第四章 大数定律与中心极限定理
《概率论与数理统计》典型例题 第四章 大数定律与中心极限定理
= 0.15,
µn 为
5000
户中收视
该节目的户数,所以可应用棣莫弗-拉普拉斯中心极限定理,即二项分布以正态 分布为极限定理。
解 : 设 µn 为 5000 户 中 收 视 该 节 目 的 户 数 , 则 µn ~ B(n, p) , 其 中
n = 5000, p = 0.15 。 由棣莫弗-拉普拉斯中心极限定理, µn − np 近似服从 np(1− p)
显然需用到前一不等式,则只需算出 E(X + Y ) 与 D(X + Y ) 即可。
解:由于 E(X + Y ) = 0 ,
D( X + Y ) = DX + DY + 2Cov( X , Y ) = DX + DY + 2ρ XY DX DY = 1+ 4 + 2×1× 2× (−0.5) = 3 ,
( D )服从同一离散型分布。
分析:林德伯格-列维中心极限定理要求的条件是 X 1, X 2,", X n,"相互独
立、同分布、方差存在,这时,当 n 充分大时, Sn 才近似服从正态分布。 根据 条件分析选项即可。
解:显然选项 A 与 B 不能保证 X 1, X 2 , ", X n 同分布,可排除。 选项 C 给出了指数分布,此时独立同分布显然满足,而且由于是指数分布, 方差肯定存在,故满足定理条件。 选项 D 只给出其离散型的描述,此时独立同分布显然满足。 但却不能保证 方差一定存在,因此也应排除。 故选 C 。 注:本例重在考察中心极限定理的条件。
P{ X
− EX
≥ ε}≤
E[g( X − EX )] 。 g(ε )
分析:证明的结论形式与切比雪夫不等式非常相似,利用切比雪夫不等式的 证明思想试试看。
大数定理与中心极限定理
的随机变量,使得X Xi . 易知 i 1
E( X ) np D( X ) npq
由Lindeberg-Levy中心极限定理知
lim
P
X
np
x
1
x t2
e 2 dt
n npq
2
n
理解:在定理条件下,总有 X ~ N(np, npq).
三、中心极限定理的应用
➢ Lindeberg-Levy中心极限定理应用
其概率分布一定是正态分布。
定理4(De Moivre-Laplace中心极限定理) 设随机变量X ~ B(n, p),则对于任意的实数x,有
lim
P
X
np
x
1
x t2
e 2 dt
n npq
2
证明:因为X ~ B(n, p),由Bernoulli大数定理证明有
X1, X 2 , , X n为独立同分布于参数为p的两点分布
P
1 n
n i1
1 Xi n
n
E( Xi )
i1
1
D(1 n n i1
2
Xi)
1
M
n 2
所以
lim P n
1 n
n i1
Xi
1 n
n i1
E( Xi )
1
推论:设X1, X 2 , , X n , 是独立同分布
随机变量序列,且数学期望为,方
差 2,则对于任意的正实数有
lim
n
当观测次数n充分大时,“观测值得算术平均值接近 期望值”是一个大概率事件,即下式以大概率成立:
1
n
n i 1
Xi
n充分大
E(X )
大数定律与中心极限定理
X与Y独 立 eitX 与eitY 独立
X Y (t ) E(eitX )E(eitY )
X Y (t) X (t)Y (t)
性质5 : 若E( X l )存在,则对X的特征函数有
(k)(0) i k E( X k ), 1 k l
证明 设随机变量X的密度函数为p( x)
(t ) eitx exdx 0 eitx cos(tx) i sin(tx)
cos(tx)exdx i sin(tx)exdx
0
0
2
t2
i
2
t
t2
1
it
1
§1.3 特征函数的性质
t2
X (t) e 2
所以Y ~ N (, 2 )的特征函数为
Y (t ) X (t ) eit X (t )
it 2t 2
e 2
exp{ it 2t 2 }
2
(9) 伽 玛 分 布Ga(n, ) : 设Y ~ Ga(n, ),
2a
eihx 1 eihx / 2 (eihx / 2 eihx / 2 )
2 sin hx 2 hx ha
2
2
2
(t h) (t) , t (,)
定理(非负 定性) : 随机 变量X的特 征函数
(t)是非负定的,即对任意的自然数n, 及n
1
T
0
sint(
x t
x1
)
sint(
x t
第四章 大数定律与中心极限定理
则称{X 依概率收敛 依概率收敛于 则称 n}依概率收敛于X. 可记为
X n →X.
P
或
lim P{| X n − X |≥ ε} = 0
n→∞
二.几个常用的大数定律 几个常用的大数定律
1. 契贝晓夫大数定律 契贝晓夫大数定律 设{Xk,k=1,2,...}为两两不相关的随机变量序 为两两不相关的随机变量序 且它们的方差有界 即存在常数C>0,使 方差有界, 列,且它们的方差有界,即存在常数 ,
lim P{|
n→∞
µn
n
− p |< ε} = 1
即:µn
n
=
∑X
i= 1
i
n
→p
P
3. 辛钦大数定律
为独立同分布随机变量序列, 若{Xi,i=1.2,...}为独立同分布随机变量序列 为独立同分布随机变量序列 EXi=a <∞, i=1, 2, … 则对任意的 ε > 0,有 ∞
1 n 1 n P lim P{| ∑Xi − a |< ε} = 1,即 Yn = ∑Xi →a n→∞ n i=1 n ii=1 =1
2.德莫佛 拉普拉斯中心极限定理 德莫佛-拉普拉斯中心极限定理 德莫佛 拉普拉斯中心极限定理(De Moivre-Laplace) 设随机变量η 服从参数为n, 设随机变量ηn(n=1, 2, ...)服从参数为 p(0<p<1) 服从参数为 的二项分布, 的二项分布,则有 ηn − np L→ξ ~ N(0, 1).
§4.3. 中心极限定理 一.依分布收敛 依分布收敛
为随机变量序列, 为随机变量 为随机变量, 设{Xn}为随机变量序列,X为随机变量,其 为随机变量序列 若在F(x)的 对应的分布函数分别为F 的 对应的分布函数分别为 n(x), F(x). 若在 连续点,有 连续点, limF (x) = F(x),
第四章 大数定律及中心极限定理
数字 1
2
3
4
5
6
7
8
9
频率 0.301 0.176 0.125 0.097 0.079 0.067 0.058 0.051 0.046
数学家们发现,账本上的数据的开头数字出现的频率符合本福特定律, 如果做假账的人更改了真实数据,就会让账本开头数字出现的频率发生变 化,偏离本福特定律中的频率。
非常有趣的是,数学家们发现,在哪些假账中,数字5和6居然是最常 见的打头数字,而不是符合定律的数字1,如果审核账本的人把握了本福 特定律,伪造者就很难制造出虚假的数据了。2001年,美国最大的能源 交易商安然公司宣布破产,当时传出该公司的高层治理人员涉嫌做假账丑 闻。事后人们发现,安然公司在2001年到2002年所宣布的每股盈利数字就 不符合本福特定律,这说明了安然的高层领导确实改动过这些数据。
广州市一些车主或出租车公司已意识到交通事故伤残、死亡赔偿大 幅度提高这一问题,而他们过去购买的第三者人身意外险保额5万元, 显然杯水车薪,保障严重不足。他们决定加保(投保20万元以上),然 而让他们感到诧异的是多家保险公司不约而同拒绝了这一要求。中国人 寿、平安保险公司、太平洋保险公司和金盛人寿保险公司内部有规定: 私家车最高只能投保20万元的保额。已在保监会备案。而金盛人寿保险 公司一位罗小姐说:“公司要保持一定利润,加保太多会影响公司利益”。
按照广东上一年度城镇居民人均可支配收入(元/年)标准:深圳 23905.92、珠海16757.4、汕头10001.64、广州及一般地区为12380.4, 全省农村居民人均纯收入(元/年)4054.58,也就是说一位司机如果疏 忽驾驶,在深圳或其他地方造成一名深圳居民死亡的话,可能会赔偿对 方家属47万元,而在广州发生有死亡交通事故可能赔付24.7万元。
大数定律和中心极限定理课件
中心极限定理可以帮助我们在不确定 的情况下做出决策。例如,通过模拟 大量可能的结果并计算其分布,可以 评估不同决策的风险和收益。
04
大数定律与中心极限定理的 关联与区别
关联性分析
大数定律和中心极限定理都是概率论中 的重要定理,它们在某些方面存在关联。
大数定律描述了在大量独立重复试验中, 大数定律是中心极限定理的一种特例, 某一事件的相对频率趋于该事件的概率, 当随机变量数量趋于无穷时,中心极限
而中心极限定理则说明无论独立随机变 定理可以看作是大数定律的一种推广。 量的分布是什么,它们的和或积的分布
都趋于正态分布。
差异性分析
大数定律和中心极限定理在适用范围和表现形式 上存在差异。
大数定律的结论是相对频率趋于概率,而中心极 限定理的结论是随机变量和的分布趋于正态分布。
大数定律适用于大量独立重复试验中某一事件的 相对频率,而中心极限定理则适用于独立随机变 量的和或积的分布。
02
中心极限定理
定义
• 中心极限定理:在大量独立同分布的随机变量下,这些随机变 量的平均值的分布趋近于正态分布,即无论这些随机变量的分 布是什么,只要样本量足够大,其平均值的分布都将呈现出正 态分布的特征。
适用范 围
中心极限定理适用于大量独立同分布的随机变量,这些随 机变量的分布可以是离散的也可以是连续的。
在金融领域,中心极限定理也被广泛应用。例如,股票价格的波动可以看作是大 量投资者决策的独立同分布的随机变量,因此股票价格的平均值(即指数)的分 布也呈现出正态分布的特征。
03
大数定律与中心极限定理的 应用
在统计学中的应用
样本均值和总体均值的近似
大数定律表明,当样本量足够大时,样本均值趋近于总体均值,这为统计学中的参数估计提供了基础。
概率论与数理统计(茆诗松)第二版课后第四章习题参考答案
第四章 大数定律与中心极限定理习题4.11. 如果X X Pn →,且Y X Pn →.试证:P {X = Y } = 1.证:因 | X − Y | = | −(X n − X ) + (X n − Y )| ≤ | X n − X | + | X n − Y |,对任意的ε > 0,有⎭⎬⎫⎩⎨⎧≥−+⎭⎬⎫⎩⎨⎧≥−≤≥−≤2||2||}|{|0εεεY X P X X P Y X P n n ,又因X X Pn →,且Y X Pn →,有02||lim =⎭⎬⎫⎩⎨⎧≥−+∞→εX X P n n ,02||lim =⎭⎫⎩⎨⎧≥−+∞→εY X P n n ,则P {| X − Y | ≥ ε} = 0,取k 1=ε,有01||=⎭⎬⎫⎩⎨⎧≥−k Y X P ,即11||=⎭⎬⎫⎩⎨⎧<−k Y X P , 故11||lim1||}{1=⎭⎬⎫⎩⎨⎧<−=⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧<−==+∞→+∞=k Y X P k Y X P Y X P k k I . 2. 如果X X Pn →,Y Y Pn →.试证:(1)Y X Y X Pn n +→+; (2)XY Y X Pn n →.证:(1)因 | (X n + Y n ) − (X + Y ) | = | (X n − X ) + (Y n − Y )| ≤ | X n − X | + | Y n − Y |,对任意的ε > 0,有⎭⎫⎩⎨⎧≥−+⎭⎬⎫⎩⎨⎧≥−≤≥+−+≤2||2||}|)()({|0εεεY Y P X X P Y X Y X P n n n n ,又因X X P n →,Y Y P n →,有02||lim =⎭⎫⎩⎨⎧≥−+∞→εX X P n n ,02||lim =⎭⎬⎫⎩⎨⎧≥−+∞→εY Y P n n ,故0}|)()({|lim =≥+−++∞→εY X Y X P n n n ,即Y X Y X Pn n +→+;(2)因 | X n Y n − XY | = | (X n − X )Y n + X (Y n − Y ) | ≤ | X n − X | ⋅ | Y n | + | X | ⋅ | Y n − Y |,对任意的ε > 0,有⎭⎬⎫⎩⎨⎧≥−⋅+⎭⎬⎫⎩⎨⎧≥⋅−≤≥−≤2||||2||||}|{|0εεεY Y X P Y X X P XY Y X P n n n n n ,对任意的h > 0,存在M 1 > 0,使得4}|{|1h M X P <≥,存在M 2 > 0,使得8}|{|2hM Y P <≥, 存在N 1 > 0,当n > N 1时,8}1|{|h Y Y P n <≥−, 因| Y n | = | (Y n − Y ) + Y | ≤ | Y n − Y | + | Y |,有4}|{|}1|{|}1|{|22h M Y Y Y P M Y P n n <≥+≥−≤+≥, 存在N 2 > 0,当n > N 2时,4)1(2||2h M X X P n <⎭⎬⎫⎩⎨⎧+≥−ε,当n > max{N 1, N 2}时,有244}1|{|)1(2||2||||22h h h M Y P M X X P Y X X P n n n n =+<+≥+⎭⎬⎫⎩⎨⎧+≥−≤⎭⎬⎫⎩⎨⎧≥⋅−εε,存在N 3 > 0,当n > N 3时,42||1hM Y Y P n <⎭⎬⎫⎩⎨⎧≥−ε,有244}|{|2||2||||11h h h M X P M Y Y P X Y Y P n n =+<≥+⎭⎬⎫⎩⎨⎧≥−≤⎭⎬⎫⎩⎨⎧≥⋅−εε,则对任意的h > 0,当n > max{N 1, N 2, N 3} 时,有h h h Y Y X P Y X X P XY Y X P n n n n n =+<⎭⎬⎫⎩⎨⎧≥−⋅+⎭⎬⎫⎩⎨⎧≥⋅−≤≥−≤222||||2||||}|{|0εεε,故0}|{|lim =≥−+∞→εXY Y X P n n n ,即XY Y X Pn n →.3. 如果X X Pn →,g (x )是直线上的连续函数,试证:)()(X g X g Pn →. 证:对任意的h > 0,存在M > 0,使得4}|{|h M X P <≥, 存在N 1 > 0,当n > N 1时,4}1|{|h X X P n <≥−, 因| X n | = | (X n − X ) + X | ≤ | X n − X | + | X |,则244}|{|}1|{|}1|{|h h h M X P X X P M X P n n =+<≥+≥−≤+≥, 因g (x ) 是直线上的连续函数,有g (x ) 在闭区间 [− (M + 1), M + 1] 上连续,必一致连续, 对任意的ε > 0,存在δ > 0,当 | x − y | < δ 时,有 | g (x ) − g ( y ) | < ε ,存在N 2 > 0,当n > N 2时,4}|{|hX X P n <≥−δ,则对任意的h > 0,当n > max{N 1, N 2} 时,有{}}|{|}1|{|}|{|}|)()({|0M X M X X X P X g X g P n n n ≥+≥≥−≤≥−≤U U δεh hh h M X P M X P X X P n n =++<≥++≥+≥−≤424}|{|}1|{|}|{|δ, 故0}|)()({|lim =≥−+∞→εX g X g P n n ,即)()(X g X g Pn →.4. 如果a X P n →,则对任意常数c ,有ca cX Pn →. 证:当c = 0时,有c X n = 0,ca = 0,显然ca cX Pn →;当c ≠ 0时,对任意的ε > 0,有0||||lim =⎭⎬⎫⎩⎨⎧≥−+∞→c a X P n n ε, 故0}|{|lim =≥−+∞→εca cX P n n ,即ca cX Pn →.5. 试证:X X P n →的充要条件为:n → +∞ 时,有0||1||→⎟⎟⎠⎞⎜⎜⎝⎛−+−XX X X E n n .证:以连续随机变量为例进行证明,设X n − X 的密度函数为p ( y ),必要性:设X X Pn →,对任意的ε > 0,都有0}|{|lim =≥−+∞→εX X P n n ,对012>+εε,存在N > 0,当n > N 时,εεε+<≥−1}|{|2X X P n , 则∫∫∫≥<∞+∞−+++=+=⎟⎟⎠⎞⎜⎜⎝⎛−+−εε||||)(||1||)(||1||)(||1||||1||y y n n dy y p y y dy y p y y dy y p y y XX X X E εεεεεεεεεεεεε=+++<≥−+<−+=++≤∫∫≥<11}|{|}|{|1)()(12||||X X P X X P dy y p dy y p n n y y ,故n → +∞ 时,有0||1||→⎟⎟⎠⎞⎜⎜⎝⎛−+−XX X X E n n ; 充分性:设n → +∞ 时,有0||1||→⎟⎟⎠⎞⎜⎜⎝⎛−+−XX X X E n n , 因∫∫∫≥≥≥++≤++==≥−εεεεεεεεεε||||||)(||1||1)(11)(}|{|y y y n dy y p y y dy y p dy y p X X P ⎟⎟⎠⎞⎜⎜⎝⎛−+−+=++≤∫∞+∞−||1||1)(||1||1X X X X E dy y p y y n n εεεε, 故0}|{|lim =≥−+∞→εX X P n n ,即X X Pn →.6. 设D (x )为退化分布:⎩⎨⎧≥<=.0,1;0,0)(x x x D试问下列分布函数列的极限函数是否仍是分布函数?(其中n = 1, 2, ….)(1){D (x + n )}; (2){D (x + 1/n )}; (3){D (x − 1/n )}.解:(1)对任意实数x ,当n > −x 时,有x + n > 0,D (x + n ) = 1,即1)(lim =++∞→n x D n ,则 {D (x + n )} 的极限函数是常量函数f (x ) = 1,有f (−∞) = 1 ≠ 0,故 {D (x + n )} 的极限函数不是分布函数; (2)若x ≥ 0,有01>+n x ,11=⎟⎠⎞⎜⎝⎛+n x D ,即11lim =⎟⎠⎞⎜⎝⎛++∞→n x D n ,若x < 0,当x n 1−>时,有01<+n x ,01=⎟⎠⎞⎜⎝⎛+n x D ,即01lim =⎟⎠⎞⎜⎝⎛++∞→n x D n ,则⎩⎨⎧≥<=⎟⎠⎞⎜⎝⎛++∞→.0,1;0,01lim x x n x D n 这是在0点处单点分布的分布函数,满足分布函数的基本性质,故⎭⎬⎫⎩⎨⎧⎟⎠⎞⎜⎝⎛+n x D 1的极限函数是分布函数;(3)若x ≤ 0,有01<−n x ,01=⎟⎠⎞⎜⎝⎛−n x D ,即01lim =⎟⎠⎞⎜⎝⎛−+∞→n x D n ,若x > 0,当x n 1>时,有01>−n x ,11=⎟⎠⎞⎜⎝⎛−n x D ,即11lim =⎟⎠⎞⎜⎝⎛−+∞→n x D n ,则⎩⎨⎧>≤=⎟⎠⎞⎜⎝⎛−+∞→.0,1;0,01lim x x n x D n 在x = 0处不是右连续,故⎭⎬⎫⎩⎨⎧⎟⎠⎞⎜⎝⎛−n x D 1的极限函数不是分布函数.7. 设分布函数列 {F n (x )} 弱收敛于连续的分布函数F (x ),试证:{F n (x )} 在 (−∞, +∞) 上一致收敛于分布函数F (x ). 证:因F (x ) 为连续的分布函数,有F (−∞) = 0,F (+∞) = 1,对任意的ε > 0,取正整数ε2>k ,则存在分点x 1 < x 2 < … < x k −1,使得1,,2,1,)(−==k i kix F i L ,并取x 0 = −∞,x k = +∞, 可得k k i k x F x F i i ,1,,2,1,21)()(1−=<=−−L ε, 因 {F n (x )} 弱收敛于F (x ),且F (x ) 连续,有 {F n (x )} 在每一点处都收敛于F (x ),则存在N > 0,当n > N 时,1,,2,1,2|)()(|−=<−k i x F x F i i n L ε,且显然有20|)()(|00ε<=−x F x F n ,20|)()(|ε<=−k k n x F x F ,对任意实数x ,必存在j ,1 ≤ j ≤ k ,有x j −1 ≤ x < x j ,因2)()()()(2)(11εε+<≤≤<−−−j j n n j n j x F x F x F x F x F ,则εεεε−=−−>−−>−−222)()()()(1x F x F x F x F j n ,且εεεε=+<+−<−222)()()()(x F x F x F x F j n ,即对任意的ε > 0和任意实数x ,总存在N > 0,当n > N 时,都有 | F n (x ) − F (x ) | < ε , 故 {F n (x )} 在 (−∞, +∞) 上一致收敛于分布函数F (x ).8. 如果X X Ln →,且数列a n → a ,b n → b .试证:b aX b X a Ln n n +→+. 证:设y 0是F aX + b ( y ) 的任一连续点,则对任意的ε > 0,存在h > 0,当 | y − y 0 | < h 时,4|)()(|0ε<−++y F y F b aX b aX ,又设y 是满足 | y − y 0 | < h 的F aX + b ( y ) 的任一连续点,因⎟⎠⎞⎜⎝⎛−=⎭⎬⎫⎩⎨⎧−≤=≤+=+a b y F a b y X P y b aX P y F X b aX }{)(,有a b y x −=是F X (x )的连续点,且X X L n→, 有)()(lim x F x F X X n n =+∞→,存在N 1,当n > N 1时,4|)()(|ε<−x F x F X X n ,即4|)()(|ε<−++y F y F b aX b aX n ,则当n > N 1且 | y − y 0 | < h 时,2|)()(||)()(||)()(|00ε<−+−≤−++++++y F y F y F y F y F y F b aX b aX b aX b aX b aX b aX n n , 因X 的分布函数F X (x ) 满足F X (−∞) = 0,F X (+∞) = 1,F X (x ) 单调不减且几乎处处连续, 存在M ,使得F X (x ) 在x = ± M 处连续,且41)(ε−>M F X ,4)(ε<−M F X ,因X X Ln →,有41)()(lim ε−>=+∞→M F M F X X n n ,4)()(lim ε<−=−+∞→M F M F X X n n ,则存在N 2,当n > N 2时,41)(ε−>M F n X ,4)(ε<−M F n X ,可得2)(1)(}|{|ε<−+−=>M F M F M X P n n X X n ,因数列a n → a ,b n → b ,存在N 3,当n > N 3时,M h a a n 4||<−,4||h b b n <−, 可得当n > max{N 2, N 3}时,⎭⎫⎩⎨⎧>−+−=⎭⎬⎫⎩⎨⎧>+−+2|)()(|2|)()(|h b b X a a P h b aX b X a P n n n n n n n2}|{|24||42||||||ε<>=⎭⎬⎫⎩⎨⎧>+⋅≤⎭⎬⎫⎩⎨⎧>−+⋅−≤M X P h h X M hP h b b X a a P nn n n n , 则⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧>+−+⎭⎬⎫⎩⎨⎧+≤+≤≤+=+2|)()(|2}{)(000h b aX b X a h y b aX P y b X a P y F n n n n n n n n b X a n n n U222|)()(|200ε+⎟⎠⎞⎜⎝⎛+<⎭⎬⎫⎩⎨⎧>+−++⎭⎬⎫⎩⎨⎧+≤+≤+h y F h b aX b X a P h y b aX P b aX n n n n n n , 且⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧>+−+≤+≤⎭⎬⎫⎩⎨⎧−≤+=⎟⎠⎞⎜⎝⎛−+2|)()(|}{22000h b aX b X a y b X a P h y b aX P h y F n n n n n n n n b aX n U2)(2|)()(|}{00ε+<⎭⎬⎫⎩⎨⎧>+−++≤+≤+y F h b aX b X a P y b X a P n n n b X a n n n n n n n , 即22)(22000εε+⎟⎠⎞⎜⎝⎛+<<−⎟⎠⎞⎜⎝⎛−+++h y F y F h y F b aX b X a b aX n n n n n ,因当n > N 1且 | y − y 0 | < h 时,2)()(2)(00εε+<<−+++y F y F y F b aX b aX b aX n ,在区间⎟⎠⎞⎜⎝⎛++h y h y 00,2取F aX + b ( y ) 的任一连续点y 1,满足 | y 1 − y 0 | < h ,当n > max{N 1, N 2, N 3}时,εεε+<+≤+⎟⎠⎞⎜⎝⎛+<++++)(2)(22)(0100y F y F h y F y F b aX b aX b aX b X a n n n n n ,在区间⎟⎠⎞⎜⎝⎛−−2,00h y h y 取F aX + b ( y ) 的任一连续点y 2,满足 | y 2 − y 0 | < h ,当n > max{N 1, N 2, N 3}时,εεε−>−≥−⎟⎠⎞⎜⎝⎛−>++++)(2)(22)(0200y F y F h y F y F b aX b aX b aX b X a n n n n n ,即对于F aX + b ( y ) 的任一连续点y 0,当n > max{N 1, N 2, N 3}时,ε<−++|)()(|00y F y F b aX b X a n n n , 故)()(y F y F b aX Wb X a n n n ++→,b aX b X a Ln n n +→+. 9. 如果X X Ln →,a Y Pn →,试证:a X Y X Ln n +→+. 证:设y 0是F X + a ( y ) 的任一连续点,则对任意的ε > 0,存在h > 0,当 | y − y 0 | < h 时,4|)()(|0ε<−++y F y F a X a X ,又设y 是满足 | y − y 0 | < h 的F X + a ( y )的任一连续点,因F X + a ( y ) = P {X + a ≤ y } = P {X ≤ y − a } = F X ( y − a ),有x = y − a 是F X (x )的连续点,且X X Ln →, 有)()(lim x F x F X X n n =+∞→,存在N 1,当n > N 1时,4|)()(|ε<−x F x F X X n ,即4|)()(|ε<−++y F y F a X a X n , 则当n > N 1且 | y − y 0 | < h 时,2|)()(||)()(||)()(|00ε<−+−≤−++++++y F y F y F y F y F y F a X a X a X a X a X a X n n ,因a Y Pn →,有02||lim =⎭⎫⎩⎨⎧>−+∞→h a Y P n n ,存在N 2,当n > N 2时,22||ε<⎭⎬⎫⎩⎨⎧>−h a Y P n , 则⎭⎬⎫⎩⎨⎧⎭⎫⎩⎨⎧>−⎭⎬⎫⎩⎨⎧+≤+≤≤+=+2||2}{)(000h a Y h y a X P y Y X P y F n n n n Y X n n U222||200ε+⎟⎠⎞⎜⎝⎛+<⎭⎬⎫⎩⎨⎧>−+⎭⎬⎫⎩⎨⎧+≤+≤+h y F h a Y P h y a X P a X n n n , 且⎭⎬⎫⎩⎨⎧⎭⎫⎩⎨⎧>−≤+≤⎭⎬⎫⎩⎨⎧−≤+=⎟⎠⎞⎜⎝⎛−+2||}{22000h a Y y Y X P h y a X P h y F n n n n a X n U2)(2||}{00ε+<⎭⎬⎫⎩⎨⎧>−+≤+≤+y F h a Y P y Y X P n n Y X n n n , 即22)(22000εε+⎟⎠⎞⎜⎝⎛+<<−⎟⎠⎞⎜⎝⎛−+++h y F y F h y F a X Y X a X n n n n ,因当n > N 1且 | y − y 0 | < h 时,2)()(2)(00εε+<<−+++y F y F y F a X a X a X n ,在区间⎟⎠⎞⎜⎝⎛++h y h y 00,2取F X + a ( y ) 的任一连续点y 1,满足 | y 1 − y 0 | < h ,当n > max{N 1, N 2}时,εεε+<+≤+⎟⎠⎞⎜⎝⎛+<++++)(2)(22)(0100y F y F h y F y F a X a X a X Y X n n n n ,在区间⎟⎠⎞⎜⎝⎛−−2,00h y h y 取F X + a ( y ) 的任一连续点y 2,满足 | y 2 − y 0 | < h ,当n > max{N 1, N 2}时,εεε−>−≥−⎟⎠⎞⎜⎝⎛−>++++)(2)(22)(0200y F y F h y F y F a X a X a X Y X n n n n ,即对于F X + a ( y ) 的任一连续点y 0,当n > max{N 1, N 2}时,ε<−++|)()(|00y F y F a X Y X n n , 故)()(y F y F a X WY X n n ++→,a X Y X Ln n +→+. 10.如果X X Ln →,0Pn Y →,试证:0Pn n Y X →.证:因X 的分布函数F X (x ) 满足F X (−∞) = 0,F X (+∞) = 1,F X (x ) 单调不减且几乎处处连续,则对任意的h > 0,存在M ,使得F X (x ) 在x = ± M 处连续,且41)(h M F X −>,4)(hM F X <−, 因X X L n →,有41)()(lim h M F M F X X n n −>=+∞→,4)()(lim h M F M F X X n n <−=−+∞→,则存在N 1,当n > N 1时,41)(h M F n X −>,4)(hM F n X <−,可得2)(1)(}|{|hM F M F M X P n n X X n <−+−=>,因0Pn Y →,对任意的ε > 0,有0||lim =⎭⎬⎫⎩⎨⎧>+∞→M Y P n n ε,存在N 2,当n > N 2时,2||h M Y P n <⎭⎬⎫⎩⎨⎧>ε, 则当n > max{N 1, N 2}时,有h M Y P M X P M Y M X P Y X P n n n n n n <⎭⎬⎫⎩⎨⎧>+>≤⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧>>≤>εεε||}|{|||}|{|}|{|U ,故0}|{|lim =>+∞→εn n n Y X P ,即0Pn n Y X →.11.如果X X Ln →,a Y Pn →,且Y n ≠ 0,常数a ≠ 0,试证:aXY X L n n →. 证:设y 0是F X / a ( y ) 的任一连续点,则对任意的ε > 0,存在h > 0,当 | y − y 0 | < h 时,4|)()(|0//ε<−y F y F a X a X ,又设y 是满足 | y − y 0 | < h 的F X / a ( y ) 的任一连续点,因)(}{)(/ay F ay X P y a X P y F X a X =≤=⎭⎬⎫⎩⎨⎧≤=,有x = ay 是F X (x )的连续点,且X X Ln →,有)()(lim x F x F X X n n =+∞→,存在N 1,当n > N 1时,4|)()(|ε<−x F x F X X n ,即4|)()(|//ε<−y F y F a X a X n ,则当n > N 1且 | y − y 0 | < h 时,2|)()(||)()(||)()(|0////0//ε<−+−≤−y F y F y F y F y F y F a X a X a X a X a X a X n n ,因X 的分布函数F X (x )满足F X (−∞) = 0,F X (+∞) = 1,F X (x )单调不减且几乎处处连续,存在M ,使得F X (x ) 在x = ± M 处连续,且121)(ε−>M F X ,12)(ε<−M F X ,因X X Ln →,有121)()(lim ε−>=+∞→M F M F X X n n ,12)()(lim ε<−=−+∞→M F M F X X n n ,则存在N 2,当n > N 2时,121)(ε−>M F n X ,12)(ε<−M F n X ,可得6)(1)(}|{|ε<−+−=>M F M F M X P n n X X n ,因0≠→a Y Pn ,有02||lim =⎭⎬⎫⎩⎨⎧>−+∞→h a Y P n n ,存在N 3 > 0,当n > N 3时,62||||ε<⎭⎬⎫⎩⎨⎧>−a a Y P n ,有62||||ε<⎭⎬⎫⎩⎨⎧<a Y P n ,且64||2ε<⎭⎬⎫⎩⎨⎧>−M h a a Y P n , 可得当n > max{N 1, N 2, N 3}时,⎭⎬⎫⎩⎨⎧>⋅−⋅=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧>−=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧>−2||||||||2)(2h Y a a Y X P h aY Y a X P h a X Y X P n n n n n n n n n ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎭⎬⎫⎩⎨⎧<⎭⎬⎫⎩⎨⎧>−>≤2||||4||}|{|2a Y M h a a Y M X P n n n U U22||||4||}|{|2ε<⎭⎬⎫⎩⎨⎧<+⎭⎬⎫⎩⎨⎧>−+>≤a Y P M h a a Y P M X P n n n ,则⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎪⎫⎪⎩⎪⎨⎧>−⎭⎬⎫⎩⎨⎧+≤≤⎭⎬⎫⎩⎨⎧≤=22)(000/h a X Y X h y a XP y Y X P y F n n n n n n Y X n n U22220/0ε+⎟⎠⎞⎜⎝⎛+<⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧>−+⎭⎬⎫⎩⎨⎧+≤≤h y F h a X Y X P h y a X P a X n n n n n ,且⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧>−⎭⎬⎫⎩⎨⎧≤≤⎭⎬⎫⎩⎨⎧−≤=⎟⎠⎞⎜⎝⎛−222000/h a X Y X y Y X P h y a X P h y F n n n nn n a X n U2)(20/0ε+<⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧>−+⎭⎬⎫⎩⎨⎧≤≤y F h a X Y X P y Y X P n n Y X n n n n n ,即22)(220/0/0/εε+⎟⎠⎞⎜⎝⎛+<<−⎟⎠⎞⎜⎝⎛−h y F y F h y F a X Y X a X n n n n ,因当n > N 1且 | y − y 0 | < h 时,2)()(2)(0//0/εε+<<−y F y F y F a X a X a X n ,在区间⎟⎠⎞⎜⎝⎛++h y h y 00,2取F X / a ( y ) 的任一连续点y 1,满足 | y 1 − y 0 | < h ,当n > max{N 1, N 2, N 3}时,εεε+<+≤+⎟⎠⎞⎜⎝⎛+<)(2)(22)(0/1/0/0/y F y F h y F y F a X a X a X Y X n n n n ,在区间⎟⎠⎞⎜⎝⎛−−2,00h y h y 取F X / a ( y ) 的任一连续点y 2,满足 | y 2 − y 0 | < h ,当n > max{N 1, N 2, N 3}时,εεε−>−≥−⎟⎠⎞⎜⎝⎛−>)(2)(22)(0/2/0/0/y F y F h y F y F a X a X a X Y X n n n n ,即对于F X / a ( y ) 的任一连续点y 0,当n > max{N 1, N 2, N 3}时,ε<−|)()(|0/0/y F y F a X Y X n n ,故)()(//y F y F a X WY X n n →,aX Y X L n n →. 12.设随机变量X n 服从柯西分布,其密度函数为+∞<<∞−+=x x n nx p n ,)1π()(22.试证:0Pn X →.证:对任意的ε > 0,)arctan(π2)arctan(π1)1π(}|{|22εεεεεεn nx dx x n n X P n ==+=<−−∫, 则12ππ2)arctan(lim π2}|0{|lim =⋅==<−+∞→+∞→εεn X P n n n , 故0Pn X →.13.设随机变量序列{X n }独立同分布,其密度函数为⎪⎩⎪⎨⎧<<=.,0;0,1)(其他ββx x p其中常数β > 0,令Y n = max{X 1, X 2, …, X n },试证:βPn Y →.证:对任意的ε > 0,P {| Y n − β | < ε} = P {β − ε < Y n < β + ε} = P {max{X 1, X 2, …, X n } > β − ε}= 1 − P {max{X 1, X 2, …, X n } ≤ β − ε} = 1 − P {X 1 ≤ β − ε} P {X 2 ≤ β − ε} … P {X n ≤ β − ε}n⎟⎟⎠⎞⎜⎜⎝⎛−−=βεβ1, 则11lim }|{|lim =⎥⎥⎦⎤⎢⎢⎣⎡⎟⎟⎠⎞⎜⎜⎝⎛−−=<−+∞→+∞→nn n n Y P βεβεβ, 故βPn Y →.14.设随机变量序列{X n }独立同分布,其密度函数为⎩⎨⎧<≥=−−.,0;,e )()(a x a x x p a x 其中Y n = min{X 1, X 2, …, X n },试证:a Y Pn →.证:对任意的ε > 0,P {| Y n − a | < ε} = P {a − ε < Y n < a + ε} = P {min{X 1, X 2, …, X n } < a + ε}= 1 − P {min{X 1, X 2, …, X n } ≥ a + ε} = 1 − P {X 1 ≥ a + ε} P {X 2 ≥ a + ε} … P {X n ≥ a + ε}εεεn na a x n a a x dx −∞++−−∞++−−−=⎟⎠⎞⎜⎝⎛−−=⎟⎠⎞⎜⎝⎛−=∫e 1e 1e 1)()(, 则1)e 1(lim }|{|lim =−=<−−+∞→+∞→εεn n n n a Y P ,故a Y Pn →.15.设随机变量序列{X n }独立同分布,且X i ~ U(0, 1).令nni i n X Y 11⎟⎟⎠⎞⎜⎜⎝⎛=∏=,试证明:c Y P n →,其中c 为常数,并求出c .证:设∑∏===⎟⎟⎠⎞⎜⎜⎝⎛==n i i n i i n n X n X n Y Z 11ln 1ln 1ln ,因X i ~ U (0, 1), 则1)ln (ln )(ln 101−=−==∫x x x xdx X E i ,2)2ln 2ln (ln )(ln 12122=+−==∫x x x x x xdx X E i ,1)](ln [)(ln )Var(ln 22=−=i i i X E X E X , 可得1)(ln 1)(1−==∑=n i i n X E n Z E ,n X nZ ni in 1)Var(ln 1)Var(12==∑=,由切比雪夫不等式,可得对任意的ε > 0,221)Var(}|)({|εεεn Z Z E Z P n n n =≤≥−,则01lim }|)({|lim 02=≤≥−≤+∞→+∞→εεn Z E Z P n n n n ,即0}|)({|lim =≥−+∞→εn n n Z E Z P ,1)(−=→n P n Z E Z ,因n Z n Y e =,且函数e x 是直线上的连续函数,根据本节第3题的结论,可得1e e −→=PZ n n Y , 故c Y Pn →,其中1e −=c 为常数.16.设分布函数列{F n (x )}弱收敛于分布函数F (x ),且F n (x ) 和F (x ) 都是连续、严格单调函数,又设 ξ 服从(0, 1)上的均匀分布,试证:)()(11ξξ−−→F F Pn. 证:因F (x ) 为连续的分布函数,有F (−∞) = 0,F (+∞) = 1,则对任意的h > 0,存在M > 0,使得21)(h M F −>,2)(h M F <−, 因F (x ) 是连续、严格单调函数,有F −1( y ) 也是连续、严格单调函数, 可得F −1( y ) 在区间 [F (− M − 1), F (M + 1)] 上一致连续, 对任意的ε > 0,存在δ > 0,当y , y * ∈ [F (− M − 1), F (M + 1)] 且 | y − y * | < δ 时,| F −1( y ) − F −1( y *) | < ε, 设y * 是 [F (−M ), F (M )] 中任一点,记x * = F −1( y *),有x * ∈ [−M , M ],不妨设0 < ε < 1, 则对任意的x 若满足 ε≥−|*|x x ,就有 δ≥−|*)(|y x F ,根据本节第7题的结论知,{F n (x )} 在 (−∞, +∞) 上一致收敛于分布函数F (x ), 则对δ > 0和任意实数x ,总存在N > 0,当n > N 时,都有 | F n (x ) − F (x ) | < δ, 因当n > N 时,δ<−|)()(|x F x F n 且δ≥−|*(|y x F ,有*)(y x F n ≠,即*)(1y F x n −≠, 则对任意的0 < ε < 1,当n > N 时,*)(1y F n −满足ε<−=−−−−|*)(*)(||**)(|111y F y F x y F n n , 可得对任意的0 < ε < 1,当n > N 时,h M F M F P F F P n −>−∈≥<−−−1)]}(),([{}|)()({|11ξεξξ由h 的任意性可知1}|)()({|lim 11=<−−−+∞→εξξF F P n n ,故)()(11ξξ−−→F F Pn.17.设随机变量序列{X n }独立同分布,数学期望、方差均存在,且E (X n ) = µ,试证:µP n k k X k n n →⋅+∑=1)1(2.证:令∑=⋅+=nk k n X k n n Y 1)1(2,并设Var (X n ) = σ 2, 因µµµ=+⋅+=+=∑=)1(21)1(2)1(2)(1n n n n k n n Y E nk n , 且222212222)1(324)12)(1(61)1(4)1(4)Var(σσσ++=++⋅+=+=∑=n n n n n n n n k n n Y nk n , 则由切比雪夫不等式可得,对任意的ε > 0,222)1(3241)Var(1}|{|1σεεεµ++−=−≥<−≥n n n Y Y P n n , 因1)1(3241lim 22=⎥⎦⎤⎢⎣⎡++−+∞→σεn n n n ,由夹逼准则可得1}|{|lim =<−+∞→εµn n Y P , 故µP n k kn X k n n Y →⋅+=∑=1)1(2. 18.设随机变量序列{X n }独立同分布,数学期望、方差均存在,且E (X n ) = 0,Var (X n ) = σ 2.试证:E (X n ) = 0,Var (X n ) = σ 2.试证:2121σP n k k X n →∑=. 注:此题与第19题应放在习题4.3中,需用到4.3节介绍的辛钦大数定律.证:因随机变量序列}{2n X 独立同分布,且222)]([)Var()(σ=+=n n n X E X X E 存在,故}{2nX 满足辛钦大数定律条件,}{2nX 服从大数定律,即2121σP n k k X n →∑=.19.设随机变量序列{X n }独立同分布,且Var (X n ) = σ 2存在,令∑==n i i X n X 11,∑=−=n i i n X X n S 122)(1.试证:22σPnS →.证:2122112122122121)2(1)(1X X n X n X X X n X X X X n X X n S n i i ni i n i i n i i i n i i n−=⎟⎟⎠⎞⎜⎜⎝⎛+−=+−=−=∑∑∑∑∑=====,设E(X n ) = µ,{X n }满足辛钦大数定律条件,{X n }服从大数定律,即µP nk k X n X →=∑=11,则根据本节第2题第(2)小问的结论知,22µPX →,因随机变量序列}{2n X 独立同分布,且2222)]([)Var()(µσ+=+=n n n X E X X E 存在,则}{2nX 满足辛钦大数定律条件,}{2nX 服从大数定律,即22121µσ+→∑=P n k k X n ,故根据本节第2题第(1)小问的结论知,22222122)(1σµµσ=−+→−=∑=P n i i nX X n S .20.将n 个编号为1至n 的球放入n 个编号为1至n 的盒子中,每个盒子只能放一个球,记⎩⎨⎧=.,0;,1反之的盒子的球放入编号为编号为i i X i 且∑==ni i n X S 1,试证明:0)(Pn n n S E S →−. 证:因n X P i 1}1{==,nX P i 11}0{−==,且i ≠ j 时,)1(1}1{−==n n X X P j i ,)1(11}0{−−==n n X X P j i , 则n X E i 1)(=,⎟⎠⎞⎜⎝⎛−=n n X i 111)Var(, 且i ≠ j 时,)1(1)(−=n n X X E j i ,)1(11)1(1)()()(),Cov(22−=−−=−=n n n n n X E X E X X E X X j i j i j i , 有1)()(1==∑=ni i n X E S E ,1)1(1)1(11),Cov(2)Var()Var(211=−⋅−+−=+=∑∑≤<≤=n n n n n X X X S nj i j i ni i n , 可得0)]()([1)(=−=⎥⎦⎤⎢⎣⎡−n n n n S E S E n n S E S E ,221)Var(1)(Var n S n n S E S n n n ==⎥⎦⎤⎢⎣⎡−, 由切比雪夫不等式,可得对任意的ε > 0,2221)(Var 1)()(εεεn n S E S n S E S E n S E S P n n n n n n =⎥⎦⎤⎢⎣⎡−≤⎭⎬⎫⎩⎨⎧≥⎥⎦⎤⎢⎣⎡−−−, 则01lim )()(lim 022=≤⎭⎬⎫⎩⎨⎧≥⎥⎦⎤⎢⎣⎡−−−≤+∞→+∞→εεn n S E S E n S E S P n n n n n n , 故0)(Pn n nS E S →−.习题4.21. 设离散随机变量X 的分布列如下,试求X 的特征函数.1.02.03.04.03210PX解:特征函数ϕ (t ) = e it ⋅ 0 × 0.4 + e it ⋅ 1 × 0.3 + e it ⋅ 2 × 0.2 + e it ⋅ 3 × 0.1 = 0.4 + 0.3 e it + 0.2 e 2it + 0.1 e 3it .2. 设离散随机变量X 服从几何分布P {X = k } = (1 − p ) k − 1 p , k = 1, 2, … .试求X 的特征函数.并以此求E (X ) 和Var (X ). 解:特征函数ititk k ititk k itk p p p p p p t e)1(1e )]1([ee)1(e )(1111−−=−=−⋅=∑∑+∞=−+∞=−ϕ; 因22]e )1(1[e ]e )1(1[]e )1([e ]e )1(1[e )(it it it it it it it p ip p i p p p i p t −−=−−⋅−−⋅−−−⋅⋅=′ϕ,有)()0(2X iE pip ip ===′ϕ,故pX E 1)(=; 因332]e )1(1[]e )1(1[e ]e )1([]e )1(1[e 2]e )1(1[e )(it it it itit itit itp p p i p p ip p i ip t −−−+−=⋅−−⋅−−−−−⋅⋅=′′−−ϕ, 有)(2)2()0(2223X E i pp p p p =−−=−−=′′ϕ,可得222)(p p X E −=, 故222112)Var(p pp p p X −=⎟⎟⎠⎞⎜⎜⎝⎛−−=. 3. 设离散随机变量X 服从巴斯卡分布rk r p p r k k X P −−⎟⎟⎠⎞⎜⎜⎝⎛−−==)1(11}{,k = r , r + 1, …试求X 的特征函数.解:特征函数∑∑+∞=−−+∞=−−+−−−=−⎟⎟⎠⎞⎜⎜⎝⎛−−⋅=r k r k it r k itr r r k r k r itkp r k k r p p p r k t )(e)1)(1()1()!1(e )1(11e )(L ϕ ∑∑+∞=−=−−−+∞=−=−−=+−−−=r k p x r k r r it rk p x r k r it ititdx x d r p x r k k r p e )1(111e )1()()!1()e ()1()1()!1()e (L itit it p x r r it p x r r r it p x k k r r r it x r r p x dx d r p x dx d r p e )1(e )1(11e )1(1111)1()!1()!1()e (11)!1()e ()!1()e (−=−=−−−=+∞=−−−−−⋅−=⎟⎠⎞⎜⎝⎛−⋅−=⎟⎟⎠⎞⎜⎜⎝⎛⋅−=∑rit itr it r it p p p p ⎥⎦⎤⎢⎣⎡−−=−−=e )1(1e ]e )1(1[)e (. 4. 求下列分布函数的特征函数,并由特征函数求其数学期望和方差.(1))0(,e 2)(||1>=∫∞−−a dt a x F x t a ; (2))0(,1π)(222>+=∫∞−a dt at a x F x . 解:(1)因密度函数||11e 2)()(x a ax F x p −=′=,故⎥⎥⎦⎤⎢⎢⎣⎡−++=⎥⎦⎤⎢⎣⎡+=⋅=+∞−∞−+∞+−∞−+∞+∞−−∫∫∫0)(0)(0)(0)(||1e e 2e e 2ee 2)(ait a it a dx dx a dx a t x a it x a it x a it x a it x a itx ϕ 222112at a a it a it a +=⎟⎠⎞⎜⎝⎛−−+=; 因222222221)(22)()(a t ta t a t a t +−=⋅+−=′ϕ,有)(0)0(1X iE ==′ϕ, 故E (X ) = 0;因32242242222222221)(26)(2)(22)(2)(a t a t a a t t a t t a a t a t +−=+⋅+⋅−+⋅−=′′ϕ, 有)(22)0(222641X E i a a a =−=−=′′ϕ,可得222)(a X E =, 故222202)Var(aa X =−=;(2)因密度函数22221π)()(ax a x F x p +⋅=′=, 则∫+∞∞−+⋅=dx a x a t itx 2221e π)(ϕ, 由第(1)小题的结论知∫∞+∞−=+=dx x p a t a t itx )(e )(12221ϕ,根据逆转公式,可得∫∫∞+∞−−∞+∞−−−+⋅===dt at a dt t a x p itx itx x a 2221||1e π21)(e π21e 2)(ϕ, 可得||||222e πe 2π21e y a y a itya a a dt a t −−−+∞∞−=⋅=+⋅∫, 故||||222e e ππ1e π)(t a t a itx a a dx ax a t −−+∞∞−=⋅=+⋅=∫ϕ; 因⎩⎨⎧>−<=′−,0,e ,0,e )(2t a t a t atat ϕ 有a a −=+′≠=−′)00()00(22ϕϕ,即)0(2ϕ′不存在, 故E (X ) 不存在,Var (X ) 也不存在.5. 设X ~ N (µ, σ 2),试用特征函数的方法求X 的3阶及4阶中心矩. 解:因X ~ N (µ, σ 2),有X 的特征函数是222e)(t t i t σµϕ−=,则)(e)(2222t i t t t i σµϕσµ−⋅=′−,)(e)(e )(222222222σσµϕσµσµ−⋅+−⋅=′′−−t t i t t i t i t ,因)()(3e)(e)(2223222222σσµσµϕσµσµ−⋅−⋅+−⋅=′′′−−t i t i t t t i t t i ,有ϕ″′(0) = e 0 ⋅ (i µ )3 + e 0 ⋅ 3i µ ⋅ (−σ 2) = − i µ 3 − 3i µσ 2 = i 3E (X 3) = − i E (X 3), 故E (X 3) = µ 3 + 3µσ 2; 又因2222222422)4()(3e)()(6e)(e)(222222σσσµσµϕσµσµσµ−⋅+−⋅−⋅+−⋅=−−−t t i t t i t t i t i t i t ,有ϕ (4)(0) = e 0 ⋅ (i µ )4 + e 0 ⋅ 6(i µ)2 ⋅ (−σ 2) + e 0 ⋅ 3σ 4 = µ 4 + 6µ 2σ 2 + 3σ 4 = i 4E (X 4) = E (X 4), 故E (X 4) = µ 4 + 6µ 2σ 2 + 3σ 4.6. 试用特征函数的方法证明二项分布的可加性:若X ~ b (n , p ),Y ~ b (m , p ),且X 与Y 独立,则X + Y ~ b (n + m , p ).证:因X ~ b (n , p ),Y ~ b (m , p ),且X 与Y 独立,有X 与Y 的特征函数分别为ϕ X (t ) = ( p e it + 1 − p ) n ,ϕ Y (t ) = ( p e it + 1 − p ) m , 则X + Y 的特征函数为ϕ X + Y (t ) = ϕ X (t ) ⋅ϕ Y (t ) = ( p e it + 1 − p ) n + m ,这是二项分布b (n + m , p )的特征函数, 故根据特征函数的唯一性定理知X + Y ~ b (n + m , p ).7. 试用特征函数的方法证明泊松分布的可加性:若X ~ P (λ1),Y ~ P (λ2),且X 与Y 独立,则X + Y ~ P (λ1 + λ2).证:因X ~ P (λ1),Y ~ P (λ2),且X 与Y 独立,有X 与Y 的特征函数分别为)1(e1e )(−=itt X λϕ,)1(e2e )(−=itt Y λϕ,则X + Y 的特征函数为)1)(e(21e )()()(−++==itt t t Y X Y X λλϕϕϕ,这是泊松分布P (λ1 + λ2)的特征函数,故根据特征函数的唯一性定理知X + Y ~ P (λ1 + λ2).8. 试用特征函数的方法证明伽马分布的可加性:若X ~ Ga (α1, λ),Y ~ Ga (α2, λ),且X 与Y 独立,则X + Y ~ Ga (α1 + α2 , λ).证:因X ~ Ga (α1, λ),Y ~ Ga (α2, λ),且X 与Y 独立,有X 与Y 的特征函数分别为11)(αλϕ−⎟⎠⎞⎜⎝⎛−=it t X ,21)(αλϕ−⎟⎠⎞⎜⎝⎛−=it t Y ,则X + Y 的特征函数为)(211)()()(ααλϕϕϕ+−+⎟⎠⎞⎜⎝⎛−==it t t t Y X Y X ,这是伽马分布Ga (α1 + α2 , λ)的特征函数,故根据特征函数的唯一性定理知X + Y ~ Ga (α1 + α2 , λ).9. 试用特征函数的方法证明χ 2分布的可加性:若X ~ χ 2 (n ),Y ~ χ 2 (m ),且X 与Y 独立,则X + Y ~ χ 2 (n + m ).证:因X ~ χ 2 (n ),Y ~ χ 2 (m ),且X 与Y 独立,有X 与Y 的特征函数分别为2)21()(n X it t −−=ϕ,2)21()(m Y it t −−=ϕ,则X + Y 的特征函数为2)21()()()(m n Y X Y X it t t t +−+−==ϕϕϕ,这是χ 2分布χ 2 (n + m )的特征函数,故根据特征函数的唯一性定理知X + Y ~ χ 2 (n + m ).10.设X i 独立同分布,且X i ~ Exp(λ),i = 1, 2, …, n .试用特征函数的方法证明:),(~1λn Ga X Y ni i n ∑==.证:因X i ~ Exp (λ),i = 1, 2, …, n ,且X i 相互独立,有X i 的特征函数为11)(−⎟⎠⎞⎜⎝⎛−=−=λλλϕit it t i X ,则∑==ni i n X Y 1的特征函数为nni X Y it t t i n −=⎟⎠⎞⎜⎝⎛−==∏λϕϕ1)()(1,这是伽马分布Ga (n , λ)的特征函数,故根据特征函数的唯一性定理知Y n ~ Ga (n , λ).11.设连续随机变量X 的密度函数如下:+∞<<∞−−+⋅=x x x p ,)(π1)(22µλλ, 其中参数λ > 0, −∞ < µ < +∞,常记为X ~ Ch (λ, µ ).(1)试证X 的特征函数为exp{i µ t − λ | t |},且利用此结果证明柯西分布的可加性; (2)当µ = 0, λ = 1时,记Y = X ,试证ϕ X + Y (t ) = ϕ X (t ) ⋅ϕ Y (t ),但是X 与Y 不独立;(3)若X 1, X 2, …, X n 相互独立,且服从同一柯西分布,试证:)(121n X X X n+++L 与X 1同分布. 证:(1)根据第4题第(2)小题的结论知:若X *的密度函数为22π1)(*xx p +⋅=λλ,即X * ~ Ch (λ, 0), 则X *的特征函数为ϕ * (t ) = e −λ | t |,且X = X * + µ 的密度函数为22)(π1)(µλλ−+⋅=x x p , 故X 的特征函数为ϕ X (t ) = e i µ t ϕ * (t ) = e i µ t ⋅ e −λ | t | = e i µ t −λ | t |; 若X 1 ~ Ch (λ1, µ1),X 2 ~ Ch (λ2, µ2),且相互独立,有X 1与X 2的特征函数分别为||111e )(t t i X t λµϕ−=,||222e )(t t i X t λµϕ−=, 则X 1 + X 2的特征函数为||)()(21212121e )()()(t t i X X X X t t t λλµµϕϕϕ+−++==,这是柯西分布Ch (λ1 + λ2, µ1 + µ2)的特征函数,故根据特征函数的唯一性定理知X 1 + X 2 ~ Ch (λ1 + λ2, µ1 + µ2); (2)当µ = 0, λ = 1时,X ~ Ch (1, 0),有X 的特征函数为ϕ X (t ) = e −| t |,又因Y = X ,有Y 的特征函数为ϕ Y (t ) = e −| t |,且X + Y = 2X ,故X + Y 的特征函数为ϕ X + Y (t ) = ϕ 2X (t ) = ϕ X (2t ) = e −| 2t | = e −| t | ⋅ e −| t | =ϕ X (t ) ⋅ϕ Y (t ); 但Y = X ,显然有X 与Y 不独立;(3)因X i ~ Ch (λ, µ ),i = 1, 2, …, n ,且X i 相互独立,有X i 的特征函数为||e )(t t i X t i λµϕ−=, 则)(121n n X X X nY +++=L 的特征函数为 )(e e )()(1||111t n t t t X t t i n t n ti n ni X ni X nY i in ϕϕϕϕλµλµ===⎟⎠⎞⎜⎝⎛==−⎟⎟⎠⎞⎜⎜⎝⎛⋅−⋅==∏∏,故根据特征函数的唯一性定理知)(121n X X X n+++L 与X 1同分布. 12.设连续随机变量X 的密度函数为p (x ),试证:p (x ) 关于原点对称的充要条件是它的特征函数是实的偶函数.证:方法一:根据随机变量X 与−X 的关系充分性:设X 的特征函数ϕ X (t )是实的偶函数,有ϕ X (t ) = ϕ X (−t ),则−X 的特征函数ϕ −X (t ) = ϕ X (−t ) = ϕ X (t ),根据特征函数的唯一性定理知−X 与X 同分布,因X 的密度函数为p (x ),有−X 的密度函数为p (−x ),故由−X 与X 同分布可知p (−x ) = p (x ),即p (x ) 关于原点对称; 必要性:设X 的密度函数p (x ) 关于原点对称,有p (−x ) = p (x ), 因−X 的密度函数为p (−x ),即−X 与X 同分布,则−X 的特征函数ϕ −X (t ) = ϕ X (−t ) = ϕ X (t ),且)(][e ][e ][e )()()(t E E E t t X itX itX X it X X ϕϕϕ=====−−−, 故X 的特征函数ϕ X (t )是实的偶函数. 方法二:根据密度函数与特征函数的关系充分性:设连续随机变量X 的特征函数ϕ X (t )是实的偶函数,有ϕ X (t ) = ϕ X (−t ),因∫+∞∞−−=dt t x p itx )(e π21)(ϕ,有∫∫+∞∞−+∞∞−−−==−dt t dt t x p itxx it )(e π21)(e π21)()(ϕϕ, 令t = −u ,有dt = −du ,且当t → −∞时,u → +∞;当t → +∞时,u → −∞,则)()(e π21)(e π21))((e π21)()(x p du u du u du u x p iuxiux x u i ==−=−−=−∫∫∫+∞∞−−+∞∞−−−∞∞+−ϕϕϕ, 故p (x ) 关于原点对称;必要性:设X 的密度函数p (x ) 关于原点对称,有p (−x ) = p (x ),因∫+∞∞−−==dx x p E t itxitX)(e )(e)(ϕ,有∫∫+∞∞−−+∞∞−−==−dx x p dx x p t itx xt i )(e )(e)()(ϕ,令x = −y ,有dx = −dy ,且当x → −∞时,y → +∞;当x → +∞时,y → −∞, 则)()(e )(e ))((e )()(t dy y p dy y p dy y p t X ity ity y it X ϕϕ==−=−−=−∫∫∫+∞∞−+∞∞−−∞∞+−−,且)(][e ][e ][e )()()(t E E E t t X itX itX X t i X X ϕϕϕ====−=−−, 故X 的特征函数ϕ X (t )是实的偶函数.13.设X 1, X 2, …, X n 独立同分布,且都服从N(µ , σ 2)分布,试求∑==ni i X n X 11的分布.证:因X i ~ N (µ , σ 2),i = 1, 2, …, n ,且X i 相互独立,有X i 的特征函数为222e)(t t i X t i σµϕ−=,则∑==n i i X n X 11的特征函数为nt t i n t n t i n ni X n i X n X n t t t i i 2211112222ee)()(σµσµϕϕϕ−⎥⎥⎦⎤⎢⎢⎣⎡⎟⎠⎞⎜⎝⎛−⋅====⎟⎠⎞⎜⎝⎛==∏∏,这是正态分布⎟⎟⎠⎞⎜⎜⎝⎛n N 2,σµ的特征函数,故根据特征函数的唯一性定理知⎟⎟⎠⎞⎜⎜⎝⎛=∑=n N X n X ni i 21,~1σµ. 14.利用特征函数方法证明如下的泊松定理:设有一列二项分布{b (k , n , p n )},若λ=→∞n n np lim ,则L ,2,1,0,e !),,(lim ==−∞→k k p n k b kn n λλ.证:二项分布b (n , p n )的特征函数为ϕ n (t ) = ( p n e it + 1 − p n ) n = [1 + p n (e it − 1)] n ,且n → ∞时,p n → 0,因)1(e)1(e )1(e 1e )]1(e 1[lim )]1(e 1[lim )(lim −−⋅−→→∞→∞=−+=−+=itit n it n n np p itn p n it n n n n p p t λϕ,。
第四章大数定律与中心极限定理
≥ lim (1 −
n→ ∞
D( X n )
ε2
C )=1 ) ≥ lim (1 − 2 n→ ∞ nε
契比雪夫大数定律的特殊情况 推论:设 是两两不相关的随机变量序列, 推论 设{Xk}是两两不相关的随机变量序列 是两两不相关的随机变量序列 具有相同的数学期望E(Xk)=µ和方差 具有相同的数学期望 和方差 D(Xk)=σ2(k=1,2,…),则对于任意给定的 则对于任意给定的ε>0,恒 则对于任意给定的 恒 有
1 n 1 n 2 ∑ Yi = n ∑ ( X i − µ ) n i =1 i =1 1 n 1 n 2 2 ∑ E (Yi ) = n ∑ E [( X i − µ ) ] = σ n i =1 i =1
D (Yn ) = D[( X n − µ ) ] = E [( X n − µ ) ] − σ
2 4 4 Q E ( X n ) 存在 ,∴ E [( X n − µ ) 4 ]存在 4
1 n 2 ∴ lim P ∑ ( X i − µ ) − σ < ε = 1 n→ ∞ n i =1
定理(伯努里大数定律):设进行n 定理(伯努里大数定律):设进行n次独 大数定律):设进行 立重复试验,每次试验中事件A 立重复试验,每次试验中事件A发生 的概率为p 次试验中事件A 的概率为p,记μn为n次试验中事件A 发生的次数,则对任意的ε>0,有 发生的次数,则对任意的ε>0,有
例如对某物的长度进行测量,在测量时有 例如对某物的长度进行测量 在测量时有 许多随机因素影响测量的结果.如温度和 许多随机因素影响测量的结果 如温度和 湿度等因素对测量仪器的影响,使测量产 湿度等因素对测量仪器的影响 使测量产 生误差X 测量者观察时视线所产生的误 生误差 1;测量者观察时视线所产生的误 差X1;测量者心理和生理上的变化产生的 测量者心理和生理上的变化产生的 测量误差X 显然这些误差是微小的、 测量误差 3;…显然这些误差是微小的、 显然这些误差是微小的 随机的,而且相互没有影响 而且相互没有影响.测量的总误差 随机的 而且相互没有影响 测量的总误差 是上述各个因素产生的误差之和,即∑Xi. 是上述各个因素产生的误差之和 即
正态分布大数定律与中心极限定理
0
1 e 2
x2 2
2 dx 2
0
1 e 2
x2 2
dx 1
第四章 正态分布、大数定律与中心极限定理பைடு நூலகம்
0
1 ( 2 )(0) ; 由( 1 )容易得到( 2 )。 2 (3) x 1 x
1 e 2
x2 2
dx
P ( X x ) F ( x )且F ( x )
x
f ( x )dx ,或f ( x ) F ( x )
x2 x1
P ( x1 X x 2 ) F ( x 2 ) F ( x1 ) f ( x )dx
第四章 正态分布、大数定律与中心极限定理
1.正态变量的密度函数 设连续型随机变量 X 的概率密度为 ( x ) 1 f ( x) e 2 , x 2
2 2
和标准正态密度
1 ( x) e 首先都具有一般密度函 数的非负规范性,另外 , 2 标准正态密度由于是偶 函数,还具有对称区间 积分的特殊性
f ( x )dx ( x )dx 1且 ( x )是偶函数
1 e 2
x2 2
2 dx 2
( x )2 2 2
dx
t x
k k t e dt 2
t2 2
则: k 0
z
t2 2
k 1, 3, 5,
k
2 k
k 2
2
k
2
0 t e dt
k
2
4大数定律及中心极限定理
返回主目录
例.将一颗骰子连掷100次,则点数之和不少于 将一颗骰子连掷100次 100 500的概率是多少 的概率是多少? 500的概率是多少? 解:设Xk为第 次掷出的点数 设 为第k 次掷出的点数,k=1,2,…,100,则 则 X1,…,X100独立同分布. 独立同分布 7 1 6 2 49 35 E ( X 1 ) = , D( X 1 ) = ∑ k − = 2 6 i =1 4 12
n−>∞
则称 { X n } 服从大数定律。
返回主目录
第四章 大数定律及中心极限定理
§1 大数定律
定理 4.1(切比雪夫大数定理) 设随机变量 X 1 ,L, X n ,L 相互独立, 且具有相同的数学期
1 n 望及方差, EX k = µ,DX k = σ ,k = 1,2,L, 令 Yn = ∑ X k , n k =1
n
≤ x} =
1 2π
−∞
∫e
x
t2 − 2
dt
返回主目录
常见的中心极限定理
定理3(德莫佛-拉普拉斯定理)(De Moivre--Laplace) 设随机变量 η n (n = 1,2,L) 服从参数为n,p(0<p<1)的二 项分布 ,即 η n ~ B ( n, p ).
则对于任意 x ,恒有:
n =10, p = 0.2, np = 2, npq ≈1.265. (1) 直接计算: P(ξ ≤ 3) = C ×0.2 ×0.8 ≈ 0.2013
3 10 3 7
(2)用局部极限定理近似计算: P(ξ ≤ 3) =
例 产品为废品的概率为p=0.005, 求10000件产 品中废品数不大于70的概率.
4-1大数定律
,
取极限并由夹边定理得:
∑ ∑ ⎧
P⎨ ⎩
1 n
n i =1
Xi
−
1 n
n i =1
E( Xi )
≥
ε
⎫ ⎬
⎭
→
0.
说明2: 上述定理中当n很大时,随机变量 X1, X2, , Xn的算术
平均值
1 n
n
∑
i =1
X
i
接近于它们的数学期望的算术平均值
1 n
n
∑
i =1
E
(
X
i
),
(这个接近是概率意义下的接近)即在定理的条件下,n个
lim
n→∞
P
⎧ ⎨ ⎩
1 n
n k =1
Xk
−μ
<
ε
⎫ ⎬
=
1
⎭
或
∑ ∑ lim P{| X
n→∞
−1 n
n i =1
E(
X
k
)
|≥
ε
}
=
lim
n→∞
P
⎧ ⎨ ⎩
1 n
n
Xk
k =1
−μ
≥
ε
⎫ ⎬
=
0
⎭
说明1:切比雪夫大数定律更一般的形式中,当 X1, X2, , Xn, 两两不关,且存在常数C,使 D(Xi ) ≤ C i = 1, 2, 定理仍成立.
X
2 1
,
X 22 ,
, X n2 , 也相
互独立,由 E( X k ) = 0, 得E( X k2 ) = D( X k ) + [E( X k )]2 = σ 2 ,由辛钦 大数定律可知,对于任意正数ε,有
第四章 大数定律与中心极限定理
第四章 大数定律与中心极限定理教学目得与教学要求:了解特征函数得定义与常用分布得特征函数;理解并能应用大数定律;掌握依概率收敛与按分布收敛得概念;掌握并能应用独立同分布下得中心极限定理。
教学重点:大数定律、依概率收敛与按分布收敛得概念、中心极限定理。
教学难点:大数定律与中心极限定理得应用。
教学措施:理论部分得教学多采用讲授法,注意思想方法得训练,计算类问题采用习题与讨论得方法进行教学。
教学时数:12学时教学过程:§4、1 特征函数特征函数就是处理概率论问题得有力工具,其作用在于:(1) 可将求独立随机变量与得分布得卷积运算化成乘法运算;(2) 可将求各阶矩得积分运算化成微分运算;(3) 可将求随机变量序列得极限分布化成一般得函数极限问题等。
§4、1、1 特征函数得定义定义4、1、1 设就是一个随机变量,称其中为虚数单位,为得特征函数。
注:因为,所以总就是存在得,即任一随机变量得特征函数总就是存在得。
特征函数得求法:(1) 当离散随机变量得分布列为则得特征函数为;(2) 当连续随机变量得密度函数为,则得特征函数为。
特征函数得计算中用到复变函数,为此注意:(1) 欧拉公式:;(2) 复数得共轭:;(3) 复数得模:。
例4、1、1 常用分布得特征函数(1) 单点分布:,其特征函数为;(2) 分布:,其特征函数为;(3) 泊松分布:,其特征函数为;(4) 均匀分布:因为密度函数为,所以其特征函数为;(5) 标准正态分布:因为密度函数为,所以其特征函数为;(6) 指数分布:因为密度函数为,所以其特征函数为000()(cos()sin())itx x x x t e e dx tx e dx i tx e dx λλλϕλλ+∞+∞+∞---==+⎰⎰⎰ 。
§4、1、2 特征函数得性质性质4、1、1。
性质4、1、2 ,其中就是得共轭。
性质4、1、3若,其中、就是常数,则。
第4章 大数定律与中心极限定理
i) 依概率收敛:用于大数定律;
ii) 按分布收敛:用于中心极限定理.
5 July 2012
华东师范大学
第四章 大数定律与中心极限定理
第16页
4.3.1 依概率收敛
定义4.3.1 (依概率收敛)
若对任意的 >0,有
n
lim P Yn Y 1
则称随机变量序列{Yn}依概率收敛于Y, 记为
20500 200 100 P X i 20500 1 200 100 i 1
200
1 (3.54) =
0.0002
故一箱味精的净重大于20500克的概率为0.0002. (很小)
5 July 2012
华东师范大学
P Yn / n p 0.05
解:用 Yn表示n 个调查对象中收看此节目的人数,则
2 0.05 n / p (1 p ) 1 0.90
从中解得 0.05 n / p(1 p) 1.645 又由 p(1 p ) 0.25 可解得 n 270.6
5 July 2012
华东师范大学
第四章 大数定律与中心极限定理
第14页
注意点
(1) 伯努利大数定律是切比雪夫大数定律的特例.
(2) 切比雪夫大数定律是马尔可夫大数定律的特例.
(3) 伯努利大数定律是辛钦大数定律的特例.
5 July 2012
华东师范大学
第四章 大数定律与中心极限定理
第15页
§4.3 随机变量序列的两种收敛性
eitx cos(tx) i sin(tx)
概率论与数理统计第四章第四节 大数定理与中心极限定理
第四节 大数定理与中心极限定理概率论与数理统计是研究随机现象统计规律性的学科. 而随机现象的规律性在相同的条件下进行大量重复试验时会呈现某种稳定性. 例如, 大量的抛掷硬币的随机试验中, 正面出现频率; 在大量文字资料中, 字母使用频率; 工厂大量生产某种产品过程中, 产品的废品率等. 一般地, 要从随机现象中去寻求事件内在的必然规律, 就要研究大量随机现象的问题.在生产实践中, 人们还认识到大量试验数据、测量数据的算术平均值也具有稳定性. 这种稳定性就是我们将要讨论的大数定律的客观背景. 在这一节中,我们将介绍有关随机变量序列的最基本的两类极限定理----大数定理和中心极限定理.教学目标:了解大数定理与中心极限定理。
教学重点:大数定理与中心定理。
教学难点:中心定理。
教学内容:一、依概率收敛与微积分学中的收敛性的概念类似, 在概率论中, 我们要考虑随机变量序列的收敛性.定义1 设 ,,,,21n X X X 是一个随机变量序列, a 为一个常数,若对于任意给定的正数ε,有 ,1}|{|lim =<-∞→εa X P n n 则称序列 ,,,,21n X X X 依概率收敛于a , 记为).(∞→−→−n a X Pn定理1 设,,b Y a X Pn P n −→−−→−又设函数),(y x g 在点),(b a 连续, 则),(),(b a g Y X g Pn n −→−.二、切比雪夫不等式定理2设随机变量X 有期望μ=)(X E 和方差2)(σ=X D ,则对于任给0>ε, 有22}|{|εσεμ≤≥-X P .上述不等式称切比雪夫不等式.注:(i) 由切比雪夫不等式可以看出,若2σ越小, 则事件}|)({|ε<-X E X的概率越大, 即, 随机变量X 集中在期望附近的可能性越大. 由此可见方差刻划了随机变量取值的离散程度.(ii) 当方差已知时,切比雪夫不等式给出了X 与它的期望的偏差不小于ε的概率的估计式.如取,3σε= 则有.111.09}3|)({|22≈≤≥-σσσX E X P故对任给的分布,只要期望和方差2σ存在, 则随机变量X 取值偏离)(X E 超过σ3的概率小于0.111.三、大数定理1.切比雪夫大数定律定理3 (切比雪夫大数定律)设 ,,,,21n X X X 是两两不相关的随机变量序列,它们数学期望和方差均存在, 且方差有共同的上界, 即,,2,1,)( =≤i K X D i 则对任意0>ε, 有1)(11lim 11=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<-∑∑==∞→εn i i n i i n X E n X n P 注: 定理表明: 当n 很大时,随机变量序列}{n X 的算术平均值∑=ni i X n 11依概率收敛于其数学期望∑=ni i X E n 1)(1.2.伯努利大数定理定理4 (伯努利大数定律)设A n 是n 重伯努利试验中事件A 发生的次数, p 是事件A 在每次试验中发生的概率, 则对任意的0>ε, 有1lim =⎭⎬⎫⎩⎨⎧<-→∞εp n n P A n 或 0l i m =⎭⎬⎫⎩⎨⎧≥-→∞εp n n P A n . 注:(i) 伯努利大数定律是定理1的推论的一种特例, 它表明: 当重复试验次数n 充分大时, 事件A 发生的频率nn A依概率收敛于事件A 发生的概率p .定理以严格的数学形式表达了频率的稳定性. 在实际应用中, 当试验次数很大时,便可以用事件发生的频率来近似代替事件的概率.(ii) 如果事件A 的概率很小,则由伯努利大数定律知事件A 发生的频率也是很小的,或者说事件A 很少发生. 即“概率很小的随机事件在个别试验中几乎不会发生”,这一原理称为小概率原理,它的实际应用很广泛. 但应注意到,小概率事件与不可能事件是有区别的. 在多次试验中,小概率事件也可能发生.3.辛钦大数定理 定理5 (辛钦大数定律) 设随机变量 ,,,,21n X X X 相互独立, 服从同一分布,且具有数学期望,,2,1,)( ==i X E i μ 则对任意0>ε, 有11lim 1=⎭⎬⎫⎩⎨⎧<-∑=∞→εμn i i n X n P . 注: (i) 定理不要求随机变量的方差存在;(ii) 伯努利大数定律是辛钦大数定律的特殊情况;(iii) 辛钦大数定律为寻找随机变量的期望值提供了一条实际可行的途径. 例如, 要估计某地区的平均亩产量, 可收割某些有代表性的地块, 如n 块,计算其平均亩产量, 则当n 较大时,可用它作为整个地区平均亩产量的一个估计. 此类做法在实际应用中具有重要意义.四、中心极限定理在实际问题中, 许多随机现象是由大量相互独立的随机因素综合影响所形成, 其中每一个因素在总的影响中所起的作用是微小的. 这类随机变量一般都服从或近似服从正态分布. 以一门大炮的射程为例, 影响大炮的射程的随机因素包括: 大炮炮身结构的制造导致的误差, 炮弹及炮弹内炸药在质量上的误差, 瞄准时的误差, 受风速、风向的干扰而造成的误差等. 其中每一种误差造成的影响在总的影响中所起的作用是微小的, 并且可以看成是相互独立的, 人们关心的是这众多误差因素对大炮射程所造成的总影响. 因此需要讨论大量独立随机变量和的问题.中心极限定理回答了大量独立随机变量和的近似分布问题, 其结论表明: 当一个量受许多随机因素(主导因素除外) 的共同影响而随机取值, 则它的分布就近似服从正态分布.1.林德伯格—勒维定理定理6 (林德伯格—勒维) 设 ,,,,21n X X X 是独立同分布的随机变量序列, 且,,,2,1,)(,)(2n i X D X E i i ===σμ则 ⎰∑∞--=∞→=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-x t n i i n dt e x n n X P 2/1221lim πσμ 注: 定理6表明: 当n 充分大时, n 个具有期望和方差的独立同分布的随机变量之和近似服从正态分布. 虽然在一般情况下, 我们很难求出n X X X +++ 21的分布的确切形式, 但当n 很大时, 可求出其近似分布. 由定理结论有.1),/,(~)1,0(~/1)1,0(~1211∑∑∑====⇒-⇒-n i i ni i ni i X n X n N X N nX n N n n X σμσμσμ近似近似故定理又可表述为: 均值为μ, 方差的02>σ的独立同分布的随机变量 ,,,,21n X X X 的算术平均值X , 当n 充分大时近似地服从均值为μ,方差为n /2σ的正态分布. 这一结果是数理统计中大样本统计推断的理论基础.2. 棣莫佛—拉普拉斯定理在第二章中,作为二项分布的正态近似,我们曾经介绍了棣莫佛—拉普拉斯定理,这里再次给出,并利用上述中心极限定理证明之.定理7(棣莫佛—拉普拉斯定理)设随机变量n Y 服从参数p n ,)10(<<p 的二项分布, 则对任意x , 有)(21)1(lim 22x dt e x p np np Y P x tn n Φ==⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤--⎰∞--∞→π注: 易见,棣莫佛—拉普拉斯定理就是林德伯格—勒维定理的一个特殊情况.3.用频率估计概率的误差设n μ为n 重贝努里试验中事件A 发生的频率, p 为每次试验中事件A 发生的概率,,1p q -=由棣莫佛—拉普拉斯定理,有⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<-<-=⎭⎬⎫⎩⎨⎧<-pq n npqnp pq nP p n P n n εμεεμ .12-⎪⎪⎭⎫ ⎝⎛Φ=⎪⎪⎭⎫ ⎝⎛-Φ-⎪⎪⎭⎫ ⎝⎛Φ≈pq n pq n pq n εεε这个关系式可用解决用频率估计概率的计算问题:4. 李雅普诺夫定理定理8(李雅普诺夫定理) 设随机变量 ,,,,21n X X X 相互独立, 它们具有数学期望和方差: ,2,1,0)(,)(2=>==i X D X E kk k k σμ,记.122∑==nk k nB σ 若存在正数δ, 使得当∞→n 时,,0}|{|1122→-∑=++nk k knXE Bδδμ则随机变量之和∑=n k k X 1的标准化变量:nnk kn k kn k k n k k nk k n B X X D X E X Z ∑∑∑∑∑=====-=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=11111μ的分布函数)(x F n 对于任意x , 满足).(21lim )(lim 2/112x dt e x B X P x F x t n n k k n k k n n n Φ==⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤-=⎰∑∑∞--==∞→∞→πμ注:定理8表明, 在定理的条件下, 随机变量.11nnk kn k kn B X Z ∑∑==-=μ当n 很大时,近似地服从正态分布)1,0(N . 由此, 当n 很大时,∑∑==+=nk k n n nk k Z B X 11μ近似地服从正态分布⎪⎪⎭⎫ ⎝⎛∑=21,n n k k B N μ.这就是说,无论各个随机变量),2,1( =k X k 服从什么分布,只要满足定理的条件,那么它们的和∑=nk k X 1当n 很大时,就近似地服从正态分布.这就是为什么正态随机变量在概率论中占有重要地位的一个基本原因.在很多问题中,所考虑的随机变量可以表示成很多个独立的随机变量之和,例如,在任一指定时刻,一个城市的耗电量是大量用户耗电量的总和;一个物理实验的测量误差是由许多观察不到的、可加的微小误差所合成的,它们往往近似地服从正态分布.例题选讲:切比雪夫不等式例1(讲义例1)在每次试验中, 事件A发生的概率为0.75, 利用切比雪夫不等式求: 事件A出现的频率在0.74~0.76之间的概率至少为0.90?中心极限定理例2(讲义例2) 一盒同型号螺丝钉共有100个,已知该型号的螺丝钉的重量是一个随机变量,期望值是100g标准差是10g, 一盒螺丝钉的重量超过10.2kg的概率.例3 (讲义例3)计算机在进行数学计算时,遵从四舍五入原则。
第4章 大数定律与中心极限定理
X E( X )
i 1 i i 1 n i
Var ( X i )
i 1
再来研究随机变量序列{Yn}的极限分布.
18
2、基本定理
定理1(列维-林德伯格中心极限定理)
设随机变量 X1 , X 2 , , X n , iid ( , 2 ), 则随机变量之和的
( na )2 0 ( na )2 1 1 1 P 1 2 2 2n n 2n 2 1 2 2 E ( X n ) 2( na ) 2 a 2 , 2n Xn
2 2 Var ( X n ) E ( X n ) [ E ( X n )]2 a .
2
说明每一个随机变量都有相同的方差,
(马尔可夫条件)
则对任意 0, 有 1 n 1 n lim P X k E ( X k ) 1. n n k 1 n k 1
注:切比雪夫大数定律是马尔可夫大数定律的特例.
11
定理5(辛钦大数定律)
设随机变量 X 1 , X 2 , , X n , 独立同分布, 且具有数学期望 E ( X k ) , ( k 1, 2,),
0, 若在第 k 次试验中 A 不发生, Xk 1, 若在第 k 次试验中 A 发生, k 1, 2, , n.
8
显然
n X1 X 2 X n ,
因为 X1 , X 2 ,, X niid b(1, p),
所以 E( X k ) p, Var ( X k ) p(1 p), k 1, 2,, n.
n
则 称 序 列 1 , Y2 , , Yn依 概 率 收 敛 于, 记 为 Y a Yn P a.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章大数定律与中心极限定理
第一节大数定律
一、历史简介
概率论历史上第一个极限定理属于贝努里,后人称之为“大数定律”.1733年,德莫佛——拉普拉斯在分布的极限定理方面走出了根本性的一步,证明了时二项分布的极限分布是正态分布.拉普拉斯改进了他的证明并把二项分布推广为更一般的分布.1900年,李雅普诺夫进一步推广了他们的结论,并创立了特征函数法.这类分布极限问题是当时概率论研究的中心问题,卜里耶为之命名“中心极限定理”.20世纪初,主要探讨使中心极限定理成立的最广泛的条件,二三十年代的林德贝尔格条件和费勒条件是独立随机变量序列情形下的显著进展.在第一章已经指出,随机事件在大量重复试验中呈现明显的统计规律性,即一个事件在大量重复试验中出现的频率具有稳定性.这种稳定性的提法应该说是什么形式? 贝努里是第一个研究这一问题的数学家.他于是1713年首先提出后人称之为“大数定律”的极限定理.
二、大数定律
定理1(贝努里大数定律) 设是重贝努里试验中事件出现的次数,是事件在每次试验中出现的概率,则对任意的,有
证明:令表示在第次试验中出现的次数.若第次
试验中出现,则令;若若第次试验中不出现,则令.由贝
努里试验定义,是个相互独立的随机变量,且
而
于是
由契比晓夫不等式有
又由独立性知道有
从而有
这就证明了定理1.
若是随机变量序列,如果存在常数列,使得对任意的
,有
成立,则称随机变量序列服从大数定律.
定理2(契比晓夫大数定律) 设是一列两两不相关的随机变量,又设它们的方差有界,即存在常数,使有
则对于任意的,有
证明:利用契比晓夫不等式,有
因为是一列两两不相关的随机变量,它们的方差有界,即可得到
从而有
从而定理2得证.
[例1] 设为独立同分布的随机变量,均服从参数为的普哇松分布.由以
往的讨论知道,,因而满足定理2的要求,则由定理2 的结论可知
定理3(马尔科夫大数定律) 对于随机变量序列,若有
则有
证明:利用契比晓夫不等式,有
由假设知,右端趋于1,于是
于是定理3得证.
一般称条件为马尔科夫条件.
定理4(辛钦大数定律) 设是独立同分布的随机变量序列,且有有限的数学期望,则对于任意的,有
上式也可表示为或,并且称依概率收敛于.
三、大数定律的应用
[例2] 抛掷一枚均匀的骰子,为了至少有0.95的把握使出现六点的概率与之差不超过0.01,问需要抛掷多少次?
解:由契比晓夫不等式,有
令,其中,则.
即至少需要抛掷27778次才能至少有0.95的把握使出现六点的概率与之差不超
过0.01
[例3] (蒙特卡洛方法求积分) 计算.
解:任取一列相互独立的都具有上均匀分布的随机变量,则也是一列相互独立且具有相同分布的随机变量,而
因此,.
为求,自然想到大数定律:
这样一来,只要能生成随机变量序列,就能计算积分.现在借助计算机,产生
上的随机数,然后通过大数定律,算出,最后由算出
.
这就是一种新的计算方法:概率计算方法,也称蒙特卡洛方法.
[例4] 设随机变量序列的方差一致有界,即,且当时, 与的相关系数,证明服从大数定律.
证明:因为
由题设知,任给,存在当时,.这表明,在共有个中,绝对值超过的元素不多于个,其余的个元素的绝对值不超过,故有
由于可任意小,故马尔科夫条件成立,所以服从大数定律.
[例5] 设相互独立且,.证明服从大数定律.
证明:因为,故
故马尔科夫条件成立,所以服从大数定律.
[例6] 设相互独立且分别具有以下分布,试确定是否满足马尔科夫条件.
(1)
(2)
(3)
解:(1)易知.由于
故不满足马尔科夫条件.
(2) 易知.由于
故不满足马尔科夫条件.
(3) 易知.由于
注意到,故满足马尔科夫条件. [例7] 设相互独立且分别具有以下分布:
(1)的分布函数为
(2)
(3) 的密度函数为
(4)
问是否满足大数定律.
解:(1)因为,这是柯西分布,它的数学期望不存在,因此,不满足大数定律.
(2)因为,由辛钦大数定律,知满足大数定律.
(3)因为是奇函数,故.由辛钦大数定律,知满足大数定律.
(4)
而,故级数收敛,满足大数定律.
作业:
P221 EX 19,24,25,26。