控制系统的传递函数定义

合集下载

传递函数的定义

传递函数的定义

传递函数的定义
传递函数是一种概念,主要应用于数学上,用来表示复杂系统的性质和行为,
这种函数定义基于一组间接变量,并且依赖于输入和输出之间的关系。

传递函数具有许多用途,使得它成为控制理论和计算机科学方面的重要工具,
例如可用于系统建模和数据可视化。

此外,它还可用于确定某种复杂行为发生的条件以及允许制定更加精确的协议、模型和策略。

传递函数中包含了一些特征,比如转移函數。

它能够用来描述一个系统在各种
输入条件下的输出情况。

这一功能可以帮助研究人员评估某个系统中观察到的行为,从而更好地了解它。

此外,传递函数还应用于控制系统。

它可以用来识别系统中的重要参数,从而
帮助研究人员了解控制体系的结构和特征,使其能够有效地控制系统的行为。

历史上,传递函数一直被认为是系统分析和模型化的重要工具,也是一类启发
式技术,用于计算待解决问题的解决过程。

总之,传递函数是一种重要的数学模型,具有重要的实用价值。

它被广泛地应
用于控制理论和计算机科学方面,可以帮助我们更加精准地了解系统的复杂行为,从而针对特定系统采取有效的控制措施。

第二章 控制系统的传递函数

第二章    控制系统的传递函数

第二章
控制系统的传递函数
2.1 微分方程模型(时间域模型)
一、控制系统微分方程的分类
线性系统:可由线性微分方程描述的系统。线性微分方程是指微分方程 是定常和线性的。线性系统可应用叠加原理,将多输入及多输出的 系统转化为单输入和单输出的系统进行处理分析,最后进行叠加。 另外线性系统还有一个重要的性质,就是齐次性,即当输入量的数 值成比例增加时,输出量的数值也成比例增加,而且输出量的变化 规律只与系统的结构、参数及输入量的变化规律有关,与输入量数 值的大小是无关的。 非线性系统:研究非线性系统的运动规律和分析方法的一个分支学科。 非线性系统最重要的问题之一就是确定模型的结构,如果对系统的 运动有足够的知识,则可以按照系统运动规律给出它的数据模型。 一般来说,这样的模型是由非线性微分方程和非线性差分方程给出 的,对这类模型的辨别可以采用线性化,展开成特殊函数等方法。 非线性系统理论的研究对象是非线性现象,它反映出非线性系统运 动本质的一类现象,不能采用线性系统的理论来解释,主要原因是 非线性现象有频率对振幅的依赖性、多值响应和跳跃谐振、分谐波 振荡、自激振荡、频率插足、异步抑制、分岔和混沌等。
控制系统的传递函数
例 2:RLC 电路(L-R-C 无源四端网络)如图,建立输入输出间的微分方程关
由基尔霍夫定律,回路的压降为 0,即输入电压由电感、电阻、电容上的电压 平衡。 Ur=UL+UR+UC 电流 与 有 即 的关系
第二章
控制系统的传递函数
与 在数值上具有一 ~
注意:该系统也是一个二阶系统 与例 1 相比,它们具有相同的模型形式。当
线性系统满足叠加原理,而非线性系统不满足叠加原理。
第二章
控制系统的传递函数
二、微分方程模型的建立 根据系统物理机理建立系统微分方程模型的基本步骤: (1)确定系统中各元件的输入、输出物理量; (2)根据物理定律或化学定律(机理),列出元件的原始方程,在条 件允许的情况下忽略次要因素,适当简化; (3)列出原始方程中中间变量与其他因素的关系; (4)消去中间变量,按模型要求整理出最后形式。

传递函数和频率响应函数的概念

传递函数和频率响应函数的概念

传递函数和频率响应函数的概念1. 传递函数与频率响应函数的定义传递函数和频率响应函数是在控制系统分析中经常被使用的两个重要概念。

传递函数表示了系统的输入和输出之间的关系,通常用于描述线性时不变系统的动态特性。

而频率响应函数则是描述系统对不同频率信号的响应特性,帮助我们分析系统对于输入信号频率的衰减或放大情况。

2. 传递函数的深入理解传递函数通常用 H(s) 或 G(s) 表示,其中 s 是复数变量。

传递函数可以表示为系统的输出与输入的比值,其实际上是系统的冲激响应与冲激输入的拉普拉斯变换。

通过传递函数,我们可以分析系统对于各种输入信号的时域和频域响应,从而更好地理解系统的动态特性。

3. 频率响应函数的广度分析频率响应函数通常可以表示为H(jω),其中ω 是频率变量。

它可以描述系统对于不同频率输入信号的幅度和相位特性,通过频率响应函数,我们可以清晰地了解系统在不同频率下的放大或者衰减情况,从而更好地设计控制系统并进行频域分析。

4. 传递函数和频率响应函数间的关系传递函数和频率响应函数之间存在着密切的关系。

事实上,频率响应函数可以通过传递函数来得到,通过传递函数的极点和零点,我们可以清晰地了解系统对于不同频率信号的响应情况,从而利用频率响应函数来优化系统的控制性能。

5. 个人观点和理解对于传递函数和频率响应函数的理解,我认为它们是控制系统分析和设计中非常重要的概念。

通过对传递函数和频率响应函数的深入理解,我们可以更好地了解系统的动态特性,在控制系统设计中更加灵活地选择合适的控制策略。

频率响应函数还可以帮助我们进行系统的稳定性分析和频域设计,对于系统的性能指标如稳定裕度、相位裕度等有着重要的指导意义。

总结回顾传递函数和频率响应函数作为控制系统分析中的重要概念,对于系统的动态特性和频域特性有着深刻的影响。

通过对传递函数和频率响应函数的分析,我们可以更好地理解系统的动态响应和频率特性,从而更好地设计和优化控制系统。

第四章控制系统的传递函数

第四章控制系统的传递函数

其中,
n
1 T
——环节的 固有频率
To 2
1 T
——环节的 阻尼比
如果0≤ξ<1,二阶环节称为振荡环节
例7 图示是由质量m、阻尼c、弹簧k组成的动力系统. 求G(s)
依动力平衡原理有 Xi(t) k m c
Xo(t)
d 2 xo dxo m 2 c kxo kxi dt dt
因此,系统的传递函数就是系统单位脉冲响应 的拉氏变换。
一般地,传递函数的表达式为
X o ( s) ao s n a1s n1 a2 s n2 an G( s ) X i ( s) bo s m b1s m1 b2 s m2 bm
2. 传递函数的性质
k
k为比例环节的增益或称为放大系数
例1

ni(t)
z1
求一对齿轮传动的传递函数 no z1 k ∴G(s)=k ni z2
最基本的运算放大器
no(t)
z2
例2
i 1= i 2
ei ea ea eo R1 R2
ei eo R1 R2
ei
R2 R1 e i2 a Ko a i3 i1 +
ZL=Ls
3.电容元件
dUC iC C dt
ZC(s) = 1/sC
例5
下图是一个由运算放大器组成的积分器, 求G(s)。 C R i + uc 取拉氏变换 uo Ui(s) R
Zc
i
+ Uo(s)
ui
解:
1 uc idt c
I ( s) U c ( s) cs
K s
1 Zc cs
ms2 X o ( s) csX o (s) kXo ( s) kXi (sG( s) 2 ms cs k

自动控制原理部分简答题

自动控制原理部分简答题

一.名词解释1、传递函数:传递函数是指在零初始条件下,系统输出量的拉式变换与系统输入量的拉式变换之比。

2、系统校正:为了使系统达到我们的要求,给系统加入特定的环节,使系统达到我们的要求,这个过程叫系统校正。

3、主导极点:如果系统闭环极点中有一个极点或一对复数极点据虚轴最近且附近没有其他闭环零点,则它在响应中起主导作用称为主导极点。

4、香农定理:要求离散频谱各分量不出现重叠,即要求采样角频率满足如下关系: ωs ≥2ωmax 。

5、状态转移矩阵:()At t e φ=,描述系统从某一初始时刻向任一时刻的转移。

6、峰值时间:系统输出超过稳态值达到第一个峰值所需的时间为峰值时间。

7、动态结构图:把系统中所有环节或元件的传递函数填在系统原理方块图的方块中,并把相应的输入、输出信号分别以拉氏变换来表示,从而得到的传递函数方块图就称为动态结构图。

8、根轨迹的渐近线:当开环极点数 n 大于开环零点数 m 时,系统有n-m 条根轨迹终止于 S 平面的无穷远处,且它们交于实轴上的一点,这 n-m 条根轨迹变化趋向的直线叫做根轨迹的渐近线。

9、脉冲传递函数:零初始条件下,输出离散时间信号的z 变换()C z 与输入离散信号的z 变换()R z 之比,即()()()C z G z R z =。

10、Nyquist 判据(或奈氏判据):当ω由-∞变化到+∞时, Nyquist 曲线(极坐标图)逆时针包围(-1,j0)点的圈数N ,等于系统G(s)H(s)位于s 右半平面的极点数P ,即N=P ,则闭环系统稳定;否则(N ≠P )闭环系统不稳定,且闭环系统位于s 右半平面的极点数Z 为:Z=∣P-N ∣11、程序控制系统: 输入信号是一个已知的函数,系统的控制过程按预定的程序进行,要求被控量能迅速准确地复现输入,这样的自动控制系统称为程序控制系统12、稳态误差:对单位负反馈系统,当时间t 趋于无穷大时,系统对输入信号响应的实际值与期望值(即输入量)之差的极限值,称为稳态误差,它反映系统复现输入信号的(稳态)精度。

控制系统的传递函数

控制系统的传递函数

表示成零点、极点形式:
m
G(s)
Y (s) X (s)
bm an
Q(s) P(s)
Kg
(s zi )
i 1 n
(s pj )
z 式中: 称为传递函数的零点, i
j 1
称为传递函p数j 的极点。
Kg
bm an
Tuesday, June 16, 2020
—传递系数(零极点形式传递函数增益)
9
传递函数的表现形式
零初始条件下输出量的拉氏变换与输入量拉氏变换之比。也可写成:Y(s)=G(s) X(s)。
通过拉氏反变换可求出时域表达式y(t)。
Tuesday, June 16, 2020
2
传递函数的基本概念
[总结]: 传递函数是由线性微分方程(线性系统)当初始值为零时进行拉氏变化得到
的。
已知传递函数G(s)和输入函数X(s),可得出输出Y(s)。通过反变换可求出 时域表达式y(t)。
Gm (s)M k f (t), G f
c (s) Gu (s) (s) U f (s)
(s)
Gm kf
(s)
U g (s) Mc (s)
5
传递函数的基本概念||例2-8a8'
求下图系统的传递函数。
R
L
方法1:见例2-1
求L上C式uo的'' (拉t)氏变R换C,uo得' (:t) uo (t) ui (t)
Tuesday, June 16, 2020
4
传递函数的基本概念||例2-8
上式有两个输入量,而传递函数只能处理单输入-单输出系统。对于线性系统, 可以将多个输入分别独立处理,然后叠加起来。下面分别讨论两个输入单独作用时 的传递函数。

第二章 (2.1,2.2)控制系统的微分方程、传递函数

第二章 (2.1,2.2)控制系统的微分方程、传递函数

拉氏变换的重要应用——解线性定常微分方程

求微分方程的拉氏变换,注意初值!!
求出 C ( s ) 的表达式 拉氏反变换,求得 c (t )
例1 已知系统的微分方程式,求系统的输出响应。
d 2c(t ) dc(t ) 2 2c(t ) r(t ) 2 dt dt d2 解: 在零初态下应用微分定理: 2 s 2
+
i (t )
R

u (t )
+
i (t )
u (t ) i (t ) R
du ( t ) 1 i (t ) dt C
di (t ) u (t ) L dt
电容
C

u (t )
+
ቤተ መጻሕፍቲ ባይዱi (t )
电感
u (t )

L
机械系统三要素的微分方程
设系统输入量为外力,输出量为位移
d 2 x (t) m f (t) 2 dt
d uc (t ) duc (t ) LC RC uc (t ) ur (t ) 2 dt dt
2
3.机械位移系统
输入量为外力: F (t ) 输出量为位移: y (t )
dy 2 (t ) 依据牛顿定律: F m dt 2
dy (t ) d y (t ) F (t ) ky (t ) f m 2 dt dt
d 2 y (t ) dy (t ) m f ky (t ) F (t ) 2 dt dt
微分方程结构一致 二阶线性定常微分方程
不同形式的物理环节和系统可以建立相同形式的数学模型。
系统微分方程由输出量各阶导数和输 入量各阶导数以及系统的一些参数构成。 n阶线性定常系统的微分方程可描述为:

控制工程基础第三章系统的传递函数

控制工程基础第三章系统的传递函数

如图所示为机械转动系统,由惯性负载和粘性摩擦阻 尼器构成,以转矩Ti为输入量,以角速度w为输出量
机械转动系统
dw ( t) 其运动方程式为:J + Bw ( t )= Ti ( t) dt W (s ) 1 K 其传递函数为:G ( s)= = = Ti (s ) Js + B Ts + 1 J 1 式中 T= , K = 。 B B
B
i(t)
C
uo (t)
x
机械平移系统
d 2x dx m 2 B k x f t dt dt
RLC电路
X s 1 1 2n Gs = 2 F s ms Bs k k s 2 2n s 2 n
n
k m

B 2 km
C
uo (t )
其微分方程为:Ri( t)+ u0 () t = ui () t du0 () t i( t)= C dt 消去中间变量后,得 du0 () t RC + u0 () t = ui () t dt 通过拉氏变换求得电路的传递函数为: U0 (s) 1 G( s)= = Ui (s) Ts+1 式中 T=RC
4. 微分环节
输出量与输入量的微分成比例的环节,称为微分环节 dxi ( t) 其运动方程式为:x0 ( t )= TD dt 其传递函数为: G ( s)= TD s
式中 TD ─ 微分环节的时 间常数 。
当输入量为单位阶跃信号时,输出量就是脉冲函数,这 在实际中是不可能的。因此,理想的微分环节不能实现,在 实际中用来执行微分作用的都是近似的,称为实际微分环节, 其传递函数具有如下形式:
一阶微分环节和二阶微分环节的微分方程分别为:

自动控制理论传递函数

自动控制理论传递函数

(is 1)
(
2 k
s2
2
k
k
s
1)
k 1
n2
(Tj s 1) (Tl2s2 2 lTl 1)
j 1
l 1
振荡环节
式中: m1 2m2 m, n1 2n2 n
从上式可以看出:传递函数是一些基本因子的乘积。这些
基本因子就是典型环节所对应的传递函数,是一些最简单、最
基本的一些形式。
2020年4月18日
[解]各环节的微分方程和传递函数分别为:
运放Ⅰ:
u1(t)
k1ue
(t),
G1(s)
U1(s) U e (s)
k1
运放Ⅱ: u2 (t) k2[u1(t) u1(t)], G2 (s)
U 2 (s) U1(s)
k2 (s
1)
功放:
ua
(t)
k3u2 (t),
G3 (s)
Ua (s) U 2 (s)
y (t )
k
(1
e
t T
)
,式中:k为放大系数,T为时间常数。
当k=1时,输入为单位阶跃函数时,时域响应曲线和零极点分
布图如下:y(t) 1
原点处斜率为1/T
0.8
j S平面
0.6
0.632
0.4 0.2
1 T
0
Re
0
t
T
通过原点的 斜率为1/T。只有一个极点(-1/T)。
2020年4月18日
17
R
1 Cs
1 Cs
ui (s) RCs 1
2020年4月18日
19
振荡环节
(四)振荡环节:
时域方程:a2 y'' (t) a1 y' (t) a0 y(t) b0 x(t)

控制系统的传递函数

控制系统的传递函数

第二章 控制系统的传递函数
借助表达系统输入、输出之间动态关系的微分方程:
a x (n) no
(t)
...
a x (1) 1o
(t)
a0
xo(t)
b x (m) mi
(t)
...
b x (1) 1i
(t)
b0
xi(t)
可对系统进行描述。
i=0,1…n j=0,1,…m
1、线性定常系统 ai,bj 都不是xo(t)和xi(t)及它们导数的函数,也不 是时间的函数;
第二章 控制系统的传递函数
3、同一控制系统可以有不同的数学模型 同一控制系统具有各种物质运动形式(机械传动、电磁量运动、热
变形等),而不同的物质运动形式又分别受不同的物理规律约束,因而 建立的数学模型可能不同。 因此,建立数学模型时,一定要搞清输入 t
b1s m1 a1s n 1
bm1s bm an1s an
(n>m)
2.3.2 几点说明(性质) (1)传递函数是系统数学模型的又一种形式,也是一种表示输入输出
的模型形式。
它表示了系统本身的特性而与输入信号无关。
它仅能表示输入输出关系,而无法表示出系统的内部结构。
传递函数的分母和分子分别反映系统本身与外界无关的固有特性 和系统同外界之间的联系。
(b)图给出了一种大为简化的悬浮系统,设 p 点的运动 为系统的输入,车体的垂直运
动 为系统的输出,只考虑车体在垂直方向的运动时,求

(a)汽车悬浮系统
(b)减化悬浮系统
第二章 控制系统的传递函数
2.3.4 反馈控制系统的传递函数
(解释一下方框图----将系统中各元件的名称或功用写在框图单元中,并标 明它们之间的连接顺序和信号流向。主要用来说明系统的构成和工作原理)

课件:控制系统的传递函数

课件:控制系统的传递函数

s
Rs
如果H(s)=1,则下图所示的系统为单位反馈系统,它的闭环 传递函数为
CR s Rs
1
G1 s G2 s G1sG2s
Gs 1 Gs
(2 - 50)
5
如果H(s)=1
CR s Rs
1
G1 s G2 s G1sG2 s
1
Gs Gs
(2 - 50)
其中Gs
G1
s
G2
s
,
若令Gs
U V
s s
CR s R(s)
CR s Rs
1
G1 s G2 s G1 s G2 s H
s
pp58:练习2-3 15
2.7 控制系统的反馈特性
闭环控制系统又名反馈控制系统。这类系统之所以被人们 广泛应用,其原理是它有着下列开环系统所没有的特性。
一: 反馈能减小参数变化对系统的影响
图(a)和(b)分别为开环和闭环系统的方框图。开环系统的输出
s
H
s
Rs
1
G2 sHs G1sG2 sH
s
Ds
(2-57)
当满足|G1(s)H(s) |>>1和|G1(s)G2(s)H(s) |>>1时,可得出如下 的结论:
13
CR s Rs
1
G1 s G2 s G1 s G2 s H
s
(2- 49)
1)当 | G1(s) G2(s ) H(s) |>>1时,由式(2-49)得
20
图2-41 扰动作用下系统的框图
10
求得扰动误差的传递函数为:
ED s Ds
1
G2sH s G1 s G2 s H

传递函数的定义,零点,极点,特征方程

传递函数的定义,零点,极点,特征方程

传递函数的定义,零点,极点,特征方程【引言】在探讨传递函数的定义、零点、极点和特征方程之前,我们首先要了解传递函数的基本概念。

传递函数是描述线性时不变系统输入与输出之间关系的一种数学函数。

它是控制工程中最为常用的理论工具之一,对于分析和设计控制系统具有重要意义。

通过对传递函数的分析,我们可以全面了解系统的动态特性,从而帮助我们实现恰当的控制和优化。

【传递函数的定义】传递函数是描述线性时不变系统输入与输出之间关系的函数。

在控制工程中,一般使用 Laplace 变换来表示传递函数。

传递函数可以用来描述系统对输入信号的响应情况,其数学表达式通常具有分子和分母的形式,形如 H(s)=Y(s)/X(s),其中 H(s) 为传递函数,Y(s) 为系统的输出信号的 Laplace 变换,X(s) 为系统的输入信号的 Laplace 变换。

通过传递函数,我们可以了解系统对各种输入信号的响应情况,从而为控制系统的设计和分析提供依据。

【零点和极点】传递函数的分子和分母多项式的根分别称为传递函数的零点和极点。

零点和极点决定了传递函数的动态特性,对于系统的稳定性和动态响应具有重要影响。

零点是使传递函数等于零的值,其位置可以直接影响系统的传递特性。

当传递函数的零点位于频域图中的某一点时,系统对该频率的输入信号会受到抑制;当零点位于实轴上时,系统会产生共振现象,从而导致系统的不稳定性。

极点是使传递函数的分母多项式等于零的值,其位置决定了系统的稳定性和动态响应。

当极点全部位于左半平面时,系统为稳定系统;当存在极点位于右半平面时,系统为不稳定系统;若存在虚轴上的极点,则会影响系统的频率响应特性。

【特征方程】特征方程可以由传递函数的分母多项式推导得出,是描述系统的稳定性及动态响应的重要方程之一。

特征方程的根即为传递函数的极点,通过解特征方程可以得到系统的固有频率和阻尼比,从而帮助我们全面了解系统的动态特性。

【个人观点】对于控制工程领域的从业者来说,深入理解传递函数的定义、零点、极点和特征方程对于系统分析和控制设计至关重要。

控制系统的传递函数

控制系统的传递函数

R
1 Cs
uo
uo (s) 1
ui (s) RCs
② 电动机(忽略惯性和摩擦)
图中,为转角,为' 角速度。
ui
齿轮组
' kui
可见, '
~
ui
t
0 kui (t)dt
为比例环节,
'
~ ui 为积分环节。
Friday, July 19, 2024
16
惯性环节
(三)惯性环节
时域方程:Ty ' (t) y(t) kx(t), t 0
传递函数是由线性微分方程(线性系统)当初始值为零 时进行拉氏变化得到的。
已知传递函数G(s)和输入函数X(s),可得出输出Y(s)。 通过反变换可求出时域表达式y(t)。
可以由环节的微分方程直接得出传递函数,只要将各阶导
数用各阶s代替即可。即:d
dt
s,...,
dn dt n
sn
Friday, July 19, 2024
Friday, July 19, 2024
9
传递函数的表现形式
[传递函数的几种表现形式]:
表示为有理分式形式:G(s)
Y (s) X (s)
bm s m an s n
bm1sm1 b0 an1sn1 a0
式中:ai , bj —为实常数,一般n≥m
上式称为n阶传递函数,相应的系统为n阶系统。
m
写成时间常数形式:G(s) b0 Q(s) K a0 P(s)
(is 1)
i 1 n
(Tjs 1)
显然: i
1 zi
,
1 Ti p j ,
j 1
i ,Tj 分别称为时间常数,K称为放大系数 m

控制系统的传递函数

控制系统的传递函数

(2.6 5)
式中第一项称为零状态响应, 由ur(t)决定的分量; 第二项称为零输入响应, 由初始电压uc (0)决定的 分量。
图2-15表示各分量的变化曲线, 电容电压uc (t)即为两者的合成。
图2-15 RC网络的阶跃响应曲线
RCs + 1 当输入电压ur(t)一定时,电路输出响应的拉氏变换Uc(s)完全由 1/(RCs+1)所确定,式(2.66)亦可写为:
一、传递函数的概念
图2-14所示的RC电路中电 容的端电压uc(t)。根据克希 霍夫定律,可列写如下微分 方程:
i(t)R+uc (t) = ur (t)
(2.60)
1 u c (t ) = ∫ i ( t )d t (2.61) C 消去中间变量i(t),得到输入ur(t) 与输出uc(t)之间的线性定常微分 方程: d u c (t ) RC + uc (t ) = u r (t ) (2.62) dt
T1 s G (s) = T2 s + 1
(2.75)
它由理想微分环节和惯性环节组成,如图2-21(c)、(d)所示。在 低频时近似为理想微分环节,否则就有式(2.75)的传递函数。
图2-21 微分环节
(五)振荡环节 振荡环节的传递函数为:
2 ωn 1 G (s) = 2 2 = 2 2 T s + 2T ζ s + 1 s + 2ω nζ s + ω n
图2-23 延滞环节
延滞环节的传递函数可求之如下: c(t)= r(t-τ) 其拉氏变换为:
C ( s) = ∫ r (t − τ )e dt = ∫ r (ξ )e − s (ξ +τ ) dξ

控制系统的传递函数

控制系统的传递函数

控制系统的传递函数考虑扰动的闭环控制系统X i (s )到X o (s )的信号传递通路称为前向通道;X o (s )到B (s )的信号传递通路称为反馈通道;1.闭环系统的开环传递函数将闭环控制系统主反馈通道的输出断开,即H (s )的输出通道断开,此时,前向通道传递函数与反馈通道传递函数的乘积G 1(s )G 2(s )H (s )称为该 闭环控制系统的开环传递函数。

记为G K (s )。

闭环系统的开环传递函数也可定义为反馈信号B (s )和偏差信号ε (s )之间的传递函数,即:2..x i (t )作用下系统的闭环传递函数令n (t )=0,此时在输入x i (t )作用下系统的闭环传递函数为:输入作用下系统的偏差传递函数 令n (t )=0,此时系统输入X i (s )与偏差ε (s )之间的传递函数称为输入作用下的偏差传递函数。

用)(s i εΦ表示。

3.n (t )作用下系统的闭环传递函数令x i (t )=0,此时在扰动n (t )作用下系统的闭环传递函数(干扰传递函数)为:扰动作用下系统的偏差传递函数,令x i (t )=0,此时系统在扰动作用下的偏差传递函数(称扰动偏差传递函数)。

)()()(1)()()()()(212101s H s G s G s G s G s X s X s i i +==Φ)()()(11)()()(21s H s G s G s X s s i i i +==Φεε)()()(1)()()()(21202s H s G s G s G s N s X s N +==Φ)()()(1)()()()()(212s H s G s G s H s G s N s s N N +-==Φεε。

控制工程基础4-第2章 (数学模型-2:传递函数)

控制工程基础4-第2章 (数学模型-2:传递函数)
第三节 传递函数
拉氏变换可以简化线性微分方 程的求解。还可将线性定常微分方 程转换为复数S域内的数学模型— 传递函数。
一、传递函数的概念
二、典型环节的传递函数
一、 传递函数概念
输入
输入拉氏 变换
设一控制系统 r(t) c(t) 系统 G(S)
R(S)
输出 输出拉氏 变换
C(S)
传递函数的定义:
零初始条件下,系统输出量拉氏变换与系 统输入量拉氏变换之比。
R(s)
G1(s)+G2(s)
C(s)
+ G2(s) C2(s)
n C1(s)=R(s)G1(s) C2(s)=R(s)G2(s) G (s)=Σ Gi (s) n个环节的并联 i=1 C(s)=C1(s)+C2(s) =R(s)G1(s)+R(s)G2(s) C(s) =G (s)+G (s) G(s)= R(s) 1 等效 2
2) 传递函数取决于系统的结构和参数, 与外施信号的大小和形式无关。
3) 传递函数为复变量S 的有理分式。
4) 传递函数是在零初始条件下定义 的,不能反映非零初始条件下系统的运 动过程。
二、 基本环节的传递函数
不同的物理系统,其结构差别很 大。但若从系统的数学模型来看,一 般可将自动控制系统的数学模型看作 由若干个典型环节所组成。研究和掌 握这些典型环节的特性将有助于对系 统性能的了解。
结构图特点
• 结构图是方块图与微分方程(传函)的结合。一方面它直观反映了整 个系统的原理结构(方块图优点),另一方面对系统进行了精确的定 量描述(每个信号线上的信号函数均可确定地计算出来) • 能描述整个系统各元部件之间的内在联系和零初始条件下的动态性能, 但不能反映非零条件下的动态性能 • 结构图最重要的作用:计算整个系统的传函 • 对同一系统,其结构图具有非唯一性;简化也具有非唯一性。但得到 的系统传函是确定唯一的. • 结构图中方块≠实际元部件,因为方框可代表多个元件的组合,甚至 整个系统

自动控制理论第二章传递函数_图文

自动控制理论第二章传递函数_图文
解:前向通路4条 独立回路3个
§2.6 一般反馈控制系统
传递函数的各种术语 误差传函 扰动传函 一般控制作用
1. 一般控制系统
前向通道传函 闭环系统的开环传函 系统闭环传递函数 系统在给定作用下的输出
1、由系统输入到系统输出端的信号通路定义为系统 前向主通路(道)[简称主通路或前向通路]
②方框:表示输入、输出信号之间的传递 关系。
③引出点(测量点):表示信 号引出或测量位置,从同一 点引出的信号完全相同。
④比较点(综合点):表示两个或两个以上 的信号,在该点相加、减。注意,比较点 处信号的运算符号必须标明正(+)、负(-), 一般不标者取正号。同时进行运算的信号 必须具有相同的量纲。
梅逊公式
回路总增益 (闭环传函)
第i条前向通 道余子式
第i个前向 通道增益
特征式
例:三级RC滤波网络如
图所示,求传递函数G(s)。
解: 前向通路1条 独立回路5个
两两不接触回路6个
三三不接触回路 特征式 余子式 传递函数
例:试求取图示系统的传递函数
解:前向通路3条
独立回路2个
例:系统结构图如图所示,试求其传递函数
积分器框图
特性:调节系统稳态误差,也称为无差 环节。
电压的传递函数
三、纯微分环节
定义:环节的输出响应正比于输入信号的变化率 。
微分方程 传递函数
测速发电机
四、惯性环节
定义:环节的输出不能立即复现输入,而是经过 一定时间后才能复现输入的变化。
微分方程
传递函数
运算放大器
五、振荡环节
定义:在输入作用下,环节输出响应随时间变化的 过渡过程总是在某一稳定值上下出现衰减振荡,而 最终趋于稳定值。

自动控制原理--传递函数相关知识

自动控制原理--传递函数相关知识

26.5
1
s 17.25
17.25
26.5
s (s 17.25)2 (26.5)2 (s 17.25)2 (26.5)2
所以
y(t)
1 e17.25t
cos 26.5t 17.25 e17.25t 26.5
sin 26.5t
1 e17.25t
cos
26.5t
17.25 26.5
sin
26.5t
D(s) a0sn a1sn1 an1s an D(s) 0即是系统的特征方程。
G(s) N (s) b0 (s z1)(s z2 ) (s zm ) D(s) a0 (s p1)(s p2 ) (s pn )
s zi (i 1, 2 m)是N (s) 0的根,称为传递 函数的零点,s pi (i 1, 2 n)是D(s) 0的根 是传递函数的极点。
因为组成系统的元部件或多或少存在惯 性,所以G(s)的分母阶次大于等于分子阶 次,即 n,是m有理真分式,若 ,我们m 就 n 说这是物理不可实现的系统。
二、传递函数的性质
(1)传递函数是一种数学模型,是对微分方程在零初始条件 下进行拉氏变换得到的;
(2)传递函数与微分方程一一对应;
(3)传递函数描述了系统的外部特性。不反映系统的内部物 理结构的有关信息;
R(s)
式中 ——环节的时间常数。
特点:输出量正比输入量变化的速度,能预示输 入信号的变化趋势。
实例:测速发电机输出电压与输入角度间的传递 函数即为微分环节。
5)振荡环节:其输出量和输入量的关系,由下面的 二阶微分方程式来表示。
T2
d 2 y(t) dt 2
2 T
dy (t ) dt

控制系统的传递函数

控制系统的传递函数

求上式的拉氏变换,得:
ui
i
C
uo
UO (s) UI (s)

LCs 2
1 RCs
1
方法2:复阻抗(电阻、电容和电感)分别为 R、1 、Ls 。
则:(R

Ls

1 Cs
)
I
(
s)

U
i
(s)
Cs
1 Cs
I
(s)

U0
(s)
1
传递函数为:U0 (s)
Cs

1
Ui (s) R Ls 1 CLs 2 RCs 1
(s) U f (s) (s)
Gm kf
(
s)UMgc
(s) (s)
Saturday, December 28, 2019
6
传递函数的基本概念||例2-88a'
求下图系统的传递函数。 方法1:见例2-1
RL
LCuo''(t) RCuo'(t) uo (t) ui (t)
bm1sm1 b0 an1sn1 a0
G(s) Y (s) X (s) 称为系统或环节的传递函数,即:环节的传递函
数是它的微分方程在零初始条件下输出量的拉氏变换与输入量拉
氏变换之比。也可写成:Y(s)=G(s) X(s)。通过拉氏反变换可求
出时域表达式y(t)。
Saturday, December 28, 2019
3
传递函数的基本概念
[总结]:
传递函数是由线性微分方程(线性系统)当初始值为 零时进行拉氏变化得到的。
已知传递函数G(s)和输入函数X(s),可得出输出Y(s)。 通过反变换可求出时域表达式y(t)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

控制系统的传递函数定义
控制系统传递函数是描述控制系统输入与输出关系的数学模型,通常用于分析和设计控制系统。

它表示了输入信号经过控制系统后的输出信号,可以用数学公式表示为输出信号Y(s)与输入信号U(s)的关系:Y(s)=G(s)U(s)。

其中,G(s)为系统的传递函数,它是一个复数函数,描述了控制系统的动态特性和稳态特性。

传递函数的分母描述了系统的阻尼和自然频率,分子描述了系统的增益和相位,通过对传递函数进行分析可以得到系统的稳态误差、稳定性、响应速度等性能指标。

因此,传递函数是控制系统分析和设计的重要工具,对于掌握控制系统的动态特性和优化系统性能具有重要意义。

- 1 -。

相关文档
最新文档