人教新课标版数学高一-人教A必修一习题 .1对数函数的图象及性质

合集下载

高中数学人教A版必修第一册 学案与练习 对数函数的概念、图象及性质

高中数学人教A版必修第一册 学案与练习 对数函数的概念、图象及性质

4.4 对数函数学习目标1.通过对数函数的概念及对数函数图象和性质的学习,培养数学抽象、直观想象素养.2.通过对数函数图象和性质的应用,培养逻辑推理、数学运算素养.第1课时对数函数的概念、图象及性质1.对数函数的概念一般地,函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,定义域是(0,+∞).2.对数函数的图象与性质我们可以借助指数函数的图象和性质得到对数函数的图象和性质:对数函数的概念[例1] (1)下列函数是对数函数的是( )A.y=lg 10xB.y=log3x2C.y=ln xD.y=lo g13(x-1)(2)若函数f(x)=log a x+(a2-4a-5)是对数函数,则实数a= . 解析:(1)由对数函数的定义,得y=log a x(a>0,a≠1)是对数函数,由此得到y=ln x是对数函数.故选C.(2)由对数函数的定义可知,{a2-4a-5=0,a>0,a≠1,解得a=5.答案:(1)C (2)5判断一个函数是否为对数函数的方法判断一个函数是对数函数必须是形如y=log a x(a>0,且a ≠1)的形式,即必须满足以下条件: (1)系数为1.(2)底数为大于0,且不等于1的常数. (3)对数的真数仅有自变量x.针对训练1:(1)若函数y=log a x+a 2-3a+2为对数函数,则a 等于( ) A.1 B.2 C.3 D.4(2)已知对数函数的图象过点M(9,2),则此对数函数的解析式为 .解析:(1)因为函数y=log a x+a 2-3a+2为对数函数,所以{a 2-3a +2=0,a >0,a ≠1,解得a=2.故选B. (2)设函数f(x)=log a x(x>0,a>0,且a ≠1),因为对数函数的图象过点M(9,2),所以2=log a 9,所以a 2=9,又a>0, 解得a=3.所以此对数函数的解析式为y=log 3x. 答案:(1)B (2)y=log 3x对数型函数的定义域[例2] 求下列函数的定义域.(1)y=log a (3-x)+log a (3+x)(a>0,且a ≠1); (2)f(x)=1log 12(2x+1).解:(1)由{3-x >0,3+x >0,得-3<x<3,所以函数的定义域是{x|-3<x<3}.(2)由题意有{2x +1>0,2x +1≠1,解得x>-12,且x ≠0,则函数的定义域为(-12,0)∪(0,+∞).(1)求解含对数式的函数定义域,若自变量在底数和真数上,要保证真数大于0,底数大于0,且不等于1. (2)对数函数y=log a x 的定义域为(0,+∞).(3)形如y=log g(x)f(x)的函数,定义域由{f (x )>0,g (x )>0,g (x )≠1来确定.(4)形如y=f(log a x)的复合函数在求定义域时,必须保证每一部分都要有意义.针对训练2:函数f(x)=√lgx +lg(5-3x)的定义域是( ) A.[0,53) B.[0,53]C.[1,53) D.[1,53]解析:函数f(x)=√lgx +lg(5-3x)的定义域是{x|{x >0,lgx ≥0,5-3x >0},即{x|1≤x<53}.故选C.对数函数的图象类型一 对数型函数图象过定点问题[例3] (1)函数y=log a (x-3)+1(a>0,且a ≠1)的图象恒过定点P ,则点P 的坐标是()A.(4,1)B.(3,1)C.(4,0)D.(3,0)(2)若函数y=log a (x-1)+8(a>0,且a ≠1)的图象过定点P ,且点P 在幂函数f(x)=x α(α∈R)的图象上,则f(12) = .解析:(1)令x-3=1,求得x=4,y=1, 可得它的图象恒过定点P(4,1).故选A. (2)令x-1=1,解得x=2,此时y=8,此函数图象过定点P(2,8). 由点P 在幂函数f(x)=x α(α∈R)的图象上知, 2α=8,解得α=3,所以f(x)=x 3, 所以f(12)=( 12) 3=18.答案:(1)A (2)18涉及与对数函数有关的函数图象过定点问题的一般规律:若f(x)=klog a g(x)+b(a>0,且a ≠1),且g(m)=1,则f(x)图象过定点P(m ,b).针对训练3:(1)(多选题)下列四个函数中过相同定点的函数有( ) A.y=ax+2-a B.y=x a-2+1C.y=a x-3+1(a>0,a ≠1)D.y=log a (2-x)+1(a>0,a ≠1)(2)已知函数f(x)=log a(x-m)+n的图象恒过定点(3,5),则lg m+lg n 的值是.(3)函数y=log a(2x-1)+3(a>0,且a≠1)的图象恒过定点P,则点P的坐标是.解析:(1)由于函数y=ax+2-a=a(x-1)+2,令x=1,可得y=2,故该函数经过定点(1,2),由于函数y=x a-2+1,令x=1,可得y=2,故该函数经过定点(1,2),由于y=a x-3+1(a>0,a≠1),令x-3=0,求得x=3,y=2,故该函数经过定点(3,2),由于y=log a(2-x)+1(a>0,a≠1),令2-x=1,求得x=1,y=1,故该函数经过定点(1,1).故选AB.(2)函数f(x)=log a(x-m)+n的图象恒过定点(1+m,n),又函数f(x)的图象恒过定点(3,5),故1+m=3,n=5,即m=2,n=5,所以lg m+lg n=lg 2+lg 5=lg 10=1.(3)令2x-1=1,得x=1,y=3,所以函数的图象恒过定点P(1,3). 答案:(1)AB (2)1 (3)(1,3)类型二对数型函数图象的识别[例4] 函数y=-lg |x+1|的大致图象为( )解析:法一函数y=-lg |x+1|的定义域为{x|x≠-1},可排除A,C;当x=1时,y=-lg 2<0,显然只有D符合题意.故选D.法二y=-lg |x+1|={-lg(x+1),x>-1, -lg(-x-1),x<-1,又x∈(-1,+∞)时,y=-lg(x+1)是减函数.故选D.对数型函数图象的识别一定要注意利用对数式的真数大于0确定函数的定义域,注意利用对数型函数图象所过定点,同时结合单调性进行判断,也可以利用函数图象的变换进行判断.针对训练4:(1)(2021·河南开封期末)函数y=|lg(x+1)|的图象是( )(2)如图,①②③④中不属于函数y=log2x,y=log0.5x,y=-log3x的一个是( )A.①B.②C.③D.④解析:(1)函数的定义域为(-1,+∞),图象与x轴的交点是(0,0).故选A.(2)根据函数的图象,函数y=log a x(a>0,且a≠1)的底数决定函数的单调性,当底数a>1时,函数单调递增,当0<a<1时,函数单调递减,当底数a>1,x>1时,满足底数越大函数的图象越靠近x轴,故①对应函数y=log2x的图象,根据对称性,④对应函数y=log0.5x的图象,③对应函数y=-log3x的图象,②与函数的图象相矛盾,故②不符合题意.故选B.类型三根据图象求解析式中的参数的范围[例5] 已知函数y=log a(x+c)(a,c为常数.其中a>0,a≠1)的图象如图,则下列结论成立的是( )A.a>1,c>1B.a>1,0<c<1C.0<a<1,c>1D.0<a<1,0<c<1解析:因为函数单调递减,所以0<a<1.当x=1时,log a(x+c)=log a(1+c)<0,即1+c>1,所以c>0,当x=0时,log a(x+c)=log a c>0,所以0<c<1.故选D.根据图象求解析式中的参数的范围和图象识别的方法是一致的,也是主要利用函数的单调性和图象上特殊点的坐标的大小建立有关参数的不等式.针对训练5:(1)如图,若C1,C2分别为函数y=log a x和y=log b x的图象,则( )A.0<a<b<1B.0<b<a<1C.a>b>1D.b>a>1(2)已知定义在R上的函数f(x)=log2(a x-b+1)(a>0,a≠1)的图象如图所示,则a,b满足的关系是( )A.0<1a <1b<1 B.0<1b<a<1C.0<b<1a <1 D.0<1a<b<1解析:(1)由对数的性质log a a=1(a>0,且a≠1),画一条直线y=1,如图所示,由图可知0<b<a<1.故选B.(2)由函数单调性可知,a>1,f(0)=log2(1-b+1),故0<log2(1-b+1)<1,解得0<b<1,由log2(a-1-b+1)<0可得a-1<b,所以0<1a<b<1.故选D.典例探究:如图,直线x=t与函数f(x)=log3x和g(x)=log3x-1的图象分别交于点A,B,若函数y=f(x)的图象上存在一点C,使得△ABC为等边三角形,则t的值为( )A.√3+22B.3√3+32C.3√3+34D.3√3+3解析:由题意A(t ,log 3t),B(t ,log 3t-1),|AB|=1, 设C(x ,log 3x),因为△ABC 是等边三角形,所以点C 到直线AB 的距离为√32,所以t-x=√32,x=t-√32,所以C(t-√32,log 3(t-√32)), 根据中点坐标公式可得log 3(t-√32) =log 3t+log 3t -12=log 3t-12=log 3√3,所以t-√32=√3,解得t=3√3+34.故选C.应用探究:已知正方形ABCD 的面积为36,BC 平行于x 轴,顶点A ,B 和C 分别在函数y=3log a x ,y=2log a x 和y=log a x(其中a>1)的图象上,则实数a 的值为( ) A.√3 B.√6 C.√36D.√63解析:设B(x ,2log a x),因为BC 平行于x 轴,所以C(x ′,2log a x),即log a x ′=2log a x ,所以x ′=x 2,所以正方形ABCD 的边长|BC|=x 2-x=6,解得x=3.由已知,AB 垂直于x 轴,所以A(x ,3log a x),正方形ABCD 的边长|AB|=3log a x-2log a x=log a x=6,即log a 3=6,a 6=3,a=√36.故选C.1.函数f(x)=log 2(3+2x-x 2)的定义域为( C ) A.[-1,3] B.(-∞,-1)∪(3,+∞) C.(-1,3) D.(-∞,-1)∪[3,+∞)解析:由3+2x-x 2>0,得-1<x<3,所以f(x)的定义域为(-1,3).故选C.2.已知对数函数f(x)的图象过点(4,12),则f(x)等于( A )A.log 16xB.log 8xC.log 2xD.lo g 116x解析:由题意设f(x)=log a x(a>0,且a ≠1),由函数图象过点(4,12)可得f(4)=12,即log a 4=12,所以4=a 12,解得a=16,故f(x)=log 16x.故选A.3.如图所示的曲线是对数函数y=log a x ,y=log b x ,y=log c x ,y=log d x 的图象,则a ,b ,c ,d 与1的大小关系为 .解析:由题图可知函数y=log a x ,y=log b x 的底数a>1,b>1,函数y=log c x ,y=log d x 的底数0<c<1,0<d<1.过点(0,1)作平行于x 轴的直线l(图略),则直线l 与四条曲线交点的横坐标从左向右依次为c ,d ,a ,b ,显然b>a>1>d>c>0. 答案:b>a>1>d>c4.已知函数y=log a (x+3)+89(a>0,a ≠1)的图象恒过定点A ,若点A 也在函数f(x)=3x -b 的图象上,则b= . 解析:对于y=log a (x+3)+89,令x+3=1,得x=-2,则y=89,所以函数y=log a (x+3)+89(a>0,a ≠1)的图象恒过定点A(-2,89),又点A 也在函数f(x)=3x -b 的图象上, 则89=3-2-b ,求得b=-79.答案:-79[例1] 已知函数y=f(x)的定义域是[0,2],那么g(x)=f (x 2)1+lg (x+1)的定义域是( )A.(-1,-910)∪(-910,√2]B.(-1,√2]C.(-1,-910)D.(-910,√2)解析:依题意,{0≤x 2≤2,x +1>0,1+lg (x +1)≠0,解得-1<x<-910或-910<x ≤√2.故选A.[例2] 已知函数y=log 3x 的图象上有两点A(x 1,y 1),B(x 2,y 2),且线段AB 的中点在x 轴上,则x 1·x 2= .解析:因为函数y=log 3x 的图象上有两点A(x 1,y 1),B(x 2,y 2), 所以y 1=log 3x 1,y 2=log 3x 2.根据中点坐标公式得y1+y2=0,即log3x1+log3x2=0,所以log3(x1x2)=0,x1·x2=1.答案:1[例3] (1)求函数f(x)=log a(a x-1)(a>0,且a≠1)的定义域;(2)求函数f(x)=log a[(a-1)x-1]的定义域.解:(1)由a x-1>0,即a x>1,当a>1时,f(x)的定义域为(0,+∞),当0<a<1时,f(x)的定义域为(-∞,0).(2)由题意(a-1)x-1>0,且a>0,a≠1,当a>1时,x>1;a-1.当0<a<1时,x<1a-1所以当a>1时,f(x)的定义域为(1,+∞);a-1当0<a<1时,f(x)的定义域为(-∞,1).a-1[例4] 已知函数f(x)=lg(a x-b x)(a>1>b>0).(1)求y=f(x)的定义域;(2)证明f(x)是增函数;(3)当a,b满足什么条件时,f(x)在(1,+∞)上恒取正值?(1)解:要使函数有意义,必有a x-b x>0,a>1>b>0,可得(a) x>1,解得x>0,b函数的定义域为(0,+∞).(2)证明:设g(x)=a x-b x,再设x1,x2是(0,+∞)上的任意两个数,且x1<x2,则g(x1)-g(x2)=a x1-b x1-a x2+b x2=(a x1-a x2)+(b x2-b x1),对于函数y=a x为增函数,y=b x为减函数,所以a x1-a x2<0,b x2-b x1<0,所以g(x1)-g(x2)<0,所以g(x)在(0,+∞)上为增函数,因为y=lg x在(0,+∞)上为增函数,所以f(x)在(0,+∞)上为增函数.(3)解:因为f(x)在(1,+∞)上单调递增,所以命题f(x)恰在(1,+∞)取正值等价于f(1)≥0,所以a-b≥1.选题明细表基础巩固1.函数f(x)=ln(x+2)+的定义域为( B )√2-xA.(2,+∞)B.(-2,2)C.(-∞,-2)D.(-∞,2)解析:由题意可知{x +2>0,2-x >0,解得-2<x<2.故选B.2.已知f(x)=a -x ,g(x)=log a x ,且f(2)·g(2)>0,则函数f(x)与g(x)的图象是( D )解析:因为f(2)·g(2)>0,所以a>1,所以f(x)=a -x 与g(x)=log a x 在其定义域上分别是减函数与增函数.故选D.3.已知函数f(x)=a x-1+log b x-1(a>0,且a ≠1,b>0,且b ≠1),则f(x)的图象过定点( C ) A.(0,1) B.(1,1) C.(1,0) D.(0,0)解析:当x=1时,f(1)=a 0+log b 1-1=1+0-1=0,所以f(x)的图象过定点(1,0).故选C.4.(多选题)函数f(x)=log a (x+2)(0<a<1)的图象过( BCD ) A.第一象限 B.第二象限 C.第三象限 D.第四象限解析:作出函数f(x)=log a (x+2)(0<a<1)的大致图象如图所示,则函数f(x)的图象过第二、第三、第四象限.故选BCD.5.已知f(x)为对数函数,f(12)=-2,则f(√43)= .解析:设f(x)=log a x(a>0,且a ≠1), 则log a 12=-2,所以1a2=12,即a=√2,所以f(x)=lo g √2x ,所以f(√43)=lo g √2 √43=log 2(√43)2=log 2243=43.答案:436.(2021·江苏启东期末)已知函数f(x)=log a (x+b)(a>0,a ≠1,b ∈R)的图象如图所示,则a= ,b= .解析:由图象得{log a (0+b )=2,log a (-2+b )=0,解得{a =√3,b =3.答案:√3 3能力提升7.已知函数y=lg(x 2-3x+2)的定义域为A ,y=lg(x-1)+lg(x-2)的定义域为B ,则( D ) A.A ∩B= B.A=BC.A ⫋BD.B ⫋A解析:由x 2-3x+2>0,解得x<1或x>2, 所以A=(-∞,1)∪(2,+∞);由{x -1>0,x -2>0,解得x>2,所以B=(2,+∞).故B ⫋A.故选D.8.已知等式log 2m=log 3n ,m ,n ∈(0,+∞)成立,那么下列结论:①m=n;②n<m<1;③m<n<1;④1<n<m;⑤1<m<n.其中可能成立的是( B ) A.①② B.①②⑤ C.③④ D.④⑤解析:当m=n=1时,有log 2m=log 3n ,故①可能成立;当m=14,n=19时,有log 2m=log 3n=-2,故②可能成立;当m=4,n=9时,有log 2m=log 3n=2,此时1<m<n ,故⑤可能成立.可能成立的是①②⑤.故选B. 9.如图,四边形OABC 是面积为8的平行四边形,OC ⊥AC ,AC 与BO 交于点E.某对数函数y=log a x(a>0,且a ≠1)的图象经过点E 和点B ,则a= .解析:设点E(b ,c),则C(b ,0),A(b ,2c),B(2b ,2c), 则{2bc =8,log a b =c ,log a (2b )=2c ,解得b=c=2,a=√2.答案:√210.已知f(x)=|log 3x|. (1)画出函数f(x)的图象;(2)讨论关于x 的方程|log 3x|=a(a ∈R)的解的个数. 解:(1)f(x)={log 3x ,x ≥1,-log 3x ,0<x <1,函数f(x)的图象如图所示.(2)设函数y=|log 3x|和y=a ,当a<0时,两图象无交点,原方程解的个数为0个. 当a=0时,两图象只有1个交点,即原方程只有1个解. 当a>0时,两图象有2个交点,即原方程有2个解. 11.已知函数f(x)=log 2[ax 2+(a-1)x+14].(1)若定义域为R ,求实数a 的取值范围; (2)若值域为R ,求实数a 的取值范围.解:(1)要使f(x)的定义域为R ,则对任意实数x 都有t=ax 2+(a-1)x+14>0恒成立.当a=0时,不合题意;当a ≠0时,由二次函数图象(图略)可知{a >0,Δ=(a -1)2-a <0,解得3-√52<a<3+√52.故所求实数a 的取值范围为(3-√52,3+√52).(2)要使f(x)的值域为R ,则有t=ax 2+(a-1)x+14的值域必须包含(0,+∞).当a=0时,显然成立;当a ≠0时,由二次函数图象(图略)可知,其图象必须与x 轴相交,且开口向上, 所以{a >0,Δ=(a -1)2-a ≥0, 解得0<a ≤3-√52或a ≥3+√52.故所求a 的取值范围为[0,3-√52]∪[3+√52,+∞).应用创新12.已知函数f(x)=|log 2x|,正实数m ,n 满足m<n ,且f(m)=f(n),若f(x)在区间[m 2,n]上的最大值为2,则n+m= . 解析:根据题意并结合函数f(x)=|log 2x|的图象知,0<m<1<n ,所以0<m 2<m<1.根据函数图象易知,当x=m 2时函数f(x)取得最大值,所以f(m 2)=|log 2m 2|=2.又0<m<1,解得m=12.再结合f(m)=f(n)求得n=2,所以n+m=52.答案:52。

06-第四节 对数函数-课时1 对数函数的概念、对数函数的图象和性质高中数学必修一人教A版

06-第四节 对数函数-课时1 对数函数的概念、对数函数的图象和性质高中数学必修一人教A版
2
+1− =
1
2 +1+
单调递减,且 > 0,而
= log 2 + 3单调递增,所以 为减函数,C错误;由 > 6 −
= − ,及 为减函数,得 < −,故 + < 0,D正确.
17.[2024福建莆田一中段考]函数 = log 2 − 2log 2 + 1 的值域为
2 = log 2 2 − 2 + 1 = 0,由 < 0可得
log 2 < − 1,即 = − 1的图象在
= log 2 图象的上方.画出 = log 2 ,
= − 1的大致图象,如图,由图可知不等
式 < 0的解集是 0,1 ∪ 2, +∞ .
8.(多选)[2024广东深圳期末]已知函数 = ln , = lg ,若
பைடு நூலகம்D. = ln
【解析】 由对数函数的定义,知D正确.
2.函数 = 2 − + 1 log
+1
1
是对数函数,则 =___.
【解析】 由2 − + 1 = 1,得 = 0或1.又 + 1 > 0, + 1 ≠ 1,所以
= 1.
3.[2024上海市朱家角中学质检]已知对数函数 的图象过点 4,2 ,则其
(1)若 = 3,求不等式 > 2的解集;
【解析】 由题设知 = log 3 2 + 1 > 2 = log 3 9,则2 + 1 > 9,解得
> 4,所以不等式的解集为 4, +∞ .

人教版数学高一-人教A版必修一第二章 对数函数的图像与性质(同步训练)

人教版数学高一-人教A版必修一第二章 对数函数的图像与性质(同步训练)

对数函数的图像与性质同步训练一、选择题:1. 函数()ln(1)f x x =+的定义域是( )A .(2,)-+∞B .(1,)-+∞C .[1,)-+∞D .[2,)-+∞ 2.22lg10lg5lg 20(lg 2)-+⋅+=( )A. 1-B. 0C. 1D. 23.函数2()log (1)f x x =+-的定义域是( ) A. [1,2]-B. [2,1)-C.[1,)+∞D. (2,1)- 4.已知函数2log (0)()3(0)x x x f x x >⎧=⎨≤⎩,那么1[()]2f f 的值为( ) AB .1C .13D .1- 5.函数2()log (21)x f x =+的值域( ) A.0+∞(,) B. [0+∞,) C. 1+∞(,) D. [1+∞,)6.已知0.2log 0.3a =, 1.2log 0.8b =, 0.51.5c =, 则( )A.a b c <<B.a c b <<C.b a c <<D.c b a << 7.函数lg ||x y x =的图象大致是( )A B C D8.函数212log (2)y x x =-的单调递增区间为( )A.[1+∞,)B. (1]-∞,C. [12,)D. (01], 9.已知函数()f x 是R 上的偶函数,它在[0,)+∞上是减函数,若(ln )(1),f x f >则x 的取值范围是()A. 1(,1)e -B. 1(0,)(1,)e -+∞C. 1(,)e e -D.(0,1)(,)e +∞二、填空题:10.计算:(1)95log 25log 3⨯= ;(2)()()23log 27log 8=⋅________11.已知2()=ln ||f x x x +,则满足1(21)()3f x f -<的x 的取值范围为_____ .12.关于函数()()lg 1()f x x x R =+∈有下列命题:①函数()y f x =的图象关于y 轴对称;②在区间(,0)-∞上,函数()y f x =是增函数;③函数()y f x =的最小值为0.其中正确命题序号为______________三、解答题13.求值.(1)31log 2013823log 643()(3)38-+++--. (2)22(lg5)2lg 2(lg 2)+-.(3)((22lg5lg ++14.已知集合U R =,{A x y ==,{()112x B y y ==+,}21x -≤≤-,{}1C x x a =<-. (1)求AB ; (2)若C U A ,求a 的取值范围.15.已知函数2()(0,0)1bx f x b a ax =≠>+. (1)判断()f x 的奇偶性;(2)若3211(1),log (4)log 422f a b =-=,求,a b 的值. 16.已知定义域为()(),00,-∞+∞的偶函数()g x 在(),0-∞内为单调递减函数,且()()()g x y g x g y ⋅=+对任意的,x y 都成立,()21g =.(1)求()4g 的值;(2)求满足条件()(1)2g x g x >++的x 的取值范围.参考答案一、选择题:1. B2.A3.B4.C5.A6.C7.D8.D9.C二、填空题:10.(1)1,(2)9 11. 12(,)33 12.①③三、解答题13.求值.(1)31log 2013823log 643()(3)538-+++--=. (2)22(lg5)2lg 2(lg 2)1+-=.(3)((22lg5lg ++解:原式2112(lg 2)lg 2lg5lg 2122=⨯+⨯++211=lg 2)lg 2lg522+⨯+( 2111=lg2)lg2lg5|lg21|222+⨯+-( 2111=lg2)lg2lg5lg21222+⨯-+( 11=lg2lg2+lg5lg2122⨯-+() 11=lg2lg 25lg2122⨯⨯-+() =114.解:(1){}|2A x x =≥ {}|35B x x =≤≤ {}|35A B x x B ∴=≤≤= (2){}|2U C A x x =< 12a ∴-≤ 3a ∴≤15. 解:(1)()f x 定义域为R ,2()()1bx f x f x ax --==-+,故()f x 是奇函数. (2)由1(1)12b f a ==+,则210a b -+=. 又log 3(4a -b )=1,即4a -b =3.由21043a b a b -+=⎧⎨-=⎩,解得a =1,b =1. 16. 解:()()()()()1422222g g g g =⨯=+=(2)()()()()()214141g x g x g g x g x >++=++=+⎡⎤⎣⎦又()g x 为偶函数, 且()g x 在(),0-∞为单调递减函数, ∴()g x 在()0,+∞为单调递增函数。

人教版数学高一-人教版必修1练习 .1对数函数的图象及其性质

人教版数学高一-人教版必修1练习  .1对数函数的图象及其性质

第二章 基本初等函数(Ⅰ)2.2 对数函数2.2.2 对数函数及其性质第1课时 对数函数的图象及其性质A 级 基础巩固一、选择题1.已知集合A ={y |y =log 2x ,x >1},B =⎩⎨⎧⎭⎬⎫y ⎪⎪⎪⎭⎪⎫y =⎝ ⎛12x ,x <0,则A ∩B =( )A .{y |0<y <1}B .{y |y >1} C.⎩⎨⎧⎭⎬⎫y ⎪⎪⎪12<y <1 D .∅解析:因为A ={y |y >0},B ={y |y >1}.所以A ∩B ={y |y >1}.答案:B2.已知x =20.5,y =log 52,z =log 50.7,则x ,y ,z 的大小关系为( )A .x <y <zB .z <x <yC .z <y <xD .y <z <x解析:因为x =20.5>20=1,0<y =log 52<1,z =log 50.7<0,所以z <y <x .答案:C3.函数f (x )=12-log 3x的定义域是( ) A .(-∞,9]B .(-∞,9)C .(0,9]D .(0,9)解析:要使函数有意义,只需2-log 3x >0,即log 3x <2.所以0<x <9. 答案:D4.已知f (x )为R 上的增函数,且f (log 2x )>f (1),则x 的取值范围为( )A.⎝ ⎛⎭⎪⎫12,2B.⎝ ⎛⎭⎪⎫0,12∪(2,+∞) C .(2,+∞) D .(0,1)∪(2,+∞)解析:依题意有log 2x >1,所以x >2.答案:C5.函数f (x )=log 2(1-x )的图象为( )解析:由定义域知x <1,排除选项B 、D.又f (x )=log 2(1-x )是定义域上的减函数,所以选项A 正确.答案:A二、填空题6.如果函数f (x )=(3-a )x ,g (x )=log a x 的增减性相同,则a 的取值范围是________.解析:由题意,得⎩⎨⎧0<3-a <1,0<a <1,或⎩⎨⎧3-a >1,a >1,解得1<a <2.答案:(1,2)7.函数y =log a (2x -3)+1的图象恒过定点P ,则点P 的坐标是________.解析:当2x -3=1,即x =2时,y =1,故点P 的坐标是(2,1). 答案:(2,1)8.函数y =log 12(3x -a )的定义域是⎝ ⎛⎭⎪⎫23,+∞,则a =________. 解析:根据题意,得3x -a >0,所以x >a 3,所以a 3=23,解得a =2.答案:2三、解答题9.设a >1,函数f (x )=log a x 在区间[a ,2a ]上的最大值与最小值之差为12,求实数a 的值. 解:因为a >1,所以f (x )=log a x 在(0,+∞)上是增函数. 所以最大值为f (2a ),最小值为f (a ).所以f (2a )-f (a )=log a 2a -log a a =12, 即log a 2=12,所以a =4. 10.已知函数f (x )=lg (3x -3).(1)求函数f (x )的定义域和值域;(2)设函数h (x )=f (x )-lg(3x +3),若不等式h (x )>t 无解,求实数t 的取值范围.解:(1)由3x -3>0得x >1,所以定义域为(1,+∞),因为(3x -3)∈(0,+∞),所以值域为R.(2)因为h (x )=lg(3x -3)-lg(3x +3)=lg 3x -33x +3= lg ⎝ ⎛⎭⎪⎪⎫1-63x +3的定义域为(1,+∞),且在(1,+∞)上是增函数, 所以函数h (x )的值域为(-∞,0).若不等式h (x )>t 无解,则t 的取值范围是t ≥0.B 级 能力提升1.已知图中曲线C 1,C 2,C 3,C 4分别是函数y =log a 1x ,y =log a 2x ,y =log a 3x ,y =log a 4x 的图象,则a 1,a 2,a 3,a 4的大小关系是( )A .a 4<a 3<a 2<a 1B .a 3<a 4<a 1<a 2C .a 2<a 1<a 3<a 4D .a 3<a 4<a 2<a 1解析:作x 轴的平行线y =1,直线y =1与曲线C 1,C 2,C 3,C 4各有一个交点,则交点的横坐标分别为a 1,a 2,a 3,a 4.由图可知a 3<a 4<a 1<a 2.答案:B2.给出函数f (x )=⎩⎨⎧⎝ ⎛⎭⎪⎫12x ,x ≥4,f (x +1),x <4,则f (log 23)=______. 解析:因为1<log 23<log 24=2,所以3+log 23∈(4,5), 所以f (log 23)=f (log 23+1)=f (log 23+2)=f (log 23+3)=f (log 224)=⎝ ⎛⎭⎪⎫12log 224=答案:1243.已知实数x 满足-3≤log 12x ≤-12.求函数y =⎝ ⎛⎭⎪⎫log 2x 2·⎝ ⎛⎭⎪⎫log 2x 4的值域.解:y =⎝ ⎛⎭⎪⎫log 2x 2⎝ ⎛⎭⎪⎫log 2x 4=(log 2x -1)(log 2x -2)= log 22x -3log 2x +2.因为-3≤log 12x ≤-12,所以12≤log 2x ≤3. 令t =log 2x ,则t ∈⎣⎢⎡⎦⎥⎤12,3, y =t 2-3t +2=⎝ ⎛⎭⎪⎫t -322-14, 所以t =32时,y min =-14;t =3时,y max =2. 故函数的值域为⎣⎢⎡⎦⎥⎤-14,2.。

人教版高中数学必修一《对数函数的图像与性质》课时达标及答案

人教版高中数学必修一《对数函数的图像与性质》课时达标及答案

《对数函数的图像与性质》课时作业1.下列各项中表示同一个函数的是( ) A .y =log 2x 与y =log 2x 2 B .y =10lg x 与y =lg10x C .y =x 与y =x log x x D .y =x 与y =lne x 答案 D2.关于函数f (x )=log 12(2x -13)的单调性的说法正确的是( )A .在R 上是增函数B .在R 上是减函数C .在区间(16,+∞)上是增函数D .在区间(16,+∞)上是减函数答案 D3.下列函数是增函数的是( ) A .y =log 2(x +1) B .y =log 2x 2-1 C .y =log 31xD .y =log 13(x 2-4x +5)答案 A4.函数y =2+log 2x (x ≥1)的值域为( ) A .(2,+∞) B .(-∞,2) C .[2,+∞) D .(-∞,2] 答案 C5.下列不等式成立的是( ) A .log 32<log 23<log 25 B .log 32<log 25<log 23 C .log 23<log 32<log 25 D .log 23<log 25<log 32 答案 A6.已知函数f (x )=log (a -1)(2x +1)在⎝⎛⎭⎫-12,0内恒有f (x )>0,则a 的取值范围是( ) A .a >1 B .0<a <1 C .0<a <2 D .1<a <2答案 D解析 由-12<x <0,得0<2x +1<1.若f (x )>0恒成立,则0<a -1<1.∴1<a <2.7.已知函数f (x )={ log 3x ,x >0,2x ,x ≤0,则f (f (19))=( )A .4 B.14 C .-4 D .-14答案 B8.函数y =(log 14 x )2-log 12x +5在区间[2,4]上的最小值是( )A .4B .8 C.254 D.14 答案 C解析 y =(log 14 x )2-log 12 x +5=(12log 12 x )2-log 12 x +5 =(12log 12x -1)2+4, 当x ∈[2,4]时,log 12 x ∈[-2,-1],所以当log 12x =-1时,y min =254.9.对数函数f (x )=log 2x ,在其定义域内任取x 1,x 2且x 1≠x 2,有如下结论: ①f (x 1+x 2)=f (x 1)·f (x 2); ②f (x 1·x 2)=f (x 1)+f (x 2); ③f (x 1)-f (x 2)x 1-x 2>0;④f (x 2x 1)=log 2x 2log 2x 1.上述结论中正确结论的序号是________. 答案 ②③10.若函数y =log 3x 的定义域是[1,27],则值域是________. 答案 [0,3]解析 ∵1≤x ≤27,∴log 31≤log 3x ≤log 327=3. ∴值域为[0,3].11.函数y =log 0.8(-x 2+4x )的递减区间是________. 答案 (0,2]解析 t =-x 2+4x 的递增区间为(-∞,2].但当x ≤0时,t ≤0.故只能取(0,2].即为f (x )的递减区间.12.若函数y =log a 2x +1x -1的图像恒过定点P ,则P 点坐标为________.答案 (-2,0)解析 ∵y =log a t 的图像恒过(1,0),∴令2x +1x -1=1,得x =-2.∴该函数过点(-2,0).13.已知集合A ={x |log 2x ≤2},B =(-∞,a ),若A ⊆B ,则实数a 的取值范围是(c ,+∞),其中c =________.答案 4解析 ∵log 2x ≤2,∴0<x ≤4.又∵A ⊆B ,∴a >4. ∴c =4.14.函数y =lg(ax +1)在(-∞,1)上单调递减,求a 的取值范围. 解析 由题意得u =ax +1在(-∞,1)上单调递减且u (1)≥0,∴{ a <0,a +1≥0,解得-1≤a <0.15.解方程log 4(3x +1)=log 4x +log 4(3+x ). 解析 log 4(3x +1)=log 4[x (3+x )], ∴{ 3x +1>0,x >0,3+x >0,3x +1=x (3+x ),解得x =1.16.函数f (x )的定义域是[-1,1],求函数f (log 12 x )的定义域.答案 [12,2]解析 由-1≤log 12 x ≤1,得12≤x ≤2.∴f (log 12 x )定义域为[12,2].►重点班·选做题17.已知f (x )=log a (1-x )+log a (x +3),(a >0且a ≠1). (1)求函数f (x )的定义域,值域;(2)若函数f (x )有最小值为-2,求a 的值.解析 (1)∵{ 1-x >0,x +3>0,∴定义域为{x |-3<x <1}. f (x )=log a (-x 2-2x +3),令t=-x2-2x+3=-(x+1)2+4,∵x∈(-3,1),∴t∈(0,4].∴f(t)=log a t,t∈(0,4].当0<a<1时,y min=f(4)=lo g a4,值域为[log a4,+∞).当a>1时,值域为(-∞,log a4].(2)∵y min=-2,由①得{0<a<1,log a4=-2,得a=12.1.函数y=(0.2)-x+1的反函数是()A.y=log5x+1 B.y=log x5+1 C.y=log5(x-1) D.y=log5x-1 答案 C《对数函数的图像与性质》课时作业1.方程2log 3x =14的解是( )A.19 B.33C. 3 D .9答案 A解析 ∵2log 3x =2-2,∴log 3x =-2,∴x =19.2.若0<a <1,则下列各式中正确的是( ) A .log a (1-a )>0 B .a 1-a >1 C .log a (1-a )<0 D .(1-a )2>a 2答案 A解析 ∵0<a <1,∴0<1-a <1,∴log a (1-a )>0.3.设f (x )是奇函数,当x >0时,f (x )=log 2x ,则当x <0时,f (x )的解析式为( ) A .-log 2x B .log 2(-x ) C .log x 2 D .-log 2(-x )答案 D解析 x <0时,-x >0,f (-x )=log 2(-x ),又因为f (x )为奇函数,所以f (-x )=-f (x ),所以f (x )=-log 2(-x ).4.若log a (a 2+1)<log a 2a <0,则a 的取值范围是( ) A .0<a <1 B.12<a <1 C .0<a <12D .a >1答案 B解析 ∵a >0且a ≠1,a 2+1>1, 而log a (a 2+1)<0,∴0<a <1. 又∵log a (a 2+1)<log a 2a <0, ∴a 2+1>2a >1,∴a >12.综上知,12<a <1,故选B.5.若函数y =f (x )的图像与函数y =lg(x +1)的图像关于直线x -y =0对称,则f (x )=( ) A .10x -1 B .1-10x C .1-10-xD .10-x -1答案 A6.已知函数f (x )={ log 2x ,x >0,2x ,x ≤0,则f (a )<12的a 的取值范围是( )A .(-∞,-1)B .(0,2)C .(1,2)D .(-∞,-1)∪(0,2)答案 D解析 由⎩⎪⎨⎪⎧a >0log 2a <12,得0<a < 2. 由⎩⎪⎨⎪⎧a ≤02a <12,得a <-1.∴a 的取值范围是(-∞,-1)∪(0,2). 7.计算log 52·log 4981log 2513·log 734=________.答案 -38.0.440.43,log 0.440.43,log 1.440.43按从大到小的顺序依次排序为_________________________________________________________.答案 log 0.440.43>0.440.43>log 1.440.43解析 ∵0<0.440.43<1,log 0.440.43>1,log 1.440.43<0, ∴log 0.440.43>0.440.43>log 1.440.43. 9.函数y=log 12(3+2x -x 2)的定义域是__________________________________________________________.答案 {x |-1<x ≤1-3或1+3≤x <3}解析 由log 12 (3+2x -x 2)≥0,得0<3+2x -x 2≤1.解得-1<x ≤1-3或1+3≤x <3.10.函数y =log 0.1(2x 2-5x -3)的递减区间为________. 答案 (3,+∞)解析 由2x 2-5x -3>0,得x <-12或x >3.又∵y =log 0.1t 为减函数,∴f (x )减区间为(3,+∞). 11.已知f (e x +1)=x ,求f (x ).解析 令e x +1=t ,则e x =t -1,则x =ln(t -1),∴f (t )=ln(t -1),∴f (x )=ln(x -1).12.已知函数y =log a (x 2+2x +k ),其中(a >0且a ≠1). (1)定义域为R ,求k 的取值范围; (2)若值域为R ,求k 的取值范围. 解析 (1)x 2+2x +k >0恒成立, 即Δ=4-4k <0,∴k >1.(2)∵值域为R ,∴(x 2+2x +k )min ≤0, 即x 2+2x +k =0有根.∴Δ≥0即k ≤1.13.已知函数f (lg(x +1))的定义域[0,9],求函数f (x2)的定义域.解析 ∵0≤x ≤9,∴1≤x +1≤10. ∴lg1≤lg (x +1)≤lg10,即0≤lg(x +1)≤1. ∴f (x )定义域[0,1].∴f (x2)定义域为[0,2].14.已知f (x )=1+log 2x (1≤x ≤4),求函数g (x )=f 2(x )+f (x 2)的最大值与最小值.解析 g (x )=(1+log 2x )2+(1+log 2x 2)=log 22x +4log 2x +2=(log 2x +2)2-2,∵1≤x ≤4且1≤x 2≤4,∴1≤x ≤2.∴0≤log 2x ≤1. ∴当x =2时,最大值为7,当x =1时,最小值为2.15.我们知道对数函数f (x )=log a x ,对任意x ,y >0,都有f (xy )=f (x )+f (y )成立,若a >1,则当x >1时,f (x )>0.参照对数函数的性质,研究下题:定义在(0,+∞)上的函数f (x )对任意x ,y ∈(0,+∞)都有f (xy )=f (x )+f (y ),并且当且仅当x >1时,f (x )>0成立.(1)设x ,y ∈(0,+∞),求证:f (yx)=f (y )-f (x );(2)设x 1,x 2∈(0,+∞),若f (x 1)>f (x 2),比较x 1与x 2的大小.解析 (1)对任意x ,y ∈(0,+∞)都有f (xy )=f (x )+f (y ),把x 用yx 代入,把y 用x 代入,可得f (y )=f (y x )+f (x ),即得f (yx )=f (y )-f (x ).(2)先判断函数x ∈(0,+∞)的单调性, 设x 3,x 4∈(0,+∞)且x 3>x 4, 则f (x 3)-f (x 4)=f (x 3x 4).又因为x 3,x 4∈(0,+∞)且x 3>x 4,所以x 3x 4>1.由题目已知条件当且仅当x >1时,f (x )>0成立, 故f (x 3x 4)>0,则f (x 3)-f (x 4)=f (x 3x 4)>0.所以函数f (x )在x ∈(0,+∞)上单调递增.因此设x 1,x 2∈(0,+∞),若f (x 1)>f (x 2),我们可以得到x 1>x 2.1.设a ,b ∈R ,且a ≠2,定义在区间(-b ,b )内的函数f (x )=lg 1+ax1+2x 是奇函数.(1)求b 的取值范围; (2)讨论函数f (x )的单调性. 解析 (1)由f (x )=-f (-x ),得 lg1+ax 1+2x =lg 1-2x1-ax⇒a =-2. ∴f (x )=lg1-2x 1+2x,x ∈(-12,12).∴b ∈(0,12).(2)∵f (x )为定义在(-b ,b )上的奇函数, ∴f (x )在(0,b )上的单调性即为整体单调性. ∴f (x )=lg1-2x 1+2x =lg(-1+21+2x). ∴f (x )在定义域内是减函数. 2.已知a >0且a ≠1,f (log a x )=aa 2-1(x -1x ). (1)求f (x );(2)判断函数的单调性;(3)对于f (x ),当x ∈(-1,1)时有f (1+m )+f (2m +1)<0,求m 的取值范围. 解析 (1)令t =log a x ,x =a t , f (t )=a a 2-1(a t -1a t ),即f (x )=a a 2-1(a x -1a x ).(2)当a >1时,aa 2-1>0,g (x )=a x -1a x 单调递增,∴f (x )单调递增.当0<a <1时,aa 2-1<0,g (x )=a x -1a x 单调递减,∴f (x )单调递增.(3)f (x )为奇函数且在(-1,1)上单调递增, ∴f (1+m )<f (-2m -1),即{ -1<1+m <1,-1<2m +1<1,1+m <-2m -1⇒m ∈(-1,-23).。

高一数学(必修一)《第五章-对数函数的图象和性质》练习题及答案解析-人教版

高一数学(必修一)《第五章-对数函数的图象和性质》练习题及答案解析-人教版

高一数学(必修一)《第五章 对数函数的图象和性质》练习题及答案解析-人教版班级:___________姓名:___________考号:___________一、单选题1.函数()()2log 1f x x =-的图像为( )A .B .C .D .2.已知对数函数()f x 的图像经过点1,38A ⎛⎫- ⎪⎝⎭与点则( )A .c a b <<B .b a c <<C .a b c <<D .c b a <<3.函数1()ln f x x x x ⎛⎫=-⋅ ⎪⎝⎭的图象可能是( ) A . B .C .D .4.下图中的函数图象所对应的解析式可能是( )A .112x y -=-B .112xy =-- C .12x y -=- D .21xy =--5.函数f (x )=|ax -a |(a >0且a ≠1)的图象可能为( )A. B . C . D .6.下列函数中是减函数的为( ) A .2()log f x x = B .()13x f x =- C .()f x = D .2()1f x x =-+7.设0.30.50.514,log 0.6,16a b c -⎛⎫=== ⎪⎝⎭,则a ,b ,c 的大小关系为( )A .a b c <<B .b a c <<C .b c a <<D .c a b <<8.已知函数2(43)3,0()log (1)2,0a x a x a x f x x x ⎧+-+<=⎨++≥⎩ (a >0且a ≠1)是R 上的单调函数,则a 的取值范围是( )A .30,4⎛⎫⎪⎝⎭B .3,14⎡⎫⎪⎢⎣⎭C .23,34⎡⎤⎢⎥⎣⎦D .23,34⎛⎤ ⎥⎝⎦9.已知定义在R 上的函数()f x 满足()11f =,对于1x ∀,2R x ∈当12x x <时,则都有()()()12122f x f x x x -<-则不等式()222log 1log f x x +<的解集为( )A .(),2-∞B .()0,2C .1,2D .()2,+∞10.函数y ) A .1,2⎛⎤-∞ ⎥⎝⎦B .10,2⎛⎤⎥⎝⎦C .1,2⎡⎫+∞⎪⎢⎣⎭D .[]1,211.记函数2log 2x y x=-的定义域为集合A ,若“x A ∈”是关于x 的不等式()22200x mx m m +-<>成立”的充分不必要条件,则实数m 的取值范围是( ) A .()2,+∞ B .[)2,+∞ C .()0,2D .(]0,212.下列函数在(),1-∞-上是减函数的为( )A .()ln f x x =-B .()11f x x =-+ C .()234f x x x =--D .()21f x x =13.下列函数是偶函数且值域为[)0,∞+的是( )①y x =;②3y x =;③||2x y =;④2y x x =+ .A .①②B .②③C .①④D .③④14.已知函数22,2()log ,2x a x f x x x ⎧-<=⎨≥⎩,若()f x 存在最小值,则实数a 的取值范围是( )A .(],2-∞B .[)1,-+∞C .(),1-∞-D .(],1-∞-15.已知910,1011,89m m m a b ==-=-,则( ) A .0a b >>B .0a b >>C .0b a >>D .0b a >>16.已知集合{}1,0,1,2A =-和2{|1}B x x =≤,则A B =( ) A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,217.已知22log log 0a b +=(0a >且1a ≠,0b >且1b ≠),则函数()1()xf x a=与()log b g x x =的图像可能是( )A .B .C .D .18.设123a -=,1312b -⎛⎫= ⎪⎝⎭和21log 3c =,则( ) A .a c b << B .c a b << C .b c a << D .a b c <<19.已知函数212()log (3)f x x ax a =-+ 在[)2,+∞上单调递减,则a 的取值范围( )A .(,4]-∞B .(4,4]-C .[4,4]-D .(4,)-+∞20.函数22log (2)y x x =-的单调递减区间为( )A .(1,2)B .(]1,2C .(0,1)D .[)0,121.已知函数()f x 是定义在R 上的奇函数,当0x ≥时,则()4322x xf x a =-⨯+.则关于x 的不等式()6f x ≤-的解集为( ) A .(,2]-∞-B .(,1]-∞-C .[)()2,00,2- D .[)()2,02,-⋃+∞二、解答题22.比较下列各数的大小: (1)12log 3与12log π;(2)4log 3与5log 3; (3)5log 2与2log 5.23.已知函数()()()ln 1ln 1f x ax x =++-的图象经过点()3,3ln 2.(1)求a 的值,及()f x 的定义域; (2)求关于x 的不等式()()ln 2f x x ≤的解集.24.已知函数()()9log 91xf x x =++.(1)若()()20f x x a -+>对于任意x 恒成立,求a 的取值范围; (2)若函数()()9231f x xx g x m -=+⋅+和[]90,log 8x ∈,是否存在实数m ,使得()g x 的最小值为0?若存在,求出m 的值,若不存在,请说明理由.25.已知函数()ln f x x =.(1)在①()21g x x =-,②()21g x x =+这两个条件中任选一个,补充在下面的横线上,并解答.问题:已知函数___________,()()()=h x f g x 求()h x 的值域. 注:如果选择两个条件分别解答,按第一个解答计分.(2)若1x ∀∈R ,()20,x ∈+∞和()1122421ln x xa x x -+<-,求a 的取值范围.26.已知______,且函数()22x bg x x a+=+.①函数()()224f x x a x =+-+在定义域[]1,1b b -+上为偶函数;②函数()()0f x ax b a =+>在[1,2]上的值域为[]2,4.在①,②两个条件中选择一个条件,将上面的题目补充完整,求出a ,b 的值,并解答本题. (1)判断()g x 的奇偶性,并证明你的结论;(2)设()2h x x c =--,对任意的1x ∈R ,总存在[]22,2x ∈-,使得()()12g x h x =成立,求实数c 的取值范围. 27.定义:若函数()y f x =在某一区间D 上任取两个实数12x x 、,且12x x ≠,都有()()121222f x f x x x f ++⎛⎫> ⎪⎝⎭则称函数()y f x =在区间D 上具有性质L .(1)写出一个在其定义域上具有性质L 的对数函数(不要求证明). (2)判断函数1()f x x x=+在区间(0,)+∞上是否具有性质L ?并用所给定义证明你的结论. (3)若函数21()g x ax x=-在区间(0,1)上具有性质L ,求实数a 的取值范围.三、填空题28.函数()ln(4)f x x =+-的定义域是___________. 29.()()log 4a f x ax =-在(]1,3上递减,则a 的范围是_________.30.已知函数211,0()2,0xx f x x x x ⎧⎛⎫-≤⎪ ⎪=⎨⎝⎭⎪-+>⎩,则函数12()log g x f x ⎛⎫= ⎪⎝⎭的单调递增区间为__. 31.已知函数2(12)0()log (1)0a x a x f x x x +-<⎧=⎨+≥⎩,,的值域为R ,则实数a 的范围是_________32.已知函数()log (23)1(>0a f x x a =-+且1)a ≠,且的图象恒过定点P ,则点P 的坐标为_________.33.已知函数()2log 081584,,⎧<≤⎪=⎨-+>⎪⎩x x f x x x ,若a b c ,,互不相等,且()()()f a f b f c ==,则abc 的取值范围是____.34.若0x >和0y >,且111x y+=,则22log log x y +的最小值为___________.四、多选题35.已知函数()f x 和()g x 的零点所构成的集合分别为M ,N ,若存在M α∈和N β∈,使得1αβ-≤,则称()f x 与()g x 互为“零点伴侣”.若函数()1e 2xf x x -=+-与()23g x x ax a =--+互为“零点伴侣”,则实数a的取值不能是( ) A .1B .2C .3D .436.已知函数()()2lg 1f x x ax a =+--,下列结论中正确的是( )A .当0a =时,则()f x 的定义域为()(),11,-∞-⋃+∞B .()f x 一定有最小值C .当0a =时,则()f x 的值域为RD .若()f x 在区间[)2,+∞上单调递增,则实数a 的取值范围是{}4a a ≥-参考答案与解析1.A【分析】根据函数的定义域为(),1-∞可排除B 、D.再由单调性即可选出答案.【详解】当0x =时,则()()20log 10=0f =-,故排除B 、D. 当1x =-时,则()()21log 1110f -=+=>,故A 正确. 故选A.【点睛】本题考查函数的图像,属于基础题.解决本类题型的两种思路:①将初等函数的图像通过平移、伸缩、对称变换选出答案,对学生能力要求较高;②根据选项代入具体的x 值,判断y 的正负号. 2.C【分析】根据对数函数可以解得2a =,4t =再结合中间值法比较大小. 【详解】设()()log 0,1a f x x a a =>≠,由题意可得:1log 38a =-,则2a = ∴log 164a t ==0.1log 40a =<,()40.20,1b =∈和0.141c =>∴a b c << 故选:C . 3.A【分析】利用函数的奇偶性排除选项D ,利用当01x <<时,则()0f x >,排除选项B ,C ,即得解. 【详解】解:∵函数()f x 的定义域为{}0x x ≠,关于原点对称,1()ln f x x xx ⎛⎫-=-+⋅- ⎪⎝⎭1ln ()x x f x x ⎛⎫--⋅=- ⎪=⎝⎭ ∴()f x 为奇函数,排除选项D .当01x <<时,则2110x x x x--=<和ln 0x < ∴()0f x >,排除选项B ,C . 故选:A . 4.A【分析】根据函数图象的对称性、奇偶性、单调性以及特殊点,利用排除法即可求解.【详解】解:根据图象可知,函数关于1x =对称,且当1x =时,则1y =-,故排除B 、D 两项; 当1x >时,则函数图象单调递增,无限接近于0,对于C 项,当1x >时,则12x y -=-单调递减,故排除C项. 故选:A. 5.C【分析】根据指数函数的单调性分类讨论进行求解即可.【详解】当>1a 时,则,1()=,<1x xa a x f x a a x -≥-⎧⎨⎩显然当1x ≥时,则函数单调递增,当<1x 时,则函数单调递减 函数图象的渐近线为=y a ,而>1a ,故AB 不符合; 对于CD ,因为渐近线为=2y ,故=2a ,故=0x 时,则=1y 故选项C 符合,D 不符合;当0<<1a 时,则,<1()=,1x xa a x f x a a x --≥⎧⎨⎩当1x ≥时,则函数单调递增,当<1x 时,则函数单调递减 函数图象的渐近线为=y a ,而0<<1a ,故ABD 不符合; 故选:C 6.B【分析】利用对数函数单调性判断选项A ;利用指数函数单调性判断选项B ;利用幂数函数单调性判断选项C ;利用二次函数单调性判断选项D.【详解】选项A :由21>,可得2()log f x x =为增函数.判断错误; 选项B :由31>,可得3x y =为增函数,则()13x f x =-是减函数.判断正确; 选项C :由12-<,可得12y x -=是减函数,则()f x =为增函数.判断错误;选项D :2()1f x x =-+在(),0∞-上单调递增. 判断错误. 故选:B 7.B【分析】计算可得2a =,再分析()0.5log 0.60,1b =∈,0.3116c a -⎛⎫=> ⎪⎝⎭即可判断【详解】由题意0.542a ==,()()0.50.50.5log 0.6log 1,log 0.50,1b =∈=和0.30.30.2511616216c a -⎛⎫==>== ⎪⎝⎭,故b ac <<故选:B 8.C【分析】根据二次函数和对数函数的单调性,结合分段函数的性质进行求解即可.【详解】二次函数2(43)3y x a x a =+-+的对称轴为:432a x -=-因为二次函数开口向上,所以当0x <时,则该二次函数不可能单调递增 所以函数()f x 是实数集上的减函数则有01432302343log 122a a a a a <<⎧⎪-⎪-≥⇒≤≤⎨⎪≥+=⎪⎩故选:C 9.B【分析】由题设知()()2h x f x x =-在R 上递增,将不等式转化为2(log )(1)h x h <,利用单调性求解集即可. 【详解】由题设12x x <时1122()2()2f x x f x x -<-,即()()2h x f x x =-在R 上递增又(1)(1)21h f =-=-,而()222log 1log f x x +<等价于()22log 2log 1f x x -<-所以2(log )(1)h x h <,即2log 1x <,可得02x <<. 故不等式解集为()0,2. 故选:B 10.C【分析】依题意可得21log 0x +≥,根据对数函数的性质解不等式,即可求出函数的定义域. 【详解】解:依题意可得21log 0x +≥,即221log 1log 2x ≥-=,所以12x ≥ 即函数的定义域为1,2⎡⎫+∞⎪⎢⎣⎭.故选:C 11.B【分析】求出函数2log 2x y x=-的定义域得集合A ,解不等式()22200x mx m m +-<>得m 的范围,根据充分不必要条件的定义可得答案. 【详解】函数2log 2xy x =-有意义的条件为02x x>-,解得02x << 所以{}02A x x =<<,不等式()22200x mx m m +-<>,即()()20x m x m +-<因为0m >,所以2m x m -<<,记不等式()22200x mx m m +-<>的解集为集合B所以A B ⊆,所以220≥⎧⎨-≤⎩m m ,得2m ≥.故选:B . 12.C【分析】根据熟知函数的图象与性质判断函数的单调性.【详解】对于选项A ,()ln f x x =-在(),1-∞-上无意义,不符合题意; 对于选项B ,()11f x x =-+在(),1-∞-上是增函数,不符合题意; 对于选项C ,2234,? 4134,? 14x x x x x x x ⎧--≥≤-⎨-++-<<⎩或的大致图象如图所示中由图可知()f x 在(),1-∞-上是减函数,符合题意;对于选项D ,()21f x x =在(),1-∞-上是增函数,不符合题意. 故选:C. 13.C【分析】根据奇偶性的定义依次判断,并求函数的值域即可得答案. 【详解】对于①,y x =是偶函数,且值域为[)0,∞+; 对于②,3y x =是奇函数,值域为R ; 对于③,2xy =是偶函数,值域为[)1,+∞;对于④,2y x x=+是偶函数,且值域为[)0,∞+所以符合题意的有①④ 故选:C. 14.D【分析】根据函数的单调性可知,若函数存在最小值,则最小值是()21f =,则根据指数函数的性质,列式求实数a 的取值范围.【详解】2x <时,则()2,4xa a a -∈--,2x ≥时,则2log 1x ≥若要使得()f x 存在最小值,只需要2log 2a -≥,即1a ≤-. 故选:D. 15.A【分析】法一:根据指对互化以及对数函数的单调性即可知9log 101m =>,再利用基本不等式,换底公式可得lg11m >,8log 9m >,然后由指数函数的单调性即可解出. 【详解】[方法一]:(指对数函数性质)由910m=可得9lg10log 101lg 9m ==>,而()222lg9lg11lg99lg9lg111lg1022+⎛⎫⎛⎫<=<= ⎪ ⎪⎝⎭⎝⎭,所以lg10lg11lg 9lg10>,即lg11m >,所以lg11101110110m a =->-=.又()222lg8lg10lg80lg8lg10lg922+⎛⎫⎛⎫<=< ⎪ ⎪⎝⎭⎝⎭,所以lg9lg10lg8lg9>,即8log 9m > 所以8log 989890m b =-<-=.综上,0a b >>. [方法二]:【最优解】(构造函数) 由910m =,可得9log 10(1,1.5)m =∈.根据,a b 的形式构造函数()1(1)m f x x x x =--> ,则1()1m f x mx -'=- 令()0f x '=,解得110m x m -= ,由9log 10(1,1.5)m =∈ 知0(0,1)x ∈ .()f x 在 (1,)+∞ 上单调递增,所以(10)(8)f f > ,即 a b >又因为9log 10(9)9100f =-= ,所以0a b >> .故选:A.【整体点评】法一:通过基本不等式和换底公式以及对数函数的单调性比较,方法直接常用,属于通性通法;法二:利用,a b 的形式构造函数()1(1)mf x x x x =-->,根据函数的单调性得出大小关系,简单明了,是该题的最优解.16.A【分析】根据一元二次不等式的求解得{}11B x x =-≤≤,根据集合的交运算即可求解. 【详解】因为{}1,0,1,2A =-和{}11B x x =-≤≤,所以{}1,0,1A B =-故选:A . 17.B【分析】由对数的运算性质可得ab =1,讨论a ,b 的范围,结合指数函数和对数函数的图像的单调性,即可得到答案.【详解】22log log 0a b +=,即为2log 0ab =,即有ab =1. 当a >1时,则0<b <1函数()1()xf x a=与()log b g x x =均为减函数,四个图像均不满足当0<a <1时,则b >1函数数()1()xf x a=与()log b g x x =均为增函数,排除ACD在同一坐标系中的图像可能是B 故选:B . 18.B【分析】结合指数函数,对数函数的单调性,以及临界值0和1,判断即可 【详解】由题意201313a -<==,故(0,1)a ∈ 1130312212b -⎛⎫==>= ⎪⎝⎭2231log log 10c =<= 故c a b << 故选:B 19.B【分析】转化为函数23y x ax a =-+在[)2,+∞上单调递增,且230x ax a -+>在[)2,+∞上恒成立,再根据二次函数的单调性以及不等式恒成立列式可求出结果. 【详解】因为函数212()log (3)f x x ax a =-+在[)2,+∞上单调递减所以函数23y x ax a =-+在[)2,+∞上单调递增,且230x ax a -+>在[)2,+∞上恒成立 所以2222230a a a ⎧≤⎪⎨⎪-+>⎩,解得44a -<≤.故选:B 20.A【分析】先求出函定义域,再通过换元法利用复合函数“同增异减”的性质得到结果【详解】由220x x ->,得02x <<令22t x x =-,则2log y t=22t x x =-在(0,1)上递增,在(1,2)上递减因为2log y t=在定义域内为增函数所以22log (2)y x x =-的单调递减区间为(1,2)故选:A 21.A【分析】由()f x 是R 上的奇函数求出a 值,并求出0x <时,则函数()f x 的解析式,再分段讨论解不等式作答.【详解】因函数()f x 是定义在R 上的奇函数,且当0x ≥时,则()4322x xf x a =-⨯+则()0004322220f a a =-⨯+=-=,解得1a =,即当0x ≥时,则()4322x xf x =-⨯+当0x <时,则0x ->,则()()(4322)x x f x f x --=--=--⨯+而当0x ≥时,则()2311(2)244xf x =--≥-,则当()6f x ≤-时,则0(4322)6x xx --<⎧⎨--⨯+≤-⎩,即0(24)(21)0x xx --<⎧⎨-+≥⎩变形得024x x -<⎧⎨≥⎩,解得2x -≤所以不等式()6f x ≤-的解集为(,2]-∞-. 故选:A22.(1)1122log 3log π>.(2)45log 3log 3>.(3)52log 2log 5<. 【分析】(1)根据12()log f x x=,在定义域内是减函数,即可比较二者大小;(2)根据3log y x =,在定义域内是增函数,可得330log 4log 5<<,故3311log 4log 5>,即可比较二者大小; (3)根据5log 21<,2log 51>即可比较二者大小. 【详解】(1)设12()log f x x =.3π<且()f x 是减函数 ∴(3)()f f π>即1122log 3log π>.(2)3log y x =是增函数∴330log 4log 5<<. ∴3311log 4log 5> 即45log 3log 3>. (3)55log 2log 51<=且22log 5log 21>=∴52log 2log 5<.【点睛】本题主要考查了比较对数的大小,解题关键是掌握对数的单调性和对数的运算性质,考查了分析能力和计算能力,属于基础题. 23.(1)1a =,定义域为()1,+∞ (2){112}x x <+∣【分析】(1)直接将()3,3ln 2代入函数解析式,即可求出参数a 的值,从而求出函数解析式,再根据对数的真数大于零得到不等式组,解得即可;(2)依题意可得()()2ln 1ln 2x x -,再根据对数函数的单调性,将函数不等式转化为自变量的不等式,解得即可; (1)解:由题意可得()()ln 31ln 313ln2a ++-=,即()ln 312ln2a +=,所以314a += 解得1a =则()()()ln 1ln 1f x x x =++-.由1010x x +>⎧⎨->⎩,解得1x >.所以()f x 的定义域为()1,+∞. (2)解:由(1)可得()()()()2ln 1ln 1ln 1,1f x x x x x =++-=->不等式()()ln 2f x x 可化为()()2ln 1ln 2x x -因为ln y x =在()0,+∞上是增函数所以20121x xx ⎧<-⎨>⎩ 解得112x <+.故不等式()()ln 2f x x 的解集为{}|112x x <+. 24.(1)(],0-∞(2)存在 m =【分析】(1)利用分离参数法得到()9log 91x a x <+-对于任意x 恒成立,令()()9log 91xh x x =+-,利用对数的图像与性质即可求得;(2)先整理得到()9232x xg x m =+⋅+令3x t =, t ⎡∈⎣研究函数()()222222p t t mt t m m =++=++-,t ⎡∈⎣根据二次函数的单调性对m 进行分类讨论,即可求出m . (1)由题意可知,()()20f x x a -+>对于任意x 恒成立代入可得()9log 910x x a +-->所以()9log 91xa x <+-对于任意x 恒成立令()()()99999911log 91log 91log 9log log 199x xxxx xh x x +⎛⎫=+-=+-==+ ⎪⎝⎭因为1119x +>,所以由对数的图像与性质可得:91log 109x⎛⎫+> ⎪⎝⎭,所以0a ≤. 即实数a 的范围为(],0-∞. (2) 由()()9231f x xx g x m -=+⋅+,[]90,log 8x ∈且()()9log 91x f x x =++代入化简可得()9232x xg x m =+⋅+.令3x t =,因为[]90,log 8x ∈,所以t ⎡∈⎣则()()222222p t t mt t m m =++=++- t ⎡∈⎣①当1m -≤,即1m ≥-时,则()p t 在⎡⎣上为增函数所以()()min 1230p t p m ==+=,解得32m =-,不合题意,舍去②当1m <-<1m -<-时,则()p t 在[]1,m -上为减函数,()p t 在m ⎡-⎣上为增函数所以()()2min 20p t p m m =-=-=,解得m =m =③当m ≤-,即m ≤-()p t 在⎡⎣上为减函数所以()(min 100p t p ==+=解得m =综上可知m =【点睛】二次函数中“轴动区间定”或“轴定区间动”类问题,分类讨论的标准是函数在区间里的单调性. 25.(1)答案见解析 (2)1,4⎛⎫-∞- ⎪⎝⎭【分析】(1)根据复合函数的性质即可得到()h x 的值域;(2)令()()1ln F x x x =-,求出其最小值,则问题转化为1142x x a <-恒成立,进而求1142x xy =-最小值即可.(1)选择①,()()2ln 1h x x =-令21t x =-,则()0,t ∈+∞,故函数ln y t =的值域为R ,即()h x 的值域为R .选择②,()()2ln 1h x x =+,令21t x =+,则[)1,t ∈+∞因为函数ln y t =单调递增,所以0y ≥,即()h x 的值域为[)0,∞+. (2)令()()1ln F x x x =-.令12x m =,则()0,m ∈+∞,所以112211142244x x m m m ⎛⎫-=-=--≥- ⎪⎝⎭故14a <-,即a 的取值范围为1,4⎛⎫-∞- ⎪⎝⎭.26.(1)选择条件见解析,a =2,b =0;()g x 为奇函数,证明见解析; (2)77,88⎡-⎤⎢⎥⎣⎦.【分析】(1)若选择①,利用偶函数的性质求出参数,a b ; 若选择②,利用单调性得到关于,a b 的方程,求解即可;将,a b 的值代入到()g x 的解析式中再根据定义判断函数的奇偶性; (2)将题中条件转化为“()g x 的值域是()f x 的值域的子集”即可求解. (1) 选择①.由()()224f x x a x =+-+在[]1,1b b -+上是偶函数得20a -=,且()()110b b -++=,所以a =2,b =0. 所以()222xg x x =+.选择②.当0a >时,则()f x ax b =+在[]1,2上单调递增,则224a b a b +=⎧⎨+=⎩,解得20a b =⎧⎨=⎩ 所以()222xg x x =+.()g x 为奇函数.证明如下:()g x 的定义域为R . 因为()()222xg x g x x --==-+,所以()g x 为奇函数.(2) 当0x >时,则()122g x x x=+,因为224x x +≥,当且仅当22x x =,即x =1时等号成立,所以()104g x <≤; 当0x <时,则因为()g x 为奇函数,所以()104g x -≤<;当x =0时,则()00g =,所以()g x 的值域为11,44⎡⎤-⎢⎥⎣⎦.因为()2h x x c =--在[]22-,上单调递减,所以函数()h x 的值域是[]22,22c c ---. 因为对任意的1x R ∈,总存在[]22,2x ∈-,使得()()12g x h x =成立 所以[]11,22,2244c c ⎡⎤-⊆---⎢⎥⎣⎦,所以12241224c c ⎧--≤-⎪⎪⎨⎪-≥⎪⎩,解得7788c -≤≤. 所以实数c 的取值范围是77,88⎡-⎤⎢⎥⎣⎦.27.(1)12log y x =;(2)函数1()f x x x =+在区间(0,)+∞上具有性质L ;答案见解析;(3)(,1]-∞.【分析】(1)由于底数在(0,1)上的对数函数满足题意,故可得答案; (2)任取12,(0,)x x ∈+∞,且12x x ≠,对()()122f x f x +与122x x f +⎛⎫ ⎪⎝⎭作差化简为因式乘积形式,判断出与零的大小,可得结论; (3)函数21()g x ax x =-在区间(0,1)上具有性质L ,即()()1212022g x g x x x g ++⎛⎫-> ⎪⎝⎭恒成立,参变分离求出最值,可得参数的范围. 【详解】(1)如12log y x=(或底在(0,1)上的对数函数);(2)函数1()f x x x=+在区间(0,)+∞上具有性质L .证明:任取12,(0,)x x ∈+∞,且12x x ≠()()12121212121211122222f x f x x x x x f x x x x x x +⎛⎫⎛⎫++⎛⎫-=+++-+ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭()()()()2212121212121212121241112222x x x x x x x x x x x x x x x x x x +--⎛⎫=+-== ⎪+++⎝⎭ 因为12,(0,)x x ∈+∞且12x x ≠所以()()21212120,20x x x x x x ->⋅+>,即()()1212022f x f x x x f ++⎛⎫-> ⎪⎝⎭. 所以函数1()f x x x=+在区间(0,)+∞上具有性质L . (3)任取12,(0,1)x x ∈,且12x x ≠,则()()21222121212121211122222g x g x x x x x g ax ax a x x x x ⎡⎤+⎛⎫++⎛⎫⎛⎫-=-+---⎢⎥ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦()()()()()()2221212121212121212122244ax x x x x x x x a x x x x x x x x x x -+⎡⎤--⎣⎦=-⋅=-++ 因为12,(0,1)x x ∈且12x x ≠,所以()()21212120,40x x x x x x ->⋅+> 要使上式大于零,必须()121220a x x x x -⋅⋅+>在12,(0,1)x x ∈上恒成立 即()12122a x x x x <+()212124x x x x +< ()()()()231212*********8x x x x x x x x x x +∴++>=+ 令()()3120,8x x t +=∈,则38y t =在()0,1上单调递减,即()()()()2331212121212228148x x x x t x x x x x x ∴>=++=>++ 所以1a ≤,即实数a 的取值范围为(,1]-∞.【点睛】关键点点睛:本题考查函数新概念,考查不等式的恒成立问题,解决本题的关键点是将函数21()g x ax x =-在区间(0,1)上具有性质L ,即()()1212022g x g x x x g ++⎛⎫-> ⎪⎝⎭恒成立,参变分离后转化为求最值问题,并借助于基本不等式和幂函数的单调性得出参数的范围,考查学生逻辑思维能力和计算能力,属于中档题. 28.(3,4)【分析】由对数的真数大于零,同时二次根式在分母,则其被开方数大于零,从而可求出定义域【详解】由题意可得260,40,x x ->⎧⎨->⎩解得34x <<,即()f x 的定义域是(3,4).故答案为:(3,4) 29.413a <<【分析】使复合函数()()log 4a f x ax =-在(]1,3上递减,需内增外减或外增内减,讨论a 求解即可 【详解】由题可得,根据对数的定义,0a >且1a ≠,所以4y ax =-是减函数,根据复合函数单调性的“同增异减”特点,得到1430a a >⎧⎨->⎩,所以413a <<.故答案为:413a <<30.2⎛ ⎝⎭[1,)+∞ 【分析】先根据题意求出()g x 的解析式,然后在每一段上求出函数的增区间即可 【详解】由12log 0x ≤,得1≥x ,由12log 0x >,得01x <<所以当1≥x 时,则12log 1()112xg x x ⎛⎫=-=- ⎪⎝⎭,则()g x 在[1,)+∞上递增当01x <<时,则21122()loglog g x x x =-+则121212log 11()2log 111lnlnln222x g x x x x x -'=-⋅+=由()0g x '>,得1212log 0x -<,解得0x <<所以()g x在⎛ ⎝⎭上递增 综上得函数()g x的单调递增区间为⎛ ⎝⎭ [1,)+∞故答案为:⎛ ⎝⎭,[1,)+∞ 31.1(,0]2-【分析】先求出分段函数中确定的一段的值域,然后分析另一段的值域应该有哪些元素.【详解】当0x ≥时,则2()log 0f x x =≥,因此当0x <时,则()(12)f x a x a =+-的取值范围应包含(,0)-∞ ∴1200a a +>⎧⎨-≥⎩,解得102-<≤a . 故答案为1(,0]2-. 【点睛】本题考查分段函数的值域问题,解题时注意分段讨论.32.()2,1【解析】根据对数函数的性质求解.【详解】令231x -=,则2x =,(2)1f =即()f x 图象过定点(2,1).故答案为:(2,1)33.()820,【分析】利用函数图像,数形结合进行分析.【详解】不妨设a b c <<,画出函数()f x 图像:()()()f a f b f c ==221log log 54a b c ∴==-+- ()2log 0ab ∴= 10534c <-+< 解得1ab = 820c <<820abc ∴<<.故答案为:()820,34.2【分析】由均值不等式求出xy 的最小值,再由对数的运算及性质即可求解.【详解】因为0x >,0y >且111x y+=所以111x y ≥+=4xy ≥,当且仅当11x y =,即2x y ==时等号成立 即xy 的最小值为4所以2222log log log log 42x y xy +=≥=故答案为:235.AD【分析】首先确定函数()f x 的零点,然后结合新定义的知识得到关于a 的等式,分离参数,结合函数的单调性确定实数a 的取值范围即可.【详解】因为函数()1e 2x f x x -=+-是R 上的增函数,且()10f =,所以1α=,结合“零点伴侣”的定义得11β-≤,则02β≤≤又函数()23g x x ax a =--+在区间[]0,2上存在零点,即方程230x ax a --+=在区间[]0,2上存在实数根 整理得2232122411x x x x a x x +++--+==++()4121x x =++-+ 令()()4121h x x x =++-+,[]0,2x ∈所以()h x 在区间[]0,1上单调递减,在[]1,2上单调递增 又()03h =,()723h =和()12h =,所以函数()h x 的值域为[]2,3 所以实数a 的取值范围是[]2,3.故选:AD .36.AC【分析】A 项代入参数,根据对数型函数定义域求法进行求解;B 项为最值问题,问一定举出反例即可;C 项代入参数值即可求出函数的值域;D 项为已知单调性求参数范围,根据二次函数单调性结合对数函数定义域求解即可.【详解】对于A ,当0a =时,则()()2lg 1f x x =-,令210x ->,解得1x <-或1x >,则()f x 的定义域为()(),11,-∞-⋃+∞,故A 正确;对于B 、C ,当0a =时,则()()2lg 1f x x =-的值域为R ,无最小值,故B 错误,C 正确;对于D ,若()f x 在区间[)2,+∞上单调递增,则21y x ax a =+--在[)2,+∞上单调递增,且当2x =时,则0y >则224210aa a⎧-≤⎪⎨⎪+-->⎩,解得3a>-,故D错误.故选:AC.。

人教A版高中数学必修一课时作业第一课时对数函数的图象及性质

人教A版高中数学必修一课时作业第一课时对数函数的图象及性质

2.2.2 对数函数及其性质第一课时对数函数的图象及性质[选题明细表]知识点、方法题号对数函数的定义及性质1,3,8,10对数函数的图象特征2,5,6,12,14 对数函数的定义域、值域问题4,7,11,13反函数9基础巩固1.下列给出的函数:①y=log5x+1;②y=log a x2(a>0,且a≠1);③y=lo x;④y=log 3x;⑤y=log x(x>0,且x≠1);⑥y=lo x.其中是对数函数的为( D )(A)③④⑤(B)②④⑥(C)①③⑤⑥ (D)③⑥解析:①②④不满足对数函数解析式特征,⑤中真数是常数,故只有③⑥是对数函数.选D.2.(2019·云南玉溪一中高一上期中)函数y=log a(3x-2)+2(a>0,且a≠1)的图象必过定点( A )(A)(1,2) (B)(2,2)(C)(2,3) (D)(,2)解析:令3x-2=1,得x=1,又log a(3×1-2)+2=2,故定点为(1,2),选A.3.(2019·吉林舒兰一中高一上学期期中)设ln b>ln a>ln c,则a,b,c 的大小关系为( A )(A)b>a>c (B)a>b>c(C)c>b>a (D)c>a>b解析:由对数函数的图象与性质可知,函数y=ln x在(0,+∞)上为单调递增函数,因为ln b>ln a>ln c,所以b>a>c,故选A.4.(2019·辽宁实验中学高一上期中)已知函数f(x)=log2(1+2-x),函数的值域是( B )(A)[0,2) (B)(0,+∞)(C)(0,2) (D)[0,+∞)解析:因为2-x+1>1,所以log2(1+2-x)>log21,故f(x)>0.故选B.5.函数y=log2|x|的图象大致是( A )解析:函数y=log2|x|为偶函数,且x>0时,y=log2x,故选A.6.已知函数f(x)=ln x,g(x)=lg x,h(x)=log3x,直线y=a(a<0)与这三个函数的交点的横坐标分别是x1,x2,x3,则x1,x2,x3的大小关系是( A ) (A)x2<x3<x1(B)x1<x3<x2(C)x1<x2<x3(D)x3<x2<x1解析:令a=-1,得ln x1=-1,lg x2=-1,log3x3=-1,故x1=,x2=,x3=,则x1>x3>x2.选A.7.(2019·陕西安康市高一上期中)若函数y=log0.5(a-2x)的定义域为(-∞,2),则a等于( D )(A)(B)(C)2 (D)4解析:由已知得a-2x>0,2x<a,x<log2a=2,a=4,故选D.8.若对数函数f(x)=(a2-2a-2)log a x,则f(9)= .解析:由对数函数定义知故a=3或a=-1(舍去),则f(x)=log3x,故f(9)=log39=2.答案:2能力提升9.(2018·河南实验中学期中)已知函数f(x)与g(x)=e x互为反函数,函数y=h(x)的图象与y=f(x)的图象关于x轴对称,若h(a)=1,则实数a 的值为( C )(A)-e (B)-(C)(D)e解析:因为函数f(x)与函数g(x)=e x互为反函数,所以f(x)=ln x.因为函数y=h(x)的图象与y=f(x)的图象关于x轴对称,所以h(x)=-ln x.因为h(a)=1,所以a=,故选C.10.(2019·湖南岳阳一中高一上期中)已知f(x)是偶函数,且在[0,+∞)上是减函数,若f(lg x)>f(1),则x的取值范围是( A )(A)(,10) (B)(0,)∪(1,+∞)(C)(,1) (D)(0,1)∪(10,+∞)解析:因为f(x)是偶函数且在[0,+∞)上是减函数,又f(lg x)>f(1),即f(|lg x|)>f(1),则|lg x|<1,故-1<lg x<1,解得<x<10.故选A.11.若函数f(x)=log5(3x-b)(x≥1)的值域是[0,+∞),则b的取值集合是.解析:因为x≥1,所以3x-b≥3-b.又f(x)=log5(3x-b)的值域是[0,+∞),所以3-b=1,故b=2.答案:{2}12.若直线y=t(t>0)与f(x)=|ln x|有两个不同的交点,且交点的横坐标分别为x1,x2,则x1x2= .解析:由题意知|ln x1|=|ln x2|,假设x1<1<x2,则-ln x1=ln x2,即ln x1+ln x2=0,故ln x1x2=0,因此x1x2=1.答案:113.已知函数f(x)=+的定义域为A.(1)求集合A;(2)若函数g(x)=(log2x)2-2log2x-1,且x∈A,求函数g(x)的最大值、最小值和对应的x值.解:(1)要使函数有意义,则即解得≤x≤4,即集合A=[,4].(2)因为x∈A,所以-1≤log2x≤2,g(x)=(log2x)2-2log2x-1=(log2x-1)2-2.当log2x=1,即x=2时,g(x)取最小值为-2,当log2x=-1,即x=时,g(x)取最大值为2.探究创新14.若定义一个区间[m,n]的长度为n-m,当函数f(x)=|log4x|在区间[a,b]上的值为[0,1]时,该区间的长度的最小值为.解析:依题意知f(x)=|log4x|在区间[a,b]上的值域为[0,1],如图,当f(x)=0时,x=1,当f(x)=1时,x=4或,因此定义域为[,1]时,区间长度最小,故b-a的最小值为.答案:。

人教版(新教材)高中数学第一册(必修1):4.4.2 第1课时 对数函数的图象和性质学案(一)

人教版(新教材)高中数学第一册(必修1):4.4.2 第1课时 对数函数的图象和性质学案(一)

4.4.2 对数函数的图象和性质第1课时对数函数的图象和性质(一)学习目标 1.初步掌握对数函数的图象和性质.2.会类比指数函数研究对数函数的性质.3.掌握对数函数的图象和性质的简单应用.4.了解反函数的概念及它们的图象特点.知识点一对数函数的图象和性质对数函数y=log a x(a>0,且a≠1)的图象和性质如下表y=log a x (a>0,且a≠1)底数a>10<a<1图象定义域(0,+∞)值域R单调性在(0,+∞)上是增函数在(0,+∞)上是减函数共点性图象过定点(1,0),即x=1时,y=0函数值特点x∈(0,1)时,y∈(-∞,0);x∈『1,+∞)时,y∈『0,+∞)x∈(0,1)时,y∈(0,+∞);x∈『1,+∞)时,y∈(-∞,0』对称性函数y=log a x与y=1logax的图象关于x轴对称思考对数函数图象的“上升”或“下降”与谁有关?『答案』底数a与1的关系决定了对数函数图象的升降.当a>1时,对数函数的图象“上升”;当0<a<1时,对数函数的图象“下降”.知识点二反函数指数函数y=a x(a>0,且a≠1)与对数函数y=log a x(a>0且a≠1)互为反函数.它们的定义域与值域正好互换.1.若函数y =f (x )是函数y =3x 的反函数,则f ⎝⎛⎭⎫12的值为________. 『答 案』 -log 32『解 析』 y =f (x )=log 3x ,∴f ⎝⎛⎭⎫12=log 312=-log 32. 2.函数y =lg(x +1)的图象大致是________.(填序号)『答 案』 ③『解 析』 由底数大于1可排除①,②,y =lg(x +1)可看作是y =lg x 的图象向左平移1个单位长度(或令x =0得y =0,而且函数为增函数).3.已知函数y =a x (a >0,且a ≠1)在R 上是增函数,则函数y =log a x 在(0,+∞)上是________函数.(填“增”或“减”) 『答 案』 增『解 析』 因为函数y =a x 在R 上是增函数, 所以a >1,所以y =log a x 在(0,+∞)上是增函数.4.函数y =log a x +1(a >0,且a ≠1)的图象过定点________. 『答 案』 (1,1)『解 析』 因为对数函数y =log a x 的图象过定点(1,0), 所以函数y =log a x +1的图象过定点(1,1).一、对数函数的图象及应用例1 (1)如图,若C 1,C 2分别为函数y =log a x 和y =log b x 的图象,则( )A .0<a <b <1B .0<b <a <1C .a >b >1D .b >a >1 『答 案』 B『解 析』 作直线y =1,则直线与C 1,C 2的交点的横坐标分别为a ,b ,易知0<b <a <1. (2)若函数y =log a (x +b )+c (a >0,且a ≠1)的图象恒过定点(3,2),则实数b =________,c =________.『答 案』 -2 2『解 析』 ∵函数的图象恒过定点(3,2), ∴将(3,2)代入y =log a (x +b )+c , 得2=log a (3+b )+c .又当a >0,且a ≠1时,log a 1=0恒成立, ∴c =2,3+b =1,∴b =-2,c =2.(3)已知f (x )=log a |x |(a >0,且a ≠1)满足f (-5)=1,试画出函数f (x )的图象. 解 因为f (-5)=1,所以log a 5=1,即a =5,故f (x )=log 5|x |=⎩⎪⎨⎪⎧log 5x ,x >0,log 5(-x ),x <0.所以函数y =log 5|x |的图象如图所示.(教师) 延伸探究1.在本例中,若条件不变,试画出函数g (x )=log a |x -1|的图象. 解 因为f (x )=log 5|x |,所以g (x )=log 5|x -1|,如图,g (x )的图象是由f (x )的图象向右平移1个单位长度得到的.2.在本例中,若条件不变,试画出函数h (x )=|log a x |的图象. 解 因为a =5,所以h (x )=|log 5x |.h (x )的图象如图所示.反思感悟对数函数图象的变换方法(1)作y=f(|x|)的图象时,保留y=f(x)(x≥0)图象不变,x<0时y=f(|x|)的图象与y=f(x)(x>0)的图象关于y轴对称.(2)作y=|f(x)|的图象时,保留y=f(x)的x轴及上方图象不变,把x轴下方图象以x轴为对称轴翻折上去即可.(3)有关对数函数平移也符合“左加右减,上加下减”的规律.(4)y=f(-x)与y=f(x)关于y轴对称,y=-f(x)与y=f(x)关于x轴对称,y=-f(-x)与y=f(x)关于原点对称.跟踪训练1(1)函数f(x)=log a|x|+1(a>1)的图象大致为()『答案』 C『解析』∵函数f(x)=log a|x|+1(a>1)是偶函数,∴f(x)的图象关于y轴对称,当x>0时,f(x)=log a x+1是增函数;当x<0时,f(x)=log a(-x)+1是减函数,又∵图象过(1,1),(-1,1)两点,结合选项可知选C.(2)画出函数y=|log2(x+1)|的图象,并写出函数的值域及单调区间.解函数y=|log2(x+1)|的图象如图所示.由图象知,其值域为『0,+∞),单调减区间是(-1,0』,单调增区间是(0,+∞).二、比较大小例2(1)若a=log23,b=log32,c=log46,则下列结论正确的是()A.b<a<c B.a<b<cC.c<b<a D.b<c<a『答案』 D『解析』因为函数y=log4x在(0,+∞)上是增函数,a=log23=log49>log46>1,log32<1,所以b<c<a.(2)比较下列各组中两个值的大小:①log31.9,log32;②log23,log0.32;③log aπ,log a3.14(a>0,a≠1);④log50.4,log60.4.解①因为y=log3x在(0,+∞)上是增函数,所以log31.9<log32.②因为log23>log21=0,log0.32<log0.31=0,所以log23>log0.32.③当a>1时,函数y=log a x在(0,+∞)上是增函数,则有log aπ>log a3.14;当0<a<1时,函数y=log a x在(0,+∞)上是减函数,则有log aπ<log a3.14.综上所得,当a>1时,log aπ>log a3.14;当0<a<1时,log aπ<log a3.14.④在同一直角坐标系中,作出y=log5x,y=log6x的图象,再作出直线x=0.4(图略),观察图象可得log50.4<log60.4.反思感悟比较对数值大小时常用的四种方法(1)同底数的利用对数函数的单调性.(2)同真数的利用对数函数的图象或用换底公式转化.(3)底数和真数都不同,找中间量.(4)若底数为同一参数,则根据底数对对数函数单调性的影响,对底数进行分类讨论.跟踪训练2 比较大小:(1)log a 5.1,log a 5.9(a >0,且a ≠1); (2)log 3π,log 23,log 3 2.解 (1)当a >1时,y =log a x 在(0,+∞)上是增函数, 又5.1<5.9,所以log a 5.1<log a 5.9;当0<a <1时,y =log a x 在(0,+∞)上是减函数, 又5.1<5.9,所以log a 5.1>log a 5.9. 综上,当a >1时,log a 5.1<log a 5.9; 当0<a <1时,log a 5.1>log a 5.9. (2)∵log 23=12log 23,又1<log 23<2,∴12<log 23<1.又log 32=12log 32<12,log 3π>1,∴log 3π>log 23>log 3 2.1.函数y =log a (x -1)(0<a <1)的图象大致是( )『答 案』 A『解 析』 ∵0<a <1,∴y =log a x 在(0,+∞)上单调递减,故排除C ,D ;又函数y =log a (x -1)的图象是由y =log a x 的图象向右平移一个单位长度得到的,故A 正确. 2.若a =20.2,b =log 43.2,c =log 20.5,则( ) A .a >b >c B .b >a >c C .c >a >b D .b >c >a『答 案』 A『解 析』 ∵a =20.2>1>b =log 43.2>0>c =-1,∴a >b >c .3.下列式子中成立的是( ) A .log 0.44<log 0.46 B .1.013.4>1.013.5 C .3.50.3<3.40.3 D .log 76<log 67『答 案』 D『解 析』 因为y =log 0.4x 为减函数,故log 0.44>log 0.46,故A 错;因为y =1.01x 为增函数,所以1.013.4<1.013.5,故B 错;由幂函数的性质知,3.50.3>3.40.3,故C 错,log 76<1<log 67,D 正确.4.若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,其图象经过点⎝⎛⎭⎪⎫32,23,则a =________.『答 案』2『解 析』 因为点⎝ ⎛⎭⎪⎫32,23在y =f (x )的图象上,所以点⎝ ⎛⎭⎪⎫23,32在y =a x 的图象上,则有32=23a ,所以a 2=2,又因为a >0,a = 2.5.设a >1,函数f (x )=log a x 在区间『a,2a 』上的最大值与最小值之差为12,则a =________.『答 案』 4『解 析』 ∵a >1,∴f (x )=log a x 在『a,2a 』上递增, ∴log a (2a )-log a a =12,即log a 2=12,∴12a =2,∴a =4.1.知识清单:(1)对数函数的图象及性质.(2)利用对数函数的图象及性质比较大小. 2.方法归纳:图象变换、数形结合法. 3.常见误区:作对数函数图象易忽视底数a >1与0<a <1两种情况.。

2023新教材高中数学第四章指数函数与对数函数对数函数的图象和性质课件新人教A版必修第一册

2023新教材高中数学第四章指数函数与对数函数对数函数的图象和性质课件新人教A版必修第一册

知识点二 比较大小
3.已知 log3 b<log3 a<log3 c,则( )
5
5
5
A.7a>7b>7c B.7b>7a>7c
C.7c>7b>7a D.7c>7a>7b
答案 B
解析 由于函数 y=log3 x 为减函数,因此由 log3 b<log3 a<log3 c 可得
5
5
5
5
b>a>c,又由于函数 y=7x 为增函数,所以 7b>7a>7c.
7.不等式
log1
2
x-12>-1
的解集是(
)
A.-32,52
B.-32,12∪12,52
C.-12,12∪12,52
D.-32,12∪12,2
答案 B
解析

log1
2
x-12=-log2x-12>-1,得
log2x-12<1=log22,即 0<x-12<2,即
-32<x<52,且 x≠12.
1-x 13.已知函数 f(x)=lg 1+x的定义域为(-1,1). (1)求 f20120+f-20120; (2)探究函数 f(x)的单调性,并证明.
解 (1)∵函数 f(x)的定义域为(-1,1),关于坐标原点对称,
1+x
1-x
且 f(-x)=lg 1-x=-lg 1+x=-f(x),
4.设 a=log2 3,b=30.01,c=ln 22,则(
)
A.c<a<b B.a<b<c C.a<c<b D.b<a<c
答案 A
解析
先和 0 比较,a=log2 3>log21=0,b=30.01>0,c=ln

对数函数的图像和性质(1) 高一上学期数学人教A版(2019)必修第一册

对数函数的图像和性质(1)  高一上学期数学人教A版(2019)必修第一册
.2 对数函数的图像和性质
学习目标
学习
目标

会用描点法画对数函数的图象

掌握对数函数的性质

能用对数函数的图象性质比较对数的大小.
复习回顾
1. 对数函数的概念是什么?
形如y = logax ,(a>0,且a≠1) 叫做对数函数.
2. 指数函数的概念是什么?我们主要研究它的哪些性质?
当0<a<1时,
图象从左到右是下降的.
概念生成
对数函数的性质
a>1
0<a<1
y
图 像
y
(1,0)
O
(1,0)
O
x
x
f(x)=logax (0<a<1)
定义域


过定点
单 调 性


取值分布
奇 偶 性
(0,+∞)
R
(1,0)
在(0,+∞)上是增函数 在(0,+∞)上是减函数
当x>1时,y>0;
当x>1时,y<0;
log
y =
ax
1
log
y =
ax
1
log
y =
ax
1
log
y =
ax
1
log
y =
ax
1
log
y =
ax
1
log
y =
ax
1
log
y =
ax
1
log
-1
1
0
2
1
4
2
6
2.6

高中数学新人教A版必修第一册 第四章 4.4.2 第1课时 对数函数的图象和性质 课件(44张)

高中数学新人教A版必修第一册 第四章 4.4.2 第1课时 对数函数的图象和性质 课件(44张)
(1)已知函数 f(x)=logax(a>0,a≠1)在[1,4]上的最大值与最小值的和是 2,则 a 的值为________. 【解析】当 a>1 时,y=logax 在(0,+∞)上为增函数,所以 y=logax 在[1,4]上 最大值为 loga4,最小值为 loga1;当 0<a<1 时,y=logax 在(0,+∞)上为减函数, 所以 y=logax 在[1,4]上的最大值为 loga1,最小值为 loga4.故有 loga1+loga4=2, 即 loga4=2,a2=4,a=±2.又 a>0,所以 a=2. 答案:2
【加固训练】
如图,若 C1,C2 分别为函数 y=logax 和 y=logbx 的图象,则( )
A.0<a<b<1
B.0<b<a<1
C.a>b>1
D.b>a>1
【解析】选 B.根据 C1,C2 分别为函数 y=logax 和 y=logbx 的图象,可得 0<b<1,0<a<1, 且 b<a.
综合类型 简单的值域问题(数学运算) 根据单调性求值域 【典例】函数 f(x)=2x+log2x(x∈[1,2])的值域为________.
(1)对于对数函数 y=logax,为什么一定过点(1,0) ? 提示:当 x=1 时,loga1=0 恒成立,即对数函数的图象一定过点(1,0) .
(2)在下表中,?处 y 的范围是什么?
提示:
2.反函数
指数函数 y=ax(a>0,且a≠1) 与对数函数 y=logax(a>0,且a≠1) 互为反函数,它
1.对数函数的图象和性质
0<a<1
a>1

人教A版新课标高中数学必修一练习 对数函数及其性质同步测试

人教A版新课标高中数学必修一练习 对数函数及其性质同步测试
对数函数及其性质 同步测试
同步测试
1 . 对数函数的图象过点 M(16,4),则此对数函数的解析式为
()
A. y=log2x
B. y= log 1 x
C. y= log 1 x
4
D. y=log4x
2
【解析】设此对数函数为 y=logax(a>0,且 a≠1) .
∵对数函数的图象过点 M(16,4),
【解析】由题意得 1-x>0,所以 x<1 . 所以函数 f(x)=log5(1-x) 的定义域是 (-∞,1) .
【答案】(-∞,1)
同步测试
5 . 已知对数函数 y=log2x,x∈{0.25,1,2,4},求值域 .
【解析】当
x=0.25
时,y=log20.25=log2
1 4
=-2
ቤተ መጻሕፍቲ ባይዱ
.
当 x=1 时,y=log21=0 .
∴4=loga16,a4=16 . 又 a>0,∴ a=2,∴此对数函数为 y=log2x . 【答案】A .
同步测试
2.当 a>1 时,在同一坐标系中,函数 y=a-x 与 y=logax 的图 象是 ( )
【解析】当 a>1 时,y=logax 单调递增,y=a-x单调递减. 【答案】A .
同步测试
3 . 设集合 A={x|y=lgx},B={y|y=lgx},则下列关系中正确的
是( )
A. A∪B=A
B. A∩B=∅
C. A=B
D. A⊆B
【解析】∵A={x|y=lgx}=(0,+∞),B={y|y=lgx}=R,
∴A⊆B .
【答案】D
同步测试
4 . 函数 f(x)=log5(1-x) 的定义域是______.

人教新课标版数学高一-A版必修一课后训练 .1对数函数的图象及性质

人教新课标版数学高一-A版必修一课后训练  .1对数函数的图象及性质

课后提升训练二十对数函数的图象及性质(45分钟70分)一、选择题(每小题5分,共40分)1.下列函数是对数函数的是( )A.y=log(-2)xB.y=log2x2C.y=log2xD.y=log2(x+2)【解析】选C.由对数函数定义知y=log2x=log4x是对数函数.2.函数f(x)=log0.25(2x-1)的定义域为( )A. B.C. D.【解析】选A.由题意知2x-1>0,即x>.3.(2017·德州高一检测)已知函数f(x)=a x(a>0,a≠1),且其图象过点(3,27),f(x)的反函数记为y=g(x),则g(x)的解析式是( ) A.g(x)=log3x B.g(x)=log2xC.g(x)=lo xD.g(x)=lo x【解析】选A.因为f(3)=27,所以a3=27,即a=3,又因为指数函数y=a x与y=log a x互为反函数,所以g(x)=log3x.4.(2017·长沙高一检测)已知f(x)=a-x,g(x)=log a x,且f(2)·g(2)>0,则函数f(x)与g(x)的图象是( )【解析】选D.因为f(2)·g(2)>0,所以a>1,所以f(x)=a-x与g(x)=log a x在其定义域上分别是减函数与增函数.5.(2017·开封高一检测)函数y=log a(x+2)+1的图象过定点( )A.(1,2)B.(2,1)C.(-2,1)D.(-1,1)【解题指南】借助对数函数图象过定点(1,0)这一性质,利用整体代换思想,令x+2=1,求出图象所过定点.【解析】选 D.令x+2=1,即x=-1,得y=log a1+1=1,故函数y=log a(x+2)+1的图象过定点(-1,1).6.若点(a,b)在y=lgx的图象上,a>0且a≠1,则下列点也在此图象上的是( )A. B.(10a,1-b)C. D.(a2,2b)【解析】选 D.若点(a,b)在y=lgx的图象上,则b=lga,所以2b=2lga=lga2,即(a2,2b)也在函数y=lgx的图象上.【延伸探究】本题条件不变,若, (100a,y2)也在函数y=lgx的图象上,试用b表示y1,y2.【解析】因为lg=2-lga=2-b,所以y1=2-b,因为lg(100a)=2+lga=2+b,所以y2=2+b.7.(2017·衡水高一检测)已知函数f(x)=a x+log a x(a>0,且a≠1)在[1,2]上的最大值与最小值之和为log a2+6,则a的值为( ) A. B. C.2 D.4【解题指南】对a分a>1和0<a<1两种情况分别求函数f(x)的最大值与最小值,然后根据题意列出关于a的方程即可.【解析】选C.①当a>1时,a2+log a2+a+log a1=log a2+6,解得a=-3(舍)或a=2.②当0<a<1时,a+log a1+a2+log a2=log a2+6,解得a=2(舍)或a=-3(舍).8.已知函数f(x)=若f(a)=,则实数a= ( )A.-1B.C.1或-D.-1或【解析】选D.f(a)=⇔或⇔a=或a=-1.二、填空题(每小题5分,共10分)9.(2017·临沂高一检测)图中的曲线是y=log a x的图象,已知a的值分别为,,,,相应曲线C1,C2,C3,C4中的a依次为a1,a2,a3,a4,则它们的值分别为__________.【解析】在x轴上方,由对数函数的“底大图右”的性质得到a2>a1>1>a4>a3,所以a1,a2,a3,a4的值分别为,,,.答案:,,,10.(2017·武汉高一检测)若f(x)是对数函数且f(9)=2,当x∈[1,3]时,f(x)的值域是________.【解析】设f(x)=log a x,因为log a9=2,所以a=3,即f(x)=lo x,又因为x∈[1,3],所以0≤f(x)≤1.答案:[0,1]三、解答题(每小题10分,共20分)11.求下列函数的定义域与值域.(1)y=log2(x-1).(2)y=log4(x2+4).【解析】(1)由x-1>0,得x>1,所以函数y=log2(x-1)的定义域是(1,+∞),值域是R.(2)因为对任意实数x,log4(x2+4)都有意义,所以函数y=log4(x2+4)的定义域是R.又因为x2+4≥4,所以log4(x2+4)≥log44=1,即函数y=log4(x2+4)的值域是[1,+∞).12.(2017·沈阳高一检测)已知函数f(x)=log a(ax-)(a>0,a≠1为常数).(1)求函数f(x)的定义域.(2)若a=2,x∈[1,9],求函数f(x)的值域.【解析】(1)ax->0⇒(a-1)>0,因为>0,所以a-1>0,因为a>0,所以>.所以x>,所以函数f(x)的定义域为.(2)a=2时,f(x)=log 2(2x-),令2x-=t,则t=2x-=2-,因为x∈[1,9],所以t∈[1,15],所以log 21≤log2(2x-)≤log215,即0≤f(x)≤log215,所以函数f(x)的值域为[0,log215].【能力挑战题】已知函数f(x)=x2-x+k,且log2f(a)=2,f(log2a)=k,a>0,且a≠1.(1)求a,k的值.(2)当x为何值时,f(log a x)有最小值?求出该最小值.【解析】(1)因为所以即又a>0且a≠1,所以(2)f(log a x)=f(log2x)=(log2x)2-log2x+2=+,所以当log 2x=,即x=时,f(log a x)有最小值.关闭Word文档返回原板块。

数学人教A版必修第一册4.4.2对数函数的图象和性质(1)

数学人教A版必修第一册4.4.2对数函数的图象和性质(1)
(1)根据对数函数性质及上述pH的计算公式,说明溶液酸碱度与溶液
中氢离子的浓度之间的变化关系;
(2)已知纯净水中氢离子的浓度为[H+]=10-7摩尔/升,计算纯净水的pH.
解:(1)根据对数的运算性质,有 = − lg
在(0, +∞)上,随着
+
1
的增大, +
[ ]
+
= lg
+ −1
完成下列表格,并用描图法画出
①列表,
②描点,
③用平滑曲
线连接。
0.5
1

4
6
8
16
-1
0
1
2
2.6
3
4
的图像.
y
2
1
0
-1
-2
11
42
1 2 3
4
x

, 比如 = log 2 和 =
对于
log 1 ,它们的图象
呢?
2
x
0.5
1
2
4
8
16
……
y = log2x
-1
0
1
2
3
4
……
y = log x
∴2 3 > 5 4.
1.函数的f(x)=loga(x-2)(a>0,且a≠1)的图象必经过定点 (3,1) .
对数不等式的三种考查类型:
1.形如 > 的不等式,借助对数函数 = 的单调性求解.
2.形如 > 的不等式,应将化为以为底的对数式的形式
3
1
,1 2 =
1
log2 3
5
1

人教新课标版数学高一必修1测评 第1课时对数函数的图象及性质

人教新课标版数学高一必修1测评  第1课时对数函数的图象及性质

学业分层测评(十七)(建议用时:45分钟)[学业达标]一、选择题1.已知下列函数:①y =log 12(-x )(x <0);②y =2log 4(x -1)(x >1);③y =lnx (x >0);④y =log (a 2+a )x (x >0,a 是常数).其中为对数函数的个数是( ) A .1 B .2 C .3D .4【解析】 对于①,自变量是-x ,故①不是对数函数;对于②,2log 4(x -1)的系数为2,而不是1,且自变量是x -1,不是x ,故②不是对数函数;对于③,l n x 的系数为1,自变量是x ,故③是对数函数;对于④,底数a 2+a =⎝ ⎛⎭⎪⎫a +122-14,当a =-12时,底数小于0,故④不是对数函数.故选A .【答案】 A2.函数y =1+log 12(x -1)的图象一定经过点( )A .(1,1)B .(1,0)C .(2,1)D .(2,0)【解析】 ∵函数y =log 12x 恒过定点(1,0),而y =1+log 12(x -1)的图象是由y =log 12x 的图象向右平移一个单位,向上平移一个单位得到,故函数y =1+log 12(x -1)恒过的定点为(2,1).故选C.【答案】 C 3.函数y =1log 2(x -2)的定义域为( )A .(-∞,2)B .(2,+∞)C .(2,3)∪(3,+∞)D .(2,4)∪(4,+∞)【解析】 要使函数有意义,则⎩⎪⎨⎪⎧x -2>0log 2(x -2)≠0,解得x >2且x ≠3,所以原函数的定义域为(2,3)∪(3,+∞).故选C. 【答案】 C4.已知0<a <1,函数y =a x 与y =log a (-x )的图象可能是( )【解析】 函数y =a x 与y =log a x 互为反函数,其图象关于直线y =x 对称,y =log a (-x )与y =log a x 的图象关于y 轴对称,又0<a <1,根据函数的单调性即可得D 正确.故选D.【答案】 D5.函数f (x )=log a (x +2)(0<a <1)的图象必不过( ) A .第一象限 B .第二象限 C .第三象限D .第四象限【解析】 ∵f (x )=log a (x +2)(0<a <1),∴其图象如下图所示,故选A .【答案】 A 二、填空题 6.函数f (x )=log 12(3x -2)的定义域是________.【解析】要使函数f (x )有意义,则⎩⎨⎧3x -2>0log 12(3x -2)≥0,即⎩⎪⎨⎪⎧3x -2>03x -2≤1,解得23<x ≤1,故函数的定义域的⎝ ⎛⎦⎥⎤23,1.【答案】 ⎝ ⎛⎦⎥⎤23,17.已知对数函数f (x )的图象过点(8,-3),则f (22)=________. 【解析】 设f (x )=log a x (a >0,且a ≠1), 则-3=log a 8,∴a =12,∴f (x )=log 12x ,f (22)=log 12(22)=-log 2(22)=-32. 【答案】 -32 8.已知函数y =log 22-x2+x,下列说法: ①关于原点对称;②关于y 轴对称;③过原点.其中正确的是________. 【解析】 由于函数的定义域为(-2,2),关于原点对称,又f (-x )=log 22+x 2-x=-log 22-x2+x =-f (x ),故函数为奇函数,故其图象关于原点对称,①正确;因为当x =0时,y =0,所以③正确.【答案】 ①③ 三、解答题9.已知函数f (x )=log a x +1x -1(a >0,且a ≠1). (1)求f (x )的定义域; (2)判断函数的奇偶性.【解】 (1)要使函数有意义,则有x +1x -1>0,即⎩⎪⎨⎪⎧ x +1>0x -1>0或⎩⎪⎨⎪⎧x +1<0x -1<0,解得x>1或x<-1,此函数的定义域为(-∞,-1)∪(1,+∞).(2)由于f(x)的定义域关于原点对称,且f(-x)=log a-x+1-x-1=log a x+1x-1=-log ax+1x-1=-f(x).∴f(x)为奇函数.10.若函数f(x)为定义在R上的奇函数,且x∈(0,+∞)时,f(x)=lg(x+1),求f(x)的表达式,并画出大致图象.【解】∵f(x)为R上的奇函数,∴f(0)=0.又当x∈(-∞,0)时,-x∈(0,+∞),∴f(-x)=lg(1-x).又f(-x)=-f(x),∴f(x)=-lg(1-x),∴f(x)的解析式为f(x)=⎩⎪⎨⎪⎧lg(x+1),x>00,x=0-lg(1-x),x<0,∴f(x)的大致图象如图所示.[能力提升]1.满足“对定义域内任意实数x,y,f(x·y)=f(x)+f(y)”的函数可以是() A.f(x)=x2B.f(x)=2xC.f(x)=log2x D.f(x)=e l n x【解析】∵对数运算律中有log a M+log a N=log a MN,∴f(x)=log2x,满足“对定义域内任意实数x ,y ,f (x ·y )=f (x )+f (y )”.故选C.【答案】 C2.已知lg a +lg b =0,则函数f (x )=a x 与函数g(x )=-log b x 的图象可能是( )【解析】 由lg a +lg b =0,得lg (ab )=0,所以ab =1,故a =1b ,所以当0<b <1时,a >1;当b >1时,0<a <1.又因为函数y =-log b x 与函数y =log b x 的图象关于x 轴对称.利用这些信息可知选项B 符合0<b <1且a >1的情况.【答案】 B3.设函数f (x )=log a x (a >0,且a ≠1),若f (x 1x 2…x 2017)=8,则f (x 21)+f (x 22)+…+f (x 22017)的值等于________.【解析】 ∵f (x 21)+f (x 22)+f (x 23)+…+f (x 22017) =log a x 21+log a x 22+log a x 23+…+log a x 22017=log a (x 1x 2x 3…x 2017)2 =2log a (x 1x 2x 3…x 2017) =2f (x 1x 2x 3…x 2017), ∴原式=2×8=16. 【答案】 164.若不等式x 2-log m x <0在⎝ ⎛⎭⎪⎫0,12内恒成立,求实数m 的取值范围.【解】 由x 2-log m x <0,得x 2<log m x ,在同一坐标系中作y =x 2和y =log m x 的草图,如图所示.要使x 2<log m x 在⎝ ⎛⎭⎪⎫0,12内恒成立,只要y =log m x 在⎝ ⎛⎭⎪⎫0,12内的图象在y =x 2的上方,于是0<m<1.∵x =12时,y =x 2=14,∴只要x =12时,y =log m 12≥14=log m m 14, ∴12≤m 14,即116≤m . 又0<m <1,∴116≤m <1, 即实数m 的取值范围是⎣⎢⎡⎭⎪⎫116,1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(本栏目内容,在学生用书中以独立形式分册装订!)
一、选择题(每小题5分,共20分)
1.下列函数是对数函数的是( )
A .y =log a (2x )
B .y =log22x
C .y =log 2x +1
D .y =lg x
解析: 选项A 、B 、C 中的函数都不具有“y =log a x (a >0且a ≠1)”的形式,只有D 选项符合. 答案: D
2.对数函数的图象过点M (16,4),则此对数函数的解析式为( )
A .y =log 4x
B .y =log 14x
C .y =log 12x
D .y =log 2x
解析: 由于对数函数的图象过点M (16,4),所以4=log a 16,得a =2.所以对数函数的解析式为y =log 2x ,故选D.
答案: D
3.函数y =log 2x 的定义域是[1,64),则值域是( )
A .R
B .[0,+∞)
C .[0,6)
D .[0,64)
解析: ∵y =log 2x 在[1,64)上是增函数,∴log 21≤y <log 264.即0≤y <6.故选C. 答案: C
4.函数f (x )=1ln (x +1)
+4-x 2的定义域为( ) A .[-2,0)∪(0,2]
B .(-1,0)∪(0,2]
C .[-2,2]
D .(-1,2] 解析: 要使函数有意义,则有
⎩⎪⎨⎪⎧ x +1>0.ln (x +1)≠0,
4-x 2≥0,即⎩⎪⎨⎪⎧ x >-1,x ≠0,-2≤x ≤2,即-1<x <0或0<x ≤2,故选B.
答案: B
二、填空题(每小题5分,共15分)
5.若a >0且a ≠1,则函数y =log a (x -1)+2的图象恒过定点________. 解析: 当x -1=1时,log a (2-1)=0, ∴函数过定点(2,2),
函数f (x )=log a (x -1)+2恒过定点(2,2). 答案: (2,2)
6.若对数函数f (x )=log a x +(a 2-4a -5),则a =________. 解析: 由对数函数的定义可知, ⎩⎪⎨⎪⎧ a 2-4a -5=0,a >0,
a ≠1,解得a =5.
答案: 5
7.已知函数f (x )=log 5x ,则f (3)+f ⎝⎛⎭⎫253=________.
解析: f (3)+f ⎝⎛⎭⎫253=log 53+log 5253
=log 5⎝⎛⎭⎫3×253=log 525=2. 答案: 2
三、解答题(每小题10分,共20分)
8.求下列函数的定义域.
(1)f (x )=lg (4-x )x -3
;(2)y =log 0.1(4x -3). 解析: (1)由⎩
⎪⎨⎪⎧
4-x >0,
x -3≠0,得x <4且x ≠3, ∴函数的定义域为{x |x <4且x ≠3}. (2)由⎩⎪⎨⎪⎧ 4x -3>0,log 0.1(4x -3)≥0,得⎩⎪⎨⎪⎧ 4x -3>0,
4x -3≤1.
∴34<x ≤1,∴函数的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪
34<x ≤1. 9.已知f (x )=log 3x .
(1)作出这个函数的图象;
(2)若f (a )<f (2),利用图象求a 的取值范围.
解析:(1)作出函数y=log3x的图象如图所示,
(2)令f(x)=f(2),即log3x=log32,
解得x=2.
由图象知:当0<a<2时,
恒有f(a)<f(2).
∴所求a的取值范围为0<a<2.。

相关文档
最新文档