卡方检验

合集下载

统计方法卡方检验

统计方法卡方检验

统计方法卡方检验卡方检验(Chi-Square Test)是一种统计方法,用于检验两个或多个分类变量之间的关系。

它通过比较观察到的频数与期望的频数之间的差异,来判断这些变量是否独立或存在相关性。

卡方检验可以用于不同类型的问题,包括:1.两个分类变量之间的关系:例如,我们可以使用卡方检验来确定性别和吸烟偏好之间是否存在关联。

2.多个分类变量之间的关系:例如,我们可以使用卡方检验来确定教育水平、职业和收入之间是否有关联。

卡方检验的原理是基于观察到的频数与期望的频数之间的差异。

观察到的频数是指在实际数据中观察到的变量组合的频数。

期望的频数是指在假设独立的情况下,根据变量边际分布计算得到的预期频数。

卡方检验通过计算卡方统计量来衡量这两组频数之间的差异。

在进行卡方检验之前,需要设置零假设(H0)和备择假设(Ha)。

零假设通常是指两个或多个分类变量之间独立的假设,而备择假设则是指两个或多个分类变量之间存在相关性的假设。

卡方检验的计算过程可以分为以下几个步骤:1.收集观察数据:将观察到的数据以交叉表格的形式整理起来。

表格的行和列分别代表两个或多个分类变量的不同组合,表格中的数值表示观察到的频数。

2.计算期望频数:根据变量边际分布计算得到期望频数。

期望频数是在零假设成立的情况下,根据变量边际分布计算得到的预期频数。

3.计算卡方统计量:根据观察频数和期望频数之间的差异计算卡方统计量。

卡方统计量的计算公式为:X^2=Σ((O-E)^2/E)其中,Σ代表对所有单元格进行求和,O表示观察到的频数,E表示期望频数。

4. 计算自由度:自由度(degrees of freedom)是进行卡方检验时需要考虑的自由变量或条件的数量。

在卡方检验中,自由度等于(行数 - 1)乘以(列数 - 1)。

5.查找临界值:使用给定的自由度和显著性水平(通常为0.05)查找卡方分布表格,以确定接受或拒绝零假设。

6.比较卡方统计量和临界值:如果卡方统计量大于临界值,则拒绝零假设,认为两个或多个分类变量之间存在相关性;如果卡方统计量小于临界值,则接受零假设,认为两个或多个分类变量之间独立。

卡方检验在统计学中的应用

卡方检验在统计学中的应用

公式
根据不同的理论分布,拟合优度 卡方检验的公式也有所不同,但 基本思路是计算样本数据与理论 分布之间的差异程度。
应用场景
例如,判断某地区居民的身高是 否符合正态分布。
03 卡方检验在统计学中的应 用场景
分类变量间关系的研究
研究两个分类变量之间的关系,判断它们 是否独立。通过卡方检验可以比较观测频 数与期望频数的差异,从而判断两个分类 变量之间是否存在关联或因果关系。
公式
与独立性卡方检验类似,但计算的是同一观察对象在不同条件下的实际观测频数与期望频数的差异程度。
应用场景
例如,判断某药物在不同剂量下的疗效是否一致。
拟合优度卡方检验
定义
拟合优度卡方检验用于检验一个 样本数据是否符合某个理论分布 或模型。假设有一组样本数据, 拟合优度卡方检验的目的是判断 这组数据是否符合正态分布、二 项分布等理论分布。
数据来源
市场调查中的消费者数据,包括消费者的年龄、性别、收 入等信息以及他们对某一产品的评价和偏好。
分析方法
使用卡方检验分析不同消费者群体对同一产品的偏好程度 ,判断是否存在显著性差异。
结果解释
如果卡方检验结果显著,说明不同消费者群体对同一产品 的偏好程度存在显著差异;如果结果不显著,则说明消费 者偏好较为接近。
它通过计算观测频数与期望频 数之间的卡方值,评估两者之 间的差异是否具有统计学显著 性。
卡方检验常用于分类数据的分 析,如计数数据和比例数据。
卡方检验的基本思想
1 2
基于假设检验原理
卡方检验基于假设检验的基本思想,首先提出原 假设和备择假设,然后通过样本数据对原假设进 行检验。
比较实际观测与期望值
要点二
自由度

卡方检验的名词解释

卡方检验的名词解释

卡方检验的名词解释
卡方检验是一种非参数检验方法,用于检验样本是否符合某种分布,或者两个样本是否来自于同一分布。

其基本思想是根据样本数据计算出某个统计量,然后通过这个统计量的值与期望值的比较来判断样本数据是否偏离预期分布。

卡方检验适用于样本数据不服从正态分布或样本大小较小的情况。

卡方检验的应用非常广泛,例如在医学研究中用于比较治疗方法的效果、在社会学研究中用于比较不同群体的特征等。

卡方检验的结果可以用卡方值、自由度和显著性水平来表示。

其中,卡方值表示样本数据与预期分布之间的差异,自由度表示卡方检验中减去的理论频数,显著性水平表示样本数据是否显著偏离预期分布。

在实际应用中,要根据具体情况选择合适的卡方检验方法,并根据卡方检验结果做出相应的决策。

卡方检验名词解释

卡方检验名词解释

卡方检验名词解释
卡方检验属于非参数检验,由于非参检验不存在具体参数和总体正态分布的假设,所以有时被称为自由分布检验。

参数和非参数检验最明显的区别是它们使用数据的类型。

非参检验通常将被试分类,如民主党和共和党,这些分类涉及名义量表或顺序量表,无法计算平均数和方差。

卡方检验分为拟合度的卡方检验和卡方独立性检验。

我们用几个例子来区分这两种卡方检验:
•对于可口可乐公司的两个领导品牌,大多数美国人喜欢哪一种?•公司采用了新的网页页面B,相较于旧版页面A,网民更喜欢哪一种页面?
以上两个例子属于拟合度的卡方检验,原因在于它们都是有关总体比例的问题。

我们只是将个体分类,并想知道每个类别中的总体比例。

它检验的内容仅涉及一个因素多项分类的计数资料,检验的是单一变量在多项分类中实际观察次数分布与某理论次数是否有显著差异。

拟合度的卡方检验定义:
主要使用样本数据检验总体分布形态或比例的假说。

测验决定所获得的的样本比例与虚无假设中的总体比例的拟合程度如何。

拟合度的卡方检验又叫最佳拟合度的卡方检验,为何取名“最佳拟合”?这是因为最佳拟合度的卡方检验的目的是比较数据(实际频数)与虚无假设。

确定数据如何拟合虚无假设指定的分布,因此取名“最佳拟合”。

关于拟合度的卡方检验有一些翻译上的区别,其实表达的是一个意思:
拟合度的卡方检验=卡方拟合优度检验=最佳拟合度卡方检验
以下统称:卡方拟合优度检验
卡方统计的公式:卡方卡方=χ2=Σ(fo−fe)2fe
公式中O代表observation,即实际频数;E代表Expectation,即期望频数。

卡方检验格式

卡方检验格式

卡方检验格式一、什么是卡方检验?卡方检验(chi-square test)是一种常用的假设检验方法,用于比较实际观测值与理论预期值之间的差异是否显著。

它适用于离散型的数据,通常用于比较两个或多个分类变量之间的关联性。

卡方检验可以帮助我们判断观察到的数据是否符合某种期望的分布模式,从而评估变量之间的独立性。

二、卡方检验的原理卡方检验的原理基于卡方统计量(chi-square statistic),它用于度量观测值与理论预期值之间的差异程度。

卡方统计量的计算公式如下:^2}{E_i})其中,为观测值,为理论预期值。

三、卡方检验的步骤卡方检验一般包括以下步骤:1. 设置假设在进行卡方检验前,需要明确研究者想要验证的假设。

通常会设立两个假设:零假设(H0)和备择假设(H1)。

零假设常常是指变量之间没有关联或没有差异,备择假设则是指变量之间存在关联或差异。

2. 构建列联表在进行卡方检验时,需要构建一个列联表(contingency table),用于记录观测值和理论预期值。

列联表是一个二维表格,行代表一个变量的不同类别,列代表另一个变量的不同类别。

观测值填写实际观测到的频数,理论预期值填写根据假设计算得到的期望频数。

3. 计算卡方统计量根据构建的列联表,可以计算卡方统计量。

按照公式 ^2}{E_i}) 计算每个观测值与期望值的差异平方和,并相加得到卡方统计量。

4. 确定显著性水平在进行卡方检验时,需要设定一个显著性水平(significance level)来评估卡方统计量的显著性。

常用的显著性水平有0.05和0.01两种。

更小的显著性水平表示对差异的要求更高。

5. 查表或计算临界值根据显著性水平和自由度(degree of freedom),可以查找卡方分布表得到临界值。

根据卡方统计量和临界值的比较,可以判断观测值与理论预期值之间的差异是否显著。

6. 判断结论根据卡方统计量与临界值的比较结果,可以判断零假设是否被拒绝。

医学统计学-卡方检验

医学统计学-卡方检验
医学统计学-卡方检验
卡方检验是一种常用的统计方法,用于比较观察值和期望值之间的差异。它 在医学研究中有着广泛的应用,可以帮助我们验证假设、推断总体特征以及 分析类别变量的相关性。
卡方检验的定义和原理
卡方检验是一种基于卡方分布的统计检验方法。它基于观察值与期望值之间 的差异来判断样本数据与理论分布的拟合程度。
卡方检验的局限性和注意事项
• 卡方检验只能验证分类变量之间的关联性,不能验证因果关系。 • 卡方检验对样本足够大和数据分类合理的要求比较严格。 • 卡方检验结果受样本选择和观察误差的影响,需要谨慎解释。 • 在进行卡方检验前,需要对数据进行充分的清洗和准备。
结论和要点
卡方检验是一种常用的统计方法
卡方检验的应用领域
医学研究
卡方检验可以用来分析疾病的发生与某个因素之间的关联性,如吸烟与肺癌。
社会科学
卡方检验可以用来研究不同人群之间的行模式和态度偏好,如性别与政治观点。
市场调研
卡方检验可以用来分析消费者的购买偏好和市场细分,如年龄与产品偏好。
卡方检验的假设和前提条件
1 独立性假设
卡方检验基于观察值和期望值之间的差异来验证两个变量之间是否存在独立性。
它可以帮助我们验证假设、推断总体特征以 及分析类别变量的相关性。
结果解读和意义
卡方检验的结果可以帮助我们了解变量之间 的关系,并为决策提供依据。
应用广泛
卡方检验在医学研究、社会科学和市场调研 等领域都有着重要的应用。
局限性和注意事项
卡方检验有一定的局限性,需要注意样本大 小和数据分类的合理性。
4
比较卡方值和临界值
判断卡方值是否大于临界值,从而做出关于拒绝或接受原假设的决策。
卡方检验的结果解读和意义

卡方检验

卡方检验
2
列联表中, (1)在 r×c 列联表中,若 1/5 以上的格子的理论频数小于 5,或 有一个格子的理论频数小于 1,则应使理论频数小于 5 或小于 1 的格子 与临组合并,以增大理论频数。 或采用四格表资料的 (或采用 与临组合并,以增大理论频数。 或采用四格表资料的 Fisher 确切概率 ( 法) 。 检验中,若拒绝原假设, (2)在 r×c 列联表的 χ 检验中,若拒绝原假设,说明被比较的 )
专业运动年限 发病人数 未发病人数 合计 发病率 %
1 年一下 2-4年 5-7年 10年 8 - 10 年 合计 4 15 10 12 41 80 70 50 40 240 84 85 60 52 281 4.76 17.65 16.67 23.08 14.59
问:发病率的不同是由随机误差引起还是由条件误差(运动年限)引起? 发病率的不同是由随机误差引起还是由条件误差(运动年限)引起? 误差引起还是由条H0:发病率与运动年限无关;H0:发病率与运动年限有关
A2 2 − 1 ≈10.36 ○ χ = n ∑ n ⋅n r c 3 ○ 取α=0.05, n' = (r − 1)(c − 1) =(4-1)×(2-1)=3, , ( ) ) ,
2
2
检验的专用公式。 检验的专用公式。即 : χ
2
=∑
( A − T )2
T
(ad − bc )2 n 或χ = 。 (a + b )(c + d )(a + c )(b + d )
2 2
检验的校正公式。 (2) 总例数 n>40 且 1 格子的 1<T<5 时: 当 用四格表资料 χ 检验的校正公式。 : 即
定义
随机变量x1,x2……xn相对独立,并且服从 标准正态分布。则随机变量

卡方检验及校正卡方检验的计算

卡方检验及校正卡方检验的计算

卡方检验及校正卡方检验的计算卡方检验(Chi-squared test)是一种用于比较观察值与期望值之间的差异是否显著的统计方法。

它可以用于分析两个或多个分类变量之间的关联性或独立性。

卡方检验的原假设是观察值与期望值没有显著差异,备择假设是它们有显著差异。

在进行卡方检验之前,需要计算期望值以比较与观察值的差异。

这可以通过以下步骤完成:1.建立假设:首先,建立原假设和备择假设。

原假设通常假设两个变量之间没有关联性或独立性,备择假设则是它们之间存在关联性或独立性。

2.计算期望频数:对于给定的样本数据,可以计算出每个分类变量的期望频数。

期望频数是基于原假设计算出来的,它表示了在原假设成立的情况下,每个分类变量中的期望观察值数量。

3.计算卡方值:卡方值是观察频数与期望频数的差异的平方的总和除以期望频数的总和。

卡方值越大,观察值与期望值之间的差异越大,意味着更有可能拒绝原假设。

4.确定自由度:自由度是用于计算卡方分布的参数。

对于二维列联表(2x2),自由度为1;对于更大的列联表,自由度为(行数-1)x(列数-1)。

5.判断统计显著性:根据自由度和卡方值,可以查找卡方分布表以确定观察值与期望值之间的差异是否显著。

如果卡方值大于临界值,则可以拒绝原假设,认为观察值与期望值之间存在显著差异。

校正卡方检验(Adjusted Chi-squared test)是对卡方检验的改进,它通过应用连续性修正或其他修正方法来解决离散数据中的小样本问题。

当样本容量较小时,卡方检验可能会产生不准确的结果,因为期望频数可能会小于5,从而违反了卡方检验的假设条件。

校正卡方检验的计算步骤与普通卡方检验类似,但需要应用修正方法来计算期望频数。

修正方法可以是连续性校正(continuity correction)、费希尔校正(Fisher's exact test)或模拟校正(simulation correction)等。

连续性校正是在计算期望频数时,对每个单元格中的观察频数进行微小的调整。

卡方检验-有序资料的卡方检验

卡方检验-有序资料的卡方检验

在社会学研究中,卡方检验可用 于分析分类变量之间的关系,例 如性别与职业选择、婚姻状况与
教育程度等。
在市场营销中,卡方检验可用于 分析消费者偏好和行为,例如品
牌选择、产品购买决策等。
注意事项
卡方检验的前提假设是样本数 据相互独立,且每个单元格的
期望频数不能太小。
卡方检验的结果受到样本大小 和期望频数的影响,因此在使 用时需要谨慎选择样本和数据
卡方检验的定义和原理
• 有序卡方检验基于卡方检验的原理,通过比较实际观测频数与期望频数之间的 差异,来评估变量之间的关联性。它利用卡方统计量来衡量观测频数与期望频 数之间的偏离程度,通过计算卡方值和对应的概率值(p值),判断变量之间 的关联是否具有统计学显著性。
• 有序卡方检验通常使用列联表的形式呈现数据,其中行表示一个分类变量,列 表示另一个分类变量。在列联表中,每个单元格表示两个分类变量在特定水平 下的观测频数。通过比较期望频数与实际观测频数,可以计算每个单元格的卡 方值。
05
卡方检验的案例分析
案例一:不同年龄段人群的吸烟习惯
01
目的
比较不同年龄段人群的吸烟习惯是否存在显著差异。
02
数据
将年龄段分为5个等级,分别为18岁以下、18-25岁、26-35岁、36-45
岁、46岁以上。吸烟习惯分为不吸烟、偶尔吸烟、经常吸烟三个等级。
03
分析
使用卡方检验分析不同年龄段人群的吸烟习惯分布是否有显著差异。
对样本量要求较高
有序卡方检验对样本量有一定的要求,如果 样本量过小,可能会导致检验结果不准确。
对数据要求较高
有序卡方检验要求数据必须满足一定的假设条件, 如独立性、均匀分布等,否则可能会导致检验结果 偏差。

卡方检验知识点总结

卡方检验知识点总结

卡方检验知识点总结卡方检验的原理是基于观测值与期望值的差异来进行判断的。

在卡方检验中,我们会对观测频数和期望频数进行比较,从而得出相关性的结论。

下面将详细介绍卡方检验的相关知识点。

1. 卡方检验的基本思想卡方检验的基本思想是比较观测频数与期望频数之间的差异,通过检验这种差异是否显著来判断两个变量之间的关系是否存在。

当观测频数与期望频数之间的差异较大时,可以认为两个变量之间存在相关性;当观测频数与期望频数之间的差异较小时,可以认为两个变量之间不存在相关性。

2. 卡方检验的适用条件在进行卡方检验时,需要满足一定的条件才能得到可靠的结果。

首先,变量的测量水平必须是分类(或者说是定性的)。

其次,样本的观测数据必须是频数形式,而且样本量要足够大(通常要求每个单元的期望频数不小于5)。

最后,在进行卡方检验前,需要明确变量之间的关系是独立的还是相关的。

3. 卡方检验的类型卡方检验有两种类型:独立性检验和拟合优度检验。

独立性检验是用于判断两个分类变量之间是否存在相关性,可以用于解决“两个变量关系是否显著”这类问题;拟合优度检验是用于判断观测频数与期望频数之间是否存在差异,可以用于解决“观测数据是否符合某种理论模型”这类问题。

4. 卡方检验的步骤进行卡方检验时,首先要确定研究的问题类型(是独立性检验还是拟合优度检验),然后计算卡方值,最后根据卡方值进行显著性检验。

具体的步骤如下:- 确定问题类型:根据研究的问题类型选择相应的卡方检验类型,是独立性检验还是拟合优度检验。

- 构建假设:根据问题类型构建原假设和备择假设,通常原假设是变量之间不存在相关性,备择假设是变量之间存在相关性。

- 计算卡方值:根据观测频数和期望频数计算卡方值,通常使用下面的公式进行计算:卡方值= Σ((观测频数-期望频数)² / 期望频数)。

- 计算自由度:根据研究问题的条件计算卡方检验的自由度,一般计算公式为:自由度 = (行数-1) * (列数-1)。

卡方检验的原理和内容公式原理

卡方检验的原理和内容公式原理

卡方检验是一种统计检验方法,其原理是比较理论频数和实际频数的吻合度或拟合优度。

基本思想是通过统计样本的实际观测值与理论推断值之间的偏离程度,来判断理论值是否符合。

卡方检验的应用范围包括检验某个连续变量或离散变量是否与某种理论分布接近,即分布拟合检验;以及检验类别变量之间是否存在相关性,即列联分析。

卡方检验的基本公式是卡方值,它是由实际频数和理论频数之间的差的平方与理论频数的比值计算得出的。

卡方值的计算公式如下:
卡方值=∑(实际频数-理论频数)^2 / 理论频数
其中,∑表示求和,实际频数和理论频数分别表示观测频数和期望频数。

如果卡方值越大,说明观测频数和期望频数之间的偏离程度越大;如果卡方值越小,说明观测频数和期望频数之间的偏离程度越小,越趋于符合。

需要注意的是,卡方检验的前提假设是样本数据服从卡方分布,且样本量足够大。

同时,卡方检验对于样本量较小的数据可能不太稳定,此时可以考虑使用其他统计方法如Fisher's exact test等。

卡方检验

卡方检验
0.05。
2
3.03 ,
=1
2<3.84=2
按 =0.05 水 准 , 不 拒 绝 H0, …
配对四格表资料的 检验
2
也称McNemar检验(McNemar's test)
例 6-8 表 6-9
甲 法
两种血清学检验结果比较
乙 法 + - 10 (b) 11 (d) 21 90 42 132 合计
n2 n2 n
一般地,
理论频数
n n (行合计)(列合计) = R C 总计 n
例题:计算以下四格表的各理论频数: (1) (2) 35 27 25 8 16 33 15 22
2 检验的基本思想可通过其基本公式来解释:
2
观察值 理论值
理论值
2

A T 2
2
1
2

( / 21)
e
2 / 2
Ý ß ×·
×Ó ¶ £ 1 Ô É È ½
0.2 0.1 0.0 0 3
3.84
×Ó ¶ £ 2 Ô É È ½ ×Ó ¶ £ 3 Ô É È ½ ×Ó ¶ £ 6 Ô É È ½
P=0.05的临界值
7.81 12.59
6
9 12 ¿ ·Ö ¨½ µ
* 图形:单峰,正偏峰; 自由度 很大时, 近似地服从正态分布.有 2 ( ) 2 Z , ( )服从均数为 ,方差为2 的正态分布 2
2 ( )
χ2分布(chi-square distribution)
0.5 0.4 0.3
f ( ) 2( / 2) 2
2
2 =2.734<3.84,P>0.05,不拒绝无效假设H0

卡方检公式

卡方检公式

卡方检公式
卡方检验(Chi-square test)是一种用于检验两个或多个分类变量之间是否存在关联的统计方法。

卡方检验的公式如下:
χ^2 = ∑(O - E)^2 / E
其中,χ^2代表卡方统计量,O代表观察值(实际观测到的频数),E代表期望值(根据独立性假设计算得到的预期频数),∑代表求和符号。

具体步骤如下:
1. 建立原假设和备择假设。

2. 构建观察值矩阵,填入实际观测到的频数。

3. 计算每个分类变量的边际总和,得到边际频数。

4. 根据独立性假设计算期望值。

5. 计算卡方统计量,应用卡方公式计算观察值和期望值之差的平方除以期望值,然后将所有分类变量的计算结果求和。

6. 将卡方统计量与自由度结合使用,根据卡方分布表确定p值。

7. 对p值进行统计显著性判断,根据p值是否小于预设的显著性水平(一般为0.05),来决定是否拒绝原假设。

卡方检验应用于分类变量之间的关联性分析,对于连续变量存在其他适用的统计方法。

此外,卡方检验有着一定的前提和假设条件,如样本独立性、样本量足够大等条件的满足,否则结果可能会失真。

卡方检验

卡方检验

e
2 / 2
第二节 普通四格表χ 2检验与专用公式
简化的专用公式:
2 2 ( A T ) ( ad bc ) n 2 T (a b)(c d )( a c)(b d ) 推断结论:

2
2 0.05,1
3.84; P 0.05, 拒绝H 0 ,即 1 2

P=∑Pi(Pi≤P样本)
作出推断结论
第三节 配对四格表资料的χ2检验
设计类型:配对设计 例7-3: 配对设计与完全随机设计的区别
配对设计 配对号 甲法 乙法
1 2 3 4 … n + + - - … - - + + + … +
完全随机设计 甲法
编号 结果
1 2 3 … n1 - - + +
( ad bc n / 2) 2 n
专用公式的校正 c2
(a b)(c d )( a c)(b d )
卡方检验完整的分析步骤
例7-2
建立假设,确定检验水准 H0:π1=π2 H1:π1≠π2 α=0.05 2. 计算检验统计量 判断适用条件:n? Tmin? 正确选用公式
卡方检验
Chi-square test
内容摘要
两组二分类资料对比
普通四格表的χ 2检验
Fisher确切概率法
配对设计四格表资料的χ 2检验
行×列(R×C)表资料的χ 2检验
多组二分类(多个率)——χ 2检验
多组多分类(无序)——χ 2检验 关联性分析
卡方检验(Chi-square test)
χ 2检验是现代统计学的创始人 之一,英国统计学家K . Pearson (1857-1936)于1900年提出的一 种具有广泛用途的统计方法,常称 为Pearson卡方检验,可用于: 两个或多个率间的比较; 两组或多组频数分布(或构成)的比较 两分类变量的关联性分析 拟合优度检验等等。

卡方检验详述

卡方检验详述

卡方检验什么是卡方检验卡方检验是一种用途很广的计数资料的假设检验方法。

它属于非参数检验的范畴,主要是比较两个及两个以上样本率( 构成比)以及两个分类变量的关联性分析。

其根本思想就是在于比较理论频数和实际频数的吻合程度或拟合优度问题。

它在分类资料统计推断中的应用,包括:两个率或两个构成比比较的卡方检验;多个率或多个构成比比较的卡方检验以及分类资料的相关分析等。

卡方检验的基本原理卡方检验是以χ2分布为基础的一种常用假设检验方法,它的无效假设H0是:观察频数与期望频数没有差别。

该检验的基本思想是:首先假设H0成立,基于此前提计算出χ2值,它表示观察值与理论值之间的偏离程度。

根据χ2分布及自由度可以确定在H0假设成立的情况下获得当前统计量及更极端情况的概率P。

如果P值很小,说明观察值与理论值偏离程度太大,应当拒绝无效假设,表示比较资料之间有显著差异;否则就不能拒绝无效假设,尚不能认为样本所代表的实际情况和理论假设有差别。

卡方值的计算与意义χ2值表示观察值与理论值之问的偏离程度。

计算这种偏离程度的基本思路如下。

(1)设A代表某个类别的观察频数,E代表基于H0计算出的期望频数,A与E之差称为残差。

(2)显然,残差可以表示某一个类别观察值和理论值的偏离程度,但如果将残差简单相加以表示各类别观察频数与期望频数的差别,则有一定的不足之处。

因为残差有正有负,相加后会彼此抵消,总和仍然为0,为此可以将残差平方后求和。

(3)另一方面,残差大小是一个相对的概念,相对于期望频数为10时,期望频数为20的残差非常大,但相对于期望频数为1 000时20的残差就很小了。

考虑到这一点,人们又将残差平方除以期望频数再求和,以估计观察频数与期望频数的差别。

进行上述操作之后,就得到了常用的χ2统计量,由于它最初是由英国统计学家Karl Pearson在1900年首次提出的,因此也称之为Pearson χ2,其计算公式为:其中,Ai为i水平的观察频数,Ei为i水平的期望频数,n为总频数,pi为i水平的期望频率。

卡方检验

卡方检验
36
总计 160 205 182 547
H0:稻叶衰老情况与灌溉方式无关;HA:稻叶衰老情 况与灌溉方式有关。
取 =0.05。 根据H0的假定,计算各组格观察次数的相应理论次数: 如与146相应的E=(481×160)/547=140.69,
与183相应的E=(481×205)/547=180.26,……, 所得结果填于表7.11括号内。
因本例共有k=4组,故df=k-1=3。查附表4,
,现实得
,所以否定
H0,接受HA,即该水稻稃尖和糯性性状在F2的实际结果 不符合9∶3∶3∶1的理论比率。
这一情况表明,该两对等位基因并非独立遗传, 而可能为连锁遗传。
实际资料多于两组的 值通式则为:
(5·15)
上式的mi为各项理论比率,ai为其对应的观察次数。 如本例,亦可由(5·15)算得
如种子灭菌项的发病穗数O11=26,其理论次数 E11=(210×76)/460=34.7,即该组格的横行总和乘以纵行总 和再除以观察总次数(下同);同样可算得
O12=50 的 E12=(250×76)/460=41.3; O21=184的E21=(210×384)/460=175.3; O22=200的E22=(250×384)/460=208.7。 以上各个E值填于表5.7括号内。
(1)设立无效假设,即假设观察次数与理论次数的差 异由抽样误差所引起,即H0:花粉粒碘反应比例为1∶1 与HA:花粉粒碘反应比例不成1∶1。
(2)确定显著水平 =0.05。
(3)计算 值
查附表4,当

=3.84 ,实得
=0.2926小于
,所以接受H0。即认为观察次数和理
论次数相符,接受该玉米F1代花粉粒碘反应比率为1∶1的

卡方检验

卡方检验

例3 大量的研究表明,人群中超常儿童的比率为3%。最 近有人对某班54名学生做了一项智力测查,结果发现有 两名学生的智力属于超常,问该班超常儿童的比率与普 通人群中超常儿童的比率是否相同?
解:根据题目中给出的数据列表:
超常
非超常
N
f
1.62
52.38
54
e
f
2.00
52.00
0
根据自由度df=1查附表6,得
二、卡方检验的统计量
卡方检验是对由样本得来的实际频数与理论频数 的分布是否有显著性差异所进行的检验。其计算 公式为:
2 f0 fe 2
fe
f 表示实际频数 0
f 表示理论次数 e
• 例:抛投一枚硬币80次,结果正面朝上46次,反面朝 上34次,问该枚硬币质地是否均匀? 从理论上讲,抛一枚质地均匀的硬币,正反面朝上的 概率相等,那么如果抛投硬币80次,正面或反面朝上 的理论频数均为80/2=40次。这样,实际频数(正 面朝上46次,反面朝上34次)与理论频数(正面与反
反对 21 30 -9
81
2.7
总 和 60 60
5.4
自由度为: df = k -1=1
3.统计决断
查χ2值表,当 df =1 时
2 (1)0.05

3.84
2 (1)0.01

6.63
计算结果为: χ2=5.4*
3.84 <χ2= 5.4 < 6.63,则 0.05 > P > 0.01
结论:学生对高中文理分科的态度有显著差异。
2. 计 算
表9-5 学生干部性别比例的χ2检验计算表
fo
2
fe fo fe f0 fe 0.5

卡方检验

卡方检验

3459.5(E1) 3459.5(E2) 6919
-22.5 +22.5 0
0.1463 0.1463 0.2926
此处要推论是否符合1∶1分离,只要看观察次数与理 论次数是否一致,故可用 测验:
(1)设立无效假设,即假设观察次数与理论次数的差 异由抽样误差所引起,即H0:花粉粒碘反应比例为1∶1 与HA:花粉粒碘反应比例不成1∶1。 (2)确定显著水平 =0.05。
a11 a21 C1
a12 a22 C2
R1 R2 n
(5· 16)
如本例各观察次数代入(5· 16)可得:
二、2×C表的独立性测验
2×C表是指横行分为两组,纵行分为C≥3组的相依表资
料。 在作独立性测验时,其 c≥3,故不需作连续性矫正。 =(2-1)(c-1)=c-1。由于
[例5.9] 进行大豆等位酶Aph的电泳分析,193份野生大
为1∶1,由此可以计得3437+3482=6916粒花粉中,蓝色
反应与非蓝色反应的理论次数应各为3459.5粒。设以O代 表观察次数,E代表理论次数,可将上列结果列成表
玉米花粉粒碘反应观察次数与理论次数
碘反应
观察次数(O) 理论次数(E)
O-E
(O-E)2/E
蓝色 非蓝色 总数
3437(O1) 3482(O2) 6919
(5· 17)
横行因素
纵 行 因 素
1 2 … i … c


1
2 总 计
a11
a21 C1
a12
a22 C2

… …
a1i
a2i Ci

… …
a1c
a2c Cc
R1
R2 n

卡方检验

卡方检验

SPSS操作
四格表卡方检验
例1 某种药物加化疗与单用某种药物治疗的两种处理
方法,观察对某种癌症的疗效,结果见下表。(数据
见cancer.sav)
两种治疗方法的疗效比较
疗效 处理 药物加化疗 单用药物 有效 42 48 无效 13 3 合计 55 51
合计
90
16
106
四格表卡方检验
首先建立数据文件,如下。
合计
1281 387 1668
④ 计算检验统计量 2 值
386 346.4
2
2
346.4
895 934.6
934.6
2
65 104.6
104.6
2
32 4.527 1.678 14.992 5.553 26.750
如果个别单元格的T小于5,但大于1,处理方法有以下四种:

1、单元格合并法 2、增加样本数 3、去除样本法 4、使用校正公式
注:当n<40,T<1时,用四格表确切概率法。
完全随机设计两样本率比较的四格表
处理 1 2 合计 阳性 A11(T11) A21(T21) m1 属性 阴性 A12(T12) A22(T22) m2 合计 n1(固定值) n2(固定值) n

儿童组 成人组 合计
50 105 155
48 10 58
18 7 25
72 23 95
188 145 333
R×C表卡方检验
对频数加权
R×C表卡方检验
R×C表卡方检验
R×C表卡方检验
结果
四格表
行×列卡方
合并后可能成为 四格表资料
T<5格 >20%

卡方检验

卡方检验
卡方检验
假设检验方法
01 基本原理
03 检验方法 05 代码实现
目录
02 步骤 04 资料检验
卡方检验,是用途非常广的一种假设检验方法,它在分类资料统计推断中的应用,包括两个率或两个构成比 比较的卡方检验;多个率或多个构成比比较的卡方检验以及分类资料的相关分析等。
基本原理
卡方检验就是统计样本的实际观测值与理论推断值之间的偏离程度,实际观测值与理论推断值之间的偏离程 度就决定卡方值的大小,如果卡方值越大,二者偏差程度越大;反之,二者偏差越小;若两个值完全相等时,卡 方值就为0,表明理论值完全符合。
卡方检验要求:最好是大样本数据。一般每个个案最好出现一次,四分之一的个案至少出现五次。如果数据 不符合要求,就要应用校正卡方。
谢谢观看
注意:卡方检验针对分类变量。
步骤
(1)提出原假设: H0:总体X的分布函数为F(x). 如果总体分布为离散型,则假设具体为 H0:总体X的分布律为P{X=xi}=pi, i=1,2,... (2)将总体X的取值范围分成k个互不相交的小区间A1,A2,A3,…,Ak,如可取 A1=(a0,a1],A2=(a1,a2],...,Ak=(ak-1,ak), 其中a0可取-∞,ak可取+∞,区间的划分视具体情况而定,但要使每个小区间所含的样本值个数不小于5, 而区间个数k不要太大也不要太小。 (3)把落入第i个小区间的Ai的样本值的个数记作fi,成为组频数(真实值),所有组频数之和 f1+f2+...+fk等于样本容量n。 (4)当H0为真时,根据所假设的总体理论分布,可算出总体X的值落入第i个小区间Ai的概率pi,于是,npi 就是落入第i个小区间Ai的样本值的理论频数(理论值)。
检验方法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

表内用虚线隔开的这四个数据是整个表中的基本资料,其余数据均由此推算出来;这四格资料表就专称四格表(fourfold table),或称2行2列表(2×2 contingency table)从该资料算出的两种疗法有效率分别为44.2%和77.3%,两者的差别可能是抽样误差所致,亦可能是两种治疗有效率(总体率)确有所不同。

这里可通过x2检验来区别其差异有无统计学意义,检验的基本公式为:
式中A为实际数,以上四格表的四个数据就是实际数。

T为理论数,是根据检验假设推断出来的;即假设这两种卵巢癌治疗的有效率本无不同,差别仅是由抽样误差所致。

这里可将两种疗法合计有效率作为理论上的有效率,即53/87=60.9%,以此为依据便可推算出四格表中相应的四格的理论数。

兹以表20-11资料为例检验如下。

检验步骤:
1.建立检验假设:
H0:π1=π2
H1:π1≠π2
α=0.05
2.计算理论数(TRC),计算公式为:
TRC=nR.nc/n 公式(20.13)
因为上表每行和每列合计数都是固定的,所以只要用TRC式求得其中一项理论数(例如T1.1=26.2),则其余三项理论数都可用同行或同列合计数相减,直接求出,示范如下:T1.1=26.2
T1.2=43-26.2=16.8
T2.1=53-26.2=26.8
T2.2=44-26.2=17.2
3.计算x2值按公式20.12代入
4.查x2值表求P值
在查表之前应知本题自由度。

按x2检验的自由度v=(行数-1)(列数-1),则该题的自由度v=(2-1)(2-1)=1,查x2界值表(附表20-1),找到x20.001(1)=6.63,而本题x2=10.01即x2>x20.001(1),P<0.01,差异有高度统计学意义,按α=0.05水准,拒绝H0,可以认为采用化疗加放疗治疗卵巢癌的疗效比单用化疗佳。

通过实例计算,读者对卡方的基本公式有如下理解:若各理论数与相应实际数相差越小,x2值越小;如两者相同,则x2值必为零,而x2永远为正值。

又因为每一对理论数和实际
计算结果与前述用基本公式一致,相差0.01用换算时小数点后四舍五入所致。

三、四格表x2值的校正
x2值表是数理统计根据正态分布中的定义计算出来的。

自由度为1时,尤其当1<T<5,而n>40时,应用以下校正公式:
如果用四格表专用公式,亦应用下式校正:
例20.8某医师用甲、乙两疗法治疗小儿单纯性消化不良,结果如表20-14.试比较两种疗法效果有无差异?
表20-14 两种疗法效果比较的卡方较正计算
从表20-14可见,T1.2和T2.2数值都<5,且总例数大于40,故宜用校正公式(20.15)检验。

步骤如下:
1.检验假设:
H0:π1=π2
H1:π1≠π2
α=0.05
2.计算理论数:(已完成列入四格表括弧中)
3.计算x2值:应用公式(20.15)运算如下:
查x2界值表,x20.05(1)=3.84,故x2<x20.05(1),P>0.05.
按α=0.05水准,接受H0,两种疗效差异无统计学意义。

如果不采用校正公式,而用原基本公式,算得的结果x2=4.068,则结论就不同了。

如果观察资料的T<1或n<40时,四格表资料用上述校正法也不行,可参考预防医学专业用的医学统计学教材中的精确检验法直接计算概率以作判断。

四、行×列表的卡方检验(x2test for R×C table)
适用于两个组以上的率或百分比差别的显著性检验。

其检验步骤与上述相同,简单计算公式如下:
3.确定P值和分析
本题v=(2-1)(4-3)=3,据此查附表20-1:
从表中资料可见有四种结果:(a)甲+乙+,(b)甲+乙-(c)甲-乙+,(d)甲-乙-;如果我们目的是比较两种培养基的培养结果有无差异,则(a)、(d)两种结果是一致的,对差异比较毫无意义,可以不计,我们只考虑结果不同的(b)和(c),看其差异有无意义,可以应用以下简易公式计算:
检验步骤:
1.检验假设
H0:π1=π2
H1:π1≠π2
α=0.05。

相关文档
最新文档