云南省昭通市2021版中考数学试卷D卷(新版)
2021年云南昭通市中考数学试卷及答案(word解析版)
![2021年云南昭通市中考数学试卷及答案(word解析版)](https://img.taocdn.com/s3/m/a6d1ffe003d8ce2f0166233f.png)
昭通市中考试题数 学(主试题共25个题,满分100分;附加题,共4个小题,满分50分。
考试用时150分钟)主试题(三个大题,共25个小题,满分100分)一、选择题(本大题共10个小题,每小题只有一个正确选项,每小题3分,满分30分) 1.(2013昭通市,1,3分)-4的绝对值是( )A .14B .14-C .4D .-4 【答案】C2. (2013昭通市,2,3分)下列各式计算正确的是( ) A .222()a b a b +=+B .235a a a +=C .824a a a ÷=D .23a a a ⋅=【答案】D3.(2013昭通市,3,3分)如图1,AB ∥CD ,DB ⊥BC ,∠2 =50°,则∠1的度数是( )图1 A .40° B .50° C .60° D .140° 【答案】A4.(2013昭通市,4,3分)已知一组数据:12,5,9,5,14,下列说法不正确的是( ) A .平均数是9 B .中位数是9 C .众数是5 D .极差是5 【答案】D 5.(2013昭通市,5,3分)如图2,已知AB 、CD 是⊙O 的两条直径,∠ABC =28°,那么∠BAD =( )图2图2A .28°B .42°C .56°D .84° 【答案】A6.(2013昭通市,6,3分)图3是一个正方体的表面展开图,则原正方体中与“建”字所 在的面相对的面上标的字是( )A .美B .丽C .云D .南 【答案】D7.(2013昭通市,7,3分)如图4,A 、B 、C 三点在正方形网格线的交点处,若将△ACB 绕着点A 逆时针旋转得到△AC ′B ′,则tan B ′的值为( )图4图4A .12B .13C .14 D .【答案】B8.(2013昭通市,8,3分)已知点P (2a -1,1-a )在第一象限,则a 的取值范围在数轴上表示正确的是( )A. B. C. D. 【答案】C9.(2013昭通市,9,3分)已知二次函数y = ax 2+bx +c (a ≠ 0)的图象如图5所示,则下列结论中正确的是( ) x =1xyO-1图5A .a >0B .3是方程ax 2+bx +c =0的一个根C .a +b +c =0D .当x <1时,y 随x 的增大而减小 【答案】B10.(2013昭通市,10,3分)图6所示是某公园为迎接“中国——南亚博览会”设置的一休闲区.∠AOB =90°,弧AB 的半径OA 长是6米,C 是OA 的中点,点D 在弧AB 上,CD ∥OB ,则图中休闲区(阴影部分)的面积是( )图6D B C 小路小 路草 坪休 闲区 A图6A.(10π米2 B.(π米2C.(6π米2 D.(6π-米2【答案】C二、填空题(本大题共7个小题,每小题3分,满分21分)11.(2013昭通市,11,3分)根据云南省统计局发布我省生产总值的主要数据显示:去年生产总值突破万亿大关,2013年第一季度生产总值为226 040 000 000元人民币,增速居全国第一. 这个数据用科学记数法可表示为 元. 【答案】2.2604×101112.(2013昭通市,12,3分)实数2278-3π中的无理数是.3π13.(2013昭通市,13,3分)因式分解:2218x -= .【答案】2(x +3)(x -3)14.(2013昭通市,14,3分)如图7,AF = DC ,BC ∥EF ,只需补充一个 条件 ,就得△ABC ≌△DEF .图7AFB CD E图7【答案】BC = EF (或∠A =∠D ,或∠B =∠E ,或AB ∥DE 等)15.(2013昭通市,15,3分)使代数式321x -有意义的x 的取值范围是 .【答案】12x ≠16.(2013昭通市,16,3分)如图8,AB 是⊙O 的直径,弦BC =4cm ,F 是弦BC 的中点,∠ABC =60°.若动点E 以1cm/s 的速度从A 点出发在AB 上沿着A →B →A 运动,设运动时间为t (s) (0≤t <16),连接EF ,当△BEF 是直角三角形时,t (s)的值为 .(填出一个正确的即可)图8B图8【答案】4(或7或9或12)(只需填一个答案即可得分)17.(2013昭通市,17,3分)如图9所示,图中每一个小方格的面积为1,则可根据面积计算得到如下算式:()127531-+⋅⋅⋅++++n = . (用n 表示,n 是正整数)2n -15 12 34n7 1 1 2 43 3 n图9 【答案】n 2三、解答题(本大题共8个小题,满分49分)18. (2013昭通市,18,6分)0201321 4(3)10sin30(1)()3π----︒--+.【答案】02013214(3)10sin30(1)()3π----︒--+21519=--++6=19. (2013昭通市,19,5分)小明有2件上衣,分别为红色和蓝色,有3条裤子,其中2条为蓝色、1 条为棕色. 在准备校艺术节的演出服装时突遇停电,小明任意拿出1件上衣和1条裤子穿上.请用画树状图或列表的方法列出所有可能出现的结果,并求小明穿的上衣和裤子恰好都是蓝色的概率.裤子上衣蓝色蓝色棕色红色(红色,蓝色)(红色,蓝色)(红色,棕色)蓝色(蓝色,蓝色)(蓝色,蓝色)(蓝色,棕色)由上表可知,总情况6种,而且每种结果出现的可能性相同. 小明穿的上衣和裤子恰好都是蓝色占2种,所以小明穿的上衣和裤子恰好都是蓝色的概率是13.20. (2013昭通市,20,5分)为了推动课堂教学改革,打造高效课堂,配合地区“两型课堂”的课题研究,羊街中学对八年级部分学生就一学期以来“分组合作学习”方式的支持程度进行调查,统计情况如图10. 请根据图中提供的信息,回答下列问题.图10 图11(1)求本次被调查的八年级学生的人数,并补全条形统计图11;(2)若该校八年级学生共有540人,请你计算该校八年级有多少名学生支持“分组合作学习”方式(含“非常喜欢”和“喜欢”两种情况的学生)?【答案】解:(1)设本次被调查的八年级学生有x人,观察图10和图11,“喜欢”的学生18名,占本次被调查的八年级学生的人数的比为360120,即31,列方程:x18=31,得x =54. 经检验x =54是原方程的解. 由54非常喜欢的人数=360200,得:非常喜欢的人数为30.(2)列方程:120200==540540360+支持人数喜欢的人数+非常喜欢的人数.由此解得支持的学生有480名.21. (2013昭通市,21,5分)小亮一家在一湖泊中游玩,湖泊中有一孤岛,妈妈在孤岛P 处观看小亮与爸爸在湖中划船(如图12所示). 小船从P 处出发,沿北偏东60°方向划行200米到A 处,接着向正南方向划行一段时间到B 处. 在B 处小亮观测到妈妈所在的P 处在北偏西37°的方向上,这时小亮与妈妈相距多少米(精确到1米)? (参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)图12AB 37°60°P图12【答案】解:过P 作PC ⊥AB 于C ,AB37°60°PC在Rt △APC 中,AP = 200m ,∠ACP = 90°,∠PAC = 60°. ∴ PC= 200×sin60°=200 ×23=1003(m ). ∵ 在Rt △PBC 中,sin37°=PBPC, ∴100 1.73288()sin 370.6PC PB m ⨯==≈︒答:小亮与妈妈相距约288米.22. (2013昭通市,22,6分)如图13,直线y =k 1x +b (k 1≠0)与双曲线y =2k x(k 2≠0)相交于A (1,m )、B (-2,-1)两点. (1)求直线和双曲线的解析式.(2)若A 1(x 1,y 1),A 2(x 2,y 2),A 3(x 3,y 3)为双曲线上的三点,且x 1<x 2<0<x 3,请直接写出y 1,y 2,y 3的大小关系式.图13【答案】解:(1)∵ 双曲线y = 2k x经过点B (-2,-1), ∴ k 2 = 2. ∴ 双曲线的解析式为:y =2x. ∵ 点A (1,m )在双曲线y = 2x上, ∴ m = 2,则A (1,2). 由点A (1,2),B (-2,-1)在直线y =k 1x +b 上,得 112,2 1.k b k b +=⎧⎨-+=-⎩解得11,1.k b =⎧⎨=⎩ ∴ 直线的解析式为:y = x +1. (2)y 2<y 1<y 3.23. (2013昭通市,23,7分)如图14,已知AB 是⊙O 的直径,点C 、D 在⊙O 上, 点E 在⊙O 外,∠EAC =∠B = 60°.(1)求∠ADC 的度数; (2)求证:AE 是⊙O 的切线.图14图14【答案】解:(1)∵ ∠ABC 与∠ADC 都是弧AC 所对的圆周角, ∴ ∠ADC =∠B =60°. (2)∵ AB 是⊙O 的直径, ∴ ∠ACB =90°, ∴ ∠BAC =30°.∴ ∠BAE =∠BAC +∠EAC =30°+60°=90°, 即 BA ⊥AE .∴ AE 是⊙O 的切线.24. (2013昭通市,24,7分)如图15,在菱形ABCD 中,AB = 2,60DAB ∠=,点E 是AD 边的中点,点M 是AB 边上的一个动点(不与点A 重合),延长ME 交CD 的延长线于点N ,连接MD ,AN .(1)求证:四边形AMDN 是平行四边形.(2)当AM 的值为何值时,四边形AMDN 是矩形?请说明理由. AMBNDCE图15【答案】(1)证明:∵ 四边形ABCD 是菱形,∴ ND ∥AM . ∴ ∠NDE =∠MAE ,∠DNE =∠AME . ∵ 点E 是AD 中点,∴ DE = AE . ∴ △NDE ≌△MAE ,∴ ND = MA . ∴ 四边形AMDN 是平行四边形. (2)① 1; 理由如下:∵ 四边形ABCD 是菱形, ∴ AD = AB = 2.若平行四边形AMDN 是矩形, 则DM ⊥AB , 即 ∠DMA =90°. ∵ ∠A =60°, ∴ ∠ADM =30°.∴ AM =12AD =1.25. (2013昭通市,25,8分)如图16,已知A (3,0)、B (4,4)、原点O (0,0)在抛物线y = ax 2+bx +c (a ≠0)上.(1)求抛物线的解析式.(2)将直线OB 向下平移m 个单位长度后,得到的直线与抛物线只有一个交点D ,求m 的值及点D 的坐标.(3)如图17,若点N 在抛物线上,且∠NBO =∠A BO ,则在(2)的条件下,求出所有满足△POD ∽△NOB 的点P 的坐标(点P 、O 、D 分别与点N 、O 、B 对应)OyxABDOyxABDN图16 【答案】(1)∵ A (3,0)、B (4,4)、O (0,0)在抛物线y =ax 2+bx +c (a ≠0)上.∴930,1644,0,a b c a b c c ++=⎧⎪++=⎨⎪=⎩解得 1,3,0.a b c =⎧⎪=-⎨⎪=⎩∴ 抛物线的解析式为:y =x 2-3x …………………2分(2)设直线OB 的解析式为y = k 1 x ( k 1≠0),由点B (4,4)得 4=4 k 1,解得k 1=1.∴ 直线OB 的解析式为y = x ,∠AOB = 45°. ∵ B (4,4),∴ 点B 向下平移m 个单位长度的点B ′的坐标为(4,0), 故m = 4.∴ 平移m 个单位长度的直线为y = x - 4.解方程组 23,4.y x x y x ⎧=-⎨=-⎩ 得2,2.x y =⎧⎨=-⎩∴ 点D 的坐标为(2,-2) . …………………………5分 (3)∵ 直线OB 的解析式y =x ,且A (3,0). ∵ 点A 关于直线OB 的对称点A ′的坐标为(0,3) .设直线A ′B 的解析式为y =k 2x +3,此直线过点B (4,4) .∴ 4k 2+3=4, 解得 k 2=14.∴ 直线A ′B 的解析式为y =14x +3.∵ ∠NBO =∠A BO ,∴ 点N 在直线A ′B 上,设点N (n ,14n +3),又点N 在抛物线y =x 2-3x 上, ∴ 14n +3=n 2-3n .解得 n 1=34-,n 2=4(不合题意,舍去)∴ 点N 的坐标为(34-,4516).如图,将△NOB 沿x 轴翻折,得到△N 1OB 1,yxA ′ N BO A P 2DBN 1P 1则 N 1 (34-,4516-),B 1(4,-4).∴ O 、D 、B 1都在直线y =-x 上. ∵ △P 1OD ∽△NOB ,∴ △P 1OD ∽△N 1OB 1, ∴ P 1为O N 1的中点.∴ 1112OP OD ON OB ==,∴点P1的坐标为(38-,4532-).将△P1OD沿直线y =-x翻折,可得另一个满足条件的点(4532,38).综上所述,点P的坐标为(38-,4532-)和(4532,38).附加题(共4个小题,满分50分)1.(2013昭通市,附加题1,12分)已知一个口袋中装有7个只有颜色不同、其它都相同的球,其中3个白球、4个黑球.(1)求从中随机取出一个黑球的概率.(2)若往口袋中再放入x 个黑球,且从口袋中随机取出一个白球的概率是14,求代数式223(1)1x x x x x -÷+---的值.【答案】解:(1)P (取出一个黑球)44347==+(2)设往口袋中再放入x 个黑球, 从口袋中随机取出一个白球的概率是14 即 P (取出一个白球)3174x ==+.由此解得x =5. 经检验x =5是原方程的解.∵ 原式2213(1)1x x x x x ---=÷--21(1)(2)(2)x x x x x x --=⋅--+1(2)x x =+∴ 当x =5时,原式=135.2.(2013昭通市,附加题2,12分)云南连续四年大旱,学校为节约用水,提醒人们关注漏水的水龙头.因此,两名同学分别做了水龙头漏水实验,他们用于接水的量筒最大容量为100毫升. 实验一:小王同学在做水龙头漏水实验时,每隔10秒观察量筒中水的体积,记录的数据如下表(漏出的水量精确到1毫升):(1)在图1(2)如果小王同学继续实验,请求出多少秒后量筒中的水会满而溢出(精确到1秒).(3)按此漏水速度,1小时会漏水_______千克(精确到0.1千克).图1 图2实验二:小李同学根据自己的实验数据画出的图象如图2所示,为什么图象中会出现与横轴“平行”的部分?【答案】解:实验一:(1)如图所示:V/(2)设V与t的函数关系式为V = kt + b,根据表中数据知:当t = 10时,V = 2;当t = 20时,V = 5;∴210,520,k bk b=+=+⎧⎨⎩解得:3,101.kb⎧=⎪⎨⎪=-⎩∴V与t的函数关系式为3110V t=-.由题意得:3110010t-≥,解得,1010233633t=≥.V/V/∴ 约337秒后,量筒中的水会满而开始溢出. (3)1.1千克实验二:因为小李同学接水的量筒装满后水开始溢出3. (2013昭通市,附加题3,12分)如图3,在⊙C 的内接△AOB 中,AB = AO = 4,tan ∠AOB= 34,抛物线y = a (x -2)2+m (a ≠0)经过点A (4,0)与点(-2,6). (1)求抛物线的解析式;(2)直线m 与⊙C 相切于点A ,交y 轴于点D ,动点P 在线段OB 上,从点O 出发向点B 运动,同时动点Q 在线段DA 上,从点D 出发向点A 运动,点P 的速度为每秒1个单位长,点Q 的速度为每秒2个单位长. 当PQ ⊥AD 时,求运动时间t 的值.图3【答案】解:(1)将点A (4,0)和点(-2,6)的坐标代入y = a (x -2)2+m 中,得方程组,40,16 6.a m a m +=⎧⎨+=⎩解之,得1,22.a m ⎧=⎪⎨⎪=-⎩ ∴ 抛物线的解析式为2122y x x =-(2)如图,连接AC 交OB 于E.∵ 直线m 切⊙C 于点A , ∴ AC ⊥m .∵ 弦 AB = AO , ∴ AB AO =. ∴ AC ⊥OB ,∴ m ∥OB . ∴ ∠ OAD =∠AOB .∵ OA =4,tan ∠AOB =43,∴ OD = OA ·tan ∠OAD =4×43= 3. 作OF ⊥AD 于F ,则OF = OA ·sin ∠OAD = 4×53= 2.4 .t 秒时,OP =t ,DQ =2t ,若PQ ⊥AD , 则 FQ =OP = t. DF =DQ -FQ = t.∴ △ODF 中,t = DF = 22OD OF -=1.8秒AxP FQD C Bym O E4.(2013昭通市,附加题4,14分)已知△ABC 为等边三角形,点D 为直线BC 上的一个动点(点D 不与B C 、重合),以AD 为边作菱形ADEF (A D E F 、、、按逆时针排列),使60DAF ∠=︒,连接CF .(1)如图4,当点D 在边BC 上时,求证:①BD = CF , ②AC = CF + CD .(2)如图5,当点D 在边BC 的延长线上且其他条件不变时,结论AC = CF + CD 是否成立?若不成立,请写出AC 、CF 、CD 之间存在的数量关系,并说明理由.(3)如图6,当点D 在边CB 的延长线上且其他条件不变时,请补全图形,并直接写出AC 、C F 、CD 之间存在的数量关系ABDCEF ABC DEFA图4 图5 图6 【答案】(1)【证明】:①∵60BAD DAC DAC CAF ∠+∠=∠+∠=︒, ∴ BAD CAF ∠=∠.又∵ ,AB AC AD AF ==. ∴ △ABD ≌ △AFC , ∴ BD CF =. ② 由△ABD ≌ △AFC 知BD CF =, ∴ CF CD BD CD BC +=+=. 又在等边△ABC 中AC BC =, ∴ AC CF CD =+(2)解:AC CF CD =+不成立,应该是CF =AC +CD ,理由为:如图,延长AC 到H ,使CH CD =,连结BH , 则 在△ACD 与△BCH 中,,,,AC BC ACD BCH CD CH =∠=∠= ∴ △ACD ≌ △BCH .∴ ,.BH AD HBC DAC =∠=∠ ∴ ,.ABH FAC BH AF ∠=∠=∴ △ABH 与△CAF 中,,,.AB AC ABH FAC BH AF =∠=∠=∴ △ABH ≌△CAF , ∴AH CF =, ∴CF AC CD =+(3)解:当点D 在边CB 的延长线上且其他条件不变时,补全图形如下图6所示,此时 AC 、CF 、CD 之间存在的数量关系为CD AC CF =+.(备注:连结CF ,容易证明△ABD ≌△AHC ,∴BD HC =,又=,HC CF AC BC =)ABCD EFHADCH BFE。
云南省2021年中考数学试卷及答案解析(word版)
![云南省2021年中考数学试卷及答案解析(word版)](https://img.taocdn.com/s3/m/d80305f7de80d4d8d05a4f4d.png)
2021年云南省中考数学试卷一、填空题〔本大题共6个小题,每题3分,总分值18分〕1.|﹣3|=.2.如图,直线a∥b,直线c与直线a、b分别相交于A、B两点,假设∠1=60°,那么∠2=.3.因式分解:x2﹣1=.4.假设一个多边形的边数为6,那么这个多边形的内角和为720度.5.如果关于x的一元二次方程x2+2ax+a+2=0有两个相等的实数根,那么实数a的值为.6.如果圆柱的侧面展开图是相邻两边长分别为6,16π的长方形,那么这个圆柱的体积等于.二、选择题〔本大题共8小题,每题只有一个正确选项,每题4分,总分值32分〕7.据?云南省生物物种名录〔2021版〕的?介绍,在素有“动植物王国〞之美称的云南,已经发现的动植物有25434种,25434用科学记数法表示为〔〕A.2.5434×103B.2.5434×104C.2.5434×10﹣3D.2.5434×10﹣48.函数y=的自变量x的取值范围为〔〕A.x>2 B.x<2 C.x≤2 D.x≠29.假设一个几何体的主视图、左视图、俯视图是半径相等的圆,那么这个几何体是〔〕A.圆柱B.圆锥C.球D.正方体10.以下计算,正确的选项是〔〕A.〔﹣2〕﹣2=4 B.C.46÷〔﹣2〕6=64 D.11.位于第一象限的点E在反比例函数y=的图象上,点F在x轴的正半轴上,O是坐标原点.假设EO=EF,△EOF的面积等于2,那么k=〔〕A.4 B.2 C.1 D.﹣212.某校随机抽查了10名参加2021年云南省初中学业水平考试学生的体育成绩,得到的结果如表:成绩〔分〕46 47 48 49 50人数〔人〕 1 2 1 2 4以下说法正确的选项是〔〕A.这10名同学的体育成绩的众数为50B.这10名同学的体育成绩的中位数为48C.这10名同学的体育成绩的方差为50D.这10名同学的体育成绩的平均数为4813.以下交通标志中,是轴对称图形但不是中心对称图形的是〔〕A.B.C.D.14.如图,D是△ABC的边BC上一点,AB=4,AD=2,∠DAC=∠B.如果△ABD的面积为15,那么△ACD 的面积为〔〕A.15 B.10 C.D.5三.解答题〔共9个小题,共70分〕15.解不等式组.16.如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.17.食品平安是关乎民生的重要问题,在食品中添加过量的添加剂对人体健康有害,但适量的添加剂对人体健康无害而且有利于食品的储存和运输.为提高质量,做进一步研究,某饮料加工厂需生产A、B两种饮料共100瓶,需参加同种添加剂270克,其中A饮料每瓶需加添加剂2克,B饮料每瓶需加添加剂3克,饮料加工厂生产了A、B两种饮料各多少克?18.如图,菱形ABCD的对角线AC与BD交于点O,∠ABC:∠BAD=1:2,BE∥AC,CE∥BD.〔1〕求tan∠DBC的值;〔2〕求证:四边形OBEC是矩形.19.某中学为了丰富学生的校园体育锻炼生活,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用,因此学校随机抽取了局部同学就兴趣爱好进行调查,将收集的数据整理并绘制成以下两幅统计图,请根据图中的信息,完成以下问题:〔1〕设学校这次调查共抽取了n名学生,直接写出n的值;〔2〕请你补全条形统计图;〔3〕设该校共有学生1200名,请你估计该校有多少名学生喜欢跳绳?20.如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE.〔1〕求证:DE是⊙O的切线;〔2〕假设AE=6,∠D=30°,求图中阴影局部的面积.21.某超市为庆祝开业举办大酬宾抽奖活动,凡在开业当天进店购物的顾客,都能获得一次抽奖的时机,抽奖规那么如下:在一个不透明的盒子里装有分别标有数字1、2、3、4的4个小球,它们的形状、大小、质地完全相同,顾客先从盒子里随机取出一个小球,记下小球上标有的数字,然后把小球放回盒子并搅拌均匀,再从盒子中随机取出一个小球,记下小球上标有的数字,并计算两次记下的数字之和,假设两次所得的数字之和为8,那么可获得50元代金券一张;假设所得的数字之和为6,那么可获得30元代金券一张;假设所得的数字之和为5,那么可获得15元代金券一张;其他情况都不中奖.〔1〕请用列表或树状图〔树状图也称树形图〕的方法〔选其中一种即可〕,把抽奖一次可能出现的结果表示出来;〔2〕假设你参加了该超市开业当天的一次抽奖活动,求能中奖的概率P.22.草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售本钱为每千克20元的草莓,规定试销期间销售单价不低于本钱单价,也不高于每千克40元,经试销发现,销售量y〔千克〕与销售单价x〔元〕符合一次函数关系,如图是y与x的函数关系图象.〔1〕求y与x的函数解析式〔也称关系式〕〔2〕设该水果销售店试销草莓获得的利润为W元,求W的最大值.23.〔12分〕〔2021•云南〕有一列按一定顺序和规律排列的数:第一个数是;第二个数是;第三个数是;对任何正整数n,第n个数与第〔n+1〕个数的和等于.〔1〕经过探究,我们发现:设这列数的第5个数为a,那么,,,哪个正确?请你直接写出正确的结论;〔2〕请你观察第1个数、第2个数、第3个数,猜测这列数的第n个数〔即用正整数n表示第n数〕,并且证明你的猜测满足“第n个数与第〔n+1〕个数的和等于〞;〔3〕设M表示,,,…,,这2021个数的和,即,求证:.2021年云南省中考数学试卷参考答案与试题解析一、填空题〔本大题共6个小题,每题3分,总分值18分〕1.|﹣3|=3.【考点】绝对值.【分析】根据负数的绝对值等于这个数的相反数,即可得出答案.【解答】解:|﹣3|=3.故答案为:3.【点评】此题主要考查了绝对值的性质,正确记忆绝对值的性质是解决问题的关键.2.如图,直线a∥b,直线c与直线a、b分别相交于A、B两点,假设∠1=60°,那么∠2=60°.【考点】平行线的性质.【分析】先根据平行线的性质求出∠3的度数,再由对顶角的定义即可得出结论.【解答】解:∵直线a∥b,∠1=60°,∴∠1=∠3=60°.∵∠2与∠3是对顶角,∴∠2=∠3=60°.故答案为:60°.【点评】此题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.3.因式分解:x2﹣1=〔x+1〕〔x﹣1〕.【考点】因式分解-运用公式法.【专题】因式分解.【分析】方程利用平方差公式分解即可.【解答】解:原式=〔x+1〕〔x﹣1〕.故答案为:〔x+1〕〔x﹣1〕.【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解此题的关键.4.假设一个多边形的边数为6,那么这个多边形的内角和为720度.【考点】多边形内角与外角.【分析】根据多边形的内角和公式求解即可.【解答】解:根据题意得,180°〔6﹣2〕=720°故答案为720【点评】此题是多边形的内角和外角,主要考差了多边形的内角和公式,解此题的关键是熟记多边形的内角和公式.5.如果关于x的一元二次方程x2+2ax+a+2=0有两个相等的实数根,那么实数a的值为﹣1或2.【考点】根的判别式.【分析】根据方程有两个相等的实数根列出关于a的方程,求出a的值即可.【解答】解:∵关于x的一元二次方程x2+2ax+a+2=0有两个相等的实数根,∴△=0,即4a2﹣4〔a+2〕=0,解得a=﹣1或2.故答案为:﹣1或2.【点评】此题考查的是根的判别式,熟知一元二次方程的解与判别式之间的关系是解答此题的关键.6.如果圆柱的侧面展开图是相邻两边长分别为6,16π的长方形,那么这个圆柱的体积等于144或384π.【考点】几何体的展开图.【分析】分两种情况:①底面周长为6高为16π;②底面周长为16π高为6;先根据底面周长得到底面半径,再根据圆柱的体积公式计算即可求解.【解答】解:①底面周长为6高为16π,π×〔〕2×16π=π××16π=144;②底面周长为16π高为6,π×〔〕2×6=π×64×6=384π.答:这个圆柱的体积可以是144或384π.故答案为:144或384π.【点评】此题考查了展开图折叠成几何体,此题关键是熟练掌握圆柱的体积公式,注意分类思想的运用.二、选择题〔本大题共8小题,每题只有一个正确选项,每题4分,总分值32分〕7.据?云南省生物物种名录〔2021版〕的?介绍,在素有“动植物王国〞之美称的云南,已经发现的动植物有25434种,25434用科学记数法表示为〔〕A.2.5434×103B.2.5434×104C.2.5434×10﹣3D.2.5434×10﹣4【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:在素有“动植物王国〞之美称的云南,已经发现的动植物有25434种,25434用科学记数法表示为2.5434×104,应选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.函数y=的自变量x的取值范围为〔〕A.x>2 B.x<2 C.x≤2 D.x≠2【考点】函数自变量的取值范围.【分析】根据当函数表达式的分母中含有自变量时,自变量取值要使分母不为零,判断求解即可.【解答】解:∵函数表达式y=的分母中含有自变量x,∴自变量x的取值范围为:x﹣2≠0,即x≠2.应选D.【点评】此题考查了函数自变量取值范围的知识,求自变量的取值范围的关键在于必须使含有自变量的表达式都有意义.9.假设一个几何体的主视图、左视图、俯视图是半径相等的圆,那么这个几何体是〔〕A.圆柱B.圆锥C.球D.正方体【考点】由三视图判断几何体.【分析】利用三视图都是圆,那么可得出几何体的形状.【解答】解:主视图、俯视图和左视图都是圆的几何体是球.应选C.【点评】此题考查了由三视图确定几何体的形状,学生的思考能力和对几何体三种视图的空间想象能力.10.以下计算,正确的选项是〔〕A.〔﹣2〕﹣2=4 B.C.46÷〔﹣2〕6=64 D.【考点】二次根式的加减法;有理数的乘方;负整数指数幂;二次根式的性质与化简.【分析】依次根据负整指数的运算,算术平方根的计算,整式的除法,二次根式的化简和合并进行判断即可.【解答】解:A、〔﹣2〕﹣2=,所以A错误,B、=2,所以B错误,C、46÷〔﹣2〕6=212÷26=26=64,所以C正确;D、﹣=2﹣=,所以D错误,应选C【点评】此题是二次根式的加减法,主要考查了负整指数的运算,算术平方根的计算,整式的除法,二次根式的化简和合并同类二次根式,熟练掌握这些知识点是解此题的关键.11.位于第一象限的点E在反比例函数y=的图象上,点F在x轴的正半轴上,O是坐标原点.假设EO=EF,△EOF的面积等于2,那么k=〔〕A.4 B.2 C.1 D.﹣2【考点】反比例函数系数k的几何意义.【分析】此题应先由三角形的面积公式,再求解k即可.【解答】解:因为位于第一象限的点E在反比例函数y=的图象上,点F在x轴的正半轴上,O是坐标原点.假设EO=EF,△EOF的面积等于2,所以,解得:xy=2,所以:k=2,应选:B【点评】主要考查了反比例函数系数k的几何意义问题,关键是由三角形的面积公式,再求解k.12.某校随机抽查了10名参加2021年云南省初中学业水平考试学生的体育成绩,得到的结果如表:成绩〔分〕46 47 48 49 50人数〔人〕 1 2 1 2 4以下说法正确的选项是〔〕A.这10名同学的体育成绩的众数为50B.这10名同学的体育成绩的中位数为48C.这10名同学的体育成绩的方差为50D.这10名同学的体育成绩的平均数为48【考点】方差;加权平均数;中位数;众数.【分析】结合表格根据众数、平均数、中位数的概念求解即可.【解答】解:10名学生的体育成绩中50分出现的次数最多,众数为50;第5和第6名同学的成绩的平均值为中位数,中位数为:=49;平均数==48.6,方差=[〔46﹣48.6〕2+2×〔47﹣48.6〕2+〔48﹣48.6〕2+2×〔49﹣48.6〕2+4×〔50﹣48.6〕2]≠50;∴选项A正确,B、C、D错误;应选:A.【点评】此题考查了众数、平均数、中位数的知识,掌握各知识点的概念是解答此题的关键.13.以下交通标志中,是轴对称图形但不是中心对称图形的是〔〕A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,符合题意;B、不是轴对称图形,也不是中心对称图形,不符合题意;C、不是轴对称图形,也不是中心对称图形,不符合题意;D、是轴对称图形,也是中心对称图形,不符合题意.应选A.【点评】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.14.如图,D是△ABC的边BC上一点,AB=4,AD=2,∠DAC=∠B.如果△ABD的面积为15,那么△ACD 的面积为〔〕A.15 B.10 C.D.5【考点】相似三角形的判定与性质.【分析】首先证明△ACD∽△BCA,由相似三角形的性质可得:△ACD的面积:△ABC的面积为1:4,因为△ABD的面积为9,进而求出△ACD的面积.【解答】解:∵∠DAC=∠B,∠C=∠C,∴△ACD∽△BCA,∵AB=4,AD=2,∴△ACD的面积:△ABC的面积为1:4,∴△ACD的面积:△ABD的面积=1:3,∵△ABD的面积为15,∴△ACD的面积∴△ACD的面积=5.应选D.【点评】此题考查了相似三角形的判定和性质:相似三角形的面积比等于相似比的平方,是中考常见题型.三.解答题〔共9个小题,共70分〕15.解不等式组.【考点】解一元一次不等式组.【分析】分别解得不等式2〔x+3〕>10和2x+1>x,然后取得这两个不等式解的公共局部即可得出答案.【解答】解:∵,∴解不等式①得:x>2,解不等式②得:x>﹣1,∴不等式组的解集为:x>2.【点评】此题主要考查了解一元一次不等式组的知识,要掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.16.如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.【考点】全等三角形的判定与性质.【专题】证明题.【分析】根据全等三角形的判定方法SAS,即可证明△ABC≌△CDE,根据全等三角形的性质:得出结论.【解答】证明:∵点C是AE的中点,∴AC=CE,在△ABC和△CDE中,,∴△ABC≌△CDE,∴∠B=∠D.【点评】此题考查了全等三角形的判定和性质,全等三角形的判定方法:SSS,SAS,ASA,AAS,直角三角形还有HL.17.食品平安是关乎民生的重要问题,在食品中添加过量的添加剂对人体健康有害,但适量的添加剂对人体健康无害而且有利于食品的储存和运输.为提高质量,做进一步研究,某饮料加工厂需生产A、B两种饮料共100瓶,需参加同种添加剂270克,其中A饮料每瓶需加添加剂2克,B饮料每瓶需加添加剂3克,饮料加工厂生产了A、B两种饮料各多少克?【考点】二元一次方程组的应用.【分析】设A种饮料生产了x瓶,B种饮料生产了y瓶,根据:①A种饮料瓶数+B种饮料瓶数=100,②A 种饮料添加剂的总质量+B种饮料的总质量=270,列出方程组求解可得.【解答】解:设A种饮料生产了x瓶,B种饮料生产了y瓶,根据题意,得:,解得:,答:A种饮料生产了30瓶,B种饮料生产了70瓶.【点评】此题主要考查二元一次方程组的应用能力,在解题时要能根据题意得出等量关系,列出方程组是此题的关键.18.如图,菱形ABCD的对角线AC与BD交于点O,∠ABC:∠BAD=1:2,BE∥AC,CE∥BD.〔1〕求tan∠DBC的值;〔2〕求证:四边形OBEC是矩形.【考点】矩形的判定;菱形的性质;解直角三角形.【专题】计算题;矩形菱形正方形.【分析】〔1〕由四边形ABCD是菱形,得到对边平行,且BD为角平分线,利用两直线平行得到一对同旁内角互补,根据角之比求出相应度数,进而求出∠BDC度数,即可求出tan∠DBC的值;〔2〕由四边形ABCD是菱形,得到对角线互相垂直,利用两组对边平行的四边形是平行四边形,再利用有一个角为直角的平行四边形是矩形即可得证.【解答】〔1〕解:∵四边形ABCD是菱形,∴AD∥BC,∠DBC=∠ABC,∴∠ABC+∠BAD=180°,∵∠ABC:∠BAD=1:2,∴∠ABC=60°,∴∠BDC=∠ABC=30°,那么tan∠DBC=tan30°=;〔2〕证明:∵四边形ABCD是菱形,∴AC⊥BD,即∠BOC=90°,∵BE∥AC,CE∥BD,∴BE∥OC,CE∥OB,∴四边形OBEC是平行四边形,那么四边形OBEC是矩形.【点评】此题考查了矩形的判定,菱形的性质,以及解直角三角形,熟练掌握判定与性质是解此题的关键.19.某中学为了丰富学生的校园体育锻炼生活,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用,因此学校随机抽取了局部同学就兴趣爱好进行调查,将收集的数据整理并绘制成以下两幅统计图,请根据图中的信息,完成以下问题:〔1〕设学校这次调查共抽取了n名学生,直接写出n的值;〔2〕请你补全条形统计图;〔3〕设该校共有学生1200名,请你估计该校有多少名学生喜欢跳绳?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】〔1〕根据喜欢篮球的人数有25人,占总人数的25%即可得出总人数;〔2〕根据总人数求出喜欢羽毛球的人数,补全条形统计图即可;〔3〕求出喜欢跳绳的人数占总人数的20%即可得出结论.【解答】解:〔1〕∵喜欢篮球的人数有25人,占总人数的25%,∴=100〔人〕;〔2〕∵喜欢羽毛球的人数=100×20%=20人,∴条形统计图如图;〔3〕由得,1200×20%=240〔人〕.答;该校约有240人喜欢跳绳.【点评】此题考查的是条形统计图,熟知从条形图可以很容易看出数据的大小,便于比拟是解答此题的关键.20.如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE.〔1〕求证:DE是⊙O的切线;〔2〕假设AE=6,∠D=30°,求图中阴影局部的面积.【考点】切线的判定;扇形面积的计算.【分析】〔1〕连接OC,先证明∠OAC=∠OCA,进而得到OC∥AE,于是得到OC⊥CD,进而证明DE 是⊙O的切线;〔2〕分别求出△OCD的面积和扇形OBC的面积,利用S阴影=S△COD﹣S扇形OBC即可得到答案.【解答】解:〔1〕连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠BAE,∴∠OAC=∠CAE,∴∠OCA=∠CAE,∴OC∥AE,∴∠OCD=∠E,∵AE⊥DE,∴∠E=90°,∴∠OCD=90°,∴OC⊥CD,∵点C在圆O上,OC为圆O的半径,∴CD是圆O的切线;〔2〕在Rt△AED中,∵∠D=30°,AE=6,∴AD=2AE=12,在Rt△OCD中,∵∠D=30°,∴DO=2OC=DB+OB=DB+OC,∴DB=OB=OC=AD=4,DO=8, ∴CD===4,∴S △OCD ===8,∵∠D=30°,∠OCD=90°, ∴∠DOC=60°, ∴S 扇形OBC =×π×OC 2=,∵S 阴影=S △COD ﹣S 扇形OBC ∴S 阴影=8﹣,∴阴影局部的面积为8﹣.【点评】此题主要考查了切线的判定以及扇形的面积计算,解〔1〕的关键是证明OC ⊥DE ,解〔2〕的关键是求出扇形OBC 的面积,此题难度一般.21.某超市为庆祝开业举办大酬宾抽奖活动,凡在开业当天进店购物的顾客,都能获得一次抽奖的时机,抽奖规那么如下:在一个不透明的盒子里装有分别标有数字1、2、3、4的4个小球,它们的形状、大小、质地完全相同,顾客先从盒子里随机取出一个小球,记下小球上标有的数字,然后把小球放回盒子并搅拌均匀,再从盒子中随机取出一个小球,记下小球上标有的数字,并计算两次记下的数字之和,假设两次所得的数字之和为8,那么可获得50元代金券一张;假设所得的数字之和为6,那么可获得30元代金券一张;假设所得的数字之和为5,那么可获得15元代金券一张;其他情况都不中奖.〔1〕请用列表或树状图〔树状图也称树形图〕的方法〔选其中一种即可〕,把抽奖一次可能出现的结果表示出来;〔2〕假设你参加了该超市开业当天的一次抽奖活动,求能中奖的概率P . 【考点】列表法与树状图法.【分析】〔1〕首先根据题意画出表格,然后由表格求得所有等可能的结果;〔2〕根据概率公式进行解答即可.【解答】解:〔1〕列表得:1 2 3 41 2 3 4 52 3 4 5 63 4 5 6 74 5 6 7 8〔2〕由列表可知,所有可能出现的结果一共有16种,这些结果出现的可能性相同,其中两次所得数字之和为8、6、5的结果有8种,所以抽奖一次中奖的概率为:P==.答:抽奖一次能中奖的概率为.【点评】此题考查的是用列表法或树状图法求概率与不等式的性质.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.22.草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售本钱为每千克20元的草莓,规定试销期间销售单价不低于本钱单价,也不高于每千克40元,经试销发现,销售量y〔千克〕与销售单价x〔元〕符合一次函数关系,如图是y与x的函数关系图象.〔1〕求y与x的函数解析式〔也称关系式〕〔2〕设该水果销售店试销草莓获得的利润为W元,求W的最大值.【考点】二次函数的应用.【分析】〔1〕待定系数法求解可得;〔2〕根据:总利润=每千克利润×销售量,列出函数关系式,配方后根据x的取值范围可得W的最大值.【解答】解:〔1〕设y与x的函数关系式为y=kx+b,根据题意,得:,解得:,∴y与x的函数解析式为y=﹣2x+340,〔20≤x≤40〕.〔2〕由得:W=〔x﹣20〕〔﹣2x+340〕=﹣2x2+380x﹣6800=﹣2〔x﹣95〕2+11250,∵﹣2<0,∴当x≤95时,W随x的增大而增大,∵20≤x≤40,∴当x=40时,W最大,最大值为﹣2〔40﹣95〕2+11250=5200元.【点评】此题主要考查待定系数法求一次函数解析式与二次函数的应用,根据相等关系列出函数解析式,并由二次函数的性质确定其最值是解题的关键.23.〔12分〕〔2021•云南〕有一列按一定顺序和规律排列的数:第一个数是;第二个数是;第三个数是;…对任何正整数n,第n个数与第〔n+1〕个数的和等于.〔1〕经过探究,我们发现:设这列数的第5个数为a,那么,,,哪个正确?请你直接写出正确的结论;〔2〕请你观察第1个数、第2个数、第3个数,猜测这列数的第n个数〔即用正整数n表示第n数〕,并且证明你的猜测满足“第n个数与第〔n+1〕个数的和等于〞;〔3〕设M表示,,,…,,这2021个数的和,即,求证:.【考点】分式的混合运算;规律型:数字的变化类.【分析】〔1〕由规律可得;〔2〕先根据规律写出第n、n+1个数,再根据分式的运算化简可得;〔3〕将每个分式根据﹣=<<=﹣,展开后再全部相加可得结论.【解答】解:〔1〕由题意知第5个数a==﹣;〔2〕∵第n个数为,第〔n+1〕个数为,∴+=〔+〕=×=×=,即第n个数与第〔n+1〕个数的和等于;〔3〕∵1﹣=<=1,=<<=1﹣,﹣=<<=﹣,…﹣=<<=﹣,﹣=<<=﹣,∴1﹣<+++…++<2﹣,即<+++…++<,∴.【点评】此题主要考查分式的混合运算及数字的变化规律,根据规律=﹣得到﹣=<<=﹣是解题的关键.第21页〔共21页〕。
2021年云南省中考数学试卷及答案(word版)
![2021年云南省中考数学试卷及答案(word版)](https://img.taocdn.com/s3/m/81b834a4dbef5ef7ba0d4a7302768e9951e76ed3.png)
2021年云南省中考数学试卷一、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共32分)1.某地区2021年元旦的最高气温为9℃,最低气温为﹣2℃,那么该地区这天的最低气温比最高气温低()A.7℃B.﹣7℃C.11℃D.﹣11℃2.如图,直线c与直线a、b都相交.若a∥b,∠1=55°,则∠2=()A.60°B.55°C.50°D.45°3.一个10边形的内角和等于()A.1800°B.1660°C.1440°D.1200°4.在△ABC中,∠ABC=90°.若AC=100,sin A=,则AB的长是()A.B.C.60D.805.若一元二次方程ax2+2x+1=0有两个不相等的实数根,则实数a的取值范围是()A.a<1B.a≤1C.a≤1且a≠0D.a<1且a≠0 6.按一定规律排列的单项式:a2,4a3,9a4,16a5,25a6,…,第n个单项式是()A.n2a n+l B.n2a n﹣1C.n2a n+1D.(n+1)2a n7.如图,等边△ABC的三个顶点都在⊙O上,AD是⊙O的直径.若0A=3,则劣弧BD的长是()A.B.πC.D.2π8.2020年以来,我国部分地区出现了新冠疫情.一时间,疫情就是命令,防控就是责任,一方有难八方支援.某在疫情期间为疫区生产A、B、C、D四种型号的帐篷共20000顶,有关信息见如下统计图:下列判断正确的是()A.单独生产B型帐篷的天数是单独生产C型帐篷天数的3倍B.单独生产B型帐篷的天数是单独生产A型帐篷天数的1.5倍C.单独生产A型帐篷与单独生产D型帐篷的天数相等D.每天单独生产C型帐篷的数量最多二、填空题(本大题共6小题,每小题3分,共18分)9.已知a,b都是实数.若+(b﹣2)2=0,则a﹣b=.10.若反比例函数的图象经过点(1,﹣2),则该反比例函数的解析式(解析式也称表达式)为.11.如图图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图).已知主视图和左视图是两个全等的矩形.若主视图的相邻两边长分别为2和3,俯视图是直径等于2的圆,则这个几何体的体积为.12.如图,在△ABC中,点D,E分别是BC,AC的中点,AD与BE相交于点F.若BF=6,则BE的长是.13.分解因式:x3﹣4x=.14.已知△ABC的三个顶点都是同一个正方形的顶点,∠ABC的平分线与线段AC交于点D.若△ABC的一条边长为6,则点D到直线AB的距离为.三、解答题(本大题共9小题,共70分)15.计算:(﹣3)2++(﹣1)0﹣2﹣1+×(﹣6).16.如图,在四边形ABCD中,AD=BC,AC=BD,AC与BD相交于点E.求证:∠DAC =∠CBD.17.垃圾的分类回收不仅能够减少环境污染、美化家园,甚至能够变废为宝、节约资源.为增强学生垃圾分类意识,推动垃圾分类进校园,某中学组织全校1565名学生参加了“垃圾分类知识竞赛”(满分为100分).该校数学兴趣小组为了解全校学生竞赛分数情况,采用简单随机抽样的方法(即每名学生的竞赛分数被抽到的可能性相等的抽样方法)抽取部分学生的竞赛分数进行调查解析.(1)以下三种抽样调查方案:方案一:从七年级、八年级、九年级中指定部分学生的竞赛分数作为样本;方案二:从七年级、八年级中随机抽取部分男生的竞赛分数以及在九年级中随机抽取部分女生的竞赛分数作为样本;方案三:从全校1565名学生的竞赛分数中随机抽取部分学生的竞赛分数作为样本.其中抽取的样本最具有代表性和广泛性的一种抽样调查方案是(填写“方案一”、“方案二”或“方案三”);(2)该校数学兴趣小组根据简单随机抽样方法获得的样本,绘制出如下统计表(90分及以上为“优秀”,60分及以上为“及格”,学生竞赛分数记为x分)样本容量平均分及格率优秀率最高分最低分10083.5995%40%10052分数段50≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100频数57183040结合上述信息解答下列问题:①样本数据的中位数所在分数段为;②全校1565名学生,估计竞赛分数达到“优秀”的学生有人.18.“30天无理由退货”是营造我省“诚信旅游”良好环境,进一步提升旅游形象的创新举措.机场、车站、出租车、景区、手机短信……,“30天无理由退货”的提示随处可见,它已成为一张云南旅行的“安心卡”,极大地提高了旅游服务的品质.刚刚过去的“五•一”假期,旅游线路、住宿、餐饮、生活服务、购物等旅游消费的供给更加多元,同步的是云南旅游市场强劲复苏.某旅行社今年5月1日租用A、B两种客房一天,供当天使用.下面是有关信息:请根据上述信息,分别求今年5月1日该旅行社租用的A、B两种客房每间客房的租,19.为庆祝中国共产党成立100周年,某市组织该市七、八两个年级学生参加演讲比赛,演讲比赛的主题为“追忆百年历程,凝聚青春力量”.该市一中学经过初选,在七年级选出3名同学,其中2名女生,分别记为x1、x2,1名男生,记为y1;在八年级选出3名同学,其中1名女生,记为x3,2名男生,分别记为y2、y3.现分别从两个年级初选出的同学中,每个年级随机选出一名同学组成代表队参加比赛.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,求所有可能出现的代表队总数;(2)求选出的代表队中的两名同学恰好是一名男生和一名女生的概率P.20.如图,四边形ABCD是矩形,E、F分别是线段AD、BC上的点,点O是EF与BD的交点.若将△BED沿直线BD折叠,则点E与点F重合.(1)求证:四边形BEDF是菱形;(2)若ED=2AE,AB•AD=3,求EF•BD的值.21.某鲜花销售每月付给销售人员的工资有两种方案.方案一:没有底薪,只付销售提成;方案二:底薪加销售提成.如图中的射线l1,射线l2分别表示该鲜花销售每月按方案一,方案二付给销售人员的工资y1(单位:元)和y2(单位:元)与其当月鲜花销售量x(单位:千克)(x≥0)的函数关系.(1)分别求y1、y2与x的函数解析式(解析式也称表达式);(2)若该某销售人员今年3月份的鲜花销售量没有超过70千克,但其3月份的工资超过2000元.这个采用了哪种方案给这名销售人员付3月份的工资?22.如图,AB是⊙O的直径,点C是⊙O上异于A、B的点,连接AC、BC,点D在BA 的延长线上,且∠DCA=∠ABC,点E在DC的延长线上,且BE⊥DC.(1)求证:DC是⊙O的切线;(2)若=,BE=3,求DA的长.23.已知抛物线y=﹣2x2+bx+c经过点(0,﹣2),当x<﹣4时,y随x的增大而增大,当x>﹣4时,y随x的增大而减小.设r是抛物线y=﹣2x2+bx+c与x轴的交点(交点也称公共点)的横坐标,m=.(1)求b、c的值;(2)求证:r4﹣2r2+1=60r2;(3)以下结论:m<1,m=1,m>1,你认为哪个正确?请证明你认为正确的那个结论.。
云南省昭通市2021版中考数学试卷D卷
![云南省昭通市2021版中考数学试卷D卷](https://img.taocdn.com/s3/m/8155dae1a32d7375a517804e.png)
云南省昭通市2021版中考数学试卷D卷姓名:________ 班级:________ 成绩:________一、仔细选一选:下面每个小题给出的四个选项中,只有一个是正确的. (共10题;共20分)1. (2分) -2的倒数是()A . 2B .C .D . -22. (2分) (2019八上·平川期中) 在如图所示的数轴上,点B与点C关于点A对称,A,B两点对应的实数分别是和﹣1,则点C所对应的实数是()A . 1+B . 2+C . 2 ﹣1D . 2 +13. (2分) (2019七上·思明期中) 厦门地铁2018年客流量达到4130万人次,数据4130万用科学记数法表示为()A . 4.13×107B . 41.30×106C . 0.413×108D . 4.13×1084. (2分)(2017·顺义模拟) 如图,AB∥CD,E是BC延长线上一点,若∠B=50°,∠D=20°,则∠E的度数为()A . 20°B . 30°C . 40°D . 50°5. (2分)(2020·沈阳模拟) 下列计算中正确的是()A . b3•b2=b6B . x3+x3=x6C . a2÷a2=0D . (﹣a3)2=a66. (2分) (2019九上·金凤期中) 某养鸭场有若干只鸭,某天捉到30只全部做上标记,又过了一段时间,捉到50只,其中有2只有标记,那么估计该养鸭场有鸭子()A . 500只B . 650只C . 750只D . 900只7. (2分)某几何体的三种视图分别如下图所示,那么这个几何体可能是().A . 长方体B . 圆柱C . 圆锥D . 球8. (2分)(2017·义乌模拟) 如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于()A . 160°B . 150°C . 140°D . 120°9. (2分)(2020·岳阳) 对于一个函数,自变量x取c时,函数值等于0,则称c为这个函数的零点.若关于x的二次函数有两个不相等的零点,关于x的方程有两个不相等的非零实数根,则下列关系式一定正确的是()A .B .C .D .10. (2分) (2020八下·昆明期末) 如图,一个函数的图象由射线、线段、射线组成,其中点,,,,则下列表述正确的是()A . 当时,随的增大而增大B . 当时,随的增大而减小C . 当时,随的增大而增大D . 当时,随的增大而减小二、认真填一填:要注意认真看清题目的条件和要填写的内容,尽量完整 (共6题;共14分)11. (1分)(2019·海州模拟) 分解因式:4a2-4a+1=________.12. (1分) (2016八上·县月考) 已知关于x的不等式组的整数解共有5个,则a的取值范围是________13. (1分) (2019八上·余姚期中) 如图,在△ABC中,∠ABC和∠ACB的平分线相交于点G ,过点G作EF∥BC 交AB于E ,交AC于F ,过点G作GD⊥AC于D ,下列四个结论:①EF=BE+CF;②点G到△ABC各边的距离相等;③ ;④设GD=m , AE+AF=n ,则S△AEF=mn. 其中正确的结论有________.14. (1分)(2019·襄阳) 从2,3,4,6中随机选取两个数记作和,那么点在直线上的概率是________.15. (1分) (2017九上·虎林期中) 如图,边长为4的正方形ABCD,点P是对角线BD上一动点,点E在边CD上,EC=1,则PC+PE的最小值是________.16. (9分)(2019八下·天台期末) 计算.(1)研究规律:先观察几个具体的式子:________。
云南省昭通市2021年中考数学试卷D卷
![云南省昭通市2021年中考数学试卷D卷](https://img.taocdn.com/s3/m/f8ced4385ef7ba0d4b733b31.png)
云南省昭通市2021年中考数学试卷D卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019七上·白云月考) 绝对值大于1小于4的整数的和是()A . 0B . 5C . ﹣5D . 102. (2分) (2019七上·福田期中) 如图是一个正方体的表面展开图,若折叠成正方体后相对面上的两个数互为相反数,则的值分别为()A .B .C .D .3. (2分) (2019七下·海曙期中) 下列计算正确的是()A .B .C .D .4. (2分)数据56000用科学记数法表示为5.6×10n ,则n的值是()A . 2B . 3C . 4D . 55. (2分) (2019八上·威海期末) 一组数据0,1,2,2,3,4,若添加一个数据2,则下列统计量中发生变化的是()B . 中位数C . 平均数D . 极差6. (2分) (2017九下·富顺期中) 顺次连接对角线互相垂直的四边形各边中点所得的四边形一定是()A . 平行四边形B . 菱形C . 矩形D . 正方形7. (2分)竖直向上发射的小球的高度h(m)关于运动时间t(s)的函数表达式为h=at2+bt,其图象如图所示,若小球在发射后第2秒与第6秒时的高度相等,则下列时刻中小球的高度最高的是()A . 第3秒B . 第3.9秒C . 第4.5秒D . 第6.5秒8. (2分) (2017八下·山西期末) 解关于x的方程产生增根,则常数的值等于()A . -1B . -2C . 1D . 29. (2分)如图,⊙O的直径AB=4,点C在⊙O上,如果∠ABC=30°,那么AC的长是()A . 1B .D . 210. (2分) (2018八上·防城港期中) 如右图是三条两两相交的笔直公路,某物流公司现要修建一个货物中转站,使它到三条公路的距离相等,这个货物中转站可选的位置有()A . 3个B . 4个C . 5个D . 6个二、填空题 (共10题;共10分)11. (1分)在函数y=中,自变量x的取值范围是________12. (1分) (2016八上·肇庆期末) 因式分解:2a2-8b2=________。
云南省昭通市2021版八年级上学期数学期中考试试卷D卷
![云南省昭通市2021版八年级上学期数学期中考试试卷D卷](https://img.taocdn.com/s3/m/2a9e04d3cc17552706220832.png)
云南省昭通市2021版八年级上学期数学期中考试试卷D卷姓名:________ 班级:________ 成绩:________一、单选题 (共9题;共18分)1. (2分) (2019七下·成都期中) 下列各组数可能是一个三角形的边长的是()A . 4,4,9B . 2,6,8C . 3,4,5D . 1,2,32. (2分)(2018·恩施) 在下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .3. (2分)如图是一个由四根木条钉成的框架,拉动其中两根木条后,它的形状将会改变,若固定其形状,下列有四种加固木条的方法,不能固定形状的是钉在()两点上的木条.A . A和FB . C和EC . C和AD . E和F4. (2分) (2020七下·黄石期中) 如果一个多边形的内角和等于它的外角和,那么这个多边形是()A . 六边形B . 五边形C . 四边形D . 三角形5. (2分)(2018·嘉兴模拟) 如图,直线∥ ,以直线上的点A为圆心.适当长为半径画弧,分别交直线,于点B,C,连接AB,BC.那么∠1=40°,则∠ABC=()A . 40°B . 50°C . 70°D . 80°6. (2分)如图,AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,得到下列四个结论:①OA=OD;②AD⊥EF;③当∠A=90°时,四边形AEDF是正方形;④AE+DF=AF+DE.其中正确的是()A . ②③B . ②④C . ①③④D . ②③④7. (2分)如图,直线CD是线段AB的垂直平分线,P为直线CD上的一点,已知线段PA=5,则线段PB的长度为()A . 6B . 5C . 4D . 38. (2分)(2017·苏州模拟) 如图,△ABC中,AB=AC=15,AD平分∠BA C,点E为AC的中点,连接DE,若△CDE的周长为21,则BC的长为()A . 16B . 14C . 12D . 69. (2分) (2016九上·仙游期末) 如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心。
云南省昭通市2021版中考数学试卷D卷(模拟)
![云南省昭通市2021版中考数学试卷D卷(模拟)](https://img.taocdn.com/s3/m/961f839804a1b0717ed5dd5f.png)
云南省昭通市2021版中考数学试卷D卷姓名:________ 班级:________ 成绩:________一、选择题: (共8题;共16分)1. (2分) -5的相反数是()A . 5B . -5C . 1/5D . -1/52. (2分)(2017·宁波模拟) 李克强总理在2017年政府工作报告中指出,今年公路水运投资为1.8万亿元,其中“1.8万亿元”用科学记数法表示为()A . 1.8×108元B . 1.8×1012元C . 18×1011元D . 0.18×1012元3. (2分) (2015九上·丛台期末) 下列四个几何体中,左视图为圆的是()A .B .C .D .4. (2分)(2018·泸县模拟) 一元二次方程x2+3x=0的根为()A . ﹣3B . 3C . 0,3D . 0,﹣35. (2分)如图,在 ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为()A . 4B . 3C .D . 26. (2分)如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2m,另一边减少了3m,剩余一块面积为20m2的矩形空地,则原正方形空地的边长是()A . 7mB . 8mC . 9mD . 10m7. (2分) (2019九下·未央月考) 如图,△ABC中,D,E分别为AC,BC边上的点,AB∥DE,CF为AB边上的中线,若AD=5,CD=3,DE-4,则BF的长为()A .B .C .D .8. (2分)(2017·玉林模拟) 如图,⊙O的半径为2,AB,CD是互相垂直的两条直径,点P是⊙O上任意一点(P与A,B,C,D不重合),过点P作PM⊥AB于点M,PN⊥CD于点N,点Q是MN的中点,当点P沿着圆周转过45°时,线段OQ所扫过过的面积为()A .B .C .D .二、填空题 (共8题;共11分)9. (1分)(2017·金华) 分解因式: ________10. (1分) (2018八上·望谟月考) 已知的两条边长分别为3和5,且第三边的长c为整数,则c 的取值可以为________.11. (2分) (2017八下·顺义期末) 小东、小林两名射箭运动员在赛前的某次测试中各射箭10次,成绩及各统计量如下图、表所示:若让你选择其中一名参加比赛则你选择的运动员是:________理由是:________12. (2分)(2019·宝鸡模拟) 点A(3,﹣2)关于y轴的对称点B在反比例函数y=的图象上,则B点的坐标为________;k=________.13. (2分)(2017·蓝田模拟) 请从以下两个小题中任选一个作答,若多选,则按所选的第一题计分.A、正八边形的一个中心角的度数为________°.B、用科学计算器比较大小:cos20°________π.14. (1分)(2019·湟中模拟) 点P既在反比例函数y=- (x>0)的图象上,又在一次函数y=-x-2的图象上,则P点的坐标是________.15. (1分)(2017·邵阳模拟) 如图,AB是⊙O的直径,AB=15,AC=9,则tan∠ADC=________.16. (1分)(2017·连云港模拟) 如图,已知CO1是△ABC的中线,过点O1作O1E1∥AC交BC于点E1 ,连接AE1交CO1于点O2;过点O2作O2E2∥AC交BC于点E2 ,连接AE2交CO1于点O3;过点O3作O3E3∥AC交BC 于点E3 ,…,如此继续,可以依次得到点O4 , O5 ,…,On和点E4 , E5 ,…,En .则OnEn=________AC.(用含n的代数式表示)三、解答题 (共8题;共65分)17. (5分)(2017·天门模拟) 计算:÷(a+2﹣).18. (5分) (2019八上·东台期中) 已知:如图,AD,BC相交于点O,OA=OD,AB∥CD.求证:AB=CD.19. (15分)某校了解九年级学生近两个月“推荐书目”的阅读情况,随机抽取了该年级的部分学生,调查了他们每人“推荐书目”的阅读本数.设每名学生的阅读本数为n,并按以下规定分为四档:当n<3时,为“偏少”;当3≤n<5时,为“一般”;当5≤n<8时,为“良好”;当n≥8时,为“优秀”.将调查结果统计后绘制成不完整的统计图表:阅读本数n(本)123456789人数(名)126712x7y1请根据以上信息回答下列问题:(1)分别求出统计表中的x、y的值;(2)估计该校九年级400名学生中为“优秀”档次的人数;(3)从被调查的“优秀”档次的学生中随机抽取2名学生介绍读书体会,请用列表或画树状图的方法求抽取的2名学生中有1名阅读本数为9的概率.20. (5分)(2016·贵阳模拟) 暴雨过后,某地遭遇山体滑坡,武警总队派出一队武警战士前往抢险.半小时后,第二队前去支援,平均速度是第一队的1.5倍,结果两队同时到达.已知抢险队的出发地与灾区的距离为90千米,两队所行路线相同,问两队的平均速度分别是多少?21. (5分)(2018·姜堰模拟) 如图,小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B,C 两点的俯角分别为60°和30°,已知大桥BC的长度为100m,且与地面在同一水平面上.求热气球离地面的高度.(结果保留根号)22. (10分) (2018九上·灵石期末) 如图,已知A(-4,2),B(n,-4)两点是一次函数y=kx+b和反比例函数y= 的图象的两个交点.(1)求反比例函数的表达式和n的值;(2)观察图象,直接写出不等式kx+b- >0的解集.23. (10分) (2016九上·宁波期末) 如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E.(1)求证:BE=CE;(2)若BD=2,BE=3,求AC的长.24. (10分) (2016九上·庆云期中) 探究:如图1和2,四边形ABCD中,已知AB=AD,∠BAD=90°,点E、F分别在BC、CD上,∠EAF=45°.(1)①如图1,若∠B、∠ADC都是直角,把△ABE绕点A逆时针旋转90°至△ADG,使AB与AD重合,则能证得EF=BE+DF,请写出推理过程;②如图2,若∠B、∠D都不是直角,则当∠B与∠D满足数量关系时,仍有EF=BE+DF;(2)拓展:如图3,在△ABC中,∠BAC=90°,AB=AC=2 ,点D、E均在边BC上,且∠DAE=45°.若BD=1,求DE的长.参考答案一、选择题: (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共8题;共11分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共65分)17-1、18-1、19-1、19-2、19-3、20-1、21-1、22-1、22-2、23-1、23-2、24-2、。
云南省昭通市2021版八年级下学期期中数学试卷D卷
![云南省昭通市2021版八年级下学期期中数学试卷D卷](https://img.taocdn.com/s3/m/6ceb51a108a1284ac85043a7.png)
云南省昭通市2021版八年级下学期期中数学试卷D卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)如图是一个以点A为对称中心的中心对称图形,若∠C =90°,∠B = 30°,AC = 1,则BB′的长为()A . 2B . 4C .D . 82. (2分)若m+2>n+2,则下列各不等式不能成立的是()A . m+3>n+2B . -m<-nC . m>nD . -m>-n3. (2分)在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(-3,2)重合,则点A的坐标是()A . (2,5)B . (-8,5)C . (-8,-1)D . (2,-1)4. (2分)如图,函数y=ax-1的图象过点(1,2),则不等式ax-1>2的解集是()A . x<1D . x>25. (2分) (2019八上·武汉月考) 如图,在平面直角坐标系中,A(-3,0),B(0,3),DA⊥x轴,点C在OA上且∠CDB=∠ OBD,则∠CBD的度数是()A . 72°B . 60°C . 45°D . 36°6. (2分)如图,含有30°的直角三角板△ABC,∠BAC=90°,∠C=30°,将△ABC绕着点A逆时针旋转,得到△AMN,使得点B落在BC边上的点M处,过点N的直线l∥BC,则∠1的度数为()A . 15°B . 30°C . 45°D . 60°7. (2分)如图,已知AB∥CD,CE、AE分别平分、,则= ()A .B .8. (2分)(2018·甘孜) 下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .9. (2分)下列数中:76, 73, 79, 80, 74.9, 75.1, 90, 60,是不等式x>50的解的有()A . 5个B . 6个C . 7个D . 8个10. (2分)(2017·黑龙江模拟) 在△ABC中,∠C=90°,BC=2,sinA= ,则边AC的长是()A .B . 3C .D .二、填空题 (共8题;共8分)11. (1分) (2016八上·平南期中) 命题“线段垂直平分线上的点到线段两端的距离相等”的逆命题是________.12. (1分) (2016九上·肇源月考) 一种药品的说明书上写着:“每日用量60~120mg,分4次服用”,一次服用这种药量x(mg)范围为 ________ mg.13. (1分) (2017九上·平舆期末) 如图,已知菱形OABC的顶点O(0,0),B(2,2),若菱形绕点O逆时针旋转,每秒旋转45°,则第50秒时,菱形的对角线交点D的坐标为________.14. (1分)按如图的程序进行操作,规定:程序运行从“输入x”到“判断结果是否≥365”为一次操作.如果操作进行2次就得到输出结果,那么输入值x的取值范围是________.15. (1分) (2019八下·温州期末) 如图,点A,B分别在x轴、y轴上,点O关于AB的对称点C在第一象限,将△ABC沿x轴正方向平移k个单位得到△DEF(点B与E是对应点),点F落在双曲线y= 上,连结BE交该双曲线于点G.∠BAO=60°,OA=2GE,则k的值为 ________ .16. (1分) (2018八上·长春期末) 如图,分别以线段BC的两个端点为圆心、适当长度(大于BC长的一半)为半径作圆弧,两弧相交于点D和E;作直线DE交BC于点F;在直线DE上任取一点A(点A不与点F重合),连结AB、AC.若AB=9cm,∠C=60 ,则CF的长为________cm.17. (1分)满足2n-1>1-3n的最小整数值是________。
云南省昭通市2021年九年级上学期数学期中考试试卷D卷
![云南省昭通市2021年九年级上学期数学期中考试试卷D卷](https://img.taocdn.com/s3/m/4ebf6af6daef5ef7ba0d3cb4.png)
云南省昭通市2021年九年级上学期数学期中考试试卷D卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共10分)1. (1分) (2019九上·萧山开学考) 下列方程中属于一元二次方程的是()A .B .C .D .2. (1分)(2017·宜兴模拟) 下列图形是中心对称图形的是()A .B .C .D .3. (1分) (2019九上·綦江月考) 函数y=ax+b和y=ax2+bx+c在同一直角坐标系内的图象可以是图中的()A .B .C .D .4. (1分)三角形一边长为,另两边长是方程的两实根,则这是一个().A . 直角三角形B . 锐角三角形C . 钝角三角形D . 任意三角形5. (1分) (2016九上·武汉期中) 用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A . (x+1)2=6B . (x+2)2=9C . (x﹣1)2=6D . (x﹣2)2=96. (1分)(2019·河池模拟) 抛物线y=﹣(x﹣8)2+2的顶点坐标是()A . (2,8)B . (8,2)C . (﹣8,2)D . (﹣8,﹣2)7. (1分) (2016九上·和平期中) 已知点A(a,b)与点B(2,2)是关于原点O的对称点,则()A . a=﹣2,b=﹣2B . a=﹣2,b=2C . a=2,b=﹣2D . a=2,b=28. (1分) (2016九上·宁海月考) 抛物线y=3(x-2)2+1图象上平移2个单位,再向左平移2个单位所得的解析式为()A . y=3x2+3B . y=3x2-1C . y=3(x-4)2+3D . y=3(x-4)2-19. (1分) (2017七上·定州期末) 如图,已知点M是直线AB上一点,∠AMC=52°48′,∠BMD=72°19°,则∠CMD等于()A . 49°07′B . 54°53′C . 55°53′D . 53°7′10. (1分) (2019九上·宁河期中) 若抛物线y=x2-2x+c与y轴的交点为(0,-3),则下列说法不正确的是()A . 抛物线开口向上B . 抛物线的对称轴是C . 当时,y的最大值为4D . 抛物线与x轴的交点为,二、填空题 (共6题;共6分)11. (1分) (2019九上·昌平期中) 把一元二次方程化为一般形式为:________,二次项为:________,一次项系数为:________,常数项为:________。
云南省昭通市2021版中考数学模拟试卷D卷
![云南省昭通市2021版中考数学模拟试卷D卷](https://img.taocdn.com/s3/m/29ffb2dbcc7931b764ce1555.png)
云南省昭通市2021版中考数学模拟试卷D卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)若-a>a ,则a必为()A . 负整数B . 正整数C . 负数D . 正数2. (2分)(2019·合肥模拟) 下列计算正确是()A .B .C .D .3. (2分)下列图形,是轴对称图形,又是中心对称图形的是()A . 等边三角形B . 扇形C . 等腰梯形D . 矩形4. (2分)(2017·潮安模拟) PM2.5是指大气中直径小于或等于2.5μm(0.0000025m)的颗粒物,含有大量有毒、有害物质,也称可入肺颗粒物.将0.0000025用科学记数法表示为()A . 25×10﹣7B . 2.5×10﹣6C . 0.25×10﹣5D . 2.5×1065. (2分)(2018·永州) 下列命题是真命题的是()A . 对角线相等的四边形是矩形B . 对角线互相垂直的四边形是菱形C . 任意多边形的内角和为360°D . 三角形的中位线平行于第三边,并且等于第三边的一半6. (2分)⊙O的半径为2,点P是⊙O外一点,OP的长为3,那么以P为圆心,且与⊙O相切的圆的半径一定是()A . 1或5B . 1C . 5D . 1或47. (2分)一个几何体由一些小正方体摆成,其主视图与左视图如图所示,其俯视图不可能()A .B .C .D .8. (2分)在△ABC中,∠ABC=∠C=2∠A,BD是∠ABC的平分线,DE∥BC,则图中等腰三角形的个数是()A . 2B . 3C . 4D . 59. (2分)某校为了了解九年级学生的体能情况,抽调了一部分学生进行一分钟跳绳测试,将测试成绩整理后作出如下统计图.甲同学计算出前两组的频率和是0.12,乙同学计算出跳绳次数不少于100次的同学占96%,丙同学计算出从左至右第二、三、四组的频数比为4:17:15,统计图如图所示,则本次测试共抽调人数为()A . 120B . 150C . 180D . 无法确定10. (2分)若同一个圆的内角正三角形、正方形、正六边形的边心距分别为r3 , r4 , r6 ,则r3:r4:r6等于()A .B .C .D .11. (2分)(2016·淄博) 如图是由边长相同的小正方形组成的网格,A,B,P,Q四点均在正方形网格的格点上,线段AB,PQ相交于点M,则图中∠QMB的正切值是()A .B . 1C .D . 212. (2分)(2017·佳木斯) 如图,在边长为4的正方形ABCD中,E、F是AD边上的两个动点,且AE=FD,连接BE、CF、BD,CF与BD交于点G,连接AG交BE于点H,连接DH,下列结论正确的个数是()①△ABG∽△FDG ②HD平分∠EHG ③AG⊥BE ④S△HDG:S△HBG=tan∠DAG ⑤线段DH的最小值是2 ﹣2.A . 2B . 3C . 4D . 5二、填空题 (共6题;共6分)13. (1分) (2017八下·官渡期末) 当x________时,在实数范围内有意义.14. (1分)(2019·润州模拟) 如图,A、B、C是⊙O的圆周上三点,∠ACB=40°,则∠ABO等于________度.15. (1分)(2017·新吴模拟) 如图是一个废弃的扇形统计图,小华利用它的阴影部分来制作一个圆锥,则这个圆锥的底面半径是________.16. (1分)如图,正比例函数y=kx,y=mx,y=nx在同一平面直角坐标系中的图象如图所示.则比例系数k,m,n的大小关系是________ .17. (1分) (2017八下·老河口期末) 在▱ABCD中,AB=5,AC=6,当BD=________时,四边形ABCD是菱形.18. (1分)(2018·铜仁模拟) 如图△ABC中,∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,若cos∠BDC= ,则BC的长为________.三、解答题 (共8题;共78分)19. (5分)解下列分式方程:(1);(2).20. (7分)在如图所示的正方形网格中,每个小正方形的边长为1各单位,格点三角形(顶点是网格线的交点的三角形)△ABC的顶点A,B的坐标分别为(1,4),(﹣3,1).(1)请在网格所在的平面内作出符合上述表述的平面直角坐标系;(2)请你将A、B、C的横坐标不变,纵坐标乘以﹣1所得到的点A1、B1、C1描在坐标系中,并画出△A1B1C1,其中点C1的坐标为________.(3)△ABC的面积是________.21. (15分)(2017·深圳模拟) 2016年中考前,张老师为了解全市初三男生体育考试项目的选择情况(每人限选一项),在全市范围内随机调查了部分初三男生,将调查结果分成五类:A.推实心球(2kg);B.立定跳远;C.半场运球;D.跳绳;E.其他,并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)将上面的条形统计图补充完整;(2)假定全市初三毕业学生中有32000名男生,试估计全市初三男生中选半场运球的人数有多少人;(3)甲、乙两名初三男生在上述选择率较高的三个项目:B.立定跳远;C.半场运球;D.跳绳中各选一项,同时选择半场运球、立定跳远的概率是多少?请用列表法或画树形图的方法加以说明并列出所有等可能的结果.22. (10分) (2020九下·碑林月考) 如图,在菱形ABCD中,对角线AC,BD相交于点O,过点O作一条直线分别交DA,BC的延长线于点E,F,连接BE,DF.(1)求证:四边形BFDE是平行四边形;(2)若EF⊥AB,垂足为M,,AE=2,求菱形ABCD的边长.23. (10分) (2017八下·武清期中) 如图,将长为2.5米长的梯子AB斜靠在墙上,BE长0.7米.(1)求梯子上端到墙的底端E的距离(即AE的长);(2)如果梯子的顶端A沿墙下滑0.4米(即AC=0.4米),则梯脚B将外移(即BD长)多少米?24. (5分)(2016·江都模拟) “上海迪士尼乐园”将于2016年6月16日开门迎客,小明准备利用暑假从距上海2160千米的某地去“上海迪士尼乐园”参观游览,下图是他在火车站咨询得到的信息:根据上述信息,求小明乘坐城际直达动车到上海所需的时间.25. (10分) (2016八下·宝丰期中) 在等腰直角三角形ABC中,∠C=90°,AC=BC=10cm,等腰直角三角形DEF的顶点D为AB的中点.(1)如图(1)所示,DE⊥AC于M,BC⊥DF于N,则DM与DN在数量上有什么关系?两个三角形重叠部分的面积是多少?(2)在(1)的基础上,将三角形DEF绕着点D旋转一定的角度,且AC与DE相交于M,BC与DF相交于N,如图(2),则DM与DN在数量上有什么关系?两个三角形重叠部分的面积是多少?26. (16分) (2016九下·农安期中) 如图,在平面直角坐标系中,抛物线y=﹣x2+mx(m>0且m≠1)与x 轴交于原点O和点A,点B的坐标为(1,﹣1),连结AB,将线段AB绕点A顺时针旋转90°得到线段AC,连结OB、OC.(1)求点A的横坐标.(用含m的代数式表示).(2)若m=3,则点C的坐标为________.(3)当点C与抛物线的顶点重合时,求四边形ABOC的面积.(4)结合m的取值范围,直接写出∠AOC的度数.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共78分)19-1、20-1、20-2、20-3、21-1、21-2、21-3、22-1、22-2、23-1、23-2、24-1、25-1、25-2、26-1、26-2、26-3、。
昭通市2021年中考数学一模试卷D卷
![昭通市2021年中考数学一模试卷D卷](https://img.taocdn.com/s3/m/11efac7d964bcf84b8d57b02.png)
昭通市2021年中考数学一模试卷D卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2019七上·宜兴月考) 给出下列判断:①单项式5×103x2y的系数是5;②x﹣2xy+y是二次三项式;③多项式﹣3a2b+7a2b2﹣2ab+1的次数是9;④几个有理数相乘,当负因数有奇数个时,积为负.其中判断正确的是()A . 1个B . 2个C . 3个D . 4个2. (2分)(2018·绍兴模拟) α为锐角,当无意义时,sin(α+15°)+cos(α﹣15°)的值为()A .B .C .D .3. (2分)下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()A .B .C .D .4. (2分)(2017·番禺模拟) 2016年中国GDP增速6.7%,经济总量约为744000亿元,中国经济总量在各个国家中排名第二,将744000用科学记数法表示为()A . 7.44×105B . 7.4×105C . 7.44×106D . 744×1035. (2分)(2017·北区模拟) 如图是一个由5个相同的正方体组成的立体图形,它的主视图是()A .B .C .D .6. (2分) (2016八上·抚宁期中) 估计 +3的值()A . 在5和6之间B . 在6和7之间C . 在7和8之间D . 在8和9之间7. (2分)下列说法正确的是().A . 一个游戏的中奖概率是,则做100次这样的游戏一定会中奖B . 为了解全国中学生的心理健康情况,应该采用普查的方式C . 一组数据 8,8,7,10,6,8,9 的众数和中位数都是8D . 若甲组数据的方差s2=0.01,乙组数据的方差s2=0.1,则乙组数据比甲组数据稳定8. (2分)(2017·黄冈模拟) 下列各式变形中,正确的是()A . x2•x3=x6B . =|x|C . (x2﹣)÷x=x﹣1D . x2﹣x+1=(x﹣)2+9. (2分) (2019七下·灌云月考) 如图,把一张长方形的纸片ABCD沿EF折叠,若∠AED′=40°,则∠DEF 的度数为()A . 40°B . 50°C . 60°D . 70°10. (2分) (2016八上·县月考) 如图,正三角形的内切圆半径为1,那么三角形的边长为()A . 2B .C .D . 311. (2分)(2016·张家界) 在同一平面直角坐标系中,函数y=ax+b与y=ax2﹣bx的图象可能是()A .B .C .D .12. (2分)如图,在平面直角坐标系中,正方形ABCD的顶点O在坐标原点,点B的坐标为(1,4),点A 在第二象限,反比例函数y=的图象经过点A,则k的值是()A . -2B . -4C .D .二、填空题 (共6题;共15分)13. (1分)(2018·拱墅模拟) 分解因式:a3-16a=________。
昭通市2021年九年级下学期数学第一次月考试卷D卷
![昭通市2021年九年级下学期数学第一次月考试卷D卷](https://img.taocdn.com/s3/m/dee8c955bceb19e8b9f6ba17.png)
昭通市2021年九年级下学期数学第一次月考试卷D卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列式子是最简二次根式的是()A .B .C .D .2. (2分)(2018·杭州) 下列计算正确的是()A .B .C .D .3. (2分)(2017·红桥模拟) 我国倡导的“一带一路”建设将促进我国与世界一些国家的互利合作,根据规划“一带一路”地区覆盖总人口为4400000000人,这个数用科学记数法表示为()A . 44×108B . 4.4×108C . 4.4×109D . 4.4×10104. (2分)已知正多边形的一个外角等于,那么这个正多边形的边数为A . 6B . 7C . 8D . 95. (2分) (2019八下·东莞月考) 如图,在▱ABCD中,对角线AC与BD相交于点O,E是边CD的中点,连结若,,则的度数为()A .B .C .D .6. (2分)(2018·宁波) 若一组数据4,1,7,x,5的平均数为4,则这组数据的中位数为()A . 7B . 5C . 4D . 37. (2分) (2019九上·江阴期中) 如图,AB是⊙O的弦,OC⊥AB,交⊙O于点C,连接OA,OB,BC,若∠ABC =20°,则∠AOB的度数是()A . 40°B . 50°C . 70°D . 80°8. (2分) (2019九下·梅江月考) 如图,二次函数的图象开口向下,且经过第三象限的点若点P的横坐标为,则一次函数的图象大致是A .B .C .D .9. (2分) (2019九下·梅江月考) 如图,平行于x轴的直线与函数,的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若的面积为4,则的值为A . 8B .C . 4D .10. (2分) (2018九上·焦作期末) 如图所示的四棱柱的主视图为()A .B .C .D .二、填空题 (共6题;共7分)11. (1分)分解因式:ab2﹣4ab+4a=________.12. (1分) (2020九下·黄冈期中) 计算: =________.13. (1分)(2017·锦州) 计算:﹣6 +tan60°=________.14. (1分) (2018九上·阜宁期末) 在△ABC中,(tanC-1)2 +∣ -2cosB∣=0,则∠A=________15. (2分) (2020七下·巴中期中) 已知,且,则 ________16. (1分) (2015九上·宁波月考) △ABC中,∠A、∠B均为锐角,且,则△ABC的形状是________.三、解答题 (共9题;共70分)17. (5分) (2017八上·东城期末) 因式分解:3ab2+6ab+3a.18. (5分) (2019七下·谢家集期中)(1)(2)如果2a﹣1和3﹣a是一个正数的平方根,6a+b的立方根是﹣2,求2a+b的平方根.19. (10分) (2019九下·梅江月考) 如图,在Rt△ABC中,∠C=90°,∠A=30°.(1)尺规作图:作∠B的平分线BD交AC于点D;(不写作法,保留作图痕迹)(2)若DC=2,求AC的长.20. (2分)(2019·昆明模拟) 某区域为响应“绿水青山就是金山银山”的号召,加强了绿化建设.为了解该区域群众对绿化建设的满意程度,某中学数学兴趣小组在该区域的甲、乙两个片区进行了调查,得到如下不完整统计图.请结合图中信息,解决下列问题:(1)此次调查中接受调查的人数为多少人,其中“非常满意”的人数为多少人;(2)兴趣小组准备从“不满意”的4位群众中随机选择2位进行回访,已知这4位群众中有2位来自甲片区,另2位来自乙片区,请用画树状图或列表的方法求出选择的群众来自甲片区的概率.21. (6分) (2019九下·梅江月考) 如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.(1)求证:四边形OCED是矩形;(2)若CE=1,DE=2,ABCD的面积是________.22. (10分) (2019九下·梅江月考) 某服装店用4500元购进一批衬衫,很快售完,服装店老板又用2100元购进第二批该款式的衬衫,进货量是第一次的一半,但进价每件比第一批降低了10元.(1)这两次各购进这种衬衫多少件?(2)若第一批衬衫的售价是200元/件,老板想让这两批衬衫售完后的总利润不低于2100元,则第二批衬衫每件至少要售多少元?23. (15分) (2019九下·梅江月考) 如图,△ABC中,AB=AC,∠BAC=90°,点D,E分别在AB,BC上,∠EAD=∠EDA,点F为DE的延长线与AC的延长线的交点.(1)求证:DE=EF;(2)判断BD和CF的数量关系,并说明理由;(3)若AB=3,AE= ,求BD的长.24. (2分) (2019九上·惠城期末) 如图,在△ABC中,AB=AC,∠BAC=54°,以AB为直径的⊙O分别交AC、BC于点D、E,过点B作直线BF,交AC的延长线于点F.(1)求证:BE=CE;(2)若AB=6,求弧DE的长;(3)当∠F的度数是多少时,BF与⊙O相切,证明你的结论.25. (15分) (2019九下·梅江月考) 在平面直角坐标系中,已知抛物线y=ax2+bx+c(a≠0)经过点A(1,0).B(4,0),C(0,2)三点,直线y=kx+t经过B.C两点,点D是抛物线上一个动点,过点D作y轴的平行线,与直线BC相交于点E .(1)求直线和抛物线的解析式;(2)当点D在直线BC下方的抛物线上运动,使线段DE的长度最大时,求点D的坐标;(3)点D在运动过程中,若使O,C,D,E为顶点的四边形为平行四边形时,请直接写出满足条件的所有点D的坐标.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共70分)17-1、18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、25-3、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
云南省昭通市2021版中考数学试卷D卷
姓名:________ 班级:________ 成绩:________
一、选择题:本大题有10个小题,每小题3分,共30分。
(共10题;共30分)
1. (3分)下列四个运算,结果最小的是()
A .
B .
C .
D .
2. (3分)(2017·桂林模拟) 点M(﹣4,﹣1)关于y轴对称的点的坐标为()
A . (﹣4,1)
B . (4,1)
C . (4,﹣1)
D . (﹣4,﹣1)
3. (3分)(2020·宁波模拟) 如图,在正方形ABCD中, AB=4,点E在以点B为圆心的弧AC上,过点E 作弧AC的切线分别交边AD, CD于点F, G,连接AE, DE,若∠DEA=90°,则FG的长为()
A . 4
B .
C .
D . 3
4. (3分) (2019七下·梁子湖期末) 点的坐标为,且到两坐标轴的距离相等,则点的坐标为()
A .
B .
C .
D . 或
5. (3分)(2020·绍兴模拟) 学校举行图书节义卖活动,将所售款项捐给其他贫困学生.在这次义卖活动中,某班级售书情况如下图:
售价3元4元5元6元
数目14本11本10本15本
下列说法正确的是()
A . 该班级所售图书的总数收入是226元
B . 在该班级所售图书价格组成的一组数据中,中位数是4
C . 在该班级所售图书价格组成的一组数据中,众数是15
D . 在该班级所售图书价格组成的一组数据中,方差是2
6. (3分)(2017·郑州模拟) 如图,两条直线分别被三条平行直线l1 , l2 , l3所截,若AB=3,BC=6,DE=2,则DF的长为()
A . 4
B . 5
C . 6
D . 7
7. (3分) (2020八上·长沙月考) 如图,等腰中,,,于点,点是延长线上一点,点是线段上一点, .下列结论:① ;② ;③ 是等边三角形;④ .其中正确结论的个数是()
A . 1
B . 2
C . 3
D . 4
8. (3分) (2020八下·莒县期末) 已知一次函数y=kx-k,若y随x的增大而增大,则图象经过()
A . 第一、二、三象限
B . 第一、三、四象限
C . 第一、二、四象限
D . 第二、三、四象限
9. (3分)身高相等的四名同学甲、乙、丙、丁参加风筝比赛,四人放出风筝的线长、线与地面的夹角如下表(假设风筝线是拉直的),则四名同学所放的风筝中最高的是()
同学甲乙丙丁
放出风筝线长140m100m95m90m
线与地面夹角30°45°45°60°
A . 甲
B . 乙
C . 丙
D . 丁
10. (3分)(2020·宁波) 如图,一次函数 (a>0)的图象与x轴交于A,B两点,与y轴正半轴交于点C,它的对称轴为直线x=-1.则下列选项中正确的是()
A .
B .
C .
D . 当 (n为实数)时,
二、填空题:本大题有6个小题,每小题4分,共24分, (共6题;共24分)
11. (4分)简便计算:7.292﹣2.712=________
12. (4分) (2019八上·江川期末) 某学习小组,对我市居民家庭年收入进行调查,并将数据绘制成图,家庭年收入的众数为________元;这些家庭年收入的平均数为________元.
13. (4分)(2019·贺州) 已知圆锥的底面半径是1,高是,则该圆锥的侧面展开图的圆心角是________度.
14. (4分) (2019七下·苏州期末) 如图,若和的面积分别为、,则
________.
15. (4分) (2018九上·安定期末) 已知y与x-3成正比例,当x=4时,y=-1;那么当x=-4时,y=________.
16. (4分) (2020九上·桂林月考) 如图,矩形ABCD中,AB=4,AD=6,点E在边BC上,且BE∶EC=2∶1,动点P从点C出发,沿CD运动到点D停止,过点E作EF⊥PE交矩形ABCD的边于F,若线段EF的中点为M,则点P 从C运动到D的过程中,点M运动的路线长为________.
三、解答题:本大题有7个小题,共66分. (共7题;共66分)
17. (6分)已知m>0、n>0、m≠n,试比较分式与分式的大小.
18. (8分) (2017七下·平南期末) 某校九年级进行立定跳远训练,以下是刘明和张晓同学六次的训练成绩(单位:m)
刘明:2.54,2.48,2.50,2.48,2.54,2.52
张晓:2.50,2.42,2.52,2.56,2.48,2.58
(1)填空:李明的平均成绩是________.张晓的平均成绩是________.
(2)分别计算两人的六次成绩的方差,哪个人的成绩更稳定?
(3)若预知参加年级的比赛能跳过2.55米就可能得冠军,应选哪个同学参加?请说明理由.
19. (8分) (2019九上·云安期末) 如图,在Rt△ABC中,∠C=90°,∠B=30°.
(1)用直尺和圆规作⊙O,使圆心O在BC边,且⊙O经过A,B两点上(不写作法,保留作图痕迹);
(2)连接A0,求证:AO平分∠CAB.
20. (10分)(2013·南通) 如图,直线y=kx+b(b>0)与抛物线相交于点A(x1 , y1),B(x2 ,y2)两点,与x轴正半轴相交于点D,与y轴相交于点C,设△OCD的面积为S,且kS+32=0.
(1)求b的值;
(2)求证:点(y1 , y2)在反比例函数的图象上;
(3)求证:x1•OB+y2•OA=0.
21. (10分)如图,ABCD是正方形.G是 BC 上的一点,DE⊥AG于 E,BF⊥AG于 F.
(1)求证:;
(2)求证:DE=EF+FB
22. (12分)(2020·河南模拟) 如图所示,将二次函数y=x2+2x+1的图象沿x轴翻折,然后向右平移1个单位,再向上平移5个单位,得到二次函数y=ax2+bx+c的图象.函数y=x2+2x+1的图象的顶点为点A.函数y=ax2+bx+c 的图象的顶点为点C,两函数图象分别交于B、D两点.
(1)求函数y=ax2+bx+c的解析式;
(2)如图2,连接AD、CD、BC、AB,判断四边形ABCD的形状,并说明理由.
(3)如图3,连接BD,点M是y轴上的动点,在平面内是否存在一点N,使以B、D、M、N为顶点的四边形为矩形?若存在,请求出N点的坐标;若不存在,请说明理由.
23. (12分) (2020九上·大兴期末) 在平面直角坐标系中,已知P(a,b),R(c,d)两点,且,
,若过点P作x轴的平行线,过点R作y轴的平行线,两平行线交于一点S,连接PR,则称△PRS为点P,R,
S的“坐标轴三角形”.若过点R作x轴的平行线,过点P作y轴的平行线,两平行线交于一点,连接PR,则称△RP 为点R,P,的“坐标轴三角形”.右图为点P,R,S的“坐标轴三角形”的示意图.
(1)已知点A(0,4),点B(3,0),若△ABC是点A,B,C的“坐标轴三角形”,则点C的坐标为________ ;
(2)已知点D(2,1),点E(e,4),若点D,E,F的“坐标轴三角形”的面积为3,求e的值.
(3)若的半径为,点M(m,4),若在上存在一点N,使得点N,M,G的“坐标轴三角形”为等腰三角形,求m的取值范围.
参考答案
一、选择题:本大题有10个小题,每小题3分,共30分。
(共10题;共30分) 1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
二、填空题:本大题有6个小题,每小题4分,共24分, (共6题;共24分) 11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
三、解答题:本大题有7个小题,共66分. (共7题;共66分)
17-1、
18-1、
18-2、
18-3、
19-1、
19-2、
20-1、20-2、
21-1、
21-2、
22-1、
22-2、
23-1、23-2、
23-3、。