制备纳米粒子的物理方法
纳米材料的物理合成法全解
1.1.9、爆炸丝法
原理:先将金属丝固定在一个充满惰 性气体(50bar)的反应室中,丝的两 端卡头为两个电极,它们与一个大 电容相联结形成回路,加15kV的高 压、金属丝500一800kA下进行加 热.融断后在电流停止的一瞬间, 卡头上的高压在融断处放电,使熔 融的金属在放电过程中进一步加热 变成蒸汽,与惰性气体碰撞形成纳 米粒子沉降在容器的底部,
1.1.1、电阻加热法
原理:物质(金属离子化合物等) 置于柑蜗内.通过电阻等加热装置加热蒸发,产生蒸发 质烟雾,由于惰性气体的对流,烟雾向上移动,并接近充液氮的冷却棒)。在蒸发过程 中,元物质的原子与惰性气体原子碰撞而冷却,在接近冷却棒的过程中,元物质蒸汽首 先形成原子簇.然后形成单个纳米微粒。最后在冷却棒表面上积聚起来,刮下并收集起 来获得纳米粉。 特点:加热方式简单,工作温度受坩埚材料的限制,还可能与坩埚反应。所以一般用来制 备Al、Cu、Au等低熔点金属的纳米粒子。
激光束
激光挡板
氩气8、 化学蒸发凝聚法(CVC)
工作室
炉子 气体
衬底 刮刀
漏斗
原理:用高纯惰性气作为载气,携带 有机高分子原料,例如六甲基二硅 烷.进入钼丝炉,温度为1100~ 1400 ℃、气氛的压力保持在低气压 状态,在此环境下原料热解形成团 簇进一步凝聚成纳米级颗粒.最后 附着在一个内部充满液氮的转动的 衬底上, 经刮刀刮下进行纳米粉体 收集,示意图如图所示。这种方法 优点足产量大,颗粒尺寸小,分布 窄。 。
磁控溅射法
磁控溅射是一种溅射镀膜法,它对阴极溅射中电子使基片温度上升过快的缺 点加以改良,在被溅射的靶极(阳极)与阴极之间加一个正交磁场和电场,电 场和磁场方向相互垂直。
溅射镀膜机
1.1.4、流动液面真空蒸镀法
纳米粒子的制备方法及应用
纳米粒子的制备方法及应用纳米粒子的制备方法分为物理方法和化学方法。
物理方法主要包括雾化法、机械合金法、燃烧法等,化学方法主要包括溶胀法、微乳液法、共沉淀法、水热法等。
以下是关于纳米粒子的常见制备方法及其应用的详细介绍。
1. 雾化法:将物质通过高温、高压的气体和固液混合物的喷雾,使其迅速冷却固化,形成纳米粒子。
这种方法的特点是造粒速度快、控制性好,应用广泛。
例如,铜纳米粒子制备后可以应用于导电涂料、导电油墨等领域。
2. 机械合金法:通过机械能强化作用,将材料在高能物理场中研磨、冲击或研磨脱臭,使其形成纳米粒子。
这种方法能够制备高纯度的纳米材料,并且可以控制纳米颗粒的形貌和粒度。
例如,铁-铁氧化物纳米复合粒子可以应用于催化剂、磁性材料等领域。
3. 燃烧法:通过在适当的氧气中燃烧金属颗粒或金属盐溶液,使其生成纳米颗粒。
这种方法具有操作简单、制备快速的优点。
例如,钛纳米颗粒可以应用于太阳能电池、生物材料等领域。
4. 溶胀法:利用高分子溶胀、凝胶与干燥法,通过控制溶胀度和架链密度,形成纳米颗粒。
这种方法制备的纳米粒子具有较大的比表面积和较高的孔隙度,适用于吸附、分离等领域。
5. 微乳液法:利用表面活性剂和油水体系,通过溶胶-凝胶转化或乳化反应制备纳米颗粒。
这种方法具有制备精密、单分散的纳米颗粒的优点,例如,二氧化钛纳米颗粒可以应用于催化剂、阳光防护剂等领域。
6. 共沉淀法:将溶液中的金属离子还原后,通过慢慢加热和搅拌,使其形成纳米颗粒。
这种方法的优点是制备过程简单、成本低廉,适用于大批量生产。
例如,氧化铁纳米颗粒可以应用于医学成像、磁性流体等领域。
7. 水热法:将溶液放入高温高压设备中,在水的超临界状态下进行溶解、析出和固化,形成纳米颗粒。
这种方法制备的纳米材料具有优异的结晶度和热稳定性,广泛应用于催化剂、电池材料等领域。
纳米粒子具有特殊的物理、化学和光学性质,因此在众多领域中有重要的应用。
以下是几个典型的应用领域:1. 生物医学:纳米粒子在生物医学领域中具有广泛的应用,如药物载体、分子成像、肿瘤治疗等。
纳米材料的制备方法
纳米材料的制备方法纳米材料的制备方法多种多样,具体选择的方法取决于所需纳米材料的性质、应用需求以及实验条件等因素。
以下是几种常见的纳米材料制备方法:1.化学合成法:-溶液法:将适当的化学物质在溶剂中混合反应,控制反应条件如温度、pH值等,通过溶液中原子、离子或分子的自组装形成纳米结构。
常见的溶液法包括溶胶-凝胶法、共沉淀法、沉积法等。
-气相沉积法:将气态前驱物质通过化学反应沉积到基底表面,形成纳米结构。
气相沉积法包括化学气相沉积(CVD)、物理气相沉积(PVD)等。
2.物理方法:-机械球磨法:通过机械力的作用使粉末颗粒在球磨罐中产生碰撞和摩擦,从而实现颗粒的细化和形态的改变,制备纳米颗粒或纳米结构。
-溅射法:利用高能粒子轰击靶材表面,使靶材表面原子或分子脱落并沉积到基底表面,形成纳米薄膜或纳米结构。
3.生物合成法:-利用生物体内的生物合成过程,通过调控生物体的生理条件或添加适当的试剂,使生物体产生纳米材料。
常见的生物合成法包括植物合成、微生物合成等。
4.模板法:-利用模板的空间排列结构和特定的化学性质,将原料物质定向沉积或填充到模板孔道中,通过模板的模板效应制备纳米结构。
常见的模板法包括硅模板法、自组装模板法等。
5.激光法:-利用激光束对物质进行光照,控制激光的能量和焦点位置,使材料在局部区域发生化学或物理变化,形成纳米结构。
常见的激光法包括激光烧蚀、激光诱导化学气相沉积等。
这些制备方法各有特点,可以根据纳米材料的具体要求选择适合的方法进行制备。
同时,纳米材料的制备过程中需要注意控制反应条件、纯度和结构等关键因素,以确保制备得到高质量的纳米材料。
纳米材料制备方法
纳米材料制备方法随着纳米技术的发展,纳米材料已经成为了现代科技领域中的热门研究方向之一。
纳米材料具有独特的物理化学性质,广泛应用于生物、医学、电子、能源等领域。
纳米材料的制备方法是纳米技术的基础,也是纳米材料研究的重要环节。
本文将介绍常见的纳米材料制备方法,包括物理法、化学法、生物法和机械法。
一、物理法物理法是指通过物理手段制备纳米材料,包括凝聚态物理法和非凝聚态物理法两种。
1.凝聚态物理法凝聚态物理法是指利用物理原理制备纳米材料,包括溅射法、热蒸发法、溶液法、光化学法等。
(1)溅射法溅射法是一种通过高能量粒子轰击靶材,使其表面原子或分子脱离并沉积在基板上形成薄膜或纳米颗粒的方法。
溅射法可以制备金属、半导体、氧化物、磁性材料等纳米材料。
(2)热蒸发法热蒸发法是指通过加热材料使其蒸发,并在凝固时形成薄膜或纳米颗粒的方法。
热蒸发法可以制备金属、半导体、氧化物等纳米材料。
(3)溶液法溶液法是指将溶解有机物或无机物的溶液滴在基板上,然后通过蒸发溶剂使溶液中的物质沉积在基板上形成薄膜或纳米颗粒的方法。
溶液法可以制备金属、半导体、氧化物、磁性材料等纳米材料。
(4)光化学法光化学法是指利用光化学反应制备纳米材料的方法。
光化学法可以制备金属、半导体、氧化物等纳米材料。
2.非凝聚态物理法非凝聚态物理法是指利用物理原理制备纳米材料,包括激光蚀刻法、等离子体法、超声波法等。
(1)激光蚀刻法激光蚀刻法是指利用激光束对材料进行刻蚀制备纳米结构的方法。
激光蚀刻法可以制备金属、半导体、氧化物等纳米材料。
(2)等离子体法等离子体法是指利用等离子体对材料进行处理制备纳米结构的方法。
等离子体法可以制备金属、半导体、氧化物等纳米材料。
(3)超声波法超声波法是指利用超声波对材料进行处理制备纳米结构的方法。
超声波法可以制备金属、半导体、氧化物等纳米材料。
二、化学法化学法是指利用化学反应制备纳米材料,包括溶胶-凝胶法、水热法、气相沉积法、还原法等。
纳米粒子的制备方法
纳米粒子的制备方法1 物理方法物理方法是制备纳米粒子的典型方法,其中蒸发凝聚法和机械粉碎发是两种较早期及常用的方法。
1.1 蒸发凝聚法蒸发凝聚法是一种早期的制备纳米粒子的物理方法。
它是在高真空条件下,将金属原料加热、蒸发,使之成为原子或分子,再凝聚生成纳米粒子。
蒸发凝聚过程一般不伴有燃烧之类的化学反应,是纯粹的物理过程。
其原料的蒸发方式包括等离子体蒸发、激光束加热蒸发、电阻蒸发、电弧放电加热蒸发、电子束加热蒸发、高频感应电流加热蒸发、太阳炉加热蒸发等。
蒸发法所得产品的粒径一般为5~100nm,再经过真空蒸馏、浓缩,可以在短时间内制得平均粒径为3nm的粒子。
蒸发凝聚法的主要特点是制备的纳米粒子纯度高、粒度分布窄、结晶性好、表面清洁、粒度易于控制等。
1.2 机械粉碎法机械粉碎是指在粉碎力的作用下,固体料块或粒子发生变形进而破裂,产生更微细的颗粒。
常见的基本粉碎方式包括剪碎、压碎、冲击粉碎和磨碎。
一般的粉碎作用力都是几种粉碎力的组合。
理论上,固体粉碎的最小粒径可达10~50 nm。
然而目前的机械粉碎设备与制作工艺很难达到这一理想值。
粉碎极限受物料种类、粉碎方法、粉碎工艺条件、机械应力施加方式、粉碎环境等因素的影响。
机械粉碎也用于纳米粒子制备过程,比较典型的纳米粉碎技术有:气流磨、搅拌磨、振动磨、球磨和胶体磨等。
其中,气流磨是利用高速气流或热蒸气的能量使粒子相互冲击、碰撞、摩擦从而被较快的粉碎。
气流磨的技术发展较为迅速,20世纪80年代德国Alpine公司开发的流化床逆向气流磨可将较高硬度的物料粒子粉碎,产品粒度达到了1~5 μm。
降低入磨物的粒度后,可以得到平均粒度1μm的产品,也就是说,产品的粒径下限可达到100 nm以下。
除了产品粒度微细以外,气流粉碎的产品还具有粒度分布窄、粒子表面光滑、形状规则、纯度高、活性大、分散性好等优点。
因此,气流磨引起了人们的普遍重视,其在陶瓷、磁性材料、医药、化工颜料等领域具有广阔的应用前景[2-4]。
物理实验技术的纳米粒子制备方法
物理实验技术的纳米粒子制备方法纳米科技是当今科技领域中备受关注的热点之一。
纳米材料由于其特殊的物理、化学和生物学性质,展示出与其宏观物体截然不同的特性,被广泛应用于能源、环境、医学等多个领域。
在纳米科技的研究中,纳米粒子制备是一个关键步骤,而物理实验技术则成为纳米粒子制备的有效手段。
一、溶胶凝胶法溶胶凝胶法是纳米粒子制备中常用的一种方法。
这种方法主要通过溶胶的凝胶过程来制备纳米粒子。
在溶胶凝胶法中,首先需要选择合适的溶胶,如金属盐溶胶、金属氧化物溶胶等。
然后,在适当的条件下,通过调节溶胶中的物理和化学参数,使溶胶凝胶成粒子,并进行后续的处理和表征。
溶胶凝胶法制备纳米粒子的优势在于可以制备多种材料的纳米粒子,并且具有制备过程简单、操作灵活的特点。
例如,可以通过控制溶胶中金属离子的浓度、pH 值、温度等参数,来调控制备纳米粒子的尺寸、形貌和分散性。
二、热雾化法热雾化法是一种通过物理方法将材料转化为纳米粒子的技术。
这种方法通过将固体材料加热至熔点或沸点,并利用热膨胀效应,迅速将材料转变为微小颗粒。
热雾化法主要有热气胶凝法和电弧法两种。
在热气胶凝法中,首先将材料加热至高温区域,使其瞬间转化为气态,然后通过快速冷却将气态材料凝固为纳米粒子。
而电弧法则是利用高温电弧将金属材料蒸发,并在气相中形成纳米粒子。
热雾化法制备纳米粒子的优点是得到的纳米粒子尺寸均一、分散性好、纯度高,并且可以制备大量的纳米粒子。
缺点是制备过程中需要高温,可能会对材料的性质产生一定影响。
三、溅射法溅射法是一种将固态材料薄膜沉积到基底上并制备纳米粒子的方法。
在溅射法中,先将固体材料制备成靶材,然后使用高能粒子轰击靶材,通过溅射的方式将材料沉积到基底上形成薄膜。
接着,经过后续处理,将薄膜转变为纳米粒子。
溅射法制备纳米粒子的特点在于制备过程可控性强,可以通过调节工艺参数如靶材的成分、粒度、功率密度等来控制纳米粒子的尺寸和形貌。
此外,溅射法还具有制备材料纯度高、结晶性好等优点。
银纳米粒子的制备及其在生物检测中的应用
银纳米粒子的制备及其在生物检测中的应用银纳米粒子是一种近年来被广泛应用于生物检测领域的新材料。
它具有良好的稳定性、高度的生物相容性和光学性能,因而被广泛应用于生物分析、免疫分析等生物检测领域。
本文将探讨银纳米粒子的制备方法和其在生物检测领域中的应用。
一、银纳米粒子的制备方法1、物理方法物理方法是通过物理手段形成银纳米粒子。
常见的物理方法有机械法、气相法、光化学法等。
相比于化学合成方法,物理方法因其操作简单,反应条件容易控制等因素而得到广泛的应用。
2、化学合成方法化学合成方法是通过化学反应来制备银纳米粒子。
常用的化学合成方法有还原法、微乳法、光化学还原法等方法。
化学合成方法制备的银纳米粒子具有尺寸分布均匀、形态规则、精确可控等优点,因而成为目前银纳米粒子制备方法中的主流方法。
3、生物制备法生物制备法是利用某些生物体或其提取物对银离子进行还原得到银纳米粒子。
常见的生物制备方法有微生物法、植物提取物法等。
相比于化学合成方法,生物制备法具有无毒无害、环保、易于规模化等优点,因而成为银纳米粒子制备新兴方法。
二、银纳米粒子在生物检测中的应用1、生物分析银纳米粒子在生物分析领域中的应用得到了广泛关注。
其具有良好的生物相容性、高度的稳定性和较强的增强作用。
如将银纳米粒子与DNA探针结合,能够形成“探针--银纳米粒子复合体”,通过测量银纳米粒子的表面等离子体共振信号,可以获得高灵敏度的DNA检测结果。
2、免疫分析银纳米粒子被广泛应用于免疫分析领域,其主要应用于荧光免疫检测、电化学免疫分析等技术中。
如将银纳米粒子与抗体结合形成免疫复合物,利用其高灵敏度的表面等离子体共振效应,可以提高免疫分析技术的敏感度和特异性。
3、细胞成像银纳米粒子具有较强的光学性质,可以用于细胞成像。
如将银纳米粒子与荧光染料结合,可以制备出基于银纳米粒子的细胞成像探针,并通过其高度的增强效应获得高质量的细胞图像。
三、结论综上所述,银纳米粒子因其良好的生物相容性、高度的稳定性和灵敏度得到了广泛的应用。
纳米材料的制备方法
纳米材料的制备方法
纳米材料的制备方法主要有几种,其中包括物理法、化学法和生
物技术法。
1. 物理法:物理法的制备方法又可以分为几类,包括电磁熔炼法、湿法分散器等。
例如电磁熔炼法可以通过电磁力场将含有特定成分的
材料加热融化,然后通过冷却和固定,形成小尺度的粒子。
湿法分散
器也可以将混入溶剂中的原料加以研磨并调节粒径,从而获得纳米溶胶。
2. 化学法:化学法中,主要有溶剂热法、溶剂冷法等。
溶剂热法
是使用溶剂作为介质,将原料溶解,然后加入体系内氧化剂进行氧化
聚合,最后用超声处理微粒,形成更小的纳米粒子。
而溶剂冷法则是
将原料溶解后,再加入表面活性剂,使其聚集形成纳米粒子。
3. 生物技术法:生物技术法则是利用微生物的合成能力进行合成,将原料添加到表面活性剂、微生物介质、磷酸肥料等中,以促进微生
物的生长和代谢,最终形成纳米粒子。
以上就是纳米材料的制备方法主要有几种,它们分别是物理法、
化学法和生物技术法。
这些方法都有不同的优点和缺点,需要根据具
体应用场景选择合适的方法,以期获得更高质量的纳米材料粒子。
纳米材料的制备方法
纳米材料的制备方法纳米材料是一种具有极小颗粒尺寸的材料,其颗粒尺寸通常在1到100纳米之间。
纳米材料具有独特的物理、化学和生物学性质,广泛应用于化学、材料科学、医学等领域。
纳米材料的制备方法多种多样,包括物理法、化学法和生物法等。
下面将详细介绍几种常用的纳米材料制备方法。
1.物理法物理法主要利用物理过程来制备纳米材料,如溅射、喷雾干燥、球磨等。
(1)溅射法:溅射法是通过在高真空或惰性气体氛围中,用高能粒子轰击靶材产生靶材原子或分子的传递过程,将原料转化为纳米颗粒。
这种方法能够制备出尺寸均一、纯度高的纳米材料。
(2)喷雾干燥法:喷雾干燥法是通过将溶液喷雾成雾状,然后用热空气或惰性气体将其快速干燥,形成纳米颗粒。
这种方法简单易行,适用于大规模制备纳米材料。
(3)球磨法:球磨法是将粉末物料置于磨盘或磨球中进行研磨,通过磨碎使粉末颗粒达到纳米尺寸。
球磨法可以用于制备金属纳米颗粒、纳米氧化物等。
2.化学法化学法是利用化学反应过程来制备纳米材料,包括溶胶-凝胶法、热分解法、气相沉积等。
(1)溶胶-凝胶法:溶胶-凝胶法是通过将溶解的金属盐或金属有机化合物加入溶剂中形成溶胶,再通过凝胶剂的作用将溶胶转化为凝胶,最后通过热处理等方法形成纳米材料。
(2)热分解法:热分解法主要通过调节温度和气氛条件,使金属有机化合物在热分解过程中产生金属纳米颗粒。
这种方法制备的纳米材料尺寸均一、分散性好。
(3)气相沉积:气相沉积是在高温下,通过将金属有机气体或金属原子蒸发成气态,然后在基底上沉积形成纳米材料。
这种方法适用于制备纳米薄膜和纳米线等。
3.生物法生物法利用生物体或其代谢产物来制备纳米材料,包括微生物法、植物法和生物模板法等。
(1)微生物法:微生物法利用微生物合成酶的特殊功能来制备纳米材料。
例如,利用细菌或酵母菌的代谢活性合成金属纳米颗粒。
(2)植物法:植物法利用植物自身的生物合成能力来制备纳米材料。
例如,利用植物细胞的代谢活性合成金属纳米颗粒。
纳米技术中的纳米粒子
纳米技术中的纳米粒子纳米技术是一种跨学科的技术,可应用于医学、材料科学、计算机科学、能源等领域。
纳米粒子作为纳米技术的重要组成部分,具有其独特的优势和应用。
一、纳米粒子的定义和性质纳米粒子是一种直径在1到100纳米之间的粒子,其直径小于一百分之一的毫米。
纳米粒子比其它大分子更易溶解和稳定,具有高比表面积和特殊的物理和化学性质。
与大颗粒相比,纳米粒子具有更高的反应速率、更高的催化活性和更强的光学特性,因此具有非常广泛的应用前景。
二、纳米粒子的制备方法纳米粒子的制备方法包括物理法、化学法和生物法三种。
物理法主要通过高能球磨、蒸发凝结、溅射和激光等方法制备纳米材料;化学法主要通过共沉淀、溶胶-凝胶、沉淀、还原等方法制备纳米材料;生物法则利用生物学原理获得纳米材料。
三、纳米粒子的应用1. 医学应用纳米粒子可以用于制备新型的药物递送系统,用于传递药物以达到更好的治疗效果。
同时,纳米粒子还可以应用于基因治疗、细胞成像、生物传感等方面。
2. 环境治理纳米粒子可以用于污染物的检测和净化,也可以用于修复环境污染。
比如,利用TiO2 纳米粒子可以提高污水的净化速度,利用Fe3O4 纳米粒子可以去除水中的重金属等有害物质。
3. 材料科学纳米粒子可以用于改善材料的性能,制备出更为优越的材料。
比如纳米金属材料具有良好的导电特性和光学特性,能够用于制作太阳能电池和化学传感器等领域。
4. 能源纳米粒子可以用于提高电池和储能器的性能,同时也可以用于制备高性能的光电转换材料。
在可再生能源方面,利用纳米粒子可以有效的提高太阳能电池的转化效率。
四、纳米粒子的安全性纳米粒子的安全性一直是人们关注的一个问题。
作为一种新型材料,目前对纳米粒子的毒性研究还没有太多的数据支持,但是近年来对其安全性的研究和探索已经逐渐开展,需要进一步深入的研究。
五、结语纳米粒子作为一种重要的纳米技术应用材料,具有许多优势和应用前景。
随着纳米技术的深入研究和应用,我们相信纳米粒子一定会在更多领域发挥其重要的作用。
(完整版)纳米颗粒制备方法
优 点: 制备的纳米粉纯度高、粒度分布 窄、结晶性好、表面清洁、粒度易于控 制、原则上适用于任何被蒸发的元素以 及化合物 。
• 蒸发法所得产品的粒径一般5~100nm, 但如果将物质在真空中连续的蒸发到流 动着的油面上,然后把含有纳米粒子的 油会受到储存器内,再经过真空蒸馏、 浓缩,可以在短时间内制得平均粒径为 3nm的Ag、Au、Cu、Pb等粒子。 这就是 流动油面蒸发凝聚法。
• 我们在这里无意对如何进行纳米粒子 制备方法的科学分类进行评价,而着重 针对纳米粒子生成机理与制备过程非常 粗略的将制备方法分成 :
• 物 理 方 法;
• 化学 方 法;
• 物 理 化 学 方 法。
二、制备纳米粒子的物理方法
• 机械粉碎法 • 蒸发凝聚法
机械粉碎法
• 纳米机械粉碎法是在传统的机械粉碎 技术技术中发展起来的,以粉碎与研磨 为主体来实现粉末的纳米化,可以制备 纳米纯金属粉和合金粉 。
纳米粒子采用的方法是蒸发法。如20 世纪30年
代日本为了军事需要而开展了“沉烟试验”,
用蒸发冷凝法制成了世界上第一批超微铅粉;
• 1963年,Uyeda用气体蒸发冷凝法制得金 属纳米微粒,对其形貌和晶体结构进行 了电镜和电子衍射研究。1984年,德国 的H. Gleiter等人将气体蒸发冷凝获得的 纳米铁粒子[1],在真空下原位压制成纳 米固体材料,使纳米材料研究成为材料 科学中的热点。
化学制备方法
• 1 化学沉淀法 • 2 化学还原法 • 3 溶胶凝胶法 • 4 水热法 • 5 溶剂热合成法 • 6 热分解法 • 7 微乳液法 • 8 高温燃烧合成法 • 9 模板合成法 • 10 电解法
化学沉淀法
• 在溶液状态下将不同成分的物质 混合,在混合溶液中加入适当的沉 淀剂制备纳米粒子的前驱体沉淀物, 再将此沉淀物进行干燥或煅烧,从 而制得相应的纳米粒子。
第二章 纳米粒子的制备方法
5、金属烟粒子结晶法
(1)原理 将金属原料置于真空室电极处→真空室抽空 (真空度1 Pa) →导入102~103Pa压力的氢气 或不活泼性气体→用钨丝篮蒸发金属(类似通 常的真空蒸发) →在气体中形成金属烟粒子→ 像煤烟粒子一样沉积于真空室内壁上。 在钨丝篮上方或下方位置可以预先放置格网收 集金属烟粒子样品,以备各类测试所用。 金属烟粒子的实验原理如图2.2所示。
气流粉碎机
三、蒸发凝聚法
1、定义:将纳米粒子的原料加热蒸发,使之成为原 子或分子;这些微粒子与惰性气体碰撞失去能量而凝 聚,生成极微细的纳米粒子。 加热源:电阻、等离子电弧、激光、电子束、高频感应 等。 2、特点 (1)应用范围广(金属、合金、部分化合物;加热方式 多)。 (2)工艺简单。 (3)纳米粒子纯度较高。 (4)设备要求高,产率低。 (5)粒子收集困难。
6、几种典型的纳米粉碎技术
(1)球磨 原理:利用介质和物料之间的相互研磨和冲击使 物料粒子粉碎。 介质:各种磨球。 转速:可调。 类型:多样。行星式、滚筒式等。 效果:经几百小时的球磨,可使小于1μ m的粒 子达到20%。采用涡轮式粉碎的高速旋转磨 机,也可以比较方便地进行连续生产,其临界 粒径为3μ m。
4、纳米粉体生产的安全性
对于易燃、易爆物料,其粉碎生产过程中还会 伴随有燃烧、爆炸的可能性,这是纳米机械粉 碎技术应予以考虑的安全性问题。 5、纳米机械粉碎的极限问题 (1)定义:粉碎到一定程度后,尽管继续施加 机械应力,粉体物料的粒度不再继续减小或减 小的速率相当缓慢,这就是物料的粉碎极限。 在纳米粉碎中,随着d↓,被粉碎物料的结晶均 匀性↑,粒子强度(σ )↑,断裂能(σ s)↑,粉 碎所需的机械应力也大大增加↑。因而粒子度 越细,粉碎的难度就越大。
银纳米粒子的制备及其在生物医学中的应用
银纳米粒子的制备及其在生物医学中的应用银纳米粒子(AgNPs)是一种直径小于100纳米的银颗粒,由于其特殊的物理、化学特性,在生物医学领域中引起了广泛的关注。
本文主要介绍银纳米粒子的制备方法及其在生物医学中的应用。
一、银纳米粒子的制备目前,制备银纳米粒子的方法主要有两种:物理法和化学法。
其中,化学还分为初级合成法和微波合成法。
1.物理法物理法指的是通过物理手段制备银纳米粒子,如水热法、电化学法、蒸汽冷凝法等。
(1)水热法水热法是用高温高压反应器在水热条件下制备银纳米粒子。
该方法具有反应条件温和、反应时间短等优点,但是目前生产成本较高。
(2)电化学法电化学法指的是通过电极电解或电化学还原的方法来制备银纳米粒子。
该方法银离子的还原程度高,纯度高,但需要一定的设备和工艺条件。
(3)蒸汽冷凝法蒸汽冷凝法是将银热化后让其冷凝在冷表面上,使其形成纳米颗粒。
该方法成本较低,但产品纯度较低,且容易受到外界影响。
2.初级合成法初级合成法是利用化学反应来制备银纳米粒子,常见的方法有还原法、化学沉淀法、水相法等。
(1)还原法还原法是利用还原剂将银离子还原成银原子,生成银纳米粒子。
该法操作简单、纯度高,但有毒性较大的还原剂参与还原反应。
(2)化学沉淀法化学沉淀法通过一些沉淀剂将银离子还原成银原子,此法只能得到均匀且质量较差的银纳米颗粒,且反应后的溶液总体积较大。
(3)水相法水相法是指在水相中直接通过化学反应形成银纳米粒子,具有简单、操作方便、安全等特点,但是制备出的银纳米粒子分散性较差。
3.微波合成法微波合成法是在介电性物质中加入还原性物质,并在微波辐射下制备银纳米粒子。
该方法反应快速,生成的纳米颗粒均匀,但设备较为昂贵。
二、银纳米粒子在生物医学中的应用银纳米粒子由于具有独特的生物反应性和特殊的电子性质,在生物医学中有较广泛的应用,主要表现在以下几个方面。
1.肿瘤治疗银纳米粒子能够透过细胞膜,进入到肿瘤细胞,使细胞内的积极物质受到破坏,达到杀灭肿瘤细胞的作用。
无机纳米粒子的制备技术及其应用
无机纳米粒子的制备技术及其应用随着科技的不断发展,人们对于材料的要求也越来越高。
而在这些材料中,无机纳米粒子的制备和应用得到了广泛的研究。
无机纳米粒子具有良好的物理化学性能,可以用于各种领域,如电子、光电、生物医学等。
本文将介绍无机纳米粒子的制备技术及其应用。
一、无机纳米粒子的制备技术1. 氧化物法氧化物法是一种已经被广泛应用于无机纳米粒子制备的方法。
该方法主要基于金属离子所形成的氧化物的合成反应,可通过定量控制条件来实现纳米粒子的一致性和形态的控制。
该方法具有简单快速、制备条件宽、纳米粒子尺寸有所控制等优点。
2. 溶胶-凝胶法溶胶-凝胶法是一种非常成功的制备无机纳米粒子的方法。
该法主要是以溶胶前驱体,即一种液体或溶液的形式存在的金属均匀分布的混合物为原材料,利用溶胶状态加热和固化反应来生成纳米粒子。
3. 爆炸合成法爆炸合成法也是一种常用的方法。
它主要是通过利用热引发的爆炸来制备无机纳米粒子。
在这种合成方法中,材料比例、反应路线和方法都非常重要,可以有效地控制所得纳米粒子的尺寸、形状和结构等。
该方法有过程简单、粒径范围广等优点,但同时又需要对反应条件进行监控,以避免危险。
4. 物理气相沉积法物理气相沉积法是一种利用气体化合物的高温加热蒸馏物质制备纳米粒子的方法。
该方法的优点在于可以得到非常纯净的纳米颗粒,从而具有更好的光电和电学性能。
二、无机纳米粒子的应用1. 电子领域在电子领域中,无机纳米粒子可以作为高效率、高灵敏度的传感器。
其制作方法可以通过把纳米材料与晶体管结合起来,以增加电子传输效率、增强信号的响应等。
2. 光电领域在光电领域中,无机纳米粒子可以作为高活性的催化剂,如氧化反应、氢化反应等。
此外,还可以应用在光伏电池中,利用其光电转化性能,通过将它们与透明导电聚合物材料或纳米结构的太阳能电池进行结合,以提高光电转换效率。
3. 生物医学领域在生物医学领域中,无机纳米粒子可以作为生物分子探测器。
纳米材料的制备方法
纳米材料的制备方法
纳米材料的制备方法有以下几种:
一、物理制备方法。
物理制备方法包括溅射技术、冷凝气相沉积(CVD)技术、液体-液体超声破碎技术、溶胶-凝胶技术、微通道技术、湿化学调制技术、引入剂技术、蒸镀技术等。
溅射技术是将纳米粒子
或分散体以喷雾的形式由高压气体或气态、液态金属或其他物质喷射
到固体表面,使其在固相上形成一层均匀的薄膜。
二、化学制备方法。
化学制备方法是将原料化学反应,生成不同
结构的纳米结构。
包括反应凝胶法、超声法、电沉积法、溶剂热法、
熔融凝固法等。
这些化学反应可以产生出各种纳米材料,如纳米纤维、金属纳米粒子、金属氧化物纳米材料等。
三、生物制备方法。
生物制备方法主要是利用某种生物体如细菌、真菌、植物等,通过生物反应产生特殊的纳米结构。
常用的生物技术
包括细菌结晶、真菌精细加工技术、发酵技术等。
这些生物制备方法
的优点是绿色、无毒、低成本、可控性强等。
四、机械捣碎法。
机械捣碎法(或称为机械研磨法)是一种制备
纳米材料的非常常用的方法,其基本原理是利用机械压力将原料捣碎
到纳米级尺寸,从而获得纳米尺度的材料。
机械捣碎法可用于不同类
型的材料,如金属材料、金属氧化物、无机非金属材料及碳纳米管等。
总之,纳米材料的制备方法主要有物理制备方法、化学制备方法、生物制备方法和机械捣碎法四大类。
在实际应用中,应根据实际情况
灵活选择合适的纳米材料制备方法,才能较好地发挥纳米材料的优势。
纳米颗粒制备方法
纳米颗粒制备方法
纳米颗粒的制备方法有多种,包括蒸发法制备纳米颗粒、流动油面上的真空蒸发沉积法、化学气相冷凝法等。
此外,纳米颗粒的化学合成方法也较为常见。
以上方法的具体内容如下:
1.蒸发法制备纳米颗粒:包括直接利用气体或利用各种手段将物质变成气体,使之在气体状态下发生物理或化学变化,在冷却过程中凝聚长大形成纳米粒子。
其中,气相蒸发法原理是在高真空室中冲入低压的纯净惰性气体或反应气体,预蒸发的物质置于坩埚,通过加热装置逐渐加热蒸发,产生原物质烟雾。
由于惰性气体的对流,烟雾向上移动(与反应气体发生化学反应)并接近充液氮的冷却棒(77K)。
在蒸发过程中原物质原子与惰性气体碰撞损失能量冷却,造成局域的过饱和,形成均匀的成核过程,然后形成原子簇,长大成纳米粒子。
2.流动油面上的真空蒸发沉积法(VEROS):将物质在真空中连续地蒸发到流动着的油面上,然后把含有纳米粒子的油回收到贮存器内,再经过真空蒸馏、浓缩,制备纳米粒子。
这种方法可以得到平均粒径小于10nm的各类金属粒子,粒子分布窄。
3.化学气相冷凝法(CVC):将反应室抽真空,冲入少量的惰性气体,形成数百帕的真空度,(通入反应气体),在加热的反应器内得到目标产物或其前驱体,然后在对流的作用下,到达后部的骤冷转筒器(加入液氮作为冷却介质),转筒后面有一刮刀不断的移去沉积的纳米颗粒,可以提供一个干净的金属表面来进行连续的收集操作。
这种方法粒径小、分布窄、避免团聚。
以上制备纳米颗粒的方法各有特点,可以根据实际需求和条件选择合适的方法。
纳米粒子合成方法
纳米粒子合成方法纳米粒子是具有纳米级尺寸的微粒,具有较大的比表面积和特殊的物理、化学特性,因此在材料科学、医学、能源等领域具有广泛的应用前景。
合成纳米粒子是研究人员必须面对的关键问题之一,因为合适的合成方法不仅能够精确控制纳米粒子的形状、大小和组成,还能够影响其物理化学性质和应用效果。
本文将介绍几种常见的纳米粒子合成方法。
1. 溶胶-凝胶法溶胶-凝胶法是一种常用的纳米粒子合成方法,通过溶液中的化学反应使溶胶逐渐形成凝胶,然后通过干燥和煅烧等步骤制备纳米粒子。
这种方法可以通过控制溶胶溶液中的化学成分和条件来调控纳米粒子的形状和尺寸。
例如,通过溶胶-凝胶法可以合成金属纳米粒子、氧化物纳米粒子等。
2. 热分解法热分解法是一种利用热能将金属盐类或金属有机络合物转化为金属纳米颗粒的方法。
通常使用高温和惰性气氛来控制热分解反应。
这种方法可以实现对纳米粒子形貌和尺寸的精确控制。
例如,通过调节反应温度和时间,可以合成球形、棒状或片状的金属纳米粒子。
3. 水热法水热法是一种利用水热条件下的化学反应来制备纳米颗粒的方法。
该方法常用于合成金属氧化物纳米颗粒和碳基材料。
在高温高压的水热环境下,溶液中的化学物质会在一定的时间内发生反应,从而合成所需的纳米颗粒。
纳米颗粒的形貌和尺寸可以通过调节反应条件和反应时间来实现。
4. 水相/油相界面法水相/油相界面法是一种通过油相与水相的界面上发生的反应来制备纳米颗粒的方法。
通常使用表面活性剂作为界面剂来调控纳米颗粒的大小和形貌。
在水相/油相体系中,溶剂中的油相可溶解或包裹微量的金属形成一种包裹形态,然后在界面上通过还原反应形成纳米粒子。
这种方法可以合成具有特定形状和空腔的纳米颗粒。
5. 生物法生物法是利用生物体或其生物产物作为模板或催化剂来合成纳米材料的方法,它具有绿色环保的优势。
例如,使用细菌、病毒和酵母等生物体可以直接将金属离子还原为相应的金属纳米颗粒。
此外,还可以利用生物产物中的特殊结构和功能,如基因工程、合成生物学等技术来合成具有特殊形貌和特性的纳米颗粒。
纳米材料的制备方法
纳米材料的制备方法纳米材料制备方法纳米材料是一种尺寸在纳米级别(1-100纳米)的物质,具有独特的物理、化学和生物特性,广泛应用于电子、光电、材料科学等领域。
目前,有许多方法可用于纳米材料的制备,下面将介绍几种常见的制备方法。
1. 物理方法物理方法制备纳米材料主要包括纳米球磨法、脉冲激光沉积法、物理气相沉积法等。
其中,纳米球磨法是一种通过机械能将材料研磨至纳米级尺寸的方法,通常使用球磨机将初级颗粒或粉末与研磨介质一起磨碎,最终得到纳米粒子。
脉冲激光沉积法是利用高能量脉冲激光将材料蒸发并在基底上沉积,形成纳米材料。
物理气相沉积法则是通过将材料的气态前驱物质蒸发并在基底表面沉积,从而制备纳米材料。
2. 化学方法化学方法是制备纳米材料最常用的方法之一,包括溶胶-凝胶法、沉淀法、逆微乳法等。
其中,溶胶-凝胶法是指将溶解液中的前驱物通过水合、聚集等反应生成胶体粒子,并在适当条件下形成凝胶或固体。
沉淀法是通过在溶液中混合两种不相溶溶液,使得其中一种离子产生位移反应并沉淀,在沉淀过程中形成纳米晶体。
逆微乳法是将两种不可混溶的液体通过表面活性剂的形成形成微乳体,然后通过化学反应在微乳体中合成纳米材料。
3. 生物方法生物方法制备纳米材料是近年来新兴的一种方法,利用生物体内的生物分子、生物小分子和生物活性物质在合适条件下自组装形成纳米结构。
这些生物体包括细胞、细菌、酵母等微生物,以及植物、动物等。
通过调节生物体内部环境、生长条件等因素,可以有效地制备出各种形状和结构的纳米材料。
4. 等离子体辅助方法等离子体辅助方法是一种利用等离子体的高温高能量特性制备纳米材料的方法。
常见的等离子体辅助方法包括电弧放电、磁控溅射、等离子体化学气相沉积等。
其中,电弧放电方法是一种利用电弧高温等离子体的热效应将导线或电极上的金属蒸发并冷凝成纳米粒子的方法。
磁控溅射则是利用磁控电极和高能离子束将材料表面溅射下来并堆积在基底上,形成纳米薄膜。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
气流粉碎是用高速气流来实现物料超微粉碎, 粉末在高速气流中相互撞击而被粉碎,其破碎工作 原理如图1 所示。经过净化、干燥的高压空气通过特 殊配置的几个超音速喷嘴向同一位置高速喷射,粉 末进入喷嘴交汇处反复被冲击、碰撞,达到粉碎细化
由于粉末颗粒的运动是从流态气体中获得的,因此, 提高颗粒的动能必须要提高载流气体的速度。
中南大学粉末冶金国家重点实验 室的吴恩熙等人的研究发现:
采用振动球磨对粗、中、细碳化钨粉均 有显著的细化效果。球磨60 h 时,粉末粒 度均可降至0. 6μm 以下,同时粉末粒度分 布变窄。 振动球磨制取超细碳化钨的最小粒度取 决于球磨强度、球磨时间和球料比
2.2.1机械粉碎法
3.振动磨
利用研磨介质可以在一定振幅振动的筒体内对物料进 行冲击、摩擦、剪切等作用而使物料粉碎。 与球磨机不同,振动磨是通过介质与物料一起振动将 物料进行粉碎的。
2.2.1机械粉碎法
原理: 压缩空气经喷嘴加速成超音速气 流后射入粉碎区使物料呈流化状态。 在粉碎区,被加速的物料在各喷 嘴的交汇点高速汇合。在此,颗粒 互相对撞粉碎。 粉碎后的物料被负压上升气流输 送至分级区,由内分级轮筛选出的
粒度即为所要求的细粉,未满足粒
度要求的粗粉返回粉碎区继续粉碎 (无大颗粒产生)。 合格细粉经分级轮随气流进入收 集系统进行收集,含尘气体经布袋 收尘器过滤净化后排入大气。
2)高能球磨制备大容量贮氢合金电极材料
环保意识增强呼唤电动汽车。电动汽车的关键之一是 要有大容量充电电池。本项目即针对电动汽车用电池负极 材料。 西安交通大学正在开发的高能球磨MgNi合金电池负极 材料,处于国内先进,可做为大容量充电电池的负极候选 材料,为进一步开发制备大容量合金负极,进而开发大容 量充电电池奠定基础。
2.2.1机械粉碎法
采用机械粉碎法需注意的问题: 1)安全性问题 对于易燃、易爆物料,其粉碎生产过程中还会伴随有燃 烧、爆炸的可能性。
2)纳米机械粉碎极限
在纳米粉碎中,随着粒子粒径的减小,被粉碎物料的结 晶均匀性增加,粒子强度增大,断裂能提高,粉碎所需的机 械应力也大大增加。因而粒度越细,粉碎的难度就越大。粉 碎到一定程度后,尽管继续施加机械应力,粉体物料的粒度 不再继续减小或减小的速率相当缓慢,这就是物料的粉碎极 限。
滚筒式球磨
行星球磨
2.2.1机械粉碎法
参考文献:
1)高能球磨制备ZnSe纳米晶粉体 车俊 姚熹 姜海青 汪敏强,西安交通大学, 《稀有金属材料与工程》-2006 将相同摩尔比的Zn粉和Se粉放在球磨罐(WC)中,选用球石 直径为10mm,原料:球石=1:20,干磨,在氮气保护下, 球磨60min即可获得纯立方闪锌矿结构,避免了ZnO相的出 现。晶粒的尺寸用Scherrer公式计算为5nm,用TEM直接观 察的尺寸为10nm左右。
0.5μ m的纳米粒子。
振动球磨
2.2.1机械粉碎法
实 例: 1) 高能振动球磨法制备纳米SiCp/Al复合材料的研究 采用粒径为30nm的SiC和100μm左右的Al粉颗粒为 初始原料,通过高能振动球磨的方法对体积分数﹪为5、 10、20、30的SiCp/Al复合粉末进行了球磨处理.
复合粉体球磨30h后,可以将铝粉细化至70~100nm。
制备纳米粒子的物理方法
2.2.1机械粉碎法
粉碎定义:固体物料粒子尺寸由大变小 过程的总称,它包括“破碎”和“粉 磨”。前者是由大料块变成小料块的过 程,后者是由小料块变成粉体的过程。 粉碎作用力的类型如右图所示几种。 基本粉碎方式:压碎、剪碎、冲击粉碎 和磨碎。 种类:湿法粉碎 干法粉碎
一般的粉碎作用力都是几种力的组合,如球磨机和振动 磨是磨碎与冲击粉碎的组合;雷蒙磨是压碎、剪碎、磨 碎的组合;气流磨是冲击、磨碎与剪碎的组合,等等。
通过气体传输粉料的一种研磨方法。与机械研磨 法不同的是,气流研磨不需要磨球及其它辅助研磨介 质。研磨腔内是粉末与气体的两相混合物。
根据粉料的化学性质,可采用不同的气源,如陶
瓷粉多采用空气,而金属粉末则需要用惰性气体或还 原性气体。由于不使用研磨球及研磨介质,所以气流 研磨粉的化学纯度一般比机械研磨法的要高。
黑色的纳米铋粉。
4)孔慧.高能球磨法制备高电位梯度的ZnO 压敏电阻.电子 元件与材料.2007,26(1):11-13 华东师范大学 ZnO 压敏电阻在工业生产中主要用低能球磨搅拌混合、高 温烧结的方法制备,烧结温度一般为1 100~1 350 ℃。
高能球磨是制备纳米级粉体的一种常见方法,可以提高粉体 的活性,从而降低烧结温度。 在制备ZnO 压敏电阻方面,使用高能球磨的报道较少: Fah采用高能球磨法,将粉料细化至17 nm 左右,烧结温度降 至1 100 ℃,但温度仍然较高,其等静压成型使成本增加。
缺点:此种机械的弹簧易于疲劳而破坏,衬板消耗也较大, 所用的振幅较小,给矿不宜过粗,而且要求均匀加入,故 通常适用于将1~2毫米的物料磨至85~5微米(干磨)或5~ 0.1微米(湿磨)。
在粗磨矿时,振动磨的优点并不很显著,因而至 今在选矿上尚未采用它代替普通球磨,但在化学工业 上得到了发展。
2.2.1机械粉碎法
2.2.1机械粉碎法
5.胶体磨
原理:利用一对固体磨子和高速 旋转磨体的相对运动所产生的强 大剪切、摩擦、冲击等作用力来
粉碎或分散物料粒子的。
被处理的桨料通过两磨体之 间的微小间隙,被有效地粉碎、
分散、乳化、微粒化。在短时间
内,经处理的产品粒径可达 1 μ m 。
A为空心转轴,与C盘相连,向一个 方向旋转,B盘向另一方向旋转。分 散相、分散介质和稳定剂从空心轴A 处加入,从C盘与B盘的狭缝中飞出, 用两盘之间的切应力将固体粉碎.
2.2.1机械粉碎法
6.纳米气流粉碎气流磨
原理:利用高速气流(300—500m/s)或 热蒸气 (300 — 450 ℃ ) 的能量使粒子相 互产生冲击、碰撞、摩擦而被较快粉 碎。 在粉碎室中,粒子之间碰撞频率远高 于粒子与器壁之间的碰撞。 特点:产品的粒径下限可达到 0.1 μ m 以下。除了产品粒度微细以外,气流 粉碎的产品还具有粒度分布窄、粒子 表面光滑、形状规则、纯度高、活性 大、分散性好等优点。
4.搅拌磨
由一个静止的研磨筒和一个旋转 搅拌器构成。 根据其结构和研磨方式: 间歇式 循环式 连续式
在搅拌磨中,一般使用球形研磨 介质,其平均直径小于 6mm 。 用于纳米粉碎时,一般小于 3mm。
横臂均匀分布在不同高度上,并互成一定角度。球磨过程中,
磨球与粉料一起呈螺旋方式上升,到了上端后在中心搅拌棒
2.2.1机械粉碎法
2 ) 机械球磨法制取超细碳化钨粉的研究 高科技的迅猛发展需要性能更加优越的新材料,并对材料 的硬度、强度及耐磨性提出了更高的要求。碳化钨基超 细硬质合金已显示出优越的机械性能。 以色列G . R. Goren - Muginstein 等人采用粉末粒度为0. 6μm 的碳化钨粉,经300 h 的球磨后获得纳米碳化钨粉,且 干磨粉末粒度更为均匀(5~10 nm) ,而湿磨粉末粒度分布 较宽(1~50 nm)
周围产生旋涡,然后沿轴线下降,如此循环往复。只要转速
和装球量合适,在任何情况下磨筒底部都不会出现死角由于 磨球的动能是由转轴横臂的搅动提供的,研磨时不会存在象 滚筒球磨那样有临界转速的限制,因此,磨球的动能大大增 加。同时还可以采用提高搅动转速。减小磨球直径的办法来 提高磨球的总撞击几率而不减小研磨球的总动能,这样才符 合了提高机械球磨效率的两个基本准则。
2.2.1机械粉碎法
助磨剂的使用
打破以上平衡,可采取的一个重要方法就是加入助磨剂: 粉碎 团聚
定义:在超细粉碎过程中,能够显著提高粉碎效率或降
低能耗的化学物质称为助磨剂。 例如: A:在干法研磨水泥熟料时加入乙二醇作为助磨剂, 产率可提高25~50%;
B: 在湿法球磨锆英石时加入0.2%的三乙醇胺, 研磨时间减少3/4。
3)周勇敏. 高能球磨法制备纳米铋粉的研究.润滑与密 封,2006.10 南京工业大学 纳米铋粉由于特殊的性能在冶金添加剂、润滑油添加剂、催 化剂、医药、半导体原料等具有广阔的应用前景, 但有关制 备纳米铋粉的报道并不多见。 A 实验原料和设备 原料:无水乙醇、PVP、硬脂酸均为分析纯, 铋粒 制备装置:国产高能行星磨, 4个不锈钢金属罐中分别配有 <2 cm的金属球20枚, <1 cm的金属球100枚。 B:纳米铋粉的制备 在每个金属罐中加入无水乙醇100 ml、铋粒12.54 g、PVP 6.27 g, 调整转速为400 r /min, 时间设置为4 h, 球磨。结束后 将产物取出封存静置, 得到黑色胶体溶液, 粉体在其中分散 均匀而稳定, 溶液长久不见澄清。
2.2.1机械粉碎法
1.球磨(Milling)
球磨机是目前广泛 采用的纳米磨碎设 备。 它是利用介质 和物料之间的相互 研磨和冲击使物料 粒子粉碎,经几百 小时的球磨,可使 小于 l μ m 的粒子达 到20%。
1)研磨碗自转和公转 转速的传动比率任意可 调。
2 )最终颗粒大小 <<1μm。
3)可充入惰性气体进 行机械合金,机械复合, 纳米材料及复合材料的 合成。 4)材质可选择玛瑙, 氮化硅,氧化铝,氧化 锆,不锈钢,普通钢, 碳化钨,包裹塑料的不 锈钢。
2.2.1机械粉碎法
搅拌磨
2.2.1机械粉碎法
实例: 1 搅拌磨制备超细SiO2粉的研究 2 用搅拌磨制备超细粉体的试验研究
使用介质搅拌磨并以φ0.8~1.4mm氧化锆陶瓷微珠为
研磨介质对水镁石、电气石、云母(包括白云母、金云
母、绢云母)进行了超细粉碎试验.选择适宜的助磨剂、 分散剂、研磨时间等试验条件,。
高能球磨5 h 即可制备纯度较高、晶粒尺寸较小的以ZnO 为 主的混合粉体,最佳烧结温度1 000℃比一般的固相法烧结 温度降低了100~300 ℃,大大节省了生产成本。