圆心角和垂径定理练习题含答案
部编数学九年级上册专题08垂径定理、圆心角、圆周角之六大题型(解析版)含答案
专题08垂径定理、圆心角、圆周角之六大题型利用垂径定理求值【答案】2【分析】根据垂径定理和勾股定理列方程求解即可.【详解】解:设OC=△中,由勾股定理得,在Rt COE【变式训练】【答案】45cm/4【分析】连接BO,延长22=,即可求解.BC OB OC-【详解】解:如图,连接=,由折叠得:CD CEQ D是OC的中点,\=,CD OD\==,CE CD OD2\==,4OC OE【答案】310【分析】由题意易得【详解】解:连接OD∵AB 是O e 的直径,AB ∴152OD OB AB ===,∵CD AB ^,6CD =,∴13,2DE CD DEO ==Ð∴22OE OD DE =-=垂径定理的实际应用【点睛】本题考查了勾股定理和垂径定理,灵活运用所学知识,掌握垂直于弦的直径平分弦,且平分弦所对的弧,是解决本题的关键.【变式训练】1.(2023上·福建龙岩·九年级统考期末)筒车是我国古代发明的一种水利灌溉工具,彰显了我国古代劳动人民的智慧.如图1,点M 表示筒车的一个盛水桶.如图2,当筒车工作时,盛水桶的运行路径是以轴心O (O 在水面上方)为圆心的圆,且圆O 被水面截得的弦AB 长为8米.若筒车工作时,盛水桶在水面以下的最大深度为2米,则这个圆的半径为( )A .2米B .3米C .4米D .5米【答案】D 【分析】过圆O 作OD AB ^于E ,如图所示,由垂径定理可知4AE BE ==,设圆的半径为r ,再利用勾股定理列方程求解即可得到答案.【详解】解:过圆O 作OD AB ^于E ,如图所示:Q 弦AB 长为8米,\4AE BE ==,Q 盛水桶在水面以下的最大深度为2米,设圆的半径为r ,在Rt AOE △中,90AEO Ð=°,OA r =,4AE =,2OE OD ED r =-=-,则由勾【答案】26【分析】连接AO ,依题意,得出222AO AC CO =+,解方程即可求解.【详解】解:如图所示,连接∵1CD =,10AB =,AB ∴5AC =,设半径为r ,则AO r =在Rt AOC V 中,2AO =利用弧、弦、圆心角的关系求解A.AB OC=C.12ABC BOC Ð+Ð=【答案】D 【变式训练】【答案】80°/80度【分析】利用等腰三角形的性质和三角形内角和计算出即可求出答案.Ð【详解】解:∵OBC半圆(直径)所对的圆周角是直角A.43【答案】B【分析】如图:连接AQ QB=,最后根据勾股定理即可解答.【点睛】本题主要考查了圆周角定理、等腰三角形的判定与性质、勾股定理等知识点,灵活运用勾股定理成为解答本题的关键.【变式训练】【答案】13【分析】连接BD ,先由三角形内角和定理求出求出30ABD Ð=°,即有【详解】解:连接BD∵在ABC V 中,55B Ð=∴60A Ð=°,∵AB 为O e 的直径,∴90ADB CDB Ð=Ð=°Ð的度数;(1)求BAC(2)若点E为OB中点,CE 【答案】(1)45°(2)3590°的圆周角所对的弦是直径例题:(2023上·广东汕头DA DC =,2AB BC ==【答案】32【分析】连接AC ,过点角三角形,勾股定理求得∵90ADC Ð=°,∴AC 是直径,∴90ABC Ð=°【变式训练】1.(2023上·山东济南·九年级统考期末)如图,正方形ABCD 中,4AB =,E 点沿线段AD 由A 向D【答案】2p【分析】连接BD 交EF 于点1222OB OD BD ===,再由∵四边形ABCD 是正方形,∴4BC AB AD ===,EDO Ð∴242BD AB ==,【答案】90°Ð【分析】(1)由ABP (2)首先证明点P理求出OC即可得到则OP OA OB ==,\点P 在以AB 为直径的O e 在Rt BCO V 中,90OBC Ð=225OC BO BC \=+=,532PC OC OP =-=-=,已知圆内接四边形求角度【答案】102°【分析】根据圆内接四边形的性质得出【详解】解:∵四边形∴180A DCB Ð+Ð=°,又180DCE DCB Ð+Ð=°,∴102DCE A ÐÐ==°,故答案为102°.【点睛】本题主要考查了圆内接四边形的性质,熟知圆内接四边形的对角互补是解决此题的关键.【变式训练】【答案】40【分析】根据已知可得»»BCBD =56DAC BAC BAD Ð=Ð+Ð=°,再利用圆内接四边形对角互补以及平角的定义可得56DBE DAC Ð=Ð=°,继而利用角平分线定义及三角形内角和定理即可求解.(1)求证:A AEBÐ=Ð(2)若90Ð=°,点CEDC【答案】(1)见解析e的半径为25 (2)O一、单选题1.(2023上·河北张家口·九年级统考期末)O e 中的一段劣弧»AB 的度数为80o ,则AOB Ð=( )A .10oB .80oC .170oD .180o【答案】B 【分析】根据圆心角、弧、弦之间的关系得出答案即可.【详解】解:Q O e 中的一段劣弧»AB 的度数为80°,80AOB \Ð=°,故选:B .A .32°B .42【答案】A 【分析】先根据同弧所对的圆周角相等得到小即可.【详解】解:∵50A Ð=°,∴50D A Ð=Ð=°,A .10【答案】D∴12AH BH AB===在Rt BOHV中,OH∴线段OP长的最小值为A.105°B.110【答案】D【分析】先根据圆内接四边形的性质和平角的定义求出求解.A .1米B .()35+米C .3米【答案】D 【分析】连接OC 交AB 于D ,根据圆的性质和垂径定理可知理求得OD 的长,由CD OC OD =-即可求解.则OC AB ^,12AD BD AB ==在Rt OAD △中,3OA =,AD ∴225OD AO AD =-=,【点睛】本题考查圆的性质、垂径定理、勾股定理,熟练掌握垂径定理是解答的关键.【答案】120【分析】过O 点作OD AC ^AD CD =,根据三角形中位线定理可得由折叠可得:12OD OE ==∵AB 是直径,∴90ACB Ð=°,12OD BC =【答案】64°/64度【分析】根据在同圆中,Ð=Ð可推出AOC BOD【详解】解:Q»AE=【答案】3【分析】由圆的性质可得OA后根据中位线的性质即可解答.【答案】45【分析】连接AC ,如图所示,由直径所对的圆周角为直角可知及勾股定理求出AC 【详解】解:连接Q OC AB ^,AB =12AD BD AB \==在Rt AOD V 中,OA 420r \=,解得r【答案】4【分析】如图,连接CD直角三角形斜边上的中线等于斜边的一半可得【点睛】本题考查直径所对的圆周角为直角,直角三角形斜边上的中线等于斜边的一半,勾股定理.掌握直径所对的圆周角为直角是解题的关键.三、解答题e的直径AB垂直于弦CD,垂足为E,11.(2023上·安徽合肥·九年级统考期末)如图,O,.==28AE CD(1)求O e 的半径长;(2)连接 BC ,作OF BC ^【答案】(1)5(2)5在Rt OCE V 中,2OE ∴()22224R R -+=,解得5R =,∴O e 的半径长为5;(1)若这个输水管道有水部分的水面宽半径;OE AB ^Q ,11168cm 22BD AB \==´=(1)连接AD,求证:(2)若52,==CD AB 【答案】(1)详见解析;(2)6Ð相等吗?为什么?(1)BAFÐ和CAD^,垂足为(2)过圆心O作OH AB【答案】(1)相等,理由见解析(2)10【详解】(1)解:连接BF ,Q AF 是O e 的直径,90F BAF \Ð+Ð=°Q AC BD ^,\90CAD BDA Ð+Ð=°,Q F BDA Ð=Ð,\BAF CAD Ð=Ð.(2)解:OH AB ^Q ,AH BH \=,OA OF =Q ,210BF OH \==,BAF CAD Ð=ÐQ ,10CD BF \==.【点睛】本题考查的是圆周角定理,等角的余角相等,圆心角、弦的关系,三角形的中位线性质,垂径定理,掌握圆心角、弦的关系,三角形的中位线性质以及垂径定理是解题的关键.15.(2023上·山东威海·九年级统考期末)【初识模型】如图1,在ABC V 中,,90AB AC BAC =Ð=°.点D 为BC 边上一点,以AD 为边作ADE V ,使=90DAE а,AE AD =,连接CE ,则CE 与BD 的数量关系是__________;【构建模型】如图2,ABC V 内接于,O BC e 为O e 的直径,AB AC =,点E 为弧AC 上一点,连接,,AE BE CE .若3,9CE BE ==,求AE 的长;【运用模型】如图3,等边ABC V 内接于O e ,点E 为弧AC 上一点,连接,,AE BE CE .若6,10CE BE ==,求AE 的长.【答案】(1)BD CE =;(2)32;(3)4【分析】(1)只需要利用SAS 证明BAD CAE V V ≌,即可证明BD CE =(2)如图所示,过点A 作AD AE ^交BE 于D ,由BC 是直径,得到明BAD CAE Ð=Ð,再证明45ADE AED Ð=Ð=°,得到AD AE =,即可证明2(3)如图所示,在BE 上取一点∵ABC V 是等边三角形,∴60AB AC ACB ==°,∠,∴60AEB ACB Ð=Ð=°,∴ADE V 是等边三角形,∴60AE DE DAE ==°=,∠∠∴BAC CAD DAE Ð-Ð=Ð-Ð【点睛】本题主要考查了全等三角形的性质与判定,等边三角形的性质与判定,圆周角定理,勾股定理等等,正确作出辅助线构造全等三角形是解题的关键.。
垂径定理练习题和答案
★★14.如图,⊙O 的半径是 5cm,P 是⊙O 外一点,PO=8cm,∠P=30º,则 AB=
cm
3 / 11
垂径定理练习题和答案
A B
O
P
★★★15.⊙O 的半径为 13 cm,弦 AB∥CD,AB=24cm,CD=10cm,那么 AB 和 CD 的距离是
Cm ★★★16.已知 AB 是圆 O 的弦,半径 OC 垂直 AB,交 AB 于 D,若 AB=8,CD=2,则圆的半径 为 ★★★17.一个圆弧形门拱的拱高为 1 米,跨度为 4 米,那么这个门拱的半径为
2
或 1 19、5 20、3 21、8 或 2 22、 2 3 23、3
三.解答题
1、 2 6 2、(1) 25 3 (2) 600 3、40 4、8
5、18 3
16
6、
3
7、(1)3
3
2
25
25
(2) 5 8、(1)略 (2)13 9、
10、30 11、27.9 12、
13、
5
4
3
25
1442.5 14、 15、(1)0.1
★★8.已知 AB 是⊙O 的直径,弦 CD⊥AB,E 为垂足,CD=8,OE=1,则 AB=____________ ★★9.如图,AB 为⊙O 的弦,⊙O 的半径为 5,OC⊥AB 于点 D,交⊙O 于点 C, 且 CD=l, 则弦 AB 的长是
2 / 11
垂径定理练习题和答案
★★10.某蔬菜基地的圆弧形蔬菜大棚的剖面如图所示,已知 AB=16m,半径 OA=10m,则
米 ★★★18.在直径为 10 厘米的圆中,两条分别为 6 厘米和 8 厘米的平行弦之间的距离是
厘米
垂径定理练习题及答案
垂径定理练习题及答案一、选择题1. 在一个圆中,如果一条直径的端点与圆上一点相连,这条线段的中点与圆心的距离是直径的()A. 一半B. 半径B. 直径D. 无法确定2. 垂径定理指出,如果一条线段是圆的直径,那么它与圆上任意一点连线所形成的直角三角形的斜边是()A. 直径B. 半径C. 线段D. 无法确定3. 圆内接四边形的对角线互相平分,且其中一条对角线是圆的直径,那么这个四边形是()A. 平行四边形B. 矩形C. 菱形D. 无法确定4. 如果圆的半径为r,那么圆的直径是()A. 2rB. rC. r的平方D. 2r的平方二、填空题1. 垂径定理告诉我们,如果一条线段是圆的直径,那么它与圆上任意一点连线所形成的直角三角形的斜边是______。
2. 圆的内接四边形中,如果对角线互相平分,且其中一条对角线是圆的直径,那么这个四边形的对角线长度相等,等于______。
3. 已知圆的半径为5cm,那么圆的直径是______。
三、解答题1. 已知一个圆的半径为7cm,圆内有一点P,连接点P和圆心O,得到线段OP。
如果OP的长度为4cm,求点P到圆上任意一点的距离。
2. 一个圆的直径为14cm,圆内接四边形ABCD,其中AC为直径。
已知AB=6cm,求BC的长度。
四、证明题1. 证明:如果一个三角形是直角三角形,且斜边是圆的直径,那么这个三角形的外接圆的直径是这个三角形的斜边。
2. 证明:如果一个圆的内接四边形的对角线互相平分,且其中一条对角线是圆的直径,那么这个四边形的对角线长度相等。
答案:一、选择题1. A2. A3. B4. A二、填空题1. 直径的一半2. 圆的直径3. 10cm三、解答题1. 点P到圆上任意一点的距离是3cm(利用勾股定理,OP为直角三角形的一条直角边,半径为斜边,另一直角边为点P到圆上任意一点的距离)。
2. BC的长度是8cm(利用圆内接四边形的性质,对角线互相平分,且AC是直径,所以BD=7cm,再利用勾股定理求BC)。
垂径定理练习题及答案
1.△ ABC中 , AB=6cm , ∠ A=30° , ∠ B=15° , 则△ ABC绕直线 AC旋转一周所得几何体的表面积为 ____
2.一个圆锥的高为 10 3 cm,侧面展开图是一个半圆,则圆锥的全面积是 3.已知圆锥的母线长是 10cm,侧面展开图的面积是 60π cm2,则这个圆锥的底面半径是
)
A.平分一条直径的弦必垂直于这条直径
B.平分一条弧的直线垂直于这条弧所对的弦
C.弦的垂线必经过这条弦所在圆的圆心 D.在一个圆内平分一条弧和它所对的弦的直线必经过这个圆的圆心
7.如图,某公园的一座石拱桥是圆弧形(劣弧) ,其跨度为 24 米,拱的半径为 13 米,则拱高为 ( )
A. 5 米 B . 8 米 C . 7 米 D . 5 3 米
3、如图,在同心圆中,大圆的弦 AB 切小圆于点 C, AB=6,则圆环的面积是 _____________
1.在三角形 ABC中, BC=14, AC=9, AB=13,它的内切圆分别和 BC、 AC、 AB切于点 D、 E、 F,求 AF 、 BD、 CE的长。
第 1 题图 4.如图,已知在△ 切线;
第 2 题图
第 3 题图
ABC中, AB=AC,以 AB 为直径的⊙ O交 AC于点 F,交 BC于点 D,DF⊥ AC于点 F.求证: DF 是⊙ O的
2.如图所示, 已知 PA、PB切⊙ O于 A、B 两点,C是上一动点, 过 C 作⊙ O的切线交 PA于点 M,交 PB于点 N,已知∠ P=56°, 求∠ MON的度数。
A、 B、C 三根木柱,使得 A、 B 之间的
距离与 A、C 之间的距离相等,并测得 BC长为 240 米, A 到 BC的距离为 5 米,如图 5 所示。请你帮他们求出滴水湖的半
垂径定理和圆心角,圆周角练习题
垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。
推论:平分(非直径)弦的直径垂直于弦,并且平分弦所对的两条弧.练习:1.如图,在⊙O中,弦AB的长为8 cm.圆心O到AB的距离为3cm.求⊙O的半径.2.如图是一个隧道的横截面,它的形状是以点O为圆心的圆的一部分.如果M是⊙O中弦CD的中点,EM经过圆心O交⊙O于点E,并且CD=4m,EM=6m.求⊙O的半径。
圆心角:顶点在圆心的角叫做圆心角。
圆心角定理:在同圆或等圆中,相等的圆心角所对的弧相等、所对的弦也相等.推论:(1)在同圆或等圆中,如果两条弧相等、那么它们所对的圆心角相等.所对的弦相等;(2)在同圆或等圆中,如果两条弦相等。
那么它们所对的圆心角相等,所对的优弧和劣弧分别相等.练习:1.如图,在⊙O中,AB=AC,∠ACB=60°,求证:AOB=∠BOC=∠AOC.圆周角:顶点在圆上,并且两边都与圆相交,所形成的角为圆周角。
圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。
推论:(1)同弧或等弧所对的圆周角相等;(2)半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径;(3)同弦或等弦所对的圆周角相等或互补;练习:1.如图,⊙O的直径AB为10 cm,弦AC为6cm,∠ACB的平分线交⊙O于点D,求BC,AD, BD的长。
2.如图,圆内接四边形ABCD的对角线AC、BD把它的4个内角分成8个角,这些角中哪些相等?为什么?如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆。
圆内接四边形性质:圆内接四边形的对角互补。
练习:1.如图,四边形ABCD内接于⊙O,E为CD延长线上一点.若∠B=110°,求∠ADE的度数。
2.如图,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°,判断△ABC的形状,并证明你的结论.。
(名师整理)最新人教版数学中考《垂径定理 圆心角 圆周角定理》专题精练(含答案解析)
垂径定理圆心角圆周角定理一选择题:1、如图,⊙O是△ABC的外接圆,∠OBC=42°,则∠A的度数是()A.42°B.48°C.52°D.58°2.如图,A、B、C、D四个点均在⊙O上,∠AOD=50°,AO∥DC,则∠B的度数为( )A.50° B.55° C.60° D.65°3.如图,点B、D、C是⊙O上的点,∠BDC=130°,则∠BOC是()A.100° B.110° C.120°D.130°4.如图,⊙O的半径为5,弦AB的长为8,点M在线段AB(包括端点A,B)上移动,则OM取值范围是()A.3≤OM≤5B.3≤OM<5C.4≤OM≤5 D.4≤OM<55、如图所示,AB是⊙O的直径,AD=DE,AE与BD交于点C,则图中与∠BCE相等的角有()A.2个 B.3个 C.4个 D.5个6.将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A、B 的读数分别为86°、30°,则∠ACB的大小为( )A.15°B.28° C.29°D.34°7.如图,C为⊙O直径AB上一动点,过点C的直线交⊙O于D、E两点,且∠ACD=45°,DF⊥AB于点F,EG⊥AB于点G,当点C在AB上运动时,设AF=x,DE=y,下列中图象中,能表示y与x的函数关系式的图象大致是( )8.如图.⊙O 中,AB、AC是弦,O在∠ABO的内部,,,,则下列关系中,正确的是()A. B. C. D.9.如图,四边形ABCD内接于⊙O,BC是直径,AD=DC,∠ADB=20º,则∠ACB,∠DBC分别为()A.15º与30º B.20º与35º C.20º与40º D.30º与35º10.图中∠BOD的度数是()A.55° B.110° C.125° D.150°11.如图,点I为△ABC的内心,点O为△ABC的外心,∠O=140°,则∠I为()(A)140°(B)125°(C)130°(D)110°12.如图,弦AB∥CD,E为上一点,AE平分,则图中与相等(不包括)的角共有()A.3个 B.4个 C.5个 D.6个13、如图,已知的半径为1,锐角内接于,于点,于点,则的值等于()A.的长 B.的长 C.的长 D.的长14.如图,在直角∠O的内部有一滑动杆AB,当端点A沿直线AO向下滑动时,端点B会随之自动地沿直线OB向左滑动,如果滑动杆从图中AB处滑动到A′B′处,那么滑动杆的中点C所经过的路径是()A.直线的一部分B.圆的一部分C.双曲线的一部分 D.抛物线的一部分15.如图,AB是⊙O的直径,弦BC=2cm,∠ABC=60°.若动点P以2cm/s的速度从B点出发沿着B→A的方向运动,点Q从A点出发沿着A→C的方向运动,当点P到达点A时,点Q也随之停止运动.设运动时间为t(s),当△APQ是直角三角形时,t的值为()A. B. C.或 D.或或16.如图,,在以为直径的半圆上,,在上,为正方形,若正方形边长为1,,,则下列式子中,不正确的是()A. B. C. D.17.如图,AB是⊙O的直径,AB=8,点M在⊙O上,∠MAB=20°,N是弧MB的中点,P是直径AB上的一动点.若MN=1,则△PMN周长的最小值为()A.4 B.5 C.6 D.718.如图,在△ABC中,AD是高,AE是直径,AE交BC于G,有下列四个结论:•①AD2=BD·CD;②BE2=EG·AE;③AE·AD=AB·AC;④AG·EG=BG·CG.其中正确结论的有()A.1个 B.2个 C.3个 D.4个19.如图,C是以AB为直径的半圆O上一点,连结AC,BC,分别以AC,BC为边向外作正方形ACDE,BCFG,DE,FG,,的中点分别是M,N,P,Q。
圆周角圆心角垂径定理练习
江苏通海中学周飞初三数学周末练习班级:姓名:学号:一.选择题(共8小题)1.(2013•丽水)一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是()5C2.(2012•茂名)如图,AB是⊙O的直径,AB⊥CD于点E,若CD=6,则DE=()则OP的长为()4.(2013•黄石)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为()..6.(2007•仙桃)如图,已知:AB是⊙O的直径,C、D是上的三等分点,∠AOE=60°,则∠COE是()二.填空题(共8小题)9.(2009•郴州)如图,在⊙O中,,∠A=40°,则∠B=_________度.10.如图,在⊙O中,=,如果∠AOC=65°,则∠BOD=_________.11.(2011•阜新)如图,AB是⊙O的直径,CD是⊙O的弦,AB、CD的延长线交于E点,若AB=2DE,∠E=18°,则∠AOC的度数为_________度.12.(2010•湘西州)如图,在⊙O中,半径为5,∠AOB=60°,则弦长AB=_________.13.(2013•漳州)如图,一个宽为2厘米的刻度尺(刻度单位:厘米),放在圆形玻璃杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是3和9,那么玻璃杯的杯口外沿半径为_________厘米.14.(2013•西宁)如图,AB为⊙O的直径,弦CD⊥AB于点E,若CD=6,且AE:BE=1:3,则AB=_________.15.(2013•上海)在⊙O中,已知半径长为3,弦AB长为4,那么圆心O到AB的距离为____.16.(2012•遵义)如图,AB是⊙O的弦,AB长为8,P是⊙O上一个动点(不与A、B重合),过点O作OC⊥AP于点C,OD⊥PB于点D,则CD的长为_________.三.解答题(共8小题)17.(2011•佛山)如图,已知AB是⊙O的弦,半径OA=20cm,∠AOB=120°,求△AOB的面积.18.(2010•长春)如图,将一个两边都带有刻度的直尺放在半圆形纸片上,使其一边经过圆心O,另一边所在直线与半圆相交于点D,E,量出半径OC=5cm,弦DE=8cm,求直尺的宽.19.(2006•青岛)某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面.(1)请你补全这个输水管道的圆形截面;(2)若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4cm,求这个圆形截面的半径.20.如图所示,在⊙O中,AB与CD是相交的两弦,且AB=CD,求证:.21.如图在⊙O中,AC=BC,OD=OE,求证:∠ACD=∠BCE.22.已知:如图,A、B、C、D是⊙O上的点,∠1=∠2,AC=3cm.(1)求证:=;(2)求BD的长.23.如图,点A、B、C、D在⊙O上,AB与OC、OD分别相交于E、F,AE=BF,说明AC=BD的理由.24.(2012•长春一模)如图,四边形ABCD是矩形,以AD为直径的⊙O交BC边于点E、F,AB=4,AD=12.求线段EF的长.2013年10月hylzf的初中数学组卷参考答案与试题解析一.选择题(共8小题)1.(2013•丽水)一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是()AB=×OC==62.(2012•茂名)如图,AB是⊙O的直径,AB⊥CD于点E,若CD=6,则DE=()AB=×3.(2012•陕西)如图,在半径为5的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为()OM=ON=4.(2013•黄石)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为()..==5=AB,)AM=,.6.(2007•仙桃)如图,已知:AB是⊙O的直径,C、D是上的三等分点,∠AOE=60°,则∠COE 是()是二.填空题(共8小题)9.(2009•郴州)如图,在⊙O中,,∠A=40°,则∠B=70度.10.如图,在⊙O中,=,如果∠AOC=65°,则∠BOD=65°.=,可得,继而求得∠中,=++,=11.(2011•阜新)如图,AB是⊙O的直径,CD是⊙O的弦,AB、CD的延长线交于E点,若AB=2DE,∠E=18°,则∠AOC的度数为54度.12.(2010•湘西州)如图,在⊙O中,半径为5,∠AOB=60°,则弦长AB=5.13.(2013•漳州)如图,一个宽为2厘米的刻度尺(刻度单位:厘米),放在圆形玻璃杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是3和9,那么玻璃杯的杯口外沿半径为厘米.AB=×cm故答案为:14.(2013•西宁)如图,AB为⊙O的直径,弦CD⊥AB于点E,若CD=6,且AE:BE=1:3,则AB=4.x=AB=4x=415.(2013•上海)在⊙O中,已知半径长为3,弦AB长为4,那么圆心O到AB的距离为.AB=×==故答案为:16.(2012•遵义)如图,AB是⊙O的弦,AB长为8,P是⊙O上一个动点(不与A、B重合),过点O作OC⊥AP于点C,OD⊥PB于点D,则CD的长为4.ABAB=×三.解答题(共8小题)17.(2011•佛山)如图,已知AB是⊙O的弦,半径OA=20cm,∠AOB=120°,求△AOB的面积.∠AC=BC=AOC=∠ABOA=10cm=10cm=××cm18.(2010•长春)如图,将一个两边都带有刻度的直尺放在半圆形纸片上,使其一边经过圆心O,另一边所在直线与半圆相交于点D,E,量出半径OC=5cm,弦DE=8cm,求直尺的宽.DM=OM==319.(2006•青岛)某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面.(1)请你补全这个输水管道的圆形截面;(2)若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4cm,求这个圆形截面的半径.BD=AB=AB=×20.如图所示,在⊙O中,AB与CD是相交的两弦,且AB=CD,求证:.就是已知,要证明,可以转化为证明=21.如图在⊙O中,AC=BC,OD=OE,求证:∠ACD=∠BCE.22.已知:如图,A、B、C、D是⊙O上的点,∠1=∠2,AC=3cm.(1)求证:=;(2)求BD的长.,根据在同圆或等圆中,相等的圆心角所对的弧相等得到=)由,根据在同圆或等圆中,等弧所对的弦相等得到=++,==23.如图,点A、B、C、D在⊙O上,AB与OC、OD分别相交于E、F,AE=BF,说明AC=BD的理由.,24.(2012•长春一模)如图,四边形ABCD是矩形,以AD为直径的⊙O交BC边于点E、F,AB=4,AD=12.求线段EF的长.的长度为。
(附答案)《垂径定理》典型例题
《垂径定理》典型例题例1. 选择题:(1)下列说法中,正确的是()A. 长度相等的弧是等弧B. 两个半圆是等弧C. 半径相等的弧是等弧D. 直径是圆中最长的弦答案:D(2)下列说法错误的是()A. 圆上的点到圆心的距离相等B. 过圆心的线段是直径C. 直径是圆中最长的弦D. 半径相等的圆是等圆答案:B例2. 如图,已知AB是⊙O的直径,M、N分别是AO、BO的中点,CM⊥AB,DN⊥AB。
分析:要证弧相等,可证弧所对的弦相等,也可证弧所对的圆心角相等。
证明:连结OC、OD∵M、N分别是OA、OB的中点∵OA=OB,∴OM=ON又CM⊥AB,DN⊥AB,OC=OD∴Rt△OMC≌Rt△OND∴∠AOC=∠BOD例3. 在⊙O中,弦AB=12cm,点O到AB的距离等于AB的一半,求∠AOB 的度数和圆的半径。
分析:根据O到AB的距离,可利用垂径定理解决。
解:过O点作OE⊥AB于E∵AB=12由垂径定理知:∴△ABO为直角三角形,△AOE为等腰直角三角形。
例4. 如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,以点C为圆心,CA 为半径的圆与AB、BC分别交于点D、E。
求AB、AD的长。
分析:求AB较简单,求弦长AD可先求AF。
解:过点C作CF⊥AB于F∵∠C=90°,AC=3,BC=4∵∠A=∠A,∠AFC=∠ACB∴△AFC∽△ACB例5. 如图,⊙O中,弦AB=10cm,P是弦AB上一点,且PA=4cm,OP=5cm,求⊙O的半径。
分析:⊙O中已知弦长求半径,通常作弦心距构造直角三角形,利用勾股定理求解。
解:连OA,过点O作OM⊥AB于点M∵点P在AB上,PA=4cm即⊙O的半径为7cm。
例6. 如图“五段彩虹展翅飞”是某省利用国债资金修建的横跨渡江的琼洲大桥已正式通车,该桥的两边均有五个红色的圆拱,最高的圆拱的跨度为110米,拱高为22米,求这个圆拱所在圆的直径。
2020苏教版九年级数学上册 垂径定理、弦、弧、圆心角、圆周角练习含答案
【文库独家】九年垂径定理、弦、弧、圆心角、圆周角练习1.已知:AB交圆O于C、D,且AC=BD.你认为OA=OB吗?为什么?2. 如图所示,是一个直径为650mm的圆柱形输油管的横截面,若油面宽AB=600mm,求油面的最大深度。
6003. 如图所示,AB是圆O的直径,以OA为直径的圆C与圆O的弦AD相交于点E。
你认为图中有哪些相等的线段?为什么?ADBOCE4.如图所示,OA是圆O的半径,弦CD⊥OA于点P,已知OC=5,OP=3,则弦CD=____________________。
5. 如图所示,在圆O中,AB、AC为互相垂直且相等的两条弦,OD ⊥AB,OE⊥AC,垂足分别为D、E,若AC=2cm,则圆O的半径为____________cm。
6. 如图所示,AB是圆O的直径,弦CD⊥AB,E为垂足,若AB=9,BE=1,则CD=_________________。
CA P ODCE OA D B7. 如图所示,在△ABC中,∠C=90°,AB=10,AC=8,以AC为直径作圆与斜边交于点P,则BP的长为________________。
8. 如图所示,四边形ABCD内接于圆O,∠BCD=120°,则∠BOD=____________度。
9.如图所示,圆O的直径为10,弦AB的长为6,M是弦AB上的一动点,则线段的OM的长的取值范围是()A. 3≤OM≤5B. 4≤OM≤5C. 3<OM<5D. 4<OM<510.下列说法中,正确的是()A. 到圆心的距离大于半径的点在圆内B. 圆的半径垂直于圆的切线C. 圆周角等于圆心角的一半D. 等弧所对的圆心角相等11.若圆的一条弦把圆分成度数的比为1:3的两条弧,则劣弧所对的圆周角等于()A. 45°B. 90°C. 135°D. 270°12. 如图所示,A、B、C三点在圆O上,∠AOC=100°,则∠ABC 等于()A. 140°B. 110°C. 120°D. 130°13. △ABC 中,∠C=90°,AB=cm 4,BC=cm 2,以点A 为圆心,以cm 5.3长为半径画圆,则点C 在圆A___________,点B 在圆A_________; 14. 圆的半径等于cm 2,圆内一条弦长23cm ,则弦的中点与弦所对弧的中点的距离等于_____________;15. 如图所示,已知AB 为圆O 的直径,AC 为弦,OD ∥BC 交AC 于D ,OD=cm 2,求BC 的长;B16. 如图所示,破残的圆形轮片上,弦AB 的垂直平分线交弧AB 于点C ,交弦AB 于点D 。
九年级《圆》垂径定理练习及答案
九年级《圆》垂径定理练习一、选择题1. 在Rt△ABC,∠C=90°,BC=5,AB=13,D是AB的中点,以C为圆心,BC为半径作⊙C,则⊙C与点D的位置关系是() A. D在圆内B.D在圆上C.D在圆外D.不能确定2.下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶角的距离相等;④半径相等的两个半圆是等弧.其中正确的有()A.4个B.3个C.2个D.1个3.下面的四个判断中,正确的一个是()A.过圆内的一点的无数条弦中,有最长的弦,没有最短的弦;B.过圆内的一点的无数条弦中,有最短的弦,没有最长的弦;C. 过圆内的一点的无数条弦中,有一条且只有一条最长的弦,也有且只有一条最短的弦;D.过圆内的一点的无数条弦中,既没有最长的弦,也没有最短的弦.4.下列说法中,正确的有()①菱形的四个顶点在同一个圆上;②矩形的四个顶点在同一个圆上;③正方形四条边的中点在同一个圆上;④平行四边形四条边的中点在同一个圆上.A.1个B.2个C.3个D.4个5.如图所示,在⊙0中,直径MN⊥AB,垂足为C,则下列结论中错误的是()A.AC=CB B. C. D. OC=CN6.过⊙O内一点M的最长的弦长为4 cm,最短的弦长为2 c()A.B . C. 8 cm D .7.如图所示,AB是⊙O的直径,弦CD⊥AB于点P,CD=10cm,AP:PB=1:5,那么⊙O的半径等于()A.6 cm B .C.8 cm D .8.如果⊙O中弦AB与直径CD垂直,垂足为E,AE=4,CE=2,那么⊙O的半径等于()A. 5B.C.D.9. 如图所示,AB是⊙O的一固定直径,它把⊙O分成上、下两个半圆,自上半圆上一点C作弦CD⊥AB.∠OCD的平分线交⊙O于点P,当点C在上半圆(不包括A、B两点)上移动时,点P()A.到CD的距离保持不变B.位置不变C. 等分D.随C点的移动而移动10. 如图所示,同心圆中,大圆的弦AB交小圆于C、D两点,且AC=CD,AB的弦心距等于CD的一半。
垂径定理练习题
垂径定理一、选择题(共9小题)1.如图,⊙O的半径为1,△ABC是⊙O的内接等边三角形,点D、E在圆上,四边形BCDE 为矩形,这个矩形的面积是()A.2B.C.D.【答案】B【解答】解:连结BD、OC,如图,∵四边形BCDE为矩形,∴∠BCD=90°,∴BD为⊙O的直径,∴BD=2,∵△ABC为等边三角形,∴∠A=60°,∴∠BOC=2∠A=120°,而OB=OC,∴∠CBD=30°,在Rt△BCD中,CD=BD=1,BC=CD=,∴矩形BCDE的面积=BC•CD=.故选:B.2.如图,△ABC内接于半径为5的⊙O,圆心O到弦BC的距离等于3,则∠A的正切值等于()A.B.C.D.【答案】D【解答】解:过点O作OD⊥BC,垂足为D,∵OB=5,OD=3,∴BD=4,∵∠A=∠BOC,∴∠A=∠BOD,∴tan A=tan∠BOD==,故选:D.3.如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为()A.2B.4C.6D.8【答案】D【解答】解:∵CE=2,DE=8,∴OB=5,∴OE=3,∵AB⊥CD,∴在△OBE中,得BE=4,∴AB=2BE=8.故选:D.4.如图,CD是⊙O的直径,弦AB⊥CD于E,连接BC、BD,下列结论中不一定正确的是()A.AE=BE B.=C.OE=DE D.∠DBC=90°【答案】C【解答】解:∵CD是⊙O的直径,弦AB⊥CD于E,∴AE=BE,=,故A、B正确;∵CD是⊙O的直径,∴∠DBC=90°,故D正确.故选:C.5.如图,AB是⊙O的直径,弦CD⊥AB于点E,则下列结论正确的是()A.OE=BE B.=C.△BOC是等边三角形D.四边形ODBC是菱形【答案】B【解答】解:∵AB⊥CD,AB过O,∴DE=CE,=,根据已知不能推出OE=BE,△BOC是等边三角形,四边形ODBC是菱形.故选:B.6.如图,B,C,D是半径为6的⊙O上的三点,已知的长为2π,且OD∥BC,则BD 的长为()A.3B.6C.6D.12【答案】C【解答】解:连结OC交BD于E,如图,设∠BOC=n°,根据题意得2π=,得n=60,即∠BOC=60°,而OB=OC,∴△OBC为等边三角形,∴∠C=60°,∠OBC=60°,BC=OB=6,∵BC∥OD,∴∠2=∠C=60°,∵∠1=∠2(圆周角定理),∴∠1=30°,∴BD平分∠OBC,BD⊥OC,∴BE=DE,在Rt△CBE中,CE=BC=3,∴BE=CE=3,∴BD=2BE=6.故选:C.7.如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x 的图象被⊙P截得的弦AB的长为,则a的值是()A.4B.C.D.【答案】B【解答】解:作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,如图,∵⊙P的圆心坐标是(3,a),∴OC=3,PC=a,把x=3代入y=x得y=3,∴D点坐标为(3,3),∴CD=3,∴△OCD为等腰直角三角形,∴△PED也为等腰直角三角形,∵PE⊥AB,∴AE=BE=AB=×4=2,在Rt△PBE中,PB=3,∴PE=,∴PD=PE=,∴a=3+.故选:B.8.如图,在半径为6cm的⊙O中,点A是劣弧的中点,点D是优弧上一点,且∠D =30°,下列四个结论:①OA⊥BC;②BC=6;③sin∠AOB=;④四边形ABOC是菱形.其中正确结论的序号是()A.①③B.①②③④C.②③④D.①③④【答案】B【解答】解:∵点A是劣弧的中点,OA过圆心,∴OA⊥BC,故①正确;∵∠D=30°,∴∠ABC=∠D=30°,∴∠AOB=60°,∵点A是劣弧的中点,∴BC=2CE,∵OA=OB,∴OA=OB=AB=6cm,∴BE=AB•cos30°=6×=3cm,∴BC=2BE=6cm,故②正确;∵∠AOB=60°,∴sin∠AOB=sin60°=,故③正确;∵∠AOB=60°,∴AB=OB,∵点A是劣弧的中点,∴AC=AB,∴AB=BO=OC=CA,∴四边形ABOC是菱形,故④正确.故选:B.9.如图,以AB为直径的⊙O与弦CD相交于点E,且AC=2,AE=,CE=1.则的长是()A.B.C.D.【答案】B【解答】解:连接OC,∵△ACE中,AC=2,AE=,CE=1,∴AE2+CE2=AC2,∴△ACE是直角三角形,即AE⊥CD,∵sin A==,∴∠A=30°,∴∠COE=60°,∴=sin∠COE,即=,解得OC=,∵AE⊥CD,∴=,∴===.故选:B.二、填空题(共16小题)10.如图,圆O的直径CD=10cm,AB是圆O的弦,且AB⊥CD,垂足为P,AB=8cm,则sin∠OAP=.【答案】见试题解答内容【解答】解:∵AB⊥CD,∴AP=BP=AB=×8=4cm,在Rt△OAP中,OA=CD=5,∴OP==3,∴sin∠OAP==.故答案为:.11.在半径为2的圆中,弦AC长为1,M为AC中点,过M点最长的弦为BD,则四边形ABCD的面积为2.【答案】见试题解答内容【解答】解:如图.∵M为AC中点,过M点最长的弦为BD,∴BD是直径,BD=4,且AC⊥BD,∴四边形ABCD的面积=AC•BD=×1×4=2.故答案为:2.12.如图,在⊙O中,半径OA垂直弦于点D.若∠ACB=33°,则∠OBC的大小为24度.【答案】见试题解答内容【解答】解:∵OA⊥BC,∴∠ODB=90°,∵∠ACB=33°,∴∠AOB=2∠ACB=66°,∴∠OBC=90°﹣∠AOB=24°.故答案为:24.13.如图,在边长为1的正方形网格中,若一段圆弧恰好经过四个格点,则该圆弧所在圆的圆心是图中的点C.【答案】见试题解答内容【解答】解:圆心是弦EF和弦FG的中垂线的交点,是C.故选C.14.如图,△ABC内接于⊙O,AO=2,BC=2,则∠BAC的度数为60°.【答案】见试题解答内容【解答】解:连结OB、OC,作OD⊥BC于D,如图,∵OD⊥BC,∴BD=BC=×2=,在Rt△OBD中,OB=OA=2,BD=,∴cos∠OBD==,∴∠OBD=30°,∵OB=OC,∴∠OCB=30°,∴∠BOC=120°,∴∠BAC=∠BOC=60°.故答案为60°.15.如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=2cm,∠BCD=22°30′,则⊙O的半径为2cm.【答案】见试题解答内容【解答】解:连结OB,如图,∵∠BCD=22°30′,∴∠BOD=2∠BCD=45°,∵AB⊥CD,∴BE=AE=AB=×2=,△BOE为等腰直角三角形,∴OB=BE=2(cm).故答案为:2.16.⊙O的半径为2,弦BC=2,点A是⊙O上一点,且AB=AC,直线AO与BC交于点D,则AD的长为1或3.【答案】见试题解答内容【解答】解:如图所示:∵⊙O的半径为2,弦BC=2,点A是⊙O上一点,且AB=AC,∴AD⊥BC,∴BD=BC=,在Rt△OBD中,∵BD2+OD2=OB2,即()2+OD2=22,解得OD=1,∴当如图1所示时,AD=OA﹣OD=2﹣1=1;当如图2所示时,AD=OA+OD=2+1=3.故答案为:1或3.17.如图,在⊙O中,已知半径为5,弦AB的长为8,那么圆心O到AB的距离为3.【答案】见试题解答内容【解答】解:作OC⊥AB于C,连结OA,如图,∵OC⊥AB,∴AC=BC=AB=×8=4,在Rt△AOC中,OA=5,∴OC===3,即圆心O到AB的距离为3.故答案为:3.18.如图,AB是半圆的直径,点O为圆心,OA=5,弦AC=8,OD⊥AC,垂足为E,交⊙O于D,连接BE.设∠BEC=α,则sinα的值为.【答案】见试题解答内容【解答】解:连结BC,如图,∵AB是半圆的直径,∴∠ACB=90°,在Rt△ABC中,AC=8,AB=10,∴BC==6,∵OD⊥AC,∴AE=CE=AC=4,在Rt△BCE中,BE==2,∴sinα===.故答案为:.19.如图,点A,B,C在圆O上,OC⊥AB,垂足为D,若⊙O的半径是10cm,AB=12cm,则CD=2cm.【答案】见试题解答内容【解答】解:∵⊙O的半径是10cm,弦AB的长是12cm,OC是⊙O的半径且OC⊥AB,垂足为D,∴OA=OC=10cm,AD=AB=×12=6cm,∵在Rt△AOD中,OA=10cm,AD=6cm,∴OD===8cm,∴CD=OC﹣OD=10﹣8=2cm.故答案为:2.20.如图,AB为⊙O的直径,CD⊥AB,若AB=10,CD=8,则圆心O到弦CD的距离为3.【答案】见试题解答内容【解答】解:连接OC,∵AB为⊙O的直径,AB=10,∴OC=5,∵CD⊥AB,CD=8,∴CE=4,∴OE===3.故答案为:3.21.如图,在⊙O中,弦CD垂直于直径AB于点E,若∠BAD=30°,且BE=2,则CD =4.【答案】见试题解答内容【解答】解:连结OD,如图,设⊙O的半径为R,∵∠BAD=30°,∴∠BOD=2∠BAD=60°,∵CD⊥AB,∴DE=CE,在Rt△ODE中,OE=OB﹣BE=R﹣2,OD=R,∵cos∠EOD=cos60°=,∴=,解得R=4,∴OE=4﹣2=2,∴DE=OE=2,∴CD=2DE=4故答案为:4.22.如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=6cm,则OE=4cm.【答案】见试题解答内容【解答】解:∵CD⊥AB∴CE=CD=×6=3cm,∵在Rt△OCE中,OE=cm.故答案为:4.23.如图,AB、CD是半径为5的⊙O的两条弦,AB=8,CD=6,MN是直径,AB⊥MN 于点E,CD⊥MN于点F,P为EF上的任意一点,则P A+PC的最小值为.【答案】见试题解答内容【解答】解:连接OB,OC,作CH垂直AB于H.根据垂径定理,得到BE=AB=4,CF=CD=3,∴OE===3,OF===4,∴CH=OE+OF=3+4=7,BH=BE+EH=BE+CF=4+3=7,在直角△BCH中根据勾股定理得到BC=7,则P A+PC的最小值为.故答案为:24.如图,⊙O的半径是2,直线l与⊙O相交于A、B两点,M、N是⊙O上的两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB面积的最大值是4.【答案】见试题解答内容【解答】解:过点O作OC⊥AB于C,交⊙O于D、E两点,连结OA、OB、DA、DB、EA、EB,如图,∵∠AMB=45°,∴∠AOB=2∠AMB=90°,∴△OAB为等腰直角三角形,∴AB=OA=2,∵S四边形MANB=S△MAB+S△NAB,∴当M点到AB的距离最大,△MAB的面积最大;当N点到AB的距离最大时,△NAB 的面积最大,即M点运动到D点,N点运动到E点,此时四边形MANB面积的最大值=S四边形DAEB=S△DAB+S△EAB=AB•CD+AB•CE=AB(CD+CE)=AB•DE=×2×4=4.故答案为:4.25.如图,半径为6cm的⊙O中,C、D为直径AB的三等分点,点E、F分别在AB两侧的半圆上,∠BCE=∠BDF=60°,连接AE、BF,则图中两个阴影部分的面积为6 cm2.【答案】见试题解答内容【解答】解:如图作△DBF的轴对称图形△CAG,作AM⊥CG,ON⊥CE,∵△DBF的轴对称图形△CAG,由于C、D为直径AB的三等分点,∴△ACG≌△BDF,∴∠ACG=∠BDF=60°,∵∠ECB=60°,∴G、C、E三点共线,∵AM⊥CG,ON⊥CE,∴AM∥ON,∴=,在Rt△ONC中,∠OCN=60°,∴ON=sin∠OCN•OC=•OC,∵OC=OA=2,∴ON=×2=,∴AM=2,∵ON⊥GE,∴NE=GN=GE,连接OE,在Rt△ONE中,NE===,∴GE=2NE=2,∴S△AGE=GE•AM=×2×2=6,∴图中两个阴影部分的面积为6,故答案为:6.三、解答题(共5小题)26.如图,在⊙O中,半径OC与弦AB垂直,垂足为E,以OC为直径的圆与弦AB的一个交点为F,D是CF延长线与⊙O的交点.若OE=4,OF=6,求⊙O的半径和CD的长.【答案】见试题解答内容【解答】解:∵OE⊥AB,∴∠OEF=90°,∵OC为小圆的直径,∴∠OFC=90°,而∠EOF=∠FOC,∴Rt△OEF∽Rt△OFC,∴OE:OF=OF:OC,即4:6=6:OC,∴⊙O的半径OC=9;在Rt△OCF中,OF=6,OC=9,∴CF==3,∵OF⊥CD,∴CF=DF,∴CD=2CF=6.27.已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图).(1)求证:AC=BD;(2)若大圆的半径R=10,小圆的半径r=8,且圆O到直线AB的距离为6,求AC的长.【答案】见试题解答内容【解答】(1)证明:过O作OE⊥AB于点E,则CE=DE,AE=BE,∴BE﹣DE=AE﹣CE,即AC=BD;(2)解:由(1)可知,OE⊥AB且OE⊥CD,连接OC,OA,∴OE=6,∴CE===2,AE===8,∴AC=AE﹣CE=8﹣2.28.如图,⊙O的直径为10cm,弦AB=8cm,P是弦AB上的一个动点,求OP的长度范围.【答案】见试题解答内容【解答】解:过点O作OE⊥AB于点E,连接OB,∵AB=8cm,∴AE=BE=AB=×8=4cm,∵⊙O的直径为10cm,∴OB=×10=5cm,∴OE===3cm,∵垂线段最短,半径最长,∴3cm≤OP≤5cm.29.如图,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求⊙O的直径;(2)若∠M=∠D,求∠D的度数.【答案】见试题解答内容【解答】解:(1)∵AB⊥CD,CD=16,∴CE=DE=8,设OB=x,又∵BE=4,∴x2=(x﹣4)2+82,解得:x=10,∴⊙O的直径是20.(2)∵∠M=∠BOD,∠M=∠D,∴∠D=∠BOD,∵AB⊥CD,∴∠D=30°.30.如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,PB与CD交于点F,∠PBC=∠C.(1)求证:CB∥PD;(2)若∠PBC=22.5°,⊙O的半径R=2,求劣弧AC的长度.【答案】见试题解答内容【解答】解:(1)∵∠PBC=∠D,∠PBC=∠C,∴∠C=∠D,∴CB∥PD;(2)连结OC,OD.∵AB是⊙O的直径,弦CD⊥AB于点E,∴=,∵∠PBC=∠DCB=22.5°,∴∠BOC=∠BOD=2∠C=45°,∴∠AOC=180°﹣∠BOC=135°,∴劣弧AC的长为:=.。
垂径定理练习题及答案
垂径定理练习题及答案垂径定理练习题及答案垂径定理是几何学中的一个重要定理,它解决了关于圆的切线和半径之间的关系问题。
在学习和应用垂径定理时,我们需要通过大量的练习题来巩固理论知识,并提高解题能力。
下面将给出一些垂径定理的练习题,并附上详细的解答,希望能对大家的学习有所帮助。
练习题一:在一个圆中,直径为10厘米,且过圆心的直径AC与切线BD相交于点E。
若AC=8厘米,求BE的长度。
解答:根据垂径定理,切线BD与半径AC垂直,所以∠BAC=90°。
由此可知,三角形BAC是一个直角三角形。
根据勾股定理可得:BA²+AC²=BC²代入已知条件,得:BA²+8²=10²化简得:BA²+64=100移项得:BA²=36开方得:BA=6由于∠BAC=90°,所以BE也是直径,即BE=10厘米。
练习题二:在一个圆中,直径为16厘米,切线AB与半径CD相交于点E。
若AE=3厘米,求BE的长度。
解答:同样地,根据垂径定理,切线AB与半径CD垂直,所以∠CAD=90°。
由此可知,三角形CAD是一个直角三角形。
根据勾股定理可得:CA²+AD²=CD²代入已知条件,得:CA²+16²=CD²化简得:CA²+256=CD²移项得:CA²=CD²-256开方得:CA=√(CD²-256)根据垂径定理,AE是半径CD的垂直平分线,所以AE=DE。
又已知AE=3厘米,所以DE=3厘米。
由于∠CAD=90°,所以BE也是直径,即BE=16厘米。
练习题三:在一个圆中,直径为12厘米,切线AB与半径CD相交于点E。
若AE=5厘米,求BE的长度。
解答:同样地,根据垂径定理,切线AB与半径CD垂直,所以∠CAD=90°。
垂径定理-练习题 含答案
垂径定理副标题题号一二总分得分一、选择题(本大题共4小题,共12.0分)1.如图所示,的半径为13,弦AB的长度是24,,垂足为N,则A. 5B. 7C. 9D.11【答案】A【解析】解:由题意可得,,,,,,故选A.根据的半径为13,弦AB的长度是24,,可以求得AN的长,从而可以求得ON的长.本题考查垂径定理,解题的关键是明确垂径定理的内容,利用垂径定理解答问题.2.如图,AB是的直径,弦于点E,,的半径为5cm,则圆心O到弦CD的距离为A.B. 3cmC.D. 6cm【答案】A【解析】解:连接CB.是的直径,弦于点E,圆心O到弦CD的距离为OE;同弧所对的圆周角是所对的圆心角的一半,,;在中,,,.故选A.根据垂径定理知圆心O到弦CD的距离为OE;由圆周角定理知,已知半径OC的长,即可在中求OE的长度.本题考查了垂径定理、圆周角定理及解直角三角形的综合应用解答这类题一些学生不会综合运用所学知识解答问题,不知从何处入手造成错解.3.如图,已知半径OD与弦AB互相垂直,垂足为点C,若,,则的半径为A. 5B.C.D. 4【答案】C【解析】解:连结OA,如图,设的半径为r,,,在中,,,,,解得.故选C.连结OA,如图,设的半径为r,根据垂径定理得到,再在中利用勾股定理得到,然后解方程求出r即可.本题考查了的是垂径定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.4.如图,线段AB是的直径,弦CD丄AB,,则等于A.B.C.D.【答案】C【解析】解:线段AB是的直径,弦CD丄AB,,,,.故选:C.利用垂径定理得出,进而求出,再利用邻补角的性质得出答案.此题主要考查了圆周角定理以及垂径定理等知识,得出的度数是解题关键.二、解答题(本大题共2小题,共16.0分)5.如图,在四边形ABCD中,,,AD不平行于BC,过点C作交的外接圆O于点E,连接AE.求证:四边形AECD为平行四边形;连接CO,求证:CO平分.【答案】证明:由圆周角定理得,,又,,,,,,四边形AECD为平行四边形;作于M,于N,四边形AECD为平行四边形,,又,,,又,,平分.【解析】本题考查的是三角形的外接圆与外心,掌握平行四边形的判定定理、垂径定理、圆周角定理是解题的关键.根据圆周角定理得到,得到,根据平行线的判定和性质定理得到,证明结论;作于M,于N,根据垂径定理、角平分线的判定定理证明.6.如图,AB为直径,C为上一点,点D是的中点,于E,于F.判断DE与的位置关系,并证明你的结论;若,求AC的长度.【答案】解:与相切.证明:连接OD、AD,点D是的中点,,,,,,,,,与相切.连接BC交OD于H,延长DF交于G,由垂径定理可得:,,,,弦心距,是直径,,,是的中位线,.【解析】先连接OD、AD,根据点D是的中点,得出,进而根据内错角相等,判定,最后根据,得出DE与相切;先连接BC交OD于H,延长DF交于G,根据垂径定理推导可得,再根据AB是直径,推出OH是的中位线,进而得到AC的长是OH长的2倍.本题主要考查了直线与圆的位置关系,在判定一条直线为圆的切线时,当已知条件中明确指出直线与圆有公共点时,通常连接过该公共点的半径,证明该半径垂直于这条直线本题也可以根据与相似,求得AC的长.。
九年级圆的垂径定理与圆心角圆周角的大题精选(含答案)
九年级圆的垂径定理与圆心角圆周角的大题精选(含答案)九年级圆的垂径定理与圆心角圆周角的大题精选(含答案)圆的性质大题一、解答题(共25小题)1.如图,⊙O中,弦CD与直径AB交于点H。
1)当∠B+∠D=90°时,求证:H是CD的中点。
证明:∠B+∠D=90°,∠B=90°-∠D,又∠ADC=90°(直径所对的角为直角),所以∠___∠B,因此三角形ADC与三角形BDC相似,所以BD/DC=DC/BD,即BD²=DC²,所以BH=HD,即H为CD的中点。
2)若H为CD的中点,且CD=2,BD=√3,求AB的长。
连接OH,由勾股定理得OH=√3,又因为H为CD的中点,所以CH=1,从而CO=√3+1,又AO=CO,所以AB=2AO=2(√3+1)。
2.如图,∠BAC=60°,AD平分∠___于点D,连接OB、OC、BD、CD。
1)求证:四边形OBDC是菱形。
证明:由角平分线定理得∠OAD=∠OBD,又∠OAB=∠OBA=30°,所以∠OBD=30°,又∠OCD=∠OAD=30°,所以∠___∠OCD,所以BD=CD,又∠___∠OCD=30°,所以∠___∠OBC,所以三角形OBD与三角形OBC全等,所以OB=OC,又∠___∠OCD=30°,所以OB=BC,所以四边形OBDC是菱形。
2)当∠BAC为多少度时,四边形OBDC是正方形?当∠BAC=90°时,∠___∠OCD=45°,所以BD=CD,又∠___∠OCD=45°,所以OB=BC,所以四边形OBDC是正方形。
3.如图,CD是⊙O的直径,∠EOD=84°,AE交⊙O于点B,且AB=OB,求∠A的度数。
由圆心角的性质得∠ACB=2∠A,又∠ACB=90°,所以∠A=45°,所以∠EAB=∠OAB-∠OAE=45°-42°=3°,又∠___∠OAB=45°,所以∠DBA=∠OBD-∠OBA=45°-3°=42°,所以∠C=180°-∠A-∠B=180°-45°-42°=93°。
垂径定理及圆心角圆周角(基础)
P D C BA 【垂径定理】第5份1、下列命题中:① 任意三点确定一个圆;②圆的两条平行弦所夹的弧相等;③ 任意一个三角形有且仅有一个外接圆;④ 平分弦的直径垂直于弦;⑤ 直径是圆中最长的弦,半径不是弦。
正确的个数是( ) A.2个 B.3个 C.4个 D.5个2、如图,要把破残的圆片复制完整,已知弧上的三点A 、B 、C 。
(1)用尺规作图法,找出弧ABC 所在圆的圆心O (保留作图痕迹,不写作法); (2)设△ABC 是等腰三角形,底边BC=8,AB=5,求圆片的半径R3、已知:如图,有一圆弧形拱桥,拱的跨度AB=16cm ,拱高CD=4cm ,那么拱形的半径是 cm.4、如图,AB 为⊙O 的直径,弦CD ⊥AB ,垂足为P ,若AP:PB=1:4, CD=8,则 AB=_______________.5、填空:如图,在⊙O 中,直径CD 交弦AB (不是直径)于点E. (1)若CD ⊥AB ,则有 、 、 ; (2)若 AE = EB ,则有 、 、 ; (3)若 AC BC =,则有 、 、 .6、某地有一座圆弧形拱桥,桥下水面宽度为7.2m ,拱顶高出水面2.4m ,现有一艘宽3m ,船舱顶部为长方形并高出水面2m 的货船要经过这里,此货船能顺利通过这座拱桥吗?7、如图,AB 是半圆O 的直径,点P 从点O 出发,沿OA AB BO -- 的路径运动一周.设OP 为s ,运动时间为t ,则下列图形能大致地刻画s 与t 之间关系的是( ) 【圆心角定理及推论】1、圆的旋转不变性:将圆周绕圆心O 旋转 ,都能与自身重合,这个性质叫做圆的旋转不变性。
2、圆心角: 叫做圆心角。
3、在同圆或等圆中,相等的圆心角所对的 ,所对的 (这就是圆心角定理)4、n °的圆心角所对的弧就是 ,圆心角和 的度数相等。
注意:在题目中,若让你求⌒AB ,那么所求的是弧长 5、在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两个弦心距中有一对量相等,那么都相等。
垂径定理---圆心角---圆周角练习(专题经典).
垂径定理圆心角圆周角练习1.如图.⊙O中OA⊥BC,∠CDA=25o,则∠AOB的度数为_______.2.如图.AB为⊙O的直径,点C、D在⊙O上,∠BAC=50o.则∠ADC=_______.第1题第2题第3题3.如图,点A、B、C都在⊙O上,连结AB、BC、AC、OA、OB,且∠BAO=25°,则∠ACB的大小为___________.第4题第5题4.已知:如图,四边形ABCD是⊙O的内接四边形,∠BOD=140°,则∠DCE=.5、如图,AB是⊙O的直径,C,D,E都是⊙O上的点,则∠1+∠2=.6、⊙O中,若弦AB长22cm,弦心距为2cm,则此弦所对的圆周角等于.7、已知AB是⊙O的直径,AC,AD是弦,且AB=2,AC=2,AD=1,则圆周角∠CAD的度数是()A.45°或60°B.60°C.105°D.15°或105°8、如图,AB是⊙的直径,弦CD垂直平分OB,则∠BDC=()A.20°B.30°C.40°D.50°9、如图,点A、B、C为圆O上的三个点,∠AOB=的度数.13∠BOC,∠BAC=45°,求∠ACB 10、如图,AD是∆ABC的高,AE是∆ABC的外接圆的直径.试说明狐B E CF。
DF11、如图,AB,AC是⊙O的两条弦,且AB=AC.延长CA到点D.使AD=AC,连结DB并延长,交⊙O于点E.求证:CE是⊙O的直径.12、已知:如图,AB为⊙O的直径,AB=AC,B C交⊙O于点D,AC交⊙O于点E,∠BAC=45°.(1)求∠EBC的度数;(2)求证:BD=CD.△13.如图所示,ABC为圆内接三角形,A B>AC,∠A的平分线AD交圆于D,作D E⊥AB于E,D F⊥AC于F,求证:BE=CFAEB CFD△14.如图所示,在ABC中,∠BAC与∠ABC的平分线AE、BE相交于点E,延长AE交△ABC的外接圆于D点,连接BD、CD、CE,且∠BDA=60°(1)求证△BDE是等边三角形;(2)若∠BDC=120°,猜想BDCE是怎样的四边形,并证明你的猜想。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年01月07日圆心角,垂径定理一.选择题(共50小题)1.如图,⊙O的直径BD=4,∠A=60°,则BC的长度为()A.B.2 C.2D.42.如图,已知AB、AD是⊙O的弦,∠B=30°,点C在弦AB上,连接CO并延长CO交于⊙O于点D,∠D=20°,则∠BAD的度数是()A.30°B.40°C.50°D.60°3.如图,A,B,P是半径为2的⊙O上的三点,∠APB=45°,则弦AB的长为()A.2 B.4 C.D.24.如图,⊙O是△ABC的外接圆,弦AC的长为3,sinB=,则⊙O的半径为()A.4 B.3 C.2 D.5.如图,△ABC为⊙O的内接三角形,∠AOB=100°,则∠ACB的度数为()A.100°B.130°C.150°D.160°6.如图,△ABC内接于⊙O,若∠AOB=100°,则∠ACB的度数是()A.40°B.50°C.60°D.80°7.如图,已知点A,B,C在⊙O上,且∠BAC=25°,则∠OCB的度数是()A.70°B.65°C.55°D.50°8.如图,AB是⊙O直径,∠AOC=140°,则∠D为()A.40°B.30°C.20°D.70°9.如图,边长为1的小正方形网格中,⊙O的圆心在格点上,则∠AED的正弦值是()A.B.C.D.10.如图,在⊙O中,弦AC与半径OB平行,若∠BOC=50°,则∠B的大小为()A.25°B.30°C.50°D.60°11.如图,AB是⊙O的直径,C,D为圆上两点,若∠AOC=130°,则∠D等于()A.20°B.25°C.35°D.50°12.如图,⊙O中,劣弧AB所对的圆心角∠AOB=120°,点C在劣弧AB上,则圆周角∠ACB=()A.60°B.120°C.135°D.150°13.如图,AB是⊙O的直径,弦CD垂直平分OB,则∠ACD等于()A.30°B.45°C.60°D.70°14.如图,A,B,C是⊙O上三点,∠ACB=25°,则∠BAO的度数是()A.50°B.55°C.60°D.65°15.如图,AB是半圆的直径,D是弧AC的中点,∠ABC=50°,则∠DAB等于()A.55°B.60°C.65°D.70°16.如图,在⊙O中,弦AC=2,点B是圆上一点,且∠ABC=45°,则⊙O的半径是()A.2 B.4 C.D.17.如图,半径为5的⊙A中,弦BC,ED所对的圆心角分别是∠BAC,∠EAD,已知DE=6,∠BAC+∠EAD=180°,则弦BC的长等于()A. B. C.8 D.618.如图,AB是⊙O的直径,点C在圆周上,连结BC、OC,过点A作AD∥OC交⊙O于点D,若∠B=25°,则∠BAD 的度数是()A.25°B.30°C.40°D.50°19.如图,⊙O的直径CD垂直于弦AB,∠AOC=40°,则∠CDB的度数为()A.40°B.30°C.20°D.10°20.如图,已知A,B,C在⊙O上,∠ACB=30°,则∠AOB等于()A.60°B.50°C.45°D.30°21.如图,⊙O经过A,B,C三点,∠BOC=60°,则sinA等于()A.B.C.D.22.如图,AB是⊙O的直径,∠BAD=70°,则∠ACD的度数是()A.20°B.15°C.35°D.70°23.如图,若AB为⊙O的直径,CD是⊙O的弦,∠ABD=65°,则∠BCD的度数为()A.25°B.45°C.55°D.75°24.如图,⊙O的半径是5,AB是⊙O的直径,弦CD⊥AB,垂足为P,若CD=8,则△ACD的面积是()A.16 B.24 C.32 D.4825.如图,OA、OB是⊙O的半径,C是⊙O上一点,∠ACB=20°,则∠OAB的度数为()A.80°B.75°C.70°D.65°26.如图,在⊙O中,AB平分∠CAO,∠BAO=25°,则∠BOC的大小为()A.25°B.50°C.65°D.80°27.如图,AB是⊙O的直径,CD是⊙O的弦,若∠BAC=22°,则∠ADC的度数是()A.22°B.58°C.68°D.78°28.如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD的度数为()A.32°B.58°C.64°D.116°29.如图,△ABC是⊙O的内接三角形,∠AOB=135°,则∠ACB的度数为()A.35°B.55°C.60°D.67.5°30.如图,正三角形ABC是⊙O的内接三角形,点P是劣弧AB上不同于点A、B的任意一点,则∠BPC的度数是()A.30°B.45°C.50°D.60°31.如图,AB为⊙O直径,已知圆周角∠BCD=30°,则∠ABD为()A.30°B.40°C.50°D.60°32.如图,已知AB是⊙O直径,∠AOC=130°,则∠D等于()A.65°B.25°C.15°D.35°33.如图,⊙O的圆心角∠BOC=112°,点D在弦BA的延长线上且AD=AC,则∠D的度数为()A.28°B.56°C.30°D.41°34.如图,AB是⊙O的直径,点C,D都在⊙O上,连结CA,CB,DC,DB.已知∠D=30°,BC=3,则AB的长是()A.5 B.3C.2D.635.如图,AB是⊙O的弦,半径OC⊥AB于点D,若⊙O的半径为5,AB=8,则CD的长是()A.2 B.3 C.4 D.536.如图,AB是⊙O的直径,弦CD⊥AB于点E,∠CDB=30°,⊙O的半径为5cm,则圆心O到弦CD的距离为()A.cm B.3cm C.3cm D.6cm37.如图,在半径为5的⊙O中,弦AB=6,OP⊥AB,垂足为点P,则OP的长为()A.3 B.2.5 C.4 D.3.538.如图,AB是⊙O的直径,CD⊥AB,∠ABD=60°,CD=2,则阴影部分的面积为()A.B.πC.2πD.4π39.如图,在5×5正方形网格中,一条圆弧经过A,B,C三点,已知点A的坐标是(﹣2,3),点C的坐标是(1,2),那么这条圆弧所在圆的圆心坐标是()A.(0,0)B.(﹣1,1)C.(﹣1,0)D.(﹣1,﹣1)40.如图,AB是⊙O的弦,C是AB的三等分点,连接OC并延长交⊙O于点D.若OC=3,CD=2,则圆心O到弦AB 的距离是()A.6 B.9﹣C.D.25﹣341.已知如图,AB是⊙O的直径,弦CD⊥AB于E,CD=6,AE=1,则⊙O的直径为()A.6 B.8 C.10 D.1242.如图,⊙O的直径AB垂直于弦CD,垂足是E,∠A=30°,CD=6,则圆的半径长为()A.2 B.2 C.4D.43.如图,P为⊙O内的一个定点,A为⊙O上的一个动点,射线AP、AO分别与⊙O交于B、C两点.若⊙O的半径长为3,OP=,则弦BC的最大值为()A.2 B.3 C.D.344.如图,CD为⊙O的直径,弦AB⊥CD于E,CE=2,AE=3,则△ACB的面积为()A.3 B.5 C.6 D.845.如图,⊙O的弦AB=8,P是劣弧AB中点,连结OP交AB于C,且PC=2,则⊙O的半径为()A.8 B.4 C.5 D.1046.如图.⊙O的直径AB垂直弦CD于E点,∠A=22.5°,OC=4,CD的长为()A.4 B.8 C.2D.447.如图,⊙O的弦AB垂直于直径CD于点E,∠BCE=22.5°,AB=2,则⊙O的半径长为()A.B.2 C.D.348.在半径为5cm的⊙O中,圆心O到弦AB的距离为4cm,则弦AB的长为()A.3cm B.4cm C.5cm D.6cm49.如图,⊙O中,OA⊥BC,AD∥OC,∠AOC=40°,则∠B的度数为()A.100°B.110°C.115°D.120°50.如图,A,B,C,D为⊙O上的点,OC⊥AB于点E,若∠CDB=30°,OA=2,则AB的长为()A.B.2C.2 D.42017年01月07日圆心角,垂径定理参考答案一.选择题(共50小题)1.C;2.C;3.D;4.C;5.B;6.B;7.B;8.C;9.C;10.A;11.B;12.B;13.C;14.D;15.C;16.D;17.C;18.D;19.C;20.A;21.D;22.A;23.A;24.C;25.C;26.B;27.C;28.A;29.D;30.D;31.D;32.B;33.A;34.D;35.A;36.A;37.C;38.A;39.B;40.C;41.C;42.A;43.A;44.C;45.C;46.D;47.A;48.D;49.B;50.B;。