机载激光雷达李德仁ppt课件
合集下载
激光雷达系统ppt课件
激光雷达系统
组成
机载激光雷达
测量平台
姿态测量与导航系统
激光系统
数据处理
数码相机
同步控制
惯性导航
差分GPS
激光系统
工作流程
• • 机载激光雷达测量系统的的数据采集和处理过程 (一)航飞采集激光扫描数据及数码影像 1.在航飞前要制订飞行计划。航飞计划应包括航带划分,确定飞行高度、 速度、激光脉冲频率、航带宽度、激光反射镜转动速度、数码相机方位元素 及定位、相机拍摄时间间隔等,并将各航带的首尾坐标及其他导航坐标输入 导航计算机内,在飞行导航控制软件的辅助下进行飞行作业。 2.安置GPS接收机。为保证飞机飞行各时刻的三维坐标数据的精度,需 要在地面沿航线布设一定数量的GPS基准站,同时将GPS流动站安置在飞机 上。 3.激光扫描测量。预先设置好扫描镜的摆动方向和摆动角度,当飞机飞行 时,红外激光发生器向扫描镜上不停地发射激光,通过飞机的运动和扫描镜 的运动反射,使激光束打到地面并覆盖测区,当激光束到达地面或遇到其它 障碍物时被反射回来,被一光电接收感应器接收并将其转换成电信号。根据 激光发射至接收的时间间隔即可精确测出传感器至地面的距离。 4.惯性测量。当飞机飞行时,惯性测量装置同时也将飞机的飞行姿态测出 来,并和激光的有关数据、扫描镜的扫描角度一起记录在磁带上。 5.数码相机拍摄。利用数码相机进行拍摄时,需要对其拍摄时间间隔和拍 摄位置进行控制。通常是用GPS系统进行时间和位置控制。 6.数据传输。航飞数据采集结束后,将所有的激光扫描测量数据、数码影 像数据、GPS数据及惯性测量数据都传输到计算机中,为后续数据处理作准 备。
网点的平面坐标(X,Y)及其高程(Z)的数据集,它主要是描述区域地貌形态的空 间分布,是通过等高线或相似立体模型进行数据采集(包括采样和量测),然后进行 数据内插而形成的。DEM是对地貌形态的虚拟表示,可派生出等高线、坡度图等信息, 也可与DOM或其它专题数据叠加,用于与地形相关的分析应用,同时它本身还是制作 DOM的TM, Digital Terrain Model)最初是为了高速公路的自
组成
机载激光雷达
测量平台
姿态测量与导航系统
激光系统
数据处理
数码相机
同步控制
惯性导航
差分GPS
激光系统
工作流程
• • 机载激光雷达测量系统的的数据采集和处理过程 (一)航飞采集激光扫描数据及数码影像 1.在航飞前要制订飞行计划。航飞计划应包括航带划分,确定飞行高度、 速度、激光脉冲频率、航带宽度、激光反射镜转动速度、数码相机方位元素 及定位、相机拍摄时间间隔等,并将各航带的首尾坐标及其他导航坐标输入 导航计算机内,在飞行导航控制软件的辅助下进行飞行作业。 2.安置GPS接收机。为保证飞机飞行各时刻的三维坐标数据的精度,需 要在地面沿航线布设一定数量的GPS基准站,同时将GPS流动站安置在飞机 上。 3.激光扫描测量。预先设置好扫描镜的摆动方向和摆动角度,当飞机飞行 时,红外激光发生器向扫描镜上不停地发射激光,通过飞机的运动和扫描镜 的运动反射,使激光束打到地面并覆盖测区,当激光束到达地面或遇到其它 障碍物时被反射回来,被一光电接收感应器接收并将其转换成电信号。根据 激光发射至接收的时间间隔即可精确测出传感器至地面的距离。 4.惯性测量。当飞机飞行时,惯性测量装置同时也将飞机的飞行姿态测出 来,并和激光的有关数据、扫描镜的扫描角度一起记录在磁带上。 5.数码相机拍摄。利用数码相机进行拍摄时,需要对其拍摄时间间隔和拍 摄位置进行控制。通常是用GPS系统进行时间和位置控制。 6.数据传输。航飞数据采集结束后,将所有的激光扫描测量数据、数码影 像数据、GPS数据及惯性测量数据都传输到计算机中,为后续数据处理作准 备。
网点的平面坐标(X,Y)及其高程(Z)的数据集,它主要是描述区域地貌形态的空 间分布,是通过等高线或相似立体模型进行数据采集(包括采样和量测),然后进行 数据内插而形成的。DEM是对地貌形态的虚拟表示,可派生出等高线、坡度图等信息, 也可与DOM或其它专题数据叠加,用于与地形相关的分析应用,同时它本身还是制作 DOM的TM, Digital Terrain Model)最初是为了高速公路的自
激光雷达技术原理-第一章(课堂PPT)
2
3
第一章 绪论
LiDAR技术的优势
激光雷达是一种集成了多种高新技术的新型测绘仪器, 具有以下优势:
➢ 非接触式 ➢ 精度高(毫米级/亚毫米级) ➢ 速度快(可达120万点/秒) ➢ 密度大(点间距可达毫米级) ➢ 数据采集方式灵活,同时对环境光线、温度都要求较低
2
4
第一章 绪论
LiDAR测量原理 – 测时(Light transit time)
2 36
LiDAR工作原理
2
37
37
Laser Receiver
➢ 发射激光脉冲 ➢ 入射脉冲传播到目标物 ➢ 入射脉冲与目标物作用 ➢ 反射脉冲返回到接收机 ➢ 回波信号处理
2
38
38
Laser Receiver
➢ 发射激光脉冲 ➢ 入射脉冲传播到目标物 ➢ 入射脉冲与目标物作用 ➢ 反射脉冲返回到接收机 ➢ 回波信号处理
中国科学院国家天文台
意大利国家天文研究所
北京大学
米兰理工大学
清华大学
都灵理工大学
中国地质大学(北京学
华东师范大学
中方预算经费:500万
2
2
30
嫦娥二号探月卫星
2010年10月1日18时59分57 秒,搭载着嫦娥二号卫星的长 征三号丙运载火箭在西昌卫星 发射中心点火发射。
(1617年,荷兰人斯涅耳(W.Snell)首创三角测量法)
2
12
2020年4月25日星期六
13 Van Leeuwenhoeksingel, Delft, The Netherlands
•国际水利环境工程学院IHE
2020年4月25日星期六 14
Asian Night
2020年4月25日星期六 15
3
第一章 绪论
LiDAR技术的优势
激光雷达是一种集成了多种高新技术的新型测绘仪器, 具有以下优势:
➢ 非接触式 ➢ 精度高(毫米级/亚毫米级) ➢ 速度快(可达120万点/秒) ➢ 密度大(点间距可达毫米级) ➢ 数据采集方式灵活,同时对环境光线、温度都要求较低
2
4
第一章 绪论
LiDAR测量原理 – 测时(Light transit time)
2 36
LiDAR工作原理
2
37
37
Laser Receiver
➢ 发射激光脉冲 ➢ 入射脉冲传播到目标物 ➢ 入射脉冲与目标物作用 ➢ 反射脉冲返回到接收机 ➢ 回波信号处理
2
38
38
Laser Receiver
➢ 发射激光脉冲 ➢ 入射脉冲传播到目标物 ➢ 入射脉冲与目标物作用 ➢ 反射脉冲返回到接收机 ➢ 回波信号处理
中国科学院国家天文台
意大利国家天文研究所
北京大学
米兰理工大学
清华大学
都灵理工大学
中国地质大学(北京学
华东师范大学
中方预算经费:500万
2
2
30
嫦娥二号探月卫星
2010年10月1日18时59分57 秒,搭载着嫦娥二号卫星的长 征三号丙运载火箭在西昌卫星 发射中心点火发射。
(1617年,荷兰人斯涅耳(W.Snell)首创三角测量法)
2
12
2020年4月25日星期六
13 Van Leeuwenhoeksingel, Delft, The Netherlands
•国际水利环境工程学院IHE
2020年4月25日星期六 14
Asian Night
2020年4月25日星期六 15
《激光雷达成像技术》PPT课件
2(b c) abc
脉冲重复频率 fr:
fr N F
其中:N (m n)-像素;F-帧频
总的扫描时间:
Ttostsc st
tot be am
Tdwell
其中:tot-总扫描角; tot-光束发散角;Tdwell=1/fr-光束滞留时间
飞行时扫描频率:
f scan
V d res N
Micro electro-mechanical system (MEMS)
距离选通激光成像雷达
Burst illuminations Ladar (BIL)
距离选通激光成像雷达
激光测距仪+扫描仪+数字相机 距离范围:3~800m 距离分辨率:厘米量级 波长:1.5m
热像仪图像
BIL图像
闪烁式激光成像雷达
Mirror plate size
Optical scanning angle
Scan trajectory (fast axis) Scan trajectory (slow axis) Scan jitter
Reflectivity
Mirror flatness
Operating temperature
V—高度H(m)的飞行速度;N=mn—探测器单元数量; dres—探测器面元尺寸
扫描时脉冲积累数:
n B fr 6m
其中:B-天线3dB光束宽度(deg);fr-重频;m-天线每分转数
瞄准误差与滞后角效应:
.
d
2
d
dt
nr
dt
c
其中:-滞后角;d/dt-扫描速率;-往返时间;r-到目标距离;c-光 速;n-传播介质平均折射率
<7.5m >7.5m 500GHz 在150m处为1.5m正方形
脉冲重复频率 fr:
fr N F
其中:N (m n)-像素;F-帧频
总的扫描时间:
Ttostsc st
tot be am
Tdwell
其中:tot-总扫描角; tot-光束发散角;Tdwell=1/fr-光束滞留时间
飞行时扫描频率:
f scan
V d res N
Micro electro-mechanical system (MEMS)
距离选通激光成像雷达
Burst illuminations Ladar (BIL)
距离选通激光成像雷达
激光测距仪+扫描仪+数字相机 距离范围:3~800m 距离分辨率:厘米量级 波长:1.5m
热像仪图像
BIL图像
闪烁式激光成像雷达
Mirror plate size
Optical scanning angle
Scan trajectory (fast axis) Scan trajectory (slow axis) Scan jitter
Reflectivity
Mirror flatness
Operating temperature
V—高度H(m)的飞行速度;N=mn—探测器单元数量; dres—探测器面元尺寸
扫描时脉冲积累数:
n B fr 6m
其中:B-天线3dB光束宽度(deg);fr-重频;m-天线每分转数
瞄准误差与滞后角效应:
.
d
2
d
dt
nr
dt
c
其中:-滞后角;d/dt-扫描速率;-往返时间;r-到目标距离;c-光 速;n-传播介质平均折射率
<7.5m >7.5m 500GHz 在150m处为1.5m正方形
激光雷达遥感课件4PDF版
8 bytes * 8 bytes * 8 bytes * 8 bytes * 8 bytes * 8 bytes *
可变数据区(Variable length records)
记录了数据描述以及所用坐标投影的一些信息
Item
Format
Record
Unsigned
Signature(0xAABB) short
GUID data 1 Unsigned long
GUID data 2 Unsigned short
GUID data 3 Unsigned short
GUID data 4 Unsigned char[8]
Size 4 bytes 4 bytes 4 bytes 2 bytes 2 bytes 8 bytes
Required *
公共数据块(Public Header Block)
Version Major
Unsigned char 1 bytes *
Version Minor
Unsigned char 1 bytes *
System Identifier Char[32]
32 bytes *
Generating Software
Unsigned short 2 bytes *
Number of point records Unsigned long 4 bytes *
Number of points by return
Unsigned long[5] 20 bytes *
X scale factor
double
8 bytes *
主要内容:
机载激光雷达数据组成 LiDAR数据格式 点云数据及特点 数码影像数据及其处理 LiDAR技术发展趋势 LiDAR技术与同类技术比较
激光雷达与应用.PPT课件
手术操作名称未统一 主要手术漏填、不准确 其他手术或操作漏填、不准确
出院状态不正确
不能正确理解离院方式(医嘱离院、转院、非 医嘱离院、其他、死亡)
有手术操作、手术费用为0 分项费用加起来不等于总费用 入院时间大于出院时间
编码选择错误 编码库未统一
首页信息主要涉及部门:临床科室 病案科 财务科 信息科
例1 -主要诊断:心肌梗塞 -DRG F 60B 价格 2900欧元 例2 -主要诊断:心肌梗塞 -其他诊断:肺炎、心衰 -DRG F 60A 价格 4400欧元 例3 -主要诊断:心肌梗塞 -其他诊断:肺炎、心衰、败血症 -操作PCI术 心脏导管 - DRG F 24A 价格 7800欧元 -机械通气10天 价格 18300欧元
激光雷达的应用---农林业
激光雷达
激 光 雷 达 探 测 农 耕 地 形
激光雷达的应用—电网
激光雷达
❖在电力、通信网络建设与维护中,利用 激光雷达的数据,可以了解整个线路设 计区域的地形与地面上物的情况,以资 评估建设方案的可行性与建设成本;在 线路发生灾难时,可以及时发现倒塌的 部位,便于抢修和维护。
实
首颗激光测高试验卫星ICESat于2003年1月13日在美国
例
地球观测 GLAS系统
Vandenberg空军基地成功发射。ICESat轨道高度约600 km。周期约183天,可覆盖地表86°N~86°S即两极的大 部分区域。GLAS是第一个用于连续全球观测的星载激光测
高系统。其主要任务是监测南极洲和格陵兰冰盖的高程变
首页多项内容无明确定义,无统一标准 诊断、手术操作名称未规范统一 缺手术分级目录
无全国统一的首页质控标准和评价标准
基本信息漏项、填写不准确 主要诊断的准确选择 其他诊断漏填 手术及操作项目漏填、漏项 诊断及手术操作的正确编码 医师签名、其他管理项目漏填、不准确等
机载激光雷达测量系统解析ppt课件
LIDAR:AeroScan
INSAR:Star-3i
主要技术 参数
飞行高度:8000英尺; 频率:1500HZ; 带宽:1.8km; 4m点间距;
飞行高度:20000英尺; 频率:15000HZ; 带宽:8km; 5m间距;
主要 优点
垂直方向精度±15cm; 小区域及走廊区域最为理想;
非常适合植被覆盖和裸露区的真 实DEM提取; 扫描角内提供大范围扫描;
高精度高空间分辨率的森林或山区真实数字地面 模型 ③ 基本不需要地面控制点,地形数据采集速度快 ④ 作业安全 ⑤ 作业周期快,易于更新 ⑥ 时效性强 ⑦ 将信息获取、信息处理及应用技术纳入同一系统 中,有利于提高自动化高速化程度
4 机载激光雷达与机载InSAR的比较
4 机载激光雷达与机载InSAR的比较
6 工作流程及内业数据处理
飞行计划
GPS数据质量检查
系统参数测定和检校
航迹计算 激光脚点位置计算
外业数据采集
激光点云生成 分割
野外初步质量分析和控制
否 是
数据内业后处理
自动分类 内部QA/QC
手工分类 最后QA/QC
小结
1. 机载激光雷达测量的系统组成、激光扫描测距的 原理、动态GNSS定位、INS姿态测量系统、 GPS确定姿态的基本原理和方法
机载激光雷达测量系统的组成单元
测距单元
控制、监测、记 录单元
差分GPS 惯性测量单元
扫描仪
激光脚点 扫描方向
扫描带宽
激光雷达测距系统
•定义
包括:激光脉冲测距系统、光电扫描仪 及控制处理系统 原YA理G 激:光脉器冲是测以钇时铝测石距榴和石晶激体光为相基位质差的一测种距固
体 激光器 。钇铝石榴石的化学式是Y3 Al5 O15 ,简
激光雷达LIDARPPT课件
Lidar)
.
22
LiDAR的在我国的发展现状和发展趋势:
激光技术从它的问世到现在,虽然时间不长,但是由于它有: 高亮度性、 高方向性、高单色性和高相干性等几个极有价值的特点,因而在国防军事、 工农业生产、医学卫生和科学研究等方面都有广泛的应用。
军事方面的应用:目前,在水雷探测激光雷达、化学试剂探 测激光雷达、大气监测激光雷达、生化陆战激光雷达[1]等方面 已经有了很大的成就。 气象方面的应用:我国已经建立12 个沙尘暴长期观测站,首 次形成全国性的沙尘暴监测网络。 测风方面的应用:多普勒测风激光雷达具有高分辨率、高精 度、大探测范围、能提供晴空条件下三维风场信息的能力。 水土保持监测中的应用:目前,全国由于建设开发的影响, 给水土流失治理带来很大的难度,据调查,全国每年由于开发 建设使水土流失面积达到1.00×104km2由以上。
直升机障碍回避激光成像雷达:用于探测电话线、动力线之类
的障碍,该系统安装在UH-1H直升机上。
.
17
直升机障碍回避激光成像雷达
.
18
2003年6月Jigsaw系统装在UH-1 直升机上进行了飞行实验
飞行实验中获取的坦克目标的伪彩色3D 激光雷达图像处理过程显示
.
19
坦克目标的 伪彩色3D 激光雷达图 像
DGPS:机载LiDAR采用动态载波相位差分GPS系统。
✓ 手段:利用安装了电机上与LiDAR相连接的和设在一个或 多个基准站的至少两台GPS信号接收机同步而连续地观测 GPS卫星信号、同时记录瞬间激光和数码相机开启脉冲的 时间标记,再进行载波相位测量差分定位技术的离线数据 后处理。
✓ 目的:获取LiDAR的三维坐标。
.
24
结论:
.
22
LiDAR的在我国的发展现状和发展趋势:
激光技术从它的问世到现在,虽然时间不长,但是由于它有: 高亮度性、 高方向性、高单色性和高相干性等几个极有价值的特点,因而在国防军事、 工农业生产、医学卫生和科学研究等方面都有广泛的应用。
军事方面的应用:目前,在水雷探测激光雷达、化学试剂探 测激光雷达、大气监测激光雷达、生化陆战激光雷达[1]等方面 已经有了很大的成就。 气象方面的应用:我国已经建立12 个沙尘暴长期观测站,首 次形成全国性的沙尘暴监测网络。 测风方面的应用:多普勒测风激光雷达具有高分辨率、高精 度、大探测范围、能提供晴空条件下三维风场信息的能力。 水土保持监测中的应用:目前,全国由于建设开发的影响, 给水土流失治理带来很大的难度,据调查,全国每年由于开发 建设使水土流失面积达到1.00×104km2由以上。
直升机障碍回避激光成像雷达:用于探测电话线、动力线之类
的障碍,该系统安装在UH-1H直升机上。
.
17
直升机障碍回避激光成像雷达
.
18
2003年6月Jigsaw系统装在UH-1 直升机上进行了飞行实验
飞行实验中获取的坦克目标的伪彩色3D 激光雷达图像处理过程显示
.
19
坦克目标的 伪彩色3D 激光雷达图 像
DGPS:机载LiDAR采用动态载波相位差分GPS系统。
✓ 手段:利用安装了电机上与LiDAR相连接的和设在一个或 多个基准站的至少两台GPS信号接收机同步而连续地观测 GPS卫星信号、同时记录瞬间激光和数码相机开启脉冲的 时间标记,再进行载波相位测量差分定位技术的离线数据 后处理。
✓ 目的:获取LiDAR的三维坐标。
.
24
结论:
《机载激光雷达》课件
发展趋势
随着技术的不断进步和应用需求的不断增加,机载激光雷达技术将不断向更高精 度、更高效率、更安全可靠的方向发展。
THANKS
感谢观看
《机载激光雷达》PPT课件
目 录
• 机载激光雷达简介 • 机载激光雷达技术 • 机载激光雷达应用案例 • 机载激光雷达的挑战与未来发展
01 机载激光雷达简 介
定义与特点
总结词
机载激光雷达是一种集激光测距、全球定位系统(GPS)和惯性测量单元( IMU)于一体的遥感技术。
详细描述
机载激光雷达通过向地面发送激光脉冲并接收反射回来的信号,能够获取高精 度的三维地形数据。它具有高分辨率、高精度、快速获取数据等优点,广泛应 用于地形测绘、城市规划、资源调查等领域。
地震灾害评估
利用机载激光雷达技术,评估地震灾害对建筑物 和基础设施的影响,为灾后重建提供技术支持。
考古探测
遗址区地形测绘
通过机载激光雷达技术,获取遗址区高精度、高分辨率的地形数 据,为考古研究提供基础资料。
遗址区建筑物结构分析
利用机载激光雷达数据,分析遗址区建筑物的结构特点,为文物修 复和保护提供依据。
激光发射与接收
激光发射器根据不同的应用需求 ,发射不同波长的激光束,常见 的波长有近红外、中红外和远红
外等。
接收器通常使用光电倍增管或雪 崩二极管等光电传感器,用于接 收反射回来的光束,并将其转换
为电信号。
激光雷达通过测量反射回来的光 束与发射光束的时间差,计算出
目标的距离信息。
数据处理与分析
1
遗址区植物种类鉴定
通过分析机载激光雷达数据,鉴定遗址区植物种类,为环境考古和 生态研究提供数据支持。
04 机载激光雷达的 挑战与未来发展
随着技术的不断进步和应用需求的不断增加,机载激光雷达技术将不断向更高精 度、更高效率、更安全可靠的方向发展。
THANKS
感谢观看
《机载激光雷达》PPT课件
目 录
• 机载激光雷达简介 • 机载激光雷达技术 • 机载激光雷达应用案例 • 机载激光雷达的挑战与未来发展
01 机载激光雷达简 介
定义与特点
总结词
机载激光雷达是一种集激光测距、全球定位系统(GPS)和惯性测量单元( IMU)于一体的遥感技术。
详细描述
机载激光雷达通过向地面发送激光脉冲并接收反射回来的信号,能够获取高精 度的三维地形数据。它具有高分辨率、高精度、快速获取数据等优点,广泛应 用于地形测绘、城市规划、资源调查等领域。
地震灾害评估
利用机载激光雷达技术,评估地震灾害对建筑物 和基础设施的影响,为灾后重建提供技术支持。
考古探测
遗址区地形测绘
通过机载激光雷达技术,获取遗址区高精度、高分辨率的地形数 据,为考古研究提供基础资料。
遗址区建筑物结构分析
利用机载激光雷达数据,分析遗址区建筑物的结构特点,为文物修 复和保护提供依据。
激光发射与接收
激光发射器根据不同的应用需求 ,发射不同波长的激光束,常见 的波长有近红外、中红外和远红
外等。
接收器通常使用光电倍增管或雪 崩二极管等光电传感器,用于接 收反射回来的光束,并将其转换
为电信号。
激光雷达通过测量反射回来的光 束与发射光束的时间差,计算出
目标的距离信息。
数据处理与分析
1
遗址区植物种类鉴定
通过分析机载激光雷达数据,鉴定遗址区植物种类,为环境考古和 生态研究提供数据支持。
04 机载激光雷达的 挑战与未来发展
激光雷达简介PPT优秀课件
接收光 学天线
目标 物体
伺服 系统
前置放 主放 大器 大器
信号 模数 处理 转换
主处 理器
距离 速度 角度 目标图 信息 信息 信息 像信息
通信 系统
屏幕 显示
理论 发射 基础 系统
接收 系统
信息 处理
运载 体积 平台 重量
工作 模式
第 一 代
经典理 论
气体激光, 传统光学
系统
单元探测器, 脉冲体制, 直接接收
D电非P子S扫S扫发描描射,,面外阵差探接测收器,
集成模块, DSP芯片, 成像显示
车/机载, 弹/星载
功能部 件, MOEM S,小
多波长复合, 多功能模块, 智能化模块
第 四 代
光子探 测,纳 米物理
阵列发射, 微光学系
统
微光学系统, 焦平面阵列 探测器,光
纤导光
硬软件融 合,系统 级芯片, 高分辨率, 成像显示
以激光为载波,以 光电探测器为接收 器件,以光学望远 镜为天线,俗称“ 激光雷达”。
本质相同
1.工作原理:
传感器发射激光束打到目标物体上并反射回来,接收器准确地测量出 光脉冲从发射到被反射回的传播时间,光速已知,就可得到从激光雷达到目 标点的距离。
若激光束不断地扫描目标物,就可以得到目标物上全部目标点的数据, 用此数据进行成像处理后,就可得到精确的三维立体图像。
(c)Weak feedback C≈1, vertical scale 10 mV div−1.
(d) Moderate feedback C>1, vertical scale 20 mV div−1.
Velocity:Doppler Frequency
目标 物体
伺服 系统
前置放 主放 大器 大器
信号 模数 处理 转换
主处 理器
距离 速度 角度 目标图 信息 信息 信息 像信息
通信 系统
屏幕 显示
理论 发射 基础 系统
接收 系统
信息 处理
运载 体积 平台 重量
工作 模式
第 一 代
经典理 论
气体激光, 传统光学
系统
单元探测器, 脉冲体制, 直接接收
D电非P子S扫S扫发描描射,,面外阵差探接测收器,
集成模块, DSP芯片, 成像显示
车/机载, 弹/星载
功能部 件, MOEM S,小
多波长复合, 多功能模块, 智能化模块
第 四 代
光子探 测,纳 米物理
阵列发射, 微光学系
统
微光学系统, 焦平面阵列 探测器,光
纤导光
硬软件融 合,系统 级芯片, 高分辨率, 成像显示
以激光为载波,以 光电探测器为接收 器件,以光学望远 镜为天线,俗称“ 激光雷达”。
本质相同
1.工作原理:
传感器发射激光束打到目标物体上并反射回来,接收器准确地测量出 光脉冲从发射到被反射回的传播时间,光速已知,就可得到从激光雷达到目 标点的距离。
若激光束不断地扫描目标物,就可以得到目标物上全部目标点的数据, 用此数据进行成像处理后,就可得到精确的三维立体图像。
(c)Weak feedback C≈1, vertical scale 10 mV div−1.
(d) Moderate feedback C>1, vertical scale 20 mV div−1.
Velocity:Doppler Frequency
雷达介绍PPT课件
方位360o L波段(1~2G)
05.12.2020 22
四、雷达的应用
3、引导指挥雷达(监视雷达)
能对多批次目标同时检测 测量目标的精度和分辨力较高
S波段(2~4G)
05.12.2020 23
四、雷达的应用
4、火控雷达
作用距离小 测量精度高
05.12.2020 24
四、雷达的应用
5、制导雷达
三、雷达的发展历史
•60年代,电扫描相控阵天线。美国AN/SPS-33防空相控阵雷 达工作于S波段(2G~4GHz,10cm),方位机械扫描,仰角 电扫描。 •1964年,美国装置了第一个空间轨道监视雷达,用于监视人 造地球卫星或空间飞行器。 •60年代,NRL美国海军实验室研制成探测距离在3700km以 上的“麦德雷”高频超视距雷达,首先证明了超视距雷达探 测飞机,弹道导弹和舰艇的能力,还能确定海面状况和海洋 上空风情的能力。
四、雷达的应用
10、气象雷达
05.12.2020 32
四、雷达的应用
11、空中管制雷达
05.12.2020 33
四、雷达的应用
12、合成孔径雷达
05.12.2020 34
四、雷达的应用
13、宇航应用
05.12.2020 35
四、雷达的应用
14、其它 ➢测高雷达 ➢雷达引信 ➢探地雷达 ➢防撞雷达
05.12.2020 15
三、雷达的发展历史
•合成孔径雷达、相控阵雷达、脉冲多普勒雷达在70年代得到新 的发展。 •70年代中期,合成孔径雷达的计算机成像。装在卫星的合成孔 径雷达获得分辨率25×25m的雷达图像,1cm波段的机载合成 孔径雷达可以达到0.09m2的分辨率。 •70年代越南战争后期,出现用甚高频(VHF)雷达探测地下坑 道。 •空间应用方面,雷达用来帮助“阿波罗”飞船在月球着陆,在 卫星方面被用作高度计,测量地球及其表面的不平度。 •70年代,“丹麦眼镜蛇”雷达是一部又代表性的大型高分辨率 相控阵雷达,美国将该雷达用于观测,跟踪苏联勘查加半岛下 靶场上空的多个再入弹道导弹的弹头。
05.12.2020 22
四、雷达的应用
3、引导指挥雷达(监视雷达)
能对多批次目标同时检测 测量目标的精度和分辨力较高
S波段(2~4G)
05.12.2020 23
四、雷达的应用
4、火控雷达
作用距离小 测量精度高
05.12.2020 24
四、雷达的应用
5、制导雷达
三、雷达的发展历史
•60年代,电扫描相控阵天线。美国AN/SPS-33防空相控阵雷 达工作于S波段(2G~4GHz,10cm),方位机械扫描,仰角 电扫描。 •1964年,美国装置了第一个空间轨道监视雷达,用于监视人 造地球卫星或空间飞行器。 •60年代,NRL美国海军实验室研制成探测距离在3700km以 上的“麦德雷”高频超视距雷达,首先证明了超视距雷达探 测飞机,弹道导弹和舰艇的能力,还能确定海面状况和海洋 上空风情的能力。
四、雷达的应用
10、气象雷达
05.12.2020 32
四、雷达的应用
11、空中管制雷达
05.12.2020 33
四、雷达的应用
12、合成孔径雷达
05.12.2020 34
四、雷达的应用
13、宇航应用
05.12.2020 35
四、雷达的应用
14、其它 ➢测高雷达 ➢雷达引信 ➢探地雷达 ➢防撞雷达
05.12.2020 15
三、雷达的发展历史
•合成孔径雷达、相控阵雷达、脉冲多普勒雷达在70年代得到新 的发展。 •70年代中期,合成孔径雷达的计算机成像。装在卫星的合成孔 径雷达获得分辨率25×25m的雷达图像,1cm波段的机载合成 孔径雷达可以达到0.09m2的分辨率。 •70年代越南战争后期,出现用甚高频(VHF)雷达探测地下坑 道。 •空间应用方面,雷达用来帮助“阿波罗”飞船在月球着陆,在 卫星方面被用作高度计,测量地球及其表面的不平度。 •70年代,“丹麦眼镜蛇”雷达是一部又代表性的大型高分辨率 相控阵雷达,美国将该雷达用于观测,跟踪苏联勘查加半岛下 靶场上空的多个再入弹道导弹的弹头。
激光雷达LIDAR-PPT精选文档
IMU:惯性测量装置(RpIMU-Inertial Measurement Unit)
手段:IMU有姿态量测功能,具有完全自主、无信号传播、 既能定位、测速,又可快速量测传感器瞬间的移动,输出 姿态信息等优点,但主要缺点是误差随时间迅速积累增长。 目的:获取机载LiDAR的姿态信息,即滚动、俯仰和航偏 角。
LiDAR的工作原理——POS系统:
DGPS与IMU对比:
DGPS系统:量测传感器的位置和速率,具有高精度,误差不随时间积累 等优点,但其动态性能差(易失锁)、输出频率低,不能两侧瞬间快速 的变化,没有姿态量测功能。 IMU系统:有姿态量测功能,具有完全自主、无信号传播、既能定位、 测速,又可快速量测传感器瞬间的移动,输出姿态信息等优点,但主 要缺点是误差随时间迅速积累增长。
侦察用成像激光雷达 障碍回避激光雷达 大气监测激光雷达 制导激光雷达 化学/生物战剂探测激光雷达 水下探测激光雷达 空间监视激光雷达 机器人三维视觉系统 其他军用激光雷达 弹道导弹防御激光雷达 靶场测量激光雷达 振动遥测激光雷达 多光谱激光雷达
LiDAR应用举例:
(一)激光成像雷达 激光雷达分辨率高,可以采集三维数据,如方位角俯仰角-距离、距离-速度-强度,并将数据以图像的形式显 示,获得辐射几何分布图像、距离选通图像、速度图像等 ,有潜力成为重要的侦察手段。
LiDAR的分类:
按不同功能:
①跟踪雷达(测距和测角); ②测速雷达(测量多普勒信息); ③动目标指示雷达(目标的多普勒信息); ④成像雷达(测量目标不同部位的反射强度和距离等信 号); ⑤差分吸收雷达(目标介质对特定频率光的吸收强度) 等。
LiDAR的应用前景:
因此,最优化的方法是对两个系统获得的信息进行综 合,这样可得到高精度的位置、速率和姿态数据。
手段:IMU有姿态量测功能,具有完全自主、无信号传播、 既能定位、测速,又可快速量测传感器瞬间的移动,输出 姿态信息等优点,但主要缺点是误差随时间迅速积累增长。 目的:获取机载LiDAR的姿态信息,即滚动、俯仰和航偏 角。
LiDAR的工作原理——POS系统:
DGPS与IMU对比:
DGPS系统:量测传感器的位置和速率,具有高精度,误差不随时间积累 等优点,但其动态性能差(易失锁)、输出频率低,不能两侧瞬间快速 的变化,没有姿态量测功能。 IMU系统:有姿态量测功能,具有完全自主、无信号传播、既能定位、 测速,又可快速量测传感器瞬间的移动,输出姿态信息等优点,但主 要缺点是误差随时间迅速积累增长。
侦察用成像激光雷达 障碍回避激光雷达 大气监测激光雷达 制导激光雷达 化学/生物战剂探测激光雷达 水下探测激光雷达 空间监视激光雷达 机器人三维视觉系统 其他军用激光雷达 弹道导弹防御激光雷达 靶场测量激光雷达 振动遥测激光雷达 多光谱激光雷达
LiDAR应用举例:
(一)激光成像雷达 激光雷达分辨率高,可以采集三维数据,如方位角俯仰角-距离、距离-速度-强度,并将数据以图像的形式显 示,获得辐射几何分布图像、距离选通图像、速度图像等 ,有潜力成为重要的侦察手段。
LiDAR的分类:
按不同功能:
①跟踪雷达(测距和测角); ②测速雷达(测量多普勒信息); ③动目标指示雷达(目标的多普勒信息); ④成像雷达(测量目标不同部位的反射强度和距离等信 号); ⑤差分吸收雷达(目标介质对特定频率光的吸收强度) 等。
LiDAR的应用前景:
因此,最优化的方法是对两个系统获得的信息进行综 合,这样可得到高精度的位置、速率和姿态数据。
激光雷达车载应用 ppt课件
5
根据激光测距原理计算,就得到从激光雷达到目标点的距离, 脉冲激光不断地扫描目标物,就可以得到目标物上全部目标 点的数据,用此数据进行成像处理后,就可得到精确的三维立 体图像.
ppt课件
6
在业内的大致应用
借助激光雷达发展无人驾驶技术 激光雷达用于汽车逆向设计 激光雷达用于车身的零部件检测 激光雷达实现汽车的主动安全 激光雷达辅助意念驾驶的实现 将激光雷达用于车辆检测 将激光雷达用于智能交通信号控制 将激光雷达用于交通事故勘察
ppt课件
32
而它的一个特点就是价格特别便宜,此前报道中,他们的 CTO Jeff Owens 说每台成本在 200 美元。在此次 CES 上,Quanergy 相 关负责人向 GeekCar 透露,如果订货量是一万台,那每部产品成本有 望控制在 100 美元以下,但是量产得再等两年。
如此便宜的价格,Quanergy给出的答案是“相控阵激光雷达技 术”。抛去传统激光雷达昂贵的旋转部件。用电子扫描代替机械部件 ,采用集成电路上的小镜子扫描各个方向,然后输出车辆周围的3D图 像。创始人Dr.Louay Eldada对具体技术三缄其口,只表示核心技术是 自己的博士研究课题。
目前已有的Ibeo全自动驾驶测试车上,常用的多点布 局组合是miniLUX和LUX两款产品。
ppt课件
31
Quanergy
Quanergy 是一家成立了三年的公司,在今年的CES上也推出了 自己的新产品:S2。号称是世界上第一款固态激光雷达。从外观来看 ,S3 是个黑色长方体,内部无任何转动机构。它可以放在手上,大小 和 Puck Auto 算是打了个平手。它的参数是8 线,探测范围为 10 厘 米-150 米。
ppt课件
27
激光雷达测风技术.完整版PPT文档课件
激光雷达测风技术
大气风场数据获得的手段
1. 地球外表观测系统 2. 地面、海面、风散射仪等,只能提供外表大气层的数据 3. 高空单层大气观测系统 4. 机载和星载的云图变化的风场推算数据,该方式覆盖范围受限 5. 高空多层大气观测系统 6. 无线电探空仪和卫星探测器,无线电探空仪能够提供风场的垂直
1.
单掺杂2m激光器〔室温,低能量〕
2.
Tm: YAG 〔钇铝石榴石〕
3.
Tm: LuAG 〔镥铝石榴石〕
4.
双掺杂2m激光器〔低温,高能量〕
5.
Tm, Ho: YAG〔钇铝石榴石〕
6.
Tm, Ho: YLF〔氟化钇锂〕激光器
7.
Tm, Ho: GdVO4〔钒酸钆)
双F-P标准具多普勒检测
Mie散射和分子散射速度测量
中心ν10 中心ν20 双通道F-P标准具
中心ν10 中心ν20 双通道F -P标准具
NASA/Goddard车载测风激光雷达
参数 激光器:波长 脉冲能量 重复频率 望远镜:口径 FOV 扫描方式 测量范围 距离分辨率
指标 355nm 70mJ 50Hz 45cm 0.2mrad XY双轴半空间 1.8~35km 0.25km@<3km 1km@>3km
上式还可表示为:
a:补偿量,b:振幅,max 周相位移动
DBS 扫描矢量风场反演
VRZ, VRE, VRN 分别是径向速度垂直、东向倾斜和北向倾斜分量
γ-天顶角
改进型DBS扫描矢量风场反演
激光雷达波束分别是垂直向、向北、向东、向南和向西
VR > 0, w > 0, u > 0, v > 0
相干激光测风雷达结构
大气风场数据获得的手段
1. 地球外表观测系统 2. 地面、海面、风散射仪等,只能提供外表大气层的数据 3. 高空单层大气观测系统 4. 机载和星载的云图变化的风场推算数据,该方式覆盖范围受限 5. 高空多层大气观测系统 6. 无线电探空仪和卫星探测器,无线电探空仪能够提供风场的垂直
1.
单掺杂2m激光器〔室温,低能量〕
2.
Tm: YAG 〔钇铝石榴石〕
3.
Tm: LuAG 〔镥铝石榴石〕
4.
双掺杂2m激光器〔低温,高能量〕
5.
Tm, Ho: YAG〔钇铝石榴石〕
6.
Tm, Ho: YLF〔氟化钇锂〕激光器
7.
Tm, Ho: GdVO4〔钒酸钆)
双F-P标准具多普勒检测
Mie散射和分子散射速度测量
中心ν10 中心ν20 双通道F-P标准具
中心ν10 中心ν20 双通道F -P标准具
NASA/Goddard车载测风激光雷达
参数 激光器:波长 脉冲能量 重复频率 望远镜:口径 FOV 扫描方式 测量范围 距离分辨率
指标 355nm 70mJ 50Hz 45cm 0.2mrad XY双轴半空间 1.8~35km 0.25km@<3km 1km@>3km
上式还可表示为:
a:补偿量,b:振幅,max 周相位移动
DBS 扫描矢量风场反演
VRZ, VRE, VRN 分别是径向速度垂直、东向倾斜和北向倾斜分量
γ-天顶角
改进型DBS扫描矢量风场反演
激光雷达波束分别是垂直向、向北、向东、向南和向西
VR > 0, w > 0, u > 0, v > 0
相干激光测风雷达结构
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
LiDAR原理,技术与应用
武汉大学 李德仁 院士 2010年7月23日, 青岛
主要内容
一、机载LiDAR原理,技术与应用 二、机载LiDAR与光学影像的联合处理 三、基于光学成像和激光雷达技术的移动
测量系统 四、地面LiDAR及在文物保护中的应用 五、结束语
一、机载LiDAR原理
激光回波测距原理
2nd 返回 从树枝
3rd返回
从地面
机载LiDAR多次回波信息-房屋
1st 返回
从房顶
1st (仅一次) 从地面返回
2nd 返回 从房檐
3rd返回
从地面
传统遥感传感器是地表的二维成像
全数字波形分析概念
离散回波记录
连续波回波记录
机载LiDAR分类
激光雷达
针对大气应用:大气圈层结构 航空测绘应用:地形测量 地面激光雷达:近地面三维建模
• 噪声
– 系统误差 – 高的及低的局外点(粗差) – 空洞
机载LiDAR数据精度影响因素
• LiDAR获得的水平和垂直精度和众多因素有关,主 要的有内外两种因素:
➢ GPS+IMU(POS)系统和激光系统本身都有自 身的精度限制,此为内因。
➢ 外因主要与航线设计、飞行条件、大气条件、地 形起伏因素和植被覆盖有关。
在测绘领域中,所谈的机载激光雷达大部分指用于地形测绘用的机载 激光雷达系统
• 事实上,机载LiDAR系统有陆地和海洋之分。海洋LiDAR是为了测量 海底地形而研制的,主要为国外的军方使用,我们通常说的机载 LiDAR主要操作于陆地上,为获取陆地DEM数据而研制的。
• LIDAR系统的操作平台主要为飞机。一般航摄飞机、直升机都可以搭 载LIDAR。美国NASA开始在卫星上搭载LiDAR,他们发射的ICEsat 卫星上就有LiDAR系统。
• 主要由三种类型的扫描原理
– 摇摆扫描镜(oscillating mirror) ,为Leica , Optech采用
– 旋转多棱镜(rotating polygon) ,为Riegl 和IGI采用 – 光纤扫描(fiber scanning),仅为TopoSys的Falcon
系统采用
机载LiDAR扫描原理-摆动扫描镜
机载LiDAR研究背景和意义
机载LiDAR是新型航空传 感器。在对地观测领域, 其最初目的是为获取高精 度数字表面模型。经一定 处理,获得剔除植被、人 工建筑等以后的数字地面 模型。应用已经扩大到基 础测绘、林业管理、管线 选线、岛礁测绘、困难地 区测绘等领域
机载LiDAR系统直接获取高精 度的数字表面模型,还可以同 时获取回波、强度等数据为目 标识别、分类提供辅助数据。 机载LiDAR系统可以携带航空 多光谱CCD相机,具备了同时 获得多光谱CCD影像的能力, 为后续应用提供了丰富的数据 资源。
0.500
飞
0.400
行
高
0.300
度
和
0.200
精
度
0.100
、
0.000
扫
0
1000 2000 3000 4000 5000 6000
描
Flying Height (m AGL)
角
度
机载LiDAR的重要参数
• 常见参数:
• 飞行高度:依据测区地物反射率 • 水平精度、垂直精度 • 回波次数/是否有全波形数字化仪 • 强度信息量化级别:一般8 -- 12bits • 发射和扫描频率:发射频率200 -- 400KHz,扫描频率
激光是具有大功率、高度方向性的光束。激光回波测距的原
理是由激光器发射激光并接收回波,加上一个能记录激光发
射和接收时间点的计时器,就很容易的通过以下公式得到距
离:
R
1 2
ct L
Clock Sensor Head
Return
Target
机载LiDAR数据采集原理
Result: XYZ Pos. in WGS84 坐标系
机载LiDAR数据特点
• 数据的密度ቤተ መጻሕፍቲ ባይዱ
– 每平米1个点或更多(0.4xo.4m)
• 数据的精度
– 垂直精度可以达到5-15cm – 平面精度可以达到10-75cm
• 数据的分布
– 扫描带重叠区域数据密度高 – 一个扫描内点的间距很小,而扫
描线之间点的间距却较大 – 采样模式和地形起伏对数据的分
布也有影响
点云数据分布均匀
机载LiDAR扫描原理-光纤扫描仪
优点:
•是发射光路和接受光路一一对应,激光发 射频率不受航高视场角约束 •点云数据密度均匀(同旋转正多面体扫描 仪)
缺点:扫描角固定
•数据获取范围小 •要求飞机平台低速飞行
激光束固定的纤维线阵
机载LiDAR多次回波信息-树木
1st 返回
从树顶
1st (仅一次) 从地面返回
优点:
•扫描角度可以调节
•较高的数据获取航高
缺点:
•扭矩、加速度、机器磨损 引起误差
•扫描条带两边的点密集, 而中间的点少
两个摆动方向而产生对于地面 的双向扫描,在地面上形成Z
形扫描线
机载LiDAR扫描原理-摆动扫描镜
密度最均匀情况
密度最不均匀情况
• 比较适合于精度要求不太高,而测量面积又比较大的应用场合 • 设备要经常进行检校,使用时间过长后,精度受影响较大
GPS & INS Distance Position.
由回波测距测量距离、由POS系统测量飞机姿态和激光束扫描角度,即 可以获得激光束在地面撞击点的三维坐标。该装置安置在卫星、飞机和 汽车上,分别为星载、机载和车载激光雷达。地面LiDAR无需POS系统 。
机载LiDAR扫描原理
• 上述激光测距系统,只能测量单点的三维空间坐 标。要进行面状测量,必须要加入扫描装置
➢ 在给定系统误差的情况下,LIDAR获得的三维坐
标精度可以看做是地形和植被覆盖的函数。
0.800
AeroScan System Accuracy
Estimated Accuracy @ FOV edge (m, 1 sigma)
LeicaASL50
0.700 0.600
horizontal (75) horizontal (45) vertical (75) vertical (45)
机载LiDAR扫描原理-旋转正多面体扫描仪
优点:
•扫描点是均匀分布的 •旋转较扭矩式磨损少,设备能保 持长期的可靠性和稳定性
缺点:
•视场角不可调节 •不适合较高的航高获取数据
旋转正多面体扫描镜只有一个旋转 方向,其每个表平面都按同一方向 扫描,在地面形成单向扫描平行线
机载LiDAR扫描原理-旋转正多面体扫描仪
武汉大学 李德仁 院士 2010年7月23日, 青岛
主要内容
一、机载LiDAR原理,技术与应用 二、机载LiDAR与光学影像的联合处理 三、基于光学成像和激光雷达技术的移动
测量系统 四、地面LiDAR及在文物保护中的应用 五、结束语
一、机载LiDAR原理
激光回波测距原理
2nd 返回 从树枝
3rd返回
从地面
机载LiDAR多次回波信息-房屋
1st 返回
从房顶
1st (仅一次) 从地面返回
2nd 返回 从房檐
3rd返回
从地面
传统遥感传感器是地表的二维成像
全数字波形分析概念
离散回波记录
连续波回波记录
机载LiDAR分类
激光雷达
针对大气应用:大气圈层结构 航空测绘应用:地形测量 地面激光雷达:近地面三维建模
• 噪声
– 系统误差 – 高的及低的局外点(粗差) – 空洞
机载LiDAR数据精度影响因素
• LiDAR获得的水平和垂直精度和众多因素有关,主 要的有内外两种因素:
➢ GPS+IMU(POS)系统和激光系统本身都有自 身的精度限制,此为内因。
➢ 外因主要与航线设计、飞行条件、大气条件、地 形起伏因素和植被覆盖有关。
在测绘领域中,所谈的机载激光雷达大部分指用于地形测绘用的机载 激光雷达系统
• 事实上,机载LiDAR系统有陆地和海洋之分。海洋LiDAR是为了测量 海底地形而研制的,主要为国外的军方使用,我们通常说的机载 LiDAR主要操作于陆地上,为获取陆地DEM数据而研制的。
• LIDAR系统的操作平台主要为飞机。一般航摄飞机、直升机都可以搭 载LIDAR。美国NASA开始在卫星上搭载LiDAR,他们发射的ICEsat 卫星上就有LiDAR系统。
• 主要由三种类型的扫描原理
– 摇摆扫描镜(oscillating mirror) ,为Leica , Optech采用
– 旋转多棱镜(rotating polygon) ,为Riegl 和IGI采用 – 光纤扫描(fiber scanning),仅为TopoSys的Falcon
系统采用
机载LiDAR扫描原理-摆动扫描镜
机载LiDAR研究背景和意义
机载LiDAR是新型航空传 感器。在对地观测领域, 其最初目的是为获取高精 度数字表面模型。经一定 处理,获得剔除植被、人 工建筑等以后的数字地面 模型。应用已经扩大到基 础测绘、林业管理、管线 选线、岛礁测绘、困难地 区测绘等领域
机载LiDAR系统直接获取高精 度的数字表面模型,还可以同 时获取回波、强度等数据为目 标识别、分类提供辅助数据。 机载LiDAR系统可以携带航空 多光谱CCD相机,具备了同时 获得多光谱CCD影像的能力, 为后续应用提供了丰富的数据 资源。
0.500
飞
0.400
行
高
0.300
度
和
0.200
精
度
0.100
、
0.000
扫
0
1000 2000 3000 4000 5000 6000
描
Flying Height (m AGL)
角
度
机载LiDAR的重要参数
• 常见参数:
• 飞行高度:依据测区地物反射率 • 水平精度、垂直精度 • 回波次数/是否有全波形数字化仪 • 强度信息量化级别:一般8 -- 12bits • 发射和扫描频率:发射频率200 -- 400KHz,扫描频率
激光是具有大功率、高度方向性的光束。激光回波测距的原
理是由激光器发射激光并接收回波,加上一个能记录激光发
射和接收时间点的计时器,就很容易的通过以下公式得到距
离:
R
1 2
ct L
Clock Sensor Head
Return
Target
机载LiDAR数据采集原理
Result: XYZ Pos. in WGS84 坐标系
机载LiDAR数据特点
• 数据的密度ቤተ መጻሕፍቲ ባይዱ
– 每平米1个点或更多(0.4xo.4m)
• 数据的精度
– 垂直精度可以达到5-15cm – 平面精度可以达到10-75cm
• 数据的分布
– 扫描带重叠区域数据密度高 – 一个扫描内点的间距很小,而扫
描线之间点的间距却较大 – 采样模式和地形起伏对数据的分
布也有影响
点云数据分布均匀
机载LiDAR扫描原理-光纤扫描仪
优点:
•是发射光路和接受光路一一对应,激光发 射频率不受航高视场角约束 •点云数据密度均匀(同旋转正多面体扫描 仪)
缺点:扫描角固定
•数据获取范围小 •要求飞机平台低速飞行
激光束固定的纤维线阵
机载LiDAR多次回波信息-树木
1st 返回
从树顶
1st (仅一次) 从地面返回
优点:
•扫描角度可以调节
•较高的数据获取航高
缺点:
•扭矩、加速度、机器磨损 引起误差
•扫描条带两边的点密集, 而中间的点少
两个摆动方向而产生对于地面 的双向扫描,在地面上形成Z
形扫描线
机载LiDAR扫描原理-摆动扫描镜
密度最均匀情况
密度最不均匀情况
• 比较适合于精度要求不太高,而测量面积又比较大的应用场合 • 设备要经常进行检校,使用时间过长后,精度受影响较大
GPS & INS Distance Position.
由回波测距测量距离、由POS系统测量飞机姿态和激光束扫描角度,即 可以获得激光束在地面撞击点的三维坐标。该装置安置在卫星、飞机和 汽车上,分别为星载、机载和车载激光雷达。地面LiDAR无需POS系统 。
机载LiDAR扫描原理
• 上述激光测距系统,只能测量单点的三维空间坐 标。要进行面状测量,必须要加入扫描装置
➢ 在给定系统误差的情况下,LIDAR获得的三维坐
标精度可以看做是地形和植被覆盖的函数。
0.800
AeroScan System Accuracy
Estimated Accuracy @ FOV edge (m, 1 sigma)
LeicaASL50
0.700 0.600
horizontal (75) horizontal (45) vertical (75) vertical (45)
机载LiDAR扫描原理-旋转正多面体扫描仪
优点:
•扫描点是均匀分布的 •旋转较扭矩式磨损少,设备能保 持长期的可靠性和稳定性
缺点:
•视场角不可调节 •不适合较高的航高获取数据
旋转正多面体扫描镜只有一个旋转 方向,其每个表平面都按同一方向 扫描,在地面形成单向扫描平行线
机载LiDAR扫描原理-旋转正多面体扫描仪