高三数学分布列和期望精选
常见分布的数学期望和方差
E( X
2)
n k0
k 2Ckn
pkqnk
n
np
k 1
k
(k
(n 1)! 1)!(n
k )!
p k 1q n k
n np (k
k 1
1) (k
(n 1)! 1)!(n
k )!
pk1q nk
n k 1
(k
(n 1)! 1)!(n
k )!
pk1q nk
np[(n 1) p 1],
EX 2 4 ,试求 a 和 b( a b ).
解 DX EX 2 (EX )2 3 ;
ab 2
(b a)2 12
EX 1, DX 3
;
a b 2, b a 6 ;
a 2, b 4 .
因此 X 在区间[2,4] 上均匀分布.
21
第21页
例3 假设随机变量 X 和 Y 相互独立,且都在区间(0,1) 上 均匀分布,试求随机变量 Z X Y 的数学期望.
0.90 .
12
第12页
二、常见持续型分布旳数学盼望和方差
1. 均匀分布 X ~ U (a, b) .
1
f
(
x)
b
a
,
a xb
0 , 其它
b1
E( X ) xf ( x)dx x dx
a ba
1 b2 a2 a b .
ba 2
2
13
第13页
二、常见持续型分布旳数学盼望和方差
望 与
指数 分布
f
(
x)
e x
0,
,
x0 else
( 0)
p
npab 2 1源自pqnpq(b a)2 12 1
高考数学二轮复习专题25 概率与离散型随机变量的分布列及期望(解析版)
方法技巧25 概率与离散型随机变量的分布列及期望【一】利用古典概型求随机变量的概率(2)设抽出的7名同学分别用A ,B ,C ,D ,E ,F ,G 表示,现从中随机抽取2名同学承担敬老院的卫生工作.①试用所给字母列举出所有可能的抽取结果;②设M 为事件“抽取的2名同学来自同一年级”,求事件M 发生的概率.【解析】(1)因为甲、乙、丙三个年级的学生志愿者人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7名同学,所以应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人.(2)①从抽取的7名同学中随机抽取2名同学的所有可能结果为:{A ,B },{A ,C },{A ,D },{A ,E },{A ,F },{A ,G },{B ,C },{B ,D },{B ,E },{B ,F },{B ,G },{C ,D },{C ,E },{C ,F },{C ,G },{D ,E },{D ,F },{D ,G },{E ,F },{E ,G },{F ,G },共21种.②由①,不妨设抽出的7名同学中,来自甲年级的是A ,B ,C ,来自乙年级的是D ,E ,来自丙年级的是F ,G ,则从抽出的7名同学中随机抽取的2名同学来自同一年级的所有可能结果为{A ,B },{A ,C },{B ,C },{D ,E },{F ,G },共5种.所以事件M 发生的概率P (M =521.【例2】在某大型活动中,甲、乙等五名志愿者被随机地分到A ,B ,C ,D 四个不同的岗位服务,每个岗位至少有一名志愿者.(1)求甲、乙两人同时参加A 岗位服务的概率; (2)求甲、乙两人不在同一个岗位服务的概率; (3)求五名志愿者中仅有一人参加A 岗位服务的概率.【解析】(1)记“甲、乙两人同时参加A 岗位服务”为事件E A ,那么P (E A )=A33C25A44=140,即甲、乙两人同时参加A 岗位服务的概率是140.(2)记“甲、乙两人同时参加同一岗位服务”为事件E ,那么P (E )=A44C25A44=110, 所以甲、乙两人不在同一岗位服务的概率是P (E )=1-P (E )=910.(3)因为有两人同时参加A 岗位服务的概率P 2=C25A33C25A44=14,所以仅有一人参加A 岗位服务的概率P 1=1-P 2=34.2.巩固提升综合练习【练习1】已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(1)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(2)设抽出的7名同学分别用A ,B ,C ,D ,E ,F ,G 表示,现从中随机抽取2名同学承担敬老院的卫生工作.①试用所给字母列举出所有可能的抽取结果;②设M 为事件“抽取的2名同学来自同一年级”,求事件M 发生的概率.【解析】(1)因为甲、乙、丙三个年级的学生志愿者人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7名同学,所以应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人. (2)①从抽取的7名同学中随机抽取2名同学的所有可能结果为{A ,B },{A ,C },{A ,D },{A ,E },{A ,F },{A ,G },{B ,C },{B ,D },{B ,E },{B ,F },{B ,G },{C ,D },{C ,E },{C ,F },{C ,G },{D ,E },{D ,F },{D ,G },{E ,F },{E ,G },{F ,G },共21种.②不妨设抽出的7名同学中,来自甲年级的是A ,B ,C ,来自乙年级的是D ,E ,来自丙年级的是F ,G ,则从抽出的7名同学中随机抽取的2名同学来自同一年级的所有可能结果为{A ,B },{A ,C },{B ,C },{D ,E },{F ,G },共5种. 所以事件M 发生的概率P (M )=521.【练习2】2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有人,现采用分层抽样的方法,从该单位上述员工中抽取人调查专项附加扣除的享受情况.(Ⅰ)应从老、中、青员工中分别抽取多少人?(Ⅱ)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为.享受情况如下表,其中“”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.72,108,12025,,,,,A B C D E F(ii )设为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件发生的概率. 【解析】(I )由已知,老、中、青员工人数之比为, 由于采取分层抽样的方法从中抽取25位员工, 因此应从老、中、青员工中分别抽取6人,9人,10人. (II )(i )从已知的6人中随机抽取2人的所有可能结果为,,,,共15种;(ii )由表格知,符合题意的所有可能结果为,,,,共11种,所以,事件M 发生的概率. 【二】利用相互独立事件概率乘法公式、互斥事件概率加法公式求随机变量的概率M M 6:9:10{}{}{}{}{},,,,,,,,,A B A C A D A E A F {}{}{}{},,,,,,,B C B D B E B F {}{}{},,,,,C D C E C F {}{}{},,,,,D E D F E F {}{}{}{},,,,,,,A B A D A E A F {}{}{},,,,,B D B E B F {}{},,,C E C F {}{},,,D F E F 11()15P M =(2)1张奖券中奖包含中特等奖、一等奖、二等奖.设“1张奖券中奖”这个事件为M ,则M =A ∪B ∪C .因为A ,B ,C 两两互斥,所以P (M )=P (A ∪B ∪C )=P (A )+P (B )+P (C )=1+10+501 000=611 000.故1张奖券的中奖概率为611 000.(3)设“1张奖券不中特等奖且不中一等奖”为事件N ,则事件N 与“1张奖券中特等奖或中一等奖”为对立事件,所以P (N )=1-P (A ∪B )=1-⎝⎛⎭⎪⎫11 000+1100=9891 000.故1张奖券不中特等奖且不中一等奖的概率为9891 000.【例2】(1)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立,则同一工作日至少3人需使用设备的概率为________.(2)某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率为________.(3)保持本例(2)条件不变,则该选手恰好回答了5个问题就晋级下一轮的概率为________. (4)保持本例(2)条件不变,则该选手回答了5个问题(5个问题必须全部回答)就结束的概率为________.【解析】(1)设甲、乙、丙、丁需使用设备分别为事件A ,B ,C ,D ,则P (A )=0.6,P (B )=P (C )=0.5,P (D )=0.4,恰好3人使用设备的概率P 1=P (A BCD +A B CD +AB C D +ABC D )=(1-0.6)×0.5×0.5×0.4+0.6×(1-0.5)×0.5×0.4+0.6×0.5×(1-0.5)×0.4+0.6×0.5×0.5×(1-0.4)=0.25,4人使用设备的概率P 2=0.6×0.5×0.5×0.4=0.06,故所求概率P =0.25+0.06=0.31.(2)依题意,该选手第2个问题回答错误,第3,4个问题均回答正确,第1个问题回答正误均有可能,则所求概率P =1×0.2×0.82=0.128.(3)依题意,该选手第3个问题的回答是错误的,第4,5个问题均回答正确,第1,2个问题回答均错误或有且只有1个错误,则所求概率P =0.23×0.82+2×0.2×0.8×0.2×0.82=0.005 12+0.040 96=0.046 08.(4)依题意,设答对的事件为A ,可分第3个回答正确与错误两类,若第3个回答正确,则有A A A A 或A A A A 两类情况,其概率为:0.8×0.2×0.8×0.2+0.2×0.2×0.8×0.2=0.025 6+0.006 4=0.032.若该选手第3个问题的回答是错误的,第1,2个问题回答均错误或有且只有1个错误,则所求概率P =0.23+2×0.2×0.8×0.2=0.008+0.064=0.072.所以所求概率为0.032+0.072=0.104.【例3】甲、乙两人组成“火星队”参加投篮游戏,每轮游戏中甲、乙各投一次,如果两人都投中,则“火星队”得4分;如果只有一人投中,则“火星队”得2分;如果两人都没投中,则“火星队”得0分.已知甲每次投中的概率为45,乙每次投中的概率为34;每轮游戏中甲、乙投中与否互不影响,假设“火星队”参加两轮游戏,求: (1)“火星队”至少投中3个球的概率;(2)“火星队”两轮游戏得分之和X 的分布列和数学期望E (X ).【解析】(1)设事件A i 为“甲第i 次投中”,事件B i 为“乙第i 次投中”,i =1,2, 由事件的独立性和互斥性可得, P (至少投进3球)= P (A 1A 2B 1B 2)+P (1A A 2B 1B 2)+P (A 12A B 1B 2)+P (A 1A 21B B 2)+P (A 1A 2B 12B )=45×45×34×34+2×(15×45×34×34+45×45×14×34)=3950, 所以“火星队”至少投中3个球的概率为3950.(2)X 的所有可能的取值为0,2,4,6,8,P (X =0)=14×15×14×15=1400;P (X =2)=2×(34×15×14×15+14×45×14×15)=14400=7200;P (X =4)=2×(34×45×14×15+14×45×34×15)+34×15×34×15+14×45×14×45=73400;P (X =6)=2×(34×45×34×15+34×45×14×45)=168400=2150;P (X =8)=34×45×34×45=144400=925.所以X 的分布列为E (X )=0×1400+2×14400+4×73400+6×168400+8×144400=315.2.巩固提升综合练习 【练习1】某超市为了了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.(1)确定x ,y 的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过2分钟的概率.(将频率视为概率)【解析】(1)由已知得25+y +10=55,x +30=45,所以x =15,y =20.该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为: 1×15+1.5×30+2×25+2.5×20+3×10100=1.9(分钟).(2)记A 为事件“一位顾客一次购物的结算时间不超过2分钟”,A 1,A 2分别表示事件“该顾客一次购物的结算时间为 2.5分钟”,“该顾客一次购物的结算时间为3分钟”,将频率视为概率得P (A 1)=20100=15,P (A 2)=10100=110.则P (A )=1-P (A 1)-P (A 2)=1-15-110=710.故一位顾客一次购物的结算时间不超过2分钟的概率为710.【练习2】某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为23和35.现安排甲组研发新产品A ,乙组研发新产品B .设甲、乙两组的研发相互独立. (1)求至少有一种新产品研发成功的概率;(2)若新产品A 研发成功,预计企业可获利润120万元;若新产品B 研发成功,预计企业可获利润100万元.求该企业可获利润的分布列.【解析】记E =“甲组研发新产品成功”,F =“乙组研发新产品成功”,由题设知P (E )=23,P (E )=13,P (F )=35,P (F )=25,且事件E 与F ,E 与F ,E 与F ,E 与F 都相互独立.(1)记H =“至少有一种新产品研发成功”,则H =E F , 于是P (H )=P (E )P (F )=13×25=215,故所求的概率为P (H )=1-P (H )=1-215=1315.(2)设企业可获利润为X (万元),则X 的可能取值为0,100,120,220,因为P (X =0)=P (E F )=13×25=215,P (X =100)=P (E F )=13×35=315=15,P (X =120)=P (E F )=23×25=415,P (X =220)=P (EF )=23×35=615=25.故所求的分布列为【练习3】从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为12,13,14.(1)设X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列;(2)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率. 【解析】(1)随机变量X 的所有可能取值为0,1,2,3, 则P (X =0)=⎝ ⎛⎭⎪⎫1-12×⎝ ⎛⎭⎪⎫1-13×⎝ ⎛⎭⎪⎫1-14=14, P (X =1)=12×⎝ ⎛⎭⎪⎫1-13×⎝⎛⎭⎪⎫1-14+⎝ ⎛⎭⎪⎫1-12×13×⎝ ⎛⎭⎪⎫1-14+⎝ ⎛⎭⎪⎫1-12×⎝ ⎛⎭⎪⎫1-13×14=1124,P (X =2)=⎝ ⎛⎭⎪⎫1-12×13×14+12×⎝ ⎛⎭⎪⎫1-13×14+12×13×⎝ ⎛⎭⎪⎫1-14=14,P (X =3)=12×13×14=124.所以随机变量X 的分布列为(2)设Y 表示第一辆车遇到红灯的个数,Z 表示第二辆车遇到红灯的个数,则所求事件的概率为 P (Y +Z =1)=P (Y =0,Z =1)+P (Y =1,Z =0)=P (Y =0)P (Z =1)+P (Y =1)P (Z =0)=14×1124+1124×14=1148.所以这2辆车共遇到1个红灯的概率为1148.【练习4】某射手每次射击击中目标的概率是23,且各次射击的结果互不影响.(1)假设这名射手射击5次,求恰有2次击中目标的概率;(2)假设这名射手射击5次,求有3次连续击中目标,另外2次未击中目标的概率;(3)假设这名射手射击3次,每次射击,击中目标得1分,未击中目标得0分.在3次射击中,若有2次连续击中,而另外1次未击中,则额外加1分;若3次全击中,则额外加3分.记ξ为射手射击3次后的总分数,求ξ的分布列.【解析】(1)设X 为射手在5次射击中击中目标的次数,则X ~B ⎝⎛⎭⎫5,23.在5次射击中,恰有2次击中目标的概率为P (X =2)=C 25×⎝⎛⎭⎫232×⎝⎛⎭⎫1-233=40243. (2)设“第i 次射击击中目标”为事件A i (i =1,2,3,4,5),“射手在5次射击中,有3次连续击中目标,另外2次未击中目标”为事件A ,则P (A )=P (A 1A 2A 34A 5A )+P (1A A 2A 3A 45A )+P (1A 2A A 3A 4A 5)=⎝⎛⎭⎫233×⎝⎛⎭⎫132+13×⎝⎛⎭⎫233×13+⎝⎛⎭⎫132× ⎝⎛⎭⎫233=881.(3)设“第i 次射击击中目标”为事件A i (i =1,2,3). 由题意可知,ξ的所有可能取值为0,1,2,3,6. P (ξ=0)=P (1A 2A 3A )=⎝⎛⎭⎫133=127,P (ξ=1)=P (A 12A 3A )+P (1A A 2 3A )+P (1A 2A A 3)=23×⎝⎛⎭⎫132+13×23×13+⎝⎛⎭⎫132×23=29,P (ξ=2)=P (A 12A A 3)=23×13×23=427,P (ξ=3)=P (A 1A 23A )+P (1A A 2A 3)=⎝⎛⎭⎫232×13+13×⎝⎛⎭⎫232=827, P (ξ=6)=P (A 1A 2A 3)=⎝⎛⎭⎫233=827. 所以ξ的分布列是【三】利用条件概率公式求随机变量的概率,第2次抽到理科题的概率为________.【解析】法一:设第1次抽到理科题为事件A ,第2次抽到理科题为事件B ,则P (B |A )=P (AB )P (A )=3×2A2535=12. 法二:在第1次抽到理科题的条件下,还有2道理科题和2道文科题,故在第1次抽到理科题的条件下,第2次抽到理科题的概率为12.【例2】将三颗骰子各掷一次,记事件A 为“三个点数都不同”,B 为“至少出现一个6点”,则条件概率P (A |B )=__________,P (B |A )=________.(2)从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B |A )=________.【解析】(1)P (A |B )的含义是在事件B 发生的条件下,事件A 发生的概率,即在“至少出现一个6点”的条件下,“三个点数都不相同”的概率,因为“至少出现一个6点”有6×6×6-5×5×5=91种情况,“至少出现一个6点,且三个点数都不相同”共有C 13×5×4=60种情况,所以P (A |B )=6091. P (B |A )的含义是在事件A 发生的条件下,事件B 发生的概率,即在“三个点数都不相同”的条件下,“至少出现一个6点”的概率,因为“三个点数都不同”有6×5×4=120种情况,所以P (B |A )=12.(2)解法一:P (A )=C23+C22C25=410=25,P (AB )=C22C25=110,由条件概率公式,得P (B |A )=P (AB )P (A )=11025=14.解法二:事件A 包括的基本事件:(1,3),(1,5),(3,5),(2,4)共4个. 事件AB 发生的结果只有(2,4)一种情形,即n(AB)=1. 得P(B|A)=n (AB )n (A )=14.2.巩固提升综合练习【练习1】已知盒中装有3只螺口灯泡与7只卡口灯泡,这些灯泡的外形与功率都相同且灯口向下放着,现需要一只卡口灯泡,电工师傅每次从中任取一只且不放回,则在他第1次抽到的是螺口灯泡的条件下,第2次抽到的是卡口灯泡的概率为( ) A .310B .29C .78D .79【解析】解法一:设事件A 为“第1次抽到的是螺口灯泡”,事件B 为“第2次抽到的是卡口灯泡”,则P (A )=310,P (AB )=310×79=730,则所求概率为P (B |A )=P (AB )P (A )=730310=79.解法二:第1次抽到螺口灯泡后还剩余9只灯泡,其中有7只卡口灯泡,故第2次抽到卡口灯泡的概率为:97=P【练习2】某个电路开关闭合后会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯的概率为12,两次闭合后都出现红灯的概率为15,则在第一次闭合后出现红灯的条件下第二次闭合后出现红灯的概率为 ( )A .110B .15C .25D .12【解析】设“开关第一次闭合后出现红灯”为事件A ,“第二次闭合后出现红灯”为事件B , 则由题意可得P (A )=12,P (AB )=15,则在第一次闭合后出现红灯的条件下第二次闭合出现红灯的概率是P (B |A )=P (AB )P (A )=1512=25.故选C .【练习3】高三毕业时,甲、乙、丙等五位同学站成一排合影留念,已知甲、乙二人相邻,则甲、丙相邻的概率是____________.【解析】设“甲乙二人相邻”为事件A ,“甲丙二人相邻”为事件B ,则所求概率为41)()()(44223322===A A A A A P AB P A B P【一】二项分布40(2)根据样本估计总体的思想,从总体中任取1辆车,平均车速超过100 km/h 且为男性驾驶员的概率为40100=25,故X ~B (3,25).所以P (X =0)=C 03(25)0(35)3=27125,P (X =1)=C 13(25)(35)2=54125, P (X =2)=C 23(25)2(35)=36125,P (X =3)=C 3(25)3(35)0=8125. 所以X 的分布列为【例2】一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为12,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X ,求X 的分布列; (2)玩三盘游戏,至少有一盘出现音乐的概率是多少? 【解析】(1)X 可能的取值为10,20,100,-200.根据题意,有P (X =10)=C 13×(12)1×(1-12)2=38,P (X =20)=C 23×(12)2×(1-12)1=38,P (X =100)=C 3×(12)3×(1-12)0=18,P (X =-200)=C 03×(12)0×(1-12)3=18.所以X 的分布列为(2)设“第i i 则P (A 1)=P (A 2)=P (A 3)=P (X =-200)=18.所以“三盘游戏中至少有一盘出现音乐”的概率为1-P (A 1A 2A 3)=1-(18)3=1-1512=511512.因此,玩三盘游戏,至少有一盘出现音乐的概率是511512.2.巩固提升综合练习【练习1】甲、乙两位同学进入新华书店购买数学课外阅读书籍,经过筛选后,他们都对,,A B C 三种书籍有购买意向,已知甲同学购买书籍,,A B C 的概率分别为311,,423,乙同学购买书籍,,A B C 的概率分别为211,,322,假设甲、乙是否购买,,A B C 三种书籍相互独立. (1)求甲同学购买3种书籍的概率;(2)设甲、乙同学购买2种书籍的人数为X ,求X 的概率分布列和数学期望. 【解析】(1)记“甲同学购买3种书籍”为事件A ,则3111()4238P A =⨯⨯=. 答:甲同学购买3种书籍的概率为18.(2)设甲、乙同学购买2种书籍的概率分别为1p ,2p .则1312311111542342342312p =⨯⨯+⨯⨯+⨯⨯=,2211211111532232232212p =⨯⨯+⨯⨯+⨯⨯=,所以12p p =,所以5~2,12X B ⎛⎫⎪⎝⎭. 02025749(0)1212144P X C ⎛⎫⎛⎫==⋅⋅= ⎪⎪⎝⎭⎝⎭,11125770(1)1212144P X C ⎛⎫⎛⎫==⋅⋅=⎪⎪⎝⎭⎝⎭, 2225725(2)1212144P X C ⎛⎫⎛⎫==⋅⋅=⎪⎪⎝⎭⎝⎭. 所以X 的概率分布为()0121441441446E X =⨯+⨯+⨯=. 【练习2】“移动支付、高铁、网购、共享单车”被称为中国的“新四大发明”.为了帮助50岁以上的中老年人更快地适应“移动支付”,某机构通过网络组织50岁以上的中老年人学习移动支付相关知识.学习结束后,每人都进行限时答卷,得分都在[]50,100内.在这些答卷(有大量答卷)中,随机抽出200份,统计得分绘出频率分布直方图如图.(1)求出图中a 的值,并求样本中,答卷成绩在[)80,90上的人数;(2)以样本的频率为概率,从参加这次答卷的人群中,随机抽取4名,记成绩在80分以上(含80分)的人数为X ,求X 的分布列和期望.【解析】()1依题意,()2 376 2101,a a a a a ⨯++++=故0.005a = 故成绩在[)80,90上的频率为600.3,a = 答卷成绩在[)80,90上的人数为2000.360; ⨯=()2由样本的频率分布直方图知成绩在80分以上(含80分)的频率为2805a =依题意,24,5X B ⎛⎫- ⎪⎝⎭故()04042381055625P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,()31423216155625P X C ⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭ ()()22423442321623962,35562555625P X C P X C ⎛⎫⎛⎫⎛⎫⎛⎫====== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ()4442316455625P X C α⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭所以X 的分布列为X 的数学期望为()455E X =⨯= 【二】超几何分布1.例题 【例1】在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用.现有6名男志愿者A 1,A 2,A 3,A 4,A 5,A 6和4名女志愿者B 1,B 2,B 3,B 4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示. (1)求接受甲种心理暗示的志愿者中包含A 1但不包含B 1的概率; (2)用X 表示接受乙种心理暗示的女志愿者人数,求X 的分布列.【解析】(1)记接受甲种心理暗示的志愿者中包含A 1但不包含B 1的事件为M ,则P (M =C48C510=518.(2)由题意知X 可取的值为0,1,2,3,4,则P (X =0)=C56C510=142,P (X =1)=C46C14C510=521, P (X =2)=C36C24C510=1021,P (X =3)=C26C34C510=521,P (X =4)=C16C44C510=142.因此X 的分布列为【】为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛.(1)设A 为事件“选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会”,求事件A 发生的概率;(2)设X 为选出的4人中种子选手的人数,求随机变量X 的分布列.【解析】(1)由已知,得P (A )=C22C23+C23C23C48=635.所以事件A 发生的概率为635.(2)随机变量X 的所有可能取值为1,2,3,4,其中P (X =k )=Ck 5C4-k3C48(k =1,2,3,4).故P (X =1)=C15C33C48=114,P (X =2)=C25C23C48=37,P (X =3)=C35C13C48=37,P (X =4)=C45C03C48=114,所以随机变量X 的分布列为【】为了减少雾霾,还城市一片蓝天,某市政府于12月4日到12月31日在主城区实行车辆限号出行政策,鼓励民众不开车低碳出行.市政府为了了解民众低碳出行的情况,统计了该市甲、乙两个单位各200名员工12月5日到12月14日共10天的低碳出行的人数,画出茎叶图如图所示, (1)若甲单位数据的平均数是122,求x ;(2)现从图中的数据中任取4天的数据(甲、乙两个单位中各取2天),记抽取的4天中甲、乙两个单位员工低碳出行的人数不低于130的天数分别为ξ1,ξ2,令η=ξ1+ξ2,求η的分布列. 【解析】(1)由题意知110[105+107+113+115+119+126+(120+x )+132+134+141]=122,解得x =8.(2)由题得ξ1的所有可能取值为0,1,2,ξ2的所有可能取值为0,1,2,因为η=ξ1+ξ2,所以随机变量η的所有可能取值为0,1,2,3,4.因为甲单位低碳出行的人数不低于130的天数为3,乙单位低碳出行的人数不低于130的天数为4,所以P (η=0)=C27C26C210C210=745, P (η=1)=C17C13C26+C27C14C16C210C210=91225,P (η=2)=C23C26+C27C24+C17C13C16C14C210C210=13,P (η=3)=C23C16C14+C17C13C24C210C210=22225,P (η=4)=C23C24C210C210=2225.所以η的分布列为2.巩固提升综合练习 【练习1】某项大型赛事,需要从高校选拔青年志愿者,某大学学生实践中心积极参与,从8名学生会干部(其中男生5名,女生3名)中选3名参加志愿者服务活动.若所选3名学生中的女生人数为X ,求X 的分布列. 【解析】因为8名学生会干部中有5名男生,3名女生,所以X 的分布列服从参数N =8,M =3,n =3的超几何分布.X 的所有可能取值为0,1,2,3,其中P (X =i )=Ci 3C3-i 5C38(i =0,1,2,3),则P (X =0)=C03C35C38=528,P (X =1)=C13C25C38=1528,P (X =2)=C23C15C38=1556,P (X =3)=C33C05C38=156. 所以X 的分布列为:【练2】长春市的“名师云课”活动自开展以来获得广大家长和学生的高度赞誉,在推出的第二季名师云课中,数学学科共计推出36节云课,为了更好地将课程内容呈现给学生,现对某一时段云课的点击量进行统计:(1)现从36(2)为了更好地搭建云课平台,现将云课进行剪辑,若点击量在区间[0,1 000]内,则需要花费40分钟进行剪辑,若点击量在区间(1000,3000]内,则需要花费20分钟进行剪辑,点击量超过3000,则不需要剪辑,现从(1)中选出的6节课中随机取出2节课进行剪辑,求剪辑时间X 的分布列. 【解析】(1)根据分层抽样可知,选出的6节课中点击量超过3 000的节数为1236×6=2.(2)由分层抽样可知,(1)中选出的6节课中点击量在区间[0,1 000]内的有1节,点击量在区间(1 000,3 000]内的有3节,故X 的可能取值为0,20,40,60. P (X =0)=1C26=115,P (X =20)=C13C12C26=615=25,P (X =40)=C12+C23C26=515=13,P (X =60)=C13C26=315=15,则X 的分布列为【练习3】某电视台举行一个比赛类型的娱乐节目,A B 、两队各有六名选手参赛,将他们首轮的比赛成绩作为样本数据,绘制成茎叶图如图所示,为了增加节目的趣味性,主持人故意将A 队第六位选手的成绩没有给出,并且告知大家B 队的平均分比A 队的平均分多4分,同时规定如果某位选手的成绩不少于21分,则获得“晋级”.(1)主持人从A 队所有选手成绩中随机抽取2个,求至少有一个为“晋级”的概率;(2)主持人从A B 、两队所有选手成绩中分别随机抽取2个,记抽取到“晋级”选手的总人数为ξ,求ξ的分布列及数学期望.【解析】(1)B 队选手的平均分为111221252736226+++++=,设A 队第6位选手的成绩为x 分,因为B 队的平均分比A 队的平均分多4分,则911132431224186x+++++=-=,得20x,则A 队中成绩不少于21分的有2个,因为从中抽取2个至少有一个为“晋级”的对立事件为两人都没有“晋级”,则概率2426315C P C =-=(2)由(1),A 队中所有选手成绩能“晋级”的有2个,B 队中所有选手成绩能“晋级”的有4个,则ξ的可能取值有0,1,2,3,4,()224222662075C C P C C ξ===;()1122112424422266561225C C C C C C P C C ξ+===; ()111122222442224422661012225C C C C C C C C P C C ξ++===;()2111122422442266563225C C C C C C P C C ξ+===; ()222422662475C C P C C ξ===; ∴ξ的分布列为∴()2561015620123427522522522575E ξ=⨯+⨯+⨯+⨯+⨯=【一】利用概率解决实际决策问题【例1】某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n ∈)的函数解析式;(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:以100①若花店一天购进16枝玫瑰花,X 表示当天的利润(单位:元),求X 的分布列数学期望及方差; ②若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由. 【解析】(1)当日需求量n ≥16时,利润y =80.当日需求量n <16时,利润y =10n -80.所以y 关于n 的函数解析式为y =⎩⎨⎧10n -80,n<16,80,n≥16(n ∈).(2)①X 可能的取值为60,70,80,并且P (X =60)=0.1,P (X =70)=0.2,P (X =80)=0.7. X 的分布列为X的数学期望为EX=60×0.1+70×0.2+80×0.7=76.X的方差为DX=(60-76)2×0.1+(70-76)2×0.2+(80-76)2×0.7=44.②答案一:花店一天应购进16枝玫瑰花.理由如下:若花店一天购进17枝玫瑰花,Y表示当天的利润(单位:元),那么Y的分布列为Y的数学期望为EY=55×0.1+Y的方差为DY=(55-76.4)2×0.1+(65-76.4)2×0.2+(75-76.4)2×0.16+(85-76.4)2×0.54=112.04.由以上的计算结果可以看出,DX<DY,即购进16枝玫瑰花时利润波动相对较小.另外,虽然EX<EY,但两者相差不大.故花店一天应购进16枝玫瑰花.答案二:花店一天应购进17枝玫瑰花.理由如下:若花店一天购进17枝玫瑰花,Y表示当天的利润(单位:元),那么Y的分布列为Y的数学期望为EY=55×0.1+由以上的计算结果可以看出,EX<EY,即购进17枝玫瑰花时的平均利润大于购进16枝时的平均利润.故花店一天应购进17枝玫瑰花.【例2】某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数. (I )求X 的分布列;(II )若要求()0.5P X n ≤≥,确定n 的最小值;(III )以购买易损零件所需费用的期望值为决策依据,在19n =与20n =之中选其一,应选用哪个? 【解析】⑴每台机器更换的易损零件数为8,9,10,11记事件i A 为第一台机器3年内换掉7i +个零件()1,2,3,4i = 记事件i B 为第二台机器3年内换掉7i +个零件()1,2,3,4i =由题知()()()()()()1341340.2P A P A P A P B P B P B ======,()()220.4P A P B ==设2台机器共需更换的易损零件数的随机变量为X ,则X 的可能的取值为16,17,18,19,20,21,22()()()11160.20.20.04P X P A P B ===⨯=()()()()()1221170.20.40.40.20.16P X P A P B P A P B ==+=⨯+⨯=()()()()()()()132231180.20.20.20.20.40.40.24P X P A P B P A P B P A P B ==++=⨯+⨯+⨯=()()()()()()()()()14233241190.20.20.20.20.40.2P X P A P B P A P B P A P B P A P B ==+++=⨯+⨯+⨯0.20.40.24+⨯=()()()()()()()243342200.40.20.20.40.20.20.2P X P A P B P A P B P A P B ==++=⨯+⨯+⨯=()()()()()3443210.20.20.20.20.08P x P A P B P A P B ==+=⨯+⨯=()()()44220.20.20.04P x P A P B ===⨯=⑵要令(P x n ≤,0.040.160.240.5++<,0.040.160.240.240.5+++≥则n 的最小值为19; ⑶购买零件所需费用含两部分,一部分为购买机器时购买零件的费用,另一部分为备件不足时额外购买的费用当19n =时,费用的期望为192005000.210000.0815000.044040⨯+⨯+⨯+⨯= 当20n =时,费用的期望为202005000.0810000.044080⨯+⨯+⨯= 所以应选用19n = 2.巩固提升综合练习【练习1】某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:(1)求六月份这种酸奶一天的需求量X (单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y (单位:元),当六月份这种酸奶一天的进货量n (单位:瓶)为多少时,Y 的数学期望达到最大值?【解析】由题意知,X 所有的可能取值为200,300,500,由表格数据知 ()2162000.290P X +=== ()363000.490P X === ()25745000.490P X ++===.因此X 的分布列为⑵由题意知,这种酸奶一天的需求量至多为500,至少为200,因此只需考虑200500n ≤≤ 当300500n ≤≤时,若最高气温不低于25,则Y=6n-4n=2n 若最高气温位于区间[)20,,25,则Y=6×300+2(n-300)-4n=1200-2n;若最高气温低于20,则Y=6×200+2(n-200)-4n=800-2n; 因此EY=2n ×0.4+(1200-2n )×0.4+(800-2n) ×0.2=640-0.4n 当200300n <≤时,若最高气温不低于20,则Y=6n-4n=2n; 若最高气温低于20,则Y=6×200+2(n-200)-4n=800-2n; 因此EY=2n ×(0.4+0.4)+(800-2n)×0.2=160+1.2n所以n=300时,Y 的数学期望达到最大值,最大值为520元。
2023年高考数学复习----《求概率及随机变量的分布列与期望》规律方法与典型例题讲解
2023年高考数学复习----《求概率及随机变量的分布列与期望》规律方法与典型例题讲解【规律方法】求离散型随机变量的分布列及期望的一般步骤:(1)根据题中条件确定随机变量的可能取值;(2)求出随机变量所有可能取值对应的概率,即可得出分布列;(3)根据期望的概念,结合分布列,即可得出期望(在计算时,要注意随机变量是否服从特殊的分布,如超几何分布或二项分布等,可结合其对应的概率计算公式及期望计算公式,简化计算)【典型例题】例1.(2022·陕西宝鸡·统考一模)甲、乙两个代表队各有3名选手参加对抗赛.比赛规定:甲队的1,2,3号选手与乙队的1,2,3号选手按编号顺序各比赛一场,某队连赢3场,则获胜,否则由甲队的1号对乙队的2号,甲队的2号对乙队的1号加赛两场,胜场多者最后获胜(每场比赛只有胜或负两种结果).已知甲队的1号对乙队的1,2号选手的胜率分别是0.5,0.6,甲队的2号对乙队的1,2号选手的胜率都是0.5,甲队的3号对乙队的3号选手的胜率也是0.5,假设每场比赛结果相互独立.(1)求甲队仅比赛3场获胜的概率;(2)已知每场比赛胜者可获得200个积分,求甲队队员获得的积分数之和X的分布列及期望.【解析】(1)甲队1,2,3号选手与乙队1,2,3号选手比赛获胜的概率分别为0.5,0.5,0.5,,⨯⨯=;甲队比赛3场获胜的概率为P=0.50.50.50.125(2)X所以可能取得值为0,200,400,600,800;()3500.50.12P X ===,()31213200C 0.50.500..540.5600.07.5P X ==⨯=⨯⨯=⨯,()()11233332400C 0.50.60.50.40.55C 0.50.40.5 2.1050.50.262.P X ==⨯+⨯⨯⨯=⨯+⨯=⨯⨯, ()()31323333 6000.5C 0.50.60.5C 0.50.60.50.40.5 3.40.50.425P X ==+⨯⨯+⨯⨯+⨯=⨯=, ()2333800C 0.50.605.50.900.112.5P X ===⨯⨯=⨯.即所以()00.1252000.0754000.26256000.4258000.1125465E X =⨯+⨯+⨯+⨯+⨯=. 例2.(2022春·云南昆明·高三云南师大附中校考阶段练习)我校举办“学党史”知识测试活动,每位教师3次测试机会,规定按顺序测试,一旦测试合格就不必参加以后的测试,否则3次测试都要参加.甲教师3次测试每次合格的概率组成一个公差为18的等差数列,他第一次测试合格的概率不超过12,且他直到第二次测试才合格的概率为932,乙教师3次测试每次测试合格的概率均为23,每位教师参加的每次测试是否合格相互独立. (1)求甲教师第一次参加测试就合格的概率P ;(2)设甲教师参加测试的次数为m ,乙教师参加测试的次数为n ,求m n ξ=+的分布列.【解析】(1)由甲教师3次测试每次合格的概率组成一个公差为18的等差数列,又甲教师第一次参加测试就合格的概率为P ,故而甲教师参加第二、三次测试合格的概率分别是18P +、14P +,由题意知,19(1)832P P ⎛⎫−+= ⎪⎝⎭,解得14P =或58P =(舍),所以甲教师第一次参加测试就合格的概率为14.(2)由(1)知甲教师参加第二、三次测试合格的概率分别是38、12, 由题意知,ξ的可能取值为2,3,4,5,6,由题意可知121(2)(1,1)436P P m n ξ=====⨯=, 11233235(3)(1,2)(2,1)433483144P P m n P m n ξ⎛⎫⎛⎫====+===⨯⨯+⨯⨯= ⎪ ⎪⎝⎭⎝⎭, (4)(1,3)(2,2)(3,1)P P m n P m n P m n ξ====+==+==1113312352584334833483144⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯⨯+⨯⨯= ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, (5)(2,3)(3,2)P P m n P m n ξ====+==33113512134833483396⎛⎫⎛⎫⎛⎫⎛⎫=⨯⨯⨯+⨯⨯⨯= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 35115(6)(3,3)483396P P m n ξ⎛⎫⎛⎫=====⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭,所以ξ的分布列为:例3.(2022春·云南曲靖·高三校联考阶段练习)受新冠肺炎疫情的影响,某商场的销售额受到了不同程度的冲击,为刺激消费,该商场开展一项促销活动,凡在商场消费金额满300元的顾客可以免费抽奖一次,抽奖的规则如下:在不透明箱子中装有除颜色外其他都相同的10个小球,其中:红色小球1个,白色小球3个,黄色小球6个,顾客从箱子中依次不放回地摸出3个球,根据摸出球的颜色情况分别进行兑奖.将顾客摸出的3个球的颜色分成以下四种情况:A :1个红球2个白球;B :3个白球;C :恰有1个黄球;D :至少两个黄球,若四种情况按发生的机会从小到大的顺序分别对应一等奖,二等奖,三等奖,不中奖. (1)写出顾客分别获一、二、三等奖时所对应的概率;(2)已知顾客摸出的第一个球是白球,求该顾客获得二等奖的概率;(3)若五名顾客每人抽奖一次,且彼此是否中奖相互独立.记中奖的人数为X ,求X 的分布列和期望.【解析】(1)由题意可得:()()23331010C 3111,C 12040C 120P A P B =====, ()1264310C C 363=C 12010P C ==,2()1()()()3P D P A P B P C =−−−=所以中一等奖的概率为1120,二等奖的概率为140,三等奖的概率为310 (2)记事件E 为顾客摸出的第一个球是白球,事件F 为顾客获得二等奖,则()111229C C 1C 18P FE ==∣. (3)由(1)知一名顾客中奖的概率为113112040103P =++=. 由题意可得,15,3X B ⎛⎫ ⎪⎝⎭,所以()()5512C 1,2,3,4,533i ii P X i i −⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭则分布列为()15533E X =⨯=。
高考数学复习点拨 列分布列、求期望须“三思”
列分布列、求期望须“三思”一、列分布列求概率是排列还是组合例1.一个袋中装有3个白球和2个黑球,它们大小相同,采用无放回的方式从袋中任取3球,取到黑球的数目用ξ表示,求随机变量ξ的概率分布。
解:ξ可能取的值为0,1,2。
“ξ=0”表示“取出的3个球都是白球”的事件,所以P (ξ=0)=1013533=C C 。
“ξ=1”表示“恰好取到1个黑球”的事件,所以P (ξ=1)=53351223=⋅C C C 。
“ξ=2”表示“恰好取到2个黑球”的事件,所以P (ξ=2)=103352213=⋅C C C 。
综上所述,得ξ的概率分布列为:取得正品前已取出的废品数为ξ,求随机变量ξ的数学期望。
解:ξ可能取0,1,2,3。
“ξ=0”表示“取出的第一个产品就为正品”的事件,所以P (ξ=0)=4311219=A A 。
“ξ=1”表示“取出的第一个为废品,第二个为正品”的事件,所以P (ξ=1)=4492121913=⋅A A A 。
“ξ=2”表示“前两个取出的为废品,第三个为正品”的事件,所以P (ξ=2)=22093121923=⋅A A A 。
“ξ=3”表示“前面取出的3个全为废品,第四个为正品”的事件,所以P (ξ=3)=22014121933=⋅A A A 。
得ξ的期望E ξ=449+2·2209+3·2201=0.3。
点评:题目中出现“在取得正品(次品)前”或“直到首次(最后一次)取到”字样,应看成排列。
二、思 ξ取值的可行性例3.已知6只电器元件,其中2只次品和4只正品,每次随机抽取一只测试,不放回,直到2只次品都找到为止,且最后一只次品恰好在最后一次测试中被发现,设需要测试的次数为ξ,求ξ的数学期望。
解:ξ的取值为2,3,4,5,6。
“ξ=2”表示“取出的两个都是次品”的事件,所以P (ξ=2)=1512622=A A 。
“ξ=3”表示“第三次取出的是次品,前两次中一个次品一个正品”的事件,所以P (ξ=3)=15236221214=∙∙A A C C 。
高中数学随机变量及其分布数学期望
反 思 感
求悟 随机变量X的数学期望的方法和步骤
(1)理解随机变量X的意义,写出X所有可能的取值.
(2)求出X取每个值的概率P(X=k).
(3)写出X的分布列.
(4)利用数学期望的定义求E(X).
例2.篮球运动员在比赛中每次罚球命中得1分,
罚不中得0分.已知某运动员罚球命中的概率为
0.7,他连续罚球3次;(1)求他得到的分数
X的分布列;(2)求X的期望。
解:(1) X~B(3,0.7)
0.3 P(X=0)=
3
P(X=1)=
C
1 3
0.7
0.32
C P(X=2)=
2 3
0.72
0.3
0.7 P(X=3)=
3
X0
1
2
3
P 0.33
C
1 3
0.7
0.32
C
2 3
0.7
2
0.3
0.73
(2)
EX
0 0.331来自C1 30.7
0.32
解 设该车主购买乙种保险的概率为p,由题意知p×(1-0.5)=0.3,解得p=0.6. 设所求概率为P1,则P1=1-(1-0.5)×(1-0.6)=0.8. 故该地1位车主至少购买甲、乙两种保险中的1种的概率为0.8.
市一中为了了解疫情期间上网课对学生们上学迟到
的影响情况,每天记录由于上网课迟到的同学人数, 下表是10天中每天迟到人数的情况
人数 0
1
2
3
天数 3
3
2
2
那么学校每天平均有多少人迟到呢?
第二章 随机变量及其分布 2.3.1 离散型随机变量的数学期望
一、复习回顾
高三数学分布列和期望.
课时考点19 统计-----随机变量的分布列和期望高考考纲透析:等可能性的事件的概率,互斥事件有一个发生的概率,相互独立事件同时发生的概率,独立重复试验、离散型随机变量的分布列、期望和方差高考风向标:离散型随机变量的分布列、期望和方差热点题型1 n 次独立重复试验的分布列和期望 [样题1] (2005年高考·全国卷II ·理19)甲、乙两队进行一场排球比赛.根据以往经验,单局比赛甲队胜乙队的概率为0.6.本场比赛采用五局三胜制,即先胜三局的队获胜,比赛结束.设各局比赛互间没有影响.令ξ为本场比赛的局数,求ξ的概率分布和数学期望.(精确到0.0001)本题考查离散型随机变量分布和数学期望等概念,考查运用概率知识解决实际问题的能力。
解:单局比赛甲队胜乙队的概率为0.6,乙队胜甲队的概率为1-0.6=0.4比赛3局结束有两种情况:甲队胜3局或乙队胜3局,因而P (ξ=3)=330.60.40.28+= 比赛4局结束有两种情况:前3局中甲队胜2局,第4局甲队胜;或前3局中乙队胜2局,第4局乙队胜。
因而P (ξ=4)=2230.60.40.6C ⨯⨯⨯+2230.40.60.40.3744C ⨯⨯⨯=比赛5局结束有两种情况:前4局中甲队胜2局、乙队胜2局,第5局甲胜或乙胜。
因而P (ξ=5)=22240.60.40.6C ⨯⨯⨯+22240.40.60.40.3456C ⨯⨯⨯=所以ξ的概率分布为ξ的期望E ξ=3×P (ξ=3)+4×P (ξ=4)+5×P (ξ=5)=4.0656变式新题型1.(2005年高考·浙江卷·理19)袋子A 中装有若干个均匀的红球和白球,从A中摸出一个红球的概率是31.(Ⅰ) 从A 中有放回地摸球,每次摸出一个,共摸5次,求恰好有3次摸到红球的概率. (Ⅱ) 从A 中有放回地摸球,每次摸出一个,有3次摸到红球即停止. (i) 求恰好摸5次停止的概率; (ii )记5次之内(含5次)摸到红球的次数为ξ,求随机变量ξ的分布列及数学期望E ξ.解:(Ⅰ) 333512140333243C ⎛⎫⎛⎫⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭(Ⅱ)(i )2224121833381C ⎛⎫⎛⎫⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭(ii)随机变量ξ的取值为0,1,2,3,;由n 次独立重复试验概率公式()()1n kkkn n P k C p p -=-,得()50513*******P C ξ⎛⎫==⨯-=⎪⎝⎭; ()41511801133243P C ξ⎛⎫==⨯⨯-=⎪⎝⎭ ()232511802133243P C ξ⎛⎫⎛⎫==⨯⨯-=⎪ ⎪⎝⎭⎝⎭ ()323511173133243P C ξ⎛⎫⎛⎫==⨯⨯-=⎪ ⎪⎝⎭⎝⎭(或()328021731243243P ξ+⨯==-=) 随机变量ξ的分布列是ξ的数学期望是32808017131012324324324324381E ξ=⨯+⨯+⨯+⨯=热点题型2 随机变量ξ的取值范围及分布列[样题2]在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖,某顾客从此10张券中任抽2张,求:(Ⅰ)该顾客中奖的概率;(Ⅱ)该顾客获得的奖品总价值ξ(元)的概率分布列和期望ξE . 解法一:(Ⅰ)324515121026=-=-=C C I P ,即该顾客中奖的概率为32.(Ⅱ)ξ的所有可能值为:0,10,20,50,60(元)..151)60(,152)50(,151)20(,52)10(,31)0(2101311210161121023210161321026===============C C C P C C C P C C P C C C P C C P ξξξξξ且故ξ有分布列:从而期望.161516015250151205210310=⨯+⨯+⨯+⨯+⨯=ξE 解法二:(Ⅰ),324530)(210241614==+=C C C C P (Ⅱ)ξ的分布列求法同解法一由于10张券总价值为80元,即每张的平均奖品价值为8元,从而抽2张的平均奖品价值ξE =2×8=16(元).变式新题型2.假设一种机器在一个工作日内发生故障的概率为0 2,若一周5个工作日内无故障,可获利润10万元;仅有一个工作日发生故障可获利润5万元;仅有两个工作日发生故障不获利也不亏损;有三个或三个以上工作日发生故障就要亏损2万元 求:(Ⅰ)一周5个工作日内恰有两个工作日发生故障的概率(保留两位有效数字); (Ⅱ)一周5个工作日内利润的期望(保留两位有效数字)解:以ξ表示一周5个工作日内机器发生故障的天数,则ξ~B (5,0 2)).5,4,3,2,1,0(8.02.0)(55=⨯⨯==-k C k P k k k ξ (Ⅰ).21.08.02.0)2(3225≈⨯⨯==C P ξ(Ⅱ)以η表示利润,则η的所有可能取值为10,5,0,-2.328.08.0)0()10(5≈====ξηP P.410.08.02.0)1()5(4115≈⨯⨯====C P P ξη .205.08.02.0)2()0(3225≈⨯⨯====C P P ξη.7()2(≥=-=ξηP P的概率分布为利润的期望=10×0 328+5×(万元)[样题3] (2005年高考·江西卷·理19)A 、B 两位同学各有五张卡片,现以投掷均匀硬币的形式进行游戏,当出现正面朝上时A 赢得B 一张卡片,否则B 赢得A 一张卡片.规定掷硬币的次数达9次时,或在此前某人已赢得所有卡片时游戏终止.设ξ表示游戏终止时掷硬币的次数.(1)求ξ的取值范围; (2)求ξ的数学期望E ξ.解:(1)设正面出现的次数为m ,反面出现的次数为n ,则⎪⎩⎪⎨⎧≤≤=+=-915||ξξn m n m ,可得:.9,7,5:;9,7,22,7;7,6,11,6;5,5,00,5的所有可能取值为所以时或当时或当时或当ξξξξ===============n m n m n m n m n m n m(2);645)21(2)7(;161322)21(2)5(7155=====⨯==C P P ξξ .322756455964571615;64556451611)9(=⨯+⨯+⨯==--==ξξE P变式新题型3.某射手进行射击练习,每射击5发子弹算一组,一旦命中就停止射击,并进行下一组练习,否则一直打完5发子弹后才能进入下一组练习.若该射手在某组练习中射击命中一次,并且他射击一次命中率为0.8,(1)求在这一组练习中耗用子弹ξ的分布列.(2)求在完成连续两组练习后,恰好共耗用了4发子弹的概率。
高中高考总结复习概率、随机变量分布列、期望方差.doc
2017 高考复习 ---概率、随机变量分布列、期望方差1.某高校进行自主招生面试时的程序如下:共设 3 道题,每道题答对给 10 分、答错倒扣 5 分(每道题都必须回答,但相互不影响).设某学生对每道题答对的概率都为,则该学生在面试时得分的期望值为分.2.随机变量ξ服从二项分布ξ~B( n, p),且 Eξ =300, Dξ =200,则 P 等于.3.设随机变量 X~ B( 6,),则 P( X=3) = .4.口袋中装有大小质地都相同、编号为1, 2, 3,4, 5, 6 的球各一只.现从中一次性随机地取出两个球,设取出的两球中较小的编号为X,则随机变量X 的数学期望是.5.随机变量ξ的分布列如下:ξ﹣1 0 1P a b c其中 a,b, c 成等差数列,若.则 Dξ的值是.6.已知某随机变量ξ的概率分布列如表,其中x> 0, y>0,随机变量ξ的方差 Dξ=,则x+y= .ξ1 2 3P X y x7.袋中有 4 只红球 3 只黑球,从袋中任取 4 只球,取到 1 只红球得 1 分,取到 1 只黑球得3 分,设得分为随机变量ξ,则 P(ξ≤ 7) = .8.一个袋子里装有大小相同的 3 个红球和 2 个黄球,从中同时取出 2 个球,则其中含红球个数的数学期望是.9.甲、乙两个袋子中均装有红、白两种颜色的小球,这些小球除颜色外完全相同,其中甲袋装有 4 个红球、 2 个白球,乙袋装有 1 个红球、 5 个白球.现分别从甲、乙两袋中各随机抽取 1 个球,记抽取到红球的个数为ξ,则随机变量ξ的数学期望 Eξ= .10.有一种游戏规则如下:口袋里有 5 个红球和 5 个黄球,一次摸出 5 个,若颜色相同则得 100 分,若 4 个球颜色相同,另一个不同,则得50 分,其他情况不得分.小张摸一次得分的期望是分.11.为参加 2012 年伦敦奥运会,某旅游公司为三个旅游团提供了a, b,c, d 四条旅游线路,每个旅游团可任选其中一条线路,则选择 a 线路旅游团数ξ的数学期望 Eξ= .12.随机变量 X 的分布列如下:若,则 DX 的值是.X ﹣ 1 0 1P a c13.已知随机变量ξ的分布列如下表所示,ξ的期望Eξ =1.,5则a的值等于.ξ012 3P0.1a b0.214.一个人随机的将编号为1, 2, 3,4 的四个小球放入编号为1, 2, 3, 4 的四个盒子,每个盒子放一个小球,球的编号与盒子的编号相同时叫做放对了,否则叫做放错了.设放对的个数记为ξ,则ξ的期望 Eξ=.15.从三男三女 6 名学生中任选 2 名(每名同学被选中的概率均相等),则2名都是女同学的概率等于.16.盒子中装有编号为1, 2,3, 4, 5, 6,7 的七个球,从中任意抽取两个,则这两个球的编号之积为偶数的概率是(结果用最简分数表示)17.口袋中有形状和大小完全相同的四个球,球的编号分别为1,2 ,3, 4,若从袋中随机抽取两个球,则取出的两个球的编号之和大于 5 的概率为.18.盒子中有大小相同的 3 只白球, 1 只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是.19.从长度分别为2, 3,4,5 的四条线段中任意取出三条,以这三条线段为边可以构成三角形的概率是.20.从分别写有0, 1, 2, 3, 4 五张卡片中取出一张卡片,记下数字后放回,再从中取出一张卡片.两次取出的卡片上的数字之和恰好等于 4 的概率是.21.甲乙两人玩猜数字游戏,先由甲在心中任想一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为 b ,且 a,b ∈{ 1,2 ,3,4} ,若 | a﹣ b| ≤ 1,则称甲乙“心有灵犀”.现任意找两人玩这个游戏,得出他们“心有灵犀”的概率为.22.将一颗骰子掷两次,观察出现的点数,并记第一次出现的点数为m,第二次出现的点数为 n,向量=( m, n), =( 3, 6),则向量与共线的概率为.23.某学校有两个食堂,甲、乙两名学生各自随机选择其中的一个食堂用餐,则他们在同一个食堂用餐的概率为.24.在一次招聘口试中,每位考生都要在 5 道备选试题中随机抽出 3 道题回答,答对其中 2 道题即为及格,若一位考生只会答 5 道题中的 3 道题,则这位考生能够及格的概率为.2017 年 03 月 25 日茅盾中学09 的高中数学组卷参考答案与试题解析一.填空题(共24 小题)1.( 2012?温州一模)某高校进行自主招生面试时的程序如下:共设 3 道题,每道题答对给10 分、答错倒扣 5 分(每道题都必须回答,但相互不影响).设某学生对每道题答对的概率都为,则该学生在面试时得分的期望值为15 分.【分析】设该生在面试时的得分为 X,由题设条件知 X 的可能取值为﹣ 15,0, 15, 30,分别求出 P( X=﹣ 15), P( X=0), P( X=15), P( X=30),由此能求出该学生在面试时得分的期望值.【解答】解:设该生在面试时的得分为X,由题设条件知X 的可能取值为﹣15,0,15,30,P(X=﹣ 15 ) = = ,P(X=0)= = ,P(X=15) = = ,P(X=30) = = ,∴E X=﹣ 15× +0× +15× +30×=15.∴该学生在面试时得分的期望值为15 分.故答案为: 15.【点评】本题考查离散型随机变量的数学期望的求法,解题时要认真审题,注意n 次独立重复试验中事件恰好发生k 次的概率计算公式的灵活运用.2.( 2016 春 ?松桃县校级期末)随机变量ξ服从二项分布ξ~B(n,p),且Eξ =300,Dξ =200,则 P 等于.【分析】根据随机变量符合二项分布,根据二项分布的期望和方差的公式和条件中所给的期望和方差的值,得到关于 n 和 p 的方程组,解方程组得到要求的未知量 p.【解答】解:∵ξ服从二项分布 B~( n ,p)Eξ =300, Dξ =200∴Eξ=300=np,①;Dξ =200=np( 1﹣ p),②.可得 1﹣ p==,∴p=1﹣ = .故答案为:.【点评】本题主要考查分布列和期望的简单应用,本题解题的关键是通过解方程组得到要求的变量,注意两个式子相除的做法,本题与求变量的期望是一个相反的过程,但是两者都要用到期望和方差的公式,本题是一个基础题.3.(2013 春 ?渭滨区校级期末)设随机变量X~B( 6,),则P(X=3)=.【分析】根据条件中所给的变量符合二项分布,写出变量取值不同时对应的概率公式,本题 x=3,代入公式得到要求的概率.【解答】解:∵随机变量X 服从二项分布B( 6,),∴P( X=3) =C36()3×(1﹣)3=.故答案为:.【点评】本题考查二项分布的概率计算公式,是基础题.解题时要认真审题,仔细解答.4.( 2015?中山二模)口袋中装有大小质地都相同、编号为 1,2,3,4,5,6 的球各一只.现从中一次性随机地取出两个球,设取出的两球中较小的编号为X,则随机变量 X 的数学期望是.【分析】确定 X 的可能取值为1,2,3,4,5,求出相应的概率,可求随机变量X 的数学期望【解答】解:由题设知X 的可能取值为 1,2, 3, 4, 5.随机地取出两个球,共有:=15 种,∴P( X=1) = , P( X=2) = , P( X=3) = , P( X=4)= , P( X=5)= ,∴随机变量 X 的分布列为X 1 2 3 4 5P故 EX=1×+2×+3×+4×+5×= .故答案为:.【点评】本题考查离散型随机变量的数学期望的求法,确定X 的可能取值,求出相应的概率是关键.5.(2007?浙江)随机变量ξ的分布列如下:ξ﹣1 0 1P a b c其中 a,b, c 成等差数列,若.则 Dξ的值是.【分析】要求这组数据的方差,需要先求出分布列中变量的概率,这里有三个条件,一个是三个数成等差数列,一个是概率之和是 1,一个是这组数据的期望,联立方程解出结果.【解答】解:∵ a, b, c 成等差数列,∴2b=a+c,∵a+b+c=1,Eξ=﹣1× a+1× c=c﹣ a=.联立三式得,∴.故答案为:【点评】这是一个综合题目,包括等差数列,离散型随机变量的期望和方差,主要考查分布列和期望的简单应用,通过解方程组得到要求的变量,这与求变量的期望是一个相反的过程,但是两者都要用到期望的公式.6.( 2014?余杭区校级模拟)已知某随机变量ξ的概率分布列如表,其中x>0, y> 0,随机变量ξ的方差 Dξ=,则 x+y=.ξ12 3P X y x【分析】利用离散型随机变量的期望与方差即可得出.【解答】解:由题意可得:2x+y=1, Eξ=x+2y+3x=4x+2y=4x+2( 1﹣ 2x)=2.∴方差 Dξ= =( 1﹣ 2)2x+( 2﹣2)2(1﹣ 2x) +( 3﹣ 2)2x.化为,解得,∴= .∴= .故答案为.【点评】熟练掌握离散型随机变量的期望与方差是解题的关键.7.( 2015 春 ?淮安校级期末)袋中有 4 只红球 3 只黑球,从袋中任取 4 只球,取到 1 只红球得 1 分,取到 1 只黑球得 3 分,设得分为随机变量ξ,则 P(ξ≤7) = .【分析】取出的 4 只球中红球个数的可能为4, 3, 2, 1 个,黑球相应个数为0, 1, 2,3 个,得分的随机变量ξ=4, 6, 8,10,由经能求出P(ξ≤7)的值.【解答】解:取出的 4 只球中红球个数的可能为4, 3, 2, 1 个,黑球相应个数为0, 1,2, 3 个,∴得分的随机变量ξ=4, 6, 8, 10,∴P(ξ≤ 7) =P(ξ=4) +P(ξ=6)==.故答案为:.【点评】本题考查概率的求法,是中档题,解题时要认真审题,注意排列组合知识的合理运用.8.(2001?江西)一个袋子里装有大小相同的 3 个红球和 2 个黄球,从中同时取出 2 个球,则其中含红球个数的数学期望是 1.2.【分析】由题意知ξ的可能取值是0、1、2,当ξ=0时,表示从中取出 2 个球,其中不含红球,当ξ=1时,表示从中取出 2 个球,其中 1 个红球, 1 个黄球,当ξ=2时,表示从中取出2 个球,其中 2 个红球,这三种情况根据古典概型概率公式得到结果,求出期望.【解答】解:设含红球个数为ξ,ξ的可能取值是 0、 1、 2,当ξ=0时,表示从中取出 2 个球,其中不含红球,当ξ=1时,表示从中取出 2 个球,其中 1 个红球, 1 个黄球,当ξ=2时,表示从中取出 2 个球,其中 2 个红球,∴P(ξ=0) = =0.1,P(ξ =1) = =0.6P(ξ =2) ==0.3∴Eξ=0× 0.1+1× 0.6+2× 0.3=1.2.故答案为: 1.2.【点评】本题这种类型是近几年高考题中经常出现的,考查离散型随机变量的分布列和期望,大型考试中理科考试必出的一道问题.不过大多数题目是以解答题的形式出现的.9.( 2012?浙江校级模拟)甲、乙两个袋子中均装有红、白两种颜色的小球,这些小球除颜色外完全相同,其中甲袋装有 4 个红球、 2 个白球,乙袋装有 1 个红球、 5 个白球.现分别从甲、乙两袋中各随机抽取 1 个球,记抽取到红球的个数为ξ,则随机变量ξ的数学期望Eξ=.【分析】由题中ξ的取值可能是 0,1,2,由等可能事件的概率计算出概率,得出分布列再有公式求出期望即可【解答】解:由题ξ的取值可能是0, 1,2,从丙个袋中各一个球,总的取法有6× 6=36故 P(ξ=0) =,P(ξ=1)=,P(ξ=2)=所以ξ的分布列为ξ01 2P=故答案为【点评】本题考查离散型随机变量的期望与方差,解题的关键是根据相应的概率计算公式求出变量取每一个可能值的概率,列出分布列,求出期望.10.( 2013?浙江模拟)有一种游戏规则如下:口袋里有 5 个红球和 5 个黄球,一次摸出 5 个,若颜色相同则得 100 分,若 4 个球颜色相同,另一个不同,则得50 分,其他情况不得分.小张摸一次得分的期望是分.【分析】由题意知小张摸一次得分X 的可能取值是0,,50,100,当得分为 100 时,表示从十个球中取五个球,取到的都是颜色相同的球,当得分50 时,表示取到的球有四个颜色相同,结合变量对应的事件,做出分布列和期望.【解答】解:由题意知小张摸一次得分X 的可能取值是0,, 50,100,当得分为 100 时,表示从十个球中取五个球,取到的都是颜色相同的球,从10 个球中取 5 个共有 C105种结果,而球的颜色都相同包括两种情况,∴P( X=100) ==,当得分 50 时,表示取到的球有四个颜色相同,P(X=50) ==,P(X=0)=1﹣=,∴EX=100×==,故答案为:.【点评】本题考查离散型随机变量的分布列和期望,这种类型是近几年高考题中经常出现的,考查离散型随机变量的分布列和期望,大型考试中理科考试必出的一道问题.11.(2013?西湖区校级模拟)为参加2012 年伦敦奥运会,某旅游公司为三个旅游团提供了a, b, c,d 四条旅游线路,每个旅游团可任选其中一条线路,则选择 a 线路旅游团数ξ的数学期望Eξ=.【分析】确定ξ的可能取值,计算相应的概率,可得分布列,进而可求ξ的数学期望.【解答】解:由题意,ξ=0, 1,2, 3,P(ξ =0)= = , P(ξ =1)= = ,P(ξ =2)= = , P(ξ =3)= =∴ξ的分布列为ξ0 1 2 3P∴期望 Eξ=0×+1×+2×+3×=故答案为:【点评】本题考查离散型随机变量的分布列和期望,考查学生的计算能力,属于中档题.12.( 2011?海珠区一模)随机变量X 的分布列如下:若,则DX的值是.X﹣ 10 1P a c【分析】由分布列的性质和期望列出关于 a 和 c 的方程组,解出 a 和 c,再利用方差公式求方差即可.【解答】解:由题意:,解得:所以 DX=故答案为:【点评】本题考查分布列的性质、期望和方差的计算,考查基础知识和基本运算.13.( 2012?浙江模拟)已知随机变量ξ的分布列如下表所示,ξ的期望Eξ =1,.5则a的值等于0.5 .ξ012 3P0.1a b0.2【分析】由题意已经知道随机变量ξ的分布列表,又知道ξ的期望 Eξ=1.5,利用期望定义及分布列的性质建立方程求解即可.【解答】解:由题意可得:?.故答案为: 0.5.【点评】此题属于基本题型,重点考查了随机变量的分布列的性质,期望定义及学生利用方程的思想求解问题.14.( 2011?宁波模拟)一个人随机的将编号为1,2,3,4 的四个小球放入编号为1,2,3 ,4 的四个盒子,每个盒子放一个小球,球的编号与盒子的编号相同时叫做放对了,否则叫做放错了.设放对的个数记为ξ,则ξ的期望 Eξ= 1.【分析】由于ξ表示匹对的个数,由题意则ξ可能取:0,1,2,4,并利用古典概型随机事件的概率公式及排列数与组合数,求出其分布列,根据期望公式求出所求.【解答】解:由题意ξ可能取:0,1,2,4,则,,,ξ的分布列为:ξ0 1 2 4PEξ==1.故答案为: 1【点评】此题考查了离散型随机变量的定义及其分布列,并且利用分布列求出期望,还考查了考虑问题时的严谨的逻辑思维及计算能力.15.( 2013?浙江)从三男三女 6 名学生中任选 2 名(每名同学被选中的概率均相等),则2 名都是女同学的概率等于.【分析】由组合数可知:从 6 名学生中任选 2 名共有=15 种情况, 2 名都是女同学的共有=3 种情况,由古典概型的概率公式可得答案.【解答】解:从 6 名学生中任选 2 名共有=15 种情况,满足 2 名都是女同学的共有=3 种情况,故所求的概率为:=.故答案为:.【点评】本题考查古典概型及其概率公式,涉及组合数的应用,属基础题.16.( 2013?上海)盒子中装有编号为1, 2,3, 4,5, 6,7 的七个球,从中任意抽取两个,则这两个球的编号之积为偶数的概率是(结果用最简分数表示)【分析】从 7 个球中任取 2 个球共有=21 种,两球编号之积为偶数包括均为偶数、一奇一偶两种情况,有=15 种取法,利用古典概型的概率计算公式即可求得答案.【解答】解:从 7 个球中任取 2 个球共有=21 种,所取两球编号之积为偶数包括均为偶数、一奇一偶两种情况,共有=15 种取法,所以两球编号之积为偶数的概率为:= .故答案为:.【点评】本题考查古典概型的概率计算公式,属基础题,其计算公式为:P( A) = ,其中 n( A)为事件 A 所包含的基本事件数,m 为基本事件总数.17.( 2015?江苏模拟)口袋中有形状和大小完全相同的四个球,球的编号分别为1, 2, 3,4,若从袋中随机抽取两个球,则取出的两个球的编号之和大于 5 的概率为.【分析】由组合知识求出从 4 个球中随机抽取两个球的所有方法种数,由题意得到两球编号之和大于 5 的方法种数,然后直接利用古典概型概率计算公式求解.【解答】解:从 5 个球中随机抽取两个球,共有种抽法.满足两球编号之和大于 5 的情况有(2, 4),( 3, 4)共 2 种取法.所以取出的两个球的编号之和大于 5 的概率为.故答案为.【点评】本题考查了古典概型及其概率计算公式,考查了组合及组合数公式,是基础题.18.( 2010?江苏)盒子中有大小相同的 3 只白球, 1 只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是.【分析】算出基本事件的总个数n=C42=6,再算出事件 A 中包含的基本事件的个数31=3,m=C算出事件 A 的概率,即 P( A) = 即可.【解答】解:考查古典概型知识.∵总个数 n=C42 =6,m=C 1∵事件 A 中包含的基本事件的个数=33∴故填:.【点评】本题考查古典概型及其概率计算公式,其算法是:(1)算出基本事件的总个数n ;(2)算出事件 A 中包含的基本事件的个数m;(3)算出事件 A 的概率,即 P( A) = .19.( 2009?安徽)从长度分别为2,3,4, 5 的四条线段中任意取出三条,以这三条线段为边可以构成三角形的概率是.【分析】本题是一个古典概率试验发生包含的基本事件可以列举出共 4 种;而满足条件的事件是可以构成三角形的事件可以列举出共 3 种;根据古典概型概率公式得到结果.【解答】解:由题意知,本题是一个古典概率∵试验发生包含的基本事件为2, 3, 4; 2,3, 5; 2, 4,5; 3, 4, 5 共 4 种;而满足条件的事件是可以构成三角形的事件为2, 3, 4; 2, 4,5; 3, 4, 5 共 3 种;∴以这三条线段为边可以构成三角形的概率是.故答案为:【点评】本题考查古典概型,考查三角形成立的条件,是一个综合题,解题的关键是正确数出组成三角形的个数,要做到不重不漏,要遵循三角形三边之间的关系.20.( 2011?鼓楼区校级模拟)从分别写有0, 1, 2,3, 4 五张卡片中取出一张卡片,记下数字后放回,再从中取出一张卡片.两次取出的卡片上的数字之和恰好等于 4 的概率是.【分析】由题意抽两次且属于有放回的抽样,利用计数原理及古典概型随机事件的概率公式即可求出.【解答】解:由题意属于有放回的抽样,因为从分别写有0, 1, 2, 3,4 五张卡片中取出一张卡片,记下数字后放回,再从中取出一张卡片,即抽两次,所以利用分步计数原理可得总数为:5× 5=25,即:“取出的两张卡片的数字之和恰好的等于 4 为事件 A”:事件 A 的个数为:( 4, 0),( 0,4),( 2, 2),(1, 3),( 3, 1)共 5 个,利用古典概型随机事件的概率公式及得:P( A) =.故答案为:【点评】此题考查了有放回的抽样,古典概型随机事件的概率公式及分步计数原理.21.( 2011?江西校级模拟)甲乙两人玩猜数字游戏,先由甲在心中任想一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b,且 a,b∈ { 1,2,3, 4} ,若 | a﹣ b| ≤1 ,则称甲乙“心有灵犀”.现任意找两人玩这个游戏,得出他们“心有灵犀”的概率为.【分析】本题是一个古典概型,试验发生包含的事件是两个人分别从 4 个数字中各选一个数字,共有4× 4 种结果,满足条件的事件是| a﹣ b| ≤ 1,可以列举出所有的满足条件的事件,根据古典概型概率公式得到结果.【解答】解:由题意知本题是一个古典概型,试验发生包含的事件是两个人分别从 4 个数字中各选一个数字,共有 4× 4=16 种结果,满足条件的事件是 | a﹣ b| ≤ 1,可以列举出所有的满足条件的事件,当a=1 时, b=1, 2,当a=2 时, b=1, 2, 3当a=3 时, b=2, 3, 4当a=4 时, b=3, 4总上可知共有2+3+3+2=10 种结果,∴他们“心有灵犀”的概率为=故答案为:【点评】本题考查古典概型及其概率公式.考查利用分类计数原理表示事件数,考查理解能力和运算能力,注意列举出的事件数做到不重不漏.22.(2012?东莞二模)将一颗骰子掷两次,观察出现的点数,并记第一次出现的点数为m,第二次出现的点数为n ,向量=( m,n), =( 3,6),则向量与共线的概率为.【分析】本题是一个古典概型,试验发生包含的事件是一颗骰子掷两次,共有6×6种结果,满足条件事件是向量共线,根据向量共线的条件得到 6m﹣ 3n=0 即 n=2m ,列举出所有的结果数,得到概率.【解答】解:由题意知本题是一个古典概型,∵试验发生包含的事件是一颗骰子掷两次,共有6× 6=36 种结果,满足条件事件是向量=( m, n)与=(3, 6)共线,即6m﹣ 3n=0,∴n=2m ,满足这种条件的有( 1, 2)( 2, 4)( 3, 6),共有 3 种结果,∴向量与共线的概率P=,故答案为:【点评】本题考查古典概型及其概率公式,考查向量共线的充要条件,考查利用列举法得到所有的满足条件的事件数,本题是一个比较简单的综合题目.23.( 2013?西湖区校级模拟)某学校有两个食堂,甲、乙两名学生各自随机选择其中的一个食堂用餐,则他们在同一个食堂用餐的概率为.【分析】先求出基本事件的总数,再找出所要求的事件包括的基本事件的个数,利用古典概型的概率计算公式即可得出.【解答】解:甲学生随机选择其中的一个食堂用餐可有两种选法,同理乙也有两种选法,根据乘法原理可知:共有 22=4 中选法;其中他们在同一个食堂用餐的方法只有两种:一种是都到第一个食堂,另一种是都到第二个食堂,因此他们在同一个食堂用餐的概率P=.故答案为.【点评】熟练掌握分步乘法原理和古典概型的概率计算公式是解题的关键.24.( 2011?卢湾区一模)在一次招聘口试中,每位考生都要在 5 道备选试题中随机抽出 3 道题回答,答对其中 2 道题即为及格,若一位考生只会答 5 道题中的 3 道题,则这位考生能够及格的概率为.【分析】根据这位考生只会答 5 道题中的 3 道题,可先计算出所有的基本事件个数,及该考生不及格的事件个数,进行求出该生不能及格的概率,然后根据对立事件减法公式,得到答案.【解答】解:从 5 道备选试题中随机抽出 3 道题共有:3=10 种情况C5 =其中从该考生考试不及格,即正好抽中该生不会的两道题有: C31=3 种情况即这位考生不及格的概率为故这位考生能够及格的概率P=1﹣=故答案为:【点评】本题考查的知识点是古典概型及其概率计算公式,其中根据正繁则反的原则,先求对立事件的概率,是解答本题的关键.。
高三数学分布列和期望
课时考点19 统计-----随机变量的分布列和期望高考考纲透析:等可能性的事件的概率,互斥事件有一个发生的概率,相互独立事件同时发生的概率,独立重复试验、离散型随机变量的分布列、期望和方差高考风向标:离散型随机变量的分布列、期望和方差热点题型1 n 次独立重复试验的分布列和期望 [样题1] (2005年高考·全国卷II ·理19)甲、乙两队进行一场排球比赛.根据以往经验,单局比赛甲队胜乙队的概率为0.6.本场比赛采用五局三胜制,即先胜三局的队获胜,比赛结束.设各局比赛互间没有影响.令ξ为本场比赛的局数,求ξ的概率分布和数学期望.(精确到0.0001)本题考查离散型随机变量分布和数学期望等概念,考查运用概率知识解决实际问题的能力。
解:单局比赛甲队胜乙队的概率为0.6,乙队胜甲队的概率为1-0.6=0.4比赛3局结束有两种情况:甲队胜3局或乙队胜3局,因而P (ξ=3)=330.60.40.28+= 比赛4局结束有两种情况:前3局中甲队胜2局,第4局甲队胜;或前3局中乙队胜2局,第4局乙队胜。
因而P (ξ=4)=2230.60.40.6C ⨯⨯⨯+2230.40.60.40.3744C ⨯⨯⨯=比赛5局结束有两种情况:前4局中甲队胜2局、乙队胜2局,第5局甲胜或乙胜。
因而P (ξ=5)=22240.60.40.6C ⨯⨯⨯+22240.40.60.40.3456C ⨯⨯⨯=所以ξ的概率分布为ξ的期望E ξ=3×P (ξ=3)+4×P (ξ=4)+5×P (ξ=5)=4.0656变式新题型1.(2005年高考·浙江卷·理19)袋子A 中装有若干个均匀的红球和白球,从A中摸出一个红球的概率是31.(Ⅰ) 从A 中有放回地摸球,每次摸出一个,共摸5次,求恰好有3次摸到红球的概率. (Ⅱ) 从A 中有放回地摸球,每次摸出一个,有3次摸到红球即停止. (i) 求恰好摸5次停止的概率; (ii )记5次之内(含5次)摸到红球的次数为ξ,求随机变量ξ的分布列及数学期望E ξ.解:(Ⅰ) 333512140333243C ⎛⎫⎛⎫⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭(Ⅱ)(i )2224121833381C ⎛⎫⎛⎫⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭(ii)随机变量ξ的取值为0,1,2,3,;由n 次独立重复试验概率公式()()1n kkkn n P k C p p -=-,得()50513*******P C ξ⎛⎫==⨯-=⎪⎝⎭; ()41511801133243P C ξ⎛⎫==⨯⨯-=⎪⎝⎭ ()232511802133243P C ξ⎛⎫⎛⎫==⨯⨯-=⎪ ⎪⎝⎭⎝⎭ ()323511173133243P C ξ⎛⎫⎛⎫==⨯⨯-=⎪ ⎪⎝⎭⎝⎭(或()328021731243243P ξ+⨯==-=) 随机变量ξ的分布列是ξ的数学期望是32808017131012324324324324381E ξ=⨯+⨯+⨯+⨯=热点题型2 随机变量ξ的取值范围及分布列[样题2]在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖,某顾客从此10张券中任抽2张,求:(Ⅰ)该顾客中奖的概率;(Ⅱ)该顾客获得的奖品总价值ξ(元)的概率分布列和期望ξE . 解法一:(Ⅰ)324515121026=-=-=C C I P ,即该顾客中奖的概率为32.(Ⅱ)ξ的所有可能值为:0,10,20,50,60(元)..151)60(,152)50(,151)20(,52)10(,31)0(2101311210161121023210161321026===============C C C P C C C P C C P C C C P C C P ξξξξξ且故ξ有分布列:从而期望.161516015250151205210310=⨯+⨯+⨯+⨯+⨯=ξE 解法二:(Ⅰ),324530)(210241614==+=C C C C P (Ⅱ)ξ的分布列求法同解法一由于10张券总价值为80元,即每张的平均奖品价值为8元,从而抽2张的平均奖品价值ξE =2×8=16(元).变式新题型2.假设一种机器在一个工作日内发生故障的概率为0 2,若一周5个工作日内无故障,可获利润10万元;仅有一个工作日发生故障可获利润5万元;仅有两个工作日发生故障不获利也不亏损;有三个或三个以上工作日发生故障就要亏损2万元 求:(Ⅰ)一周5个工作日内恰有两个工作日发生故障的概率(保留两位有效数字); (Ⅱ)一周5个工作日内利润的期望(保留两位有效数字)解:以ξ表示一周5个工作日内机器发生故障的天数,则ξ~B (5,0 2)).5,4,3,2,1,0(8.02.0)(55=⨯⨯==-k C k P k k k ξ (Ⅰ).21.08.02.0)2(3225≈⨯⨯==C P ξ(Ⅱ)以η表示利润,则η的所有可能取值为10,5,0,-2.328.08.0)0()10(5≈====ξηP P.410.08.02.0)1()5(4115≈⨯⨯====C P P ξη .205.08.02.0)2()0(3225≈⨯⨯====C P P ξη.7()2(≥=-=ξηP P的概率分布为利润的期望=10×0 328+5×(万元)[样题3] (2005年高考·江西卷·理19)A 、B 两位同学各有五张卡片,现以投掷均匀硬币的形式进行游戏,当出现正面朝上时A 赢得B 一张卡片,否则B 赢得A 一张卡片.规定掷硬币的次数达9次时,或在此前某人已赢得所有卡片时游戏终止.设ξ表示游戏终止时掷硬币的次数.(1)求ξ的取值范围; (2)求ξ的数学期望E ξ.解:(1)设正面出现的次数为m ,反面出现的次数为n ,则⎪⎩⎪⎨⎧≤≤=+=-915||ξξn m n m ,可得:.9,7,5:;9,7,22,7;7,6,11,6;5,5,00,5的所有可能取值为所以时或当时或当时或当ξξξξ===============n m n m n m n m n m n m(2);645)21(2)7(;161322)21(2)5(7155=====⨯==C P P ξξ .322756455964571615;64556451611)9(=⨯+⨯+⨯==--==ξξE P变式新题型3.某射手进行射击练习,每射击5发子弹算一组,一旦命中就停止射击,并进行下一组练习,否则一直打完5发子弹后才能进入下一组练习.若该射手在某组练习中射击命中一次,并且他射击一次命中率为0.8,(1)求在这一组练习中耗用子弹ξ的分布列.(2)求在完成连续两组练习后,恰好共耗用了4发子弹的概率。
数学期望与分布列专题Word版
离散型随机变量的数学期望
1.若随机变量X的分布列如表,则E(X)等于( )
某中学组建了A、B、C、D、E五个不同的社团组织,为培养学生的兴趣爱好,要求每个学生必须参加,且只能参加一个社团.假定某班级的甲、乙、丙三名学生对这五个社团的选择是等可能的.
(1)求甲、乙、丙三名学生参加五个社团的所有选法种数;
(2)求甲、乙、丙三人中至少有两人参加同一社团的
概率;
(3)设随机变量ξ为甲、乙、丙这三名学生参加A社
团的人数,求ξ的分布列与数学期望.
有一批产品,其中有12件正品和4件次品,从中任取3件,若ξ表示取到次品的个数,则E(ξ)=_
某学校要从5名男生和2名女生中选出2人作为上海世博会志愿者,若用随机变量ξ表示选出的志愿者中女生的人数,则数学期望E(ξ)=_
袋中有相同的5个球,其中3个红球,2个黄球,现从
中随机且不放回地摸球,每次摸1个,当两种颜色的
球都被摸到时,即停止摸球,记随机变量ξ为此时已
摸球的次数,求:
(1)随机变量ξ的概率分布列;
(2)随机变量ξ的数学期望与方差.。
高考数学复习考点知识与结论专题讲解61 随机变量分布列、期望与方差
高考数学复习考点知识与结论专题讲解 第61讲 随机变量分布列随机变量分布列、、期望与方差【知识通关】通关一、离散型随机变量分布离散型随机变量分布列列1. 离散型随机变量的分布列的表示一般地,若离散型随机变量X 可能取的不同值为12,,,n x x x ,X 取每一个值()12,,,i x n 的概率12,i i P X x p i n === (),,,则下表称为随机变量X 的概率分布列,简称为x 的分布列.X 1x 2x i x n x P1p2pi pn p为了简单起见,也可以用等式12,i i P X x p i n === (),,,表示X 的分布列. 2. 离散型随机变量的分布列的性质根据概率的性质,离散型随机变量的分布列具有如下性质: (1)012,,,i P i n ≥= ,; (2)121i n p p p p +++++= ;(3)1i j i i j Px x x P P P +≤≤=+++ ()(*,i j i j N <∈且). 通关二通关二、、离散型随机变量的均值与方差1. 期望与方差的表示一般地,若离散型随水变量X 的概率分布列为:则称1122i i n n E X x P x P x p x p =+++++ ()为随机变量X 的均值或数学期望,它反映了高散型随机变量取值的平均水平;称()21ni i i D x x E X p = =− ∑()为随机变量X 的方差,它刻画了随机变量X与其均值E (Xx 的标准差. 2. 均值的性质若y aX b =+,其中a b ,是常数,X 是随机变量,则均值的性质:(1)Ek k =()(k 为常效); (2)EaX b aB X b +=+()(); (3)1212E X X E X E X +=+()()(); (4)若12,X X 相互独立,则1212·E X X E X E X ⋅=()()(). 3. 方差的性质(1)0Dk =()(k 为常数); (2)2D aX b a D X +=()();(3)22[]D X E X E X =−()()().X 1x 2x i x n x P1p2pi pn p通关三通关三、、正态分布曲缆及特点我们把画数224()(),(,)k n nn x x ϕ−−−==−∞+∞(其中u 是样本均值,σ是样本标准差)的图像称为正态分布密度曲线,简称正态曲线.(1)曲线位手x 轴上方,与x 轴不相交; (2)曲线是单峰的,它关于直线x µ=对称;(3)曲线在x µ=(4)曲线与x 轴之间的面积为1;(5)当σ一定时,曲线的位置由u 确定,曲线随着u 的变化而沿x 轴平移;(6)当u 一定时,曲线的形状由σ确定;σ越小,曲线越“瘦”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散. 【结论第讲】结论一结论一、、求解离散型随机变量X 的分布到的步的分布到的步骤骤1. 理解X 的意义,写出X 可能取的全部值;2. 求X 取每个值的概率;3. 写出X 的分布列;4. 根据分布列的性质对结果进行检验.【例1】甲、乙两人轮流投篮,每人每次投一球,约定甲先投且先投中者获胜,一直到有人获胜或每人都投球3次时投篮结束. 设甲每次投篮投中的概率为13,乙每次投篮投中的概率为12,且各次投篮互不影响,(1)求甲获胜的概率;(2)求投篮结束时甲的投球次数ξ的分布列.【解析】设,k k A B 分别表示“甲、乙在第k 次投篮投中”,则()()()1112233,,,,k k P A P B k ===.(1)记“甲获胜”为事件C ,由互斥事件与相互独立事件的概率计算公式知1112112231122111()()()()()()()()()()()P C P A P A B A P A B A B A P A P A P B P A P A P B P A =++=++32221211211111133323323392727()()()().P B P A +×+=++==××× (2)ξ的所有可能取值为1,2,3且111121213323()()()P P A P A B ξ×==+=+=;1222221112921121232332()()()(( =)P P A B A P A B A B ξ+==+=×××11223()()P P A B A B ξ==22211329()(×==, 综上ξ的分布列为:【变式】在一个选拔项目中,每个选手都需要进行4轮考核,每轮设有一个问题,能正确回答者进入下一轮考核,否则被淘汰. 已知某选手能正确回答第一、二、三、四轮问题的概率分别为2,4,2,且各轮问题能否正确回答互不影响.(1)求该选手进人第三轮才被淘汰的概率; (2)求该选手至多进人第三轮考核的概率;(3)该选手在选拔过程中回答过的问题的个数记为X ,求随机变量X 的分布列.【解析】设事件i A (1234i =,,,)表示“该选手能正确回答第i 轮问题”,由已知234154316543(),(),(),()P A P A P A P A ==== (1)设事件B 表示“该选手进入第三轮被淘汰”,则123123543116546()()()()()()P B P A A A P A P A P A ===××−= (2)设事件C 表示“该选手至多进入第三轮考核”,则112123112123P ( C ) = P ( ++ )=P ( )+P ()+P ( )A A A A A A A A A A A A 1515431665654()××=++×−12=(3)x 的可能取值为1,2,3,4.1231211541541213665665()();()()();()(P X P A P X P A A P X A P A A =======×−===×12331553114466442(;()()P X P A A A −===×=××=所以,x 的分布列为:结论二结论二、、期望与方差的一般计算步骤1. 理解X 的意义,写出X 的所有可能取的值;2. 求X 取各个值的概率,写出分布列;3. 根据分布列,正确运用期望与方差的定义或公式进行计算.【例2】某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完. 根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关. 如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得到下面的频数分布表:最高气温 [10,15)[15,20)[20,25)[25,30)[30, 35) [35,40)天数216362574以最高气温位于各区间的频率代替最高气温位于该区间的概率,(1)求六月份这种酸奶一天的需求量X (单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y (单位:元),当六月份这种酸奶一天的进货量n (单位:瓶)为多少时,Y 的数学期望达到最大值?【解析】(1)由题意知X 的可能取值为200,300,500,P (X=200)=2160290.+=36257430004500049090().,().P X P X ++====== 所以X 的分布列为:X 200 300 500 P0. 20. 40. 4(2)由题意知这种酸奶一天的需求量至多为500瓶,至少为200瓶,所以只需考虑200≤n ≤500. 当300≤n ≤500时,若最高气温不低于25,则Y=6n -4n =2n ;若最高气温位于区间[20,25),则Y=6×300+2(n -300)-4n =1200-2n ; 若最高气温低于20,则Y=6×200+2(n -200)-4n =800-2n ; 所以F(Y )=2n ×0. 4+(1200-2n )×0. 4+(800-2n )×0. 2=640-0. 4n . 当200≤n ≤300时,若最高气温不低于20,则Y=6n-4n=2n ; 若最高气温低于20,则Y=6×200+2(m -200)-4n =800-2n ;所以E(Y )=2n×(0. 4+0. 4)+(800-2m )×0. 2=160+1. 2n .综上,当n=300时,Y 的数学期望达到最大值,最大值为520元【变式】为加强大学生实践、创新能力和团队精神的培养,促进高等教育教学改革,教育部门主办了全国大学生智能汽车竞赛,竞赛分为预赛和决赛两个阶段,参加决赛的队伍按照抽签的方式决定出场顺序,通过预赛,选拔出甲、乙等五支队伍参加决赛.(1)求决赛中甲乙两支队伍恰好排在前两位的概率;(2)若决赛中甲队和乙队之间间隔的队伍数记为X ,求X 的分布列和数学期望.【解析】(1)设事件A 为“甲乙排在前两位”,则232355110()()A A n A P A n Q A ⋅===(). (2)X 的可能取值为0,1,2,3,则232323235555432301510();(),A A A A P X P X A A ⋅⋅⋅⋅======23332323555211123510();()A A A B P X P X A A ⋅⋅⋅⋅======. 所以x 的分布列为:结论三结论三、、二项分布一般地,在n 次独立重复试验中,设事件A 发生的次数为X ,在每次试验中事件A 发生的概率为p ,则事件A 恰好发生次的概率为1k k n k n P X k C p p −==−()()",k=0,1,2…,n ,则称随机变量X 服从二项分布,记作x ~B (n ,p ).X1nP001nn C p p −() 1111n n C p p −−()1n n n C p p −()要点诠释:1E X np D X np p ==−(),()(). 【例】3为保护水资源,宣传节约用水,某校4. 名志愿者准备去附近的甲、乙、两三个公园进行宣传活动,每名志愿者都可以从三个公园中随机选择一个,且每人的选择相互独立.(1)求4人恰好选择了同一个公园的概率;(2)设选择甲公园的志愿者的人数为X ,试求X 的分布列及期望.【解析】(1)设“4人恰好选择了同一个公园”为事件A. 每名志愿者都有3种选择,4名志愿者的选择共有3’种等可能的情况,事件A 所包含的等可能事件的个数为3,所以431273P A ==(),故4人恰好选择了同一个公园的概率为127(2)设“一名志愿者选择甲公园”为事件C ,则13P C =(). 4人中选择甲公园的人数X 可看作4次独立重复试验中事件C 发生的次数. 因此,随机变量X 服从二项分布X 可取的值为0,1,2,3,4.4141233()()()i i P X i C −==,i=0,1,2,3,4.X 的分布列为:X 的期望为14433()E X np ==×=【变式】一家面包房根据以往某种将日销售量落入各组的频率视为概(1)求在未来连续3天里,有的概率;(2)用X 表示在未来3天里日方差D(X ).【解析】(1)设1A 表示事件“日销件“在未来连续3天里,有连续2天的1000600040002...P A =++()()2000350015..P A P =×==(),((2)X 的可能取值为0,1131061.P X C ==−()()(3333060216..P X C ===()(). 随机变量X 的分布列为:X P往某种面包的销售记录,绘制了日销售量的频率分布直视为概率,并假设每天的销售量相互独立.里,有连续2天的日销售量都不低于100个且另1天的日天里日销售量不低于100个的天数,求随机变量x 的分布日销售量不低于100个”,2A 表示事件“日销售量低于天的日销售量都不低于100个且另1天的日销售量低5006.×=,060601520108....B ×××=).1,2,3,相应的概率为:03010P X C ==−()(222130602882061060432.....P X C ===−=);()()()0 1 2 30064. 0288. 0432. 0216.分布直方图,如图所示. 天的日销售量低于50个的分布列、期望E(X )及量低于50个”,B 表示事售量低于50个”,因此360064..=); ;因为X~B (3,0. 6),所以期望30618..E X np ==×=(),方1306106072...D X p p =−=××−=()()().结论四结论四、、超几何分布一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有x 件次品,则012,,,,,,k n kN NMM nC P X k k m C C −−==== ()其中min{,},m M n =且*,,,,n N M N n M N N ≤≤∈. 要点诠释:21()()(),()()nM nM N M N n E X D X N N N −−==− 【例】4某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4. 现从这10人中随机选出2人作为该组代表参加座谈会.(1)设A 为事件“选出的2人参加义工活动次数之和为4”,求事件A 发生的概率;(2)设X 为选出的2人参加义工活动次数之差的绝对值,求随机变量X 的分布列和数学期望.【解析】(1)由已知得11234321013C C C P C ⋅+==,所以事件A 发生的概率为13. (2)随机变量X 的所有可能取值为0,1,2.222111111334333434222101010474012151515 ();();()C C C C C C C C C P X P X P X C C C +++========= 所以,随机变量x 的分布列为:随机变量X 的数学期望4740121151515()E X =×+×+×=.【变式】为了提高我市的教育教学水平,市教育局打算从红塔区某学校推荐的10名教师中任选3人去参加支教活动. 这10名教师中,语文教师3人,数学教师4人,英语教师3人.(1)求选出的语文教师人数多于数学教师人数的概率; (2)求选出的3人中,语文教师人数X 的分布列和数学期望.【解析】设事件i A 为“3人中有i 名语文教师”,j B 为“3人中有j 名数学教师”,事件A 为“语文教师人数多于数学教师人数”,所以3213412213333310021333331010101099121120C C C C C C C P A P A B P A B P A B P A C C C C ++++++==+++=()()(₂)()()31120=. (2)语文教师人数X 可取的值为0,1,2,3,依题意可得x~H (10,3,3),所以2217713331301310031211356301212020120,(),(),C C C P C C C C X P X P X C =========()3331031201()C P X C ===. 所以X 的分布列为:所以356321*********12012012010()E X =×+×+×+×=.结论五结论五、、利用期望与方差进行决策若我们希望实际的平均水平较理想时,一般先求随机变量12,ξξ的期望,若12()()E E ξξ=时,则用12(),()D D ξξ来比较这两个随机变量的偏离程度. 若1()E ξ与2()E ξ比较接近,且期望较大者的方差校小,显然该变量更好;若1()E ξ与2()E ξ比较接近且方差相差不大时,应根据不同选择给出不同的结论,是选择较理想的平均水平还是选择较稳定.【例5】改革开放以来,人们的支付方式发生了巨大转变. 近年来,移动支付已成为主要支付方式之一为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中,A ,B 两种支付方式都不使用的有5人,样本中仅使用A 和仅使用B 的学生的支付金额分布情况如下;支付方式支付金额(元)(0,1000](1000,2000]大于2000 仅使用A |18人 9人 3人 仅使用B10人14人1人(1)从全校学生中随机抽取1人,估计该学生上个月A ,B 两种支付方式都使用的概率; (2)从样本仅使用A 和仅使用B 的学生中各随机抽取1人,以X 表示这2人中上个月支付金额大于1000元的人数,求X 的分布列和数学期望;(3)已知上个月样本学生的支付方式在本月没有变化. 现从样本仅使用A 的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元. 根据抽查结果,能否认为样本仅使用A 的学生中本月支付金额大于2000元的人数有变化?说明理由.【解析】(1)由题意得:从全校所有学生中随机抽取的100人中,A ,B 两种支付方式都不使用的有5人,仅使用A 的有30人,仅使用B 的有25人,所以A ,B 两种支付方式都使用的人数有:100-5-30-25=40. 从全校学生中随机抽取1人,估计该学生上个月A ,B 两种支付方式都使用的概率4004100.p ==.(2)从样本仅使用A 和仅使用B 的学生中各随机抽取1人,以X 表示这2人中上个月支付金额大于1000元的人数,则X 的可能取值为0,1,2. 样本仅使用A 的学生有30人,其中支付金额在(0,1000]的有l8人,超过1000元的有12人,样本仅使用B 的学生有25人,其中支付金额在(0. 1000]的有10人,超过1000元的有15人.所以1810180618151239013013025750253025307525;();P X P X ××+========()121518023025750256()P X ====×. 所以x 的分布列为:数学期望61360121252525()E X =×+×+×=.(3)不能认为样本仅使用A 的学生中本月支付金额大于2000元的人数有变化,理由如下:样本中仅使用A 的学生有30人,其中27人月支付金额不大于2000元,有3人月支付金额大于2000元,随机抽查3人,发现他们本月的支付金额都大于2000元的概率为3333014060C p C ==,虽然概率较小,但发生的可能性为14060,故不能认为样本仅使用A 的学生中本月支付金额大于2000元的人数有变化.。
高三数学离散型随机变量的分布列、期望与方差知识精讲
高三数学离散型随机变量的分布列、期望与方差【本讲主要内容】离散型随机变量的分布列、期望与方差求解某些简单的离散型随机变量的分布列、期望与方差.【知识掌握】【知识点精析】1. 离散型随机变量的分布列(1)随机变量的概念:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量.随机变量常用希腊字母ξ、η表示.例如课本上的两个例子:①某人射击一次可能出现的命中环数ξ是一个随机变量,ξ可取值为:0,1,2, (10)②某次产品检验所取4件产品中含有的次品数η是一个随机变量,η可取值为:0,1,2,3,4.③一袋中装有5只同样大小的白球,编号为1,2,3,4,5.现从该袋内随机取出3只球, 被取出的球的最大数ξ是一个随机变量,ξ可取值为3,4,5.ξ=3,表示取出的3个球的编号为1,2,3;ξ=4,表示取出的3个球的编号为1,2,4或1,3,4或2,3,4;ξ=5,表示取出的3个球的编号为1,2,5或1,3,5或1,4,5或2,3,5或 2,4,5或3,4,5.随机变量最常见的两种类型:①离散型随机变量:如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.②连续型随机变量:如果随机变量可以取某一区间内的一切值,这样的随机变量叫做连续型随机变量.(2)离散型随机变量的分布列:设离散型随机变量ξ的可能取值为x 1,x 2,…,x i ,…,ξ取每一个值x i (i =1,2,…)的概率P (=x i )=p i ,则表例如抛掷一个色骰子得到的点数ξ可能取值为1,2,3,4,5,6.ξ取各值的概率都等于61.此表从概率的角度指出了随机变量在随机试验中取值的分布状况. 离散型随机变量的分布列具有下列性质: ①,2,1(0=≥i p i ...);②p 1+p 2+ (1)一般地,离散型随机变量在某一取值X 围内取值的概率等于它取值这个X 围内各值的概率之和.(3)常见的离散型随机变量的分布①0—1例如,任意抛掷一枚硬币的实验结果:ξ=0表示正面向上;ξ=1表示正面向下.②二项分布:如果在一次试验中某事件A发生的概率是p ,那么在n 次独立重复试验中事件A恰好发生k 次的概率是P (ξ=k ).kn k k n qp C )k (P -==ξ,其中k =1,2,3,…,n ,q =1-p ,于是得到随机变量ξ的概率分布如下:kn k k n qp C -=b(k ;n ,p). 例如,抛掷一个骰子,得到任一确定的点数(比如2点)的概率是61.重复抛掷骰子n 次,得到此确定点数的次数ξ服从二项分布,ξ~B(n ,61) 显然,当n =1时,二项分布即为0—1分布. ③几何分布:在独立重复试验中,某次事件第一次发生时所做试验的次数ξ也是一个取值为正整数的离散型随机变量.“ξ=k ”表示在第k 次独立试验时事件第一次发生.如果把第k 次试验时事件A 发生记为A k ,事件A 不发生记为k A ,p A P k =)(,q A P k =)(,那么p q A P A P A P A P A P A A A A A P k P k k k k k 113211321)()()()()()()(---==== ξ.(k =1,2,3,…)于是得到随机变量ξ的概率分布如下:,…,分布列的表达式可有如下几种:(1)表格形式;(2)一组等式;(3)压缩为一个带“i ”的等式.2. 离散型随机变量期望和方差(1则称E ξ=∑=1i x i p i, ++++=n n p x p x px 2211.为ξ的数学期望或平均数、均值,数学期望又简称为期望.它反映了离散型随机变量取值的平均水平.则其n 次射击的环数ξ的期望为E ξ=4×0.02+5×0.04+…+10×0.28=8.32若b a +=ξη其中a ,b 是常数,则η也是随机变量.因为P (b ax i +=η)=P (ξ=x i )i =1,2,3, …所以η于是E η=(a x 1+b )p 1+(a x 2+b )p 2+…+(a x n +b )p n +…=a (1p 1+2p 2+…+x n p n +…)+b (p 1+p 2+…+p n +…)aE ξ+b即(2那么,把 D ξ=∑∞=1(i x i -E ξ)2p i =(x 1-E ξ)2·p 1+(x 2-E ξ)2·p 2+…+(x n - E ξ)2·pn+…叫做随机变量ξ的均方差,简称方差.其中E ξ是随机变量ξ的期望.D ξ的算术平方根ξD 叫做随机变量ξ的标准差,记作σξ.随机变量的方差与标准差都反映了随机变量取值的稳定与波动、集中与离散的程度.其中标准差与随机变量本身有相同的单位.两个计算方差的简单公式(不要求证明):①D(a ξ+b)=a 2D ξ.②如果ξ~B(n ,p),那么D ξ=npq ,这里q =1-p说明:在实际问题中,人们常关心随机变量的特征,而不是随机变量的具体值.离散型随机变量的期望和方差都是随机变量的特征数,期望反映了随机变量的平均取值,方差与标准差都反映了随机变量取值的稳定与波动、集中与离散的程度.其中标准差与随机变量本身有相同的单位,在实际中应用更广泛.【解题方法指导】例1.盒子中有大小相同的球10个,其中标号为1的球3个,标号为2的球4个,标号为5的球3个,第一次从盒子中任取1个球,放回后第二次再任取1个球(假设取到每个球的可能性都相同).记第一次与第二次取到球的标号之和为ξ.(I )求随机变量ξ的分布列; (II )求随机变量ξ的期望ξE .解:(I )由题意可得,随机变量ξ的取值是2、3、4、6、7、10. 随机变量ξ的概率分布列如下:ξE =2×0.09+3×0.24+4×0.16+6×0.18+7×0.24+10×0.09=5.2.例2.甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格.(Ⅰ)求甲答对试题数ξ的概率分布及数学期望; (Ⅱ)求甲、乙两人至少有一人考试合格的概率.解:(Ⅰ)依题意,ξ可能取的值为0,1,2,3.3,2,1,0,)(310346=⋅==-k C C C k P k k ξ.甲答对试题数ξ的数学期望 E ξ=0×301+1×103+2×21+3×61=59. (Ⅱ)设甲、乙两人考试合格的事件分别为A 、B ,则P(A)=310361426C C C C +=1202060+=32,P(B)=310381228C C C C +=1205656+=1514. 方法一:因为事件A 、B 相互独立,∴甲、乙两人考试均不合格的概率为 P(B A ⋅)=P(A )P(B )=(1-32)(1-1514)=451. ∴甲、乙两人至少有一人考试合格的概率为 P =1-P(B A ⋅)=1-451=4544. 答:甲、乙两人至少有一人考试合格的概率为4544. 方法二:因为事件A 、B 相互独立,∴甲、乙两人至少有一个考试合格的概率为P =P(A ·B )+P(A ·B)+P(A ·B)=P(A)P(B )+P(A )P(B)+P(A)P(B) =32×151+31×1514+32×1514=4544. 答:甲、乙两人至少有一人考试合格的概率为4544. 说明:本题考查离散型随机变量分布列和数学期望等概念,考查运用概率知识解决实际问题的能力.【考点突破】【考点指要】离散型随机变量是高考的重点内容,它是随机事件的概率的深化,它的本质是某些随机试验结果的数量化.离散型随机变量的分布列整体地反映了随机变量所有可能的取值及其相应值的概率P (ξ=x i )=P i .期望反映了离散型随机变量取值的平均水平,方差与标准差都反映了随机变量取值的稳定与波动、集中与离散的程度.离散型随机变量的期望与方差都建立在分布列的基础之上.方差又与期望紧密相连,求期望与方差的关键是求ξ的分布列.期望与方差是随机变量的最重要的两个特征数,它们所表示的意义具有很大的实用价值,所以成为高考的热点之一.历年高考中所占的分值为5~13分,多以填空题和解答题的形式出现.【典型例题分析】例1. (2005卷17题)甲、乙两人各进行3次射击,甲每次击中目标的概率为21,乙每次击中目标的概率为32. (I )记甲击中目标的次数为ξ,求ξ的概率分布及数学期望E ξ; (II )求乙至多击中目标2次的概率;(III )求甲恰好比乙多击中目标2次的概率.分析:本题主要考查概率的内容,考查点有随机事件的分布列、互斥事件的概率及相互独立事件的概率等.解:(I )P (ξ=0)=03311()28C =,P (ξ=1)=13313()28C =, P (ξ=2)=23313()28C =,P (ξ=3)=33311()28C =.ξE ξ=130123 1.58888⋅+⋅+⋅+⋅=, (或E ξ=3·2=1.5); (II )乙至多击中目标2次的概率为1-3332()3C =1927;(III )设甲恰比乙多击中目标2次为事件A ,甲恰击中目标2次且乙恰击中目标0次为事件B 1,甲恰击中目标 3次且乙恰击中目标 1次为事件B 2,则A =B 1+B 2,B 1,B 2为互斥事件.1231121()()()8278924P A P B P B =+=⋅+⋅=所以,甲恰好比乙多击中目标2次的概率为124.例2. (2004某某卷理18题)设一汽车在前进途中要经过4个路口,汽车在每个路口遇到绿灯(允许通行)的概率为34,遇到红灯(禁止通行)的概率为14.假定汽车只在遇到红灯或到达目的地才停止前进,ξ表示停车时已经通过的路口数,求:(Ⅰ)ξ的概率分布列及期望E ξ;(Ⅱ)停车时最多已通过3个路口的概率. 解:(I )ξ的所有可能值为0,1,2,3,4用A K 表示“汽车通过第k 个路口时不停(遇绿灯)”,则P (A K )=4321,,,),4,3,2,1(43A A A A k 且=独立.从而ξ有分布列:ξ 01234P41 16364925627256812562564256364216140=⨯+⨯+⨯+⨯+⨯=ξE (II )256175256811)4(1)3(=-==-=≤ξξP P 答:停车时最多已通过3个路口的概率为256175.【综合测试】一. 选择题1.随机变量ξ的分布列如下,则m = ( )ξ1 2 3 4P41 M31 61 A.31 B. 2 C. 6 D. 42.某射手射击时击中目标的概率为0.7,设4次射击击中目标的次数为随机变量ξ,则P (ξ≥1)等于()A. 0.9163B. 0.0081C. 0.0756D. 0.99193. 某一计算机网络,有n 个终端,每个终端在一天中使用的概率p ,则这个网络中一天平均使用的终端个数为 ()A. np(1-p)B. npC. nD. p(1- p) 4.设随机变量ξ~B(n ,p),且E ξ=1,D ξ=1.8,则( )A. n =8,p =0.2B. n =4,p =0.4C. n =5,p =0.32D. n =7,p =0.45二. 填空题5.重复抛掷一枚筛子5次得到点数为6的次数记为ε,则P(ε>3)=______________.6. 某国际科研合作项目成员由11个美国人、4个法国人和5个中国人组成.现从中随机选出两位作为成果发布人,则此两人不属于同一个国家的概率为 .(结果用分数表示) 7. 有一批数量很大的商品的次品率为100,从中任意地连续取出200件商品,设其中次品数为ξ,则E ξ=__________, D ξ=_____________.8. 在有奖摸彩中,一期(发行10000X 彩票为一期)有200个奖品是5元的,20个奖品是25元的,5个奖品是100元的.在不考虑获利的前提下,一X 彩票的合理价格是_______________元.三. 解答题9.抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为ξ,试问:“ξ>4”表示的试验结果是什么?10. A 、B 两台机床同时加工零件,每生产一批数量较大的产品时,出次品的概率如下表所示: A 机床B 机床问:哪一台机床加工质量较好?11. 从4名男生和2名女生中任选3人参加演讲比赛,设随机变量ξ表示所选3人中女生的人数.(Ⅰ)求ξ的分布列;(Ⅱ)求ξ的数学期望;(Ⅲ)求“所选3人中女生人数1≤ξ”的概率.12.(2004年高考全国卷Ⅳ(19))某同学参加科普知识竞赛,需回答三个问题.竞赛规则规定:每题回答正确得100分,回答不正确得-100分.假设这名同学每题回答正确的概率均为0.8,且各题回答正确与否相互之间没有影响.(Ⅰ)求这名同学回答这三个问题的总得分ξ的概率分布和数学期望;(Ⅱ)求这名同学总得分不为负分(即ξ≥0)的概率.参考答案一. 选择题1. D 解析:∵41+m +31+61=1 ∴m =.∴选D 2. D 解析:∵P (ξ≥1)=1-P(ξ=0)=1-(1-0.7)4=1-0.0081=0.9919. ∴选D3. B 解析:设这个网络中一天使用的终端个数为ξ,则ξ~B(n ,p),∴E ξ=np .∴选B .4. A 解析:由E ξ= np ,D ξ=np(1-p) 可知⎩⎨⎧-==)1(28.16.1p np np ∴⎩⎨⎧==2.08p n ∴选A二. 填空题 5.388813解:依题意,随机变量ε~B⎪⎭⎫ ⎝⎛61,5.∴P(ε=4)=6561C 445⨯⎪⎭⎫ ⎝⎛=777625,P(ε=5)=55C 561⎪⎭⎫ ⎝⎛=77761. ∴P(ε>3)=P(ε=4)+P(ε=5)=388813. 6. 190119解:属于同一个国家的概率为190712202524211=++C C C C , 所求概率为 190119190711=-,或:所求概率为 19011954511411220=⨯+⨯+⨯C 7. 2,1.98解:因为商品数量相当大,抽200件商品可以看作200次独立重复试验,所以ξ~B(200,1%). 因为E ξ=n ξ,D ξ=npq ,这里n =200,p =1%,q =99%, 所以,E ξ=200⨯1%=2,D ξ=200%99%1⨯⨯=1.98.8. 0.2解:设一X 彩票中奖额为随机变量ξ,显然ξ所有可能取得的值为0,5,25,100.依题意,可得ξ的分布列为∴E ξ=0400⨯2.0200010050025505=⨯+⨯+⨯+ 答:一X 彩票的合理价格是0.2元.三. 解答题9. 答:因为一枚骰子的点数可以是1,2,3,4,5,6六种结果之一,由已知得-5≤ξ≤5,也就是说“ξ>4”就是“ξ=5”.所以,“ξ>4”表示第一枚为6点,第二枚为1点,10.解:E ξ1 =0×0.7+1×0.2+2×0.06+3×0.04=0.44 E ξ2 =0×0.8+1×0.06+2×0.04+3×0.10=0.44 它们的期望相同,再比较它们的方差.D ξ1 =(0-0.44)2×0.7+(1-0.44) 2×0.2+(2-0.44) 2×0.06+(3-0.44) 2×0.04=0.6064,D ξ2 =(0-0.44)2×0.8+(1-0.44) 2×0.06+(2-0.44) 2×0.04+(3-0.44) 2×0.10 = 0.9264,∴D ξ1<D ξ2,故A 机床加工较稳定、质量较好11. (Ⅰ)解:ξ可能取的值为0,1,2.2,1,0,)(36342=⋅==-k C C C k P k k ξ. 所以,ξ的分布列为(Ⅱ)解:由(1),ξ的数学期望为1525150=⨯+⨯+⨯=ξE(Ⅲ)解:由(1),“所选3人中女生人数1≤ξ”的概率为54)1()0()1(==+==≤ξξξP P P12. 解:(Ⅰ)ξ的可能值为-300,-100,100,300.P (ξ=-300)=0.23=0.008,P (ξ=-100)=3×0.22×0.8=0.096,P (ξ=100)=3×0.2×0.82=0.384,P (ξ=300)=0.83=0.512, 所以ξ的概率分布为E ξ=(-300)×0.008+(-100)×0.096+100×0.384+300×0.512=180. (Ⅱ)这名同学总得分不为负分的概率为P (ξ≥0)=0.384+0.512=0.896.。
35 高中数学分布列与期望及决策专题训练
专题35高中数学分布列与期望及决策专题训练【知识总结】离散型随机变量X 的分布列为则,(1)p i ≥0,i =1,2,…,n .(2)p 1+p 2+…+p n =1.(3)E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n .(4)D (X )= i =1n[x i -E (X )]2p i .(5)若Y =aX +b ,则E (Y )=aE (X )+b ,D (Y )=a 2D (X ).【高考真题】1.(2022·全国甲理) 甲、乙两个学校进行体育比赛,比赛共设三个项目,每个项目胜方得10分,负方得0分,没有平局.三个项目比赛结束后,总得分高的学校获得冠军.已知甲学校在三个项目中获胜的概率分别为0.5,0.4,0.8,各项目的比赛结果相互独立.(1)求甲学校获得冠军的概率;(2)用X 表示乙学校的总得分,求X 的分布列与期望.2.(2022·北京) 在校运动会上,只有甲、乙、丙三名同学参加铅球比赛,比赛成绩达到9.50m 以上(含9.50m)的同学将获得优秀奖.为预测获得优秀奖的人数及冠军得主,收集了甲、乙、丙以往的比赛成绩,并整理得到如下数据(单位:m):甲:9.80,9.70,9.55,9.54,9.48,9.42,9.40,935,9.30,9.25;乙:9.78,9.56,9.51,9.36,9.32,9.23;丙:9.85,9.65,9.20,9.16.假设用频率估计概率,且甲、乙、丙的比赛成绩相互独立.(1)估计甲在校运动会铅球比赛中获得优秀奖的概率;(2)设X 是甲、乙、丙在校运动会铅球比赛中获得优秀奖的总人数,估计X 的数学期望E (X );(3)在校运动会铅球比赛中,甲、乙、丙谁获得冠军的概率估计值最大?(结论不要求证)【题型突破】1.某校计划举行以“唱支山歌给党听”为主题的红歌合唱比赛活动,现有高一1,2,3,4班准备从《唱支山歌给党听》《没有共产党就没有新中国》《映山红》《十送红军》《歌唱祖国》5首红歌中选取一首作为比赛歌曲,设每班只选择其中一首红歌,且选择任一首红歌是等可能的.(1)求“恰有2个班级选择《唱支山歌给党听》”的概率;(2)记随机变量X 表示这4个班级共选择红歌的个数(相同的红歌记为1个),求X 的分布列与均值.2.有编号为1,2,3的三个小球和编号为1,2,3,4的四个盒子,将三个小球逐个随机地放入四个盒子中,每个小球的放置相互独立.(1)求三个小球恰在同一个盒子中的概率;(2)求三个小球在三个不同盒子且每个小球编号与所在盒子编号不同的概率;(3)记录所有至少有一个小球的盒子,以X 表示这些盒子编号的最小值,求E (X ).3.某公司年会有幸运抽奖环节,一个箱子里有相同的十个乒乓球,球上分别标0,1,2,…,9这十个自然数,每位员工有放回依次取出三个球.规定:每次取出的球所标数字不小于后面取出的球所标数字即中奖.中奖项:三个数字全部相同中一等奖,奖励10 000元现金;三个数字中有两个数字相同中二等奖,奖励5 000元现金;三个数字各不相同中三等奖,奖励2 000元现金.其他不中奖,没有奖金.(1)求员工A 中二等奖的概率;(2)设员工A 中奖奖金为X ,求X 的分布列;(3)员工B 是优秀员工,有两次抽奖机会,求员工B 中奖奖金的期望.4.目前,新能源汽车尚未全面普及,原因在于技术水平有待提高,国内几家大型汽车生产商的科研团队已经独立开展研究工作.吉利研究所、北汽科研中心、长城攻坚站三个团队两年内各自出成果的概率分别为12,m ,14.若三个团队中只有长城攻坚站出成果的概率为112. (1)求吉利研究所、北汽科研中心两个团队两年内至少有一个出成果的概率及m 的值;(2)三个团队有X 个在两年内出成果,求X 的分布列和均值.5.随着社会的发展,一些企业改变了针对应届毕业生的校园招聘方式,将线下招聘改为线上招聘.某世界五百强企业M 的线上招聘方式分资料初审、笔试、面试这三个环节进行,资料初审通过后才能进行笔试,笔试合格后才能参加面试,面试合格后便正式录取,且这几个环节能否通过相互独立.现有甲、乙、丙三名大学生报名参加了企业M 的线上招聘,并均已通过了资料初审环节.假设甲通过笔试、面试的概率分别为12,13;乙通过笔试、面试的概率分别为23,12;丙通过笔试、面试的概率与乙相同. (1)求甲、乙、丙三人中至少有一人被企业M 正式录取的概率;(2)为鼓励优秀大学生积极参与企业的招聘工作,企业M 决定给报名参加应聘且通过资料初审的大学生一定的补贴,补贴标准如下表:记甲、乙、丙三人获得的所有补贴之和为X 元,求X 的分布列和均值.6.一台设备由三个部件构成,假设在一天的运转中,部件1,2,3需要调整的概率分别为0.1,0.2,0.3,各部件的状态相互独立.(1)求设备在一天的运转中,部件1,2中至少有1个需要调整的概率;(2)记设备在一天的运转中需要调整的部件个数为X ,求X 的分布列及数学期望.7.下象棋既锻炼思维又愉悦身心,有益培养人的耐心和细心,舒缓大脑并让其得到充分休息.现某学校象棋社团为丰富学生的课余生活,举行象棋大赛,要求每班选派一名象棋爱好者参赛.现某班有12位象棋爱好者,经商议决定采取单循环方式进行比赛(规则采用“中国数目法”,没有和棋),即每人进行11轮比赛,最后靠积分选出第一名去参加校级比赛.积分规则如下(每轮比赛采取5局3胜制,比赛结束时,取胜者可能会出现3∶0,3∶1,3∶2三种赛式).9轮过后,积分榜上的前两名分别为甲和乙,甲累计积分26分,乙累计积分22分.第10轮甲和丙比赛,设每局比赛甲取胜的概率均为23,丙获胜的概率为13,各局比赛结果相互独立.(1)①在第10轮比赛中,甲所得积分为X ,求X 的分布列;②求第10轮结束后,甲的累计积分Y 的均值;(2)已知第10轮乙得3分,判断甲能否提前一轮获得累计积分第一,结束比赛(“提前一轮”即比赛进行10轮就结束,最后一轮即第11轮无论乙得分结果如何,甲累计积分最多)?若能,求出相应的概率;若不能,请说明理由.8.一款小游戏的规则如下:每轮游戏都要进行3次,每次游戏都需要从装有大小相同的2个红球、3个白球的袋中随机摸出2个球,若“摸出的两个都是红球”出现3次,则获得200分;若“摸出的两个都是红球”出现1次或2次,则获得20分;若“摸出的两个都是红球”出现0次,则扣除10分(即获得-10分).(1)求一轮游戏中获得20分的概率;(2)很多玩过这款小游戏的人发现,很多轮游戏后,所得的分数与最初的分数相比,不是增加而是减少了,请运用概率统计的相关知识解释这种现象.9.“T2钻石联赛”是世界乒联推出的一种新型乒乓球赛事,其赛制如下:采用七局四胜制,比赛过程中可能出现两种模式:“常规模式”和“FAST5模式”.在前24分钟内进行的常规模式中,每小局比赛均为11分制,率先拿满11分的选手赢得该局;如果两名球员在24分钟内都没有人赢得4局比赛,那么将进入“FAST5”模式,“FAST5”模式为5分制的小局比赛,率先拿满5分的选手赢得该局.24分钟计时后开始的所有小局均采用“FAST5”模式.某位选手率先在7局比赛中拿下4局,比赛结束.现有甲、乙两位选手进行比赛,经统计分析甲、乙之间以往比赛数据发现,24分钟内甲、乙可以完整打满2局或3局,且在11分制比赛中,每局甲获胜的概率为23,乙获胜的概率为13;在“FAST5”模式,每局比赛双方获胜的概率都为12,每局比赛结果相互独立. (1)求4局比赛决出胜负的概率;(2)设在24分钟内,甲、乙比赛了3局,比赛结束时,甲、乙总共进行的局数记为X ,求X 的分布列及数学期望.10.某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率代替最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量X (单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y (单位:元).当六月份这种酸奶一天的进货量n (单位:瓶)为多少时,Y 的数学期望达到最大值?11.(2021·新高考全国℃)一种微生物群体可以经过自身繁殖不断生存下来,设一个这种微生物为第0代,经过一次繁殖后为第1代,再经过一次繁殖后为第2代……,该微生物每代繁殖的个数是相互独立的且有相同的分布列,设X 表示1个微生物个体繁殖下一代的个数,P (X =i )=p i (i =0,1,2,3).(1)已知p 0=0.4,p 1=0.3,p 2=0.2,p 3=0.1,求E (X );(2)设p 表示该种微生物经过多代繁殖后临近灭绝的概率,p 是关于x 的方程:p 0+p 1x +p 2x 2+p 3x 3=x 的一个最小正实根,求证:当E (X )≤1时,p =1,当E (X )>1时,p <1;(3)根据你的理解说明(2)问结论的实际含义.12.为了治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两组白鼠对药效进行对比试验.对于两组白鼠,当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得-1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得-1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.(1)求X的分布列;(2)若甲药、乙药在试验开始时都赋予4分,p i(i=0,1,…,8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则p0=0,p8=1,p i=ap i-1+bp i+cp i+1(i=1,2,…,7),其中a=P(X=-1),b=P(X=0),c=P(X=1).假设α=0.5,β=0.8.①求证:{p i+1-p i}(i=0,1,2,…,7)为等比数列;②求p4,并根据p4的值解释这种试验方案的合理性.13.为了预防某种流感扩散,某校医务室采取积极的处理方式,对感染者进行短暂隔离直到康复.假设某班级已知6位同学中有1位同学被感染,需要通过化验血液来确定被感染的同学,血液化验结果呈阳性即被感染,呈阴性即未被感染.下面是两种化验方案.方案甲:逐个化验,直到能确定被感染的同学为止.方案乙:先任取3个同学,将他们的血液混在一起化验,若结果呈阳性则表明被感染同学为这3位中1位,后再逐个化验,直到能确定被感染的同学为止;若结果呈阴性,则在另外3位同学中逐个检测.(1)求方案甲所需化验次数等于方案乙所需化验次数的概率;(2)η表示方案甲所需化验次数,ξ表示方案乙所需化验次数,假设每次化验的费用都相同,请从经济角度考虑哪种化验的方案最佳.14.已知某高中高三年级共有20个班,共1 000人,其中男生600人,女生400人.现在从该校高三学生中抽取10%的学生进行玩游戏时间的调查.设置方案如下:一个罐子中放置了大小、质地相同的20个红球,20个白球,被抽查的同学首先从该罐子中随机抽取一个球,看过颜色后放回,若抽到红球回答问题1,若抽到白球回答问题2,学生只需要对一个问题回答“是”或者“否”即可.问题1:你的性别是否为男生?问题2:你周末打游戏的时长是否在3小时及以上?(1)应该抽取多少学生?若用分层抽样的抽样方法,如何抽取这10%的学生?(2)最终有40张答卷回答“是”,请估计该高中高三年级有多大占比的学生周末打游戏的时长在3小时及以上.15.某公司为了切实保障员工的健康安全,决定在全公司范围内举行一次专门针对某病毒的健康普查,为此需要抽取全公司m人的血样进行化验,由于人数较多,检疫部门制定了下列两种可供选择的方案.方案①:将每个人的血样分别化验,这时需要化验m次.方案②:按k个人一组进行随机分组,把从每组k个人抽来的血样混合在一起进行化验,如果每个人的血样均为阴性,则验出的结果呈阴性,这k个人的血样只需化验一次(这时认为每个人的血样化验1k次);否则,呈阳性,则需对这k 个人的血样再分别进行一次化验,这样,该组k 个人的血样总共需要化验k +1次.假设此次普查中每个人的血样化验呈阳性的概率为p ,且这些人之间的化验结果相互独立.(1)设方案②中,某组k 个人中每个人的血样化验次数为X ,求X 的分布列;(2)设m =1 000,p =0.1,试求方案②中,k 分别取2,3,4时,各需化验的平均总次数,并指出在这三种分组情况下,相比方案①,化验次数最多可以平均减少多少次?(结果保留整数)16.某新型双轴承电动机需要装配两个轴承才能正常工作,且两个轴承互不影响.现计划购置甲、乙两个品牌的轴承,两个品牌轴承的使用寿命及价格情况如下表:已知甲品牌使用7个月或8个月的概率均为12,乙品牌使用3个月或4个月的概率均为12. (1)若从4件甲品牌和2件乙品牌共6件轴承中,任选2件装入电动机内,求电动机可工作时间不少于4个月的概率;(2)现有两种购置方案,方案一:购置2件甲品牌;方案二:购置1件甲品牌和2件乙品牌(甲、乙两品牌轴承搭配使用).试从性价比(即电动机正常工作时间与购置轴承的成本之比)的角度考虑,选择哪一种方案更实惠?17.为了预防某种流感扩散,某校医务室采取积极的处理方式,对感染者进行短暂隔离直到康复.假设某班级已知6位同学中有1位同学被感染,需要通过化验血液来确定被感染的同学,血液化验结果呈阳性即被感染,呈阴性即未被感染.下面是两种化验方案.方案甲:逐个化验,直到能确定被感染的同学为止.方案乙:先任取3个同学,将他们的血液混在一起化验,若结果呈阳性则表明被感染同学为这3位中的1位,后再逐个化验,直到能确定被感染的同学为止;若结果呈阴性,则在另外3位同学中逐个检测.(1)求方案甲所需化验次数等于方案乙所需化验次数的概率;(2)η表示方案甲所需化验次数,ξ表示方案乙所需化验次数,假设每次化验的费用都相同,请从经济角度考虑哪种化验的方案最佳.18.某公司为了切实保障员工的健康安全,决定在全公司范围内举行一次专门针对某病毒的健康普查,为此需要抽取全公司m 人的血样进行化验,由于人数较多,检疫部门制定了下列两种可供选择的方案.方案①:将每个人的血样分别化验,这时需要化验m 次.方案②:按k 个人一组进行随机分组,把从每组k 个人抽来的血样混合在一起进行化验,如果每个人的血样均为阴性,则验出的结果呈阴性,这k 个人的血样只需化验一次(这时认为每个人的血样化验1k次);否则,呈阳性,则需对这k 个人的血样再分别进行一次化验,这样,该组k 个人的血样总共需要化验k +1次.假设此次普查中每个人的血样化验呈阳性的概率为p ,且这些人之间的化验结果相互独立.(1)设方案②中,某组k 个人中每个人的血样化验次数为X ,求X 的分布列;(2)设m =1 000,p =0.1,试求方案②中,k 分别取2,3,4时,各需化验的平均总次数,并指出在这三种分组情况下,相比方案①,化验次数最多可以平均减少多少次?(结果保留整数)19.某工厂购进一批加工设备,由于该设备自动模式运行不稳定,因此一个工作时段内会有14的概率出现自动运行故障.此时需要1名维护人员立刻将设备切换至手动操控模式,并持续人工操作至此工作时段结束,期间该维护人员无法对其他设备进行维护.工厂在每个工作时段开始时将所有设备调至自动模式,若设备的自动模式出现故障而得不到维护人员的维护,则该设备将停止运行,且每台设备运行的状态相互独立.(1)若安排1名维护人员负责维护3台设备,求这3台设备能顺利运行至工作时段结束的概率;(2)设该工厂有甲、乙两个车间.甲车间有6台设备和2名维护人员,将6台设备平均分配给2名维护人员,每名维护人员只负责维护分配给自己的3台设备;乙车间有7台设备和2名维护人员,7台设备由这2名维护人员共同负责维护.若用车间所有设备顺利运行至工作时段结束的概率来衡量生产的稳定性,试比较甲、乙两个车间生产稳定性的高低.20.在一个系统中,每一个设备能正常工作的概率称为设备的可靠度,而系统能正常工作的概率称为系统的可靠度.为了增加系统的可靠度,人们经常使用“备用冗余设备”(即正在使用的设备出故障时才启动的设备).已知某计算机网络服务器系统采用的是“一用两备”(即一台正常设备,两台备用设备)的配置,这三台设备中,只要有一台能正常工作,计算机网络就不会断掉.设三台设备的可靠度均为r (0<r <1),它们之间相互不影响.(1)要使系统的可靠度不低于0.992,求r 的最小值;(2)当r =0.9时,求能正常工作的设备数X 的分布列;(3)已知某高科技产业园当前的计算机网络中每台设备的可靠度是0.7,根据以往经验可知,计算机网络断掉可能给该产业园带来约50万的经济损失.为减少对该产业园带来的经济损失,有以下两种方案:方案1,更换部分设备的硬件,使得每台设备的可靠度维持在0.9,更换设备硬件的总费用为8万元;方案2,对系统的设备进行维护,使得设备可靠度维持在0.8,设备维护的总费用为5万元.请从期望损失最小的角度判断决策部门该如何决策.。
第7讲 分布列与数学期望(解析版)
第7讲 分布列与数学期望高考预测一:求概率及随机变量的分布列的基本类型 类型一:利用古典概型求概率1.10月1日,某品牌的两款最新手机(记为W 型号,T 型号)同时投放市场,手机厂商为了解这两款手机的销售情况,在10月1日当天,随机调查了5个手机店中这两款手机的销量(单位:部),得到如表(Ⅰ)若在10月1日当天,从A ,B 这两个手机店售出的新款手机中分别随机抽取1部,求抽取的2部手机中至少有1部为W 型号手机的概率;(Ⅱ)现从这5个手机店中任选3个举行促销活动,用X 表示其中W 型号手机销量超过T 型号手机销量的手机店的个数,求随机变量X 的分布列和数学期望;(Ⅲ)经测算,W 型号手机的销售成本η(百元)与销量ξ(部)满足关系34ηξ=+.若表中W 型号手机销量的方差20(0)S m m =>,试给出表中5个手机店的W 型号手机销售成本的方差2S 的值.(用m 表示,结论不要求证明)【解析】解:()I 设事件1M 为从A 店售出的手机中随机抽取1部手机,抽取的手机为W 型号手机, 设事件2M 为从A 店售出的手机中随机抽取1部手机,抽取的手机为W 型号手机, 则事件1M ,2M 相互独立,且161()6123P M ==+,262()695P M ==+, ∴抽取的2部手机中至少有1部为W 型号手机的概率为13221233535355P =⨯+⨯+⨯=. ()II 由表格可知W 型号手机销售量超过T 型号手机的店有2个,故X 的可能取值有0,1,2.且33351(0)10C P X C ===,1223353(1)5C C P X C ===,2123353(2)10C C P X C ===. X ∴的分布列为:数学期望为1336()012105105E X =⨯+⨯+⨯=. 20()()III D s m ξ==,34ηξ=+,2()9()9S D D m ηξ∴===.2.为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x 和y 的数据,并制成如图,其中“*”表示服药者,“+”表示未服药者.(1)从服药的50名患者中随机选出一人,求此人指标y 的值小于60的概率;(2)从图中A ,B ,C ,D 四人中随机选出两人,记ξ为选出的两人中指标x 的值大于1.7的人数,求ξ的分布列和数学期望()E ξ;(3)试判断这100名患者中服药者指标y 数据的方差与未服药者指标y 数据的方差的大小.(只需写出结论)【解析】解:(1)由图知:在50名服药患者中,有15名患者指标y 的值小于60, 答:从服药的50名患者中随机选出一人,此人指标小于60的概率为: 1535010p ==. (2)由图知:A 、C 两人指标x 的值大于1.7,而B 、D 两人则小于1.7,可知在四人中随机选项出的2人中指标x 的值大于1.7的人数ξ的可能取值为0,1,2, 2411(0)6P C ξ===, 1122242(1)3C C P C ξ===,2411(2)6P C ξ===, ξ∴的分布列如下:答:121()0121636E ξ=⨯+⨯+⨯=.(3)答:由图知100名患者中服药者指标y 数据的方差比未服药者指标y 数据的方差大.3.已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束. (1)求第一次检测出的是次品且第二次检测出的是正品的概率;(2)已知每检测一件产品需要费用100元,设X 表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X 的分布列和数学期望.【解析】解:(1)记“第一次检测出的是次品且第二次检测出的是正品”为事件A ,则P (A )1123252332010A A A ⨯===; (2)X 的可能取值为200,300,400,222521(200)2010A P X A ====,311232323562323(300)6010A C C A P X A ++⨯⨯====, 133(400)1(200)(300)110105P X P X P X ==-=-==--=;所以X 的分布列为:数学期望为13320030040035010105EX =⨯+⨯+⨯=. 类型二:利用相互独立事件的概率乘法公式和互斥事件概率加法公式求概率 4.电影公司随机收集了电影的有关数据,经分类整理得到下表:好评率是指:一类电影中获得好评的部数与该类电影的部数的比值. 假设所有电影是否获得好评相互独立.(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率; (Ⅱ)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率;(Ⅲ)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等.用“1k ξ=”表示第k 类电影得到人们喜欢.“0k ξ=”表示第k 类电影没有得到人们喜欢(1k =,2,3,4,5,6).写出方差1D ξ,2D ξ,3D ξ,4D ξ,5D ξ,6D ξ的大小关系.【解析】解:(Ⅰ)设事件A 表示“从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影”,总的电影部数为140503002008005102000+++++=部, 第四类电影中获得好评的电影有:2000.2550⨯=部,∴从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的频率为:P (A )500.0252000==. (Ⅱ)设事件B 表示“从第四类电影和第五类电影中各随机选取1部,恰有1部获得好评”, 第四类获得好评的有:2000.2550⨯=部, 第五类获得好评的有:8000.2160⨯=部,则从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率:P (B )50(800160)(20050)1600.35200800⨯-+-⨯==⨯.(Ⅲ)由题意知,定义随机变量如下:0,1,k k k ξ⎧=⎨⎩第类电影没有得到人们喜欢第类电影得到人们喜欢,则k ξ服从两点分布,则六类电影的分布列及方差计算如下: 第一类电影:1()10.400.60.4E ξ=⨯+⨯=,221()(10.4)0.4(00.4)0.60.24D ξ=-⨯+-⨯=.第二类电影:2()10.200.80.2E ξ=⨯+⨯=,222()(10.2)0.2(00.2)0.80.16D ξ=-⨯+-⨯=.第三类电影:3()10.1500.850.15E ξ=⨯+⨯=,223()(10.15)0.15(00.15)0.850.1275D ξ=-⨯+-⨯=.第四类电影:4()10.2500.750.25E ξ=⨯+⨯=,224()(10.25)0.25(00.25)0.750.1875D ξ=-⨯+-⨯=.第五类电影:5()10.200.80.2E ξ=⨯+⨯=,225()(10.2)0.2(00.2)0.80.16D ξ=-⨯+-⨯=.第六类电影:6()10.100.90.1E ξ=⨯+⨯=,225()(10.1)0.1(00.1)0.90.09D ξ=-⨯+-⨯=.∴方差1D ξ,2D ξ,3D ξ,4D ξ,5D ξ,6D ξ的大小关系为:632541D D D D D D ξξξξξξ<<=<<.5.设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(1)设甲同学上学期间的三天中7:30之前到校的天数为X ,求0X =,1X =,2X =,3X =时的概率(0)P X =,(1)P X =,(2)P X =,(3)P X =.(2)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率.【解析】解:(1)321(0)(1)327P X ==-=,123222(1)(1)339P X C ==-=, 223224(2)()(1)339P X C ==-=,33328(3)()327P X C ===. (2)设乙同学上学期间的三天中在7:30之前到校的天数为Y , 则1(0)(0)27P Y P X ====,2(1)(1)9P Y P X ====, 4(2)(2)9P Y P X ====,8(3)(3)27P Y P X ====, 418220()(2)(0)(3)(1)927279243P M P X P Y P X P Y ∴===+===⨯+⨯=. 类型三:利用条件概率公式求概率6.如图所示,质点P 在正方形ABCD 的四个顶点上按逆时针方向前进.现在投掷一个质地均匀、每个面上标有一个数字的正方体玩具,它的六个面上分别写有两个1、两个2、两个3一共六个数字.质点P 从A 点出发,规则如下:当正方体上底面出现的数字是1,质点P 前进一步(如由A 到)B ;当正方体上底面出现的数字是2,质点P 前两步(如由A 到)C ,当正方体上底面出现的数字是3,质点P 前进三步(如由A 到)D .在质点P 转一圈之前连续投掷,若超过一圈,则投掷终止.(1)求点P 恰好返回到A 点的概率;(2)在点P 转一圈恰能返回到A 点的所有结果中,用随机变量ξ表示点P 恰能返回到A 点的投掷次数,求ξ的分布列及数学期望.【解析】解:(1)投掷一次正方体玩具,因每个数字在上底面出现是等可能的,故其概率12163P ==. 易知只投掷一次不可能返回到A 点.①若投掷两次质点P 就恰好能返回到A 点,则上底面出现的两个数字, 应依次为:(1,3)、(3,1)、(2,2)三种结果,其概率为2211()333P =⨯=.②若投掷三次质点P 恰能返回到A 点,则上底面出现的三个数字,应依次为:(1,1,2)、(1,2,1)、(2,1,1)三种结果,其概率为3311()339P =⨯=. ③若投掷四次质点P 恰能返回到A 点,则上底面出现的四个数字应依次为:(1,1,1,1), 其概率为4411()381P ==.所以,质点P 恰好返回到A 点的概率为:23411137398181P P P P =++=++=.(2)由(1)知,质点P 转一圈恰能返回到A 点的所有结果共有以上问题中的7种情况, 且ξ的可能取值为2,3,4.则1273(2)373781P ξ===,199(3)373781P ξ===,1181(4)373781P ξ===,故ξ的分布列为:所以,27918523437373737E ξ=⨯+⨯+⨯=.7.根据以往的经验,某工程施工期间的降水量X (单位:)mm 对工期的影响如下表:300700X <700900X<9002610历年气象资料表明,该工程施工期间降水量X 小于300,700,900的概率分别为0.3,0.7,0.9,求:()I 工期延误天数Y 的均值与方差;(Ⅱ)在降水量X 至少是300的条件下,工期延误不超过6天的概率.【解析】()I 由题意,(300)0.3P X <=,(300700)(700)(300)0.70.30.4P X P X P X <=<-<=-=,(700900)(900)(700)0.90.70.2P X P X P X <=<-<=-=,(900)10.90.1P X =-=Y 的分布列为()00.320.460.2100.13E Y ∴=⨯+⨯+⨯+⨯=2222()(03)0.3(23)0.4(63)0.2(103)0.19.8D Y =-⨯+-⨯+-⨯+-⨯=∴工期延误天数Y 的均值为3,方差为9.8;(Ⅱ)(300)1(300)0.7P X P X =-<=,(300900)(900)(300)0.90.30.6P X P X P X <=<-<=-= 由条件概率可得(300900)0.66(6|300)(300)0.77P X P Y X P X <===.类型四:利用统计图表中的数据求概率8.某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:C)︒有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率代替最高气温位于该区间的概率. (1)求六月份这种酸奶一天的需求量X (单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y (单位:元),当六月份这种酸奶一天的进货量n (单位:瓶)为多少时,Y 的数学期望达到最大值?【解析】解:(1)由题意知X 的可能取值为200,300,500, 216(200)0.290P X +===, 36(300)0.490P X ===,2574(500)0.490P X ++===, X ∴的分布列为:(2)由题意知这种酸奶一天的需求量至多为500瓶,至少为200瓶,∴只需考虑200500n ,当300500n 时,若最高气温不低于25,则642Y n n n =-=;若最高气温位于区间[20,25),则63002(300)412002Y n n n =⨯+--=-; 若最高气温低于20,则62002(200)48002Y n n n =⨯+--=-, 20.4(12002)0.4(8002)0.26400.4EY n n n n ∴=⨯+-⨯+-⨯=-,当200300n 时,若最高气温不低于20,则642Y n n n =-=,若最高气温低于20,则62002(200)48002Y n n n =⨯+--=-, 2(0.40.4)(8002)0.2160 1.2EY n n n ∴=⨯++-⨯=+. 300n ∴=时,Y 的数学期望达到最大值,最大值为520元.9.某贫困地区共有1500户居民,其中平原地区1050户,山区450户.为调查该地区2017年家庭收入情况,从而更好地实施“精准扶贫”,采用分层抽样的方法,收集了150户家庭2017年年收入的样本数据(单位:万元).(1)应收集多少户山区家庭的样本数据?(2)根据这150个样本数据,得到2017年家庭收入的频率分布直方图(如图所示),其中样本数据分组区间为(0,0.5],(0.5,1],(1,1.5],(1.5,2],(2,2.5],(2.5,3].如果将频率视为概率,估计该地区2017年家庭收入超过1.5万元的概率;(3)样本数据中,有5户山区家庭的年收入超过2万元,请完成2017年家庭收入与地区的列联表,并判断是否有90%的把握认为“该地区2017年家庭年收入与地区有关”?附:2()()()()()n ad bc K a b c d a c b d -=++++02)k【解析】解:(1)由已知可得每户居民被抽取的概率为0.1,故应收集手机4500.145⨯=户山区家庭的样本数据.(2)由直方图可知该地区2017年家庭年收入超过1.5万元的概率约为(0.5000.3000.100)0.50.45++⨯=. (3)样本数据中,年收入超过2万元的户数为(0.3000.100)0.515030+⨯⨯=户. 而样本数据中,有5户山区家庭的年收入超过2万元,故列联表如下:所以22150(2540580)200 3.175 2.706301201054563K ⨯-⨯==≈>⨯⨯⨯,∴有90%的把握认为“该地区2017年家庭年收入与地区有关”. 高考预测二:超几何分布和二项分布 类型一:超几何分布10.已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(Ⅰ)应从甲、乙、丙三个部门的员工中分别抽取多少人?(Ⅱ)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.()i 用X 表示抽取的3人中睡眠不足的员工人数,求随机变量X 的分布列与数学期望;()ii 设A 为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A 发生的概率. 【解析】解:(Ⅰ)单位甲、乙、丙三个部门的员工人数分别为24,16,16.人数比为:3:2:2, 从中抽取7人现,应从甲、乙、丙三个部门的员工中分别抽取3,2,2人.(Ⅱ)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查. ()i 用X 表示抽取的3人中睡眠不足的员工人数,随机变量X 的取值为:0,1,2,3,34337()k kC C P X k C -⋅==,0k =,1,2,3. 所以随机变量的分布列为:随机变量X 的数学期望11218412()0123353535357E X =⨯+⨯+⨯+⨯=; ()ii 设A 为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”, 设事件B 为:抽取的3人中,睡眠充足的员工有1人,睡眠不足的员工有2人,事件C 为抽取的3人中, 睡眠充足的员工有2人,睡眠不足的员工有1人, 则:A BC =,且P (B )(2)P X ==,P (C )(1)P X ==,故P (A )6()(2)(1)7P B C P X P X ===+==. 所以事件A 发生的概率:67. 11. 2.5PM 是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物. 2.5PM 日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.石景山古城地区2013年2月6日至15日每天的 2.5PM 监测数据如茎叶图所示.(1)小陈在此期间的某天曾经来此地旅游,求当天 2.5PM 日均监测数据未超标的概率;(2)从所给10天的数据中任意抽取三天数据,记ξ表示抽到 2.5PM 监测数据超标的天数,求ξ的分布列及期望.【解析】解:(1)记“当天 2.5PM 日均监测数据未超标”为事件A , 因为有24+天 2.5PM 日均值在75微克/立方米以下, 故P (A )243105+==. (2)ξ的可能值为0,1,2,3.由茎叶图可知:空气质量为一级的有2天,空气质量为二级的有4天,只有这6天空气质量不超标,而其余4天都超标.363101(0)6C P C ξ===,21643101(1)2C C P C ξ===,12643103(2)10C C P C ξ===,343101(3)30C P C ξ===.ξ的分布列如下表:1131601236210305E ξ∴=⨯+⨯+⨯+⨯=.类型二:二项分布12.某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出一个球,在摸出的2个球中,若都是红球,则获得一等奖;若只有1个红球,则获得二等奖;若没有红球,则不获奖. (1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中或一等奖的次数为X ,求X 的分布列、数学期望和方差.【解析】解:(1)设顾客抽奖1次能中奖的概率为P.116511101037111010C C P C C =-=-=,(2)设该顾客在一次抽奖中获一等奖的概率为1P ,1145112101015C C P C C ==, 故而1?(3,)5X B .3464(0)()5125P X ∴===,1231448(1)()55125P X C ===, 2231412(2)()55125P X C ===,311(3)()5125P X ===. 故X 的分布列为数学期望13()355E X ==,方差1412()35525D X ==. 13.近年来,空气质量成为人们越来越关注的话题,空气质量指数(,)AirQualityIndex AQI 是定量描述空气质量状况的指数,空气质量按照AQI 大小分为六级,0~50为优;51~100为良;101~150为轻度污染;151~200为中度污染;201~300为重度污染;大于300为严重污染.环保部门记录了2017年某月哈尔滨市10天的AQI 的茎叶图如下:(1)利用该样本估计该地本月空气质量优良(100)AQI 的天数;(按这个月总共30天计算)(2)现工作人员从这10天中空气质量为优良的日子里随机抽取2天进行某项研究,求抽取的2天中至少有一天空气质量是优的概率;(3)将频率视为概率,从本月中随机抽取3天,记空气质量优良的天数为ξ,求ξ的概率分布列和数学期望.【解析】解:(1)从茎叶图中可发现该样本中空气质量优的天数为2,空气质量良的天数为4,故该样本中空气质量优良的频率为63105=,从而估计该月空气质量优良的天数为330185⨯=(2)现工作人员从这10天中空气质量为优良的日子里随机抽取2天进行某项研究, 基本事件总数2615n C ==,抽取的2天中至少有一天空气质量是优的对立事件是抽取的2天中至少有一天空气质量都不是优,∴抽取的2天中至少有一天空气质量是优的概率:2426315C p C =-=.(3)由(1)估计某天空气质量优良的概率为35,ξ∴的所有可能取值为0,1,2,3,且3~(3,)5B ξ,328(0)()5125P ξ===, 1233236(1)()55125P C ξ===, 2233254(2)()55125P C ξ===, 3327(3)()5125P ξ===, 故ξ的分布列为:3~(3,)5B ξ,33 1.85E ξ=⨯=.高考预测三:概率与其他知识点交汇 类型一:以其他知识为载体14.已知正四棱锥PABCD 的侧棱和底面边长相等,在这个正四棱锥的8条棱中任取两条,按下列方式定义随机变量ξ的值:若这两条棱所在的直线相交,则ξ的值是这两条棱所在直线的夹角大小(弧度制); 若这两条棱所在的直线平行,则0ξ=;若这两条棱所在的直线异面,则ξ的值是这两条棱所在直线所成角的大小(弧度制). (1)求(0)P ξ=的值;(2)求随机变量ξ的分布列及数学期望()E ξ.【解析】解:(1)根据题意,该四棱锥的四个侧面均为等边三角形,底面为正方形, PAC ∆,PBD ∆为等腰直角三角形.ξ的可能取值为:0,3π,2π, 在这个正四棱锥的8条棱中任取两条基本事件总数2828n C ==种情况, 当0ξ=时有2种,当3πξ=时有342420⨯+⨯=种,当2πξ=时有246+=种.21(0)2814P ξ∴===. (2)21(0)2814P ξ===. 205()3287P πξ===, 63()22814P πξ===. 随机变量ξ的分布列如下表:15329()0143721484E πππξ=⨯+⨯+⨯=. 15.从集合{1M =,2,3,4,5,6,7,8,9}中抽取三个不同的元素构成子集1{a ,2a ,3}a . (1)求对任意的i 和(1j i =,2,3,1j =,2,3,)i j ≠满足||2i j a a -的概率;(2)若1a ,2a ,3a 成等差数列,设其公差为(0)ξξ>,求随机变量ξ的分布列与数学期望()E ξ.【解析】解:(1)由题意知基本事件数为3984C =,而满足条件||2i j a a -,即取出的元素不相邻,则用插空法有3735C =种,故所求事件的概率为3558412P ==; (2)分析1a ,2a ,3a 成等差数列的情况:1ξ=的情况有7种:{1,2,3},{2,3,4},{3,4,5},{4,5,6},{5,6,7},{6,7,8},{7,8,9},2ξ=的情况有5种:{1,3,5},{2,4,6},{3,5,7},{4,6,8},{5,7,9}.3ξ=的情况有3种:{1,4,7},{2,5,8},{3,6,9}.4ξ=的情况有1种:{1,5,9}.故ξ的分布列如下:所以753115()1234161615168E ξ=⨯+⨯+⨯+⨯=. 类型二:构造递推关系求概率问题16.为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X . (1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0i p i =,1,⋯,8)表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11(1i i i i p ap bp cp i -+=++=,2,⋯,7),其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=. ()i 证明:1{}(0i i p p i +-=,1,2,⋯,7)为等比数列; ()ii 求4p ,并根据4p 的值解释这种试验方案的合理性.【解析】(1)解:X 的所有可能取值为1-,0,1.(1)(1)P X αβ=-=-,(0)(1)(1)P X αβαβ==+--,(1)(1)P X αβ==-,X ∴的分布列为:(2)()i 证明:0.5α=,0.8β=,∴由(1)得,0.4a =,0.5b =,0.1c =.因此110.40.50.1(1i i i i p p p p i -+=++=,2,⋯,7), 故110.1()0.4()i i i i p p p p +--=-,即11()4()i i i i p p p p +--=-, 又1010p p p -=≠,1{}(0i i p p i +∴-=,1,2,⋯,7)为公比为4,首项为1p 的等比数列;()ii 解:由()i 可得,881887761001(14)41()()()143p p p p p p p p p p --=-+-+⋯+-+==-,81p =,18341p ∴=-, 444332*********()()()()3257p p p p p p p p p p p -∴=-+-+-+-+==. 4p 表示最终认为甲药更有效的概率.由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为410.0039257p =≈,此时得出错误结论的概率非常小,说明这种试验方案合理. 17.从原点出发的某质点M ,按向量(0,1)a =移动的概率为23,按向量(0,2)b =移动的概率为13,设M 可到达点(0,)(1n n =,2,3,)⋯的概率为n P . (1)求1P 和2P 的值;(2)求证:2111()3n n n n P P P P +++-=--;(3)求n P 的表达式.【解析】解:(1)123P =,22217()339P =+= (2)证明:M 点到达点(0,2)n +有两种情况 ①从点(0,1)n +按向量(0,1)a =移动 ②从点(0,)n 按向量(0,2)b =移动∴212133n n n P P P ++=+∴2111()3n n n n P P P P +++-=-- 问题得证.(3)数列1{}n n P P +-是以21P P -为首项,13-为公比的等比数列 1111211111()()()()3933n n n n n P P P P --++-=--=-=- 11()3n n n P P -∴-=-又因为111221()()()n n n n n P P P P P P P P ----=-+-+⋯+- 12111()()()333n n -=-+-+⋯+-111[1()]123n -=-- 11n n P P P P ∴=-+∴113()434n n P =⨯-+. 类型三:利用导数研究概率问题18.某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为(01)p p <<,且各件产品是否为不合格品相互独立. (1)记20件产品中恰有2件不合格品的概率为()f p ,求()()f p f p 的最大值点0p (即()f p 取最大值时对应的p 的值).(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的0p 作为p 的值,已知每件产品的检验费用为3元,若有不合格品进入用户手中,则工厂要对每件不合格品支付28元的赔偿费用 ()i 若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用之和记为X 求()E X ; ()ii 以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?【解析】解:(1)记20件产品中恰有2件不合格品的概率为()f p ,则221820()(1)f p C p p =-,2182172172020()[2(1)18(1)]2(1)(110)f p C p p p p C p p p ∴'=---=--,令()0f p '=,得0.1p =,当(0,0.1)p ∈时,()0f p '>, 当(0.1,1)p ∈时,()0f p '<, f ∴()p 的最大值点00.1p =.(2)()i 由(1)知0.1p =,令Y 表示余下的180件产品中的不合格品数,依题意知~(180,0.1)Y B , 20328X Y =⨯+,即6028X Y =+,()(6028)6028()60281800.1564E X E Y E Y ∴=+=+=+⨯⨯=.()ii 如果对余下的产品作检验,由这一箱产品所需要的检验费为600元, ()564600E X =<,∴应该对余下的产品不进行检验.19.某有机水果种植基地试验种植的某水果在售卖前要成箱包装,每箱80个,每一箱水果在交付顾客之前要按约定标准对水果作检测,如检测出不合格品,则更换为合格品.检测时,先从这一箱水果中任取10个作检测,再根据检测结果决定是否对余下的所有水果作检测.设每个水果为不合格品的概率都为(01)p p <<,且各个水果是否为不合格品相互独立.(Ⅰ)记10个水果中恰有2个不合格品的概率为()f p ,求()f p 取最大值时p 的值0p ;(Ⅱ)现对一箱水果检验了10个,结果恰有2个不合格,以(Ⅰ)中确定的0p 作为p 的值.已知每个水果的检测费用为1.5元,若有不合格水果进入顾客手中,则种植基地要对每个不合格水果支付a 元的赔偿费用(*)a N ∈.(ⅰ)若不对该箱余下的水果作检验,这一箱水果的检验费用与赔偿费用的和记为X ,求EX ;(ⅱ)以检验费用与赔偿费用和的期望值为决策依据,当种植基地要对每个不合格水果支付的赔偿费用至少为多少元时,将促使种植基地对这箱余下的所有水果作检验?【解析】解:(Ⅰ)记10个水果中恰有2个不合格的概率为()f p ,则22810()(1)f p C p p =-,282710()[2(1)8(1)]f p C p p p p ∴'=---,由()0f p '=,得0.2p =.且当(0,0.2)p ∈时()0f p '>,当(0.2,1)p ∈时,()0f p '<, ()f p ∴的最大值点00.2p =.(Ⅱ)由(Ⅰ)知00.2p =.(ⅰ)令Y 表示余下的70个水果中的不合格数,依题意~(70,0.2)Y B ,10 1.515X aY aY =⨯+=+.()(15)15()15700.21514E X E aY aE Y a a ∴=+=+=+⨯⨯=+.(ⅱ)如果对余下的水果作检验,则这箱水果的检验费为120元, 由1514120a +>,得1057.514a >=,且*a N ∈, ∴当种植基地要对每个不合格水果支付的赔偿费用至少为8元时,将促使种植基地对这箱余下的所有水果作检验.高考预测三:决策问题20.某公司计划购买2台机器,该种机器使用三年后即被淘汰,机器有一易损零件,在购买机器时,可以额外购买这种零件作为备件,每个300元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得到下面柱状图.以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数.(1)求X 的分布列;(2)若要求()0.5P X n ,试确定n 的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在19n =与20n =之中选其一,应选用哪个?【解析】解:(1)每台机器更换的易损零件数为8,9,10,11,记事件1A 为第一台机器3年内换掉7i +个零件(1i =,2,3,4),记事件1B 为第二台机器3年内换掉7i +个零件(1i =,2,3,4),由题知134134()()()()()()0.2P A P A P A P B P B P B ======,22()()0.4P A P B ==,则X 的可能的取值为16,17,18,19,20,21,22, 11(16)()()0.20.20.04P X P A P B ===⨯=;1221(17)()()()()0.20.40.40.20.16P X P A P B P A P B ==+=⨯+⨯=;132231(18)()()()()()()0.20.20.20.20.40.40.24P X P A P B P A P B P A P B ==++=⨯+⨯+⨯=;14233241(19)()()()()()()()()0.20.20.20.20.40.20.20.40.24P X P A P B P A P B P A P B P A P B ==+++=⨯+⨯+⨯+⨯=;243342(20)()()()()()()0.40.20.20.40.20.20.2P X P A P B P A P B P A P B ==++=⨯+⨯+⨯=;3443(21)()()()()0.20.20.20.20.08P X P A P B P A P B ==+=⨯+⨯=;44(22)()()0.20.20.04P X P A P B ===⨯=.从而X 的分布列为(2)要()0.5P x n ,0.040.160.240.5++<,0.040.160.240.240.5+++,则n 的最小值为19;(3)购买零件所需费用含两部分,一部分为购买机器时购买零件的费用,另一部分为备件不足时额外购买的费用,当19n =时,费用的期望为193005000.210000.0815000.045940⨯+⨯+⨯+⨯=元,当20n =时,费用的期望为203005000.0810000.046080⨯+⨯+⨯=元,若要费用最少,所以应选用19n =.高考预测四:正态分布21.为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:)cm .根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2(,)N μσ.(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(3,3)μσμσ-+之外的零件数,求(1)P X ;(2)一天内抽检零件中,如果出现了尺寸在(3,3)μσμσ-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.下面是检验员在一天内抽取的16个零件的尺寸:9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.0410.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95经计算得16119.9716i i x x ===∑,0.212s ==,其中i x 为抽取的第i 个零件的尺寸,1i =,2,⋯,16.用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01). 附:若随机变量Z 服从正态分布2(,)N μσ,则(33)0.9974P Z μσμσ-<<+=,160.99740.9592≈,0.09.【解析】解:(1)抽取的一个零件的尺寸在(3,3)μσμσ-+之内的概率为0.9974,从而零件的尺寸在(3,3)μσμσ-+之外的概率为0.0026,故~(16,0.0026)X B .因此,16(1)1(0)10.99740.0408P X P X =-==-≈;(2)由9.97,0.212x s =≈,得μ的估计值为ˆ9.97μ=,σ的估计值为ˆ0.212σ=, 由样本数据可以看出有一个零件的尺寸在ˆˆˆˆ(3,3)μσμσ-+之外, 因此需对当天的生产过程进行检查,剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据9.22, 剩下数据的平均数为1(169.979.22)10.0215⨯-=, 因此μ的估计值为10.02,162221160.212169.971591.134i i x ==⨯+⨯≈∑,剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据9.22, 剩下数据的样本方差为221(1591.1349.221510.02)0.00815--⨯≈.因此σ0.09≈.22.从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如图频率分布直方图:(1)求这500件产品质量指标值的样本平均值x 和样本方差2s (同一组的数据用该组区间的中点值作代表);(2)由直方图可以认为,这种产品的质量指标Z 服从正态分布2(,)N μσ,其中μ近似为样本平均数x ,2σ近似为样本方差2s①利用该正态分布,求(187.8212.2)P Z <<②某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数.利用 ①的结果,求EX。
离散型随机变量的分布列及其期望
题型二 求离散型随机变量的分布列例2 某校高三年级某班的数学课外活动小组有6名男生,4名女生,从中选出4人参加数学竞赛考试,用X 表示其中的男生人数,求X 的分布列.变式训练2 一个盒子中装有16个白球和4个黑球,从中任意取出3个,设X 表示其中黑球的个数,求X 的分布列.题型三 利用随机变量的分布列求概率例3 袋中装着标有数字1,2,3,4,5的小球各2个,从袋中任取3个小球,按3个小球上最大数字的9倍计分,每个小球被取出的可能性都相等,用X 表示取出的3个小球上的最大数字,求:(1)取出的3个小球上的数字互不相同的概率;(2)随机变量X 的分布列; (3)计分介于20分到40分之间的概率.变式训练3为应对金融危机,刺激消费,某市给市民发放旅游消费券,由抽样调查预计老、中、青三类市民持有这种消费券到某旅游景点的消费额及其概率如下表: 某天恰好有持有这种消费券的老年人、中年人、青年人各一人到该旅游景点, (1)求这三人恰有两人消费额大于300元的概率; (2)求这三人消费总额大于或等于1 300元的概率; (3)设这三人消费额大于300元的人数为X ,求X 的分布列; (4)求至少有两人的消费额大于300元的概率.袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为17,现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取……取后不放回,直到两人中有一人取到白球时即终止.每个球在每一次被取出的机会是等可能的.(1)求袋中原有白球的个数;(2)求取球次数X 的分布列及取球2次终止的概率; (3)求甲取到白球的概率.题型一 条件概率例1抛掷红、蓝两颗骰子,设事件A 为“蓝色骰子的点数为3或6”,事件B 为“两颗骰子的点数之和大于8”. (1)求P (A ),P (B ),P (AB );(2)当已知蓝色骰子的点数为3或6时,求两颗骰子的点数之和大于8的概率.变式训练1 1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,问(1)从1号箱中取出的是红球的条件下,从2 号箱取出红球的概率是多少? (2)从2号箱取出红球的概率是多少?例2如图,由M 到N 的电路中有4个元件,分别标为T 1,T 2,T 3,T 4,电流能通过T 1,T 2,T 3的概率都是p ,电流能通过T 4的概率是0.9,电流能否通过各元件相互独立.已知T 1,T 2,T 3中至少有一个能通过电流的概率为0.999.(1)求p ; (2)求电流能在M 与N 之间通过的概率.变式训练2 某项选拔共有四轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰.已知某选手能正确回答第一、二、三、四轮的问题的概率分别为45、35、25、15,且各轮问题能否正确回答互不影响. (1)求该选手进入第四轮才被淘汰的概率; (2)求该选手至多进入第三轮考核的概率.题型三 独立重复试验与二项分布例3为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类.这三类工程所含项目的个数分别占总数的12、13、16,现在3名工人独立地从中任选一个项目参与建设.(1)求他们选择的项目所属类别互不相同的概率;(2)记ξ为3人中选择的项目属于基础设施工程或产业建设工程的人数,求ξ的分布列.变式训练3 某工厂生产甲、乙两种产品.甲产品的一等品率为80%,二等品率为20%;乙产品的一等品率为90%,二等品率为10%.生产1件甲产品,若是一等品则获得利润4万元,若是二等品则亏损1万元;生产1件乙产品,若是一等品则获得利润6万元,若是二等品则亏损2万元.设生产各件产品相互独立.(1)记X (单位:万元)为生产1件甲产品和1 件乙产品可获得的总利润,求X 的分布列; (2)求生产4件甲产品所获得的利润不少于10万元的概率.题型一 离散型随机变量的均值与方差的求法例1(2010·福建)设S 是不等式x 2-x -6≤0的解集,整数m ,n ∈S .(1)记“使得m +n =0成立的有序数组(m ,n )”为事件A ,试列举A 包含的基本事件; (2)设ξ=m 2,求ξ的分布列及其均值E (ξ).变式训练1一个口袋中装有若干个大小相同的小球,分别编有1个1号,2个2号,m 个3号和n 个4号.已知从口袋中任意摸出2个球,至少得到1个4号球的概率是23.若口袋中共有10个球.(1)求4号球的个数;(2)从口袋中任意摸出2个球,记摸出小球的编号数之和为ξ,求随机变量ξ的分布列和均值E (ξ).例2 设随机变量ξ具有分布P (ξ=k )=15,k =1,2,3,4,5,求E (ξ+2)2,D (2ξ-1),D (ξ-1).变式训练2 袋中有20个大小相同的球,其中记上0号的有10个,记上n 号的有n 个(n =1,2,3,4).现从袋中任取一球,ξ表示所取球的标号. (1)求ξ的分布列、均值和方差;(2)若η=a ξ+b ,E (η)=1,D (η)=11,试求a ,b 的值.题型三 均值与方差的实际应用例3 现有甲、乙两个项目,对甲项目每投资10万元,一年后利润是1.2万元、1.18万元、1.17万元的概率分别为16、12、13;已知乙项目的利润与产品价格的调整有关,在每次调整中,价格下降的概率都是p (0<p <1),设乙项目产品价格在一年内进行两次独立的调整.记乙项目产品价格在一年内的下降次数为X ,对乙项目每投资10万元,X 取0、1、2时,一年后相应利润是1.3万元、1.25万元、0.2万元.随机变量X 1、X 2分别表示对甲、乙两项目各投资10万元一年后的利润.(1)求X 1,X 2的概率分布列和均值E (X 1),E (X 2); (2)当E (X 1)<E (X 2)时,求p 的取值范围.变式训练3 某公司为庆祝元旦举办了一个抽奖活动,现场准备的抽奖箱里放置了分别标有数字1 000、800、600、0的四个球(球的大小相同).参与者随机从抽奖箱里摸取一球(取后即放回),公司即赠送与此球上所标数字等额的奖金(元),并规定摸到标有数字0的球时可以再摸一次,但是所得奖金减半(若再摸到标有数字0的球,则没有第三次摸球机会),求一个参与抽奖活动的人可得奖金的均值.试题:甲袋和乙袋中都装有大小相同的红球和白球,已知甲袋中共有m 个球,乙袋中共有2m 个球,从甲袋中摸出1个球为红球的概率为25,从乙袋中摸出1个球为红球的概率为P 2.(1)若m =10,求甲袋中红球的个数;(2)若将甲、乙两袋中的球装在一起后,从中摸出1个红球的概率是13,求P 2的值;(3)设P 2=15,若从甲、乙两袋中各自有放回地摸球,每次摸出1个球,并且从甲袋中摸1次,从乙袋中摸2次.设ξ表示摸出红球的总次数,求ξ的分布列和均值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学分布列和期望
高考考纲透析:
等可能性的事件的概率,互斥事件有一个发生的概率,相互独立事件同时发生的概率,独立重复试验、离散型随机变量的分布列、期望和方差
高考风向标:
离散型随机变量的分布列、期望和方差 热点题型1 n 次独立重复试验的分布列和期望 [样题1] (2005年高考·全国卷II ·理19)
甲、乙两队进行一场排球比赛.根据以往经验,单局比赛甲队胜乙队的概率为0.6.本场比赛采用五局三胜制,即先胜三局的队获胜,比赛结束.设各局比赛互间没有影响.令ξ为本场比赛的局数,求ξ的概率分布和数学期望.(精确到0.0001)
本题考查离散型随机变量分布和数学期望等概念,考查运用概率知识解决实际问题的能力.解:单局比赛甲队胜乙队的概率为0.6,乙队胜甲队的概率为1-0.6=0.4
比赛3局结束有两种情况:甲队胜3局或乙队胜3局,因而P (ξ=3)=3
3
0.60.40.28+=
比赛4局结束有两种情况:前3局中甲队胜2局,第4局甲队胜;或前3局中乙队胜2局,第4局乙队胜.因而
P (ξ=4)=2230.60.40.6C ⨯⨯⨯+2230.40.60.40.3744C ⨯⨯⨯=
比赛5局结束有两种情况:前4局中甲队胜2局、乙队胜2局,第5局甲胜或乙胜.因而
P (ξ=5)=22240.60.40.6C ⨯⨯⨯+22240.40.60.40.3456C ⨯⨯⨯=
所以ξ的概率分布为
ξ
3 4 5
P
0.28 0.3744 0.3456
ξ
的期望
E ξ
=3×P (ξ=3)+4×P (ξ=4)+5×P (ξ=5)=4.0656 变式新题型1.(2005年高考·浙江卷·理19)袋子A 中装有若干个均匀的红球和白球,从A 中摸出一个红
球的概率是31
.
(Ⅰ) 从A 中有放回地摸球,每次摸出一个,共摸5次,求恰好有3次摸到红球的概率. (Ⅱ) 从A 中有放回地摸球,每次摸出一个,有3次摸到红球即停止.
(i) 求恰好摸5次停止的概率;
(ii )记5次之内(含5次)摸到红球的次数为ξ,求随机变量ξ的分布列及数学期望E ξ.
解:(Ⅰ)
33
35
12140333243C ⎛⎫⎛⎫⨯⨯⨯=
⎪ ⎪⎝⎭⎝⎭ (Ⅱ)(i )
22
24121833381C ⎛⎫⎛⎫⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭ (ii)随机变量ξ的取值为0,1,2,3,;
由n 次独立重复试验概率公式
()()
1n k
k k
n n P k C p p -=-,得
()5
0513*******P C ξ⎛⎫==⨯-=
⎪⎝⎭; ()4
1511801133243P C ξ⎛⎫==⨯⨯-=
⎪⎝⎭ ()2
32511802133243P C ξ⎛⎫⎛⎫
==⨯⨯-=
⎪ ⎪⎝⎭⎝⎭
()3
2
3511173133243P C ξ⎛⎫⎛⎫==⨯⨯-= ⎪ ⎪⎝⎭⎝⎭(或
()328021731243243P ξ+⨯==-=
) 随机变量ξ的分布列是
ξ
0 1 2 3
P
32243 80243 80243 17
243
ξ的数学期望是
32808017131012324324324324381E ξ=
⨯+⨯+⨯+⨯=
热点题型2 随机变量ξ的取值范围及分布列
[样题2]在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券
3张,每张可获价值10元的奖品;其余6张没有奖,某顾客从此10张券中任抽2张,求: (Ⅰ)该顾客中奖的概率;
(Ⅱ)该顾客获得的奖品总价值ξ(元)的概率分布列和期望ξE . 解法一:
(Ⅰ)
3245151210
2
6=
-=-=C C I P ,即该顾客中奖的概率为32. (Ⅱ)ξ的所有可能值为:0,10,20,50,60(元).
.151
)60(,152
)50(,151)20(,52
)10(,31)0(2
10
1
3112
101
611210232
101
61321026===============C C C P C C C P C C P C C C P C C P ξξξξξ且
故ξ有分布列:
从而期望.
16151
6015250151205210310=⨯+⨯+⨯+⨯+⨯=ξE
解法二:
(Ⅰ)
,324530)(2
102
41614==+=C C C C P (Ⅱ)ξ的分布列求法同解法一
由于10张券总价值为80元,即每张的平均奖品价值为8元,从而抽2张的平均奖品价值ξE =2×
ξ 0
10
20
50
60
P
31
52 151 152 15
1
8=16(元).
变式新题型2.假设一种机器在一个工作日内发生故障的概率为0 2,若一周5个工作日内无故障,可
获利润10万元;仅有一个工作日发生故障可获利润5万元;仅有两个工作日发生故障不获利也不亏损;有三个或三个以上工作日发生故障就要亏损2万元 求:
(Ⅰ)一周5个工作日内恰有两个工作日发生故障的概率(保留两位有效数字); (Ⅱ)一周5个工作日内利润的期望(保留两位有效数字)
解:以ξ表示一周5个工作日内机器发生故障的天数,则ξ~B (5,0 2)
).
5,4,3,2,1,0(8.02.0)(55=⨯⨯==-k C k P k k k ξ
(Ⅰ)
.
21.08.02.0)2(3225≈⨯⨯==C P ξ
(Ⅱ)以η表示利润,则η的所有可能取值为10,5,0,-2
.328.08.0)0()10(5
≈====ξηP P .
410.08.02.0)1()5(4115≈⨯⨯====C P P ξη
.
205.08.02.0)2()0(3225≈⨯⨯====C P P ξη
.057.0)2()1()0(1)3()2(≈=-===-=≥=-=ξξξξηP P P P P η∴的概率分布为
∴利润的期望=10×0 328+5×0 410+0×0 205-2×0 057≈5 2(万元)
[样题3] (2005年高考·江西卷·理19)
A 、
B 两位同学各有五张卡片,现以投掷均匀硬币的形式进行游戏,当出现正面朝上时A 赢得B 一张卡片,否则B 赢得A 一张卡片.规定掷硬币的次数达9次时,或在此前某人已赢得所有卡片时游戏终止.设
ξ表示游戏终止时掷硬币的次数.
(1)求ξ的取值范围; (2)求ξ的数学期望E ξ.
解:(1)设正面出现的次数为m ,反面出现的次数为n ,则⎪⎩⎪
⎨⎧≤≤=+=-9
15||ξξn m n m ,可得:
.
9,7,5:;9,7,22,7;7,6,11,6;5,5,00,5的所有可能取值为所以时或当时或当时或当ξξξξ===============n m n m n m n m n m n m
(2)
;
645)21(2
)7(
;161322)21(2)5(7
155=====⨯==C P P ξξ .
32275
6455964571615;64556451611)9(=⨯+⨯+⨯==--
==ξξE P 变式新题型3.某射手进行射击练习,每射击5发子弹算一组,一旦命中就停止射击,并进行下一组
练习,否则一直打完5发子弹后才能进入下一组练习.若该射手在某组练习中射击命中一次,并且他射击
一次命中率为0.8,(1)求在这一组练习中耗用子弹ξ的分布列.(2)求在完成连续两组练习后,恰好共耗用了4发子弹的概率.
分析:该组练习耗用的子弹数ξ为随机变量,ξ可取值为1,2,3,4,5ξ=1,表示第一发击中(练习停止),故P (ξ=1)=0.8
ξ=2,表示第一发未中,第二发命中,故P (ξ=2)=(1-0.8)×0.8=0.16ξ=3,表示第一、二发未中,第三发命中,故P (ξ=3)=(1-0.8)2×0.8=0.032以下类推
解:(1)ξ的分布列为
ξ
1 2 3 4 5
P
0.8
0.16
0.032
0.0064 0.0016
补充备例:有n 把看上去样子相同的钥匙,其中只有一把能把大门上的锁打开.用它们去试开门上的锁.设抽取钥匙是相互独立且等可能的.每把钥匙试开后不能放回.求试开次数 的数学期望和方差. 分析:求 时,由题知前
次没打开,恰第k 次打开.不过,一般我们应从
简单的地方入手,如
,发现规律后,推广到一般.
解: 的可能取值为1,2,3,…,n .
;所以的分布列为:
1 2 …k…n
……
;
说明:复杂问题的简化处理,即从个数较小的看起,找出规律所在,进而推广到一般,方差的公式正确使用后,涉及一个数列求和问题,合理拆项,转化成熟悉的公式,是解决的关键.。