《数学广角—数与形》教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教案设计
设计说明
本课时的教学内容是“数与形”。根据教材例题的具体内容及形式,本课时在教学设计上有以下特点。
1.重视“数”“形”之间的联系,找到解题规律。
教学伊始,从观察、分析例1中图与算式的关系入手,引导学生探究算式左边的加数与大正方形右上角的小正方形和其他“L”形图形所包含的小正方形个数的关系,发现“数”“形”之间的联系,找到其中的规律,使学生在体验用形表示数的直观性的同时,学会应用规律解决问题。
2.借助“数”“形”之间的关系,解决相关问题。
教学例2时,从观察抽象的算式特点开始,先通过简单的计算找到得数规律,再借助多种几何图形直观验证计算过程及结果,使学生在初步了解、运用“数形结合”思想方法的同时,体验到数学的极限思想。
3.通过举一反三,培养数学能力。
在巩固练习时,充分利用教材习题,引导学生在解决问题时能举一反三地运用所学,使学生的解题能力得到培养。
课前准备
教具准备PPT课件
学具准备完全相同的小正方形纸卡若干
教学过程
⊙问题导入。
1.课件出示问题。
小兰和爸爸、妈妈一起步行到离家800 m远的公园健身中心,用时20分钟。妈妈到了健身中心后直接返回家里,还是用了20分钟。小兰和爸爸一起在健身中心锻炼了10分钟。然后,小兰跑步回到家中,用了5分钟,而爸爸走回家中,用了15分钟。上面几幅图哪幅是描述妈妈离家的时间和离家距离的关系?哪幅是描述爸爸的?哪幅是描述小兰的?
2.学生讨论、回答。
(图2是描述妈妈的,因为妈妈在健身中心没停留;图1是描述小兰的,因为她回家路上用了5分钟;图3是描述爸爸的)
3.揭示课题。
借助图形不但能帮我们直观了解小兰离家时间与离家距离的关系,还可以帮我们解决复杂的代数问题,这节课我们就来研究“数与形”。
设计意图:通过解决与图形有关的数学问题,使学生关注图形与数学的关系,在调动学生学习的积极性的同时,为新知的学习作铺垫。
⊙探究新知
1.教学例1。
(1)课件出示例题。
看图,把算式补充完整。
1=( )21+3=( )21+3+5=( )2
(2)看图与算式,总结发现。
①观察、讨论。
仔细观察,看一看上面的图形和算式左边有什么关系?
②汇报发现。
发现一:算式左边的加数的个数与对应的大正方形中每行(或每列)的小正方形的个数相同;
发现二:算式左边的加数是大正方形右上角的小正方形和其他“L”形图形所包含的小正方形个数之和。
发现三:算式左边的加数和正好等于大正方形中每行(或每列)的小正方形个数的平方。
[算式左边的加数是大正方形右上角的小正方形和其他“L”形图形所包含的小正方形个
数之和,正好是每行(或每列)小正方形个数的平方]
(3) 运用规律解决问题。(可借助学具摆一摆)
①1+3+5+7=( )2(1+3+5+7=42)
②1+3+5+7+9+11+13=( )2(1+3+5+7+9+11+13=72)
③____________________=92(1+3+5+7+9+11+13+15+17=92)
2.教学例2。
(1)课件出示例题。
(2)观察、试算、发现规律。
①观察算式中加数的特点,你有什么发现?
(从第二个数开始,每个数是前一个数的)
②分步算一算,你有什么发现?
(发现加下去,等号右边的分数越来越接近1)
(3)数形结合,验证规律。
①引导验证:你发现的规律成立吗?请结合图示进行验证。
②汇报、交流。
a.结合圆的面积验证:用一个圆的面积表示单位“1”,则原算式可表示为:b.结合线段图验证:用一条线段表示单位“1”,则原算式可表示为:
(4) 明确结论。
(5)交流对用“数形结合”的方法解决问题的感悟。
(数形结合的方法把抽象的代数问题形象化,使其直观、简洁、易懂)
设计意图:教学时,观察、讨论相结合,引导学生借助不同的几何图形解决例题中的代数问题,使学生在理解、掌握例题中数与形关系的基础上,充分体会用数形结合方法解决问题的直观性,感悟数学的极限思想。
⊙巩固练习
1.完成教材108页1题。(让学生独立读题、分析、解答,鼓励用不同的方法解答) 2.完成教材108页2题。
[第6个图形:红色6 个,蓝色18个;第10个图形:红色10个,蓝色26个。根据图示可知:红色小正方形的个数与图形的序数(第几个)相同,蓝色小正方形的个数=(图形的序数+2)×3-图形的序数或蓝色小正方形的个数=(图形的序数+2)×2-2] 3.完成教材110页4题。
[因为小狗和小亮的行走时间相同,所以不必考虑小狗的行走路线。由“小亮走到这条马路一半的时候,小狗已经到达马路的终点”可知:小狗的速度是小亮的2倍,所以小亮走200 m时,小狗走了200×2=400(m)]
⊙课堂总结
通过本节课的学习,你学会了哪些解决问题的方法?
⊙布置作业
1.教材109页1题。
2.教材110页3题。
3.教材111页6题。
板书设计