云南省昭通市中考数学试卷
昭通中考数学试题及谜底
(全卷三个大题,共 23 个小题,共 6 页;满分 120 分,考试用时 120 分钟) 注意事项:
1. 本卷为试题卷,考生必须在答题卷上解题作答,答案书写在答题卷相应位置上,在试题 卷、草稿纸上作答无效.
2. 考试结束后,请将试题卷和答题卷一并交回. 一、选择题(本大题共 7 小题,每小题只有一个正确先项,每小题 3 分,满分 21 分) 1.下列结论错误的是
A 17.(8 分)如图 6, ABCD 的两条对角线 AC 、 BD 相交于点 O .
(1) 图中有哪些三角形是全等的? (2) 选出其中一对全等三角形进行证明.
18.(8 分)水是生命之源,水是希望之源,珍惜每一滴水,科学用水,有效节水,就能播种希
望.某居民小区开展节约用水活动, 3 月份各户用水量均比 2 月份有所下降,其中的 20 户、
B.
6.如图 2, AB ∥CD , EF AB 于 E , EF 交 CD 于 F ,已知 2 30° ,则 1 是 A. 20° B. 60° C. 30° D. 45° 7.二次函数 y a图x2 1 bx c 的图象如图 3 所示,则下列图结2 论正确的是
A. a 0,b,,0 c 0 b2 4ac 0
C.
D.
二、填空题(本大题共 8 小题,每小题 3 分,满分 24 分)
8. 3 的相反数是__________. 9.计算: (3)0 1 __________.
10.分解因式: 3a2b 4ab __________.
11.如图 4,上海世博会的中国馆建筑外观以“东方之冠,鼎盛中华,天下粮仓,富庶百姓”为
A. 4 2
B.方程 2x 4 0 的解为 x 2
2022年云南昭通中考数学试题及答案
2022年云南昭通中考数学试题及答案《全卷三个大题,共24个小题,共8页∶满分120分,考题用时120分钟》注意事项∶1.本卷为试题卷。
考生必须在答题卡上解题作答。
答案应书写在答题卡的相应位置上,在 试题卷、草稿纸上作答无效。
2.考题结束后,请将试题卷和答题卡一并交回。
一、选择题(本大题共12小题.每小题只有一个正确选项,每小题4分,共48分)1.赤道长约为40000 000m ,用科学记数法可以把数字40000 000表示为()A .4×107 B.40×106 C . 400×105 C. 4000×1032.中国是最早采用正负数表示相反意义的量,并进行负数运算的国家。
若零上10℃记作 +10℃,则零下10℃可记作()A.10℃B.0℃C.-10℃D.-20℃3.如图,已知直线c 与直线a 、b 都相交.若a// b ,∠1=85°,则∠2=()A. 110°B.105°C.100°D. 95°4.反比例函数y=x 6的图象分别位于() A.第一、第三象限 B.第一、第四象限 C.第二、第三象限D.第二、第四象限5.如图,在∆ABC 中,D 、E 分别为线段BC 、BA 的中点,设∆ABC 的面积为S 1,∆EBD 的面积为S 2.则21s s = () 87.43.41.B 21.A D C 6.为庆祝中国共产主义青年团建团100周年,某校团委组织以“扬爱国精神,展青春风采” 为主题的合唱活动,下表是九年级一班的得分情况:评委1 评委2 评委3 评委4 评委59.9 9.7 9.6 10 9.8数据9.9,9.7,9.6,10, 9.8的中位数是()A.9.6B.9.7C.9.8D.9.97. 下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是()A.三校柱B.三棱锥C.四柱D. 圆锥俯视图主视图 俯视图 左视图8.按一定规律排列的单项式∶x,3x²,5x³,7x 4,9x 5,……,第n 个单项式是()A.(2n-1)n xB.(2n+1)n xC.(n-1)n xD.(n+1)n x9.如图,已知AB 是⊙O 的直径,CD 是OO 的弦,AB ⟂CD.重足为E.著AB=26,CD=24,则∠OCE 的余弦值为() 1213.D 127.C 1312.B 137.A 10.下列运算正确的是()()236330a a a .D a 8a 2.C 03.B 532.A =÷-=-==+11.如图,OB 平分∠AOC ,D 、E 、F 分别是射线OA 、射线OB 、射线OC 上的点,D 、E 、F 与O 点都不重合,连接ED 、EF 若添加下列条件中的某一个.就能使∆DOE ≅∆FOE ,你认为要添加的那个条件是()A. OD=OEB. OE=OFC.∠ODE = ∠OEDD. ∠ODE=∠OFE12.某地开展建设绿色家园活动,活动期间,计划每天种植相同数量的树木,该活动开始 后、实际每天比原计划每天多植树50棵,实际植树 400棵所需时间与原计划植树300 棵所需时间相同。
2024年云南省昭通市昭阳区九年级中考一模数学试题(解析版)
2024年昭阳区第一次初中毕业诊断性检测九年级数学试题卷(全卷三个大题,共27个小题,共8页;满分100分,考试用时120分钟)注意事项:1.本卷为试题卷.考生必须在答题卡上解题作答。
答案应书写在答题卡的相应位置上,在试题卷、草稿纸上作答无效。
2.考试结束后,请将试题卷和答题卡一并交回。
一、选择题(本大题共15小题,每小题只有一个正确选项,每小题2分,共30分)1. 若气温上升记作,则气温下降记作( )A. B. C. D. 【答案】C【解析】【分析】本题考查了正负数的应用.解题的关键在于熟练掌握正数与负数表示意义相反的两种量.根据用正负数来表示具有相反的意义量:上升记为正,则下降记为负,直接得出结论即可.【详解】解:若气温上升记作,则气温下降记作,故选:C .2. 2024年昭通市人民政府继续为群众办好“十件民生实事”,为全市群众送上“民生大礼包”.其中,脱贫人口劳动力转移就业稳定在万人以上,把万用科学记数法表示为( )A. B. C. D. 【答案】C【解析】【分析】此题考查科学记数法的定义,关键是理解运用科学记数法.利用科学记数法的定义解决.科学记数法的表示形式为的形式,其中,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:万.故选:C .3. 如图,已知,则( )2C ︒2C +︒3C ︒2C-︒2C +︒3C -︒3C+︒2C ︒2C +︒3C ︒3C -︒83.683.6483.610⨯48.3610⨯58.3610⨯68.3610⨯10n a ⨯110a ≤<83.658360008.3610==⨯,,160a b c d ∠=︒∥∥2∠=A. B. C. D. 【答案】D【解析】【分析】根据可得,根据可得.【详解】解:如图,,,,,故选:D .【点睛】本题考查平行线的性质,解题的关键是掌握两直线平行、同位角相等.4. 下列运算结果正确的是( )A. B. C. D. 【答案】D【解析】【分析】本题考查了整式的运算,根据同底数幂的乘法、合并同类项法则、积的乘方、幂的乘方分别运算即可判断求解,掌握整式的运算法则是解题的关键.【详解】解:、,该选项错误,不合题意;、,该选项错误,不合题意;、,该选项错误,不合题意;、,该选项正确,符合题意;故选:.120︒150︒30︒60︒a b ∥3160∠=∠=︒c d ∥2360∠=∠=︒ a b ∥∴3160∠=∠=︒ c d ∥∴2360∠=∠=︒339x x x ⋅=336235x x x +=()32626x x =222642ab ab ab -=A 336x x x ⋅=B 333235x x x +=C ()32628x x =D 222642ab ab ab -=D5. 母亲节马上就到了(5月的第二个星期天),娜娜同学准备送给母亲一个小礼物.已知礼物外包装的主视图如图所示,则该礼物的外包装不可能是( )A. 长方体B. 三棱锥C. 圆柱D. 正方体【答案】B【解析】【分析】本题考查的是简单几何体的主视图,熟记简单几何体的三种视图是解本题的关键.【详解】解:∵长方体,正方体,圆柱的主视图是长方形,而三棱锥的主视图是三角形,∴该礼物的外包装不可能是三棱锥,∴A ,D ,C 不符合题意, B 符合题意;故选:B .6. 函数的取值范围为( )A. B. C. D. 【答案】B【解析】【分析】根据被开方数大于等于0列式计算即可得解.【详解】解:由题意得,,解得.故选:B .【点睛】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.7. 水平社区卫生所在对本村老年人进行年度免费体检时,发现张奶奶血压偏高,为了准确诊断,随后天,卫生所每天定时为张奶奶测量血压,测得数据如下表:测量时间第天第天第天第天第天第天第天收缩压(毫米汞柱)y =x 4x >4x ≥4x <4x ≤40x -≥4x ≥71234567151148140139140136140舒张压(毫米汞柱)对收缩压,舒张压两组数据分别进行统计分析,其中错误的是()A. 收缩压的中位数为 B. 舒张压的众数为C. 收缩压的平均数为 D.舒张压的方差为【答案】A【解析】【分析】本题考查的是众数,中位数,平均数,方差的含义,熟记众数,中位数,平均数与方差的求解方法是解本题的关键.把数据按照大小排序后再确定中位数,即可判断,出现的次数最多的数为众数,可判断再利用所有数据的和除以数据总个数可得平均数,可判断,先算出来舒张压的平均数,再根据方差公式计算可判断,从而可得答案.【详解】、把收缩压的数据按照从小到大的顺序排列为:,,,,,,,收缩压的数据排在最中间的数据是,可得中位数为,故A不符合题意;、舒张压中出现的次数最多,故舒张压的众数为,故符合题意;、收缩压的平均数为:,故符合题意;、舒张压的平均数为:,则舒张压的方差为:,故符合题意;故选.8. 不等式组的解集在数轴上表示正确的是【】A. B.C. D.【答案】A【解析】9092888890808813988142887A BC DA136139140140140148 151140140B8888BC()113613914031481511427++⨯++=CD()190928839080887++⨯++=()()()()22222188290889288388888908877S⎡⎤=⨯-+-+⨯-+-=⎣⎦DA215{3112xxx-<-+≥【分析】先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解)【详解】解 ①得,x<3解②得,x -1不等式的解集为:-1x<3在数轴上表示为:故选A9. 如图,以∠AOB 的顶点O 为圆心,适当长为半径画弧,交OA 于点C ,交OB 于点D .再分别以点C 、D为圆心,大于CD 的长为半径画弧,两弧在∠AO B 内部交于点E ,过点E 作射线OE ,连接CD.则下列说法错误的是A. 射线OE 是∠AOB 的平分线B. △COD 是等腰三角形C. C 、D 两点关于OE 所在直线对称D. O 、E 两点关于CD 所在直线对称【答案】D【解析】【详解】解:A 、连接CE 、DE ,根据作图得到OC =OD ,CE =DE .∵在△EO C 与△EOD 中,OC =OD ,CE =DE ,OE =OE ,∴△EOC ≌△EOD (SSS ).∴∠AOE =∠BOE ,即射线OE 是∠AOB 的平分线,正确,不符合题意.B 、根据作图得到OC =OD ,∴△COD 是等腰三角形,正确,不符合题意.2153112x x x -<⎧⎪⎨-+≥⎪⎩①②≥∴≤12C 、根据作图得到OC =OD ,又∵射线OE 平分∠AOB ,∴OE 是CD 的垂直平分线.∴C 、D 两点关于OE 所在直线对称,正确,不符合题意.D 、根据作图不能得出CD 垂直平分OE ,∴CD 不是OE 的垂直平分线,∴O 、E 两点关于CD 所在直线不对称,错误,符合题意.故选:D .10. 关于x 的方程的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 只有一个实数根D. 没有实数根【答案】A【解析】【分析】根据方程各项系数结合根的判别式△=b 2-4ac ,找出方程根的判别式的符号,由此即可得出结论.【详解】方程的判别式为△=-4ac==+80,所以该方程有两个不相等的实数根.故选A.【点睛】本题考查一元二次方程根的判别式.11.的值应在( )A. 4和5之间 B. 5和6之间 C. 6和7之间 D. 7和8之间【答案】A【解析】的大小.解题的关键利用夹逼的大小.,则,的220x px +-=220xpx +-=2b 2412p -⨯⨯-()2p >1-1<<56<<∴,的值应在4和5之间,故选:A .12. 为丰富学生课外活动,某校积极开展社团活动,学生可根据自己的爱好选择一项,已知该校开设的体育社团有::篮球,:排球,:足球;:羽毛球,:乒乓球.李老师对某年级同学选择体育社团情况进行调查统计,制成了两幅不完整的统计图(如图),则以下结论不正确的是( )A. 选科目的有5人B. 选科目的扇形圆心角是C. 选科目的人数占体育社团人数的一半D. 选科目的扇形圆心角比选科目的扇形圆心角的度数少【答案】C【解析】【分析】本题考查了条形统计图与扇形统计图信息关联, A 选项先求出调查的学生人数,再求选科目的人数来判定,B 选项利用选科目所占的比例判定即可,C 选项中求出的人数即可判定,D 选项利用选科目的人数减选科目,再除以总人数乘求解即可判定.【详解】解:由题意得:调查的学生人数为:(人),选科目的人数为:(人),故A 选项正确,选科目的扇形圆心角是,故B 选项正确,选科目的人数为,总人数为50人,所以选科目的人数占体育社团人数的一半错误,故C 选项不正确,选科目的扇形圆心角比选科目的扇形圆心角的度数.故D 选项正确,故选:C .13. 如图,是边边上的两点,且,若,则与415<-<1-A B C D E E D 72︒A B D 21.6︒E D 360⨯︒B C D ,,B D 360︒1224%50÷=E 5010%5⨯=D 103607250⨯︒=︒B C D ,,7121029++=A B D 336021.650⨯︒=︒,D E ABC ,AB AC DE BC ∥:1:16ADE ABC S S =△△ADE V的周长之比为( )A. B. C. D. 【答案】B【解析】【分析】由平行易证,由面积比等于相似比的平方,周长比等于相似比求解.【详解】∵∴,∴∵∴与周长之比为,故选B .【点睛】本题考查相似三角形的判定和性质,熟练掌握相似三角形性质是解题的关键.14. 如图,A ,B ,C 为上的三个点,,若,则的度数是( )A. B. C. D. 【答案】B【解析】【分析】本题主要考查了圆周角定理,根据同圆中同弧所对的圆周角度数是圆心角度数的一半得到,再根据即可得到答案.【详解】解:∵,∴,∵,ABC 1:21:41:51:16ADE ABC DE BC∥ADE B ∠=∠ADE ABC:1:16ADE ABC S S =△△ADE V ABC 1:4O 4AOB BOC ∠=∠60ACB ∠=︒BOC ∠20︒30︒15︒60︒2120AOB ACB ∠=∠=︒4AOB BOC ∠=∠60ACB ∠=︒2120AOB ACB ∠=∠=︒4AOB BOC ∠=∠∴,故选:B .15. 一组数:2,1,5,x ,17,y ,65,满足“前两个数依次为a 、b ,紧随其后的第三个数是”,例如这组数中的第三个数“5”是由“”得到的,那么这组数中y 表示的数为( )A. 27B. 11C. 31D. 41【答案】C【解析】【分析】本题考查了规律型中数字的变化类,根据数列中数的变化,代入数据求出x 值是解题的关键.根据数列中数的规律即可得出,再求出y 的值即可.【详解】解:依题意,得,,故选:C .二、填空题(本大题共4小题,每小题2分,共8分)16. 分解因式:_____.【答案】【解析】【分析】先提取公因式a ,再利用完全平方公式分解因式即可.【详解】解:,故答案为:.【点睛】本题主要考查了分解因式,熟知分解因式方法是解题的关键.17. 如图,图中网格由边长为1的小正方形组成,点为网格线的交点.若线段绕原点顺时针旋转90°后,端点的坐标变为______.的30BOC ∠=︒2a b +221´+215x =⨯+2157x =⨯+=271731y =⨯+=22ab ab a -+=()21a b -22ab ab a -+()221a b b =-+()21a b =-()21a b -A OA O A【答案】【解析】【分析】根据题意作出旋转后的图形,然后读出坐标系中点的坐标即可.【详解】解:线段OA 绕原点O 顺时针旋转90°后的位置如图所示,∴旋转后的点A 的坐标为(2,-2),故答案为:(2,-2).【点睛】题目主要考查图形的旋转,点的坐标,理解题意,作出旋转后的图形读出点的坐标是解题关键.18. 若点关于原点的对称点在反比例函数的图象上,则该反比例函数的解析式为___________.【答案】【解析】【分析】本题考查反比例函数图象上点的坐标特征和关于原点对称坐标的特征;先求出点关于原点的对称点,再代入反比例函数即可求解.【详解】点关于原点的对称点是()2,2-(3,2)P -k y x =6y x =-(3,2)P -k y x =(3,2)P -(3,2)-把代入得:∴该反比例函数的解析式为故答案为:.19. 如图,中,,,以为直径的交于点,为的中点,则图中阴影部分的面积为___________.【答案】【解析】【分析】本题考查了圆周角定理及其推论、等腰三角形的判定和性质以及扇形的面积公式,证明是等腰三角形,求出的度数是解题的关键.首先证明是等腰三角形,求出,然后根据圆周角定理求出,再利用扇形的面积公式计算即可.【详解】解:连接,如图所示,是直径,,即,为的中线,是等腰三角形,,,,半径,为(3,2)-k y x=6k =-6y x =-6y x=-ABC 6AB =24∠︒=C AB O BC D D BC 6π5ABC AOD ∠ABC 24B C ∠=∠=︒AOD ∠AD AB 90ADB ∴∠=︒AD BC ⊥AD BC ABC ∴ 24B C ∴∠=∠=︒248AOD B ∴∠=∠=︒=6AB ∴3,故答案为:.三、解答题(本大题共8小题,共62分)20.【答案】【解析】【分析】先将二次根式化简、分别得出零指数幂、负指数幂、特殊角的三角函数值,然后根据实数的运算法则求得计算结果即可.【详解】解:原式【点睛】本题主要考查二次根式化简、零指数幂、负指数幂、特殊角的三角函数值,熟练掌握二次根式化简、零指数幂、负指数幂、特殊角的三角函数值的化简计算是解决本题的关键.21. 如图,在中,D 、E 是边BC 上两点,且.求证:.【答案】见解析【解析】【分析】本题主要考查对全等三角形判定定理的理解和掌握,先由等角对等边证,再在利用即可证明,即可证得结论.熟练掌握全等三角形的判定定理并灵活运用.【详解】证明:,,在与中,248π36π3605S ∴= 阴影=6π5()20126tan 302π-⎛⎫+---︒ ⎪⎝⎭03146=++--0=ABC ADB AEC B C ∠=∠∠=∠,BD CE =AB AC =AAS ABD ACE △△≌B C ∠=∠ AB AC ∴=ABD △ACE △ADB AEC B CAB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS ABD ACE ∴ ≌.22. 某中学在五四青年节来临之际用元购进、两种运动衫共件.已知购买种运动衫与购买种运动衫的费用相同(各为元),种运动衫的单价是种运动衫单价的倍.求、两种运动衫的单价各是多少元?【答案】、两种运动衫的单价各是元、元【解析】【分析】本题考查了分式方程的实际应用,解题的关键是找准等量关系,正确列出分式方程.设种运动衫单价为元,种运动衫单价为元,故种运动衫购买数量为元,种运动衫购买数量为元,即可得出关于的分式方程,解之经检验后,即可得出结果 .【详解】解:设种运动衫单价为元,种运动衫单价为元.则由题意可列: ,解得,,经检验,是所列方程的解,(元),答:、两种运动衫的单价各是元、元.23. 为弘扬中国传统文化,某校举办了中小学生“国学经典大赛”,比赛项目为:A .唐诗,B .宋词,C .论语,D .三字经.比赛形式为“单人组”和“双人组”.(1)小颖参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“论语”的概率为___________;(2)若“双人组”比赛规则是:同一小组的两名成员的比赛项目不能相同,且每人只能随机抽取一次,则小明和小峰组成的“双人组”恰好有一人是唐诗,另一人是宋词的概率是多少?请用画树状图或列表的方法进行说明.【答案】(1) (2);见解析【解析】【分析】本题主要考查树状图法或列表法求概率:(1)直接利用概率公式求解;(2)先画树状图展示所有等可能的结果数,再找出恰好小明和小峰组成的“双人组”恰好有一人是唐诗,另一人是宋词的结果数,然后根据概率公式求解.BD CE ∴=4800A B 88A B 2400B A 1.2A B A B 5060A x B 1.2x A 2400x B 24001.2xx A x B 1.2x 24002400881.2x x+=50x =50x =1.2 1.25060x =⨯=A B 50601416【小问1详解】解:小颖从4个项目中随机抽取一个比赛项目,恰好抽中“论语”的概率为,故答案为:;【小问2详解】解:画树状图如下:共有12种等可能的结果数,其中小明和小峰组成的“双人组”恰好有一人是唐诗,另一人是宋词的结果数为2,所以恰好小明和小峰组成的“双人组”恰好有一人是唐诗,另一人是宋词的概率.24. 如图,D 为线段中点,连接,,过A 作且,连接.(1)求证:四边形是矩形.(2)连接交于点F ,若,求的长.【答案】(1)见解析(2【解析】【分析】(1)由题意得,,由,可证四边形是平行四边形,由且D 为线段中点,可得,即,进而结论得证;(2)由(1)知:,则,可知,证明,则,即141421126=BC AB AC 、AB AC =AE BC ∥AE DC =BE AEBD CE AB 602ACB AE ∠=︒=,CF AE BD =AE BC ∥AEBD AB AC =BC AD BC ⊥90ADB ∠=︒2AE BD CD ===4BC =tan 60AD CD =⋅︒=AEBD BE AD ==CE =AEF BCF ∽EF AE CF BC=,计算求解即可.【小问1详解】证明:∵D 为线段中点,∴,∵,∴,又∵,四边形是平行四边形,∵且D 为线段中点,∴,即,四边形矩形;【小问2详解】解:由(1)知:,∴,∵,,∴由矩形可知,由勾股定理得,,∵,∴,∴,∴,解得,,∴.【点睛】本题考查了矩形的判定与性质,等腰三角形的判定与性质,正切,相似三角形的判定与性质等知识.熟练掌握矩形的判定与性质,等腰三角形的判定与性质,正切,相似三角形的判定与性质是解题的关是12=BC BD DC =AE DC =AE BD =AE BC ∥∴AEBD AB AC =BC AD BC ⊥90ADB ∠=︒∴AEBD 2AE BD CD ===4BC =90ADC ∠=︒602ACB CD ∠=︒=,tan 60AD CD =⋅︒=AEBD BE AD ==CE ==AE BC ∥EAB ABC AEC ECB ∠=∠∠=∠,AEF BCF ∽EF AE CF BC =12=CF =CF键.25. 新能源汽车作为一个新兴产业,摆脱了汽车对石油的依赖,而且没有废气排放,发展新能源是保障国家环境安全及能源安全重要措施.如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y (千瓦时)关于已行驶路程x (千米)的函数图象.(1)根据图象,直接写出蓄电池剩余电量为35千瓦时时汽车已行驶的路程.当时,求1千瓦时的电量汽车能行驶的路程,(2)当时,求y 关于x 的函数表达式,并计算当汽车已行驶180千米时,蓄电池的剩余电量.【答案】(1)150千米;6千米(2);20千瓦时【解析】【分析】本题考查的是一次函数的实际应用,掌握利用待定系数法求解函数的解析式是解本题的关键;(1)直接利用函数图象可得答案;(2)设当时, y 关于x 的函数表达式为.把代入求解解析式即可,再求解当时的函数值即可.【小问1详解】解:由图可知,蓄电池剩余电量为35千瓦时时汽车已行驶的路程为150千米.当时,(千米/千瓦时)千瓦时的电量汽车能行驶的路程6千米.0150x ≤≤150200x ≤≤11102y x =-+150200x ≤≤y kx b =+(150,35),(200,10)180x =0150x ≤≤15066035=-1∴.【小问2详解】设当时, y 关于x 的函数表达式为.把代入,得,解得 当时,即蓄电池的剩余电量为20千瓦时26. 已知点和在二次函数(a ,b 是常数,)的图象上,该图象与y 轴交于点C .(1)当时,求a 和b 的值;(2)若二次函数的图象经过点且点N 不在坐标轴上,当时,求n 的取值范围.【答案】(1) (2)且【解析】【分析】本题主要考查二次函数图像上点的坐标特征,熟练掌握二次函数图像上点的坐标特征是解题的关键.(1)用待定系数法求出函数解析式即可得到答案;(2)先求出对称轴为,再根据图象经过点且点不在坐标轴上,得到即可得到答案.【小问1详解】解:当时,二次函数的图象过150200x ≤≤y kx b =+(150,35),(200,10)1503520010k b k b +=⎧⎨+=⎩12110k b ⎧=-⎪⎨⎪=⎩1110,(150200)2y x x ∴=-+≤≤180x =1180110202y =-⨯+=(,0)A m -(3,0)B m 24y ax bx =++0a ≠2m =-(,4)N n 11m -<<14,33a b =-=-22n -<<0n ≠x m =(,4)N n N 2n m =2m =-24y ax bx =++(2,0),(6,0)A B -,解得,即:;【小问2详解】图象过点∴其对称轴为 又的图象过点,即,则, ,有点N 不在坐标轴上且,且.27. 已知中,,且,M 为线段的中点,作,点P 在线段上,点Q 在线段上,以为直径的始终过点M ,且交线段于点E .(1)求线段的长度;(2)求的值;(提示:连接)(3)当是等腰三角形时,求出线段的长.【答案】(1) (2) 的424036640a b a b ++=⎧∴⎨-+=⎩1343a b ⎧=-⎪⎪⎨⎪=-⎪⎩14,33a b =-=-24y ax bx =++ (,0),(3,0)A mB m -32m m x m -+==24y ax bx =++ (,4),(0,4)n 02n m +∴=2n m =2n m =11m -<< 112n -<< 112n ∴-<<0n ≠22n ∴-<<0n ≠Rt ABC △90,20C AB ∠=︒=4cos 5A =AB DM AB ⊥CB AC PQ O PQ DM AD tan PQM ∠CM △MPE AQ 25243(3)或【解析】【分析】(1)中点求出的长,锐角三角函数求出的长即可;(2)连接,斜边上的中线,推出,圆周角定理,推出,,进而得到,进行求解即可;(3)先证明,得到为等腰三角形,分三种情况进行讨论求解即可.【小问1详解】解:为中点,在中,即:,;【小问2详解】连接,是斜边上的中点,,∴,,,是的直径,,,,;10254AM AD CM A ACM ∠=∠A MPQ ∠=∠90ACB PMQ ∠=∠=︒PQM ABC ∠=∠AMO PME △△∽AMQ △M AB 20AB =1102AM AB ∴==DM AB ⊥ Rt ADM 4cos 5AM A AD ==1045AD =252AD ∴=CM M Rt ABC △12CM AB AM BM ∴===A ACM ∠=∠B BCM∠=∠MPQ ACM ∠=∠ A MPQ ∴∠=∠QP O 90ACB PMQ ∴∠=∠=︒PQM ABC BCM ∴∠=∠=∠4cos ,205AC A AB AB === 16,12AC BC ∴===164tan tan 123AC PQM ABC BC ∠=∠===;【小问3详解】由(1)知.,当是等腰三角形时,有为等腰三角形,当时,,当时,,而,所以这种情况不存在;当时,,而由(1)知,可得;或.【点睛】本题考查圆周角定理,解直角三角形,斜边上的中线,相似三角形的判定和性质,等腰三角形的性质,熟练掌握相关知识点,是解题的关键.4tan 3PQM ∴∠=90,90QMA QMD DMP QMD ∠+∠=︒∠+∠=︒QMA DMP∴∠=∠A MPQ ∠=∠AMO PME ∴∽△△PME △AMQ △AM AQ =10AQ =AM MQ =A AQM ACM ∠=∠=∠AQM ACM ∠>∠AQ MQ =A QMA ∠=∠9090A ADM QMA DMQ ∠+∠=︒∠+∠=︒,ADM DMQ∴∠=∠12QD QM AQ AD ∴===252AD =254AQ =10AQ ∴=254。
云南省昭通市中考数学试卷
云南省昭通市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019七上·吉隆期中) ﹣的倒数是()A . ﹣B . 1C . ﹣D .2. (2分)如图,在△ABC中,AB=AC,DE∥BC,则下列结论中不正确的是()A . AD=AEB . DB=ECC . ∠ADE=∠CD . DE=BC3. (2分)一组数据2、9、5、5、8、5、8的中位数是()A . 2B . 5C . 8D . 94. (2分) (2019九下·镇原期中) 如图是某几何体的三视图,则该几何体是()A . 圆锥B . 圆柱C . 三棱柱D . 三棱锥5. (2分)化简的结果是()A .B .C .D . 2(x+1)6. (2分)小珍用12. 4元恰好买了单价为0.8元和1.20元两种贺卡共12张,则其中单价为0.8元的贺卡有()A . 5张B . 7张C . 6张D . 4张7. (2分)(2020·黄冈模拟) 如图①,在中,,动点D从点A出发,沿以的速度匀速运动到点B,过点D作于点E,图②是点D运动时,的面积随时间变化的关系图象,则的长为()A . 4B . 6C . 8D . 108. (2分) (2017八上·西安期末) 到三角形三个顶点距离相等的点是().A . 三角形三边垂直平分线的交点B . 三角形三条内角平分线的交点C . 三角形三条高线所在直线的交点D . 三角形三条中线的交点9. (2分)利用求根公式求5x2+=6x的根时,a,b,c的值分别是()A . 5,, 6B . 5,6,C . 5,﹣6,D . 5,﹣6,﹣10. (2分) (2018九上·大石桥期末) 如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=-1,x2=3;③3a+c>0④当y>0时,x的取值范围是-1≤x<3⑤当x<0时,y随x增大而增大其中结论正确的个数是()A . 4个B . 3个C . 2个D . 1个二、填空题 (共6题;共6分)11. (1分)(2017·港南模拟) 36的算术平方根是________.12. (1分) (2018九上·孝感月考) 如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45,若点M、N分别是AB、AC的中点,则MN长的最大值是________.13. (1分)小明的爸爸前年存了年利率为2.25%的两年期定期储蓄,今年到期后,扣除利息税(税率为20%),所得利息正好为小明买了一个价值576元的CD机,小明爸爸前年存了________元钱.14. (1分)如图,在菱形ABCD中,∠A=60°,E、F分别是AB、AD的中点,若EF=3,则菱形ABCD的边长是15. (1分)(2020·鼓楼模拟) 若反比例函数y=的图象与一次函数y=mx+n的图象的交点的横坐标为1和-3,则关于x的方程=mx-n的解是________.16. (1分) (2018九上·浦东期中) 如图,Rt△ABC中,∠C=90°,BC=4,AC=6,现将△ABC沿ED翻折,使点A与点B重合,折痕为DE,则tan∠BED的值是________.三、解答题 (共8题;共76分)17. (5分) (2018七下·灵石期中)(1)计算:①(﹣x)3÷x•(﹣x)2②(﹣a)3•(﹣a2)3③(m﹣1)2• +(1﹣m)3•(m﹣1)3④(﹣)2017×(2 )2018(2)先化简,再求值:①(a+b)(a﹣b)﹣(a﹣2b)2 ,其中a=2,b=﹣1;②(x+2y)(x﹣2y)﹣(2x﹣y)2+(3x﹣y)(2x﹣5y),其中x=﹣1,y=﹣2.18. (10分) (2019九上·邯郸开学考) 乙知关于x的方程 .(1)试说明无论k取何值时,方程总有两个不相等的实数很;(2)如果方程有一个根为 , 试求的值.19. (8分)(2018·高台模拟) 在甲、乙两个不透明的布袋里,都装有3个大小、材质完全相同的小球,其中甲袋中的小球上分别标有数字0,1,2;乙袋中的小球上分别标有数字﹣1,﹣2,0.现从甲袋中任意摸出一个小球,记其标有的数字为x,再从乙袋中任意摸出一个小球,记其标有的数字为y,以此确定点M的坐标(x,y).(1)请你用画树状图或列表的方法,写出点M所有可能的坐标;20. (10分)如图,为测量某建筑物BC上旗杆AB的高度,小明在距离建筑物BC底部11.4米的点F处,测得视线与水平线夹角∠AED=60°,∠BED=45°.小明的观测点与地面的距离EF为1.6米.参考数据:≈1.41,≈1.73.(1)求建筑物BC的高度;(2)求旗杆AB的高度(结果精确到0.1米).21. (10分)(2017·广元模拟) 如图,AB是⊙O的直径,C、G是⊙O上两点,且AC=CG,过点C的直线CD⊥BG 于点D,交BA的延长线于点E,连接BC,交OD于点F.(1)求证:CD是⊙O的切线.(2)若,求∠E的度数.(3)连接AD,在(2)的条件下,若CD= ,求AD的长.22. (11分) (2019九上·台州期中) 周老师家的红心猕猴桃深受广大顾客的喜爱,猕猴桃成熟上市后,她记录了15天的销售数量和销售单价,其中销售单价y(元/千克)与时间第x天(x为整数)的数量关系如图所示,日销量P(千克)与时间第x天(x为整数)的部分对应值如下表所示:时间第x天135710111215日销量P(千3203604004405004003000克)(1)求y与x的函数关系式,并写出自变量x的取值范围;(2)从你学过的函数中,选择合适的函数类型刻画P随x的变化规律,请直接写出P与x的函数关系式及自变量x的取值范围;(3)在这15天中,哪一天销售额达到最大,最大销售额是多少元;(4)周老师非常热爱公益事业,若在前5天,周老师决定每销售1千克红心猕猴桃就捐献a元给“环保公益项目”,且希望每天的销售额不低于2800元以维持各种开支,求a的最大值.23. (7分)如图,已知△ABC中,AB=AC=5,BC=6.(1)求△ABC的面积;(2)求tanB的值.24. (15分)(2018·山西模拟) 如图,二次函数y=x2-4x+3的图象与x轴交于A,B两点(点B在点A的右侧),与y轴交于点C,抛物线的对称轴与x轴交于点D.、(备用图)(1)求点A,点B和点D的坐标;(2)在y轴上是否存在一点P,使∆PBC为等腰三角形?若存在,请求出点P的坐标;(3)若动点M从点A出发,以每秒1个单位长度的速度沿AB向点B运动,同时另一个动点N从点D出发,以每秒2个单位长度的速度在抛物线的对称轴上运动,当点M到达点B时,点M,N同时停止运动,问点M,N运动到何处时,∆MNB的面积最大,试求出最大面积.参考答案一、选择题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、解析:答案:8-1、考点:解析:答案:9-1、解析:答案:10-1、考点:解析:二、填空题 (共6题;共6分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题 (共8题;共76分)答案:17-1、答案:17-2、考点:解析:答案:18-1、答案:18-2、考点:解析:答案:19-1、答案:19-2、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、答案:21-2、答案:21-3、考点:解析:答案:22-1、答案:22-2、答案:22-3、答案:22-4、考点:解析:答案:23-1、答案:23-2、考点:解析:答案:24-1、答案:24-2、答案:24-3、考点:解析:。
2023年云南昭通中考数学试题及答案
2023年云南昭通中考数学试题及答案(全卷三个大题,共24个小题,共8页;满分100分,考试用时120分钟)注意事项:1.本卷为试题卷.考生必须在答题卡上解题作答.答案应书写在答题卡的相应位置上,在试题卷、草稿纸上作答无效.2.考试结束后,请将试题卷和答题卡一并交回.一、选择题(本大题共12小题,每小题只有一个正确选项,每小题3分,共36分)1.中国是最早使用正负数表示具有相反意义的量的国家.若向东走60米记作60+米,则向西走80米可记作()A.80-米B.0米C.80米D.140米【答案】A【解析】【分析】此题主要用正负数来表示具有意义相反的两种量,根据向东走记为正,则向西走就记为负,直接得出结论即可.【详解】解∶∵向东走60米记作60+米,∴向西走80米可记作80-米,故选A.【点睛】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负是解题的关键.2.云南省矿产资源极为丰富,被誉为“有色金属王国”.锂资源方面,滇中地区被中国科学院地球化学研究所探明拥有氧化锂资源达340000吨.340000用科学记数法可以表示为()A.434010⨯ B.53410⨯ C.53.410⨯ D.60.3410⨯【答案】C【解析】【分析】根据科学记数法的记数方法,340000写成10n a ⨯的形式,其中01a <≤,据此可得到答案.【详解】解:533.04040001=⨯.故选C.【点睛】本题考查了科学记数法的定义,准确确定a 和n 的值是本题的解题关键.3.如图,直线c 与直线a b 、都相交.若,135a b ∠=︒∥,则2∠=()A.145︒B.65︒C.55︒D.35︒【答案】D【解析】【分析】根据平行线的性质,对顶角相等,即可求解.【详解】解:如图所示,∵a b ∥,1335==︒∠∠∴2335∠=∠=︒,故选:D.【点睛】本题考查了对顶角相等,平行线的性质,熟练掌握平行线的性质是解题的关键.4.某班同学用几个几何体组合成一个装饰品美化校园.其中一个几何体的三视图(其中主视图也称正视图,左视图也称侧视图)如图所示,这个几何体是()A.球B.圆柱C.长方体D.圆锥【答案】A【解析】【分析】根据球体三视图的特点确定结果.【详解】解:根据球体三视图的特点:球体的三视图都是大小相等的圆,确定该几何体为球.故选:A.【点睛】本题考查了几何体的三视图,熟悉各类几何体的三视图是解决本题的关键.5.下列计算正确的是()A.236a a a ⋅= B.22(3)6a a = C.632a a a ÷= D.22232a a a -=【答案】D【解析】【分析】利用同底数幂的乘法和除法、幂的乘方、合并同类项法则解出答案.【详解】解:52233a a a a ⨯⋅==,故A 错误;2222(3)39a a a ==,故B 错误;63633a a a a -÷==,故C 错误;()22223312a a a a -=-=,故D 正确.故本题选:D.【点睛】本题考查了同底数幂的乘法和除法、幂的乘方、合并同类项法则,对运算法则的熟练掌握并运用是解题的关键.6.为了解某班学生2023年5月27日参加体育锻炼的情况,从该班学生中随机抽取5名同学进行调查.经统计,他们这天的体育锻炼时间(单位:分钟)分别为65,60,75,60,80.这组数据的众数为()A.65B.60C.75D.80【答案】B【解析】【分析】根据众数的定义求解即可.【详解】解:在65,60,75,60,80中,出现次数最多的是60,∴这组数据的众数是60,故选;B【点睛】本题考查了众数,众数是指一组数据中出现次数最多的数据,掌握众数的定义是解题的关键.7.中华文明,源远流长:中华汉字,寓意深广.下列四个选项中,是轴对称图形的为()A. B. C. D.【答案】C【解析】【分析】根据轴对称图形的定义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此可求解问题.【详解】解:由题意得:A、B、D 选项都不是轴对称图形,符合轴对称图形的只有C 选项;故选C.【点睛】本题主要考查轴对称图形,熟练掌握轴对称图形的定义是解题的关键.8.若点()1,3A 是反比例函数(0)k y k x =≠图象上一点,则常数k 的值为()A.3B.3-C.32D.32-【答案】A【解析】【分析】将点()1,3A 代入反比例函数(0)k y k x =≠,即可求解.【详解】解:∵点()1,3A 是反比例函数(0)k y k x =≠图象上一点,∴133k =⨯=,故选:A.【点睛】本题考查了反比例函数的性质,熟练掌握反比例函数的性质是解题的关键.9.按一定规律排列的单项式:2345,a ,第n 个单项式是()A. B.1n - C.n D.1n-【答案】C【解析】【分析】根据单项式的规律可得,系数为,字母为a ,指数为1开始的自然数,据此即可求解.【详解】解:按一定规律排列的单项式:2345,a ,第n 个单项式是n,故选:C.【点睛】本题考查了单项式规律题,找到单项式的变化规律是解题的关键.10.如图,A B 、两点被池塘隔开,、、A B C 三点不共线.设AC BC 、的中点分别为M N 、.若3MN =米,则AB =()A.4米B.6米C.8米D.10米【答案】B【解析】【分析】根据三角形中位线定理计算即可.【详解】解∶∵AC BC 、的中点分别为M N 、,∴MN 是ABC 的中位线,∴26(AB MN ==米),故选∶B.【点睛】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.11.阅读,正如一束阳光.孩子们无论在哪儿,都可以感受到阳光的照耀,都可以通过阅读触及更广阔的世界.某区教育体育局向全区中小学生推出“童心读书会”的分享活动.甲、乙两同学分别从距离活动地点800米和400米的两地同时出发,参加分享活动.甲同学的速度是乙同学的速度的1.2倍,乙同学比甲同学提前4分钟到达活动地点.若设乙同学的速度是x 米/分,则下列方程正确的是()A. 1.24800400x x -= B.1.24800400x x -= C.40080041.2x x -= D.80040041.2x x -=【答案】D【解析】【分析】设乙同学的速度是x 米/分,根据乙同学比甲同学提前4分钟到达活动地点,列出方程即可.【详解】解∶设乙同学的速度是x 米/分,可得:80040041.2x x-=故选∶D.【点睛】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.12.如图,AB 是O 的直径,C 是O 上一点.若66BOC ∠=︒,则A ∠=()A.66︒B.33︒C.24︒D.30︒【答案】B【解析】【分析】根据圆周角定理即可求解.【详解】解:∵ BCBC =,66BOC ∠=︒,∴1332A BOC ∠=∠=︒,故选:B.【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解题的关键.二、填空题(本大题共4小题,每小题2分,共8分)13.函数110y x =-的自变量x 的取值范围是________.【答案】10x ≠【解析】【分析】要使110-x 有意义,则分母不为0,得出结果.【详解】解:要使110-x 有意义得到100x -≠,得10x ≠.故答案为:10x ≠.【点睛】本题考查了函数自变量取值范围,分式有意义的条件,理解分母不为零是解决问题的关键.14.五边形的内角和是________度.【答案】540【解析】【分析】根据n 边形内角和为()2180n -⨯︒求解即可.【详解】五边形的内角和是()52180540-⨯︒=︒.故答案为:540.【点睛】本题考查求多边形的内角和.掌握n 边形内角和为()2180n -⨯︒是解题关键.15.分解因式:24m -=_____.【答案】(2)(2)m m +-【解析】【分析】直接根据平方差公式进行因式分解即可.【详解】24(2)(2)m m m -=+-,故填(2)(2)m m +-【点睛】本题考查利用平方差公式进行因式分解,解题关键在于熟练掌握平方差公式.16.数学活动课上,某同学制作了一顶圆锥形纸帽.若圆锥的底面圆的半径为1分米,母线长为4分米,则该圆锥的高为________分米.【答案】【解析】【分析】根据勾股定理得,圆锥的高2=母线长2-底面圆的半径2得到结果.【详解】解:由圆锥的轴截面可知:圆锥的高2=母线长2-底面圆的半径2圆锥的高==故答案为【点睛】本题考查了圆锥,勾股定理,其中对圆锥的高,母线长,底面圆的半径之间的关系的理解是解决本题的关键.三、解答题(本大题共8小题,共56分)17.计算:1201|1|(2)(1)tan 453π-⎛⎫-+---+- ⎪⎝⎭︒.【答案】6【解析】【分析】根据绝对值的性质、零指数幂的性质、负指数幂的性质和特殊角的三角函数值分别化简计算即可得出答案.【详解】解:1201|1|(2)(1)tan 453π-⎛⎫-+---+- ⎪⎝⎭︒14131=+-+-6=.【点睛】本题考查了实数的运算,熟练掌握绝对值的性质、零指数幂的性质、负指数幂的性质和特殊角的三角函数值是解题的关键.18.如图,C 是BD 的中点,,AB ED AC EC ==.求证:ABC EDC △≌△.【答案】见解析【解析】【分析】根据C 是BD 的中点,得到BC CD =,再利用SSS 证明两个三角形全等.【详解】证明: C 是BD 的中点,BC CD ∴=,在ABC 和EDC △中,BC CD AB ED AC EC =⎧⎪=⎨⎪=⎩,()ABC EDC SSS ∴ ≌【点睛】本题考查了线段中点,三角形全等的判定,其中对三角形判定条件的确定是解决本题的关键.19.调查主题某公司员工的旅游需求调查人员某中学数学兴趣小组调查方法抽样调查背景介绍某公司计划组织员工前往5个国家全域旅游示范区(以下简称示范区)中的1个自费旅游,这5个示范区为:A.保山市腾冲市;B.昆明市石林彝族自治县;C.红河哈尼族彝族自治州弥物市;D.大理白族自治州大理市;E.丽江市古城区.某中学数学兴趣小组针对该公司员工的意向目的地开展抽样调查,并为该公司出具了调查报告(注:每位被抽样调查的员工选择且只选择1个意向前往的示范区).报告内容请阅读以上材料,解决下列问题(说明:以上仅展示部分报告内容).(1)求本次被抽样调查的员工人数;(2)该公司总的员工数量为900人,请你估计该公司意向前往保山市腾冲市的员工人数.【答案】(1)100人(2)270人【解析】【分析】(1)根据保山市腾冲市的员工人数除以所占百分比即可求出本次被抽样调查的员工人数;(2)用该公司总的员工数乘以样本中保山市腾冲市的员工人数除以所占百分比即可估计出该公司意向前往保山市腾冲市的员工人数.【小问1详解】÷(人),本次被抽样调查的员工人数为:3030.00%=100所以,本次被抽样调查的员工人数为100人;【小问2详解】⨯(人),90030.00%=270答:估计该公司意向前往保山市腾冲市的员工人数为270人.【点睛】本题考查扇形统计图及相关计算.熟练掌握用样本估计总体是解答本题的关键.20.甲、乙两名同学准备参加种植蔬菜的劳动实践活动,各自随机选择种植辣椒、种植茄子、种植西红柿三种中的一种.记种植辣椒为A ,种植茄子为B ,种植西红柿为C ,假设这两名同学选择种植哪种蔬菜不受任何因素影响,且每一种被选到的可能性相等.记甲同学的选择为x ,乙同学的选择为y .(1)请用列表法或画树状图法中的一种方法,求(),x y 所有可能出现的结果总数;(2)求甲、乙两名同学选择种植同一种蔬菜的概率P .【答案】(1)9(2)13【解析】【分析】(1)根据题意列出树状图,即可得到答案;(2)根据(1)列出的情况,找到甲、乙两名同学选择种植同一种蔬菜的情况,得出概率.【小问1详解】解:由题意得:共有9种情况,分别是:()()()()()()()()(),,,,,,,,,A A A B A C B A B B B C C A C B C C 、、、、、、、、.【小问2详解】解:由(1)得其中甲、乙两名同学选择种植同一种蔬菜的情况有()()(),,,A A B B C C 、、,共3种,31==93P ,∴甲、乙两名同学选择种植同一种蔬菜的概率为13【点睛】本题考查了树状图法求概率的问题,解题的关键是画出树状图.21.蓝天白云下,青山绿水间,支一顶帐篷,邀亲朋好友,听蝉鸣,闻清风,话家常,好不惬意.某景区为响应文化和旅游部《关于推动露营旅游休闲健康有序发展的指导意见》精神,需要购买A B 、两种型号的帐篷.若购买A 种型号帐篷2顶和B 种型号帐篷4顶,则需5200元;若购买A 种型号帐篷3顶和B 种型号帐篷1顶,则需2800元.(1)求每顶A 种型号帐篷和每顶B 种型号帐篷的价格;(2)若该景区需要购买A B 、两种型号的帐篷共20顶(两种型号的帐篷均需购买),购买A 种型号帐篷数量不超过购买B 种型号帐篷数量的13,为使购买帐篷的总费用最低,应购买A 种型号帐篷和B 种型号帐篷各多少顶?购买帐篷的总费用最低为多少元?【答案】(1)每顶A 种型号帐篷的价格为600元,每顶B 种型号帐篷的价格为1000元(2)当A 种型号帐篷为5顶时,B 种型号帐篷为15顶时,总费用最低,为18000元.【解析】【分析】(1)根据题意中的等量关系列出二元一次方程组,解出方程组后得到答案;(2)根据购买A 种型号帐篷数量不超过购买B 种型号帐篷数量的13,列出一元一次不等式,得出A 种型号帐篷数量范围,再根据一次函数的性质,取A 种型号帐篷数量的最大值时总费用最少,从而得出答案.【小问1详解】解:设每顶A 种型号帐篷的价格为x 元,每顶B 种型号帐篷的价格为y 元.根据题意列方程组为:24520032800x y x y +=⎧⎨+=⎩,解得6001000x y =⎧⎨=⎩,答:每顶A 种型号帐篷的价格为600元,每顶B 种型号帐篷的价格为1000元.【小问2详解】解:设A 种型号帐篷购买m 顶,总费用为w 元,则B 种型号帐篷为(20)m -顶,由题意得6001000(20)40020000w m m m =+-=-+,其中()1203m m ≤-,得5m ≤,故当A 种型号帐篷为5顶时,总费用最低,总费用为()6005100020518000w =⨯+⨯-=,答:当A 种型号帐篷为5顶时,B 种型号帐篷为15顶时,总费用最低,为18000元.【点睛】本题考查了二元一次方程组应用,一元一次不等式应用及一次函数的应用,找出准确的等量关系及不等关系是解题的关键.22.如图,平行四边形ABCD 中,AE CF 、分别是BAD BCD ∠∠、的平分线,且E F 、分别在边BC AD 、上,AE AF =.(1)求证:四边形AECF 是菱形;(2)若60ABC ∠=︒,ABE 的面积等于AB 与DC 间的距离.【答案】(1)证明见解析(2)【解析】【分析】(1)先证AD BC ∥,再证AE FC ,从而四边形AECF 是平行四边形,又AE AF =,于是四边形AECF 是菱形;(2)连接AC ,先求得60BAE DAE ABC ∠∠∠===︒,再证AC AB ⊥,9030ACB ABC EAC ∠∠∠=︒-=︒=,于是有33AB AC =,得33AB AC =,再证AE BE CE ==,从而根据面积公式即可求得AC =【小问1详解】证明:∵四边形ABCD 是平行四边形,∴AD BC ∥,BAD BCD ∠∠=,∴BEA DAE ∠∠=,∵AE CF 、分别是BAD BCD ∠∠、的平分线,∴BAE DAE ∠∠==12BAD ∠,BCF ∠=12BCD ∠,∴DAE BCF BEA ∠∠∠==,∴AE FC ,∴四边形AECF 是平行四边形,∵AE AF =,∴四边形AECF 是菱形;【小问2详解】解:连接AC ,∵AD BC ∥,60ABC ∠=︒,∴180120BAD ABC ∠∠=︒-=︒,∴60BAE DAE ABC ∠∠∠===︒,∵四边形AECF 是菱形,∴EAC ∠=1230DAE ∠=︒,∴90BAC BAE EAC ∠∠∠=+=︒,∴AC AB ⊥,9030ACB ABC EAC ∠∠∠=︒-=︒=,∴AE CE =,tan 30tan AB ACB AC ︒=∠=即33AB AC=,∴3AB AC =,∵BAE ABC ∠∠=,∴AE BE CE ==,∵ABE 的面积等于,∴211332236ABC S AC AB AC AC AC =⋅=⋅==∴平行线AB 与DC 间的距离AC =【点睛】本题考查了平行四边形的判定及性质,菱形的判定,角平分线的定义,等腰三角形的判定,三角函数的应用以及平行线间的距离,熟练掌握平行四边形的判定及性质,菱形的判定,角平分线的定义,等腰三角形的判定,三角函数的应用以及平行线间的距离等知识是解题的关键.23.如图,BC 是O 的直径,A 是O 上异于B C 、的点.O 外的点E 在射线CB 上,直线EA 与CD 垂直,垂足为D ,且DA AC DC AB ⋅=⋅.设ABE 的面积为1,S ACD 的面积为2S.(1)判断直线EA 与O 的位置关系,并证明你的结论;(2)若21,BC BE S mS ==,求常数m 的值.【答案】(1)EA 与O 相切,理由见解析(2)23【解析】【分析】(1)EA 与O 相切,理由如下:连接OA ,先证BAC ADC ∽得ABO DAC ∠∠=,又证ABO BAO DAC ∠∠∠==,进而有90OAD OAC DAC ∠∠∠=+=︒,于是即可得EA 与O 相切;(2)先求得2EAC ABE S S = ,再证EAB ECA ∽,得222EAC ABE S AC S AB == ,从而有2232BC AC =,又BAC ADC ∽,即可得解.【小问1详解】解:EA 与O 相切,理由如下:连接OA,∵BC 是O 的直径,直线EA 与CD 垂直,∴90BAC ADC ∠∠==︒,∵DA AC DC AB ⋅=⋅,∴DA DC AB AC=,∴BAC ADC∽∴ABO DAC ∠∠=,∵OA OB =,∴ABO BAO DAC ∠∠∠==,∵90BAC BAO OAC ∠∠∠=+=︒,∴90OAD OAC DAC ∠∠∠=+=︒,∴OA DE ⊥,∴EA 与O 相切;【小问2详解】解:∵BC BE =,∴122EAC ABE S S S == ,1ABC EAB S S S == ,∴2EAC ABES S = ,∵OA DE ⊥,∴90OAB BAE OAE ∠∠∠+==︒,∵90BAC ∠=︒,OBA OBA ∠∠=,∴90OBA ECA ∠∠+=︒,∴EAB ECA ∠∠=,∵E E ∠∠=,∴EAB ECA ∽,∴222EAC ABE S AC S AB== ,∴2212AB AC =又∵90BAC ∠=︒,∴2222221322BC AC AB AC AC ++===,∴2223AC BC =∵BAC ADC ∽,∴222123ADC BAC S S AC m S S BC ==== .【点睛】本题考查了直径所对的圆周角是直角,垂线的性质,相似三角形的判定及性质,切线的判定,勾股定理,熟练掌握直径所对的圆周角是直角,垂线的性质,相似三角形的判定及性质,切线的判定以及勾股定理等知识是解题的关键.24.数和形是数学研究客观物体的两个方面,数(代数)侧重研究物体数量方面,具有精确性、形(几何)侧重研究物体形的方面,具有直观性.数和形相互联系,可用数来反映空间形式,也可用形来说明数量关系.数形结合就是把两者结合起来考虑问题,充分利用代数、几何各自的优势,数形互化,共同解决问题.同学们,请你结合所学的数学解决下列问题.在平面直角坐标系中,若点的横坐标、纵坐标都为整数,则称这样的点为整点.设函数2(42)(96)44y a x a x a =++--+(实数a 为常数)的图象为图象T .(1)求证:无论a 取什么实数,图象T 与x 轴总有公共点;(2)是否存在整数a ,使图象T 与x 轴的公共点中有整点?若存在,求所有整数a 的值;若不存在,请说明理由.【答案】(1)见解析(2)0a =或1a =-或1a =或2a =-【解析】【分析】(1)分12a =-与12a ≠-两种情况讨论论证即可;(2)当12a =-时,不符合题意,当12a ≠-时,对于函数2(42)(96)44y a x a x a =++--+,令0y =,得2(42)(96)440a x a x a ++--+=,从而有4421a x a -=+或12x =-,根据整数a ,使图象T 与x 轴的公共点中有整点,即x 为整数,从而有211a +=或211a +=-或212a +=或212a +=-或213a +=或213a +=-或216a +=或216a +=-,解之即可.【小问1详解】解:当12a =-时,420a +=,函数2(42)(96)44y a x a x a =++--+为一次函数126y x =+,此时,令0y =,则1260x +=,解得12x =-,∴一次函数126y x =+与x 轴的交点为102⎛⎫- ⎪⎝⎭,;当12a ≠-时,420a +≠,函数2(42)(96)44y a x a x a =++--+为二次函数,∵2(42)(96)44y a x a x a =++--+,∴()2(96)(42)444a a a ∆=+---+228110836643232a a a a =-++--214049100a a -+=()20107a =≥-,∴当12a ≠-时,2(42)(96)44y a x a x a =++--+与x 轴总有交点,∴无论a 取什么实数,图象T 与x 轴总有公共点;【小问2详解】解:当12a =-时,不符合题意,当12a ≠-时,对于函数2(42)(96)44y a x a x a =++--+,令0y =,则2(42)(96)440a x a x a ++--+=,∴()()()2144210a x a x +--+=⎡⎤⎣⎦,∴()()21440a x a +--=或210x +=∴4421a x a -=+或12x =-,∵6221x a =-+,整数a ,使图象T 与x 轴的公共点中有整点,即x 为整数,∴211a +=或211a +=-或212a +=或212a +=-或213a +=或213a +=-或216a +=或216a +=-,解得0a =或1a =-或12a =(舍去)或32a =-(舍去)或1a =或2a =-或52a =(舍去)或72a =-(舍去),∴0a =或1a =-或1a =或2a =-.【点睛】本题主要考查了一次函数的性质,二次函数与一元二次方程之间的关系以及二次函数的性质,熟练掌握一次函数的性质,二次函数与一元二次方程之间的关系,二次函数的性质以及数形相结合的思想是解题的关键.。
云南昭通中考数学试卷真题
云南昭通中考数学试卷真题一、选择题1. 已知函数 $f(x) = 3x + 4$,则 $f\left(\frac{1}{3}\right)$ 的值是多少?A. 1B. 2C. 3D. 42. 若 $a + \frac{1}{a} = 3$,则 $a^2 + \frac{1}{a^2}$ 的值等于多少?A. 5B. 7C. 9D. 113. 已知 $A$ 是一个 $\sqrt{2}$ 长度的线段的两个端点,$B$ 是一个$\sqrt{3}$ 长度的线段的两个端点,将 $A$ 和 $B$ 的两个端点连结,得到线段 $AB$,则线段 $AB$ 的长度为多少?A. 2B. $\sqrt{5}$C. $\sqrt{6}$D. $\sqrt{7}$二、填空题1. 若 $\frac{4x-7}{3} = 5$,则 $x$ 的值为\underline{\hspace{3cm}}。
2. $\sqrt{8} - \sqrt{2}$ 的值等于\underline{\hspace{2cm}}。
3. 已知一个长方体的体积为 216,底面积为 9,则长方体的高为\underline{\hspace{2cm}}。
三、解答题1. 解方程组:$\begin{cases}2x + y = 5 \\x - 3y = 1\end{cases}$2. 矩形长为5cm,宽为3cm。
将这个矩形沿长边平分成两个正方形,求每个正方形的边长。
3. 已知一个三角形的两边分别为5cm、8cm,且夹角的正弦值为$\frac{3}{5}$,求第三条边长。
四、应用题1. 一块钮扣的重量为6克,若10个钮扣的重量等于4个苏打饼干的重量,求一个苏打饼干的重量。
2. 甲队和乙队进行篮球比赛,甲队的投篮命中率为60%,乙队的投篮命中率为70%。
如果两队都进行了100次投篮,甲队比乙队多命中了几次?。
云南省昭通市中考数学试卷
云南省昭通市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2020·铜仁) 实数a,b在数轴上对应的点的位置如图所示,下列结论正确的是A .B .C .D .2. (2分)计算a12÷a4(a≠0)的结果是()A . a3B .C . a8D .3. (2分) (2018九上·南昌期中) 下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .4. (2分)下列说法正确的是().A . 一个游戏的中奖概率是,则做100次这样的游戏一定会中奖B . 为了解全国中学生的心理健康情况,应该采用普查的方式C . 一组数据 8,8,7,10,6,8,9 的众数和中位数都是8D . 若甲组数据的方差s2=0.01,乙组数据的方差s2=0.1,则乙组数据比甲组数据稳定5. (2分)(2017·自贡) 不等式组的解集表示在数轴上正确的是()A .B .C .D .6. (2分) (2018九上·新乡期末) 将抛物线y=﹣3x2平移,得到抛物线y=﹣3 (x﹣1)2﹣2,下列平移方式中,正确的是()A . 先向左平移1个单位,再向上平移2个单位B . 先向左平移1个单位,再向下平移2个单位C . 先向右平移1个单位,再向上平移2个单位D . 先向右平移1个单位,再向下平移2个单位7. (2分)(2020·苏州模拟) 如图,在矩形ABCD中,AB=8,BC=12,点E是BC的中点,连接AE,将△ABE 沿AE折叠,点B落在点F处,连接FC,则tan∠ECF = ()A .B .C .D .8. (2分) (2020八下·厦门期末) 在△ABC中,AB=AC=5,P是BC上异于B,C的一点,则AP2+BP⋅PC的值是()A . 15B . 25C . 30D . 209. (2分) (2019七下·合肥期末) 某公司承担了制作600套校服的任务,原计划每天制作x套,实际上平均每天比原计划多制作了5套,因此提前6天完成任务.根据题意,下列方程正确的是()A .B .C .D .10. (2分)(2017·肥城模拟) 如图1所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P以1cm/秒的速度沿折线BE﹣ED﹣DC运动到点C时停止,点Q以2cm/秒的速度沿BC运动到点C时停止.设P、Q 同时出发t秒时,△BPQ的面积为ycm2 .已知y与t的函数关系图象如图2;(其中曲线OG为抛物线的一部分,其余各部分均为线段),则下列结论:①当0<t≤5时,y= t2;②当t=6秒时,△ABE≌△PQB;③cos∠CBE= ;④当t= 秒时,△ABE∽△QBP;其中正确的是()A . ①②B . ①③④C . ③④D . ①②④二、填空题 (共10题;共11分)11. (2分) (2019七上·萧山月考)(1)写出一个比-2小的无理数________.(2)写出一个次数为3的单项式________.12. (1分) (2018七上·黄陂月考) -38600000用科学记数法表示为________;13. (1分) (2019九上·武邑月考) 将一个正十边形绕其中心至少旋转________°就能和本身重合.14. (1分) (2017八下·兴隆期末) 计算 +()2=________.15. (1分)如果关于x的一元二次方程x2+px+q=0的两根分别为x1=2,x2=1,那么q的值是________ .16. (1分)(2019·永定模拟) 圆锥的底面半径为3cm ,母线长为5cm ,则它的侧面积为________.17. (1分) (2019九上·延安期中) 如图,圆O的半径为1,是圆O的内接等边三角形,点D.E在圆上,四边形EBCD为矩形,这个矩形的面积是________18. (1分)如图,AD⊥BC,BD=CD,点C在AE的垂直平分线上,已知BD=2,AB=4,则DE=________.19. (1分) (2019八下·湖南期中) 点(-1,y1),(2,y2)是直线y=2x+1上的两点,则y1________y2(填“>”或“=”或“<”).20. (1分)(2020·杭州模拟) 如图,正方形ABCD的边长为4,将△ADE和△CDF分别沿直线DE和DF折叠后,点A和点C同时落在点H处,且E是AB中点,射线DH交AC于G,交CB于M,则GH的长是________。
云南省昭通市中考数学试卷
云南省昭通市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2019七上·义乌期中) -4的绝对值是()A . 4B .C . -4D .2. (2分)(2011·海南) 海南省2010年第六次人口普查数据显示,2010年11月1日零时.全省总人口为8671518人.数据8671518用科学记数法(保留三个有效数字)表示应是()A . 8.7×106B . 8.7×107C . 8.67×106D . 8.67×1073. (2分)(2017·佳木斯) 下列运算中,计算正确的是()A . (a2b)3=a5b3B . (3a2)3=27a6C . x6÷x2=x3D . (a+b)2=a2+b24. (2分)在正三角形、等腰梯形、矩形、平行四边形中,既是轴对称图形又是中心对称图形的是()A . 正三角形B . 等腰梯形C . 矩形D . 平行四边形5. (2分)(2016·大庆) 一个盒子装有除颜色外其它均相同的2个红球和3个白球,现从中任取2个球,则取到的是一个红球、一个白球的概率为()A .B .C .D .6. (2分)如图,若∠1=∠2,则下列结论正确的是()A . AB∥CDB . AD∥BCC . ∠ABD=∠BDCD . ∠A=∠C7. (2分) (2017九上·拱墅期中) 二次函数有的图象如图,则函数值时,的取值范围是().A .B .C . 或D .8. (2分) (2017七下·杭州期中) 不等式组的解集,在数轴上表示正确的是()A .B .C .D .9. (2分) (2017七上·西城期末) 下列四张正方形硬纸片,分别将阴影部分剪去后,再沿虚线折叠,其中可以围成一个封闭长方体包装盒的是()A .B .C .D .10. (2分) (2017七上·兰陵期末) 某服装店同时以300元的价钱出售两件不同进价的衣服,其中一件赚了20%,而另一件亏损了20%.则这单买卖是()A . 不赚不亏B . 亏了C . 赚了D . 无法确定11. (2分)(2017·洛阳模拟) 如图,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG= ,则△CEF的周长为()A . 8B . 9.5C . 10D . 11.512. (2分)下列说法正确的是()A . 函数y=-x+2中y随x的增大而增大B . 直线y=2x-4与x轴的交点坐标是(0,-4)C . 图象经过(2,3)的正比例函数的表达式为y=6xD . 直线y=- x+1不过第三象限.二、填空题 (共3题;共3分)13. (1分) (2018八上·河南月考) 若一个正数x的两个平方根分别是3m+1与﹣2m﹣3,则x的值是________.14. (1分) (2017八上·满洲里期末) 分解因式:3x2﹣6xy+3y2=________.15. (1分)如图,水平放置的圆柱形油桶的截面半径是,油面高为,截面上有油的弓形(阴影部分)的面积为________ .三、解答题 (共8题;共76分)16. (5分) (2018七上·普陀期末) 先化简,再求值:,其中.17. (5分)(2019·碑林模拟) 如图,已知△ABC是等边三角形,点D在AC边上一点,连接BD,以BD为边在AB的左侧作等边△DEB,连接AE,求证:AB平分∠EAC.18. (10分)(2018·重庆) 某初中学校举行毛笔书法大赛,对各年级同学的获奖情况进行了统计,并绘制了如下两幅不完整的统计图,请结合图中相关数据解答下列问题:(1)请将条形统计图补全;(2)获得一等奖的同学中有来自七年级,有来自八年级,其他同学均来自九年级,现准备从获得一等奖的同学中任选两人参加市内毛笔书法大赛,请通过列表或画树状图求所选出的两人中既有七年级又有九年级同学的概率.19. (5分)如图所示,A、B之间是一座山,一条高速公路要通过A、B两点,在A地测得公路走向是北偏西111°32′.如果A、B两地同时开工,那么在B地按北偏东多少度施工,才能使公路在山腹中准确接通?为什么?20. (10分) (2015八下·苏州期中) 点A(2,﹣3)在反比例函数y= 的图像上.(1)试判断点B(﹣1,6),C(﹣3,﹣2)是否在这个反比例函数的图像上,请说明理由;(2)若P(a﹣1,b),Q(a,c)也在这个反比例函数的图像上,且a<0,试比较b,c的大小.21. (15分)我市某养殖场计划购买甲、乙两种鱼苗共700尾,甲种鱼苗每尾3元,乙种鱼苗每尾5元,相关资料表明:甲、乙两种鱼苗的成活率分别为85%和90%(1)若购买这两种鱼苗共用去2500元,则甲、乙两种鱼苗各购买多少尾?(2)若要使这批鱼苗的总成活率不低于88%,则甲种鱼苗至多购买多少尾?(3)设甲种鱼苗购买m尾,购买鱼苗的费用为w元,列出w与x之间的函数关系式,运用一次函数的性质解决问题.22. (11分) (2019九上·清江浦月考) 如图1,在四边形ABCD中,∠DAB被对角线AC平分,且AC2=AB•AD,我们称该四边形为“可分四边形”,∠DAB称为“可分角”.(1)如图2,四边形ABCD为“可分四边形”,∠DAB为“可分角”,求证:△DAC∽△CAB.(2)如图2,四边形ABCD为“可分四边形”,∠DAB为“可分角”,如果∠DCB=∠DAB,则∠DAB=________°(3)现有四边形ABCD为“可分四边形”,∠DAB为“可分角”,且AC=4,BC=2,∠D=90°,求AD的长.23. (15分) (2019九上·江汉月考) 已知抛物线 y=ax2-3amx-4am2(a>0,m>0)与 x 轴交于A,B两点(A在B左边),与 y 轴交于C点,顶点为P,OC=2AO.(1)求 a 与 m 满足的关系式;(2)直线AD//BC,与抛物线交于另一点D,△ADP的面积为,求 a的值;(3)在(2)的条件下,过(1,-1)的直线与抛物线交于M、N两点,分别过M、N且与抛物线仅有一个公共点的两条直线交于点G,求OG长的最小值.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共3题;共3分)13-1、14-1、15-1、三、解答题 (共8题;共76分)16-1、17-1、18-1、18-2、19-1、20-1、20-2、21-1、21-2、21-3、22-1、22-2、22-3、23-1、。
云南省昭通市中考数学试卷
云南省昭通市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分)下列各式正确的是()A . +(﹣5)=+|﹣5|B . >C . -3.14>﹣πD . 0<﹣(+100)2. (2分) (2017七下·乐亭期末) 下列运算正确的是()A . (a+b)2=a2+b2B . (-2ab3)2=-4a2b6C . 3a2-2a3=a6D . a3-a=a(a+1)(a-1)3. (2分) (2019七下·龙岩期末) 已知a∥b ,将等腰直角三角形ABC按如图所示的方式放置,其中锐角顶点B ,直角顶点C分别落在直线a , b上,若∠1 15°,则∠2的度数是()A . 15°B . 22.5°C . 30°D . 45°4. (2分)(2018·眉山) 下列立体图形中,主视图是三角形的是()。
A .B .C .D .5. (2分)(2014·连云港) 一组数据1,3,6,1,2的众数和中位数分别是()A . 1,6B . 1,1C . 2,1D . 1,26. (2分)(2018·宁夏模拟) 下列说法中错误的是()A . 经过两点有且只有一条直线B . 垂直于弦的直径平分这条弦C . 角平分线上的点到角两边的距离相等D . 过直线l上的一点有且只有一条直线垂直于l二、填空题 (共8题;共9分)7. (1分)(2019·宿迁) 实数4的算术平方根为________.8. (1分)(2019·长春模拟) 因式分解:b2﹣b4=________.9. (2分)计算:= 2;=________ .10. (1分)(2016·徐州) 某市2016年中考考生约为61500人,该人数用科学记数法表示为________.11. (1分)(2020·昌吉模拟) 计算 =________12. (1分)(2019·荆州) 如图①,已知正方体的棱长为,,,分别是,,的中点,截面将这个正方体切去一个角后得到一个新的几何体(如图②),则图②中阴影部分的面积为________ .13. (1分)(2020·无锡模拟) 若一个圆锥的侧面展开图是一个半径为,圆心角为120°的扇形,则该圆锥的底面半径为________ .14. (1分) (2018八下·句容月考) 如图正方形ABCD中,点E在边DC上,DE=4,EC=2,把线段AE绕点A 旋转,使点E落在直线BC上的点F处,则F、C两点的距离为________.三、解答题 (共10题;共81分)15. (5分) (2019七下·武昌期末) 解不等式组16. (5分)(2019·吉林) 如图,在中,点在边上,以为圆心,长为半径画弧,交边于点,连接、.求证:.17. (10分) (2020八下·北京期末) 关于x的一元二次方程有两个实数根.(1)求k的取值范围;(2)请选择一个合适的数作为k的值,并求此时方程的根.18. (5分)(2017·徐州模拟) 2016年9月10日,郑徐高铁正式运营.从徐州到郑州全程约360km,高铁开通后,运行时间比特快列车所用的时间减少了2.1小时.若高铁列车的平均速度是特快列车平均速度的2.4倍,求特快列车的平均速度.19. (11分)“垃圾不落地,商南更美丽”。
云南省昭通中考数学试卷及答案
2010年昭通市高中(中专)招生统一考试数学(全卷三个大题,共23个小题,共6页;满分120分,考试用时120分钟) 注意事项:1.本卷为试题卷,考生必须在答题卷上解题作答,答案书写在答题卷相应位置上,在试题卷、草稿纸上作答无效.2.考试结束后,请将试题卷和答题卷一并交回.一、选择题(本大题共7小题,每小题只有一个正确先项,每小题3分,满分21分)1 •下列结论错误的是D. 2x y = 2xyA . \ 4=2 E.方程2x —'4 = 0 的解为x = 2c. (a b)(a -b)二a2 -b22.下列图形是轴对称图形的是|£©0逾A. B. C. D.3.下列运算正确的是A.x2・x3二x5B. (a b)2二a2 b2c. (a2)3二a5D. a2 a3二a54.下列事件中是必然事件的是A . 一个直角三角形的两个锐角分别是40°和60°B.抛掷一枚硬币,落地后正面朝上C.当x是实数时,x2> 0D.长为5cm、5cm、11cm的三条线段能围成一个三角形5.某物体的三视图如图1所示,那么该物体的形状是D.长方体图1A .圆柱B.球C.正方体6.如图2, AB // CD , EF 丄AB 于E , EF 交CD 于F,已知N 2 = 30°,则乂1 是27•二次函数y =ax - bx c 的图象如图3所示,则下列结论正确的是9•计算:(-3)° 1 二210.分解因式:3ab —4ab= ____________11.如图4,上海世博会的中国馆建筑外观以“东方之冠,鼎盛中华,天下粮仓,富庶百姓” 为构思主题,建筑面积 4.6457万平方米,保留两个有效数字是 _____________________ 万平方米. 12•不等式lx-3< 0的解集为213. __________________________________________________________________________ 如图5, O O 的弦AB =8 , M 是AB 的中点,且OM 为3,则O 0的半径为 __________________ . 14.如果两个相似三角形的一组对应边分别为 3cm 和5cm ,且较小三角形的周长为 15cm ,则较大三角形的周长为 ___________ cm .15 .某种火箭被竖直向上发射时,它的高度h (m )与时间t (s )的关系可以用公式h = -5t 2 150t 1表示•经过 _____________ s ,火箭达到它的最高点.A • 20 ° E. 60°C. 30°D. 45°A a :::0, b :::0,c 0, b 2 -4ac 0B . a 0,b :::0, c 0, b2-4ac ::: 0C . a ::: 0, b 0, c ::: 0, b2「4ac 0 D . a ::: 0, b 0 c 0, b 2 「4ac 0 二、填空题 & 3的相反数是(本大题共8小题,每小题3分,满分24分)图4三、解答题(本大题共8小题,满分75分)22x -4 x -2x —3 x — 916. (7分)先化简再求值:,其中X=「5 •17. (8分)如图6, L ABCD的两条对角线AC、BD相交于点0.(1)图中有哪些三角形是全等的?(2)选出其中一对全等三角形进行证明.18. (8分)水是生命之源,水是希望之源,珍惜每一滴水,科学用水,有效节水,就能播种希望.某居民小区开展节约用水活动,3月份各户用水量均比2月份有所下降,其中的20户、120户、60户节水量统计如下表:户数2012060节水量(立方米/每户) 2 2.53(1)节水量众数是多少立方米?(2)该小区3月份比2月份共节约用水多少立方米?(3)该小区3月份平均每户节约用水多少立方米?19.(9分)全球变暖,气候开始恶化,中国政府为了对全球气候变暖负责任,积极推进节能减排,在全国范围内从2008年起,三年内每年推广5000万只节能灯•居民购买节能灯,国家补贴50%购灯费.某县今年推广财政补贴节能灯时,李阿姨买了4个8W和3个24W 的节能灯,一共用了29元,王叔叔买了2个8W和2个24W的节能灯,一共用了17元. 求:(1)该县财政补贴50%后,8W、24W节能灯的价格各是多少元?(2) 2009年我省已推广通过财政补贴节能灯850万只,预计我省一年可节约电费2.3亿元左右,减排二氧化碳43.5万吨左右,请你估算一下全国一年大约可节约电费多少亿元?大约减排二氧化碳多少万吨?(结果精确到0.1)20.(8分)小颖为学校联欢会设计了一个“配紫色”的游戏;下面是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,游戏者同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,那么他就赢了,因为红色和蓝色在一起配成了紫色.(1)禾U用树状图或列表的方法表示出游戏所有可能出现的结果;21.(10分)云南2009年秋季以来遭遇百年一遇的全省性特大旱灾,部分坝塘干涸,小河、小溪断流,更为严重的情况是有的水库已经见底,全省库塘蓄水急剧减少,为确保城乡居民生活用水,有关部门需要对某水库的现存水量进行统计,以下是技术员在测量时的一些数据:水库大坝的横截面是梯形ABCD (如图7所示),AD // BC , EF为水面,点E在DC 上,测得背水坡AB的长为18米,倾角.B =30°迎水坡CD上线段DE的长为8米, NADC =120°.(1)请你帮技术员算出水的深度(精确到0.01米,参考数据.3〜1.732 );(2)就水的深度而言,平均每天水位下降必须控制在多少米以内,才能保证现有水量至少能使用20天?(精确到0.01米)22.(11分)在如图8所示的方格图中,每个小正方形的顶点称为“格点”,且每个小正方形的边长均为1个长度单位,以格点为顶点的图形叫做“格点图形”,根据图形解决下列问题:(1)图中格点△ ABC •是由格点△ ABC通过怎样变换得到的?(2)如果建立直角坐标系后,点A的坐标为(-5,2),点B的坐标为(—5,0),请求出过A点的正比例函数的解析式,并写出图中格点△DEF各顶点的坐标.23.(14分)如图9,已知直线I的解析式为y =-x 6,它与x轴、y轴分别相交于A、B 两点,平行于直线I的直线n从原点O出发,沿x轴正方向以每秒1个单位长度的速度运动,运动时间为t秒,运动过程中始终保持n // I,直线n与x轴,y轴分别相交于C、D两点,线段CD的中点为P,以P为圆心,以CD为直径在CD上方作半圆,半圆面积为S,当直线n与直线l重合时,运动结束. (1)求A、B两点的坐标;(2)求S与t的函数关系式及自变量t的取值范围;图8(3)直线n在运动过程中,①当t为何值时,半圆与直线I相切?1②是否存在这样的t值,使得半圆面积S S弟形ABCD ?若存在,求出t值,若不存2图9 (2)备用图图9 (1)2010年昭通中考数学答案一、 选择题:1.D2.B3.A4.C5.D6. B7.D二、 填空题: 8. -3 9. 2 10. ab(3a-4) 11. 4.6 12. x < 6 13. 5 14 . 25 15 . 15 三、解答题:16.解:x 「3 x 2「92x —4 x —2x -3 . x -2 2x -4 x 2 -9 x —3 x — 2 2(x -2) (x 3)(x -3) 12(x 3)17.解:(1) △ AOB ◎△ COD 、△ AOD COB 、△ ABD CDB 、△ ADC CBA ........................................................................................................ 4 分(2 )以厶AOB COD 为例证明,:四边形ABCD 是平行四边形,OA=OC , OB=OD . 在△ AOB 和A COD 中,OA =OC , AOB = COD ,当x 二-5时,原式1 _ 1 2( -5 3厂 4OB =OD.:、△ AOB COD. ................................................................................................. •分18.解:(1 )节水量的众数是2.5立方米. .............................................. 2分(2)该小区3月份比2月份共节约用水:2江20+2.5勺20+3況60 = 520 (立方米). ........................................ •分(3)该小区3月份平均每户节约用水:x = 2 2025 120 3 60吃620 +120 +6019.解:(1 )设8W节能灯的价格为x元,24W节能灯的价格为y元.(立方米)则4x *29,②2x 2y =17.②f x = 3.5,解N j ..................................................................................................................................... •分y = 5.答:该县财政补贴50%后,8W节能灯的价格为3.5元,24W节能灯的价格为5元.................................................................................... •分2 3(2)全国一年大约可节约电费:5000〜13.5 (亿元)........................ 7分85043 5大约减排二氧化碳:一-X5000〜255.9 (万吨)..................................... 9分85020.解:(1 )用树状图表示:................................................................................... 4分所有可能结果:(红、黄),(红、绿),(红、蓝),(白、黄),(白、绿),(白、蓝) (6)(或)用列表表示:黄绿蓝E盘A 盘红(红,黄)(红,绿)(红,蓝)白(白,黄)(白,绿)(白,蓝)1(2) P (获胜)二—... ............................................................... 8 分621•解:分别过A、D作AM丄BC于M、DN丄BC于N ,................... 1分在Rt A ABM 中,:B=30°1.AM AB =9 .2:AD // BC, AM _ BC, DN _ BC ,2分二AM =DN =9 .. ......................................:DN _ BC,DN _ AD ,ADN =90°CDN —ADC - ADN =120°-90° 30延长FE交DN于H .HD 在Rt△ DHE 中,cos EDH =-HD,DEDHcos30二 HN =DN _DH =9_4A /3 = 9_4X 1.732 〜2.07 .(米) ..................... •分(2)=0.1035^ 0.10 (米). ................................................... •分 20答:平均每天水位下降必须控制在 0.10米以内,才能保证现有水量至少能使用 20天. .................................................................................. 10分 22•解:(1)格点△ A BC •是由格点△ ABC 先绕点B 逆时针旋转90°然后向右平移13个 长度单位(或格)得到的. .................................................................... •分 (注:先平移后旋转也行)(2)设过A 点的正比例函数解析式为 y = kx , 将A(-5,2)代入上式得2 = —5k ,.过A 点的正比例函数的解析式为△ DEF 各顶点的坐标为:D(2,-4), E(0,-8), F(7,-7).23•解:(1) : y - -x • 6 - 令 y=0,得 0 = -x 6 - x=6 , A(6,0).令 x=0,得 y=6 , B(0,6).(2) T OA=OB =6 - ■ △ AOB 是等腰直角三角形.:n // I -CDO 二 BAO =45°■ △COD 为等腰直角三角形, OD = OC = t .CD = OC 2 OD 2 = t 2 t 2. 1 CD 2DH=8 3 =4 3 ,2 11分 PD1 2二 s=— n 2(o a < 6). ............................................................................................ •分4(3)①分别过D 、P 作DE_AB 于E 、PF _ AB 于F .AD = OA -0D =6 - t ,在 Rt △ ADE 中,sin /EAD 二 ADDE 2.(6 _t),2 (6 -t).当PF 二PD 时,半圆与I 相切.即律‘),2 2 t =3 .当t =3时,半圆与直线l 相切. .........................................11 1②存在.T S 梯形 ABCD ^S A AOB -S ^cOD 石 6 6 - {仁二18-才'. s 」n 2.4(n 1)t 2 =36 ,t 2 36 “ —;::6 .1S 梯形ABCD . 2 PF 11分 1S s 編形ABCD ,则 二118 一丄t 2 2 2■存在t =6 ' n 1,使得S 14分。
2022昭通中考数学试题及答案
2022昭通中考数学试题及答案一、选择题(本题共10小题,每小题3分,共30分)1. 已知实数a、b满足a+b=1,且a²+b²=2,则ab的值为()。
A. 0B. 1C. -1D. 2答案:A2. 将函数y=2x-3的图象沿y轴向上平移2个单位,所得直线的解析式为()。
A. y=2x-1B. y=2x+1C. y=2x-5D. y=2x+3答案:B3. 已知等腰三角形的两边长分别为4和6,则该三角形的周长为()。
A. 14B. 16C. 12D. 10答案:B4. 已知一个正比例函数的图象经过点(-2,4),则该函数的解析式为()。
A. y=-2xB. y=2xC. y=-4xD. y=4x答案:A5. 已知一个二次函数的图象开口向上,且经过点(0,3)和(2,3),则该二次函数的对称轴为()。
A. x=1B. x=2C. x=0D. x=-1答案:A6. 已知一个圆的半径为5,圆心到直线的距离为3,则该圆与直线的位置关系为()。
A. 相离B. 相切C. 相交D. 内含答案:C7. 已知一个扇形的圆心角为60°,半径为4,则该扇形的面积为()。
A. 4πB. 8πC. 6πD. 2π答案:D8. 已知一个直角三角形的两直角边长分别为3和4,则该三角形的斜边长为()。
A. 5B. 7C. 6D. 8答案:A9. 已知一个样本数据为2,3,4,5,6,则该样本数据的平均数为()。
A. 4B. 3.5C. 3D. 4.5答案:A10. 已知一个多项式f(x)=x³-3x²+4,且f(1)=2,则该多项式可以分解为()。
A. (x-1)(x²-2x+4)B. (x-1)(x²-2x+2)C. (x-1)(x²-x+4)D. (x-1)(x²+x+4)答案:C二、填空题(本题共5小题,每小题3分,共15分)11. 已知一个数列的前三项为1,2,3,且从第四项开始,每一项都是其前三项的和,则该数列的第五项为______。
云南省昭通市数学中考模拟试卷
云南省昭通市数学中考模拟试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)(2020·攀枝花) 中国抗疫取得了巨大成就,堪称奇迹,为世界各国防控疫情提供了重要借鉴和支持,让中国人民倍感自豪.2020年1月12日,世界卫生组织正式将2019新型冠状病毒名为.该病毒的直径在0.00000008米-0.000000012米,将0.000000012用科学记数法表示为的形式,则为().A . -8B . -7C . 7D . 82. (2分)函数中自变量x的取值范围是()A . x>2B . x≥2C . x≤2D . x<23. (2分)如图所示的是三通管的立体图,则这个几何体的俯视图是()A .B .C .D .4. (2分)李刚同学在黑板上做了四个简单的分式题:①(-3)0=1;②a2÷a2=a;③(-a5)÷(-a)3=a2;④4m-2= .其中做对的题的个数有()A . 1个B . 2个C . 3个D . 4个5. (2分) (2015九上·福田期末) 已知反比例函数y= ,下列各点不在该函数图象上的是()A . (2,3)B . (﹣2,﹣3)C . (2,﹣3)D . (1,6)6. (2分)某公司10名职工3月份工资统计如下,该公司10名职工3月份工资的中位数是()工资(元)3000320034003600人数(人)3331A . 3100元B . 3200元C . 3300元D . 3400元7. (2分) (2020九上·北京月考) 下列四个图案中,是中心对称图形,但不是轴对称图形的是()A .B .C .D .8. (2分)(2018·东营模拟) 在平面坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D 的坐标为(0,2),延长CB交x轴于点A1 ,作正方形A1B1C1C,延长C1B1交x轴于点A2 ,作正方形A2B2C2C1,………按这样的规律进行下去,正方形A2018B2018C2018C2017的面积为()A .B .C .D .二、填空题 (共6题;共10分)9. (1分) (2019七上·海口期中) ________的相反数是25;-0.125的绝对值是________;________的倒数是3;10. (1分) (2020九下·沈阳月考) 如图,AB∥CD,直线l交AB于点E,交CD于点F,若∠2=85°,则∠1等于________°.11. (1分)(2019·岳阳模拟) 分解因式:a3b-2a2b+ab=________.12. (1分)(2019·本溪) 如果关于x的一元二次方程x2﹣4x+k=0有实数根,那么k的取值范围是________.13. (1分)(2020·永嘉模拟) 已知扇形的弧长为8π,圆心角为60°,则它的半径为________.14. (5分)(2017·南宁) 如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置…,则正方形铁片连续旋转2017次后,点P的坐标为________.三、解答题 (共9题;共79分)15. (5分)(2017·营口) 先化简,再求值:(﹣)÷(1﹣),其中x=()﹣1﹣(2017﹣)0 , y= sin60°.16. (5分)(2019·五华模拟) 如图,一渔船自西向东追赶鱼群,在A处测得某无名小岛C在北偏东60°方向上,前进2海里到达点B,此时测得无名小岛C在东北方向上.已知无名小岛周围2.5海里内有暗礁,则渔船继续向东追赶鱼群有无触礁危险?(参考数据:≈1.414,≈1.732)17. (11分)(2016·河池) 某校八年级学生在学习《数据的分析》后,进行了检测,现将该校八(1)班学生的成绩统计如下表,并绘制成条形统计图(不完整).分数(分)人数(人)68478780388590109661005(1)补全条形统计图;(2)该班学生成绩的平均数为86.85分,写出该班学生成绩的中位数和众数;(3)该校八年级共有学生500名,估计有多少学生的成绩在96分以上(含96分)?(4)小明的成绩为88分,他的成绩如何,为什么?18. (3分) (2019八上·包河期中) 甲、乙两人驾车都从Р地出发,沿一条笔直的公路匀速前往Q地,乙先出发一段时间后甲再出发,甲、乙两人到达Q地后均停止,已知P、Q两地相距200 km,设乙行驶的时间为t(h),甲、乙两人之间的距离为y(km),表示y与t函数关系的部分图象如图所示.请解决以下问题:(1)由图象可知,甲比乙迟出发________h.图中线段BC所在直线的函数解析式为________;(2)设甲的速度为,求出的值;(3)根据题目信息补全函数图象(不需要写出分析过程,但必须标明关键点的坐标);并直接写出当甲、乙两人相距32 km时t的值.19. (10分) (2019九上·九龙坡期末) “高新九龙坡,美丽山水城”,九龙坡区的创卫工作己进入最后阶段.某小区准备购买一些清洁用品,改善小区清洁,提升小区品质,增强居民的归属感.现拟购买户外垃圾桶和除草机共100件,且垃圾桶的数量不少于除草机的4倍.(1)该小区最多可以购买除草机多少个?(2)该小区计划以(1)中购买最多除草机的方案采购清洁用品.某商场里,户外垃圾桶每个200元,除草机每台800元.该商场抓住商机,与小区物管协商,将户外垃圾桶的单价降低了m%(m>0),每台除草机的单价降低了50元.于是,该小区购买垃圾桶的数量将在原计划的基础上增加了2m%,除草机的数量不变,总共用去31000元,求m的值.20. (10分)(2019·银川模拟) 如图,AB是⊙O的直径,点C是圆上一点,点D是的中点,延长AD 至点E,使得AB=BE.(1)求证:△ACF∽△EBF;(2)若BE=10,tanE=,求CF的长.21. (10分) (2019九上·鹿城月考) 在不透明的袋子中装有5个球,2个红球和3个黄球,每个球除颜色外都相同,(1)从中任意摸出一个球,恰好摸到红球的概率是多少?(2)小明从袋子中摸出一个红球后,小慧再从袋子里剩余的球中摸两个球(不放回),则小慧摸到的球刚好是两个黄球的概率是多少?(要求画树状图或列表)22. (10分)(2018·无锡模拟) 如图,已知线段AB.(1)仅用没有刻度的直尺和圆规作一个以AB为腰、底角等于30°的等腰△ABC.(保留作图痕迹,不要求写作法)(2)在(1)的前提下,若AB=2cm,则等腰△ABC的外接圆的半径为________ cm.23. (15分) (2018九上·嘉兴月考) 如图所示,在平面直角坐标系xoy中,正方形OABC的边长为2cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线经过点A、B和D(4, ).(1)求抛物线的表达式.(2)如果点P由点A出发沿AB边以2cm/s的速度向点B运动,同时点Q由点B出发,沿BC边以1cm/s的速度向点C运动,当其中一点到达终点时,另一点也随之停止运动.设S=PQ2(cm2).①试求出S与运动时间t之间的函数关系式,并写出t的取值范围;②当S取时,在抛物线上是否存在点R,使得以点P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.(3)在抛物线的对称轴上求点M,使得M到D、A的距离之差最大,求出点M的坐标.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共6题;共10分)9-1、10-1、11-1、12-1、13-1、14-1、三、解答题 (共9题;共79分)15-1、16-1、17-1、17-2、17-3、17-4、18-1、18-2、18-3、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、23-3、。
云南省昭通市2020年(春秋版)中考数学试卷(I)卷
云南省昭通市2020年(春秋版)中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)-a的相反数是()A . aB .C . -aD . -2. (2分)下列计算正确的是()A . 2×3=6×B . ﹣(﹣a+1)=a﹣1C . 3m2﹣m2=3D . (﹣)2=﹣33. (2分)下列说法中,不正确的是()A . 同位角相等,两直线平行B . 两直线平行,内错角相等C . 两直线被第三条直线所截,内错角相等D . 同旁内角互补,两直线平行4. (2分)(2020·贵港模拟) 如果在第三象限,那么点在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限5. (2分)某班抽取6名同学参加体能测试,成绩如下:80,90,75,75,80,80.下列表述错误的是()A . 平均数是80B . 极差是15C . 中位数是80D . 标准差是256. (2分) (2020七下·河池期末) 《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何.”设鸡有只、兔有只,那么A .B .C .D .7. (2分)如图,在菱形ABCD中,E是AB边上一点,且∠A=∠EDF=60°,有下列结论:①AE=BF;②△DEF是等边三角形;③△BEF是等腰三角形;④当AD=4时,△DEF的面积的最小值为.其中结论正确的个数是()A . 1B . 2C . 3D . 48. (2分)如图是一个正方体的平面展开图,若把它折成一个正方体,则与空白面相对的面上的字是().A . 北B . 京C . 欢D . 迎9. (2分)如图,在△ABC中,DE∥BC,且AE=3cm,EC=5cm,DE=6cm.则BC等于()A .B .C .D .10. (2分) (2018八上·北京期中) 已知三角形的两边长分别为5和7,则第三边的中线长x的取值范围是()A .B .C .D . 无法确定二、填空题 (共8题;共9分)11. (1分) (2019七上·昭通期末) 中国的陆地面积约为9600000km2 ,用科学记数法表示是________.12. (1分)(2018·遂宁) 分解因式3a2-3b2=________.13. (2分)已知点O是ABCD对角线的交点,则图中关于点O对称的三角形有________对,它们分别是________。
云南省昭通市2021年中考数学试卷(I)卷
云南省昭通市2021年中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、单项选择题(本题共10个小题,每小题3分,共30分) (共10题;共30分)1. (3分)在“百度”搜索引擎中输入“NBA”,能搜索到与之相关的网页约为45 400 000个,将这个数用科学记数法表示为()A . 4.54×106B . 45.4×106C . 4.54×107D . 4.54×1082. (3分)(2019·滨城模拟) 下列图形中,是中心对称图形的是()A .B .C .D .3. (3分) -1的立方根为()A . 1B . -1C . 1或-1D . 没有4. (3分)如图是某几何体的三视图及相关数据,则该几何体的侧面积是()A . abπB .C . acπD .5. (3分)若把多项式x2+mx﹣6分解因式后含有因式x﹣2,则m的值为()A . -1B . 1C . ±1D . 36. (3分) (2018九上·临沭期末) 如图,在2×2的正方形网格中有9个格点,已经取定点A和B,在余下的7个点中任取一点C,使△ABC为等腰角三角形的概率是()A .B .C .D .7. (3分) (2015九上·重庆期末) 正六边形的边心距为,这个正六边形的面积为()A . 2B . 4C . 6D . 128. (3分)(2020·拉萨模拟) 现有57本书,计划分给各学习小组,如每组6本则有剩余,每组7本却不够分,则学习小组共有()A . 7个B . 8个C . 9个D . 10个9. (3分)(2012·贵港) 如图,已知直线y1=x+m与y2=kx﹣1相交于点P(﹣1,1),则关于x的不等式x+m >kx﹣1的解集在数轴上表示正确的是()A .B .C .D .10. (3分) (2017八上·东台月考) 如图,△ABC的面积为8cm2 , AP垂直∠B的平分线BP于P,则△PBC 的面积为()A . 2cm2B . 3cm2C . 4cm2D . 5cm2二、填空题(本题共11个小题,每小题3分,共33分) (共11题;共33分)11. (3分) (2019七上·端州期末) 计算3﹣(﹣2)=________.12. (3分)(2018·南湖模拟) 若分式有意义,则x的取值范围是________.13. (3分)若3m=5,3n=6,则3m﹣n的值是________ .14. (3分)某住宅小区六月份1日至5日每天的用水量变化情况如图所示,则这5天该住宅小区平均每天的用水量是________吨.15. (3分)使分式的值是整数的x(整数)的值有________16. (3分)(2017·姑苏模拟) 若一个圆锥的底面圆半径为3cm,其侧面展开图的圆心角为120°,则圆锥的母线长是________cm.17. (3分)如图,BP与CP相交于点P,∠ABP= ∠ABC,∠ACP= ∠ACB,∠A=68°,那么∠P=________°.18. (3分) (2018九上·萧山开学考) 如图,直线y=x+b交x轴于A点,交y轴于B点,与反比例函数y=交于点D,作DC⊥x轴,DE⊥y轴,则AD•BD的值为________.19. (3分)(2017·和平模拟) 某服装加工厂计划加工400套运动服,在加工完160套后,采用了新技术,工作效率比原计划提高了20%,结果提前2天完成全部任务.则采用技术后每天加工________套运动服.20. (3分)(2018·白云模拟) 把直尺、三角尺和圆形螺母按如图所示放置于桌面上,,若量出,则圆形螺母的外直径是________.21. (3分)(2017·淄川模拟) 如图,直角三角形ABC中,∠ACB=90°,AB=10,BC=6,在线段AB上取一点D,作DF⊥AB交AC于点F,现将△ADF沿DF折叠,使点A落在线段DB上,对应点记为A1;AD的中点E的对应点记为E1 ,若△E1FA1∽△E1BF,则AD=________.三、解答题(本题共8个小题,共57分) (共8题;共57分)22. (6分) (2017八下·黄冈期中) 已知a、b、c满足(a﹣7.5)2+ +|c﹣8.5|=0.求:(1)a、b、c的值;(2)求以a、b、c为边构成的三角形面积.23. (6分)(2018·漳州模拟) 为响应市收府关于”垃圾不落地·市区更美丽”的主题宣传活动,某校随机调查了部分学生对垃圾分类知识的掌握情况.调查选项分为“A:非常了解,B:比较了解C:了解较少,D:不了解”四种,并将调查结果绘制成以下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)把两幅统计图补充完整;(2)若该校学生数1000名,根据调查结果,估计该校“非常了解”与“比较了解”的学生共有________名;(3)已知“非常了解”的4名男生和1名女生,从中随机抽取2名向全校做垃圾分类的知识交流,请用画树状图或列表的方法,求恰好抽到1男1女的概率.24. (6分)我国南海某海域有一个固定侦测点A,该侦测点的可侦测半径为海里.某天,在点A侦测到西北方向上的点C处有一可疑船恰好进入侦测区域,且往正东方向匀速航行,我方与其进行多次无线电沟通无果后,可疑船只于2小时后恰好在D处离开侦测区域,我方立即通知(通知时间忽略不计)位于点A北偏东37°方向,且与A相距50海里的B处的军舰往正南方向对可疑船只进行侦测拦截.(1)求可疑船只的速度及点B到直线CD的距离;(2)若军舰航行速度为20海里/时,可侦测半径为10海里,问军舰最快几小时可以侦测到可疑船只?(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)25. (6分)(2016·十堰模拟) 已知关于x的一元二次方程x2+(2m﹣1)x+m2=0有两个实数根x1和x2 .(1)求实数m的取值范围;(2)当x12﹣x22=0时,求m的值.26. (7.0分)(2018·潮南模拟) 如图,⊙O的直径为AB,点C在圆周上(异于A,B),AD⊥CD.(1)若BC=3,AB=5,求AC的值;(2)若AC是∠DAB的平分线,求证:直线CD是⊙O的切线.27. (7.0分)某地电话拨号入网有两种收费方式,用户可以任选其一:(A)计时制:0.05元/分;(B)包月制:50元/月(限一部个人住宅电话上网).此外,每一种上网方式都得加收通信费0.02元/分;(1)请你分别写出两种收费方式下用户每月应支付的费用y(元)与上网时间x(小时)之间的函数关系式:计时制:________,包月制:________;(2)若某用户估计一个月内上网的时间为20小时,你认为采用哪种方式较为合算?28. (9分)(2020·上海模拟) 如图,已知直线与轴交于点A,与y轴交于点C,矩形ACBE的顶点B在第一象限的反比例函数图像上,过点B作,垂足为F,设OF=t.(1)求∠ACO的正切值;(2)求点B的坐标(用含t的式子表示);(3)已知直线与反比例函数图像都经过第一象限的点D,联结DE,如果轴,求m的值.29. (10.0分) (2019九上·崇阳期末) 如图,在平面直角坐标系中,抛物线y=ax2+bx+6经过点A(﹣3,0)和点B(2,0),直线y=h(h为常数,且0<h<6)与BC交于点D,与y轴交于点E,与AC交于点F.(1)求抛物线的解析式;(2)连接AE,求h为何值时,△AEF的面积最大.(3)已知一定点M(﹣2,0),问:是否存在这样的直线y=h,使△BDM是等腰三角形?若存在,请求出h 的值和点D的坐标;若不存在,请说明理由.参考答案一、单项选择题(本题共10个小题,每小题3分,共30分) (共10题;共30分) 1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题(本题共11个小题,每小题3分,共33分) (共11题;共33分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、21-1、三、解答题(本题共8个小题,共57分) (共8题;共57分) 22-1、22-2、23-1、23-2、23-3、24-1、24-2、25-1、25-2、26-1、26-2、27-1、27-2、28-1、28-2、28-3、29-1、29-2、29-3、。
云南省昭通市2020版中考数学试卷(I)卷
云南省昭通市2020版中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2019·鞍山) 如图,这是由7个相同的小正方体搭成的几何体,则这个几何体的左视图是()A .B .C .D .2. (2分)(2017·瑞安模拟) 给出四个数1,0,﹣,0.3,其中最小的是()A . 0B . 1C . ﹣D . 0.33. (2分) (2018八上·宜兴期中) 有下列各数:,0,,3.1415926,,0.3131131113…(每两个3之间依次增加一个1),,其中无理数的个数是()A . 2B . 3C . 4D . 54. (2分) (2020七下·林州月考) 如图,已知:a⊥b,b∥c,∠1=130°,则∠2的度数是()A . 30°B . 40°C . 50°D . 60°5. (2分)下列计算正确的是()A .B .C .D .6. (2分)剪纸是中国的民间艺术.剪纸方法很多,如图是一种剪纸方法的图示(先将纸折叠,然后再剪,展开后即得到图案):如图所示的四副图案,不能用上述方法剪出的是()A .B .C .D .7. (2分)图是某校初中各年级人数占初中总人数的比例统计图,已知八年级有学生360人,那么七年级有学生数().A . 900人B . 315人C . 225人D . 360人8. (2分)已知的半径r1=2,的半径r2是方程的根,与的圆心距为1,那么两圆的位置关系为()A . 内含B . 内切C . 相交D . 外切9. (2分)已知,如图,菱形ABCD中,对角线AC与BD相交于点O,OE∥DC交BC于点E,AD=10cm,则OE 的长为()A . 6cmB . 5cmC . 4cmD . 3cm10. (2分) (2017八上·濮阳期中) 如图,已知△ABC中,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A . 90°B . 135°C . 270°D . 315°11. (2分) (2016九上·北区期中) 已知抛物线y=ax2+bx+c(a≠0)与x轴交点为(﹣1,0)和(3,0),与y轴交点为(0,﹣2),则一元二次方程ax2+bx+c=0(a≠0)的根为()A . x1=﹣1,x2=3B . x1=﹣2,x2=3C . x1=1,x2=﹣3D . x1=﹣1,x2=﹣212. (2分)(2017·西华模拟) 从2,2,3,4四个数中随机取两个数,第一个作为个位上的数字,第二个作为十位上的数字,组成一个两位数,则这个两位数是2的倍数的概率是()A . 1B .C .D .二、填空题 (共6题;共8分)13. (1分) (2020七上·三门峡期末) 当x=________时,式子与的值互为相反数.14. (2分)若a<b,则﹣a________ ﹣b,2a﹣1________ 2b﹣1.15. (1分)(2018·崇仁模拟) 以线段AC为对角线的四边形ABCD(它的四个顶点A,B,C,D按顺时针方向排列),已知AB=BC=CD,∠ABC=100°,∠CAD=40°,则∠BCD的度数为________.16. (1分) (2016·南京) 分式方程的解是________.17. (1分)(2017·东平模拟) 如图,在平面直角坐标系中,直线l经过原点,且与y轴正半轴所夹的锐角为60°,过点A(0,1)作y轴的垂线l于点B,过点B1作直线l的垂线交y轴于点A1 ,以A1B、BA为邻边作▱ABA1C1;过点A1作y轴的垂线交直线l于点B1 ,过点B1作直线l的垂线交y轴于点A2 ,以A2B1、B1A1为邻边作▱A1B1A2C2;…;按此作法继续下去,则C2017的坐标是________.18. (2分)(2019·唐县模拟) 如图,正方形ABCD的边长为2,连接BD,点P是线段AD延长线上的一个动点,∠PBQ=45°,点Q是BQ与线段CID延长线的交点,当BD平分∠PBQ时,PD ________QD(填“>”“<”或“=”);当BD不平分∠PBQ时,PD·QD=________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
云南省昭通市中考数学试卷
姓名:________ 班级:________ 成绩:________
一、选择题 (共6题;共12分)
1. (2分)如果单项式2xm+2ny与-3x4y4m-2n是同类项,则m、n的值为()
A . m=-1,n=2.5
B . m=1,n=1.5
C . m=2,n=1
D . m=-2,n=-1
2. (2分)(2011·湛江) 下面四个几何体中,主视图是四边形的几何体共有()
A . 1个
B . 2个
C . 3个
D . 4个
3. (2分)(2020·天水) 若函数的图象如图所示,则函数和在同一平面直角坐标系中的图象大致是()
A .
B .
C .
D .
4. (2分) (2019九上·邗江月考) 如图,点A、B、C在⊙ 上,若∠AOB=130°,则∠C的度数为()
A . 150°
B . 130°
C . 115°
D . 120°
5. (2分)若,则下列函数:①,②,③,
④中,的值随的值增大而增大的函数共有()
A . 1个
B . 2个
C . 3个
D . 4个
6. (2分)如图是某城市部分街道的示意图,AF∥BC,EC⊥BC,AB∥DE,BD∥AE,甲、乙两人同时从B站乘车到F站,甲乘1路车,路线是B→A→E→F;乙乘2路车,路线是B→D→C→F.假定两车的速度相同,那么()先到达F站.
A . 两人同时到达F站
B . 甲
C . 乙
D . 无法判断
二、填空题 (共12题;共12分)
7. (1分) (2015七上·福田期末) 的倒数是________
8. (1分)(2016·常德) 使代数式有意义的x的取值范围是________.
9. (1分) (2019七下·宁化期中) 若,且,则 =________.
10. (1分)“天上星星有几颗,7后跟上22个0”,这是国际天文学联合会上宣布的消息,用科学记数法表示宇宙空间星星颗数________
11. (1分)一个等腰三角形的底边长是6,腰长是一元二次方程x2﹣7x+12=0的一个根,则此三角形的周长是________.
12. (1分)(2018·南宁模拟) 某人把50粒黄豆染色后与一袋黄豆充分混匀,接着抓出100粒黄豆,数出其中有10粒黄豆被染色,则这袋黄豆原来约有________粒.
13. (1分)如图,已知圆锥的母线长OA=8,地面圆的半径r=2.若一只小虫从A点出发,绕圆锥的侧面爬行一周后又回到A点,则小虫爬行的最短路线的长是________(结果保留根式).
14. (1分) (2019九下·惠州月考) 如图,将Rt△ABC 绕直角顶点 A 按顺时针方向旋转180° 得△AB1C1 ,写出旋转后 BC 的对应线段________.
15. (1分)计算:(﹣2014)0+()﹣1﹣(﹣1)2014=________
16. (1分)(2018·柳北模拟) 如图,正方形ABCD的边长为6,点O是对角线AC、BD的交点,点E在CD上,且,过点C作,垂足为F,连接OF,则下列结论正确的是________.
∽
17. (1分) (2015八下·萧山期中) 某组数据的方差计算公式为S2= [(x1﹣2)2+(x2﹣2)2+…+(x8﹣2)2],则该组数据的样本容量是________,该组数据的平均数是________
18. (1分)(2019八下·宜兴期中) 已知三角形的三边分别为a,b,c ,其中 a ,b满足
,那么这个三角形的第三边c的取值范围是________.
三、解答题 (共10题;共99分)
19. (10分)(2015·衢州) 计算:﹣|﹣2|+ ﹣4sin60°.
20. (10分)解方程: .
21. (10分)如图,在四边形ABCD中,AB=AD, AC平分∠BAD,AE⊥BC,垂足为E,AF⊥CD,垂足为F.
(1)求证:BC=CD;
(2)若,AF= ,求四边形ABCD的面积.
22. (10分)(2016·钦州) 网络技术的发展对学生学习方式产生巨大的影响,某校为了解学生每周课余利用网络资源进行自主学习的时间,在本校随机抽取若干名学生进行问卷调查,现将调查结果绘制成如下不完整的统计图表,请根据图表中的信息解答下列问题
组别学习时间x(h)频数(人数)
A0<x≤18
B1<x≤224
C2<x≤332
D3<x≤4n
E4小时以上4
(1)表中的n=________,中位数落在________组,扇形统计图中B组对应的圆心角为________°;
(2)请补全频数分布直方图;
(3)该校准备召开利用网络资源进行自主学习的交流会,计划在E组学生中随机选出两人进行经验介绍,已知E组的四名学生中,七、八年级各有1人,九年级有2人,请用画树状图法或列表法求抽取的两名学生都来自九年级的概率.
23. (6分)(2020·张家港模拟) 有四张正面分别标有数字0,1,2,3的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.
(1)随机抽出一张卡片,则抽到数字“2”的概率为________;
(2)随机抽出一张卡片,记下数字后放回并搅匀,再随机抽出一张卡片,请用列表或画树状图的方法,求两次抽出的卡片上的数字之和是3的概率.
24. (5分)如图,某建筑物BC顶部有釕一旗杆AB,且点A,B,C在同一条直线上,小红在D处观测旗杆顶部A的仰角为47°,观测旗杆底部B的仰角为42°已知点D到地面的距离DE为1.56m,EC=21m,求旗杆AB的高度和建筑物BC的高度(结果保留小数后一位).参考数据:tan47°≈1.07,tan42°≈0.90.
25. (11分) (2019九上·东河月考) 如图所示,在中,,,点从
点出发,沿着以每秒的速度向点运动;同时点从点出发,沿以每秒的速度向点运动,设运动时间为.
(1)当为何值时,;
(2)当,求的值;
(3)能否与相似?若能,求出的长;若不能,请说明理由.
26. (10分)(2018·凉山) 如图,在平面直角坐标系中,点的坐标为,以点为圆心,8为半径的圆与轴交于,两点,过作直线与轴负方向相交成的角,且交轴于点,以点为圆心的圆与轴相切于点 .
(1)求直线的解析式;
(2)将以每秒1个单位的速度沿轴向左平移,当第一次与外切时,求平移的时间.
27. (12分) (2016八下·高安期中) 在如图所示的5×5的正方形网格中,每个小正方形的边长均为1,按下列要求画图或填空;
(1)画一条线段AB使它的另一端点B落在格点上(即小正方形的顶点),且AB=2 ;
(2)以(1)中的AB为边画一个等腰△ABC,使点C落在格点上,且另两边的长都是无理数;
(3)△ABC的周长为________,面积为________.
28. (15分)如图,△ABC中,以AC为直径的⊙O与边AB交于点D,点E为⊙O上一点,连接CE并延长交AB于点F,连接ED.
(1)若∠B+∠FED=90°,求证:BC是⊙O的切线;(2)若FC=6,DE=3,FD=2,求⊙O的直径.
参考答案一、选择题 (共6题;共12分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
二、填空题 (共12题;共12分)
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
17-1、
18-1、
三、解答题 (共10题;共99分)
19-1、
20-1、21-1、
21-2、22-1、
22-2、
22-3、
23-1、
23-2、
24-1、25-1、
25-2、25-3、
26-1、26-2、
27-1、
27-2、27-3、
28-1、28-2、。