商品各多少件?(2)该商场共投入9500元资金购进这两种商品若干件,这两种商品的进价和售价如表所示:若全部销售完后可获利5000元(利润=(售价﹣进价)×销量),则该商场购进甲、乙两种商品各多少件?答案:(1)商场购进甲商品30件,乙商品20件;(2)商场购进甲商品130件,乙商品80件7.某通讯器材商场,计划从一厂家购进若干部新型手机以满足市场需求,已知该厂家生产三种不同型号的手机,出厂价分别是甲种型号手机1800元/部,乙种型号手机600元/部,丙种型号手机1200元/部.商场在经销中,甲种型号手机可赚200元/部,乙种型号手机可赚100元/部,丙种型号手机可赚120元/部.(1)若商场用6万元同时购进两种不同型号的手机共40部,并恰好将钱用完,请你通过计算分析进货方案;(2)在(1)的条件下,求盈利最多的进货方案;(3)若该商场同时购进三种手机,且购进甲,丙两种手机用了3.9万元,预计可获得5000元利润,问这次经销商共有几种可能的方案?最低成本(进货额)多少元?答案:(1)有两种购买方案:甲种型号手机30部,乙种手机10部;或甲种型号手机20部,丙种手机20部;(2)购买甲种型号手机30部,乙种手机10部所获盈利较大;(3)这次经销商共有2种可能的方案,最低成本(进货额)43800元.8.丽江布农铃,是一种极富特色的、形状同马帮的马铃的挂件.这种马帮文化商品,是纯手工制作.精致小巧的青铜铃铛下系有一块圆形木块,手绘着各种各样的画.某商店需要购进甲、乙两种布农铃共300件,一件甲种布农铃进价为340元,售价为400元,一件乙种布农铃进价为380元,售价为460元.(注:利润=售价-进价)(1)若商店计划销售完这批布农铃后能获利21600元,问甲、乙两种布农铃应分别购进多少件?(2)若商店计划投入资金110000元,则能购进甲种布农铃多少件?答案:(1)购进甲种布农铃120件,乙种布农铃180件;(2)购进甲种布农铃100件.9.某商场准备购进两种型号的摩托车共25辆,预计投资10万元.现有甲、乙、丙三种摩托车,甲种每辆4200元,可获利400元;乙种每辆3700元,可获利350元;丙种每辆3200元,可获利320元,且10万元资本全部用完.、1)请你帮助该商场设计进货方案;、2)从销售利润上考虑,应选择哪种方案?答案:(1)进货方案有两种:①甲种进15辆,乙种进10辆;②甲种进20辆,乙种进5辆;(2)从销售利润上看要选择方案2.10.某体育文化用品商店购进篮球和排球共30个,进价和售价如下表,若全部销售完后共可获利润1680元.、1)请利用二元一次方程组求购进篮球和排球各多少个?、2)“双11”快到了,这个体育文化用品商店也准备搞促销活动,计划篮球9折销售,排球8折销售,则销售8个篮球的利润与销售几个排球的利润相等?答案:(1)购进篮球12个,购进排球18个、、2、销售8个篮球的利润与销售10个排球的利润相等.11.某电器商场销售A、B两种型号计算器,两种计算器的进货价格分别为每台30元,40元,商场销售5台A型号和1台B型号计算器,可获利润76元;销售6台A 型号和3台B型号计算器,可获利润120元.求商场销售A、B两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)答案:A种型号计算器的销售价格是42元,B种型号计算器的销售价格是56元.12.某商场准备购进两种摩托车共25辆,预计投资10万元,现有甲、乙、丙三种摩托车供选购,甲种每辆4200元,可获利400元;乙种每辆3700元,可获利350元;丙种每辆3200元,可获利200元.要求10万元资金全部用完.(1)请你帮助该商场设计进货方案;(2)从销售利润上考虑,应选择哪种方案?答案:(1)进货方案有两种方案: 第一种甲种摩托车为15辆,乙种摩托车为10辆,第二种甲种摩托车为20辆,丙种摩托车为5辆;(2)从销售利润上考虑,应选择第一种方案.13.(1)机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?(2)某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行粗加工,每天可加工16吨,如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行,受季节等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工.方案二:尽可能多地对蔬菜进行精加工,没来得及进行加工的蔬菜,在市场上直接销售.方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.你认为哪种方案获利最多?为什么?答案:(1)需安排25名工人加工大齿轮、安排60名工人加工小齿轮;(2)该公司可以粗加工这种食品80吨、精加工这种食品60吨、可获得最高利润为810000元、。

部编数学七年级下册专题22二元一次方程组的实际应用之销售利润问题(解析版)含答案

部编数学七年级下册专题22二元一次方程组的实际应用之销售利润问题(解析版)含答案

专题22 二元一次方程组的实际应用之销售利润问题【例题讲解】某超市第一次用3800元购进了甲、乙两种商品,其中甲种商品40件,乙种商品160件.已知乙种商品每件进价比甲种商品每件进价贵5元.甲种商品售价为20元/件,乙种商品售价为25元/件.(1)甲、乙两种商品每件进价各多少元?(2)该超市第二次又购进同样数量的甲、乙两种商品.其中甲种商品每件的进价不变,乙种商品进价每件少3元;甲种商品按原售价提价a%销售,乙种商品按原售价降价a%销售,如果第二次两种商品都销售完以后获得的总利润比第一次售完获得的总利润多160元,那么a的值是多少?(1)解:设甲种商品每件进价x元,乙种商品每件进价y元,由题意可得:5401603800y xx y-=ìí+=î,解得:1520xy=ìí=î,答:甲种商品每件进价15元,乙种商品每件进价20元;(2)解:由题意()()() 40201%15160251%203a a´+-+´---éùéùëûëû,()()4020151602520160=´-+´-+,解得10a=.答:a的值是10.【综合解答】1.某商场销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如表所示:该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润9万元.[毛利润=(售价﹣进价)×销售量]A B进价(万元/套) 1.5 1.2售价(万元/套 1.65 1.4(1)该商场计划购进A,B两种品牌的教学设备各多少套?(2)现商场决定再用30万同时购进A,B两种设备,共有哪几种进货方案?【答案】(1)购进A品牌的教学设备20套,购进B品牌的教学设备30套(2)有4种方案,方案见解析【分析】(1)根据题意设购进A 品牌的教学设备x 套,购进B 品牌的教学设备y 套,再根据总进价为66万元,毛利润为9万元,列出二元一次方程组,解出答案即可;(2)根据题意设再用30万购进A 品牌的教学设备a 套,购进B 品牌的教学设备b 套,根据题意列出二元一次方程,由于a , b 均为正整数,即可得出方程的解,即可得出有4种进货方案.【详解】(1)解:设购进A 品牌的教学设备x 套,购进B 品牌的教学设备y 套,得,()()1.5 1.2661.65 1.5 1.4 1.29x y x y +=ìí-+-=î,解得,2030x y =ìí=î,经检验,2030x y =ìí=î符合题意,答:购进A 品牌的教学设备20套,购进B 品牌的教学设备30套;(2)设再用30万购进A 品牌的教学设备a 套,购进B 品牌的教学设备b 套,由题意得,1.5 1.230a b +=,∵a , b 均为正整数,∴此方程的解为:420a b =ìí=î,或815a b =ìí=î,或1210a b =ìí=î,或165a b =ìí=î,综上所述,有4种方案:①购进A 品牌的教学设备4套,购进B 品牌的教学设备20套;②购进A 品牌的教学设备8套,购进B 品牌的教学设备15套;③购进A 品牌的教学设备12套,购进B 品牌的教学设备10套;④购进A 品牌的教学设备16套,购进B 品牌的教学设备5套.【点睛】本题考查了二元一次方程(组)的应用,找出等量关系列出方程和方程组是本题的关键.2.2022年北京冬奥会、冬残奥会的纪念品得到广大民众的喜爱,某校想要购买A 型、B 型两种纪念品.已知购买2件A 型纪念品和1件B 型纪念品共需150元;购买3件A 型纪念品和2件B 型纪念品共需245元.(1)求A 型纪念品和B 型纪念品的单价;(2)学校现需一次性购买A 型纪念品和B 型纪念品共100个,要求购买的总费用不超过5000元,则最多可以购买多少个A 型纪念品?【答案】(1)A 型纪念品和B 型纪念品的单价分别是55元和40元3.为了丰富学生的课余生活,某校计划购买足球和篮球给同学们活动使用,若购买1个足球和2个篮球需用220元;若购买2个足球和1个篮球需用230元;(1)求购买一个足球和一个篮球各多少元;(2)如果购买足球和篮球共75个,且购买足球的数量不低于篮球数量的1.4倍,求最多可购买多少个篮球?(3)学校根据实际情况,在(2)的前提下,要求购买的总费用不超过5700元,请问有哪几种购买方案?哪种方案最省钱?【答案】(1)购买一个足球需80元,一个篮球需70元;(2)最多可购买31个篮球;(3)有两种购买方案:①购买篮球30个,购买足球45个;②购买篮球31个,购买足球44个.其中方案②购买篮球31个,购买足球44个最省钱.∴购买篮球31个,购买足球44个最省钱.【点睛】本题考查一元一次不等式组的应用、二元一次方程组的应用,解答本题的关键是明确题意,列出相应的方程组和不等式,利用方程的思想和不等式的性质解答.4.下表是某店某天销售A,B两种小商品的账目记录.销售数量/件总销售金额/元A B第一天2010560第二天1515540(1)求A,B两种商品的售价;(2)若A的进价为14元/件,B的进价为12元/件,某天共卖出两种商品40件,且两者总利润不低于210元,则至少销售A商品多少件?(3)在(2)的条件下,如果将A商品打9折销售,那么A商品的利润率是多少(结果精确到0.1%)?5.商场正在销售帐篷和棉被两种防寒商品,已知购买1顶帐篷和2床棉被共需300元,购买2顶帐篷和3床棉被共需510元.(1)求1顶帐篷和1床棉被的价格各是多少元;(2)某学校准备购买这两种防寒商品共80件送给灾区,要求每种商品都要购买,且帐篷的数量多于棉被的数量,但因为学校资金不足,购买总金额不能超过8500元,请问学校共有哪几种购买方案?【答案】(1)帐篷120元,棉被90元(2)3种购买方案:帐篷41顶,棉被39床;帐篷42顶,棉被38床;帐篷43顶,棉被37床【分析】(1)根据1顶帐篷的钱数+2床棉被的钱数=300元,2顶帐篷的钱数+3床棉被的钱数=510元,可得出方程组,解出即可;(2)设帐篷a顶,则棉被(80-a)床,再由购买总金额不能超过8500元,可得出不等式组,解出即可.(1)解:设一顶帐篷x元,一床棉被y元,则2300 23510x yx y+=ìí+=î,解得:12090xy=ìí=î.答:1顶帐篷120元,1床棉被90元;(2)6.我市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A、B两种奖品以鼓励抢答者.如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元.(1)A、B两种奖品每件各多少元?(2)现要购买A、B两种奖品共100件,总费用不超过900元,那么A种奖品最多购买多少件?∴a≤41,答:A 种奖品最多购买41件.【点睛】本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据不等关系,正确列出不等式.7.某电器商城准备销售每台进价分别为200元、150元的A 、B 两种型号的电风扇,下表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入-进货成本)销售数量销售时段A 种型号B 种型号销售收入第一个月3台5台2300元第二个月4台10台4000元(1)求A 、B 两种型号的电风扇的销售单价;(2)若超市准备用不多于5500元的金额再采购这两种型号的电风扇共30台,求A 种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为2100元的目标?若能,请给出相应的采购方案;若不能,请说明理由.【答案】(1)A 、B 两种型号电风扇的销售单价分别为300元、280元(2)超市最多采购A 种型号电风扇20台时,采购金额不多于5500元(3)超市不能实现利润2100元的目标,理由见解析【分析】(1)设A 种型号的电风扇的销售单价为x 元,B 种型号的电风扇的销售单价为y 元,根据总价=单价×数量结合近两月的销售情况统计表,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设A 种型号的电风扇采购a 台,则B 种型号的电风扇采购()30a - 台,根据进货总价=进货单价×进货数量结合超市准备用不多于5500元的金额采购两种型号的电风扇共30台,即可得出关于a 的一元一次不等式,解之取其中的最大值即可得出结论;(3)先求出超市销售利润为2100元时的A 种型号电风扇采购台数a ,再判断即可.(1)解:设A 、B 两种型号电风扇的销售单价分别为x 元、y 元,依题意得:3523004104000x y x y +=ìí+=î,解得:300280x y =ìí=î,答:A 、B 两种型号电风扇的销售单价分别为300元、280元;(2)解:设采购A 种型号电风扇a 台,则采购B 种型号电风扇()30a -台.依题意得:()200150305500a a +-£,解得:20a £.答:超市最多采购A 种型号电风扇20台时,采购金额不多于5500元;(3)解:依题意有:()()()300200280150302100-+--=a a ,解得:60a =,∵20a £,∴在(2)的条件下超市不能实现利润2100元的目标.答:超市不能实现利润2100元的目标.【点睛】本题主要考查解二元一次方程组、一元一次方程与一元一次不等式,解题的关键是根据条件列出相应的方程或者不等式.8.注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路按下面的要求填空,完成本题的解答.也可以选用其他的解题方案,此时不必填空,只需按照解答题的一般要求进行解答.“冰墩墩”和“雪容融”分别是北京2022年冬奥会和冬残奥会的吉祥物.某冬奥官方特许商品零售店购进了一批同一型号的“冰墩墩”和“雪容融”玩具,连续两个月的销售情况如下表:销售量/件月份冰墩墩雪容融销售额/元第1个月1204017160第2个月1506022200求此款“冰墩墩”和“雪容融”玩具的零售价格.解题方案:设此款“冰墩墩”玩具的零售价格为x 元,“雪容融”玩具的零售价格为y 元,(Ⅰ)根据题意,列出方程组______,______.ìíî(Ⅱ)解这个方程组,得______,______.x y =ìí=î答:此款“冰墩墩”玩具的零售价格为______元,“雪容融”玩具的零售价格为______元.【答案】1204017160,1506022200,118,75,x y x y +=+=118, 75.【分析】设此款“冰墩墩”玩具的零售价格为x 元,“雪容融”玩具的零售价格为y 元,再根据表格信息可得两种情况下的销售额,再列方程组,解方程组即可.【详解】解:设此款“冰墩墩”玩具的零售价格为x 元,“雪容融”玩具的零售价格为y 元,(Ⅰ)根据题意,列出方程组1204017160150+60,22200x y x y +==ìíî(Ⅱ)解这个方程组,得118,75x y =ìí=î答:此款“冰墩墩”玩具的零售价格为118元,“雪容融”玩具的零售价格为75元.【点睛】本题考查的是二元一次方程组的应用,确定相等关系是解本题的关键.9.某商店准备销售甲、乙两种商品共80件,已知甲商品进货价为每件70元,乙商品进货价为每件35元,在定价销售时,1件甲商品比1件乙商品售价多30元,3件甲商品比2件乙商品售价多150元.(1)每件甲商品与每件乙商品的售价分别是多少元?(2)若甲、乙两种商品的进货总投入不超过4200元,则至多进货甲商品多少件?【答案】(1)每件甲商品售价为90元,每件乙商品售价为60元(2)至多进货甲商品40件【分析】(1)设每件甲商品与每件乙商品的售价分别是x 元、y 元,根据“1件甲商品比1件乙商品售价多30元,3件甲商品比2件乙商品售价多150元”列出二元一次方程组求解即可;(2)设进货甲商品a 件,则乙商品(80)a -件,根据题意列出一元一次不等式求解即可.(1)设每件甲商品与每件乙商品的售价分别是x 元、y 元,得3032150x y x y -=ìí-=î 解得:9060x y =ìí=î答:每件甲商品售价为90元,每件乙商品售价为60元.(2)设进货甲商品a 件,则乙商品(80)a -件,依题意得:()7035804200a a+-£,解得40a£因此,至多进货甲商品40件.【点睛】本题考查了一元一次不等式及二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式及所求量的等量关系.10.我县某小区积极响应国家号召,落实“垃圾分类回收,科学处理”的政策,准备购买A、B两种型号的垃圾分类回收箱共20只,放在小区各个合适位置,以方便进行垃圾分类投放.小区物业共支付费用4240元,A、B型号价格信息如表:型号价格A型200元/只B型240元/只(1)请问小区物业购买A型和B型垃圾回收箱各是多少只?(2)因受到居民欢迎,物业准备再次购进A、B两种型号的垃圾分类回收箱共40只,总费用不超过9000元,那么物业至少购进A型号回收箱多少只?【答案】(1)购买A型垃圾回收箱14只,购买B型垃圾回收箱6只;(2)15只【分析】(1)设学校购买A型垃圾回收箱x只,购买B型垃圾回收箱y只,根据学校购买两种型号的垃圾回收箱共20只且共花费4240元,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)根据节省的总费用=每只节省的费用×购买B型垃圾回收箱的数量,即可求出结论.【详解】解:(1)设购买A型垃圾回收箱x只,购买B型垃圾回收箱y只.依题意得:20 2002404240x yx y+ìí+î==.解得:146xyìíî==.答:购买A型垃圾回收箱14只,购买B型垃圾回收箱6只.(2)设再次购买A型垃圾回收箱m只,则购买B型垃圾回收箱(40﹣m)只,依题意得:200m+240(40﹣m)≤9000,解得:m≥15.答:至少购买A型垃圾回收箱15只.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:找准等量关系,正确列出二元一次方程组;根据各数量之间的关系,正确列出一元一次不等式.11.某景点的门票价格如表:购票人数/人1~5051~100100以上每人门票价/元12108某校七年级(1)、(2)两班计划去游览该景点,其中(1)班人数少于50人,(2)班人数多于50人且少于100人,如果两班都以班为单位单独购票,则一共支付1118元;如果两班联合起来作为一个团体购票,则只需花费816元.(1)两个班各有多少名学生?(2)团体购票与单独购票相比较,两个班各节约了多少钱?【答案】(1)七年级(1)班有49人、七年级(2)班有53人;(2)七年级(1)班节省的费用为:(12﹣8)×49=196元,七年级(2)班节省的费用为:(10﹣8)×53=106元.【详解】试题分析:(1)设七年级(1)班有x 人、七年级(2)班有y 人,根据如果两班都以班为单位单独购票,则一共支付1118元;如果两班联合起来作为一个团体购票,则只需花费816元建立方程组求出其解即可;(2)用一张票节省的费用×该班人数即可求解.试题解析:(1)设七年级(1)班有x 人、七年级(2)班有y 人,由题意,得12101118{8()816x y x y +=+=,解得:49{53x y ==.答:七年级(1)班有49人、七年级(2)班有53人;(2)七年级(1)班节省的费用为:(12-8)×49=196元,七年级(2)班节省的费用为:(10-8)×53=106元.考点:二元一次方程组的应用.12.在“6·18”活动中,某电商上架200个A 商品和150个B 商品进行销售,已知购买3个A 商品和6个B 商品共需780元,购买1个A 商品和5个B 商品共需500元.(1)求A 商品和B 商品的售价分别是多少元?(2)在A商品售出35,B商品售出23后,为了尽快回笼资金,店主决定对剩余的A商品每个打a折销售,对剩余的B商品每个降价2a元销售,很快全部售完.若要保证本月销售总额不低于29250元,求a的最小值.13.江津区开展“一卷诗书,万千世界”读书节活动,初一年级倡导书目确定为《我们仨》和《围城》.已知购买3本《我们仨》和4本《围城》共需160元.购进2本《我们仨》和1本《围城》共需65元.(1)购买一本《我们仨》和一本《围城》各需多少钱?(2)针对此次活动,学校图书馆为方便学生借阅,计划购进两种书籍共100本,且总费用不超过2345元,预计购进《我们仨》的数量不超过《围城》数量的12,有哪几种购买方案?【答案】(1)购买一本《我们仨》需20元,购买一本《围城》需25元(2)有3种购买方案:①购买《我们仨》31本,购买《围城》69本;②购买《我们仨》32本,购买《围城》68本;③购买《我们仨》33本,购买《围城》67本.14.今年神舟十四号成功发射,某航天博物馆顺势推出了“我要做太空人”系列航天纪念品,提供“漫步星河”、“梦想远航”两种不同的纪念品套餐供游客选择.已知购买2份“漫步星河”与5份“梦想远航”共需付款160元,购买2份“漫步星河”比购买1份“梦想远航”多付款40元.(1)请问每份“漫步星河”多少元?每份“梦想远航”多少元?(2)近期越来越多的学校选择来该博物馆进行研学之旅,于是该博物馆决定对纪念品推出两种优惠活动,如表所示:“漫步星河”纪念品“梦想远航”纪念品活动一每份为原价的56每份5折活动二每购买一份“漫步星河”纪念品,就赠送一份“梦想远航”纪念品若某中学某年级决定购买“漫步星河”、“梦想远航”两种纪念品套餐共100份(其中“漫步星河”纪念品不超过50份),则购买“漫步星河”纪念品套餐多少份时,选择优惠一和优惠二购买所需的费用相同?依题意得:151000102000m m +=-+,解得:40m =答:购买“漫步星河”纪念品套餐40份时,选择优惠一和优惠二购买所需的费用相同.【点睛】本题考查了二元一次方程组的应用以及一元一次方程的应用.解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出一元一次方程.15.某忠州腐乳销售店的麻辣味和红油味最畅销,今年1月麻辣味卖出55罐,红油味卖出40罐,共收入5300元:2月麻辣味卖出80罐,红油味卖出60罐,共收入7800元.并且今年1月和2月两种罐装风味豆腐乳的销售价不变.(1)求今年1月麻辣味和红油味的销售价(单位:元/罐);(2)为回馈顾客,在今年3月,麻辣味销售价降10%,销售量在2月的基础上增加了25m 罐,红油味销售价降12m 元,销售量在2月的基础上增加了40%.若今年3月的总销售额比今年1月至少增加2812元,求m 的最大值.【点睛】本题考查了二元一次方程组的应用和一元一次不等式组的应用,解题的关键在于找准等量关系和数量关系.16.某街道为了绿化一块闲置空地,购买了甲、乙两种树木共72棵种植在这个空地上,购买时,已知甲种树木的单价是乙种树木的单价的98,乙种树木的单价是每棵80元,购买甲、乙两种树木的总费用是6160元.(1)甲、乙两种树木各购买了多少棵?(2)经过一段时间后,种植的这批树木成活率高,绿化效果好,该街道决定再次购买这两种树木来绿化另一块闲置空地,购买时,发现甲种树木的单价比第一次购买时的单价下降了50a ,乙种树木的单价比第一次购买时的单价下降了110,于是,该街道购买甲种树木的数量比第一次多了15,购买乙种树的数量比第一次多了50a ,且购买甲、乙两种树木的总费用比第一次多了2125a ,请求出a 的值.解得∶a=5,答∶a的值为5.【点睛】本题考查了二元一次方程组的应用的应用以及一元一次方程的应用,解题的关键是∶(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出一元一次方程.17.某零食店销售牛轧糖、雪花酥2种糖果,如果用800元可购买5千克牛轧糖和4千克雪花酥,用760元可购买7千克牛轧糖和2千克雪花酥.(1)求牛轧糖、雪花酥每千克的价格分别为多少元?(2)已知该零食店在12月共售出牛轧糖50千克、雪花酥30千克.春节将近,1月份超市将牛轧糖每千克的售价提升43m元,雪花酥的价格不变,结果与12月相比,牛轧糖只销售了45千克,雪花酥销量上升1m5千克,销售总额超过了12月份销售总额;求m的取值范围.程和不等式并正确计算.18.某一天,蔬菜经营户老李用了145元从蔬菜批发市场批发一些黄瓜和茄子,到菜市场去卖,黄瓜和茄子当天的批发价与零售价如下表所示:品名黄瓜茄子批发价(元/千克)34零售价(元/千克)47(1)当天他卖完这些黄瓜和茄子共赚了90元,这天他批发的黄瓜和茄子分别是多少千克?(2)当天他卖完这些黄瓜和茄子后,又花了50元去批发了m 千克黄瓜和n 千克茄子(m 、n 为整数),求m n 、的值.【答案】(1)这天他批发的黄瓜和茄子分别是15千克和25千克(2)211m n =ìí=î或68m n =ìí=î或105m n =ìí=î或142m n =ìí=î【分析】(1)设这天他批发的黄瓜和茄子分别是x 千克和y 千克,根据题意即可列出二元一次方程组,解方程组即可求得;(2)根据题意即可列出二元一次方程,再根据m n 、为整数,即可求得(1)解:设这天他批发的黄瓜和茄子分别是x 千克和y 千克,根据题意得()()34145437490x y x y +=ìí-+-=î 整理得:34145390x y x y +=ìí+=î①②由3´-②①得,5y =125,解得y =25,把y =25代入②得,x +75=90,解得x =15,故这天他批发的黄瓜和茄子分别是15千克和25千克;(2)19.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2200元.(1)该水果店两次分别购买了多少元的水果?(2)在销售中,由于第二次购进水果的量比较大,水果店决定降价销售,第二次购进的水果按第一次的售价降价1元卖出,若第一次购进的水果有3%的损耗,第二次购进的水果有5%的损耗,该水果店希望售完这些水果获利不低于864元,则该水果店第二次购进的水果每千克售价至少为多少元?解:第一次所购该水果的重量为8004200¸=(千克).第二次所购该水果的重量为2002400´=(千克).设该水果店第一次购进的水果每千克售价为a 元,根据题意得()()()20013%40015%180********a a -+----³,解得6a ³,则15a -=,即该水果店第二次购进的水果每千克售价至少为5元.答:该水果店第二次购进的水果每千克售价至少为5元.【点睛】本题考查了二元一次方程组的应用和一元一次不等式的应用.解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.。

初中数学二元一次方程组的应用题型分类汇编——销售利润问题(附答案)

初中数学二元一次方程组的应用题型分类汇编——销售利润问题(附答案)

装购进数量不超过 28 件,并使这批服装全部销售完毕后的总获利不少于 699 元.设购 进 B 种服装 x 件,那么: ①请写出 A、B 两种服装全部销售完毕后的总获利 y 元与 x 件之间的函数关系式; ②请问该服装店有几种满足条件的进货方案?哪种方案获利最多? 5.某校为奖励该校在南山区第二届学生技能大赛中表现突出的 20 名同学,派李老师为 这些同学购买奖品,要求每人一件,李老师到文具店看了商品后,决定奖品在钢笔和笔 记本中选择.如果买 4 个笔记本和 2 支钢笔,则需 86 元;如果买 3 个笔记本和 1 支钢 笔,则需 57 元. (1)求笔记本和钢笔的单价分别为多少元? (2)售货员提示,购买笔记本没有优惠:买钢笔有优惠,具体方法是:如果买钢笔超 过 10 支,那么超出部分可以享受 8 折优惠,若买 x(x>10)支钢笔,所需费用为 y 元, 请你求出 y 与 x 之间的函数关系式; (3)在(2)的条件下,如果买同一种奖品,请你帮忙计算说明,买哪种奖品费用更低. 6.某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球每筒的售 价多 15 元,健民体育活动中心从该网店购买了 2 筒甲种羽毛球和 3 筒乙种羽毛球,共 花费 255 元. (1)该网店甲、乙两种羽毛球每筒的售价各是多少元? (2)根据健民体育活动中心消费者的需求量,活动中心决定用不超过 2550 元钱购进甲、 乙两种羽毛球共 50 筒,那么最多可以购进多少筒甲种羽毛球?
7.某超市第一次用 5800 元购进甲、乙两种商品,其中甲商品件数的 2 倍比乙商品件数 的 3 倍多 20 件,甲、乙两种商品的进价和售价如下表(利润=售价-进价)


进价(元/件)
20
28
售价(元/件)
26

二元一次方程应用,利润问题专项练习附答案

二元一次方程应用,利润问题专项练习附答案

二元一次方程应用——利润问题专项练习题(附答案)1.某宾馆有客房90间,当每间客房的定价为每天140元时,客房会全部住满.经调查发现,每间客房每天的定价每涨10元,就会有5间客房空闲,如果旅客居住客房,宾馆需对每间客房每天支出60元的各种费用,若在尽可能节约资源的前提下,每天想获利8000元,每间客房应涨价多少元?2.某单位组织职工观光旅游,旅行社的收费标准是:如果人数不超过25人,人均旅游费用为100元;如果超过25人,每增加1人,人均旅游费用降低2元,但人均旅游费用不得低于70元.该单位按旅行社的收费标准组团,结束后,共支付给旅行社2700元.求该单位这次共有多少人参加旅游?3.金丰商场在服装销售旺季购进某服装1000件,以每件超出进价50元的价格出售,在一个月中销售此服装800件,之后由于进入淡季,每件降价20%,这样的售价比进价低10%,结果全部售出,请你帮助算一下,该商场在这一次买卖中共获利多少元?4.某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元?5.某商店如果将进货价8元的商品按每件10元出售,每天可销售200件,现采用提高售价,减少进货量的方法增加利润,已知这种商品每涨0.5元,其销售量就可以减少10件,问应将售价定为多少时,才能使所赚利润最大,并求出最大利润?6.某水果经销商销售一种新上市的水果,进货价为5元/千克,售价为10元/千克,月销售量为1000千克.(1)经销商降价促销,经过两次降价后售价定为8.1元/千克,请问平均每次降价的百分率是多少?(2)为增加销售量,经销商决定本月降价促销,经过市场调查,每降价0.1元,能多销售50千克,请问降价多少元才能使本月总利润达到6000元?7.高盛超市准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.(1)设每个小家电定价增加x元,每售出一个小家电可获得的利润是多少元?(用含x的代数式表示)(2)当定价增加多少元时,商店获得利润6000元?8.广州塔是广州的新地标,旅行社为吸引游客推出了广州塔一日游,具体资费标准如下:如果人数不超过25人,人均消费180元;如果人数超过25人,每增加1人,则全体参加人员人均费用降低4元,但人均费用不得低于130元.某公司组织员工参加广州塔一日游,共支付旅行社一日游费用4800元,请问该公司这次共组织了多少员工参加广州塔一日游?9.秋末冬初,慈善人士李先生到某商场购买一批棉被准备送给偏远山区的孩子.该商场规定:如果购买棉被不超过60条,那么每条售价120元;如果购买棉被超过60条,那么每增加1条,所出售的这批棉被每条售价均降低0.5元,但每条棉被最低售价不得少于100元,最终李先生共支付棉被款8800元,请问李先生一共购买了多少条棉被?10.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
17.甲、乙两种商品原来的单价和为 元,因市场变化,甲商品降价 ,乙商品提价 ,调价后两种商品的单价和比原来的单价和提高了 ,求甲、乙两种商品原来的单价.现设甲商品原来的单价 元,乙商品原来的单价为 元,根据题意可列方程组为_____________;
18.某水果店销售 千克香蕉,第一、二、三天的售价分别为 元/千克、 元/千克、 元/千克,三天全部售完,销售额共计 元.则第三天比第一天多销售香蕉__________千克.
16.某班的一个综合实践活动小组去甲、乙两个超市调查去年和今年“元旦”期间的销售情况,下面是调查后小明与其它两位同学进行交流的情景.
小明说:“去年两超市销售额共为150万元,今年两超市销售额共为170万元”,
小亮说:“甲超市销售额今年比去年增加10%
小颖说:“乙超市销售额今年比去年增加20%
根据他们的对话,得出今年甲超市销售额为_____万元
初中数学二元一次方程组的应用题型分类汇编——销售利润问题1(附答案)
1.《九章算术》中有一道“盈不足术”问题,原文为:今有人共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?设该物品的价格是x钱,共同购买该物品的有y人,则根据题意,列出的方程组是()
A. B.
C. D.
2.根据图中提供的信息,可知一个杯子的价格是()
A.6元B.8元C.10元D.12元
3.元旦期间,灯塔市辽东商业城“女装部”推出“全部服装八折”,男装部推出“全部服装八五折”的优惠活动.某顾客在女装部购买了原价 元,在男装部购买了原价 元的服装各一套,优惠前需付 元,而她实际付款 元,根据题意列出的方程组是()
A. B.
C. D.
4.如图是“东方”超市中“飘柔”洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚,请帮忙算一算,该洗发水的原价是()
6.小岩打算购买气球装扮学校“毕业典礼”活动会场气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位.已知第一束,第二束气球的价格如图所示,则第三束气球的价格为()
A.15元B.16元C.17元D.18元
7.某公司2018年的利润为200万元,2019年的总产值比2018年增加了12%,总支出比2018年减少了8%,2019年的利润为500万元,若设2018年的总产值是 万元,2018年的总支出是 万元,则所列方程组正确的是()
19.进价为 元/件的商品,当售价为 元/件时,每天可销售 件,售价每涨 元,每天少销售 件,当售价为________元时每天销售该商品获得利润最大,最大利润是________元.
A.22元B.23元C.24元D.26元
5.陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()
A.19B.18C.16D.15
11.2019年秋,重庆二外初2021级将开启“大阅读”活动,为了充实书吧藏书,学生会号召全年级学生捐书,得到各班的大力支持.同时,年级部分备课组的老师也购买藏书充实到年级书吧,其中数学组购买了甲、乙两种自然科学书籍若干本,用去699元;语文组购买了 、 两种文学书籍若干本,用去6138元,已知 、 的数量分别与甲、乙的数量相等,且甲种书与 种书的单价相同,乙种书与 种书的单价相同.若甲种书的单价比乙种书的单价多7元,则乙种书籍比甲种书籍多买了__________本.
A. B.
C. D.
8.某工厂现向银行申请了两种货款,共计35万元,每年需付利息2.25万元,甲种贷款每年的利率是7%,乙种贷款每年的利率是6%,求这两种贷款的数额各是多少元若设甲、乙两种贷款的数额分别为x万元和y万元,则()
A. B. C. D.
9.甲、乙两店分别购进一批无线耳机,每副耳机的进价甲店比乙店便宜 ,乙店的标价比甲店的标价ቤተ መጻሕፍቲ ባይዱ 元,这样甲乙两店的利润率分别为 和 ,则乙店每副耳机的进价为()
A. 元B. 元C. 元D. 元
10.有甲、乙两种糖果,原价分别为每千克a元和b元.根据调查,将两种糖果按甲种糖果x千克与乙种糖果y千克的比例混合,取得了较好的销售效果.现在糖果价格有了调整:甲种糖果单价下降15%,乙种糖果单价上涨20%,但按原比例混合的糖果单价恰好不变,则 等于( )
A. B. C. D.
15.初2019级即将迎来中考,很多家长都在为孩子准备营养午餐.一家快餐店看准了商机,在5月5号推出了A,B,C三种营养套餐.套餐C单价比套餐A贵5元,三种套餐的单价均为整数,其中A套餐比C套餐少卖12份,B套餐比C套餐少卖6份,且C套餐当天卖出的数量大于26且不超过32,当天总销售量为偶数且当天销售额达到了1830元,商家发现C套餐很受欢迎,因此在6号加推出了C套餐升级版D套餐,四种套餐同时售卖,A套餐比5号销售量减少,C套餐比5号销售量增加 ,且A减少的份数比C套餐增加的份数多5份,B套餐销售量不变,由于商家人手限制,两天的总销售量相同,则其他套餐单价不变的情况下,D套餐至少比C套餐费贵______时,才能使6号销售额达到1950元.
12.某商店将某种碳酸饮料每瓶的价格上调了10%,将某种果汁饮料每瓶的价格下调了5%,已知调价前买这两种饮料各一瓶共花费7元,调价后买上述碳酸饮料3瓶和果汁饮料2瓶共花费17.5元.如果设调价前这种碳酸饮料每瓶x元,果汁饮料每瓶y元,根据题意列方程组______.
13.在“元旦”期间,平价商场对该商场商品进行如下的优惠促销活动:
打折前一次性购物总金额
优惠措施
小于等于400元
不优惠
超过400元,但不超过600元
按售价打九折
超过600元
其中600元部分八折优惠,超过600元的部分打六折优惠
按上述优惠条件,若小华一次性购买售价为80元/件的商品n件时,实际付款504元,则n=_____.
14.若买2支圆珠笔、1本日记本需4元;买1支圆珠笔、2本日记本需5元,则买4支圆珠笔、4本日记本需_____元.
相关文档
最新文档