九年级数学圆的测试题和答案解析(两套)

合集下载

人教版九年级数学上册 圆 几何综合单元测试卷(含答案解析)

人教版九年级数学上册 圆 几何综合单元测试卷(含答案解析)

人教版九年级数学上册 圆 几何综合单元测试卷(含答案解析)一、初三数学 圆易错题压轴题(难)1.已知圆O 的半径长为2,点A 、B 、C 为圆O 上三点,弦BC=AO ,点D 为BC 的中点,(1)如图,连接AC 、OD ,设∠OAC=α,请用α表示∠AOD ;(2)如图,当点B 为AC 的中点时,求点A 、D 之间的距离: (3)如果AD 的延长线与圆O 交于点E ,以O 为圆心,AD 为半径的圆与以BC 为直径的圆相切,求弦AE 的长. 【答案】(1)1502AOD α∠=︒-;(2)7AD =3)33133122or 【解析】【分析】(1)连接OB 、OC ,可证△OBC 是等边三角形,根据垂径定理可得∠DOC 等于30°,OA=OC 可得∠ACO=∠CAO=α,利用三角形的内角和定理即可表示出∠AOD 的值.(2)连接OB 、OC ,可证△OBC 是等边三角形,根据垂径定理可得∠DOB 等于30°,因为点D 为BC 的中点,则∠AOB=∠BOC=60°,所以∠AOD 等于90°,根据OA=OB=2,在直角三角形中用三角函数及勾股定理即可求得OD 、AD 的长.(3)分两种情况讨论:两圆外切,两圆内切.先根据两圆相切时圆心距与两圆半径的关系,求出AD 的长,再过O 点作AE 的垂线,利用勾股定理列出方程即可求解.【详解】(1)如图1:连接OB 、OC.∵BC=AO∴OB=OC=BC∴△OBC 是等边三角形∴∠BOC=60°∵点D 是BC 的中点∴∠BOD=1302BOC ∠=︒ ∵OA=OC∴OAC OCA ∠=∠=α∴∠AOD=180°-α-α-30︒=150°-2α(2)如图2:连接OB、OC、OD.由(1)可得:△OBC是等边三角形,∠BOD=130 2BOC∠=︒∵OB=2,∴OD=OB∙cos30︒=3∵B为AC的中点,∴∠AOB=∠BOC=60°∴∠AOD=90°根据勾股定理得:AD=227AO OD+=(3)①如图3.圆O与圆D相内切时:连接OB、OC,过O点作OF⊥AE∵BC是直径,D是BC的中点∴以BC为直径的圆的圆心为D点由(2)可得:3D的半径为1∴31设AF=x 在Rt △AFO 和Rt △DOF 中,2222OA AF OD DF -=-即()2222331x x -=-+- 解得:331x 4+= ∴AE=3312AF +=②如图4.圆O 与圆D 相外切时:连接OB 、OC ,过O 点作OF ⊥AE∵BC 是直径,D 是BC 的中点∴以BC 为直径的圆的圆心为D 点由(2)可得:3D 的半径为1∴31在Rt △AFO 和Rt △DOF 中,2222OA AF OD DF -=-即()2222331x x -=-解得:331x 4-= ∴AE=3312AF -=【点睛】本题主要考查圆的相关知识:垂径定理,圆与圆相切的条件,关键是能灵活运用垂径定理和勾股定理相结合思考问题,另外需注意圆相切要分内切与外切两种情况.2.已知:在△ABC中,AB=6,BC=8,AC=10,O为AB边上的一点,以O为圆心,OA长为半径作圆交AC于D点,过D作⊙O的切线交BC于E.(1)若O为AB的中点(如图1),则ED与EC的大小关系为:ED EC(填“”“”或“”)(2)若OA<3时(如图2),(1)中的关系是否还成立?为什么?(3)当⊙O过BC中点时(如图3),求CE长.【答案】(1)ED=EC;(2)成立;(3)3【解析】试题分析:(1)连接OD,根据切线的性质可得∠ODE=90°,则∠CDE+∠ADO=90°,由AB=6,BC=8,AC=10根据勾股定理的逆定理可证得∠ABC=90°,则∠A+∠C=90°,根据圆的基本性质可得∠A=∠ADO,即可得到∠CDE=∠C,从而证得结论;(2)证法同(1);(3)根据直角三角形的性质结合圆的基本性质求解即可.(1)连接OD∵DE为⊙O的切线∴∠ODE=90°∴∠CDE+∠ADO=90°∵AB=6,BC=8,AC=10∴∠ABC=90°∴∠A+∠C=90°∵AO=DO∴∠A=∠ADO∴∠CDE=∠C∴ED=EC;(2)连接OD∵DE为⊙O的切线∴∠ODE=90°∴∠CDE+∠ADO=90°∵AB=6,BC=8,AC=10∴∠ABC=90°∴∠A+∠C=90°∵AO=DO∴∠A=∠ADO∴∠CDE=∠C∴ED=EC;(3)CE=3.考点:圆的综合题点评:此类问题综合性强,难度较大,在中考中比较常见,一般作为压轴题,题目比较典型.3.如图,△ABC内接于⊙O,AB是直径,过点A作直线MN,且∠MAC=∠ABC.(1)求证:MN是⊙O的切线.(2)设D是弧AC的中点,连结BD交AC于点G,过点D作DE⊥AB于点E,交AC于点F.①求证:FD=FG.②若BC=3,AB=5,试求AE的长.【答案】(1)见解析;(2)①见解析;②AE=1【解析】【分析】(1)由AB为直径知∠ACB=90°,∠ABC+∠CAB=90°.由∠MAC=∠ABC可证得∠MAC+∠CAB=90°,则结论得证;(2)①证明∠BDE=∠DGF即可.∠BDE=90°﹣∠ABD;∠DGF=∠CGB=90°﹣∠CBD.因为D是弧AC的中点,所以∠ABD=∠CBD.则问题得证;②连接AD、CD,作DH⊥BC,交BC的延长线于H点.证明Rt△ADE≌Rt△CDH,可得AE=CH.根据AB=BH可求出答案.【详解】(1)证明:∵AB是直径,∴∠ACB=90°,∴∠CAB+∠ABC=90°;∵∠MAC=∠ABC,∴∠MAC+∠CAB=90°,即MA⊥AB,∴MN是⊙O的切线;(2)①证明:∵D是弧AC的中点,∴∠DBC=∠ABD,∵AB是直径,∴∠CBG+∠CGB=90°,∵DE⊥AB,∴∠FDG+∠ABD=90°,∵∠DBC =∠ABD ,∴∠FDG =∠CGB =∠FGD ,∴FD =FG ;②解:连接AD 、CD ,作DH ⊥BC ,交BC 的延长线于H 点.∵∠DBC =∠ABD ,DH ⊥BC ,DE ⊥AB ,∴DE =DH ,在Rt △BDE 与Rt △BDH 中,DH DE BD BD=⎧⎨=⎩, ∴Rt △BDE ≌Rt △BDH (HL ),∴BE =BH ,∵D 是弧AC 的中点,∴AD =DC ,在Rt △ADE 与Rt △CDH 中,DE DH AD CD =⎧⎨=⎩, ∴Rt △ADE ≌Rt △CDH (HL ).∴AE =CH .∴BE =AB ﹣AE =BC+CH =BH ,即5﹣AE =3+AE ,∴AE =1.【点睛】本题是圆的综合题,考查了切线的判定,圆周角定理,全等三角形的判定与性质,等腰三角形的判定,正确作出辅助线来构造全等三角形是解题的关键.4.如图,在平面直角坐标系中,O 为坐标原点,△ABC 的边BC 在y 轴的正半轴上,点A 在x 轴的正半轴上,点C 的坐标为(0,8),将△ABC 沿直线AB 折叠,点C 落在x 轴的负半轴D (−4,0)处.(1)求直线AB 的解析式;(2)点P 从点A 出发以每秒5AB 方向运动,过点P 作PQ ⊥AB ,交x 轴于点Q ,PR ∥AC 交x 轴于点R ,设点P 运动时间为t (秒),线段QR 长为d ,求d 与t 的函数关系式(不要求写出自变量t 的取值范围);(3)在(2)的条件下,点N 是射线AB 上一点,以点N 为圆心,同时经过R 、Q 两点作⊙N ,⊙N 交y 轴于点E ,F .是否存在t ,使得EF =RQ ?若存在,求出t 的值,并求出圆心N 的坐标;若不存在,说明理由.【答案】(1)132y x =-+(2)d =5t (3)故当 t =85,或815,时,QR =EF ,N (-6,6)或(2,2).【解析】 试题分析:(1)由C (0,8),D (-4,0),可求得OC ,OD 的长,然后设OB=a ,则BC=8-a ,在Rt △BOD 中,由勾股定理可得方程:(8-a )2=a 2+42,解此方程即可求得B 的坐标,然后由三角函数的求得点A 的坐标,再利用待定系数法求得直线AB 的解析式;(2)在Rt △AOB 中,由勾股定理可求得AB 的长,继而求得∠BAO 的正切与余弦,由PR//AC 与折叠的性质,易证得RQ=AR ,则可求得d 与t 的函数关系式;(3)首先过点分别作NT ⊥RQ 于T ,NS ⊥EF 于S ,易证得四边形NTOS 是正方形,然后分别从点N 在第二象限与点N 在第一象限去分析求解即可求解;试题解析:(1)∵C (0,8),D (-4,0),∴OC=8,OD=4,设OB=a ,则BC=8-a ,由折叠的性质可得:BD=BC=8-a ,在Rt △BOD 中,∠BOD=90°,DB 2=OB 2+OD 2,则(8-a )2=a 2+42, 解得:a=3,则OB=3,则B (0,3),tan ∠ODB=34OB OD = , 在Rt △AOC 中,∠AOC=90°,tan ∠ACB=34OA OC = , 则OA=6,则A (6,0),设直线AB 的解析式为:y=kx+b ,则60{3k bb+==,解得:1{23kb=-=,故直线AB的解析式为:y=-12x+3;(2)如图所示:在Rt△AOB中,∠AOB=90°,OB=3,OA=6,则22135,tan2OBOB OA BAOOA+=∠==,255OAcos BAOAB∠==,在Rt△PQA中,905APQ AP t∠=︒=,则AQ=10cosAPtBAO=∠,∵PR∥AC,∴∠APR=∠CAB,由折叠的性质得:∠BAO=∠CAB,∴∠BAO=∠APR,∴PR=AR,∵∠RAP+∠PQA=∠APR+∠QPR=90°,∴∠PQA=∠QPR,∴RP=RQ,∴RQ=AR,∴QR=12AQ=5t,即d=5t;(3)过点分别作NT⊥RQ于T,NS⊥EF于S,∵EF=QR,∴NS=NT,∴四边形NTOS是正方形,则TQ=TR=1522QR t=,∴1115151022224NT AT AQ TQ t t t==-=-=()(),分两种情况,若点N 在第二象限,则设N (n ,-n ),点N 在直线132y x =-+ 上, 则132n n -=-+ , 解得:n=-6,故N (-6,6),NT=6,即1564t = , 解得:85t = ; 若点N 在第一象限,设N (N ,N ),可得:132n n =-+ , 解得:n=2,故N (2,2),NT=2, 即1524t =, 解得:t=815∴当 t =85,或815,时,QR =EF ,N (-6,6)或(2,2)。

人教版九年级数学上册第24章《圆》单元测试卷(含答案解析)

人教版九年级数学上册第24章《圆》单元测试卷(含答案解析)

第24章《圆》单元测试卷一.选择题(共10小题)1.已知⊙O的半径为4,点O到直线m的距离为3,则直线m与⊙O公共点的个数为()A.0个B.1个C.2个D.3个2.如图,AB是⊙O的直径,AB⊥CD于E,AB=10,CD=8,则BE为()A.2B.3C.4D.3.53.正六边形内接于圆,它的边所对的圆周角是()A.60°B.120°C.60°或120°D.30°或150°4.⊙O的半径r=5cm,直线l到圆心O的距离d=4,则直线l与圆的位置关系()A.相离B.相切C.相交D.重合5.如图,AB是⊙O的直径,点C是⊙O上一点,点D在BA的延长线上,CD与⊙O交于另一点E,DE=OB=2,∠D=20°,则的长度为()A.πB.πC.πD.π6.如图,⊙O是△ABC 的外接圆,BC 是直径,D在圆上,连接AD、CD,若∠ADC=35°,则∠ACB=()A.70°B.55°C.40°D.45°7.如图,在△ABC中,AB=AC,∠ABC=45°,以AB为直径的⊙O交BC于点D,若BC=4,则图中阴影部分的面积为()A.π+1B.π+2C.2π+2D.4π+18.如图,△ABC是⊙O的内接三角形,∠C=30°,⊙O的半径为5,若点P是⊙O 上的一点,在△ABP中,PB=AB,则PA的长为()A.5B.C.5D.59.如图是某公园的一角,∠AOB=90°,弧AB的半径OA长是6m,C是OA的中点,点D在弧AB上,CD∥OB,则图中休闲区(阴影部分)的面积是()A.B.C.D.10.如图,AB是⊙O的直径,弦CD⊥AB,过点C作⊙O的切线与AB的延长线交于点P.若∠BCD=32°,则∠CPD的度数是()A.64°B.62°C.58°D.52°二.填空题(共8小题)11.如图,AB是⊙O的直径,点C、D在⊙O上,若∠ACD=25°,则∠BOD的度数为.12.如图,⊙O是△ABC的外接圆,BC为直径,BC=4,点E是△ABC的内心,连接AE并延长交⊙O于点D,则DE= .13.如图所示,点A在半径为20的圆O上,以OA为一条对角线作矩形OBAC,设直线BC交圆O于D、E两点,若OC=12,则线段CE、BD的长度差是.14.如图,半径为2的⊙O与含有30°角的直角三角板ABC的AC边切于点A,将直角三角板沿CA边所在的直线向左平移,当平移到AB与⊙O相切时,该直角三角板平移的距离为.15.如图,PA、PB切⊙O于A、B,点C在上,DE切⊙O于C,交PA、PB于D、E,已知PO=13cm,⊙O的半径为5cm,则△PDE的周长是.16.△ABC中,AB=CB,AC=10,S=60,E为AB上一动点,连结CE,过A作AF△ABC⊥CE于F,连结BF,则BF的最小值是.17.如图,等边三角形△ABC内接于半径为1的⊙O,则图中阴影部分的面积是.18.如图,已知线段AB=6,C为线段AB上的一个动点(不与A、B重合),将线段AC绕点A逆时针旋转120°得到AD,将线段BC绕点B顺时针旋转120°得到BE,⊙O外接于△CDE,则⊙O的半径最小值为.三.解答题(共7小题)19.十一期间,小明一家一起去旅游,如图是小明设计的某旅游景点的图纸(网格是由相同的小正方形组成的,且小正方形的边长代表实际长度100m,在该图纸上可看到两个标志性景点A,B.若建立适当的平面直角坐标系,则点A (﹣3,1),B(﹣3,﹣3),第三个景点C(1,3)的位置已破损.(1)请在图中画出平面直角坐标系,并标出景点C的位置;(2)平面直角坐标系的坐标原点为点O,△ACO是直角三角形吗?请判断并说明理由.20.如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连结AC交⊙O于点F.(1)AB与AC的大小有什么关系?请说明理由;(2)若AB=8,∠BAC=45°,求:图中阴影部分的面积.21.已知AB是⊙O的直径,AP是⊙O的切线,A是切点,BP与⊙O交于点C.(1)如图①,若∠P=35°,求∠ABP的度数;(2)如图②,若D为AP的中点,求证:直线CD是⊙O的切线.22.如图,已知锐角△ABC内接于⊙O,连接AO并延长交BC于点D.(1)求证:∠ACB+∠BAD=90°;(2)过点D作DE⊥AB于E,若∠ADC=2∠ACB,AC=4,求DE的长.23.如图,点I是△ABC的内心,AI的延长线和△ABC的外接圆相交于点D,与BC相交于点E.(1)求证:DI=DB;(2)若AE=6cm,ED=4cm,求线段DI的长.24.如图,已知扇形AOB的圆心角为直角,正方形OCDE内接于扇形AOB.点C、E、D分别在OA、OB、弧AB上,过点A作AF⊥DE交ED的延长线于F,如果正方形的边长为1,求阴影部分M、N的面积和.25.如图:△A BC是圆的内接三角形,∠BAC与∠ABC的角平分线AE、BE相交于点E,延长AE交圆于点D,连接BD、DC,且∠BCA=60°.(1)求证:△BED为等边三角形;(2)若∠ADC=30°,⊙O的半径为,求BD长.参考答案一.选择题(共10小题)1.【解答】解:∵d=3<半径=4∴直线与圆相交∴直线m与⊙O公共点的个数为2个故选:C.2.【解答】解:连接OC.∵AB是⊙O的直径,AB=10,∴OC=OB=AB=5;又∵AB⊥CD于E,CD=8,∴CE=CD=4(垂径定理);在Rt△COE中,OE=3(勾股定理),∴BE=OB﹣OE=5﹣3=2,即BE=2;故选:A.3.【解答】解:圆内接正六边形的边所对的圆心角=360°÷6=60°,根据圆周角等于同弧所对圆心角的一半,边所对的圆周角的度数是60×=30°或180°﹣30°=150°.故选:D.4.【解答】解:∴⊙O的半径为5cm,如果圆心O到直线l的距离为4cm,∴5>4,即d<r,∴直线l与⊙O的位置关系是相交,故选:C.5.【解答】解:连接OE、OC,如图,∵DE=OB=OE,∴∠D=∠EOD=20°,∴∠CEO=∠D+∠EOD=40°,∵OE=OC,∴∠C=∠CEO=40°,∴∠BOC=∠C+∠D=60°,∴的长度==π,故选:A.6.【解答】解:∵BC是⊙O的直径,∴∠BAC=90°,∵∠B=∠D=35°,∴∠ACB=55°,故选:B.7.【解答】解:连接OD、AD,∵在△ABC中,AB=AC,∠ABC=45°,∴∠C=45°,∴∠BAC=90°,∴△ABC是Rt△BAC,∵BC=4,∴AC=AB=4,∵AB为直径,∴∠ADB=90°,BO=DO=2,∵OD=OB,∠B=45°,∴∠B=∠BDO=45°,∴∠DOA=∠BOD=90°,∴阴影部分的面积S=S△BOD +S扇形DOA=+=π+2.故选:B.8.【解答】解:连接OA、OB、OP,∵∠C=30°,∴∠APB=∠C=30°,∵PB=AB,∴∠PAB=∠APB=30°∴∠ABP=120°,∵PB=AB,∴OB⊥AP,AD=PD,∴∠OBP=∠OBA=60°,∵OB=OA,∴△AOB是等边三角形,∴AB=OA=5,则Rt△PBD中,PD=cos30°•PB=×5=,∴AP=2PD=5,故选:D.9.【解答】解:连接OD,∵弧AB的半径OA长是6米,C是OA的中点,∴OC=OA=×6=3米,∵∠AOB=90°,CD∥OB,∴CD⊥OA,在Rt△OCD中,∵OD=6,OC=3,∴CD===3米,∵sin∠DOC===,∴∠DOC=60°,∴S阴影=S扇形AOD﹣S△DOC=﹣×3×3 =(6π﹣)平方米.故选:A.10.【解答】解:连接OC,∵CD⊥AB,∠BCD=32°,∴∠OBC=58°,∵OC=OB,∴∠OCB=∠OBC=58°,∴∠COP=64°,∵PC是⊙O的切线,∴∠OCP=90°,∴∠CPO=26°,∵AB⊥CD,∴AB垂直平分CD,∴PC=PD,∴∠CPD=2∠CPO=52°故选:D.二.填空题(共8小题)11.【解答】解:由圆周角定理得,∠AOD=2∠ACD=50°,∴∠BOD=180°﹣50°=130°,故答案为:130°.12.【解答】解:如图,连接BD,CD,EC.∵点E是△ABC的内心,∴∠DAB=∠DAC,∠ECA=∠ECD,∵∠DCB=∠DAB,∠DEC=∠EAC+∠ECA,∠ECD=∠ECB+∠DCB,∴∠DEC=∠DCE,∴DE=DC,∵BC是直径,∴∠BDC=90°,∵∠DAB=∠DAC,∴=,∴BD=DC,∵BC=4,∴DC=DB=2,∴DE=2,故答案为2.13.【解答】解:如图,设DE的中点为M,连接OM,则OM⊥DE.∵在Rt△AOB中,OA=20,AB=OC=12,∴OB===16,∴OM===,在Rt△OCM中,CM===,∵BM=BC﹣CM=20﹣=,∴CE﹣BD=(EM﹣CM)﹣(DM﹣BM)=BM﹣CM=﹣=.故答案为:.14.【解答】解:根据题意画出平移后的图形,如图所示:设平移后的△A′B′C′与圆O相切于点D,连接OD,OA,AD,过O作OE⊥AD,可得E为AD的中点,∵平移前圆O与AC相切于A点,∴OA⊥A′C,即∠OAA′=90°,∵平移前圆O与AC相切于A点,平移后圆O与A′B′相切于D点,即A′D与A′A为圆O的两条切线,∴A′D=A′A,又∠B′A′C′=60°,∴△A′AD为等边三角形,∴∠DAA′=60°,AD=AA′=A′D,∴∠OAE=∠OAA′﹣∠DAA′=30°,在Rt△AOE中,∠OAE=30°,AO=2,∴AE=AO•cos30°=,∴AD=2AE=2,∴AA′=2,则该直角三角板平移的距离为2.故答案为:2.15.【解答】解:连接OA、OB,如下图所示:∵PA、PB为圆的两条切线,∴由切线长定理可得:PA=PB,同理可知:DA=DC,EC=EB;∵OA⊥PA,OA=5,PO=13,∴由勾股定理得:PA=12,∴PA=PB=12;∵△PDE的周长=PD+DC+CE+PE,DA=DC,EC=EB;∴△PDE的周长=PD+DA+PE+EB=PA+PB=24,故此题应该填24cm.16.【解答】解:过B作BD⊥AC于D,∵AB=BC,∴AD=CD=AC=5,∵S=60,△ABC∴,即,BD=12,∵AF⊥CE,∴∠AFC=90°,∴F在以AC为直径的圆上,∵BF+DF>BD,且DF=DF',∴当F在BD上时,BF的值最小,此时BF'=12﹣5=7,则BF的最小值是7,故答案为:7.17.【解答】解:连接OB、OC,连接A O并延长交BC于H,则AH⊥BC,BH=CH.∵△ABC是等边三角形,OB=OA=1,∴BH=OB,∴BH=CH=,∴BC=,=•()2=,∴S△ABC∴S=π•12﹣=π﹣,阴故答案为π﹣.18.【解答】解:如图,连接OD、OA、OC、OB、OE.∵OA=OA,OD=OC,AD=AC,∴△OAD≌△OAC,∴∠OAC=∠OAD=∠CAD=60°,同法可证:∠OBC=∠OBE=∠ABE=60°,∴△AOB是等边三角形,∴当OC⊥AB时,OC的长最短,此时OC=OA•sin60°=3,故答案为3.三.解答题(共7小题)19.【解答】解:(1)如图;(2)△ACO是直角三角.理由如下:∵A(﹣3,1),C(1,3),∴OA==,OC==,AC==2,∵OA2+OC2=AC2,∴△AOC是直角三角形,∠AOC=90°.20.【解答】解:(1)AB=AC.理由是:连接AD.∵AB是⊙O的直径,∴∠ADB=90°,即AD⊥BC,又∵DC=BD,∴AB=AC;(2)连接OD、过D作DH⊥AB.∵AB=8,∠BAC=45°,∴∠BOD=45°,OB=OD=4,∴DH=2∴△OBD 的面积=扇形OBD的面积=,阴影部分面积=.21.【解答】(1)解:∵AB是⊙O的直径,AP是⊙O的切线,∴AB⊥AP,∴∠BAP=90°;又∵∠P=35°,∴∠AB=90°﹣35°=55°.(2)证明:如图,连接OC,OD、AC.∵AB是⊙O的直径,∴∠ACB=90°(直径所对的圆周角是直角),∴∠ACP=90°;又∵D为AP的中点,∴AD=CD(直角三角形斜边上的中线等于斜边的一半);在△OAD和△OCD中,,∴△OAD≌△OCD(SSS),∴∠OAD=∠OCD(全等三角形的对应角相等);又∵AP是⊙O的切线,A是切点,∴AB⊥AP,∴∠OAD=90°,∴∠OCD=90°,即直线CD是⊙O的切线.22.【解答】(1)证明:延长AD交⊙O于点F,连接BF.∵AF为⊙O的直径,∴∠ABF=90°,∴∠AFB+∠BAD=90°,∵∠AFB=∠ACB,∴∠ACB+∠BAD=90°.(2)证明:如图2中,过点O作OH⊥AC于H,连接BO.∵∠AOB=2∠ACB,∠ADC=2∠ACB,∴∠AOB=∠ADC,∴∠BOD=∠BDO,∴BD=BO,∴BD=OA,∵∠BED=∠AHO,∠ABD=∠AOH,∴△BDE≌△AOH,(AAS),∴DE=AH,∵OH⊥AC,∴AH=CH=AC,∴AC=2DE=4,∴DE=2.23.【解答】(1)证明:连接BI.∵点I是△ABC的内心,∴∠BAI=∠CAI,∠ABI=∠CBI.又∵∠DBI=∠CBI+∠DBC,∠DIB=∠ABI+∠BAI,∠DBC=∠DAC=∠BAI,∴∠DBI=∠DIB,∴DI=DB.(2)∵∠DBC=∠DAC=∠BAI,∠ADB=∠BDA,∴△BDE∽△ABD,∴,即BD2=D E•AD=DE•(AE+DE)=4×(6+4)=40,DI=BD=(cm).24.【解答】解:连接OD,∵正方形的边长为1,即OC=CD=1,∴OD=,∴AC=OA﹣OC=﹣1,∵DE=DC,BE=AC,弧BD=弧AD=长方形ACDF的面积=AC•CD=﹣1.∴S阴25.【解答】(1)证明:∵∠BAC与∠ABC的角平分线AE、BE相交于点E,∴∠EAB=∠CAB,∠EBA=∠CBA,∴∠AEB=180°﹣(∠EAB+∠EBA)=180°﹣(∠CAB+∠CBA)=180°﹣(180°﹣∠BCA)=120°,∴∠DEB=60°,由圆周角定理得,∠BDA=∠BCA=60°,∴△BED为等边三角形;(2)∵∠ADC=30°,∠BDA=60°,∴∠BDC=90°,∴BC是⊙O的直径,即BC=4,∵AE平分∠BAC,∴=,∴BD=DC=4.。

2022学年北师大版九年级数学下册第3章《圆》综合测试题附答案解析

2022学年北师大版九年级数学下册第3章《圆》综合测试题附答案解析

2022-2023学年九年级数学下册第3章《圆》综合测试题(满分120分)一、选择题(每题3分,共30分)1.下列命题为真命题的是()A .两点确定一个圆B .度数相等的弧相等C .垂直于弦的直径平分弦D .相等的圆周角所对的弧相等,所对的弦也相等2.已知⊙O 的半径为5,点P 到圆心O 的距离为6,那么点P 与⊙O 的位置关系是()A .点P 在⊙O 外B .点P 在⊙O 内C .点P 在⊙O 上D .无法确定3.如图,⊙O 是△ABC 的外接圆,∠BOC =120°,则∠BAC 的度数是()A .70°B .60°C .50°D .30°4.如图,AB ,AC 为⊙O 的切线,B 和C 是切点,延长OB 到D ,使BD =OB ,连接AD .如果∠DAC =78°,那么∠ADO 等于()A .70°B .64°C .62°D .51°5.如图,AB ︵=BC ︵=CD ︵,OB ,OC 分别交AC ,BD 于点E ,F ,则下列结论不一定正确的是()A .AC =BD B .OE ⊥AC ,OF ⊥BD C .△OEF 为等腰三角形D .△OEF 为等边三角形6.如图,在直角坐标系中,一个圆经过坐标原点O ,交坐标轴于点E ,F ,OE =8,OF =6,则圆的直径长为()A .12B .10C .14D .157.如图,△PQR 是⊙O 的内接正三角形,四边形ABCD 是⊙O 的内接正方形,BC ∥QR ,则∠AOQ 等于()A .60°B .65°C .72°D .75°8.秋千拉绳长3m ,静止时踩板离地面0.5m ,某小朋友荡秋千时,秋千在最高处踩板离地面2m(左右对称),如图所示,则该秋千所荡过的圆弧AB ︵的长为()A .πmB .2πm C.43πm D.32πm9.如图,PA ,PB 切⊙O 于A ,B 两点,CD 切⊙O 于点E ,交PA ,PB 于点C 和点D .若△PCD 的周长为⊙O 半径的3倍,则t a n ∠APB 等于()A.125 B.3513 C.2313 D.51210.如图,在平面直角坐标系中,⊙P 的圆心坐标是(3,a )(a >3),半径为3,函数y =x 的图象被⊙P 截得的弦AB 的长为42,则a 的值是()A .4B .3+2C .32D .3+3二、填空题(每题3分,共24分)11.如图,AB 为⊙O 的直径,CD ⊥AB ,若AB =10,CD =8,则圆心O 到弦CD 的距离为________.12.如图,EB ,EC 是⊙O 的两条切线,B ,C 是切点,A ,D 是⊙O 上两点,如果∠E =46°,∠DCF =32°,那么∠A =________.13.如图,DB 切⊙O 于点A ,∠AOM =66°,则∠DAM =________.14.如图,AB ,CD 是⊙O 的弦,AB ⊥CD ,BE 是⊙O 的直径,若AC =3,则DE =________.15.如图,水平放置的圆柱形油槽的截面直径是52c m ,装入油后,油深CD 为16c m ,那么油面宽度AB=________.16.如图,在扇形OAB 中,∠AOB =90°,点C 为OA 的中点,CE ⊥OA 交AB ︵于点E ,以点O 为圆心,OC为半径作CD ︵交OB 于点D .若OA =2,则阴影部分的面积为________.17.如图,在△ABC 中,∠C =90°,AC =3,AB =5,D 为BC 边的中点,以AD 上一点O 为圆心的⊙O 和AB ,BC 均相切,则⊙O 的半径为________.18.如图,在⊙O 中,C ,D 分别是OA ,OB 的中点,MC ⊥AB ,ND ⊥AB ,M ,N 在⊙O 上.下列结论:①MC =ND ;②AM ︵=MN ︵=NB ︵;③四边形MCDN 是正方形;④MN =12AB .其中正确的结论有_____(填序号).三、解答题(19题8分,20,21每题10分,22,23每题12分,24题14分,共66分)19.如图,AB 是⊙O 的直径,PA 切⊙O 于A ,OP 交⊙O 于C ,连接BC ,若∠P =30°,求∠B 的度数.20.如图,AB 是⊙O 的直径,BD 是⊙O 的弦,延长BD 到点C ,使DC =BD ,连接AC ,过点D 作DE ⊥AC ,垂足为E .(1)求证:AB =AC .(2)若⊙O 的半径为4,∠BAC =60°,求DE 的长.21.如图,点P 在y 轴上,⊙P 交x 轴于A ,B 两点,连接BP 并延长交⊙P 于点C ,过点C 的直线y =2x+b 交x 轴于点D ,且⊙P 的半径为5,AB =4.(1)求点B ,P ,C 的坐标.(2)求证:CD 是⊙P 的切线.22.如图,CB和CD切⊙O于B,D两点,A为圆周上一点,且∠1:∠2:∠3=1:2:3,BC=3,求∠AOD所对扇形的面积S.23.如图,一拱形公路桥,圆弧形桥拱的水面跨度AB=80m,桥拱到水面的最大高度为20m.(1)求桥拱所在圆的半径.(2)现有一艘宽60m,顶部截面为长方形且高出水面9m的轮船要经过这座拱桥,这艘轮船能顺利通过吗?请说明理由.24.如图,已知在△ABP中,C是BP边上一点,∠PAC=∠PBA,⊙O是△ABC的外接圆,AD是⊙O的直径,且交BP于点E.(1)求证:PA是⊙O的切线.(2)过点C作CF⊥AD,垂足为点F,延长CF交AB于点G,若AG·AB=12,求AC的长.(3)在满足(2)的条件下,若AF∶FD=1∶2,GF=1,求⊙O的半径及sin∠ACE的值.参考答案一、1.C 2.A3.B4.B5.D6.B 7.D 8.B 9.A 10.B二、11.3【点拨】如图,连接OC ,设AB ⊥CD 于E .∵AB 为⊙O 的直径,AB =10,∴OC =5.∵CD ⊥AB ,CD =8,∴CE =4,∴OE =OC 2-CE 2=52-42=3.12.99°【点拨】易知EB =EC .又∠E =46°,所以∠ECB =67°.从而∠BCD =180°-67°-32°=81°.在⊙O 中,∠BCD 与∠A 互补,所以∠A =180°-81°=99°.13.147°【点拨】因为DB 是⊙O 的切线,所以OA ⊥DB .由∠AOM =66°,得∠OAM =12×(180°-66°)=57°.所以∠DAM =90°+57°=147°.14.3【点拨】∵BE 是⊙O 的直径,∴∠BDE =90°.∴∠BDC +∠CDE =90°.又∵AB ⊥CD ,∴∠ACD +∠CAB =90°.∵∠CAB =∠BDC ,∴∠ACD =∠CDE .∴AD ︵=CE ︵.∴AD ︵-AE ︵=CE ︵-AE ︵.∴DE ︵=AC ︵.∴DE =AC =3.15.48cm16.32+π12【点拨】连接OE .∵点C 是OA 的中点,∴OC =12OA =1.∵OE =OA =2,∴OC =12OE .∵CE ⊥OA ,∴∠OEC =30°.∴∠COE =60°.在Rt △OCE 中,CE =OE 2-OC 2=3,∴S △OCE =12OC ·CE =32.∵∠AOB =90°,∴∠BOE =∠AOB -∠COE =30°.∴S 扇形BOE =30π×22360=π3.又S 扇形COD =90π×12360=π4.因此S 阴影=S 扇形BOE +S △OCE -S 扇形COD =π3+32-π4=32+π12.17.6718.①②④【点拨】连接OM ,ON ,易证Rt △OMC ≌Rt △OND ,可得MC =ND ,故①正确.在Rt △MOC中,CO =12MO ,可得∠CMO =30°,所以∠MOC =60°.易得∠MOC =∠NOD =∠MON =60°,所以AM ︵=MN ︵=NB ︵,故②正确.易得CD =12AB =OA =OM ,∵MC <OM ,∴MC <CD .∴四边形MCDN 不是正方形,故③错误.易得MN =CD =12AB ,故④正确.三、19.解:∵PA 切⊙O 于A ,AB 是⊙O 的直径,∠P =30°,∴∠AOP =60°.∴∠B =12∠AOP =30°.20.(1)证明:如图,连接AD .∵AB 是⊙O 的直径,∴∠ADB =90°.∵DC =BD ,∴AB =AC .(2)解:由(1)知AB =AC ,∵∠BAC =60°,∠ADB =90°,∴△ABC 是等边三角形,∠BAD =30°.在Rt △BAD 中,∠BAD =30°,AB =8,∴BD =4,即DC =4.又∵DE ⊥AC ,∴DE =DC ·sin C =4·sin 60°=4×32=2 3.21.(1)解:如图,连接CA .∵OP ⊥AB ,∴OB =OA =2.∵OP 2+OB 2=BP 2,∴OP 2=5-4=1,即OP =1.∵BC 是⊙P 的直径,∴∠CAB =90°.∵CP =BP ,OB =OA ,∴AC =2OP =2.∴B (2,0),P (0,1),C (-2,2).(2)证明:∵直线y =2x +b 过C 点,∴b =6.∴y =2x +6.∵当y =0时,x =-3,∴D (-3,0).∴AD =1.∵OB =AC =2,AD =OP =1,∠CAD =∠POB =90°,∴△DAC ≌△POB .∴∠DCA =∠ABC .∵∠ACB +∠ABC =90°,∴∠DCA +∠ACB =90°,即CD ⊥BC .∴CD 是⊙P 的切线.22.解:∵CD 为⊙O 的切线,∴∠ODC =90°,即OD ⊥CD .∵∠1:∠2:∠3=1:2:3,∴∠1=15°,∠2=30°,∠3=45°.连接OB .∵CB 为⊙O 的切线,∴OB ⊥BC ,BC =CD .∴∠CBD =∠3=45°,∴∠OBD =45°.又∠1+∠2=45°,∴∠BOD =90°,即OD ⊥OB .∴OD ∥BC ,CD ∥OB .∴四边形OBCD 为正方形.∵BC =3,∴OB =OD =3.∵∠1=15°,∴∠AOB =30°,∴∠AOD =120°.∴S =120360×π×32=3π.23.解:(1)如图,设点E 是桥拱所在圆的圆心.过点E 作EF ⊥AB 于点F ,延长EF 交AB ︵于点C ,连接AE ,则CF =20m .由垂径定理知,F 是AB 的中点,∴AF =FB =12AB =40m.设半径是r m ,由勾股定理,得AE 2=AF 2+EF 2=AF 2+(CE -CF )2,即r 2=402+(r -20)2.解得r =50.∴桥拱所在圆的半径为50m.(2)这艘轮船能顺利通过.理由:当宽60m 的轮船刚好可通过拱桥时,如图,MN 为轮船顶部的位置.连接EM ,设EC 与MN 的交点为D ,则DE ⊥MN ,∴DM =30m ,∴DE =EM 2-DM 2=502-302=40(m ).∵EF =EC -CF =50-20=30(m),∴DF =DE -EF =40-30=10(m).∵10m>9m ,∴这艘轮船能顺利通过.24.(1)证明:如图,连接CD .∵AD 是⊙O 的直径,∴∠ACD =90°.∴∠CAD +∠ADC =90°.又∵∠PAC =∠PBA ,∠ADC =∠PBA ,∴∠PAC =∠ADC .∴∠CAD +∠PAC =90°.∴PA ⊥DA .而AD 是⊙O 的直径,∴PA 是⊙O 的切线.(2)解:由(1)知,PA ⊥AD ,又∵CF ⊥AD ,∴CF ∥PA .∴∠GCA =∠PAC .又∵∠PAC =∠PBA ,∴∠GCA =∠PBA .而∠CAG =∠BAC ,∴△CAG ∽△BAC .∴AGAC =ACAB ,即AC 2=AG ·AB .∵AG ·AB =12,∴AC 2=12.∴AC =2 3.(3)解:设AF =x ,∵AF ∶FD =1∶2,∴FD =2x .∴AD =AF +FD =3x .易知△ACF ∽△ADC ,∴ACAD =AFAC ,即AC 2=AF ·AD .∴3x 2=12,解得x =2或x =-2(舍去).∴AF =2,AD =6.∴⊙O 的半径为3.在Rt △AFG 中,AF =2,GF =1,根据勾股定理得AG =AF 2+GF 2=22+12=5,由(2)知AG ·AB =12,∴AB =12AG =1255.连接BD ,如图所示.∵AD 是⊙O 的直径,∴∠ABD =90°.在Rt △ABD 中,∵sin ∠ADB =ABAD ,AD =6,AB =1255,∴sin ∠ADB =255.∵∠ACE =∠ADB ,∴sin ∠ACE =255.。

九年级数学《圆》单元测试卷及答案含有详细解析

九年级数学《圆》单元测试卷及答案含有详细解析

九年级数学《圆》单元测试卷一、选择题1、如果⊙O 的半径为6 cm ,OP =7cm ,那么点P 与⊙O 的位置关系是( ) A .点P 在⊙O 内 B .点P 在⊙O 上 C .点P 在⊙O 外 D .不能确定2、如图,在⊙O 中,AB =AC ,∠AOB=40°,则∠ADC 的度数是( )。

A .40° B .30° C .20° D .15°(第2题图) (第3题图) (第4题图) (第5题图) 3、如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为P .若CD=8,OP=3,则⊙O 的半径为() A .10 B .8 C .5 D .34、如图所示,四边形ABCD 内接于⊙O ,F 是弧CD 上一点,且弧DF=弧BC ,连接CF 并延长交AD 的延长线于点E ,连接AC.若∠ABC =105°,∠BAC =25°,则∠E 的度数为( )A. 45°B. 50°C. 55°D. 60°5、如图,AB 是⊙O 的切线,B 为切点,AO 与⊙O 交于点C.若∠BAO =40°,则∠CBA 的度数为( )A. 15°B. 20°C. 25°D. 30°6、如图,菱形ABCD 的对角线AC ,BD 相交于点O ,AC=8,BD=6,以AB 为直径作一个半圆,则图中阴影部分的面积为( )(第6题图) (第7题图)A .25π-6B .π-6C .π-6 D .π-67、如图,在△ABC 中,AB=CB ,以AB 为直径的⊙O 交AC 于点D .过点C 作CF ∥AB ,在CF 上取一点E ,使DE=CD ,连接AE .对于下列结论:①AD=DC ;②△CBA ∽△CDE ;③;④AE 为⊙O 的切线,一定正确的结论全部包含其中的选项是( )A .①②B .①②③C .①④D .①②④二、填空题8、如图,已知以直角梯形ABCD 的腰CD 为直径的半圆O 与梯形上底AD 、下底BC 以及腰AB 均相切,切点分别是D ,C ,E .若半圆O 的半径为2,梯形的腰AB 为5,则该梯形的周长是 。

九年级数学上册第二十四章圆测试卷1新人教版附答案

九年级数学上册第二十四章圆测试卷1新人教版附答案

九年级数学上册第二十四章圆测试卷1新人教版附答案一、选择题1.用圆心角为120°,半径6cm的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是()A.2cm B.3cm C.4cm D.4cm2.如图,边长为40cm的等边三角形硬纸片,小明剪下与边BC相切的扇形AEF,切点为D,点E、F分别在AB、AC上,做成圆锥形圣诞帽,(重叠部分忽略不计),则圆锥形圣诞帽的底面圆形半径是()A.cm B.cm C.cm D.cm3.如图,用圆心角为120°,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽(接缝忽略不计),则这个纸帽的高是()A.cmB.2cm C.3cm D.4cm4.已知圆锥的底面半径为4cm,母线长为5cm,则这个圆锥的侧面积是()A.20πcm2B.20cm2C.40πcm2D.40cm25.已知某几何体的三视图(单位:cm),则这个圆锥的侧面积等于()A.12πcm2B.15πcm2C.24πcm2D.30πcm26.如果圆锥的母线长为5cm,底面半径为2cm,那么这个圆锥的侧面积为()A.10cm2B.10πcm2C.20cm2D.20πcm27.一个圆锥的底面半径是6cm,其侧面展开图为半圆,则圆锥的母线长为()A.9cm B.12cm C.15cm D.18cm8.圆锥体的底面半径为2,侧面积为8π,则其侧面展开图的圆心角为()A.90°B.120°C.150°D.180°9.如图,某同学用一扇形纸板为一个玩偶制作一个圆锥形帽子,已知扇形半径OA=13cm,扇形的弧长为10πcm,那么这个圆锥形帽子的高是()cm.(不考虑接缝)A.5B.12C.13D.1410.若一个圆锥的主视图是腰长为5,底边长为6的等腰三角形,则该圆锥的侧面积是()A.15πB.20πC.24πD.30π11.一个圆锥的侧面展开图是半径为6的半圆,则这个圆锥的底面半径为()A.1.5B.2C.2.5D.312.圆锥的母线长为4,底面半径为2,则此圆锥的侧面积是()A.6πB.8πC.12πD.16π13.一个立体图形的三视图如图,根据图中数据求得这个立体图形的侧面积为()A.12πB.15πC.18πD.24π14.已知圆锥的母线长为3,底面的半径为2,则圆锥的侧面积是()A.4πB.6πC.10πD.12π15.如图,圆锥的侧面展开图是半径为3,圆心角为90°的扇形,则该圆锥的底面周长为()A.πB.πC.D.16.一个圆锥的侧面展开图是半径为R的半圆,则该圆锥的高是()A.R B.C.D.17.一个几何体的三视图如图所示,这个几何体的侧面积为()A.2πcm2B.4πcm2C.8πcm2D.16πcm218.底面半径为4,高为3的圆锥的侧面积是()A.12πB.15πC.20πD.36π二、填空题19.一个圆锥形漏斗,某同学用三角波测得其高度的尺寸如图所示,则该圆锥形漏斗的侧面积为.20.在△ABC纸板中,AB=3cm,BC=4cm,AC=5cm,将△ABC纸板以AB所在直线为轴旋转一周,则所形成的几何体的侧面积为cm2(结果用含π的式子表示).21.一个底面直径是80cm,母线长为90cm的圆锥的侧面展开图的圆心角的度数为.22.圆锥的底面半径为6cm,母线长为10cm,则圆锥的侧面积为cm2.23.一个底面直径为10cm,母线长为15cm的圆锥,它的侧面展开图圆心角是度.24.已知圆锥的底面半径为3,母线长为8,则圆锥的侧面积等于.25.若圆锥的侧面展开图的弧长为24πcm,则此圆锥底面的半径为cm.26.用一个圆心角为240°半径为6的扇形做一个圆锥的侧面,则这个圆锥底面半径为.27.用一个圆心角为120°,半径为4的扇形作一个圆锥的侧面,则这个圆锥底面圆的周长为.28.如图,如果从半径为3cm的圆形纸片上剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的底面半径是cm.29.用圆心角是216°,半径是5cm的扇形围成一个圆锥体的侧面(接缝处不重叠),则这个圆锥体的高是cm.30.若圆锥的轴截面是一个边长为4的等边三角形,则这个圆锥的侧面展开后所得到的扇形的圆心角的度数是.参考答案与试题解析一、选择题1.用圆心角为120°,半径6cm的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是()A.2cm B.3cm C.4cm D.4cm【考点】圆锥的计算.【分析】先利用弧长公式得到圆心角为120°,半径为6cm的扇形的弧长=4π,根据圆锥的侧面展开图为扇形,扇形的弧长等于圆锥的底面圆的周长,则可计算出圆锥的底面圆的半径为2,然后根据勾股定理可计算出圆锥的高.【解答】解:∵圆心角为120°,半径为6cm的扇形的弧长==4π,∴圆锥的底面圆的周长为4π,∴圆锥的底面圆的半径为2,∴这个纸帽的高==4(cm).故选C.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥的底面圆的周长,扇形的半径等于圆锥的母线长.也考查了弧长公式和勾股定理.2.如图,边长为40cm的等边三角形硬纸片,小明剪下与边BC相切的扇形AEF,切点为D,点E、F分别在AB、AC上,做成圆锥形圣诞帽,(重叠部分忽略不计),则圆锥形圣诞帽的底面圆形半径是()A.cm B.cm C.cm D.cm【考点】圆锥的计算.【专题】计算题.【分析】连结AD,如图,根据切线的性质得AD⊥BC,再根据等边三角形的性质得∠BAC=∠B=60°,BD=BC=20,所以AD=BD=20,设圆锥形圣诞帽的底面圆形半径为rcm,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到2πr=,再解方程即可.【解答】解:连结AD,如图,∵边BC相切于扇形AEF,切点为D,∴AD⊥BC,∵△ABC为等边三角形,∴∠BAC=∠B=60°,BD=BC=×40=20,∴AD=BD=20,设圆锥形圣诞帽的底面圆形半径为rcm,∴2πr=,解得r=(cm),即圆锥形圣诞帽的底面圆形半径为cm.故选A.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.3.如图,用圆心角为120°,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽(接缝忽略不计),则这个纸帽的高是()A.cmB.2cm C.3cm D.4cm【考点】圆锥的计算.【分析】先利用弧长公式得到圆心角为120°,半径为6cm的扇形的弧长=4π,根据圆锥的侧面展开图为扇形,扇形的弧长等于圆锥的底面圆的周长,则可计算出圆锥的底面圆的半径为2,然后根据勾股定理可计算出圆锥的高.【解答】解:∵圆心角为120°,半径为6cm的扇形的弧长==4π,∴圆锥的底面圆的周长为4π,∴圆锥的底面圆的半径为2,∴这个纸帽的高==4(cm).故选D.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥的底面圆的周长,扇形的半径等于圆锥的母线长.也考查了弧长公式和勾股定理.4.已知圆锥的底面半径为4cm,母线长为5cm,则这个圆锥的侧面积是()A.20πcm2B.20cm2C.40πcm2D.40cm2【考点】圆锥的计算.【专题】计算题.【分析】圆锥的侧面积=底面周长×母线长÷2,把相应数值代入即可求解.【解答】解:圆锥的侧面积=2π×4×5÷2=20π.故选:A.【点评】本题考查了圆锥的计算,解题的关键是弄清圆锥的侧面积的计算方法,特别是圆锥的底面周长等于圆锥的侧面扇形的弧长.5.已知某几何体的三视图(单位:cm),则这个圆锥的侧面积等于()A.12πcm2B.15πcm2C.24πcm2D.30πcm2【考点】圆锥的计算.【专题】计算题.【分析】俯视图为圆的只有圆锥,圆柱,球,根据主视图和左视图都是三角形可得到此几何体为圆锥,那么侧面积=底面周长×母线长÷2.【解答】解:∵底面半径为3,高为4,∴圆锥母线长为5,∴侧面积=2πrR÷2=15πcm2.故选:B.【点评】由该三视图中的数据确定圆锥的底面直径和高是解本题的关键;本题体现了数形结合的数学思想,注意圆锥的高,母线长,底面半径组成直角三角形.6.如果圆锥的母线长为5cm,底面半径为2cm,那么这个圆锥的侧面积为()A.10cm2B.10πcm2C.20cm2D.20πcm2【考点】圆锥的计算.【专题】数形结合.【分析】圆锥的侧面积=底面周长×母线长÷2.【解答】解:圆锥的侧面积=2π×2×5÷2=10π.故选:B.【点评】本题考查了圆锥的计算,解题的关键是知道圆锥的侧面积的计算方法.7.一个圆锥的底面半径是6cm,其侧面展开图为半圆,则圆锥的母线长为()A.9cm B.12cm C.15cm D.18cm【考点】圆锥的计算.【专题】计算题.【分析】圆锥的母线长=圆锥的底面周长×.【解答】解:圆锥的母线长=2×π×6×=12cm,故选:B.【点评】本题考查圆锥的母线长的求法,注意利用圆锥的弧长等于底面周长这个知识点.8.圆锥体的底面半径为2,侧面积为8π,则其侧面展开图的圆心角为()A.90°B.120°C.150°D.180°【考点】圆锥的计算.【专题】计算题.【分析】设圆锥的侧面展开图的圆心角为n°,母线长为R,先根据锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式得到•2π•2•R=8π,解得R=4,然后根据弧长公式得到=2•2π,再解关于n的方程即可.【解答】解:设圆锥的侧面展开图的圆心角为n°,母线长为R,根据题意得•2π•2•R=8π,解得R=4,所以=2•2π,解得n=180,即圆锥的侧面展开图的圆心角为180°.故选:D.【点评】本题考查了圆锥的计算:锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.9.如图,某同学用一扇形纸板为一个玩偶制作一个圆锥形帽子,已知扇形半径OA=13cm,扇形的弧长为10πcm,那么这个圆锥形帽子的高是()cm.(不考虑接缝)A.5B.12C.13D.14【考点】圆锥的计算.【专题】几何图形问题.【分析】首先求得圆锥的底面半径,然后利用勾股定理求得圆锥的高即可.【解答】解:先求底面圆的半径,即2πr=10π,r=5cm,∵扇形的半径13cm,∴圆锥的高==12cm.故选:B.【点评】此题主要考查圆锥的侧面展开图和勾股定理的应用,牢记有关公式是解答本题的关键,难度不大.10.若一个圆锥的主视图是腰长为5,底边长为6的等腰三角形,则该圆锥的侧面积是()A.15πB.20πC.24πD.30π【考点】圆锥的计算;简单几何体的三视图.【专题】计算题.【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【解答】解:根据题意得圆锥的底面圆的半径为3,母线长为5,所以这个圆锥的侧面积=•5•2π•3=15π.故选:A.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了三视图.11.一个圆锥的侧面展开图是半径为6的半圆,则这个圆锥的底面半径为()A.1.5B.2C.2.5D.3【考点】圆锥的计算.【专题】计算题.【分析】半径为6的半圆的弧长是6π,圆锥的底面周长等于侧面展开图的扇形弧长,因而圆锥的底面周长是6π,然后利用弧长公式计算.【解答】解:设圆锥的底面半径是r,半径为6的半圆的弧长是6π,则得到2πr=6π,解得:r=3,这个圆锥的底面半径是3.故选:D.【点评】本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.12.圆锥的母线长为4,底面半径为2,则此圆锥的侧面积是()A.6πB.8πC.12πD.16π【考点】圆锥的计算.【专题】计算题.【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【解答】解:此圆锥的侧面积=•4•2π•2=8π.故选:B.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.13.一个立体图形的三视图如图,根据图中数据求得这个立体图形的侧面积为()A.12πB.15πC.18πD.24π【考点】圆锥的计算;由三视图判断几何体.【分析】从主视图以及左视图都为一个三角形,俯视图为一个圆形看,可以确定这个几何体为一个圆锥,由三视图可知圆锥的底面半径为3,高为4,故母线长为5,据此可以求得其侧面积.【解答】解:由三视图可知圆锥的底面半径为3,高为4,所以母线长为5,所以侧面积为πrl=3×5π=15π,故选:B.【点评】本题主要考查了由三视图确定几何体和求圆锥的侧面积.牢记公式是解题的关键,难度不大.14.已知圆锥的母线长为3,底面的半径为2,则圆锥的侧面积是()A.4πB.6πC.10πD.12π【考点】圆锥的计算.【专题】计算题.【分析】根据锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算即可.【解答】解:圆锥的侧面积=•2π•2•3=6π.故选:B.【点评】本题考查了圆锥的计算:锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.15.如图,圆锥的侧面展开图是半径为3,圆心角为90°的扇形,则该圆锥的底面周长为()A.πB.πC.D.【考点】圆锥的计算.【专题】计算题.【分析】根据圆锥侧面展开扇形的弧长等于底面圆的周长,可以求出底面圆的半径,从而求得圆锥的底面周长.【解答】解:设底面圆的半径为r,则:2πr==π.∴r=,∴圆锥的底面周长为,故选:B.【点评】本题考查的是弧长的计算,利用弧长公式求出弧长,然后根据扇形弧长与圆锥底面半径的关系求出底面圆的半径.16.一个圆锥的侧面展开图是半径为R的半圆,则该圆锥的高是()A.R B.C.D.【考点】圆锥的计算.【分析】根据侧面展开图的弧长等于圆锥的底面周长,即可求得底面周长,进而即可求得底面的半径长,然后表示出圆锥的高即可.【解答】解:圆锥的底面周长是:πR;设圆锥的底面半径是r,则2πr=πR.解得:r=R.由勾股定理得到圆锥的高为=,故选:D.【点评】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.17.一个几何体的三视图如图所示,这个几何体的侧面积为()A.2πcm2B.4πcm2C.8πcm2D.16πcm2【考点】圆锥的计算;由三视图判断几何体.【专题】几何图形问题.【分析】俯视图为圆的只有圆锥,圆柱,球,根据主视图和左视图都是三角形可得到此几何体为圆锥,那么侧面积=底面周长×母线长÷2.【解答】解:此几何体为圆锥;∵半径为1,圆锥母线长为4,∴侧面积=2πrR÷2=2π×1×4÷2=4π;故选:B.【点评】本题考查了圆锥的计算,该三视图中的数据确定圆锥的底面直径和高是解本题的关键;本题体现了数形结合的数学思想,注意圆锥的高,母线长,底面半径组成直角三角形.18.底面半径为4,高为3的圆锥的侧面积是()A.12πB.15πC.20πD.36π【考点】圆锥的计算.【专题】计算题.【分析】首先根据底面半径和高利用勾股定理求得母线长,然后直接利用圆锥的侧面积公式代入求出即可.【解答】解:∵圆锥的底面半径为4,高为3,∴母线长为5,∴圆锥的侧面积为:πrl=π×4×5=20π,故选:C.【点评】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键.二、填空题19.一个圆锥形漏斗,某同学用三角波测得其高度的尺寸如图所示,则该圆锥形漏斗的侧面积为15π.【考点】圆锥的计算.【专题】计算题.【分析】根据图中数据得到圆锥的高为4,底面圆的半径为3,则根据勾股定理计算出母线长为5,然后利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【解答】解:圆锥的母线长==5,所以该圆锥形漏斗的侧面积=•2π•3•5=15π.故答案为15π.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.20.在△ABC纸板中,AB=3cm,BC=4cm,AC=5cm,将△ABC纸板以AB所在直线为轴旋转一周,则所形成的几何体的侧面积为20πcm2(结果用含π的式子表示).【考点】圆锥的计算;点、线、面、体;勾股定理的逆定理.【分析】易得此几何体为圆锥,那么圆锥的侧面积=底面周长×母线长÷2.【解答】解:∵在△ABC中,AB=3,BC=4,AC=5,∴△ABC为直角三角形,∴底面周长=8π,侧面积=×8π×5=20πcm2.故答案为:20π.【点评】本题考查了圆锥的计算,以及勾股定理的逆定理,利用圆的周长公式和扇形面积公式求解.21.一个底面直径是80cm,母线长为90cm的圆锥的侧面展开图的圆心角的度数为160°.【考点】圆锥的计算.【专题】计算题.【分析】根据圆锥的底面直径求得圆锥的侧面展开扇形的弧长,再利用告诉的母线长求得圆锥的侧面展开扇形的面积,再利用扇形的另一种面积的计算方法求得圆锥的侧面展开图的圆心角即可.【解答】解:∵圆锥的底面直径是80cm,∴圆锥的侧面展开扇形的弧长为:πd=80π,∵母线长90cm,∴圆锥的侧面展开扇形的面积为:lr=×80π×90=3600π,∴=3600π,解得:n=160.故答案为:160°.【点评】本题考查了圆锥的有关计算,解决此类题目的关键是明确圆锥的侧面展开扇形与圆锥的关系.22.圆锥的底面半径为6cm,母线长为10cm,则圆锥的侧面积为60πcm2.【考点】圆锥的计算.【专题】计算题.【分析】圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解.【解答】解:圆锥的侧面积=π×6×10=60πcm2.【点评】本题考查圆锥侧面积公式的运用,掌握公式是关键.23.一个底面直径为10cm,母线长为15cm的圆锥,它的侧面展开图圆心角是120度.【考点】圆锥的计算.【专题】计算题.【分析】利用底面周长=展开图的弧长可得.【解答】解:∵底面直径为10cm,∴底面周长为10π,根据题意得10π=,解得n=120.故答案为:120.【点评】考查了圆锥的计算,解答本题的关键是有确定底面周长=展开图的弧长这个等量关系,然后由扇形的弧长公式和圆的周长公式求值.24.已知圆锥的底面半径为3,母线长为8,则圆锥的侧面积等于24π.【考点】圆锥的计算.【专题】计算题.【分析】圆锥的侧面积=底面周长×母线长÷2,把相应数值代入即可求解.【解答】解:圆锥的侧面积=2π×3×8÷2=24π,故答案为:24π.【点评】本题考查圆锥的侧面积的求法,牢记公式是解答本题的关键,难度不大.25.若圆锥的侧面展开图的弧长为24πcm,则此圆锥底面的半径为12cm.【考点】圆锥的计算.【分析】利用扇形的弧长等于圆锥的底面周长列出等式求得圆锥的底面半径即可.【解答】解:设圆锥的底面半径为r,∵圆锥的侧面展开图的弧长为24πcm,∴2πr=24π,解得:r=12,故答案为:12.【点评】本题考查了圆锥的计算,解题的关键是牢记扇形的弧长等于圆锥的底面周长.26.用一个圆心角为240°半径为6的扇形做一个圆锥的侧面,则这个圆锥底面半径为4.【考点】圆锥的计算.【专题】计算题.【分析】易得扇形的弧长,除以2π即为圆锥的底面半径.【解答】解:∵扇形的弧长==8π,∴圆锥的底面半径为8π÷2π=4.故答案为:4.【点评】考查了扇形的弧长公式;圆的周长公式;用到的知识点为:圆锥的弧长等于底面周长.27.用一个圆心角为120°,半径为4的扇形作一个圆锥的侧面,则这个圆锥底面圆的周长为π.【考点】圆锥的计算.【分析】根据圆锥的底面周长即为圆锥的侧面展开扇形的弧长求解.【解答】解:圆锥的底面圆的周长=π,故答案为:π.【点评】本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.28.如图,如果从半径为3cm的圆形纸片上剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的底面半径是2cm.【考点】圆锥的计算.【专题】几何图形问题.【分析】易求得扇形的弧长,除以2π即为圆锥的底面半径.【解答】解:扇形的弧长为:=4πcm,圆锥的底面半径为:4π÷2π=2cm,故答案为:2.【点评】考查了扇形的弧长公式,圆的周长公式,用到的知识点为:圆锥的弧长等于底面周长.29.用圆心角是216°,半径是5cm的扇形围成一个圆锥体的侧面(接缝处不重叠),则这个圆锥体的高是4cm.【考点】圆锥的计算.【分析】设圆锥底面的圆的半径为r,利用圆锥的侧面展开图为一扇形得到2πr=,解得r=3,然后根据勾股定理计算这个圆锥的高.【解答】解:设圆锥底面的圆的半径为r,根据题意得2πr=,解得r=3,所以这个圆锥的高==4(cm).故答案为:4.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.30.若圆锥的轴截面是一个边长为4的等边三角形,则这个圆锥的侧面展开后所得到的扇形的圆心角的度数是180°.【考点】圆锥的计算.【专题】计算题.【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长得到扇形的弧长为4π,扇形的半径为4,再根据弧长公式求解.【解答】解:∵轴截面是一个边长为4的等边三角形,∴母线长为4,圆锥底面直径为4,∴底面周长为4π,即扇形弧长为4π.设这个圆锥的侧面展开后所得到的扇形的圆心角的度数为n,根据题意得4π=,解得n=180°.故答案为:180°.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.。

初中数学人教版九年级上册 第二十四章 圆单元测试卷(含答案)

初中数学人教版九年级上册 第二十四章 圆单元测试卷(含答案)

人教版数学九上圆一、单选题1.下列语句中正确的是( )A.长度相等的两条弧是等弧B.圆上一条弧所对的圆心角等于它所对圆周角的一半C.垂直于圆的半径的直线是圆的切线D.三角形有且只有一个外接圆2.如图,OA,OC是⊙O的半径,点B在⊙O上,若AB∥OC,∠BCO=21°,则∠AOC的度数是( )A.42°B.21°C.84°D.60°3.如图,在矩形ABCD中,AD=8,以AD的中点O为圆心,以OA长为半径画弧与BC相切于点E,则阴影部分的面积为( )A.8―4πB.16―4πC.32―4πD.32―8π4.如图,⊙O的半径OD⊥弦AB于点C,连接BO并延长交⊙O于点E,连接CE,若AB=4,CD=1,则CE的长为( )A.13B.4C.10D.155.如图,A点在半径为2的⊙O上,过线段OA上的一点P作直线l,与⊙O过A点的切线交于点B,且∠APB=60°,设OP=x,则△PAB的面积y关于x的函数图象大致是( )A.B.C.D.6.如图.将扇形AOB翻折,使点A与圆心O重合,展开后折痕所在直线l与AB交于点C,连接AC.若OA=2,则图中阴影部分的面积是( )A.2π3―32B.2π3―3C.π3―32D.π37.如图,⊙O是正△ABC的外接圆,△DOE是顶角为120°的等腰三角形,点O与圆心重合,点D,E 分别在圆弧上,若⊙O的半径是6,则图中阴影部分的面积是( )A.4πB.12π―9 3C.12π―923D.24π―9 38.如图,在正方形ABCD中,点E,F分别是边BC和CD上的动点(不与端点重合),∠EAF=45°,AF、AE分别与对角线BD交于点G和点H,连接EG.以下四个结论:(1)BE+DF=EF;(2)△AGE是等腰直角三角形;(3)S△AGH:S△AEF=1:2;(4)AB+BE=2BG,其中正确结论的个数是( )A.1B.2C.3D.49.【情境】如图是某数学项目学习小组设计的“鱼跃龙门”徽章图案,已知A,B,C,D,E是圆的5个等分点,连结BD,CE交于点F.设鱼头部分的四边形ABFE的面积为S1,鱼尾部分的△CDF的面积为S2.【问知】设S1:S2=n:1,则n的值为( )A.43―1B.3+5C.1+25D.35―110.如图,半径为5的圆中有一个内接矩形ABCD,AB>BC,点M是ABC的中点,MN⊥AB于点N,若矩形ABCD的面积为30,则线段MN的长为()A.10B.522C.702D.210二、填空题11.如图,在⊙O的内接五边形ABCDE中,∠EBD=31°,则∠A+∠C= °.12.如图,在半径为10cm的圆形铁片上切下一块高为4cm的弓形铁片,则弓形弦AB的长为 cm.13.如图,⊙O是△ABC的外接圆,∠A=45°,BC=2,则⊙O的直径为 .14.如图,将扇形AOB翻折,使点A与圆心O重合,展开后折痕所在直线l与AB交于点C,若OA=2,则OC的长为 .15.如图,半径为5的⊙O与y轴相交于A点,B为⊙O在x轴上方的一个动点(不与点A重合),C 为y轴上一点且∠OCB=60°,I为△BCO的内心,则△AIO的外接圆的半径的取值(或取值范围)为 .16.如图,已知△ABC是⊙O的内接三角形,⊙O的半径为2,将劣弧AC沿AC折叠后刚好经过弦BC的中点D.若∠ACB=60°,则弦AC的长为 .三、解答题17.如图,直径为1m的圆柱形水管有积水(阴影部分),水面的宽度AB为0.8m,求水的最大深度CD.18.如图,在⊙O中,半径OA⊥OB,∠B=28°,求∠BOC的度数.19.如图,△ABC是⊙O的内接三角形,AB为⊙O的直径,AB=6,AD平分∠BAC,交BC于点E,交⊙O于点D,连结BD.(1)求证:∠BAD=∠CBD.(2)若∠AEB=125°,求BD的长.(结果保留π)20.如图,AB为⊙O的直径,弦CD⊥AB于E,连接AC,过A作AF⊥AC,交⊙O于点F,连接DF,过B作BG⊥DF,交DF的延长线于点G.(1)求证:BG是⊙O的切线:(2)若∠DFA=30°,DF=4,求阴影部分的面积.21.在直角坐标系中,以M(3,0)为圆心的⊙M交x轴负半轴于A,交x轴正半轴于B,交y轴于C、D.其中C点坐标为(0,4).(1)求点A坐标.(2)如图,过C作⊙M的切线CE,过A作AN⊥CE于F,交⊙M于N,求AN的长度.(3)在⊙M上,若∠CPM=45°,求出点P的坐标.22.圆内接四边形若有一组邻边相等,则称之为等邻边圆内接四边形.(1)如图1,四边形ABCD为等邻边圆内接四边形,AD=CD,∠ADC=60°,直接写出∠ABD的度数;(2)如图2,四边形ADBC内接于⊙O,AB为⊙O的直径,AB=10,AC=6,若四边形ADBC为等邻边圆内接四边形,AD=BD,求CD的长.(3)如图3,四边形ABCD为等邻边圆内接四边形,BC=CD,AB为⊙O的直径,且AB=48.设BC= x,四边形ABCD的周长为y,试确定y与x的函数关系式,并求出y的最大值.答案解析部分1.【答案】D2.【答案】A3.【答案】D4.【答案】A5.【答案】D6.【答案】B7.【答案】B8.【答案】D9.【答案】B10.【答案】A11.【答案】21112.【答案】1613.【答案】2214.【答案】2π315.【答案】53316.【答案】621717.【答案】解:∵⊙O的直径为1m,∴OA=OD=0.5m.∵OD⊥AB,AB=0.8m,∴AC=0.4m,∴OC=OA2―AC2=0.52―0.42=0.3m,∴CD=OD―OC=0.5―0.3=0.2m.答:水的最大深度为0.2m.18.【答案】解:∵OA⊥OB,∴∠AOB=90°,∴∠A=90°﹣∠B=90°﹣28°=62°,∵OA=OC,∴∠ACO=∠A=62°,而∠ACO=∠BOC+∠B,∴∠BOC=62°﹣28°=34°.19.【答案】(1)证明:∵AD平分∠BAC,∴∠CAD=∠BAD.∵∠CAD=∠CBD,∴∠BAD=∠CBD;(2)解:如图,连结OD.∵∠AEB= 125°,∴∠AEC= 55°.∵AB为⊙O的直径,∴∠ACE=90°,∴∠CAE= 35°,∴∠DAB=∠CAE=35°,∴∠BOD=2∠BAD=70°,∴BD的长为70×π×3180=7 6π.20.【答案】(1)证明:∵C,A,D,F在⊙O上,AF⊥AC,∴∠D=∠CAF=90°,∵AB⊥CD,BG⊥DF,∴∠BED=∠G=90°,∴四边形BEDG中,∠ABG=90°,∴半径OB⊥BG,∴BG是⊙O的切线;(2)解:连接CF,∵∠CAF=90°,∴CF是⊙O的直径,∴OC=OF,∵直径AB⊥CD于E,∴CE=DE,∴OE是△CDF的中位线,∴OE=12DF=2,∵∠AFD=30°,∴∠ACD=∠AFD=30°,∴∠CAE=90°―∠ACE=60°,∵OA=OC,∴△AOC是等边三角形,∵CE⊥AB,∴E为AO的中点,∴OA=2OE=4,OB=4,AE=2,∴BE=OB+OE=6,DE=CE=23,∵∠BED=∠D=∠G=90°,∴四边形BEDG是矩形,∴S阴影=S矩形BEDG―S梯形OEDF―S扇形BOF=6×23―12×(2+4)×23―60π⋅42360=63―83π.21.【答案】(1)解:连接CM,∵M(3,0),C(0,4),∴OM=3,OC=4,∴CM=5,即⊙M的半径为5,∴MA=5,∴AO=AM-OM=2,∴A(―2,0);(2)连接CM,作MH⊥AN于H,∵CE为⊙M的切线,∴MC⊥EC,即∠MCE=90°.∵AN⊥CE于F,即∠AFC=90°.又∵MH⊥AN于H,即∠MHA=90°.∴在四边形FHMC中,∠CMH=90°=∠CMO+∠AMH.∵在Rt△AHM中,∠HAM+∠AMH=90°,∴∠HAM=∠CMO.∵在Rt△COM中,∠CMO+∠OCM=90°,∴∠OCM=∠AMH.∵在△AMH与△MCO中,{∠HAM=∠CMOMC=MA∠OCM=∠AMH∴△AMH≌△MCO(ASA),故AH=MO=3.即AN=HN+AH=3+3=6;(3)解:结合题意,可知PM=CM,△CMP为等腰三角形,同时因为∠CPM=45°=∠PCM,因此△CMP也是等腰直角三角形,即∠CMP=90°且CM=PM=5.①当P在CM右侧时,作PE垂直x轴于E.∵∠CMP=90°,∴∠CMO+∠PME=90°.又∵在Rt△PEM中,∠PME+∠MPE=90°,∴∠CMO=∠MPE.∴同理可得∠MCO=∠PME.在△MCO与△PME中,{∠CMO=∠MPECM=PM∠MCO=∠PME∴△MCO≌△PME(ASA)∴OM=PE=3,ME=OC=4,即存在P1(7,3);②当P在CM左侧时(设为P2),作PF垂直x轴于F.根据圆的对称性,结合①的结论,易证:△MCO≌△PMF,∴OM=PF=3,FM=OC=4,即存在P2(―1,―3).22.【答案】(1)解:60°(2)解:连接CD,过点A作AH⊥CD,交CD于点H.如图:在Rt△AHC中,∵∠ACH=∠ABD=45°,AC=6,∴CH=AH=32,此时△ADB为等腰直角三角形,AD=BD=52,在Rt△AHD中,∵AH=32,AD=52,∴DH=42,∴CD=CH+DH=72.(3)解:如图,连接OC,BD.∵BC=CD,OB=OD,∴OC垂直平分BD,∵O为AB中点,∴OF为△BDA的中位线,有OF=12AD,OF//AD,设OF=t,则CF=24―t,AD=2t,y=48+x+x+2t=2t+2x+48,在Rt△BFC中,B F2=B C2―C F2=x2―(24―t)2,在Rt△BFO中,B F2=B O2―O F2=242―t2,于是有:x2―(24―t)2=242―t2,整理得,t=―148x2+24,∴y=―124x 2+2x+96=―124(x―24)2+120,当x=24时,y max=120。

(常考题)北师大版初中数学九年级数学下册第三单元《圆》测试(答案解析)

(常考题)北师大版初中数学九年级数学下册第三单元《圆》测试(答案解析)

一、选择题1.如图,EM 经过圆心O ,EM ⊥CD 于M ,若CD=4,EM=6,则弧CED 所在圆的半径为( )A .3B .4C .83D .1032.下列命题说法正确的有( )①三点确定一个圆;②长度相等的弧是等弧;③等边三角形都相似;④直角三角形都相似;⑤平分弦的直径垂直于弦.⑥一条弧所对的圆周角等于它所对的圆心角的一半.A .1个B .2个C .3个D .4个 3.如图,AB 是⊙O 的直径,∠BOD =120°,点C 为弧BD 的中点,AC 交OD 于点E ,DE =1,则AE 的长为( )A .3B .5C .23D .25 4.如图,AB 是O 的直径,8AB =,点C 、D 、E 在O 上,45CAB ∠=︒,CD DE EB ==,P 是直径AB 上的一动点,则PCE 周长的最小值为( )A .243+B .43+C .83+D .12 5.如图,O 是ABC 的外接圆,其半径为3cm ,若3BC cm =,则A ∠的度数是( )A .10︒B .15︒C .20︒D .30︒6.如图,在平面直角坐标系xOy 中,半径为2的⊙O 与x 轴的正半轴交于点A ,点B 是O 上一动点,点C 为弦AB 的中点,直线334y x =-与x 轴、y 轴分别交于点D E 、,则CDE △面积的最小值为( )A .2B .2.5C .3D .347.已知⊙O 的半径是一元二次方程2690x x -+=的解,且点O 到直线AB 的距离为2,则⊙O 与直线AB 的位置关系为( )A .相交B .相切C .相离D .无法确定 8.已知O 的半径为8cm ,如果一点P 和圆心O 的距离为8cm ,那么点P 与O 的位置关系是( )A .点P 在O 内B .点P 在O 上C .点P 在O 外D .不能确定 9.如图,AB 为半圆O 的直径,C 是半圆上一点,且60COA ∠=º,设扇形AOC 、COB △、弓形BmC 的面积为1S 、2S 、3S ,则他们之间的关系是( )A .123S S S <<B .213S S S <<C .132S S S <<D .321S S S <<10.图中的三块阴影部分由两个半径为1的圆及其外公切线分割而成,如果中间一块阴影的面积等于上下两块面积之和,则这两圆的公共弦长是( )A .52B .62C .21252π-D .21162π- 11.如图,四边形ABCD 中,对角线AC ,BD 交于点E . 若BAC BDC ∠=∠,则下列结论中正确的是( )①AE BE DE CE = ②ABE △与DCE 的周长比为BE CE③ADE ABC =∠∠ ④ABE DCE ADE BCE SS S S ⋅=⋅ A .③④B .①②③C .①②④D .①②③④ 12.如图,点,,A B C 为O 上三点,40OAB ∠=︒,则ACB ∠的度数等于( )A .100︒B .80︒C .50︒D .40︒二、填空题13.圆锥的底面半径是13_____. 14.如图,AB 、CD 是O 的两条弦,连接AD 、BC .若60BAD ∠=︒,则BCD ∠的度数为______度.15.如图,ABC 内接于O ,∠BAC=70°,D 是BC 的中点,且∠AOD=156°,AE ,CF 分别是BC ,AB 边上的高,则∠BCF 的度数是____________.16.如图,在矩形ABCD 中,线段DF 平分ADC ∠交BC 边于点F ,点E 为BC 边上一动点,连接AE ,若在点E 移动的过程中,点B 关于AE 所在直线的对称点有且只有一次落在线段DF 上,则:BC AB =_____________.17.已知扇形的圆心角为120°,半径为3cm ,则这个扇形的面积为_____cm 2. 18.如图,PA ,PB 是圆O 的切线,切点为A 、B ,∠P =50°,点C 是圆O 上异于A ,B 的点,则∠ACB 等于_____.19.一个边长为4的正多边形的内角和是其外角和的2倍,则这个正多边形的半径_______.20.如图,在平面直角坐标系中,过点()11,0A 作x 轴的垂线交直线y x =于点B ,以О为圆心,1OB 为半径作弧,交x 轴于点2A ;过点2A 作x 轴的垂线交直线y x =于点2B ,以O 为圆心,2OB 为半径作弧,交x 轴于点3A ;过点3A 作x 轴的垂线交直线y x =于点3B ,以О为圆心,3OB 为半径作弧,交x 轴于点4A ,……,按此做法进行下去,设由11A B ,12A A ,弧21A B 围成的图形面积记为1S ,由22A B ,23A A ,弧32A B 围成的图形面积记为2S ,由33A B ,34A A ,弧43A B 围成的图形面积记为3S ,……,那么2020S 为_______:三、解答题21.如图,已知AB 是⊙O 的直径,点C 在⊙O 上,过点C 的直线与AB 的延长线交于点P ,连接AC ,若CA =CP ,∠A =30°.(1)求证:CP 是⊙O 的切线;(2)若OA =1,求弦AC 的长.22.如图,AB 为⊙O 的直径,D 为AB 延长线上的点,AC 为弦,且∠A =∠D =30°. (1)求证:DC 是⊙O 的切线;(2)若⊙O 的半径为1cm ,求图中阴影部分的面积.23.如图,AB 是O 的弦,半径OE AB ⊥,交AB 于点,G P 为AB 延长线上一点,PC 与O 相切于点,C CE 与AB 交于点F .(1)求证:PC PF =;(2)连接,OB BC ,若3//,32,tan 4OB PC BC P ==,求FB 的长.24.如图,AB 为O 的直径,点C 在O 上,AD 与过点C 的切线互相垂直,垂足为D ,连接BC 并延长,交AD 饿延长线于点E .(1)求证:AE AB =;(2)若20AB =,16BC =,求CD 的长.25.已知EF 为O 的一条弦,OB EF ⊥交O 于点B ,A 是弦EF 上一点(不与E ,F 重合),连接BA 并延长交O 于点C ,过点C 作O 的切线交EF 的延长线于点D .(1)如图1,若EF 在圆心O 的上方,且与OB 相交于点H ,求证:ACD △是等腰三角形;(2)如图2,若EF 是O 的直径,25AB =O 的半径为4,求线段DC 的长; (3)如图3,若EF 在圆心O 的下方,且与BO 的延长线相交于点H ,试判断线段DA ,DE ,DF 之间的数量关系,并说明理由.26.如图,AB 是O 的一条弦,⊥OD AB ,垂足为C ,OD 交O 于点D ,点E 在O 上.(1)若40AOD ∠=︒,求DEB ∠的度数;(2)若3OC =,5OA =,求弦AB 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】连接OC ,设弧CED 所在圆的半径为R ,则OC =R ,OM =6−R ,根据垂径定理求出CM ,根据勾股定理得出方程,求出即可.【详解】解:连接OC ,设弧CED 所在圆的半径为R ,则OC =R ,OM =6−R ,∵EM 经过圆心O ,EM ⊥CD 于M ,CD =4,∴CM =DM =2,在Rt △OMC 中,由勾股定理得:OC 2=OM 2+CM 2,R 2=(6−R )2+22,R =103, 故选:D .【点睛】本题考查了勾股定理,垂径定理的应用,用了方程思想,题目比较典型,难度适中. 2.B解析:B【分析】根据确定圆的条件对①进行判断;根据等弧的定义对②进行判断;根据相似三角形的判定对③④进行判断;根据垂径定理对⑤进行判断;根据圆周角定理对⑥进行判断.【详解】解:①不在同一直线上的三点确定一个圆,故①错误;②在同圆或等圆中,长度相等的弧是等弧,故②错误;③等边三角形的三个角都是60°,根据“两个三角形的两个角分别对应相等,则这两个三角形相似”可判定等边三角形都相似,故③正确;④直角三角形只有一个直角可以确定对应相等,其他条件不确定,故④错误;⑤平分弦(非直径)的直径垂直于弦,故⑤错误;⑥圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半,故⑥正确.故选B.【点睛】本题考查了确定圆的条件,等弧的定义,相似三角形的判定,垂径定理,圆周角定理等知识.熟练掌握基本知识是解题的关键.3.A解析:A【分析】连接AD,可证∠ODA=∠OAD=∠AOD=60°,根据弧中点,得出∠DAC=30°,△ADE是直角三角形,用勾股定理求AE即可.【详解】解:连接AD,∵∠BOD=120°,AB是⊙O的直径,∴∠AOD=60°,∵OA=OD,∴∠OAD=∠ODA =60°,∵点C为弧BD的中点,∴∠CAD=∠BAC=30°,∴∠AED=90°,∵DE=1,∴AD=2DE=2,AE==故选:A.【点睛】本题考查了圆周角的性质、勾股定理,解题关键是通过连接弦构造直角三角形,并通过弧相等导出30°角.4.B解析:B【分析】根据圆周角定理可知∠COB=90°,结合圆的对称性可知PCE 周长的最小值为CE C E '+,根据圆周角定理可得90CEC '∠=︒,再根据弧与圆心角的关系可知30CC E '∠=︒,解直角三角形即可.【详解】解:如下图所示,连接CO 并延长至C ',连接CE ,OE ,EC ',∵45CAB ∠=︒,∴∠COB=90°,∴C 点与C '点关于AB 所在直线对称,故当P 为EC '与AB 的交点时,PCE 周长的最小,此时CP PE C E '+=,∵CD DE EB ==, ∴1303BOE BOC ∠=∠=︒ ,60COE BOC BOE ∠=∠-∠=︒, ∴30CC E '∠=︒,∵CC '为直径,∴90CEC '∠=︒,8CC AB '==,∴2214,()432CE CC C E CC CE '''===-=, ∴PCE 周长为CE EP CP ++,最小值为443CE C E '+=+,故选:B .【点睛】本题考查圆周角定理,弧、圆心角的关系,勾股定理,圆的对称性,含30°角的直角三角形.能结合圆的对称性正确作出辅助线是解题关键.5.D解析:D【分析】连接OB 、OC ,则判断△OBC 是等边三角形,则∠BOC=60°,再根据圆周角定理,即可得到答案.【详解】解:连接OB 、OC ,如图:∵3OB OC BC cm ===,∴△OBC 是等边三角形,∴∠BOC=60°,∴∠BAC=30°,故选:D .【点睛】本题考查了圆周角定理,等边三角形的判定和性质,解题的关键是熟练掌握圆周角定理进行解题.6.A解析:A【分析】连接OB ,取OA 的中点M ,连接CM ,过点M 作MN DE ⊥于N ,先证明点C 的运动轨迹是以点(1,0)M 为圆心,1为半径的M ,设M 交MN 于点C ',解得直线DE 与坐标轴的交点,即可解得OD OE 、的长,再由勾股定理解得DE 的长,接着证明DNM DOE 解得MN 的长,最后当点C 与点C '重合时, 此时CDE △面积的最小值,据此解题.【详解】解:如图,连接OB ,取OA 的中点M ,连接CM ,过点M 作MN DE ⊥于N ,,AC CB AM OM ==112MC OB ∴== C ∴的运动轨迹是以点(1,0)M 为圆心、半径为1的圆,设M 交MN 于点C ', 直线DE 的解析式为334y x =-, 令0x =,得3y =- (0,3)E ∴-令0y =,得4x =(4,0)D ∴3,4,OE OD ∴==3DM =22345DE ∴+=,MDN ODE MND DOE ∠=∠∠=∠DNM DOE ∴MN DM OE DE ∴= 335MN ∴= 95MN ∴= 94155C N '∴=-= 当点C 与点C '重合时,此时CDE △面积的最小值11452225DE C N '=⋅=⨯⨯= 故选:A .【点睛】本题考查圆的综合题,涉及一次函数与坐标轴的交点、勾股定理、相似三角形的判定与性质等知识,是重要考点,难度一般,掌握相关知识是解题关键.7.A解析:A【分析】解方程确定圆的半径为3,圆心距d=2,比较半径与圆心距的大小,根据法则判断即可.【详解】∵2690x x-+=,∴123x x==,∴圆的半径为3,∵点O到直线AB的距离为2,即d=2,∴d<R,∴直线与圆相交,故选A.【点睛】本题考查了用半径、圆心距判定直线和圆的位置关系,熟练解方程,熟记d,R法则是解题的关键.8.B解析:B【分析】根据点与圆的位置关系进行判断即可;【详解】∵圆的半径为8cm,P到圆心O的距离为8cm,即OP=8,∴点P在圆上故选:B.【点睛】本题考查了点与圆的位置关系,点与圆的位置关系有3种:设OO的半径为r,点P到圆心的距离OP=d,则有:点P在圆外→d>r;点P在圆上→d=r;点P在圆内→d<r;9.B解析:B【分析】设出半径,作出△COB底边BC上的高,利用扇形的面积公式和三角形的面积公式表示出三个图形面积,比较即可求解.【详解】解:作OD⊥BC交BC与点D,∵∠COA=60°,∴∠COB =120°,则∠COD =60°.∴S 扇形AOC =22603606ππ=R R ; S 扇形BOC =221203603ππ=R R . 在三角形OCD 中,∠OCD =30°,∴OD =2R ,CD =3R ,BC =3R , ∴S △OBC =23R ,S 弓形=2233R R π-=2(433)π-R , 2(433)π-R >26πR >23R , ∴S 2<S 1<S 3.故选:B .【点睛】此题考查扇形面积公式及弓形面积公式,解题的关键是算出三个图形的面积,首先利用扇形公式计算出第一个扇形的面积,再利用弓形等于扇形﹣三角形的关系求出弓形的面积,进行比较得出它们的面积关系.10.D解析:D【分析】由题意得到四边形ABCD 为矩形,BC=2,再根据中间一块阴影的面积等于上下两块面积之和,得到BC•AB -(S 半圆AD +S 半圆BC -S )=S ,即2AB-π•12+S=S ,可求出AB=2π,则OP=12AB=4π,在Rt △OEP 中,利用勾股定理可计算出EP ,即可得到两圆的公共弦长EF . 【详解】解:∵AB ,CD 为两等圆的公切线,∴四边形ABCD 为矩形,BC=2,设中间一块阴影的面积为S ,∵中间一块阴影的面积等于上下两块面积之和,∴BC•AB -(S 半圆AD +S 半圆BC -S )=S ,即2AB-π•12+S=S ,∴AB=2π.如图,EF 为公共弦,PO ⊥EF ,OP=12AB=4π, ∴EP=22OE OF -=222161()4ππ--=, ∴EF=2EP=21162π-. 故选:D .【点睛】本题考查了垂径定理、勾股定理,公切线,连心线的性质,熟练掌握相关知识是解题的关键.11.C解析:C【分析】根据相似三角形可得①②正确,由四点共圆可知③不符合题意,面积比转化成边长比可得④正确.【详解】解:∵BAC BDC ∠=∠,AEB DEC ∠=∠∴ABE DCE ∴AE BE DE CE= ∴①正确;相似三角形周长比等于相似比,②正确∵BAC BDC ∠=∠,且△BDC 和△BAC 共有底BC∴得到A ,B ,C ,D 四点共圆;若ADE ABC =∠∠,则=ADE ABC ACB =∠∠∠,则AB=AC ,但题目中并没有告诉这个条件,所以③不一定正确;∵△ABE 和△ADE 共有高, ∴ABEADE SBE S DE =, ∵△CBE 和△CDE 共有高, ∴BCE DCE BE S DE S = ∴ABEBCEADE DCE S BE S S DE S ==即,ABE DCE ADE BCE S S S S ⋅=⋅,故 ④正确;∴①②④正确,选C.【点睛】此题主要考查了相似三角形的判断及其性质,解决本题的关键是合理作辅助圆,熟练掌握相似三角的性质定理.12.C解析:C【分析】根据等边对等角得到40OBA OAB ∠=∠=︒,利用三角形内角和可得100AOB ∠=︒,根据圆周角定理即可求解.【详解】解:∵OA OB =,∴40OBA OAB ∠=∠=︒,∴100AOB ∠=︒, ∴1502ACB AOB ∠=∠=︒, 故选:C .【点睛】本题考查圆周角定理,掌握圆周角定理是解题的关键. 二、填空题13.180°【分析】先根据勾股定理求出圆锥的母线为2进而求得展开图的弧长然后根据弧长公式即可求解【详解】解:设圆锥的母线为a 根据勾股定理得:a ==2设圆锥的侧面展开图的圆心角度数为n°根据题意得2π•1解析:180°【分析】先根据勾股定理求出圆锥的母线为2,进而求得展开图的弧长,然后根据弧长公式即可求解.【详解】解:设圆锥的母线为a ,根据勾股定理得:a 2,设圆锥的侧面展开图的圆心角度数为n °,根据题意得2π•1=2180n π⋅⋅,解得n =180, 即圆锥的侧面展开图的圆心角度数为180°.故答案为:180°.【点睛】 本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.14.【分析】利用同圆中同弧上的圆周角相等求解即可【详解】∵∴故答案为:60°【点睛】本题考查了圆的基本性质熟练掌握性质并灵活运用是解题的关键解析:【分析】利用同圆中,同弧上的圆周角相等求解即可.【详解】∵BAD ∠=BCD ∠,60BAD ∠=︒∴60BCD ∠=︒,故答案为:60°.【点睛】本题考查了圆的基本性质,熟练掌握性质并灵活运用是解题的关键.15.23°【分析】连接OBOC 根据垂径定理求出再根据角的性质计算出根据计算出从而能够求出最后根据⊥求出的大小【详解】连接OBOC ∵D 是BC 的中点∴∵∴∴∵⊥∴故答案为:【点睛】本题考查圆的垂径定理圆周角解析:23°【分析】连接OB 、OC ,根据垂径定理求出BOD ∠,再根据角的性质计算出AOB ∠,根据OA OB =计算出ABO ∠,从而能够求出ABC ∠,最后根据CF ⊥AB ,求出BCF ∠的大小.【详解】连接OB 、OC∵OB OC =,D 是BC 的中点 ∴1702BOD BOC BAC ===︒∠∠∠ 1567086AOB AOD BOD =-=︒-︒=︒∠∠∠∵OA OB =∴18086472ABO ︒-︒==︒∠ 907020OBC =︒-︒=︒∠∴472067ABC ABO OBC =+=︒+︒=︒∠∠∠∵CF ⊥AB∴90906723BCF ABC =︒-=︒-︒=︒∠∠故答案为:23︒【点睛】本题考查圆的垂径定理,圆周角和圆心角关系,以及直角三角形的性质,属于基础题. 16.:1【分析】先找到点B 关于AE 所在直线的对称点H 由直角三角形的性质可求解【详解】解:如图以点A 为圆心AB 为半径的圆与DF 相切于点H 则点H 为点B 关于AE 所在直线的对称点∴AB=AHAH ⊥DF ∵DF 平分解析:2:1【分析】先找到点B 关于AE 所在直线的对称点H ,由直角三角形的性质可求解.【详解】解:如图,以点A 为圆心,AB 为半径的圆与DF 相切于点H ,则点H 为点B 关于AE 所在直线的对称点,∴AB=AH ,AH ⊥DF ,∵DF平分∠ADC,∴∠ADF=∠CDF=45°,∴∠ADF=∠DAH=45°,∴AH=DH,∴AB,∴BC::1,1.【点睛】本题考查了矩形的性质,轴对称的性质,直角三角形的性质,灵活运用这些性质解决问题是解题的关键.17.3π【分析】根据扇形的面积公式即可求解【详解】解:扇形的面积==3πcm2故答案是:3π【点睛】本题考查了扇形的面积公式正确理解公式是解题的关键解析:3π【分析】根据扇形的面积公式即可求解.【详解】解:扇形的面积=21203360π⨯=3πcm2.故答案是:3π.【点睛】本题考查了扇形的面积公式,正确理解公式是解题的关键.18.65°或115°【分析】连接OAOB进而求出∠AOB=130°再分两种情况:当C在劣弧AB上当C在劣弧AB上理由圆周角定理和圆内接四边形的性质即可得出结论【详解】解:如图连接OAOB∵PAPB分别切解析:65°或115°.【分析】连接OA,OB,进而求出∠AOB=130°,再分两种情况:当C在劣弧AB上,当C在劣弧AB 上,理由圆周角定理和圆内接四边形的性质,即可得出结论.【详解】解:如图,连接OA、OB,∵PA、PB分别切⊙O于点A、B,则∠OAP=∠OBP=90°;在四边形APBO中,∠P=50°,∴∠AOB=360°﹣∠OAP﹣∠P﹣∠OBP=360°﹣50°﹣90°﹣90°=130°①当点C在优弧AB上时,∠ACB=12∠AOB(同弧所对的圆周角是所对的圆心角的一半),∴∠ACB=65°;当点C在劣弧AB上时,记作C',由①知,∠ACB=65°,∵四边形ACBC'是⊙O的内接四边形,∴∠AC'B=180°﹣∠ACB=180°﹣65°=115°,故答案为:65°或115°.【点睛】本题考查了切线的性质,圆周角定理,圆内接四边形的性质,求出∠AOB是解本题的关键.19.【分析】先求出正多边形边数为6再根据正六边形性质即可求解【详解】解:设正多边形的边数为n由题意得解得n=6∴正多边形为正六边形∵边长为4的正六边形可以分成六个边长为4的正三角形∴该正多边形的半径等于解析:4【分析】先求出正多边形边数为6,再根据正六边形性质即可求解.【详解】解:设正多边形的边数为n,由题意得()21803602n-︒=︒⨯,解得 n=6∴正多边形为正六边形,∵边长为4的正六边形可以分成六个边长为4的正三角形,∴该正多边形的半径等于4.故答案为:4【点睛】本题考查了正多边形的相关概念,和正六边形的性质,熟知相关概念是解题关键.20.【分析】根据点A的取法罗列出部分点A的横坐标由此可发现规律即的横坐标为:再结合已知即可得到答案【详解】观察发现规律:的横坐标为:的横坐标为:的横坐标为:的横坐标为:的横坐标为:故答案为:【点睛】本题解析:20172018π-22【分析】根据点A的取法,罗列出部分点A的横坐标,由此可发现规律,即n A的横坐标为:)12n-,再结合已知即可得到答案.【详解】观察,发现规律:1A 的横坐标为:1,2A 的横坐标为:2,3A 的横坐标为:()22,⋯,∴n A 的横坐标为:()12n -n B ∴的横坐标为:()12n -()()()404020192019201720182020452122223602S ππ⨯⨯∴=-⨯⨯=⋅-故答案为:2017201822π⋅-.【点睛】本题考查了一次函数图像上点的坐标特征以及规律型中的点的变换,解题关键是找出n A 的横坐标为:()12n -这一规律.三、解答题21.(1)见解析;(2)AC =3.【分析】(1)连接OC ,由等腰三角形的性质得出∠A=∠ACO=30°,∠P=30°,求出∠ACP 的度数,则可求出答案;(2)连接BC ,由勾股定理可求出答案.【详解】解:(1)证明:连接OC ,如图1,∵OA =OC ,∠A =30°,∴∠A =∠ACO =30°,∵CA =CP ,∴∠A =∠P =30°,∴∠ACP =180°﹣∠A ﹣∠P =180°﹣30°﹣30°=120°,∴∠OCP =∠ACP ﹣∠ACO =120°﹣30°=90°,∴OC ⊥CP ,∴CP 是⊙O 的切线;(2)解:如图2,连接BC,∵OA=OB=1,∴AB=2,∵AB是⊙O的直径,∴∠ACB=90°,∵∠A=30°,∴BC=12AB=1,∴AC=22AB BC-=3.【点睛】本题考查了切线的判定,等腰三角形的性质,勾股定理,圆周角定理,直角三角形的性质,熟练掌握切线的判定是解题的关键.22.(1)见解析;(2)36π-【分析】(1)连接OC.由圆周角定理得:∠COD=2∠A =60°.根据三角形内角和可求∠OCD=90°即可;(2)阴影部分的面积即为直角三角形OCD的面积减去扇形COB的面积即可.【详解】解:(1)证明:连接OC,∵∠A =∠D=30°,由圆周角定理得:∠COD=2∠A =60°.∴∠DCO=180°﹣∠COD-∠D=180°-60°﹣30°= 90°,∴OC⊥CD.∵OC为半径,∴DC 是⊙O 切线.(2)在Rt △OCD 中,∠D =30°,OC =1cm ,∴OD =2cm ,由勾股定理得:DC =3cm . ∴图中阴影部分的面积21601313236026OCD OB SS S 扇形C . 【点睛】此题综合考查了圆周角性质、切线的判定方法、扇形的面积计算方法,解题的关键是用割补法求引用面积阴影部分的面积OCD OB SS S 扇形C .23.(1)见解析;(2)2FB =【分析】(1)由切线的性质可得∠OCP=90°,由等腰三角形的性质可得∠E=∠OCE ,可得∠CFP=∠FCP ,可得PC=PF ;(2)过点B 作BH ⊥PC ,垂足为H ,由题意可证四边形OCHB 是正方形,由勾股定理可得BH=CH=3,可求PH ,BP 的长,即可求BF 的长.【详解】解:(1)连接OC .OE AB ⊥,90EGF ∴∠=︒. PC 与C 相切于点C ,90OCP ∠=︒,90E EFG OCF PCF ∴∠+∠=∠+∠=︒.OE OC =,E OCF ∴∠=∠,EFG PCF ∴∠=∠.EFG PFC ∠=∠,PCF PFC ∴∠=∠,PC PF ∴=.(2)过点B 作BH PC ⊥于点H .//,90OB PC OCP ∠=︒,90BOC ∴∠=︒.OB OC =,∴四边形OCHB 是正方形,∴BH=CH ,∵BH2+CH 2=BC 2,BC=∴BH=CH=3,在Rt BHP 中,4tan BH PH P==, ∴PF=PC=3+4=7,5BP =,752FB ∴=-=.【点睛】本题考查了切线的性质,勾股定理,等腰三角形的性质,正方形的判定与性质,平行线的性质,以及锐角三角函数等知识,需要学生灵活运用所学知识.24.(1)见解析;(2)485CD =【分析】(1)连接AC 、OC ,由题意易得OC CD ⊥,进而可得//OC AE ,然后有2AE OC =,最后根据圆的基本性质可求解;(2)由题意及(1)可得12CE CB ==,20AE AB ==,进而可得12AC =,然后根据等积法可求解.【详解】(1)证明:连接AC 、OC ,∵CD 是O 的切线,∴OC CD ⊥,∵CD AE ⊥,∴//OC AE ,∵O 是AB 中点,∴OC 是ABE △的中位线,∴2AE OC =,∵22AB OA OC ==,∴AE AB =;(2)解:∵AB 是O 的直径,∴90ACB ∠=︒, ∵20AB =,16BC =,AB=AE∴16CE CB ==,20AE AB ==,∴在Rt △ACB 中,由勾股定理可得12AC =, ∵1122ACE S AE CD AC CE =⋅=⋅, ∴20CD 1612⨯=⨯, ∴485CD =. 【点睛】 本题主要考查切线的性质定理,熟练掌握切线的性质是解题的关键.25.(1)见解析;(2)线段DC 的长为3;(3)线段DA ,DE ,DF 之间的数量关系为2DA DE DF =⋅,理由见解析.【分析】(1)连接OC ,由题意易得OC DC ⊥,∠B=∠OCB ,则有9090DCA ACO B ∠=︒-∠=︒-∠,进而可得DAC DCA ∠=∠,然后问题可求证; (2)连接OC ,则OC DC ⊥,由勾股定理可得2AO =,由(1)可得DA DC =,设DC x =,则2OD x =+,然后再由勾股定理可求DC 的长;(3)连接CF ,CE ,连接CO 并延长交O 于点G ,连接GF ,由题意可得9090DCA OCB HBA ∠=︒-∠=︒-∠,则有DA DC =,进而可得CED DCF ∠=∠,然后有CDF EDC ∽△△,则根据相似三角形的性质及线段的等量关系可求解.【详解】(1)证明:如图,连接OC ,则OC DC ⊥,∵OB=OC ,∴∠B=∠OCB ,∴9090DCA ACO B ∠=︒-∠=︒-∠,又∵90DAC BAH B ∠=∠=︒-∠,∴DAC DCA ∠=∠,∴DA DC =,∴ACD △是等腰三角形;(2)如图,连接OC ,则OC DC ⊥,∵在Rt ABO △中,25AB =,O 的半径为4,∴2AO =,由(1)可得DA DC =,设DC x =,则2OD x =+,∴在Rt OCD △中,()22242x x +=+, ∴3x =,即线段DC 的长为3;(3)线段DA ,DE ,DF 之间的数量关系为2DA DE DF =⋅,理由:如图,连接CF ,CE ,连接CO 并延长交O 于点G ,连接GF , ∵DC 为O 的切线,∴9090DCA OCB HBA ∠=︒-∠=︒-∠,又∵90BAH HBA ∠=︒-∠,CAD BAH ∠=∠,∴∠=∠DCA CAD ,∴DA DC =,∵CG 是O 的直径,∴90CFG ∠=︒,∴90CED CGF GCF ∠=∠=︒-∠,又∵90DCF GCF ∠=︒-∠,∴CED DCF ∠=∠,又∵D D ∠=∠,∴CDF EDC ∽△△, ∴DC DF DE DC=, ∴2DC DE DF =⋅,∴2DA DE DF =⋅.【点睛】 本题主要考查相似三角形的性质及切线的性质定理,熟练掌握相似三角形的性质及切线的性质定理是解题的关键.26.(1)20°;(2)8【分析】(1)欲求DEB ∠,又已知一圆心角,可利用圆周角与圆心角的关系求解; (2)利用垂径定理可以得到142A C B C B A ===,从而得到结论. 【详解】解:(1)OD AB ⊥,∴AD BD =,11402022DEB AOD ∴∠=∠=⨯︒=︒. (2)3OC =,5OA =,且⊥OD AB ,4AC ∴=,OD AB ⊥,∴12AD BD AB ==, 142AC BC AB ∴===, 8AB ∴=.【点睛】 此题考查了圆周角与圆心角定理以及垂径定理,熟练掌握垂径定理得出4AC CB ==是解题关键.。

2023-2024学年九年级数学上册《第二十四章 圆》单元测试卷有答案(人教版)

2023-2024学年九年级数学上册《第二十四章 圆》单元测试卷有答案(人教版)

2023-2024学年九年级数学上册《第二十四章圆》单元测试卷有答案(人教版)学校:___________班级:___________姓名:___________考号:___________知识点归纳1、圆在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆。

固定的端点O叫做圆心,线段OA叫做半径,以点O为圆心的圆,记作⊙O,读作“圆O”。

连接圆上任意两点的线段叫做弦。

经过圆心的弦叫做直径。

圆上任意两点间的部分叫做圆弧,简称弧。

圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆。

小于半圆的弧叫做劣弧。

大于半圆的弧叫做优弧。

能够重合的两个圆叫做等圆。

在同圆或等圆中,能重合的弧叫等弧。

2、垂径定理垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。

推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;弦的垂直平分线过圆心,且平分弦对的两条弧.3、弧、弦、圆心角之间的关系定义:顶点在圆心的角叫做圆心角。

在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。

在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等;在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧相等。

注:在同圆或等圆中,如果两个圆心角,两条弦,两条弧、两个弦的弦心距中,有一组量相等,那么其余各组量也分别相等4、圆周角定义:顶点在圆上,并且两边都和圆相交的角叫圆周角。

圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。

推论1:同弧或等弧所对的圆周角相等。

推论2:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。

圆内接四边形的性质:圆内接四边形的对角互补。

5、点和圆的位置关系设⊙O 的半径为r ,点P 到圆心的距离为OP=d ,则有:点P 在圆外⇔d >r ;点P 在圆上⇔d=r ;点P 在圆内⇔d <r 。

性质:不在同一条直线上的三个点确定一个圆。

九年级数学下册第二十四章《圆》单元测试题-沪科版(含答案)

九年级数学下册第二十四章《圆》单元测试题-沪科版(含答案)

九年级数学下册第二十四章《圆》单元测试题-沪科版(含答案)一、单选题1.北京教育资源丰富,高校林立,下面四个高校校徽主题图案中,既不是中心对称图形,也不是轴对称图形的是( ) A .B .C .D .2.如图,在正方形网格中,点 A , B , C , D , O 都在格点上.下列说法正确的是( )A .点 O 是 ABC 的内心B .点 O 是 ABC 的外心C .点 O 是ABD 的内心 D .点 O 是ABD 的外心3.如图,BC 为直径,35ABC ∠=︒ ,则D ∠的度数为( )A .35︒B .45︒C .55︒D .65︒4.如图,若O 的半径为5,圆心O 到一条直线的距离为2,则这条直线可能是( )A .1lB .2lC .3lD .4l5.底面半径为3,高为4的圆锥侧面积为( )A .15πB .20πC .25πD .30π6.如图,圆的两条弦AB ,CD 相交于点E ,且AD CB =,∠A =40°,则∠DEB 的度数为( )A.50°B.100°C.70°D.80°7.下列条件中,不能确定一个圆的是()A.圆心与半径B.直径C.平面上的三个已知点D.三角形的三个顶点8.若一个正n边形的每个内角为144°,则这个正n边形的边数为()A.8B.9C.10D.119.如图,正六边形ABCDEF的边长为6,以顶点A为圆心,AB的长为半径画圆,用图中阴影部分围成一个圆锥的侧面(接缝忽略不计),则该圆锥的高为()A.4B.32C.42D.21010.如图,已知AB是∠O的直径,弦CD∠AB,垂足为E,且∠BCD=30°,CD=3.则图中阴影部分的面积S阴影=()A.2πB.83πC.43πD.38π二、填空题11.正十边形的中心角等于度.12.若O的半径为5cm,点A到圆心O的距离为4cm,那么点A与O的位置关系是.13.若一个正多边形的一个外角等于36°,则这个正多边形的边数是.14.如图,在边长为4的等边∠ABC中,以B为圆心、BA为半径画弧,再以AB为直径画半圆,则阴影部分的面积为.三、计算题15.如图,AB是∠O的直径,点D在∠O上,∠DAB=45°,BC∠AD,CD∠AB.若∠O的半径为1,求图中阴影部分的面积(结果保留π).16.计算高为4cm,底面半径为3cm的圆锥的体积.(圆锥的体积= 13×底面积×高,π取3)四、解答题17.如图扇形纸扇完全打开后,外侧两竹条AB、AC的夹角为120°,AB长为30cm,贴纸部分BD 长为20cm,求贴纸部分的面积.18.在一个3m×4m的矩形地块上,欲开辟出一部分作花坛,要使花坛的面积为矩形面积的一半,且使整个图案绕它的中心旋转180°后能与自身重合,请给出你的设计方案.19.如图,已知O ,A 是BC 的中点,过点A 作AD BC .求证:AD 与O 相切.20.如图,AB 是 O 的直径,弦 CD AB ⊥ 于点E ,若 8AB = , 6CD = ,求 OE 的长.21.已知AB ,AC 为弦,OM∠AB 于M ,ON∠AC 于N ,求证:MN∠BC 且MN =12BC .22.如图,∠O 的半径为17cm ,弦AB∠CD ,AB=30cm ,CD=16cm ,圆心O 位于AB ,CD 的上方,求AB 和CD 的距离.五、综合题23.如图,已知AB是∠O的直径,弦CD与直径AB相交于点F.点E在∠O外,作直线AE,且∠EAC=∠D.(1)求证:直线AE是∠O的切线.(2)若∠BAC=30°,BC=4,cos∠BAD=34,CF=103,求BF的长.参考答案1.【答案】D【解析】【解答】解:A、不是中心对称图形,是轴对称图形,故该选项不符合题意;B、是中心对称图形,不是轴对称图形,故该选项不符合题意;C、不是中心对称图形,是轴对称图形,故该选项不符合题意;D、既不是中心对称图形,也不是轴对称图形,故该选项符合题意.故答案为:D.【分析】轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形;中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,据此一一判断得出答案.2.【答案】D【解析】【解答】解:根据点A,B,C,D,O 都在正方形网格的格点上.可知:点O到点A ,B ,D 的三点的距离相等,所以点O是∠ABD的外心.故答案为:D.【分析】根据图形可得点O到点A、B、D的距离相等,然后结合外心的概念进行判断.3.【答案】C【解析】【解答】解:∵CB是直径,∴∠BAC=90°,∵∠ABC=35°,∴∠ACB=90°-35°=55°,∴∠D=∠C=55°,故答案为:C.【分析】先利用圆周角的性质和三角形的内角和求出∠ACB=90°-35°=55°,再利用圆周角的性质可得∠D=∠C=55°。

人教版数学九年级上册第二十四章《圆》知识点及练习题(附答案)

人教版数学九年级上册第二十四章《圆》知识点及练习题(附答案)

⼈教版数学九年级上册第⼆⼗四章《圆》知识点及练习题(附答案)《圆》章节知识点复习和练习附参考答案⼀、圆的概念集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离⼤于定长的点的集合; 3、圆的内部:可以看作是到定点的距离⼩于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆⼼,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线); 3、⾓的平分线:到⾓两边距离相等的点的轨迹是这个⾓的平分线;4、到直线的距离相等的点的轨迹是:平⾏于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平⾏线距离相等的点的轨迹是:平⾏于这两条平⾏线且到两条直线距离都相等的⼀条直线。

⼆、点与圆的位置关系1、点在圆内 ? d r < ? 点C 在圆内;2、点在圆上 ? d r = ? 点B 在圆上;3、点在圆外 ? d r > ? 点A 在圆外;三、直线与圆的位置关系1、直线与圆相离 ? d r > ? ⽆交点;2、直线与圆相切 ? d r = ? 有⼀个交点;3、直线与圆相交 ? d r < ? 有两个交点;四、圆与圆的位置关系外离(图1)? ⽆交点 ? d R r >+;外切(图2)? 有⼀个交点 ? d R r =+;相交(图3)? 有两个交点 ? R r d R r -<<+;内切(图4)? 有⼀个交点 ? d R r =-;内含(图5)? ⽆交点 ? d R r <-;A五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆⼼,并且平分弦所对的两条弧;(3)平分弦所对的⼀条弧的直径,垂直平分弦,并且平分弦所对的另⼀条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径②AB CD ⊥③CE DE = ④弧BC =弧BD ⑤弧AC =弧AD中任意2个条件推出其他3个结论。

数学九年级上册 圆 几何综合单元测试卷(含答案解析)

数学九年级上册 圆 几何综合单元测试卷(含答案解析)

数学九年级上册圆几何综合单元测试卷(含答案解析)一、初三数学圆易错题压轴题(难)1.在圆O中,C是弦AB上的一点,联结OC并延长,交劣弧AB于点D ,联结AO、BO、AD、BD.已知圆O的半径长为5,弦AB的长为8.(1)如图1,当点D是弧AB的中点时,求CD的长;(2)如图2,设AC=x,ACOOBDSS=y,求y关于x的函数解析式并写出定义域;(3)若四边形AOBD是梯形,求AD的长.【答案】(1)2;(2)2825x x x-+(0<x<8);(3)AD=145或6.【解析】【分析】(1)根据垂径定理和勾股定理可求出OC的长.(2)分别作OH⊥AB,DG⊥AB,用含x的代数式表示△ACO和△BOD的面积,便可得出函数解析式.(3)分OB∥AD和OA∥BD两种情况讨论.【详解】解:(1)∵OD过圆心,点D是弧AB的中点,AB=8,∴OD⊥AB,AC=12AB=4,在Rt△AOC中,∵∠ACO=90°,AO=5,∴22AO AC-,∴OD=5,∴CD=OD﹣OC=2;(2)如图2,过点O作OH⊥AB,垂足为点H,则由(1)可得AH=4,OH=3,∵AC=x,∴CH=|x﹣4|,在Rt△HOC中,∵∠CHO=90°,AO=5,∴22HO HC+223|x4|+-2825x x-+∴CD=OD ﹣OC=5过点DG ⊥AB 于G , ∵OH ⊥AB , ∴DG ∥OH , ∴△OCH ∽△DCG , ∴OH OCDG CD=, ∴DG=OH CD OC⋅35, ∴S △ACO =12AC ×OH=12x ×3=32x , S △BOD =12BC (OH +DG )=12(8﹣x )×(335)=32(8﹣x )∴y=ACO OBDS S=()323582x x -(0<x <8)(3)①当OB ∥AD 时,如图3,过点A 作AE ⊥OB 交BO 延长线于点E ,过点O 作OF ⊥AD ,垂足为点F , 则OF=AE , ∴S=12AB•OH=12OB•AE , AE=AB OH OB ⋅=245=OF , 在Rt △AOF 中,∠AFO=90°,AO=5,∴75∵OF 过圆心,OF ⊥AD ,∴AD=2AF=145.②当OA ∥BD 时,如图4,过点B 作BM ⊥OA 交AO 延长线于点M ,过点D 作DG ⊥AO ,垂足为点G ,则由①的方法可得DG=BM=245, 在Rt △GOD 中,∠DGO=90°,DO=5,∴GO=22DO DG -=75,AG=AO ﹣GO=185, 在Rt △GAD 中,∠DGA=90°,∴AD=22AG DG +=6综上得AD=145或6.故答案为(1)2;(2)y=()2825x x x -+(0<x <8);(3)AD=145或6.【点睛】本题是考查圆、三角形、梯形相关知识,难度大,综合性很强.2.已知:四边形ABCD 内接于⊙O ,∠ADC =90°,DE ⊥AB ,垂足为点E ,DE 的锯长线交⊙O 于点F ,DC 的延长线与FB 的延长线交于点G . (1)如图1,求证:GD =GF ;(2)如图2,过点B 作BH ⊥AD ,垂足为点M ,B 交DF 于点P ,连接OG ,若点P 在线段OG 上,且PB =PH ,求∠ADF 的大小;(3)如图3,在(2)的条件下,点M 是PH 的中点,点K 在BC 上,连接DK ,PC ,D 交PC 点N ,连接MN ,若AB =122,HM +CN =MN ,求DK 的长.【答案】(1)见解析;(2)∠ADF =45°;(31810【解析】 【分析】(1)利用“同圆中,同弧所对的圆周角相等”可得∠A =∠GFD ,由“等角的余角相等”可得∠A =∠GDF ,等量代换得∠GDF =∠GFD ,根据“三角形中,等角对等边”得GD =GF ;(2)连接OD 、OF ,由△DPH ≌△FPB 可得:∠GBH =90°,由四边形内角和为360°可得:∠G =90°,即可得:∠ADF =45°;(3)由等腰直角三角形可得AH =BH =12,DF =AB =12,由四边形ABCD 内接于⊙O ,可得:∠BCG =45°=∠CBG ,GC =GB ,可证四边形CDHP 是矩形,令CN =m ,利用勾股定理可求得m =2,过点N 作NS ⊥DP 于S ,连接AF ,FK ,过点F 作FQ ⊥AD 于点Q ,过点F 作FR ⊥DK 交DK 的延长线于点R ,通过构造直角三角形,应用解直角三角形方法球得DK . 【详解】解:(1)证明:∵DE ⊥AB ∴∠BED =90° ∴∠A +∠ADE =90° ∵∠ADC =90° ∴∠GDF +∠ADE =90° ∴∠A =∠GDF ∵BD BD = ∴∠A =∠GFD ∴∠GDF =∠GFD ∴GD =GF (2)连接OD 、OF ∵OD =OF ,GD =GF ∴OG ⊥DF ,PD =PF 在△DPH 和△FPB 中PD PF DPH FPB PH PB =⎧⎪∠=∠⎨⎪=⎩∴△DPH ≌△FPB (SAS ) ∴∠FBP =∠DHP =90° ∴∠GBH =90°∴∠DGF =360°﹣90°﹣90°﹣90°=90° ∴∠GDF =∠DFG =45° ∴∠ADF =45°(3)在Rt △ABH 中,∵∠BAH =45°,AB =2 ∴AH =BH =12 ∴PH =PB =6 ∵∠HDP =∠HPD =45° ∴DH =PH =6∴AD =12+6=18,PN =HM =12PH =3,PD =2 ∵∠BFE =∠EBF =45°∴EF =BE∵∠DAE =∠ADE =45° ∴DE =AE∴DF =AB =∵四边形ABCD 内接于⊙O ∴∠DAB +∠BCD =180° ∴∠BCD =135° ∴∠BCG =45°=∠CBG ∴GC =GB又∵∠CGP =∠BGP =45°,GP =GP ∴△GCP ≌△GBP (SAS ) ∴∠PCG =∠PBG =90° ∴∠PCD =∠CDH =∠DHP =90° ∴四边形CDHP 是矩形∴CD =HP =6,PC =DH =6,∠CPH =90° 令CN =m ,则PN =6﹣m ,MN =m +3 在Rt △PMN 中,∵PM 2+PN 2=MN 2 ∴32+(6﹣m )2=(m +3)2,解得m =2 ∴PN =4过点N 作NS ⊥DP 于S ,在Rt △PSN 中,PS =SN =DS =﹣=SN 1tanDS 2SDN ∠=== 连接AF ,FK ,过点F 作FQ ⊥AD 于点Q ,过点F 作FR ⊥DK 交DK 的延长线于点R 在Rt △DFQ 中,FQ =DQ =12 ∴AQ =18﹣12=6 ∴tan 1226FQ FAQ AQ ∠=== ∵四边形AFKD 内接于⊙O , ∴∠DAF +∠DKF =180° ∴∠DAF =180°﹣∠DKF =∠FKR在Rt △DFR 中,∵DF =1tan 2FDR ∠=∴,55FR DR ==在Rt △FKR 中,∵FR =5tan ∠FKR =2∴KR=6105∴DK=DR﹣KR=24106101810555=-=.【点睛】本题是一道有关圆的几何综合题,难度较大,主要考查了圆内接四边形的性质,圆周角定理,全等三角形性质及判定,等腰直角三角形性质,解直角三角形等知识点;解题关键是添加辅助线构造直角三角形.3.如图,矩形ABCD中,BC=8,点F是AB边上一点(不与点B重合)△BCF的外接圆交对角线BD于点E,连结CF交BD于点G.(1)求证:∠ECG=∠BDC.(2)当AB=6时,在点F的整个运动过程中.①若BF=22时,求CE的长.②当△CEG为等腰三角形时,求所有满足条件的BE的长.(3)过点E作△BCF外接圆的切线交AD于点P.若PE∥CF且CF=6PE,记△DEP的面积为S1,△CDE的面积为S2,请直接写出12SS的值.【答案】(1)详见解析;(2)①1825;②当BE为10,395或445时,△CEG为等腰三角形;(3)724.【解析】【分析】(1)根据平行线的性质得出∠ABD=∠BDC,根据圆周角定理得出∠ABD=∠ECG,即可证得结论;(2)根据勾股定理求得BD =10,①连接EF ,根据圆周角定理得出∠CEF =∠BCD =90°,∠EFC =∠CBD .即可得出sin ∠EFC=sin ∠CBD ,得出35CE CD CF BD ==,根据勾股定理得到CF =CE ; ②分三种情况讨论求得:当EG =CG 时,根据等腰三角形的性质和圆周角定理即可得到∠GEC =∠GCE =∠ABD =∠BDC ,从而证得E 、D 重合,即可得到BE =BD =10;当GE =CE 时,过点C 作CH ⊥BD 于点H ,即可得到∠EGC =∠ECG =∠ABD =∠GDC ,得到CG =CD =6.根据三角形面积公式求得CH =245,即可根据勾股定理求得GH ,进而求得HE ,即可求得BE =BH +HE =395; 当CG =CE 时,过点E 作EM ⊥CG 于点M ,由tan ∠ECM =43EM CM =.设EM =4k ,则CM =3k ,CG =CE =5k .得出GM =2k ,tan ∠GEM =2142GM k EM k ==,即可得到tan ∠GCH =GH CH =12.求得HE =GH =125,即可得到BE =BH +HE =445;(3)连接OE 、EF 、AE 、EF ,先根据切线的性质和垂直平分线的性质得出EF =CE ,进而证得四边形ABCD 是正方形,进一步证得△ADE ≌△CDE ,通过证得△EHP ∽△FBC ,得出EH =16BF ,即可求得BF =6,根据勾股定理求得CF =10,得出PE =106,根据勾股定理求得PH ,进而求得PD ,然后根据三角形面积公式即可求得结果. 【详解】 (1)∵AB ∥CD . ∴∠ABD =∠BDC , ∵∠ABD =∠ECG , ∴∠ECG =∠BDC .(2)解:①∵AB =CD =6,AD =BC =8,∴BD =10,如图1,连结EF ,则∠CEF =∠BCD =90°, ∵∠EFC =∠CBD . ∴sin ∠EFC =sin ∠CBD , ∴35CE CD CF BD ==∴CF∴CE②Ⅰ、当EG=CG时,∠GEC=∠GCE=∠ABD=∠BDC.∴E与D重合,∴BE=BD=10.Ⅱ、如图2,当GE=CE时,过点C作CH⊥BD于点H,∴∠EGC=∠ECG=∠ABD=∠GDC,∴CG=CD=6.∵CH=BC CD24 BD5⋅=,∴GH185 =,在Rt△CEH中,设HE=x,则x2+(245)2=(x+185)2解得x=75,∴BE=BH+HE=325+75=395;Ⅲ、如图2,当CG=CE时,过点E作EM⊥CG于点M.∵tan∠ECM=43 EMCM=.设EM=4k,则CM=3k,CG=CE=5k.∴GM=2k,tan∠GEM=2142 GM kEM k==,∴tan∠GCH=GHCH=tan∠GEM=12.∴HE=GH=12412 255⨯=,∴BE=BH+HE=321244 555+=,综上所述,当BE为10,395或445时,△CEG为等腰三角形;(3)解:∵∠ABC=90°,∴FC是△BCF的外接圆的直径,设圆心为O,如图3,连接OE、EF、AE、EF,∵PE是切线,∴OE⊥PE,∵PE∥CF,∴OE⊥CF,∵OC=OF,∴CE=EF,∴△CEF是等腰直角三角形,∴∠ECF=45°,EF=2FC,∴∠ABD=∠ECF=45°,∴∠ADB=∠BDC=45°,∴AB=AD=8,∴四边形ABCD是正方形,∵PE∥FC,∴∠EGF=∠PED,∴∠BGC=∠PED,∴∠BCF=∠DPE,作EH⊥AD于H,则EH=DH,∵∠EHP=∠FBC=90°,∴△EHP∽△FBC,∴16 EH PEBF FC==,∴EH=16 BF,∵AD=CD,∠ADE=∠CDE,∴△ADE≌△CDE,∴AE=CE,∴AE=EF,∴AF=2EH=13 BF,∴13BF+BF=8,∴BF=6,∴EH=DH=1,CF10,∴PE=16FC=53,∴PH4 3 =,∴PD=47133 +=,∴1277 3824S PDS AD===.【点睛】本题是四边形的综合题,考查了矩形的性质,圆周角定理、三角形的面积以及相似三角形的判定和性质,作出辅助线构建直角三角形是解题的关键.4.如图①,已知Rt △ABC 中,∠ACB =90°,AC =8,AB =10,点D 是AC 边上一点(不与C 重合),以AD 为直径作⊙O ,过C 作CE 切⊙O 于E ,交AB 于F . (1)若⊙O 半径为2,求线段CE 的长; (2)若AF =BF ,求⊙O 的半径;(3)如图②,若CE =CB ,点B 关于AC 的对称点为点G ,试求G 、E 两点之间的距离.【答案】(1)CE =2;(2)⊙O 的半径为3;(3)G 、E 两点之间的距离为9.6 【解析】 【分析】(1)根据切线的性质得出∠OEC=90°,然后根据勾股定理即可求得; (2)由勾股定理求得BC ,然后通过证得△OEC ∽△BCA ,得到OE OC BC BA =,即8610r r-= 解得即可;(3)证得D 和M 重合,E 和F 重合后,通过证得△GBE ∽△ABC ,GB GEAB AC=,即12108GE =,解得即可. 【详解】解:(1)如图①,连接OE ,∵CE切⊙O于E,∴∠OEC=90°,∵AC=8,⊙O的半径为2,∴OC=6,OE=2,∴CE=2242OC OE-=;(2)设⊙O的半径为r,在Rt△ABC中,∠ACB=90°,AB=10,AC=8,∴BC=22AB A C-=6,∵AF=BF,∴AF=CF=BF,∴∠ACF=∠CAF,∵CE切⊙O于E,∴∠OEC=90°,∴∠OEC=∠ACB,∴△OEC∽△BCA,∴OE OCBC BA=,即8610r r-=解得r=3,∴⊙O的半径为3;(3)如图②,连接BG,OE,设EG交AC于点M,由对称性可知,CB=CG,∵CE =CG , ∴∠EGC =∠GEC , ∵CE 切⊙O 于E , ∴∠GEC +∠OEG =90°, ∵∠EGC +∠GMC =90°, ∴∠OEG =∠GMC , ∵∠GMC =∠OME , ∴∠OEG =∠OME , ∴OM =OE , ∴点M 和点D 重合, ∴G 、D 、E 三点在同一直线上, 连接AE 、BE , ∵AD 是直径,∴∠AED =90°,即∠AEG =90°, 又CE =CB =CG , ∴∠BEG =90°,∴∠AEB =∠AEG +∠BEG =180°, ∴A 、E 、B 三点在同一条直线上, ∴E 、F 两点重合,∵∠GEB =∠ACB =90°,∠B =∠B , ∴△GBE ∽△ABC ,∴GB GE AB AC = ,即12108GE= ∴GE =9.6,故G 、E 两点之间的距离为9.6. 【点睛】本题考查了切线的判定,轴的性质,勾股定理的应用以及三角形相似的判定和性质,证得G 、D 、E 三点共线以及A 、E 、B 三点在同一条直线上是解题的关5.已知:图1 图2 图3 (1)初步思考:如图1, 在PCB ∆中,已知2PB =,BC=4,N 为BC 上一点且1BN =,试说明:12PN PC =(2)问题提出:如图2,已知正方形ABCD 的边长为4,圆B 的半径为2,点P 是圆B 上的一个动点,求12PD PC +的最小值.(3)推广运用:如图3,已知菱形ABCD 的边长为4,∠B ﹦60°,圆B 的半径为2,点P 是圆B 上的一个动点,求12PD PC -的最大值.【答案】(1)详见解析;(2)5;(3)最大值DG =【解析】 【分析】(1)利用两边成比例,夹角相等,证明BPN ∆∽BCP ∆,得到PN BNPC BP=,即可得到结论成立;(2)在BC 上取一点G ,使得BG=1,由△PBG ∽△CBP ,得到12PG PC =,当D 、P 、G 共线时,12PD PC +的值最小,即可得到答案; (3)在BC 上取一点G ,使得BG=1,作DF ⊥BC 于F ,与(2)同理得到12PG PC =,当点P 在DG 的延长线上时,12PD PC -的值最大,即可得到答案. 【详解】(1)证明:∵2,1,4PB BN BC ===, ∴24,4PB BN BC =⋅=, ∴2PB BN BC =⋅,∴BN BPBP BC =, ∵B B ∠=∠,∴BPN BCP ∆∆∽, ∴12PN BN PC BP ==, ∴12PN PC =; (2)解:如图,在BC 上取一点G ,使得BG=1,∵242,212PB BC BG PB ====, ∴,PB BCPBG PBC BG PB =∠=∠, ∴PBG CBP ∆∆∽, ∴12PG BG PC PB ==, ∴12PG PC =, ∴12PD PC DP PG +=+; ∵DP PG DG +≥, ∴当D 、P 、G 共线时,12PD PC +的值最小, ∴最小值为:22435DG =+=;(3)如图,在BC 上取一点G ,使得BG=1,作DF ⊥BC 于F ,与(2)同理,可证12PG PC =, 在Rt △CDF 中,∠DCF=60°,CD=4, ∴DF=CD •sin60°=23CF=2,在Rt △GDF 中,22(23)537+=, ∴12PD PC PD PG DG -=-≤, 当点P 在DG 的延长线上时,12PD PC -的值最大, ∴最大值为:37DG = 【点睛】本题考查圆综合题、正方形的性质、菱形的性质、相似三角形的判定和性质、两点之间线段最短等知识,解题的关键是学会构建相似三角形解决问题,学会用转化的思想思考问题,把问题转化为两点之间线段最短解决,题目比较难,属于中考压轴题.6.选做题:从甲乙两题中选作一题,如果两题都做,只以甲题计分题甲:已知矩形两邻边的长、是方程的两根.(1)求的取值范围;(2)当矩形的对角线长为时,求的值;(3)当为何值时,矩形变为正方形?题乙:如图,是直径,于点,交于点,且.(1)判断直线和的位置关系,并给出证明;(2)当,时,求的面积.【答案】题甲(1)(2)(3)题乙:(1)BD是切线;证明所以OB⊥BD,BD是切线(2)S=【解析】试题分析:题甲:(1)、是方程的两根,则其;由得(2)矩形两邻边的长、,矩形的对角线的平方=;矩形两邻边的长、是方程的两根,则;因为,所以;解得由得(3)矩形变为正方形,则a=b;、是方程的两根,所以方程有两个相等的实数根,即,由得题乙:(1)BD是切线;如图所示,是弧AC所对的圆周角,;因为,所以;于点,,所以,,在三角形OBD中,所以OB⊥BD;BD是切线(2),AB是圆的直径,所以OB=5;于点,交于点,F是BC的中点;,BF=4;在直角三角形OBF中由勾股定理得OF=;根据题意,,则,所以,从而,解得DF=,的面积=考点:直线与圆相切,相似三角形点评:本题考查直线与圆相切,相似三角形;解本题的关键是会判断直线与圆是否相切,能判定两个三角形相似7.在平面直角坐标系xOy中,⊙C的半径为r(r>1),点P是圆内与圆心C不重合的点,⊙C的“完美点”的定义如下:过圆心C的任意直线CP与⊙C交于点A,B,若满足|PA﹣PB|=2,则称点P为⊙C的“完美点”,如图点P为⊙C的一个“完美点”.(1)当⊙O的半径为2时①点M(32,0)⊙O的“完美点”,点(﹣3,﹣12)⊙O的“完美点”;(填“是”或者“不是”)②若⊙O的“完美点”P在直线y=34x上,求PO的长及点P的坐标;(2)设圆心C的坐标为(s,t),且在直线y=﹣2x+1上,⊙C半径为r,若y轴上存在⊙C的“完美点”,求t的取值范围.【答案】(1)①不是,是;②PO的长为1,点P的坐标为(45,35)或(﹣45,﹣35);(2)t的取值范围为﹣1≤t≤3.【解析】【分析】(1)①利用圆的“完美点”的定义直接判断即可得出结论.②先确定出满足圆的“完美点”的OP的长度,然后分情况讨论计算即可得出结论;(2)先判断出圆的“完美点”的轨迹,然后确定出取极值时OC与y轴的位置关系即可得出结论.【详解】解:(1)①∵点M(32,0),∴设⊙O与x轴的交点为A,B,∵⊙O的半径为2,∴取A(﹣2,0),B(2,0),∴|MA﹣MB|=|(32+2)﹣(2﹣32)|=3≠2,∴点M不是⊙O的“完美点”,同理:点(﹣3,﹣12)是⊙O的“完美点”.故答案为不是,是.②如图1,根据题意,|PA﹣PB|=2,∴|OP+2﹣(2﹣OP)|=2,∴OP=1.若点P在第一象限内,作PQ⊥x轴于点Q,∵点P在直线y=34x上,OP=1,∴43,55 OQ PQ==.∴P(43,55).若点P在第三象限内,根据对称性可知其坐标为(﹣45,﹣35).综上所述,PO的长为1,点P的坐标为(43,55)或(43,55--)).(2)对于⊙C的任意一个“完美点”P都有|PA﹣PB|=2,∴|CP+r﹣(r﹣CP)|=2.∴CP=1.∴对于任意的点P,满足CP=1,都有|CP+r﹣(r﹣CP)|=2,∴|PA﹣PB|=2,故此时点P为⊙C的“完美点”.因此,⊙C的“完美点”是以点C为圆心,1为半径的圆.设直线y=﹣2x+1与y轴交于点D,如图2,当⊙C移动到与y轴相切且切点在点D的上方时,t的值最大.设切点为E,连接CE,∵⊙C的圆心在直线y=﹣2x+1上,∴此直线和y轴,x轴的交点D(0,1),F(12,0),∴OF=12,OD=1,∵CE∥OF,∴△DOF∽△DEC,∴OD OF DE CE=,∴112 DE=,∴DE=2,∴OE=3,t的最大值为3,当⊙C移动到与y轴相切且切点在点D的下方时,t的值最小.同理可得t的最小值为﹣1.综上所述,t的取值范围为﹣1≤t≤3.【点睛】此题是圆的综合题,主要考查了新定义,相似三角形的性质和判定,直线和圆的位置关系,解本题的关键是理解新定义的基础上,会用新定义,是一道比中等难度的中考常考题.8.已知ABD △内接于圆O ,点C 为弧BD 上一点,连接BC AC AC 、,交BD 于点E ,CED ABC ∠=∠.(1)如图1,求证:弧AB =弧AD ;(2)如图2,过B 作BF AC ⊥于点F ,交圆O 点G ,连接AG 交BD 于点H ,且222EH BE DH =+,求CAG ∠的度数;(3)如图3,在(2)的条件下,圆O 上一点M 与点C 关于BD 对称,连接ME ,交AB 于点N ,点P 为弧AD 上一点,PQ BG ∥交AD 于点Q ,交BD 的延长线于点R ,AQ BN =,ANE 的周长为20,52DR =,求圆O 半径.【答案】(1)见解析;(2)∠CAG=45°;(3)r=62 【解析】 【分析】(1)证∠ABD=∠ACB 可得;(2)如下图,△AHD 绕点A 旋转至△ALE 处,使得点D 与点B 重合,证△ALE ≌△AHE ,利用勾股定理逆定理推导角度;(3)如下图,延长QR 交AB 于点T ,分别过点N 、Q 作BD 的垂线,交于点V ,I ,取QU=AE ,过点U 作UK 垂直BD.先证△AEN ≌△QUD ,再证△NVE ≌△RKU ,可得到NV=KR=DK ,进而求得OB 的长. 【详解】(1)∵∠CED 是△BEC 的外角,∴∠CED=∠EBC+∠BCA ∵∠ABC=∠ABD+∠EBC 又∵∠CED=∠ABC ∴∠ABD=∠ACB ∴弧AB=弧AD(2)如下图,△AHD 绕点A 旋转至△ALE 处,使得点D 与点B 重合∵△ALB是△AHD旋转所得∴∠ABL=∠ADB,AL=AH设∠CAG=a,则∠CBG=a∵BG⊥AC∴∠BCA=90°-a,∴∠ADB=∠ABD=90°-a∴在△BAD中,BAE+∠HAD=180-a-(90°-a)-(90°-a)=a∴∠LAE=∠EAH=a∵LA=AH,AE=AE∴△ALE≌△AHE,∴LE=EH∵HD=LB,222=+EH BE DH∴△LBE为直角三角形∴∠LBE=(90°-a)+(90°-a)=90°,解得:a=45°∴∠CAG=45°(3)如下图,延长QR交AB于点T,分别过点N、Q作BD的垂线,交于点V,I,取QU=AE,过点U作UK垂直BD由(2)得∠BAD=90°∴点O在BD上设∠R=n,则∠SER=∠BEC=∠MEB=90°-n∴∠AEN=2n∵SQ⊥AC∴∠TAS=∠AQS=∠DQR,AN=QD∵QU=AE∴△AEN≌△QUD∴∠QUD=∠AEN=2n∴UD=UR=NE,∵△ANE的周长为20∴QD+QR=20在△DQR中,QD=7∵∠ENR=∠UDK=∠R=n∴△NVE≌△RKU∴NV=KR=DK=52 2∴BN=5∴BD=122,OB=62r=【点睛】本题考查了圆的证明,涉及到全等、旋转和勾股定理,解题关键是结合图形特点,适当构造全等三角形9.如图,已知AB是⊙O的直径,C是⊙O上一点(不与A、B重合),D为的AC中点,过点D作弦DE⊥AB于F,P是BA延长线上一点,且∠PEA=∠B.(1)求证:PE是⊙O的切线;(2)连接CA与DE相交于点G,CA的延长线交PE于H,求证:HE=HG;(3)若tan∠P=512,试求AHAG的值.【答案】(1)证明见解析;(2)证明见解析;(3)1310 AHAG=.【解析】【分析】(1)连接OE,由圆周角定理证得∠EAB+∠B=90°,可得出∠OAE=∠AEO,则∠PEA+∠AEO=90°,即∠PEO=90°,则结论得证;(2)连接OD,证得∠AOD=∠AGF,∠B=∠AEF,可得出∠PEF=2∠B,∠AOD=2∠B,可证得∠PEF=∠AOD=∠AGF,则结论得证;(3)可得出tan∠P=tan∠ODF=512OFDF=,设OF=5x,则DF=12x,求出AE,BE,得出23AEBE=,证明△PEA∽△PBE,得出23PAPE=,过点H作HK⊥PA于点K,证明∠P=∠PAH,得出PH=AH,设HK=5a,PK=12a,得出PH=13a,可得出AH=13a,AG=10a,则可得出答案.【详解】解:(1)证明:如图1,连接OE,∵AB是⊙O的直径,∴∠AEB=90°,∴∠EAB+∠B=90°,∵OA=OE,∴∠OAE=∠AEO,∴∠B+∠AEO=90°,∵∠PEA=∠B,∴∠PEA+∠AEO=90°,∴∠PEO=90°,又∵OE为半径,∴PE是⊙O的切线;(2)如图2,连接OD,∵D为AC的中点,∴OD⊥AC,设垂足为M,∴∠AMO=90°,∵DE⊥AB,∴∠AFD=90°,∴∠AOD+∠OAM=∠OAM+∠AGF=90°,∴∠AOD=∠AGF,∵∠AEB=∠EFB=90°,∴∠B=∠AEF,∵∠PEA=∠B,∴∠PEF=2∠B,∵DE⊥AB,∴AE AD,∴∠AOD=2∠B,∴∠PEF=∠AOD=∠AGF,∴HE=HG;(3)解:如图3,∵∠PEF=∠AOD,∠PFE=∠DFO,∴∠P=∠ODF,∴tan∠P=tan∠ODF=512 OFDF=,设OF=5x,则DF=12x,∴OD22OF DF+13x,∴BF=OF+OB=5x+13x=18x,AF=OA﹣OF=13x﹣5x=8x,∵DE⊥OA,∴EF=DF=12x,∴AE22AF EF+13,BE22EF BF+13,∵∠PEA=∠B,∠EPA=∠BPE,∴△PEA∽△PBE,∴41323613PA AEPE BE===,∵∠P+∠PEF=∠FAG+∠AGF=90°,∴∠HEG=∠HGE,∴∠P=∠FAG,又∵∠FAG=∠PAH,∴∠P=∠PAH,∴PH=AH,过点H作HK⊥PA于点K,∴PK=AK,∴13 PKPE=,∵tan∠P=5 12,设HK=5a,PK=12a,∴PH=13a,∴AH=13a,PE=36a,∴HE =HG=36a﹣13a =23a ,∴AG =GH ﹣AH =23a ﹣13a =10a ,∴13131010AH a AG a ==. 【点睛】 本题是圆的综合题,考查了垂径定理,圆周角定理,相似三角形的判定和性质,切线的判定,解直角三角形,勾股定理,等腰三角形的性质等知识,掌握相似三角形的判定定和性质定理及方程思想是解题的关键.10.在O 中,AB 为直径,CD 与AB 相较于点H ,弧AC=弧AD(1)如图1,求证:CD AB ⊥;(2)如图2,弧BC 上有一点E ,若弧CD=弧CE ,求证:3EBA ABD ∠=∠;(3)如图3,在(2)的条件下,点F 在上,连接,//FH FH DE ,延长FO 交DE 于点K ,若165,55FK DB BE ==,求AB .【答案】(1)证明见解析;(2)证明见解析;(3)1855AB =. 【解析】【分析】 (1)连接,OC OD ,根据AC AD = 得出COA DOA ∠=再根据OC OD =得出OCD ODC ∠=∠,从而得证;(2)连接,BC BD ,根据AC AD =得出,BC BD BA CD =⊥,CBA ABD ∠=∠,再根据CE CD =,得出CBE CBD ∠=∠,从而得出结论;(3)作,CM DB CN BE ⊥⊥,过点P 作,PT BE PS BD ⊥⊥,,5BE BP a DB a ===先证CDM CEN ∆≅∆,DM EN =,再证,CMB CNB BM BN ∆≅∆=,设DM b =,得出2b a =,再算出,CM CD 得出CPD ∆为等腰三角形,再根据BP 是角平分线利用角平分线定理得出BCP EBP S DP BD S PE BE∆==,从而算出,PE DE ,再根据三角函数值算出BG ,,,,AB r OG OH ,再根据//FH DE 得出HO OF GO OK=,从而计算AB . 【详解】(1)连接OC ,CD因为AC AD=,所以COA DOA∠=∠OC OD=,,OA CD CD AB∴⊥∴⊥;(2)连接BC,,BC BD BA CD=⊥所以AB平分CBD∠,设ABD ABCα∠=∠=2CBDα∴∠=CDCE∴=2CBE CBDα∴∠=∠=,3EBAα∴∠=3EBA ABD∴∠=∠.(3) 2,90EBC BPE PEBαα︒∠=∠=∠=-设,5BE BP a DB a===作,CM DB CN BE⊥⊥,可证:CDM CEN∆≅∆,DM EN=,再证:,CMB CNB BM BN∆≅∆=设,5,2DM EN b a b a b b a==+=-∴=在CBM∆中勾股4CM a=在CDM∆中勾股25CD a=得CPD∆为等腰三角形25DP DC a==因为BP为角平分线,过点P作,PT BE PS BD⊥⊥可证:5BCPEBPS DP BDS PE BE∆===2525,53PE a DE a ∴== 14tan ,tan 223αα== 2555,32BG a AB a ∴== 557535,,4124r a OG a OH a === //FH DE97HO OF GO OK ∴== 995185,16OF KF AB ===【点睛】本题是一道圆的综合题目,难度较大,考查了圆相关的性质以及与三角形综合,掌握相关的线段与角度转化是解题关键.。

新人教版初中数学九年级数学上册第四单元《圆》测试(包含答案解析)(3)

新人教版初中数学九年级数学上册第四单元《圆》测试(包含答案解析)(3)

一、选择题1.如图,AB 、AC 是⊙O 的切线,B 、C 为切点,∠A =50°,点P 是圆上异于B 、C 的点,则∠BPC 的度数是( )A .65°B .115°C .115°或65°D .130°或65° 2.如图,分别以AB,AC 为直径的两个半圆,其中AC 是半圆O 的一条弦,E 是弧AEC 中点,D 是半圆ADC 中点.若DE=2,AB=12,且AC˃6,则AC 长为( )A .6+2B .8+2C . 6+22D .8+22 3.点P 到圆上各点的最大距离为10cm ,最小距离为6cm ,则此圆的半径为( ) A .8cm B .5cm 或3cm C .8cm 或2cm D .3cm 4.已知正方形的边长a ,其内切圆的半径为r ,外接圆的半径为R ,则::R r a =( ) A .2:1:2B .2:1:1C .2:1:1D .2:2:4 5.已知O 的直径10CD cm ,AB 是O 的弦,AB CD ⊥,垂足为M ,且8AB cm =,则AC 的长为( ) A .25B .43C .25或45D .23或43 6.如图,已知AB 是O 的直径,AD 切O 于点A ,CE CB =.则下列结论中不一定正确的是( )A .OC BE ⊥B .//OC AE C .2COE BAC ∠=∠D .OD AC ⊥ 7.如图,在O 中,AB ,AC 为互相垂直且相等的两条弦,⊥OD AB ,OE AC ⊥,垂足分别为D ,E ,若4AB =,则O 的半径是( )A .22B .2C .3D .42 8.若圆锥的底面半径为5cm ,侧面积为265cm π,则该圆锥的高是( ) A .13cm B .12cm C .11cm D .10cm 9.如图,在⊙O 中,AB 是直径,弦AC=5,∠BAC=∠D .则AB 的长为( )A .5B .10C .52D .102 10.如图,AB 是⊙O 的直径,C ,D 是⊙O 上的点,28CDB ∠=︒,过点C 作⊙O 的切线交AB 的延长线于点E ,则E ∠等于( )A .28︒B .34︒C .44︒D .56︒11.如图,四边形ABCD 内接于O ,若108B ∠=︒,则D ∠的大小为( )A .36°B .54°C .62°D .72° 12.下列说法中,正确的是( ) A .三点确定一个圆B .在同圆或等圆中,相等的弦所对的圆周角相等 C .平分弦的直径垂直于弦D .在同圆或等圆中,相等的圆心角所对的弦相等二、填空题13.如图,⊙O 是△ABC 的内切圆,若∠A =70°,则∠BOC =________°.14.如图,在平面直角坐标系xOy 中,点,,A B C 的坐标分别是(0,),(22,0),()4,0,M是ABC ∆的外接圆,则圆心M 的坐标为__________________,M 的半径为_______________________.15.已知扇形的圆心角为120︒,面积为π,则扇形的半径是___________.16.如图,点A 、D 、G 、M 在半圆上,四边形ABOC 、DEOF 、HMNO 均为矩形,设BC a =,EF b =,NH c =,则a ,b ,c 之间的大小关系是_________________.(用“>”、“<”、“=”连接)17.如图,已知点C 是半圆О上一点,将弧BC 沿弦BC 折叠后恰好经过点,O 若半圆O 的半径是2,则图中阴影部分的面积是________________________.18.如图,在半径为2,圆心角为90°的扇形内,以BC 为直径作半圆,交弦AB 于点D ,连接CD ,则图中阴影部分的面积是______.(结果用含π的式子表示)19.在直径为10cm 的⊙O 中,弦AB=5cm ,则∠AOB 的度数为_______.20.如图,在Rt △ABC 中,∠C =90°,AC =3cm ,BC =4cm ,若以C 为圆心,r 为半径所作的圆与斜边AB 相切,则r 的值是________三、解答题21.如图,已知圆内接四边形ABDC 中,∠BAC =60°,AB =AC ,AD 为它的对角线. 求证:AD =BD+CD .22.如图,已知,90Rt ABC ACB ∆∠=︒.(1)请在图中用无刻度的直尺和圆规作一个圆,使得圆心О在边AC 上,且与边,AB BC 所在直线相切(不写作法,保留作图痕迹);(2)在(1)的条件下,若9,12AC BC ==,求O 的半径. 23.第十届亚运会在广东召开,有三名运动员分别下榻在A 、B 、C 三个宾馆,三个宾馆由三条道路相连,如图所示.(1)为建一个公共活动场地P 到三个宾馆的距离相等.请用尺规作图方法作出点P ,使得点P 落在△ABC 内部.保留作图痕迹,不要求写作法.(2)如果ACB α∠=,那么APB ∠=______.24.如图,BC 是圆O 的直径,AD 垂直BC 于D ,弧AB=弧AF ,BF 与AD 交于E ,求证:=(1)AE BEBC=,求AD的长.(2)若A,F把半圆三等分,1225.如图,一条公路的转弯处是一段圆弧CD,点O是CD的圆心,E为CD上一点,OE⊥CD,垂足为F.已知CD=300m,EF=50m,求这段弯路的半径.26.如图,OA、OB、OC分别是⊙O的半径,且AC=CB,D、E分别是OA、OB的中点.CD与CE相等吗?为什么?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据切线的性质得到OB⊥AB,OC⊥AC,求出∠BOC,分点P在优弧BC上、点P在劣弧BC上两种情况,根据圆周角定理、圆内接四边形的性质计算即可.【详解】解:∵AB、AC是⊙O的切线,∴OB⊥AB,OC⊥AC,∴∠OBA=90°,∠OCA=90°∵∠A=50°,∴∠BOC=360°﹣90°﹣90°﹣50°=130°,如图,当点P 在优弧BPC 上时,∠BPC =12∠BOC =65°, 当点P ′在劣弧BC 上时,∠BP ′C =180°﹣65°=115°,故选:C .【点睛】本题考查的是切线的性质、圆周角定理、圆内接四边形的性质,掌握圆的切线垂直于经过切点的半径及圆周角定理是解题的关键.2.D解析:D【分析】连接OE ,交AC 于点F ,由勾股定理结合垂径定理求出AF 的长,即可得到结论.【详解】解:连接OE ,交AC 于点F ,∵E 为AEC 的中点,∴OE AC ⊥,F 为AC 的中点,∵12AB =∴6OE AO ==设EF x =,则6OF x =-∵F 为AC 的中点,D 为半圆ADC 的中点,∴DF AC ⊥,DF AF =∵2DE =,∴2DF x AF =+=在Rt △AOF 中,222OA OF AF =+ 即2226(6)(2)x x =-++,∴122x =,222x =∴2(2)822AC x =+=+822-∵6AC >∴822AC =+ 故选:D【点睛】本题考查了垂径定理,熟练掌握垂径定理,运用勾股定理求出AF 是解题的关键. 3.C解析:C【分析】分析题意,本题应分两种情况讨论:(1)点P 在圆内;(2)点P 在圆外;根据“一个点到圆的最大距离和最短距离都在过圆心的直线上”可知,点P 到圆的最大距离与最小距离的和或差即是圆的直径,进而即可得出半径的长.【详解】当点P 在圆内时,圆的直径是10+6=16cm ,所以半径是8cm .当点P 在圆外时,圆的直径是10-6=4cm ,所以半径是2cm .故选C .【点睛】本题考查了圆的有关性质,熟知一个点到圆的最大距离和最短距离都在过圆心的直线上是解题的关键.4.A解析:A【分析】经过圆心O 作正方形一边AB 的垂线OC ,垂足是C .连接OA ,则在直角△OAC 中,∠AOC=45°.OC 是边心距r ,OA 即半径R ,进而即可求解【详解】如图:作出正方形的边心距,连接正方形的一个顶点和中心可得到一直角三角形 在中心的直角三角形的角为360°÷4÷2=45°,∴内切圆的半径为2a ,外接圆的半径为22a , ∴::R r a =22a :2a :a=2:1:2 故选A【点睛】本题主要考查正多边形的外接圆与内切圆的半径,掌握相关概念,作出图形,是解题的关键.5.C解析:C【分析】连结OA ,由AB CD ⊥,根据垂径定理可以得到4AM =,结合勾股定理可以得到3OM =.在分类讨论,如图,当8CM =和2CM =时,再结合勾股定理即可求出AC .【详解】连结OA ,∵AB CD ⊥, ∴118422AM BM AB ===⨯=, 在Rt OAM 中,5OA =,∴223OA OM AM -==,当如图时,538CM OC OM =+=+=,在Rt ACM △中,2245AC AM CM =+=,当如图时,532CM OC OM =-=-=,在Rt ACM △中,2225AC AM CM +=故选C .【点睛】 本题考查垂径定理“垂直于弦的直径平分弦且平分这条弦所对的两条弧”.分类讨论思想也是解决本题的关键.6.D解析:D【分析】分别根据平行线的判定与性质,以及圆周角定理对各选项进行逐一判断即可.【详解】B. ∵CE CB =,2BAE BAC ∴∠=∠, 又2BOC BAC ∠=∠,BAE BOC ∴∠=∠,//OC AE ∴,正确;A. AB 是O 的直径,∴∠AEB=90°,∵//OC AE ,OC BE ⊥,正确;C. ∵EC 所对的圆心角为COE ∠,EC 所对的圆周角为CAE ∠,2COE CAE ∴∠=∠,正确;D. 只有AE EC =时,才可证得OD AC ⊥,故不一定正确;故选D .【点睛】本题考查了圆周角定理,平行线的判定与性质,熟知圆周角定理及其推论是解答此题的关键.7.A解析:A【分析】根据垂径定理可知,AE=CE ,AD=BD ,易证四边形ODAE 是正方形,即可求得.【详解】如图,连接OA∵⊥OD AB ,OE AC ⊥,AB ⊥AC∴四边形ODAE 是矩形,AE=CE ,AD=BD又∵4AB AC ==,∴AE=AD=2∴四边形ODAE 是正方形,且边长为2∴O 的半径OA=22故选A【点睛】本题考查垂径定理,掌握垂径定理的条件和结论是解题的关键.8.B解析:B【分析】先根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式得到12•2π•5•OA=65π,可求出OA=13,然后利用勾股定理计算圆锥的高. 【详解】解:根据题意得12•2π•5•OA=65π,解得:OA=13,所以圆锥的高=2213512.故选:B.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.9.C解析:C【分析】根据圆周角定理得出∠D=∠B,得出△ABC是等腰直角三角形,进而解答即可.【详解】∵AC=AC,∴∠D=∠B,∵∠BAC=∠D,∴∠B=∠BAC,∴△ABC是等腰三角形,∵AB是直径,∴△ABC是等腰直角三角形,∵AC=5,∴AB=52,故选:C.【点睛】本题考查了圆周角定理,等腰直角三角形的判定和性质,勾股定理的应用,关键是根据圆周角定理得出∠D=∠B.10.B解析:B【分析】连接OC,由CE为圆O的切线,利用切线的性质得到OC垂直于CE,由OA=OC,利用等边对等角得到一对角相等,再利用外角性质求出∠COE的度数,即可求出∠E的度数.【详解】解:连接OC,∵CE为圆O的切线,∴OC⊥CE,∴∠COE=90°,∵∠CDB与∠BAC都对BC,且∠CDB=28°,∴∠BAC=∠CDB=28°,∵OA=OC,∴∠OAC=∠OCA=28°,∵∠COE为△AOC的外角,∴∠COE=56°,则∠E=34°.故选:B.【点睛】此题考查了切线的性质,圆周角定理,等腰三角形的性质,以及三角形内角和定理,熟练掌握切线的性质是解本题的关键.11.D解析:D【分析】运用圆内接四边形对角互补计算即可.【详解】∵四边形ABCD内接于⊙O,∠B=108°,∴∠D=180°−∠B=180°−108°=72°,故选:D.【点睛】本题主要考查了圆内接四边形的性质,熟练掌握圆内接四边形对角互补是解答此题的关键.12.D解析:D【分析】根据确定圆的条件、垂径定理、圆周角定理一一判断即可.【详解】解:A、任意三点确定一个圆;错误,应该的不在同一直线上的三点可以确定一个圆,不符合题意;B、在同圆或等圆中,相等的弦所对的圆周角相等或互补,错误,不符合题意;C、平分弦的直径垂直于弦,错误,此弦不是直径,不符合题意;D、在同圆或等圆中,相等的圆心角所对的弦相等,正确,符合题意;故选:D.【点睛】本题考查确定圆的条件、垂径定理、圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.二、填空题13.125【分析】根据三角形内角和性质结合题意可计算得的值;根据内切圆的性质分析可计算得的值从而完成求解【详解】∵∠A =70°∴∵⊙O 是△ABC 的内切圆∴∴∴故答案为:125【点睛】本题考查了三角形内角解析:125【分析】根据三角形内角和性质,结合题意,可计算得ABC ACB ∠+∠的值;根据内切圆的性质分析,可计算得OBC OCB ∠+∠的值,从而完成求解.【详解】∵∠A =70°∴180110ABC ACB A ∠+∠=-∠=∵⊙O 是△ABC 的内切圆 ∴12OBC ABC ∠=∠,12OCB ACB ∠=∠ ∴11111055222OBC OCB ABC ACB ∠+∠=∠+∠=⨯= ∴180********BOC OBC OCB ∠=-∠-∠=-=故答案为:125.【点睛】本题考查了三角形内角和、三角形内切圆的知识;解题的关键是熟练掌握三角形内角和、三角形内切圆的性质,从而完成求解.14.【分析】M 点为BC 和AB 的垂直平分线的交点利用点ABC 坐标易得BC 的垂直平分线为直线x=3AB 的垂直平分线为直线y=x 从而得到M 点的坐标然后计算MB 得到⊙M 的半径【详解】解:∵点ABC 的坐标分别是(解析:()3,3【分析】M 点为BC 和AB 的垂直平分线的交点,利用点A 、B 、C 坐标易得BC 的垂直平分线为直线x=3,AB 的垂直平分线为直线y=x ,从而得到M 点的坐标,然后计算MB 得到⊙M 的半径.【详解】解:∵点A ,B ,C 的坐标分别是(0,2),(2,0),(4,0),∴BC 的垂直平分线为直线x=3,∵OA=OB ,∴△OAB 为等腰直角三角形,∴AB 的垂直平分线为第一、三象限的角平分线,即直线y=x ,∵直线x=3与直线y=x 的交点为M 点,∴M 点的坐标为(3,3),∵MB ==∴⊙M 的半径为10. 故答案为(3,3),10.【点睛】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了坐标与图形的性质.15.【分析】根据扇形的面积公式S 扇形=即可求得【详解】解:∵S 扇形=∴r2==3∴r=(负值舍去)故答案为:【点睛】本题主要考查扇形面积的计算解题的关键是掌握扇形面积的计算公式:S 扇形=解析:3【分析】根据扇形的面积公式S 扇形=2360n r π 即可求得. 【详解】解:∵S 扇形=2360n r π, ∴r 2=360360 120S n πππ==3, ∴r=3(负值舍去),故答案为:3.【点睛】本题主要考查扇形面积的计算,解题的关键是掌握扇形面积的计算公式:S 扇形=2360n r π. 16.【分析】连接OAODOM 则OA=OD=OM 由矩形的性质得出OA=BC=aOD=EF=bOM=NH=c 即可得出a=b=c 【详解】解:连接OMODOA 根据矩形的对角线相等得BC=OAEF=ODNH=OM解析:a b c ==【分析】连接OA 、OD 、OM ,则OA=OD=OM ,由矩形的性质得出OA=BC=a ,OD=EF=b ,OM=NH=c ,即可得出a=b=c .【详解】解:连接OM 、OD 、OA 、根据矩形的对角线相等,得BC=OA ,EF=OD ,NH=OM .再根据同圆的半径相等,得a=b=c .故答案是:a=b=c.【点睛】此题主要能够根据矩形的对角线相等把线段进行转换,根据同圆的半径相等即本题考查了矩形的性质、同圆的半径相等的性质;熟练掌握矩形的性质,并能进行推理论证是解决问题的关键.17.【分析】过点O作OD⊥BC于E交半圆O于D点连接CD如图根据垂径定理由OD⊥BC得BE=CE再根据折叠的性质得到ED=EO则OE=OB则可根据含30度的直角三角形三边的关系得∠OBC=30°即∠AB解析:2 3π【分析】过点O作OD⊥BC于E,交半圆O于D点,连接CD,如图,根据垂径定理由OD⊥BC得BE=CE,再根据折叠的性质得到ED=EO,则OE=12OB,则可根据含30度的直角三角形三边的关系得∠OBC=30°,即∠ABC=30°则∠AOC=60°,由于OC=OB,则弓形OC的面积=弓形OB的面积,然后根据扇形的面积公式及S阴影部分=S扇形OAC即可得到阴影部分的面积.【详解】如图:过点O作OD⊥BC于E,交半圆O于D点,连接CD,∵OD⊥BC,∴BE=CE,∵半圆O沿BC所在的直线折叠,圆弧BC恰好过圆心O,∴ED=EO,∴OE=12OB,∴∠OBC=30°,即∠ABC=30°,∴∠AOC=60°;∵OC=OB,∴弓形OC的面积=弓形OB的面积,∴S阴影部分=S扇形OAC=26022 3603ππ⋅=.【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了垂定定理、圆周角定理和扇形的面积公式.18.【分析】已知BC 为直径则∠CDB=90°在等腰直角三角形ABC 中CD 垂直平分ABCD=DBD 为半圆的中点阴影部分的面积可以看做是扇形ACB 的面积与△ADC 的面积之差【详解】解:由题可知△ACB 为等腰解析:1π-【分析】已知BC 为直径,则∠CDB=90°,在等腰直角三角形ABC 中,CD 垂直平分AB ,CD=DB ,D 为半圆的中点,阴影部分的面积可以看做是扇形ACB 的面积与△ADC 的面积之差.【详解】解:由题可知△ACB 为等腰Rt △ACB ,在Rt △ACB 中,=∵BC 是半圆的直径,∴∠CDB=90°,在等腰Rt △ACB 中,CD 垂直平分AB ,则△ADC 和△BDC 都为等腰直角三角形,CD=BD=AD ,令 CD=BD=AD=x ,则2222x x +=,xS 阴影部分=S 扇形ACB -S △ADC =22902113602ππ⨯-⨯=- .故答案为:1π-.【点睛】 本题考查了扇形面积的计算公式及不规则图形面积的求法,掌握扇形的面积公式是解题的关键.19.60°【分析】如图连接OAOB 根据等边三角形的性质求出∠AOB 的度数【详解】解:如图在⊙O 中直径为10cm 弦AB=5cm ∴OA=OB=5cm ∴OA=OB=AB ∴△OAB 是等边三角形∴∠AOB=60° 解析:60°【分析】如图,连接OA 、OB ,根据等边三角形的性质,求出∠AOB 的度数.【详解】解:如图,在⊙O 中,直径为10cm ,弦AB=5cm ,∴OA=OB=5cm ,,∴OA=OB=AB∴△OAB 是等边三角形,∴∠AOB=60°,故答案为:60°.【点睛】考查了圆的性质以及等边三角形的性质,熟练掌握运算性质定理是解题的关键. 20.【分析】根据相切的定义可得利用等面积法即可求解【详解】解:∵∠C =90°AC =3cmBC =4cm ∴由题意可得∴即故答案为:【点睛】本题考查直线与圆的位置关系勾股定理掌握相切的定义是解题的关键 解析:125【分析】根据相切的定义可得CD AB ⊥,利用等面积法即可求解.【详解】解:∵∠C =90°,AC =3cm ,BC =4cm , ∴225cm AB AC BC =+=,由题意可得CD AB ⊥, ∴1122AC BC AB CD ⋅=⋅,即125CD =, 故答案为:125. 【点睛】本题考查直线与圆的位置关系、勾股定理,掌握相切的定义是解题的关键.三、解答题21.见解析.【分析】连接BC ,证明∠ADB =∠ADC =60°,在AD 上取点E 、F ,使DE =DB 、DF =DC ,连接BE 、CF ,证明△BDE 、△CDF 为正三角形,再证明∠AEB =∠CFA =120°,∠EAB =∠FCA ,证明△ABE ≌△CAF ,可得AE =CF ,从而可得结论.【详解】解:连接BC , ∠BAC =60°,AB =AC ,∴ △ABC 为等边三角形,∴ ∠ABC =∠ACB =60°,,,AC AC AB AB ==∴ ∠ADC =∠ABC 60,=︒ ∠ADB =∠ACB 60,=︒在AD 上取点E 、F ,使DE =DB 、DF =DC ,连接BE 、CF ,∴△BDE 、△CDF 为等边三角形,∴∠DEB =∠DFC =60°,,,DE BD CF DC ==∴∠AEB =∠CFA =120°,又∠FAC+∠FCA =∠DFC =60°、∠FAC+∠EAB =∠BAC =60°,∴∠EAB =∠FCA ,在△ABE 和△CAF 中,∵EAB FCA AEB CFA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△CAF (AAS ),∴AE =CF ,∴AD =DE+AE =BD+FC =BD+CD .【点睛】本题考查的是等边三角形的性质与判定,全等三角形的判定与性质,圆周角定理,掌握以上知识是解题的关键.22.(1)见解析;(2)O 的半径为4 【分析】(1)先作∠ABC 的角平分线,交AC 于点O ,然后过O 作AB 的垂线,交AB 于E ,以O 为圆心,OE 为半径作圆即可;(2)先利用勾股定理求出AB ,然后由OBC ABO ABC S S S ∆∆∆+=即可求出O 的半径.【详解】解:(1)如图所示:(2)设直线AB 与O 切于点D ,连接OD ,则,OD AB ⊥90,ACB ∴∠=︒22222291215AB AC BC ∴=+=+=.15,AB ∴=设O 的半径为,r由得OBC ABO ABC S S S ∆∆∆+=1215912,r r +=⨯4,r ∴=即O 的半径为4【点睛】本题考查了尺规作图,切线的性质,理解题意熟练掌握角平分线和垂线的作图是解题的关键.23.(1)作两边的垂直平分线,交点即为所求,见解析;(2)2α.【分析】(1)分别作三角形两条边的垂直平分线,两条直线的交点即为所求;(2)根据(1)的作法,可以确定点P 是△ABC 的外接圆的圆心,再根据圆周角定理即可确定∠APB 是∠ACB 的2倍,即可求得结论.【详解】解:(1)如图所示,点P 即为所求(2)由(1)可知PA=PB=PC ,所以点A 、B 、C 在以P 为圆心,PA 为半径的圆上,即A 、B 、C 三点共圆,∴∠APB 与∠ACB 是AB 所对的圆心角和圆周角,∴∠APB=2∠ACB ,又∵ACB α∠=,∴∠APB=2α.故答案为:2α.【点睛】本题考查垂直平分线的作法和定义,三角形外心定义、三角形外接圆、圆周角定理,难度中等.24.(1)见解析;(2)33【分析】(1)连接AC ,则∠BAC=90°,进而证得∠C=∠BAE ,由弧AB=弧AF 证得∠C=∠ABF ,则∠ABE=∠BAE ,根据等腰三角形的等角对等边证得结论;(2)由A ,F 把半圆三等分可得∠ACB=30°,再由BC=12和直角三角形中30°角所对的直角边等于斜边的一半可得AB=6,由勾股定理求得AC=63=AC AD 的长.【详解】(1)证明:连AC ,如图,∵BC 为直径,则90BAC ∠=︒, 90C ABC ∴∠+∠=︒,又∵AD ⊥BC90BAE ABC ∴∠+∠=︒,C BAE ∴∠=∠,由弧AB=弧AF ,可得C ABF ∠=∠,ABE BAE ∴∠=∠,AE BE ∴=;(2)∵A ,F 把半圆三等分,30ACB ∴∠=︒,在直角三角形ABC 中,12BC =,则162AB BC ==,363AC AB = 在直角三角形ADC 中,1332AD AC == 所以33AD =.【点睛】本题考查了同弧或等弧所对的圆周角相等、直径所对的圆周角是直角、含30°角的直角三角形的性质,熟练掌握圆的基本知识和直角三角形中30°角所对的直角边等于斜边的一半是解答的关键.25.这段弯路的半径为250米.【分析】设这段弯路的半径为R 米,可得50OFOE EF R .由垂径定理得 11300150()22CF CD m .由勾股定理可得222OC CF OF =+,解得 R 的值.【详解】解:连接OC .设这段弯路的半径为R 米则50OF OE EF ROE CD ⊥ 11300150()22CF CD m .根据勾股定理,得222OC CF OF =+即()22215050R R =+-解之,得250R =所以这段弯路的半径为250米.【点睛】本题考查了垂径定理及勾股定理的应用,熟悉相关性质是解题的关键.26.CD=CE .见解析.【分析】由题意易得OD=OE ,由等弧所对的圆心角相等可得DOC EOC ∠=∠,进而由全等三角形的判定证得△CDO ≌△CEO ,进而求证结论.【详解】CD=CE .∵ D 、E 分别是OA 、OB 的中点,∴12OD OA ,12OE OB =, ∴OD=OE ,∵AC CB =.∴DOC EOC ∠=∠,又∵OC=OC ,∴△CDO ≌△CEO ,∴CD=CE .【点睛】本题主要考查圆圆周角定理、全等三角形的判定和性质,解题的关键是由等弧所对的圆心角相等求得DOC EOC ∠=∠.。

人教版九年级上册数学《圆》单元测试卷(含答案)

人教版九年级上册数学《圆》单元测试卷(含答案)

人教版九年级上册数学《圆》单元测试卷姓名:__________班级:__________考号:__________一 、选择题(本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.已知与的半径分别为和3,若两圆相交,则两圆的圆心距满足( )A .B .C .D .2.已知圆内一点到圆周上的点的最大距离是7,最小距离是5,则该圆的半径是( )A .2B .6C .12D .73.如图,AB 为O 的直径,CD 为弦, AB CD ⊥,如果70BOC ∠=︒,那么A ∠的大小为( )A . 070B . 035C . 030D .20︒4.在同圆中,CD 的度数小于180︒,且2AB CD =,那么弦AB 和弦CD 的大小关系为( )A .AB CD > B .AB CD =C .AB CD < D .无法确定5.如图,四边形ABCD 是圆内接四边形,E 是BC 延长线上一点,若∠BAD=105°,则∠DCE 的大小是( )A .115︒B .105︒C .100︒D .95︒ 6.Rt ABC ∆中,90C ∠=︒,3cm AC =,4cm BC =,给出下列三个结论: ①以点C 为圆心,3 cm 长为半径的圆与AB 相离;②以点C 为圆心,4cm 长为半径的圆与AB 相切;③以点C 为圆心,5cm 长为半径的圆与AB 相交.上述结论中正确的个数是1O 2O 2m 5m =1m =5m >15m <<EDC BA( )A .0个B .l 个C .2个D .3个7.在中,,,.把绕点顺时针旋转后,得到,如图所示,则点所走过的路径长为( )A .B .cmC .cmD .cm8.如图,已知A 、B 两点的坐标分别为(2,0)、(0,2),⊙C 的圆心坐标为(-1,0),半径为1.若D 是⊙C 上的一个动点,线段DA 与y 轴交于点E ,则ABE 面积的最小值是A .2B .1C .D .9.在圆柱形油槽内装有一些油.截面如图所示,油面宽AB 为6分米,如果再注入一些油后,油面AB 上升1分米,油面宽度为8分米,圆柱形油槽直径MN 为( ) A .6分米 B .8分米 C .10 分米 D .12 分米10.如图,△ABC 是⊙O 的内接三角形,AD ⊥BC 于D 点,且AC=5,CD=3,AB=4,则⊙O 的直径等于( )Rt ABC △90C ∠=︒4BC cm =3AC cm =ABC △A 90︒11AB C △B 54π52π5π△22-2A.B. C. D .7 二 、填空题(本大题共5小题,每小题3分,共15分)11.已知1O ⊙与2O ⊙半径的长是方程27120x x -+=的两根,且1212O O =,则1O ⊙与2O ⊙的位置关系是___________.12.在Rt △ABC 中,∠C=90°,AC=3,BC=4,将△ABC 绕边AC 所在直线旋转一周得到圆锥,则该圆锥的侧面积是 .13.如图,ABC ∆内接于O ⊙,120AB BC ABC =∠=︒,,AD 为O ⊙的直径,6AD =,那么BD =_________.14.如图是一个圆锥形型的纸杯的侧面展开图,已知圆锥底面半径为5cm ,母线长为15cm ,那么纸杯的侧面积为 cm 2.(结果保留π)15.已知正六边形的边心距为,则它的周长是 .三 、解答题(本大题共7小题,共55分)16.如图,以等腰ABC ∆中的腰AB 为直径作O ,交BC 于点D .过点D 作DE AC ⊥,垂足为E .(1)求证:DE 为O 的切线;B(2)若O 的半径为5,60BAC ∠=︒,求DE 的长.17.如图⊙O 半径为2,弦BD =,A 为弧BD 的中点,E 为弦AC 的中点,且在BD上。

九年级数学圆的测试题及答案(两套题)[1]

九年级数学圆的测试题及答案(两套题)[1]

圆圆的有关概念与性质1.圆上各点到圆心的距离都等于半径。

2.圆是轴对称图形,任何一条直径所在的直线都是它的对称轴;圆又是中心对称图形,圆心是它的对称中心。

3.垂直于弦的直径平分这条弦,并且平分弦所对的弧;平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。

4.在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两条弦心距,两个圆周角中有一组量相等,那么它们所对应的其余各组量都分别相等。

5.同弧或等弧所对的圆周角相等,都等于它所对的圆心角的一半。

6.直径所对的圆周角是 90°,90°所对的弦是直径。

7.三角形的三个顶点确定 1 个圆,这个圆叫做三角形的外接圆,三角形的外接圆的圆心叫外心,是三角形三边垂直平分线的交点。

8.与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点的交点,叫做三角形的内心。

9.圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.10.圆内接四边形对角互补,它的一个外角等于它相邻内角的对角与圆有关的位置关系1.点与圆的位置关系共有三种:①点在圆外,②点在圆上,③点在圆内;对应的点到圆心的距离d和半径r之间的数量关系分别为:①d > r,②d = r,③d < r.2.直线与圆的位置关系共有三种:①相交,②相切,③相离;对应的圆心到直线的距离d和圆的半径r之间的数量关系分别为:①d < r,②d = r,③d > r.3.圆与圆的位置关系共有五种:①内含,②相内切,③相交,④相外切,⑤外离;两圆的圆心距d和两圆的半径R、r(R≥r)之间的数量关系分别为:①d < R-r,②d = R-r,③ R-r < d < R+ r,④d = R+r,⑤d > R+r.4.圆的切线垂直于过切点的半径;经过直径的一端,并且垂直于这条直径的直线是圆的切线.5.从圆外一点可以向圆引 2 条切线,切线长相等,这点与圆心之间的连线平分这两条切线的夹角。

人教版九年级数学上24章《圆》基础测试(含答案及解析)

人教版九年级数学上24章《圆》基础测试(含答案及解析)

人教版九年级数学上24章《圆》基础测试(含答案及解析)1 / 12《圆》基础测试题时间:90分钟 总分: 100一、选择题(本大题共10小题,共30.0分)1. 下列语句正确的个数是过平面上三点可以作一个圆;平分弦的直径垂直于弦;在同圆或等圆中,相等的弦所对的圆周角相等;三角形的内心到三角形各边的距离相等.A. 1个B. 2个C. 3个D. 4个2. 生活中处处有数学,下列原理运用错误的是A. 建筑工人砌墙时拉的参照线是运用“两点之间线段最短”的原理B. 修理损坏的椅子腿时斜钉的木条是运用“三角形稳定性”的原理C. 测量跳远的成绩是运用“垂线段最短”的原理D. 将车轮设计为圆形是运用了“圆的旋转对称性”原理3. 下列说法错误的是( )A. 圆有无数条直径B. 连接圆上任意两点之间的线段叫弦C. 过圆心的线段是直径D. 能够重合的圆叫做等圆4. 下列说法中,正确的是A. 弦是直径B. 半圆是弧C. 过圆心的线段是直径D. 圆心相同半径相同的两个圆是同心圆5. 如图,在 中, , ,以C 为圆心,CB 为半径的圆交AB 于点D ,连接CD ,则A.B.C.D.6. 下列判断中正确的是 A. 长度相等的弧是等弧B. 平分弦的直线也必平分弦所对的两条弧C. 弦的垂直平分线必平分弦所对的两条弧D. 平分一条弧的直线必平分这条弧所对的弦7. 下列说法: 平面上三个点确定一个圆; 等弧所对的弦相等; 同圆中等弦所对的圆周角相等; 三角形的内心到三角形三边的距离相等,其中正确的共有A. 1个B. 2个C. 3个D. 4个8. 过圆上一点可以作出圆的最长弦的条数为A. 1条B. 2条C. 3条D. 无数条9. 中央电视台“开心辞典”栏目曾有这么一道题:圆的半径增加了一倍,那么圆的面积增加了A. 一倍B. 二倍C. 三倍D. 四倍10.下列说法:弧分为优弧和劣弧;半径相等的圆是等圆;过圆心的线段是直径;长度相等的弧是等弧;半径是弦,其中错误的个数为A. 2B. 3C. 4D. 5二、填空题(本大题共10小题,共30.0分)11.如图,小量角器的刻度线在大量角器的刻度线上,且小量角器的中心在大量角器的外缘边上如果它们外缘边上的公共点P在大量角器上对应的度数为,那么在小量角器上对应的度数为______ 只考虑小于的角度12.下列说法:直径是弦;经过三点一定可以作圆;三角形的外心到三角形各顶点的距离相等;长度相等的弧是等弧;平分弦的直径垂直于弦其中正确的是______ 填序号.13.如图,直角坐标系中一条圆弧经过网格点A,B,C,其中B点坐标为,则该圆弧所在圆的圆心坐标为______.14.如图,点A,B,C均在的正方形网格格点上,过A,B,C三点的外接圆除经过A,B,C三点外还能经过的格点数为______.15.半径为5的中最大的弦长为______ .16.圆是中心对称图形,______ 是它的对称中心.17.已知点P到的最近距离是3cm、最远距离是7cm,则此圆的半径是______ .18.如图,AB为的直径,,,则______ .19.中若弦AB等于的半径,则的形状是______ .20.已知中最长的弦为16cm,则的半径为______ cm.三、计算题(本大题共2小题,共12.0分)21.如图所示,AB为的直径,CD是的弦,AB、CD的延长线交于点E,已知,求的度数.人教版九年级数学上24章《圆》基础测试(含答案及解析)3 / 1222. 如图, 中, ,点D 为BC 上一点,且,过A 、B 、D 三点作圆O ,AE 是圆O 的直径,连接DE .求证:AC 是圆O 的切线;若 , ,求AE 的长.四、解答题(本大题共4小题,共32.0分)23. 如图,在平面直角坐标系内,已知点 ,, .求 的外接圆的圆心点M 的坐标;求 的外接圆在x 轴上所截弦DE 的长.24.已知:如图,中,,.尺规作图:求作的外接圆,保留作图痕迹,不写作法;求中所求作的圆的面积.25.已知,直线l经过的圆心O,且与交于A、B两点,点C在上,且゜,点P是直线l上的一个动点与O不重合,直线CP与交于点Q,且.如图1,当点P在线段AO上时,求的度数.如图2,当点P在OA的延长线上时,求的度数.如图3,当点P在OB的延长线上时,求的度数.26.如图,已知同心圆O,大圆的半径AO、BO分别交小圆于C、D,试判断四边形ABDC的形状并说明理由.人教版九年级数学上24章《圆》基础测试(含答案及解析)5 / 12答案和解析【答案】1. A2. A3. C4. B5. A6. C7. B8. A9. C10. C11.12.13.14. 515. 1016. 圆心17. 5cm或2cm18.19. 等边三角形20. 821. 解:连接OD,如图,,而,,,,而,,.22. 证明:,,,,由圆周角定理得,,是圆O的直径,,即,,即,是圆O的切线;取AC的中点H,连接DH,,,在中,,,,,,,∽ ,,即,解得,.23. 解:,,线段BC的垂直平分线是,人教版九年级数学上24章《圆》基础测试(含答案及解析)7 / 12 , ,线段AC 的垂直平分线是 ,的外接圆的圆心M 的坐标为: ;连接OM ,作 于N ,由题意得, , ,由勾股定理得, ,则 ,由垂径定理得, .24. 解: 如图所示, 即为所求作的圆.连接OA ,OC ., ,,是等边三角形,圆的半径是3,圆的面积是 .25. 解: 如图1,设 ,, ,, ,由三角形的外角性质, ,在 中, ,解得 ,即 ;如图2,设 ,,,,, 由三角形的外角性质, ,,解得 ,;如图3,设 ,,,,,由三角形的外角性质,,解得,.26. 证明:,,四边形ABDC是梯形,即:四边形ABDC是等腰梯形.【解析】1. 解:过平面上不在同一直线上的三点可以作一个圆,错误;平分弦不是直径的直径垂直于弦,故错误;在同圆或等圆中,相等的弦所对的圆周角相等,错误;三角形的内心到三角形各边的距离相等,正确,正确的有1个,故选A.利用确定圆的条件、垂径定理、圆周角定理及三角形的内心的性质分别判断后即可确定正确的选项;本题考查了确定圆的条件、垂径定理、圆周角定理及三角形的内心的性质等知识,解题的关键是能够了解有关的定义及定理,难度不大.2. 解:A、错误建筑工人砌墙时拉的参照线是运用“两点确定一条直线”的原理;B、正确修理损坏的椅子腿时斜钉的木条是运用“三角形稳定性”的原理;C、正确测量跳远成绩的依据是垂线段最短;D、正确将车轮设计为圆形是运用了“圆的旋转对称性”的原理;故选:A.A、这是一道关于两点确定一条直线的应用的题目;B、根据三角形的稳定性进行判断;C、利用点到直线的距离中垂线段最短判断即可;D、根据圆的有关性质进行解答.本题考查了圆的认识、三角形的稳定性、确定直线的条件等知识,解题的关键是熟练掌握这些定理,难度不大.3. 解:A、圆有无数条直径,故本选项说法正确;B、连接圆上任意两点的线段叫弦,故本选项说法正确;C、过圆心的弦是直径,故本选项说法错误;D、能够重合的圆全等,则它们是等圆,故本选项说法正确;故选:C.根据直径、弧、弦的定义进行判断即可.本题考查圆的认识,学习中要注意区分:弦与直径,弧与半圆之间的关系.4. 解:A、直径是弦,但弦不一定是直径,故错误;B、半圆是弧,正确;C、过圆心的弦是直径,故错误;D、圆心相同半径不同的两个圆是同心圆,故错误,故选B.利用圆的有关定义及性质分别判断后即可确定正确的选项.本题考查了圆的认识,了解有关圆的定义及性质是解答本题的关键,难度不大.人教版九年级数学上24章《圆》基础测试(含答案及解析)5. 解:,,,,,;故选:A.先求得,再由等腰三角形的性质求出,则与互余.本题考查了三角形的内角和定理和等腰三角形的性质,是基础知识比较简单.6. 解:A、等弧是能重合的两弧,长度相等的弧不一定是等弧,故选项错误;B、平分弦的直线也必平分弦所对的两条弧,注意被平分的弦不是直径,故选项错误;C、弦的垂直平分线必平分弦所对的两条弧,正确,故选项正确;D、平分一条弧的直径必平分这条弧所对的弦,故选项错误.故选C.利用等弧的定义以及垂径定理和垂径定理的推论即可作出判断.本题考查了等弧的概念和垂径定理的推论,理解垂径定理的内容是关键.7. 解:平面上不在同一直线上的三个点确定一个圆,所以错误;等弧所对的弦相等,所以正确;同圆中等弦所对的圆周角相等或互补,所以错误;三角形的内心到三角形三边的距离相等,所以正确.故选B.根据确定圆的条件对进行判断;根据圆心角、弦、弧的关系对进行判断;根据圆周角定理和圆内接四边形的性质对进行判断;根据三角形内心的定义对进行判断.本题考查了确定圆的条件:不在同一直线上的三点确定一个圆也考查了圆心角、弧、弦的关系此题比较简单,注意掌握定理的条件在同圆或等圆中是解此题的关键.8. 解:圆的最长的弦是直径,直径经过圆心,过圆上一点和圆心可以确定一条直线,所以过圆上一点可以作出圆的最长弦的条数为一条.故选A.由于直径是圆的最长弦,经过圆心的弦是直径,两点确定一条直线,所以过圆上一点可以作出圆的最长弦的条数为一条.本题考查了直径和弦的关系,直径是弦,弦不一定是直径,直径是圆内最长的弦.9. 解:设圆的原来的半径是R,增加1倍,半径即是2R,则增加的面积是,即增加了3倍.故选C.根据圆的半径的计算公式即可解决.能够根据圆面积公式计算增加后的面积.10. 解:根据半圆也是弧,故此选项错误,符合题意;由等圆的定义可知,半径相等的两个圆面积相等、周长相等,所以为等圆,故此选项正确,不符合题意;过圆心的线段是直径,根据圆的直径的含义可知:通过圆心的线段,因为两端不一定在圆上,所以不一定是这个圆的直径,故此选项错误,符合题意;长度相等的弧不一定是等弧,因为等弧就是能够重合的两个弧,而长度相等的弧不一定是等弧,所以等弧一定是同圆或等圆中的弧,故此选项错误,符合题意;半径不是弦,故此选项错误,符合题意;故选:C.利用等弧和弦的概念,垂径定理以及弧,弦与圆心角之间的关系进行判断.此题主要考查了确定圆的条件以及圆的相关定义,熟练掌握其定义是解题关键.9 / 1211. 解:设大量角器的左端点是A,小量角器的圆心是B,连接AP,BP,则,,因而,在小量角器中弧PB所对的圆心角是,因而P在小量角器上对应的度数为.故答案为:;设大量角器的左端点为A,小量角器的圆心为利用三角形的内角和定理求出的度数然后根据圆的知识可求出小量角器上对应的度数.本题主要考查了直径所对的圆周角是90度能把实际问题转化为数学问题是解决本题的关键.12. 解::直径是弦,所以正确;经过不共线的三点一定可以作圆,所以错误;三角形的外心到三角形各顶点的距离相等,所以正确;能够完全重合的弧是等弧,所以错误;平分弦非直径的直径垂直于弦.故答案为.根据直径的定义对进行判断;根据确定圆的条件对进行判断;根据三角形外心的性质对进行判断;根据等弧的定义对进行判断;根据垂径定理的推论对进行判断.本题考查了确定圆的条件:不在同一直线上的三点确定一个圆也考查了圆的认识和垂径定理.13. 解:根据垂径定理的推论:弦的垂直平分线必过圆心,可以作弦AB和BC的垂直平分线,交点即为圆心.如图所示,则圆心是.故答案为:根据垂径定理的推论:弦的垂直平分线必过圆心,可以作弦AB和BC的垂直平分线,交点即为圆心.能够根据垂径定理的推论得到圆心的位置.14. 解:如图,分别作AB、BC的中垂线,两直线的交点为O,以O为圆心、OA为半径作圆,则即为过A,B,C三点的外接圆,由图可知,还经过点D、E、F、G、H这5个格点,故答案为:5.根据圆的确定先做出过A,B,C三点的外接圆,从而得出答案.本题主要考查圆的确定,熟练掌握圆上各点到圆心的距离相等得出其外接圆是解题的关键.人教版九年级数学上24章《圆》基础测试(含答案及解析)11 / 12 15. 解:半径为5的 的直径为10,则半径为5的 中最大的弦是直径,其长度是10.故答案是:10.直径是圆中最大的弦.本题考查了圆的认识 需要掌握弦的定义.16. 解:圆是中心对称图形,圆心是它的对称中心.故答案为:圆心.根据圆的定义即可得出结论.本题考查的是圆的认识,熟知圆是中心对称图形是解答此题的关键.17. 解:当点P 在圆内时,点P 到圆的最大距离与最小距离的和为10cm ,就是圆的直径,所以半径是5cm .当点P 在圆外时,点P 到圆的最大距离与最小距离的差为4cm ,就是圆的直径,所以半径是2cm .故答案是:5cm 或2cm .当点P 在圆内时,点P 到圆的最大距离与最小距离之和就是圆的直径 当点P 在圆外时,点P 到圆的最大距离与最小距离的差就是圆的直径 知道了直径就能确定圆的半径. 本题考查的是点与圆的位置关系,根据点到圆的最大距离和最小距离,可以得到圆的直径,然后确定圆的半径.18. 解: ,,,,又 ,.故答案为: .根据半径相等和等腰三角形的性质得到 ,利用三角形内角和定理可计算出 ,然后根据平行线的性质即可得到 的度数.本题考查了有关圆的知识:圆的半径都相等 也考查了等腰三角形的性质和平行线的性质.19. 解:如图, ,为等边三角形.故答案为等边三角形.根据圆的半径相等和等边三角形的判定方法进行判断.本题考查了圆的认识:掌握与圆有关的概念 弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等 也考查了等边三角形的判定.20. 解: 中最长的弦为16cm ,即直径为16cm ,的半径为8cm .故答案为:8.最长的弦就是直径从而不难求得半径的长.圆中的最长的弦就是直径,是需要熟记的.21. 连接OD ,如图,由 , 得到 ,根据等腰三角形的性质得 ,再利用三角形外角性质得到 ,加上 ,然后再利用三角形外角性质即可计算出 .本题考查了圆的认识:掌握与圆有关的概念 弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等 也考查了等腰三角形的性质.22. 根据等腰三角形的性质、圆周角定理证明 ,根据切线的判定定理证明;取AC的中点H,连接DH,根据等腰三角形的三线合一得到,根据余弦的定义求出CD,根据勾股定理求出DH,根据相似三角形的判定和性质计算.本题考查的是切线的判定定理、相似三角形的判定和性质以及圆周角定理,掌握相似三角形的判定定理和性质定理、切线的判定定理是解题的关键.23. 根据三角形的外心是三角形三边垂直平分线的交点解答;连接OM,作于N,根据勾股定理求出DN,根据垂径定理求出DE.本题考查的是三角形的外接圆和外心,掌握三角形的外心的概念、垂径定理的应用是解题的关键.24. 此题主要是确定三角形的外接圆的圆心,根据圆心是三角形边的垂直平分线的交点进行作图:作线段AB的垂直平分线;作线段BC的垂直平分线;以两条垂直平分线的交点O为圆心,OA长为半圆画圆,则圆O即为所求作的圆.连接OA,先证明是等边三角形,从而得到圆的半径,即可求解.本题考查了作图复杂作图,掌握三角形的外接圆的作法三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心找一个三角形的外心,就是找一个三角形的两条边的垂直平分线的交点,三角形的外接圆只有一个.25. 设,根据等边对等角可得,,再根据三角形的一个外角等于与它不相邻的两个内角的和表示出,然后根据三角形的内角和定理列出方程求解即可;设,根据等边对等角可得,,再根据三角形的一个外角等于与它不相邻的两个内角的和可得,然后列出方程求出x,再根据邻补角的定义列式计算即可得解;设,根据等边对等角可得,,根据三角形的一个外角等于与它不相邻的两个内角的和可得,,然后求出x,从而得解.本题是圆的综合题型,主要利用了等边对等角的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,读懂题目信息,作出图形更形象直观.26. 首先判断,然后利用半径相等证得其腰相等即可说明其是等腰梯形.本题考查了圆的认识及等腰梯形的判定,解题的关键是了解等腰梯形的判定方法.。

青岛市九年级数学上册第二十四章《圆》习题(含答案解析)

青岛市九年级数学上册第二十四章《圆》习题(含答案解析)

一、选择题1.下列说法正确的是( )A .圆是轴对称图形,任何一条直径都是圆的对称轴B .平分弦的直径垂直于弦C .长度相等的弧是等弧D .在同圆或等圆中,相等的圆心角所对的弦相等2.如图,在平面直角坐标系中,P 是直线y =2上的一个动点,⊙P 的半径为1,直线OQ 切⊙P 于点Q ,则线段OQ 的最小值为( )A .1B .2C .3D .5 3.下列说法正确的是( )A .在同圆或等圆中,如果两条弧相等,则它们所对的圆心角也相等B .三点确定一个圆C .平分弦的直径垂直于这条弦D .90°的圆心角所对的弦是直径4.如图,在半径为8的O 中,点A 是劣弧BC 的中点,点D 是优弧BC 上一点,30D ︒∠=,下列结论不正确的是( )A .OA BC ⊥B .83BC =C .四边形ABOC 是菱形D .扇形OAC 的面积为643π 5.如图,一条公路的拐弯处是一段圆弧AB ,点O 是这段弧所在的圆的圆心,20cm AB =,点C 是AB 的中点,点D 是AB 的中点,且5cm CD =,则这段弯路所在圆的半径为( )A .10cmB .12.5cmC .15cmD .17cm 6.如图,AB 圆O 的直径,弦CD AB ⊥,垂足为M ,下列结论不成立的是( )A .CM DM =B .CB BD =C .ACD ADC ∠=∠ D .OM MB =7.下列事件属于确定事件的为( ) A .氧化物中一定含有氧元素 B .弦相等,则所对的圆周角也相等C .戴了口罩一定不会感染新冠肺炎D .物体不受任何力的时候保持静止状态 8.如图,在ABC 中,90C ∠=︒,7AB =,4AC =,以点C 为圆心、CA 为半径的圆交AB 于点D ,求弦AD 的长为( )A 433B .327C 233D .1679.若圆锥的底面半径为5cm ,侧面积为265cm π,则该圆锥的高是( ) A .13cm B .12cm C .11cm D .10cm 10.如图,在等边ABC 中,点O 在边AB 上,O 过点B 且分别与边AB BC 、相交于点D 、E ,F 是AC 上的点,判断下列说法错误的是( )A .若EF AC ⊥,则EF 是O 的切线B .若EF 是O 的切线,则EF AC ⊥ C .若32BE EC =,则AC 是O 的切线 D .若BE EC =,则AC 是O 的切线 11.已知⊙O 的直径为6,圆心O 到直线l 的距离为3,则能表示直线l 与⊙O 的位置关系的图是( ) A . B .C .D .12.下列命题中,正确的是( )A .平面上三个点确定一个圆B .等弧所对的圆周角相等C .三角形的外心在三角形的外面D .与某圆一条半径垂直的直线是该圆的切线 13.如图,AB 为圆O 的直径,点C 在圆O 上,若∠OCA =50°,OB =2,则弧BC 的长为( )A .103πB .59π C .109π D .518π 14.如图,C 、D 是以AB 为直径的O 上的两个动点(点C 、D 不与A 、B 重合),在运动过程中弦CD 始终保持长度不变,M 是弦CD 的中点,过点C 作CP AB ⊥于点P .若3CD =,5AB =,PM x =,则x 的最大值是( )A .4B .5C .2.5D .23 15.如图,在平行四边形ABCO 中,45C ∠=︒,点A ,B 在O 上,点D 在ADB 上,DA DB =,则AOD ∠的度数为( )A .112.5°B .120°C .135°D .150°二、填空题16.如图,I 是ABC 的内心,AI 的延长线与ABC 的外接圆相交于点D ,与BC 交于点E ,连接BI 、CI 、BD 、DC .下列说法:①CAD DAB ∠=∠,②AI BI CI ==,③1902BIC BAC ∠=︒+∠;④点D 是BIC △的外心;正确的有______.(填写正确说法的序号)17.如图,点A ,B ,C 在O 上,顺次连接A ,B ,C ,O .若四边形ABCO 为平行四边形,则AOC ∠=________︒.18.如图,在半径为3的⊙O 中,AB 是直径,AC 是弦,D 是AC 的中点,AC 与BD 交于点E .若E 是BD 的中点,则AC 的长是____________.19.如图,O 的半径为6,AB 、CD 是互相垂直的两条直径,点P 是O 上任意一点,过点P 作PM AB ⊥于M ,PN CD ⊥于N ,点Q 是MN 的中点,当点P 沿着圆周从点D 逆时针方向运动到点C 的过程中,当∠QCN 度数取最大值时,线段CQ 的长为______.20.已知,O 的弦AB 与O 的半径相等,则弦AB 所对的圆周角的度数为______. 21.如图,若∠BOD =140°,则∠BCD=___________ .22.小明用一张扇形纸片做一个圆锥的侧面,已知该扇形的半径是10cm ,弧长是12πcm 2,那么这个圆锥的高是________cm .参考答案23.如图,直线33y x =+交x 轴于点A ,交y 轴于点B .以A 为圆心,以AB 为半径作弧交x 轴于点A 1;过点A 1作x 轴的垂线,交直线 AB 于点B 1,以A 为圆心,以AB 1为半径作弧交x 轴于点 A 2;…,如此作下去,则点n A 的坐标为___________;24.小红在手工制作课上,用面积为215cm π,半径为15cm 的扇形卡纸,围成一个圆锥侧面,则这个圆锥的底面半径为_______cm .25.扇形 的半径为6cm ,弧长为10cm ,则扇形面积是________.26.如图,已知空间站A 与星球B 距离为a ,信号飞船C 在星球B 附近沿圆形轨道行驶,B ,C 之间的距离为b .数据S 表示飞船C 与空间站A 的实时距离,那么S 的最小值________.三、解答题27.如图,AB 是⊙O 的直径,点C 在⊙O 上,BD 平分ABC ∠交⊙O 于点D ,过点D 作DE BC ⊥,垂足为E .(1)求证:DE 与⊙O 相切;(2)若10AB =,6AD =,求DE 的长.28.如图,已知AB 为O 的直径,点C 、D 在O 上,CD BD =,E 、F 是线段AC 、AB 的延长线上的点,并且EF 与O 相切于点D .(1)求证:2A BDF ∠=∠;(2)若3AC =,5AB =,求CE 的长.29.如图,长方形的长为a ,宽为2a ,用整式表示图中阴影部分的面积,并计算当2a =时阴影部分的面积(π取3.14).30.如图,OA、OB、OC分别是⊙O的半径,且AC=CB,D、E分别是OA、OB的中点.CD与CE相等吗?为什么?。

(常考题)北师大版初中数学九年级数学下册第三单元《圆》测试(包含答案解析)

(常考题)北师大版初中数学九年级数学下册第三单元《圆》测试(包含答案解析)

一、选择题1.如图平面直角坐标系中,点A ,B 均在函数y =k x(k >0,x >0)的图像上,⊙A 与x 轴相切,⊙B 与y 轴相切,若点B (1,8),⊙A 的半径是⊙B 半径的2倍,则点A 的坐标为( )A .(2,2)B .(2,4)C .(3,4)D .(4,2) 2.如图,AB 是半圆的直径,CD 为半圆的弦,且CD//AB ,∠ACD=26°,则∠B 等于( )A .26°B .36°C .64°D .74°3.若一个圆锥的底面半径为3cm ,高为62cm ,则圆锥的侧面展开图中圆心角的度数为( )A .120︒B .100︒C .80︒D .150︒ 4.如图,EM 经过圆心O ,EM ⊥CD 于M ,若CD=4,EM=6,则弧CED 所在圆的半径为( )A .3B .4C .83D .1035.若点A 在O 内,点B 在O 外,3OA =,5OB =,则O 的半径r 的取值范围是( )A .03r <<B .28r <<C .35r <<D .5r > 6.如图,O 是ABC 的外接圆,其半径为3cm ,若3BC cm =,则A ∠的度数是( )A .10︒B .15︒C .20︒D .30︒7.如图,30MAN ∠=︒,O 是MAN ∠内部一点,O 与MAN ∠的边AN 相切于点B ,与边AM 相交于点C ,D ,52AB =,作OE CD ⊥于E ,3OB OE =,则弦CD 的长是( )A .22B .23C .4D .26 8.边长为2的正六边形的边心距为( ) A .1 B .2 C .3D .23 9.如图,半圆的直径为AB ,圆心为点O ,C 、D 是半圆的3等分点,在该半圆内任取一点,则该点取自阴影部分的概率是( )A .3πB .6πC .12D .1310.如图,在平面直角坐标系中,以原点O 为圆心,6为半径的O 与直线(0)y x b b =-+>交于A ,B 两点,连接,OA OB ,以,OA OB 为邻边作平行四边形OACB ,若点C 恰好在O 上,则b 的值为( )A .33B .23C .32D .22 11.如图,P 是⊙O 外一点,射线PA 、PB 分别切⊙O 于点A 、点B ,CD 切⊙O 于点E ,分别交PA 、PB 于点D 、点C ,若PB =4,则△PCD 的周长( )A .4B .6C .8D .10 12.如图,AB 是O 的直径,CD 是弦,四边形OBCD 是菱形,AC 与OD 相交于点P ,则下列结论错误的是( )A .OD AC ⊥B .AC 平分OD C .2CB DP = D .2AP OP =二、填空题13.如图,从点P 引⊙O 的切线PA ,PB ,切点分别为A ,B ,DE 切⊙O 于C ,交PA ,PB 于D ,E .若△PDE 的周长为20cm ,则PA =______cm .14.如图,圆O 是△ABC 的外接圆,BC=2,∠BAC=30°,则圆O 的直径为___________.15.如图,在ABCD 中,2AD =,3AB =,45A ∠=︒,以点A 为圆心,AD 的长为半径画弧交AB 于点E ,连接CE ,则图中阴影部分的面积为__________(结果保留π).16.如图,在ABC 中,D 是边BC 上的一点,以AD 为直径的O 交AC 于点E ,连接DE .若O 与BC 相切,55ADE ∠=︒,则C ∠的度数为______17.如图,在平面直角坐标系中,正六边形OABCDE 的边长是2,则它的外接圆圆心P 的坐标是______.18.如图,C ∠是O 的圆周角,45C ∠=︒,则AOB ∠的度数为____.19.如图,⊙O 的半径为5,AB 是⊙O 的直径,C 是⊙O 上一点,且AC =6,点P 是⊙O 上一个动点,点P 与点C 在直径AB 的两侧(与A 、B 不重合),CQ ⊥PC ,交PB 的延长线于点Q ,则线段CQ 长的最大值是________.20.如图,圆锥底面半径为rcm ,母线长为5cm ,侧面展开图是圆心角为216°的扇形,则r 为_____cm .三、解答题21.如图,ABC 中,AB AC =,以AC 为直径的半圆O 交BC 于点D ,DE AB ⊥于点E .(1)求证:DE 为半圆的切线;(2)若23BC =,120BAC ∠=︒,求AD 的长.22.如图,已知90MON ∠=︒,OT 是MON ∠的平分线,A 是射线OM 上一点,8cm OA =.动点P 从点A 出发,以1cm/s 的速度沿AO 水平向左作匀速运动,与此同时,动点Q 从点O 出发,也以1cm/s 的速度沿ON 竖直向上作匀速运动.连接PQ ,交OT 于点B .经过O ,P ,Q 三点作圆,交OT 于点C ,连接PC ,QC .设运动时间为()t s ,其中08t <<.(1)求OP OQ +的值;(2)是否存在实数t ,使得线段OB 的长度最大?若存在,求出t 的值;若不存在,说明理由.(3)在点P ,Q 运动过程中(08t <<),四边形OPCQ 的面积是否变化.如果面积变化,请说出四边形OPCQ 面积变化的趋势;如果四边形OPCQ 面积不变化,请求出它的面积.23.如图,在ABC ∆中,以AB 为直径的O 交AC 于点M ,弦//BC MN 交AB 于点E ,且3ME NE ==.(1)求证:BC 是O 的切线;(2)若4AE =,求O 的直径AB 的长度.24.如图,正五边形ABCDE 内接于O ,P 为DE 上的一点(点P 不与点,D E 重合),求CPD ∠的余角的度数.25.如图,BD 为ABC 外接圆O 的直径,且BAE C ∠=∠.(1)求证:AE 与O 相切于点A ;(2)若//AE BC ,23BC =2AC =,求O 的直径. 26.如图,在平面直角坐标系中,正方形网格中每个小正方形的边长是一个单位长度,其中点B 的坐标为()2,1.(1)在平面直角坐标系中画出OAB ∆先向左平移4个单位长度,再向下平移3个单位长度后得到111O A B ∆.并写出点1B 的坐标.(2)在平面直角坐标系中画出OAB ∆绕点O 逆时针旋转90︒得到22OA B ∆,并求出旋转过程中线段OA 所扫过的面积(结果保留π).【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】把B 的坐标为(1,8)代入反比例函数解析式,根据⊙B 与y 轴相切,即可求得⊙B 的半径,则⊙A 的半径即可求得,即得到B 的纵坐标,代入函数解析式即可求得横坐标.【详解】解:把B 的坐标为(1,8)代入反比例函数解析式得:k=8,则函数的解析式是:y=8x, ∵B 的坐标为(1,8),⊙B 与y 轴相切,∴⊙B 的半径是1,则⊙A 的半径是2,把y=2代入y=8x得:x=4, 则A 的坐标是(4,2).故选:D .【点睛】 本题考查了反比例函数图象上点的坐标特征以及切线的性质,根据点B 的坐标利用反比例函数图象上点的坐标特征求出k 值是解题的关键.2.C解析:C【分析】利用平行线的性质,得∠ACD=∠CAB=26°,根据直径上的圆周角为直角,得∠ACB=90°,利用直角三角形的性质计算即可.【详解】∵CD //AB ,∠ACD=26°,∴∠ACD=∠CAB=26°,∵AB 是半圆的直径,∴∠ACB=90°,∴∠B=64°,故选C .【点睛】本题考查了平行线的性质,圆周角的原理,直角三角形的性质,熟练掌握性质,并灵活运用是解题的关键.3.A解析:A【分析】根据勾股定理求出圆锥的母线长,根据弧长公式计算,得到答案.【详解】解:设圆锥的侧面展开图的圆心角为n °,()22362+9(cm ),∴圆锥的侧面展开图扇形的半径为9cm ,扇形弧长为2×3π=6π(cm),∴9180n π⨯=6π,解得,n=120,故选:A.【点睛】本题考查的是圆锥的计算,掌握圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长是解题的关键.4.D解析:D【分析】连接OC,设弧CED所在圆的半径为R,则OC=R,OM=6−R,根据垂径定理求出CM,根据勾股定理得出方程,求出即可.【详解】解:连接OC,设弧CED所在圆的半径为R,则OC=R,OM=6−R,∵EM经过圆心O,EM⊥CD于M,CD=4,∴CM=DM=2,在Rt△OMC中,由勾股定理得:OC2=OM2+CM2,R2=(6−R)2+22,R=103,故选:D.【点睛】本题考查了勾股定理,垂径定理的应用,用了方程思想,题目比较典型,难度适中.5.C解析:C【分析】根据点和圆的位置关系可判断.【详解】解:∵点A在O内,3OA=,∴3r<,∵点B在O外,5OB=,∴5r<,O的半径r的取值范围是35r<<,故选:C.【点睛】本题考查了点和圆的位置关系,解题关键是熟知点和圆的位置关系是由半径和点到圆心的距离决定.6.D解析:D【分析】连接OB 、OC ,则判断△OBC 是等边三角形,则∠BOC=60°,再根据圆周角定理,即可得到答案.【详解】解:连接OB 、OC ,如图:∵3OB OC BC cm ===,∴△OBC 是等边三角形,∴∠BOC=60°,∴∠BAC=30°,故选:D .【点睛】本题考查了圆周角定理,等边三角形的判定和性质,解题的关键是熟练掌握圆周角定理进行解题.7.C解析:C【分析】延长BO 交AM 点F ,计算BF ,后计算OB ,OC ,OE ,最后,运用垂径定理计算即可.【详解】如图,延长BO 交AM 点F ,连接OC ,∵O 与MAN ∠的边AN 相切,∴∠ABF=90°,∵30MAN ∠=︒,52AB =∴BF=563,∠AFB=60°,∠FOE=30°, 设EF=x ,则OF=2x ,3x , ∵3OB OE =, ∴OB=3x ,∴BF=OB+OF=5x ,∴5x=56,3∴x=6,3∴OB=3x=6,OE=3x=2,⊥,∵OE CD∴在直角三角形OCE中,CE=2262-=-=2,OC OE根据垂径定理,得CD=2CE=4,故选C.【点睛】本题考查了切线的性质,直角三角形的性质,垂径定理,会用延长线段BO构造特殊的直角三角形是解题的关键.8.C解析:C【分析】正六边形的边长与外接圆的半径相等,构建直角三角形,利用勾股定理即可求出.【详解】解:连接OA,作OM⊥AB,垂足为M,连接OB,∵六边形ABCDEF是正六边形∴△AOB是等边三角形∴∠AOM=30°,AO=AB∵正六边形ABCDEF的边长为2,∴AM=12AB=12×2=1,OA=2.∴正六边形的边心距是OM=2222213OA AM-=-=故选:C.【点睛】本题考查了正多边形的计算,正多边形的计算常用的方法是转化为直角三角形的计算.9.D解析:D【分析】由C、D是半圆的3等分点知∠AOC=∠COD=∠BOD=60°,据此得S扇形AOC=S扇形COD=S扇形BOD=13S半圆,再根据概率公式求解即可.【详解】解:∵C、D是半圆的3等分点,∴∠AOC=∠COD=∠BOD=60°,∴S扇形AOC=S扇形COD=S扇形BOD=13S半圆,∴该点取自阴影部分的概率为1=3CODSS扇形半圆,故选:D.【点睛】本题主要考查概率公式,求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.10.C解析:C【分析】如图,连接OC交AB于T.想办法求出点T的坐标,利用待定系数法即可解决问题.【详解】解:如图,连接OC交AB于T,设直线AB交x轴于M,交y轴于N.∵直线AB的解析式为y=-x+b,∴N(0,b),M(b,0),∴OM=ON,∴∠OMN=45°,∵四边形OACB是平行四边形,OA=OB,∴四边形OACB是菱形,∴OC⊥AB,∴∠COM=45°,∵OC=6,∴C(∵OT=TC,∴T把T点坐标代入y=-x+b,可得b=故选:C.【点睛】本题考查圆周角定理,平行四边形的性质,菱形的判定,一次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.11.C解析:C【分析】由切线长定理可求得PA=PB,BC=CE,AD=ED,则可求得答案.【详解】解:∵PA、PB分别切⊙O于点A、B,CD切⊙O于点E,∴PA=PB=4,BC=EC,AD=ED,∴PC+CD+PD=PC+CE+DE+PD=PC+BC+PD+AD=PB+PA=4+4=8,即△PCD的周长为8,故选:C.【点睛】本题考查了切线长定理以及三角形的周长,熟练掌握切线长定理是解题的关键;12.D解析:D【分析】根据菱形的性质可以得出四条边平行并且都相等,又根据AB是直径,即可知道∠ACB=90°,即可判断A,因为三角形ABC为直角三角形,根据求∠A的正弦值即可判断∠A=30°,即可判断D,根据中位线的性质即可B、C选项;【详解】∵四边形OBCD是菱形,∴ OB ∥CD ,OD ∥BC ,OB=OD=CD=BC ,∵ AB 是直径,∴ ∠ACB=90°,∵OD ∥BC ,∴ ∠APO=90°,∴OD ⊥AC ,故A 正确; ∵12BC OD A AB AB ===sin ∠ , ∴∠A=30°,∴2OA OP = ,故D 错误,∵2OA OP =,∴2OD OP = ,∴DP=OP ,∴AC 平分OD ,故C 正确;∴BC=2DP ,故B 正确;故选:D .【点睛】本题考查了菱形的性质,锐角三角函数、三角形的中位线的性质,圆周角的性质,熟练掌握知识点是解题的关键; 二、填空题13.10【分析】由于PAPBDE 都是⊙O 的切线可根据切线长定理将△PDE 的周长转化为切线PAPB 长的和【详解】解:∵PAPBDE 分别切⊙O 于ABC ∴PA=PBDA=DCEC=EB ;∴C △PDE=PD+D解析:10【分析】由于PA 、PB 、DE 都是⊙O 的切线,可根据切线长定理将△PDE 的周长转化为切线PA 、PB 长的和.【详解】解:∵PA 、PB 、DE 分别切⊙O 于A 、B 、C ,∴PA =PB ,DA =DC ,EC =EB ;∴C △PDE =PD +DE +PE =PD +DA +EB +PE =PA +PB =20;∴PA =PB =10,故答案为10.【点睛】此题主要考查的是切线长定理,能够发现△PDE 的周长和切线PA 、PB 长的关系是解答此题的关键.14.4【分析】延长BO 交⊙O 于E 连接CE 根据圆周角定理得到∠E=∠A=30°∠ECB=90°根据直角三角形的性质即可得到结论【详解】解:延长BO 交⊙O 于E 连接CE 则∠E=∠A=30°∠ECB=90°∴B解析:4【分析】延长BO 交⊙O 于E ,连接CE ,根据圆周角定理得到∠E=∠A=30°,∠ECB=90°,根据直角三角形的性质即可得到结论.【详解】解:延长BO 交⊙O 于E ,连接CE ,则∠E=∠A=30°,∠ECB=90°,∴BE=2BC=2×2=4.故答案为:4.【点睛】本题考查了圆周角定理,直角三角形的性质,正确的作出辅助线是解题的关键. 15.【分析】过点作于点根据等腰直角三角形的性质求得从而求得最后由结合扇形面积公式平行四边形面积公式三角形面积公式解题即可【详解】解:过点作于点故答案为:【点睛】本题考查等腰直角三角形平行四边形的性质扇形 解析:522π- 【分析】过点D 作DF AB ⊥于点F ,根据等腰直角三角形的性质求得DF ,从而求得EB ,最后由ABCD EBC ADE S SS S =--阴影扇形结合扇形面积公式、平行四边形面积公式、三角形面积公式解题即可.【详解】解:过点D 作DF AB ⊥于点F ,2,3,45AD AB A ==∠=︒,2DF AD ∴==, 2AE AD ==,1EB AB AE ∴=-=,ABCD EBC ADE S S S S ∴=--阴影扇形24521313602π⨯=-⨯22π=-2π=,故答案为:2π-. 【点睛】 本题考查等腰直角三角形、平行四边形的性质、扇形的面积公式等知识,是重要考点,难度较易,掌握相关知识是解题关键.16.55°【分析】由直径所对的圆周角为直角得∠AED=90°由切线的性质得∠ADC=90°然后由同角的余角相等得∠C=∠ADE=55°【详解】解:∵AD 为的直径∴∠AED=90°∴∠ADE+∠DAE=9解析:55°【分析】由直径所对的圆周角为直角得∠AED=90°,由切线的性质得∠ADC=90°,然后由同角的余角相等得∠C=∠ADE=55°.【详解】解:∵AD 为O 的直径,∴∠AED=90°,∴∠ADE+∠DAE=90°,∵O 与BC 相切,∴∠ADC=90°,∴∠DAE+∠C=90°,∴∠C=∠ADE=55°.故答案为55°.【点睛】本题考查了切线的性质,圆的相关概念及性质,互余关系等知识点.掌握圆的相关性质是解题的关键.17.【分析】过点P 作PF ⊥OA 垂足为F 计算PFOF 的长度即可【详解】如图过点P 作PF ⊥OA 垂足为F ∵正六边形的边长是2∴OA=2∠OPA=60°∴OP=2∠OPF=30°∴OF=1PF=∴点P 的坐标为( 解析:()1,3.【分析】过点P 作PF ⊥OA ,垂足为F ,计算PF ,OF 的长度即可.【详解】如图,过点P 作PF ⊥OA ,垂足为F ,∵正六边形OABCDE 的边长是2,∴OA=2,∠OPA=60°,∴OP=2,∠OPF=30°,∴OF=1,PF=3,∴点P 的坐标为(1,3),故答案为:(1,3).【点睛】本题考查了正六边形的计算,熟练掌握正六边形的边长等于外接圆的半径,中心角为60°是解题的关键.18.【分析】根据圆周角定理计算即可;【详解】∵∴;故答案是【点睛】本题主要考查了圆周角定理准确分析计算是解题的关键解析:90︒【分析】根据圆周角定理计算即可;【详解】∵45C ∠=︒,∴290AOB C ∠=∠=︒;故答案是90︒. 【点睛】本题主要考查了圆周角定理,准确分析计算是解题的关键.19.【分析】连接BC 运用勾股定理求BC 再利用直径所对的圆周角是直角和同弧所对的圆周角相等可证明△BAC ∽△QPC 再由CP 的范围可得CQ 的范围【详解】解:如图连接BC∵AB是直径∴∠ACB=90°∴BC=解析:40 3【分析】连接BC,运用勾股定理求BC,再利用直径所对的圆周角是直角和同弧所对的圆周角相等,可证明△BAC∽△QPC,再由CP的范围可得CQ的范围.【详解】解:如图,连接BC,∵AB是直径,∴∠ACB=90°,∴BC22AB AC-22106-=8,∵CQ⊥PC,∴∠PCQ=90°∵BC BC=,∴∠BAC=∠QPC,∴△BAC∽△QPC,∴AC CP BC CQ=,∴CQ=43 CP,∵点P与点C在直径AB的两侧(与A、B不重合),∴CP≤10∴CQ≤403,故答案为:403.【点睛】本题考查了圆的性质,同弧所对的圆周角相等,直径所对的圆周角是直角,相似三角形判定和性质,勾股定理等,连接BC,利用相似三角形性质是关键.20.3【分析】利用圆锥的侧面展开图为扇形这个扇形的弧长等于圆锥底面的周长得到2πr=然后解关于r的方程即可【详解】解:根据题意得2πr=解得:r=3故答案为3【点睛】本题考查了圆锥的计算:圆锥的侧面展开解析:3【分析】利用圆锥的侧面展开图为扇形,这个扇形的弧长等于圆锥底面的周长,得到2πr =2165180π⨯⨯,然后解关于r 的方程即可. 【详解】解:根据题意得2πr =2165180π⨯⨯, 解得:r =3.故答案为3.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长. 三、解答题21.(1)见解析;(2)3π. 【分析】(1)连接OD ,根据AB=AC ,得到∠B=∠C ,根据OD=OC ,得到∠ODC=∠C , 从而得到∠B=∠ODC ,得证DO ∥AB ,由DE ⊥AB ,得到DE ⊥OD ,问题得证;(2)连接AD ,根据AC 是直径,得到AD ⊥BC ,根据等腰三角形三线合一的性质,得到BD=DC=12BC 120BAC ∠=︒,得到∠C=30°,从而得到AD=1,AC=2, ∠DAO=∠AOD= 60°,套用弧长公式计算即可.【详解】(1)连接OD ,∵AB=AC ,∴∠B=∠C ,∵OD=OC ,∴∠ODC=∠C ,∴∠B=∠ODC ,∴DO ∥AB ,∵DE ⊥AB ,∴DE ⊥OD ,∴DE 是圆O 的切线;(2)连接AD ,∵AC 是直径,∴AD ⊥BC ,∵AB=AC ,∴BD=DC=12BC =3, ∵120BAC ∠=︒,∴∠C=30°, ∴AD=1,AC=2,∠DAO=∠AOD= 60°,∴AD =601180π⨯⨯=3π.【点睛】本题考查了圆的切线,弧长公式,等腰三角形的性质,平行线的性质,直角三角形的性质,熟练掌握切线的判定,并灵活选用方法证明是解题的关键. 22.(1)8cm ;(2)存在,t=4;(3)不变化,16cm 2.【分析】(1)由题意得出OP=8-t ,OQ=t ,则可得出答案;(2)如图,过点B 作BD ⊥OP ,垂足为D ,则BD ∥OQ .设线段BD 的长为x ,则BD=OD=x ,22,PD=8-t-x ,得出PD BD OP OQ =,则 88t x x t t--=-,解出288t t x -=.由二次函数的性质可得出答案; (3)证明△PCQ 是等腰直角三角形.则21122122224PCQ S PC QC PQ PQ PQ ∆=⋅=⨯⋅=.在Rt △POQ 中,PQ 2=OP 2+OQ 2=(8-t )2+t 2.由四边形OPCQ 的面积S=S △POQ +S △PCQ 可得出答案.【详解】解:(1)由题意可得,OP=8-t ,OQ=t ,∴OP+OQ=8-t+t=8(cm ).(2)当t=4时,线段OB 的长度最大.如图,过点B 作BD ⊥OP ,垂足为D ,则BD ∥OQ .∵OT 平分∠MON ,∴∠BOD=∠OBD=45°,∴BD=OD ,2BD .设线段BD 的长为x ,则BD=OD=x ,22x ,PD=8-t-x ,∵BD ∥OQ , ∴PD BD OP OQ=, ∴88t x x t t--=-, ∴288t t x -=. ∴228224)2288t t OB t -==--+. ∵二次项系数小于0.∴当t=4时,线段OB 的长度最大,最大为2cm .(3)∵∠POQ=90°,∴PQ 是圆的直径.∴∠PCQ=90°.∵∠PQC=∠POC=45°,∴△PCQ 是等腰直角三角形. ∴21122122224PCQ S PC QC PQ PQ PQ ∆=⋅=⨯⋅=. 在Rt △POQ 中,PQ 2=OP 2+OQ 2=(8-t )2+t 2.∴四边形OPCQ 的面积21124POQ PCQ S S S OP OQ PQ ∆∆=+=⋅+ 2211(8)(8)24t t t t ⎡⎤=-+-+⎣⎦ 221141641622t t t t =-++-=. ∴四边形OPCQ 的面积不变化,为16cm 2.【点睛】本题是圆的综合题,考查了圆周角定理,等腰直角三角形的性质,平行线分线段成比例定理,三角形的面积,二次函数的性质等知识,熟练掌握圆的性质定理是解题的关键. 23.(1)见解析;(2)254AB =【分析】(1)根据垂径定理的推论可得AB MN ⊥,再结合//MN BC ,即可得出BC AB ⊥,即可得证;(2)连接OM ,设半径是r ,在Rt OEM ∆中运用勾股定理求解出r ,即可求出AB 的长度.【详解】 (1)证明:3ME NE ==,AB 为直径,AB MN ∴⊥,又//MN BC ,BC AB ∴⊥,BC ∴是O 的切线;(2)解:连接OM ,如图, 设OM 的半径是r ,在Rt OEM ∆中,4,3,OE AE OA r ME OM r =-=-==, 222OM ME OE =+,2223(4)r r ∴=+-,解得:258r =, 2524AB r ∴==.【点睛】本题考查了圆中切线的证明,垂径定理的推论等,熟练掌握切线的判定方法以及灵活运用垂径定理是解决此类题的关键.24.54°【分析】连接OC ,OD .求出∠COD 的度数,再根据圆周角定理即可解决问题.【详解】如图,连接,OC OD .∵五边形ABCDE 是正五边形, ∴360725COD ︒∠==︒, ∴1362CPD COD ∠=∠=︒, ∴90°-36°=54°,∴CPD ∠的余角的度数为54°.【点睛】 本题考查了正多边形和圆、圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.25.(1)见解析;(2)214【分析】(1)连接OA ,根据圆周角定理、等腰三角形的性质和已知求出∠DAO=∠BAE ,∠DAB=90°,求出OAE=90,根据切线的判定得出即可;(2)根据垂径定理求出BF ,根据勾股定理求出AF ,再根据勾股定理求出OB 即可.【详解】(1)连接OA ,交BC 于点F .∴OA OD =.∴D DAO ∠=∠.∵D C ∠=∠,∴C DAO ∠=∠.∵BAE C ∠=∠,∴BAE DAO ∠=∠.∵BD 是O 的直径,∴90BAD ∠=︒,即90DAO BAO ∠+∠=︒,∴90BAE BAO ∠+∠=︒,即90OAE ∠=︒,∴AE OA ⊥.又∵OA 为O 的半径, ∴AE 与O 相切于点A .(2)∵//AE BC ,AE OA ⊥,∴OA BC ⊥,∴AB AC =,12FB BC =,AB AC =.∵BC =AC =∴BF =AB =∴在Rt ABF中,1AF ===, ∴在Rt OFB △中,()222OB BF OB AF =+-,∴4OB =,∴8BD =,∴在Rt △ABD中,AD == 【点睛】本题考查了三角形的外接圆与外心,切线的判定,勾股定理,等腰三角形的性质,平行线的性质,圆周角定理等知识点,能综合运用知识点进行推理是解此题的关键. 26.(1)见详解;(2)134π,图形见详解 【分析】(1)分别画出OAB ∆各个顶点的对应点,再顺次连接起来,即可;(2)分别画出OAB ∆各个顶点绕点O 逆时针旋转90︒后的对应点,再顺次连接起来,最后利用扇形的面积公式,即可求解.【详解】(1)111O A B ∆如图所示,点1B 的坐标为(-2,-2),(2)22OA B ∆如图所示,∵,∴线段OA 所扫过的面积=290360π⨯=134π,【点睛】本题主要考查平移和旋转变换以及扇形的面积公式,掌握扇形的面积公式,是解题的关键.。

人教版九年级上册数学 第二十四章 圆 单元测试卷(含答案解析)

人教版九年级上册数学 第二十四章 圆 单元测试卷(含答案解析)

人教版九年级上册数学 第二十四章 圆 单元测试卷【满分:120】一、选择题:(本大题共10小题,每小题4分,共40分,给出的四个选项中,只有一项是符合题目要求的)1.下列说法中错误的是( )A.圆有无数条直径B.连接圆上任意两点之间的线段叫弦C.过圆心的线段是直径D.能够重合的圆叫做等圆 2.若点(,0)B a 在以点(1,0)A 为圆心,2为半径的圆内,则a 的取值范围为( )A.1a <-B.3a >C.13a -<<D.1a ≥-且0a ≠3.《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问:径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(1ED =寸),锯道长尺(1AB =尺10=寸),问:这块圆柱形木材的直径是多少?”如图所示,请根据所学知识计算:圆柱形木材的直径AC 的长为( )A.13寸B.20寸C.26寸D.28寸4.如图,O 的直径AB 与弦CD 的延长线交于点E ,若DE OB =,84AOC ∠=︒,则E ∠等于( )A.42°B.28°C.21°D.20°5.如图,AB 是半圆O 的直径,点C 在半圆上(不与A ,B 重合),DE AB ⊥于点D ,交BC 于点F ,下列条件中能判定CE 是半圆O 的切线的是( )A.E CFE∠=∠∠=∠ B.E ECFC.ECF EFC∠=︒∠=∠ D.60ECF6.如图,在O中,OC AB⊥,32∠=︒,则OBA∠的度数是( )ADCA.64°B.58°C.32°D.26°7.如图,PA,PB分别与O相切于点A,B,70∠的度数P∠=︒,C为O上一点,则ACB为( )A.110°B.120°C.125°D.130°8.如图,在O中,AB是直径,CD是弦,AB CD⊥,下列结论错误的是( )A.AC OD== B.BC BDC.AOD CBD∠=∠∠=∠ D.ABC ODB9.如图,ABC内接于O,将BC沿BC翻折,BC交AC于点D,连接BD.若∠的度数是( )∠=︒,则ABDBAC66A.66°B.44°C.46°D.48° 10.如图,抛物线2144y x =-与x 轴交于A ,B 两点,P 是以点(0,3)C 为圆心,2为半径的圆上的动点,Q 是线段PA 的中点,连接OQ ,则线段OQ 的最大值是( )A.3B.412C.72D.4二、填空题(每小题4分,共20分)11.如图所示,点,,A B C 在同一直线上,点M 在直线AC 外,经过图中的三个点作圆,可以作__________个.12.如图,已知AB ,CD 是O 的两条直径,且50AOC ∠=︒.过点A 作//AE CD 交O 于点E ,则AOE ∠的度数为___________.13.如图,在O 的内接四边形ABCD 中,142BCD ∠=︒,则BOD ∠=___________.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆圆的有关概念与性质1.圆上各点到圆心的距离都等于半径。

2.圆是轴对称图形,任何一条直径所在的直线都是它的对称轴;圆又是中心对称图形,圆心是它的对称中心。

3.垂直于弦的直径平分这条弦,并且平分弦所对的弧;平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。

4.在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两条弦心距,两个圆周角中有一组量相等,那么它们所对应的其余各组量都分别相等。

5.同弧或等弧所对的圆周角相等,都等于它所对的圆心角的一半。

6.直径所对的圆周角是 90°,90°所对的弦是直径。

7.三角形的三个顶点确定 1 个圆,这个圆叫做三角形的外接圆,三角形的外接圆的圆心叫外心,是三角形三边垂直平分线的交点。

8.与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点的交点,叫做三角形的内心。

9.圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.10.圆内接四边形对角互补,它的一个外角等于它相邻内角的对角与圆有关的位置关系1.点与圆的位置关系共有三种:①点在圆外,②点在圆上,③点在圆内;对应的点到圆心的距离d和半径r之间的数量关系分别为:①d > r,②d = r,③d < r.2.直线与圆的位置关系共有三种:①相交,②相切,③相离;对应的圆心到直线的距离d和圆的半径r之间的数量关系分别为:①d < r,②d = r,③d > r.3.圆与圆的位置关系共有五种:① 内含 ,② 相内切 ,③ 相交 ,④ 相外切 ,⑤ 外离 ; 两圆的圆心距d 和两圆的半径R 、r (R ≥r )之间的数量关系分别为:①d < R-r ,②d = R-r ,③ R-r < d < R+ r ,④d = R+r ,⑤d > R+r. 4.圆的切线 垂直于 过切点的半径;经过 直径 的一端,并且 垂直于 这条 直径 的直线是圆的切线.5.从圆外一点可以向圆引 2 条切线, 切线长 相等,这点与圆心之间的连线 平分 这两条切线的夹角。

与圆有关的计算1.圆的周长为 2πr ,1°的圆心角所对的弧长为 180rπ ,n °的圆心角所对的弧长为 180rn π ,弧长公式为180rn l π=n 为圆心角的度数上为圆半径) .2. 圆的面积为 πr 2,1°的圆心角所在的扇形面积为 3602r π ,n °的圆心角所在的扇形面积为S= 360n2R π⨯ = rl 21(n 为圆心角的度数,R 为圆的半径).3.圆柱的侧面积公式:S= 2 πr l (其中为 底面圆 的半径 ,为 圆柱 的高.)4. 圆锥的侧面积公式:S=(其中为 底面 的半径 ,为 母线 的长.)圆锥的侧面积与底面积之和称为圆锥的全面积测试题一、选择题(每小题3分,共45分)1.在△ABC 中,∠C=90°,AB =3cm ,BC =2cm,以点A 为圆心,以2.5cm 为半径作圆,则点C 和⊙A 的位置关系是( )。

A .C 在⊙A 上 B.C 在⊙A 外C .C 在⊙A 内 D.C 在⊙A 位置不能确定。

2.一个点到圆的最大距离为11cm ,最小距离为5cm,则圆的半径为( )。

A .16cm 或6cm B.3cm 或8cm C .3cm D.8cm 3.AB 是⊙O 的弦,∠AOB =80°则弦AB 所对的圆周角是( )。

A .40° B.140°或40° C .20° D.20°或160° 4.O 是△ABC 的内心,∠BOC 为130°,则∠A 的度数为( )。

A .130° B.60° C .70° D.80°5.如图1,⊙O 是△ABC 的内切圆,切点分别是D 、E 、F ,已知∠A = 100°,∠C = 30°,则∠DFE 的度数是( )。

A .55° B.60° C .65° D.70°6.如图2,边长为12米的正方形池塘的周围是草地,池塘边A 、B 、C 、D 处各有一棵树,且AB=BC=CD=3米.现用长4米的绳子将一头羊拴在其中的一棵树上.为了使羊在草地上活动区域的面积最大,应将绳子拴在( )。

A . A 处 B . B 处 C .C 处 D .D 处图1 图27.已知两圆的半径分别是2和4,圆心距是3,那么这两圆的位置是( )。

A .内含 B.内切 C .相交 D. 外切 8.已知半径为R 和r 的两个圆相外切。

则它的外公切线长为( )。

A .R +r B.R 2+r 2C .R+r D.2Rr 9.已知圆锥的底面半径为3,高为4,则圆锥的侧面积为( )。

A.10π B .12π C.15π D.20π 10.如果在一个顶点周围用两个正方形和n 个正三角形恰好可以进行平面镶嵌,则n 的值是( )。

A .3B .4C .5D .6 11.下列语句中不正确的有( )。

①相等的圆心角所对的弧相等 ②平分弦的直径垂直于弦③圆是轴对称图形,任何一条直径都是它的对称轴 ④长度相等的两条弧是等弧A .3个 B.2个 C .1个 D.4个 12.先作半径为23的第一个圆的外切正六边形,接着作上述外切正六边形的外接圆,再作上述外接圆的外切正六边形,…,则按以上规律作出的第8个外切正六边形的边长为( )。

A .7)332(B.8)332( C .7)23( D.8)23(13.如图3,⊿ABC 中,∠C=90°,BC=4,AC=3,⊙O 内切于⊿ABC ,则阴影部分面积为( )A .12-π B.12-2π C .14-4π D.6-π14.如图4,在△ABC 中,BC =4,以点A 为圆心、2为半径的⊙A 与BC 相切于点D ,交AB于E ,交 AC 于F ,点P 是⊙A 上的一点,且∠EPF =40°,则图中阴影部分的面积是( )。

A .4-94π B .4-98π C .8-94π D .8-98π15.如图5,圆内接四边形ABCD 的BA 、CD 的延长线交于P ,AC 、BD 交于E ,则图中相似三角形有( )。

A .2对 B.3对 C .4对 D.5对图3 图4 图5二、填空题(每小题3分,共30分)1.两圆相切,圆心距为9 cm ,已知其中一圆半径为5 cm ,另一圆半径为_____.2.两个同心圆,小圆的切线被大圆截得的部分为6,则两圆围成的环形面积为_________。

3.边长为6的正三角形的外接圆和内切圆的周长分别为_________。

4.同圆的外切正六边形与内接正六边形的面积之比为_________。

5.矩形ABCD 中,对角线AC =4,∠ACB =30°,以直线AB 为轴旋转一周得到圆柱的表面积是_________。

6.扇形的圆心角度数60°,面积6π,则扇形的周长为_________。

7.圆的半径为4cm ,弓形弧的度数为60°,则弓形的面积为_________。

8.在半径为5cm 的圆内有两条平行弦,一条弦长为6cm ,另一条弦长为8cm ,则两条平行弦之间的距离为_________。

9.如图6,△ABC 内接于⊙O,AB=AC ,∠BOC=100°,MN 是过B 点而垂直于OB 的直线,则∠ABM=________,∠CBN=________; 10.如图7,在矩形ABCD 中,已知AB=8 cm ,将矩形绕点A 旋转90°,到达A ′B ′C ′D ′的位置,则在转过程 中,边CD 扫过的(阴影部分)面积S=_________。

图6 图7三、解答下列各题(第9题11分,其余每小题8分,共75分)1.如图,P 是⊙O 外一点,PAB 、PCD 分别与⊙O 相交于A 、B 、C 、D 。

(1)PO 平分∠BPD ; (2)AB=CD ;(3)OE ⊥CD ,OF ⊥AB ;(4)OE=OF 。

从中选出两个作为条件,另两个作为结论组成一个真命题,并加以证明。

ABPO E FCD2.如图,⊙O 1的圆心在⊙O 的圆周上,⊙O 和⊙O 1交于A ,B ,AC 切⊙O 于A ,连结CB ,BD 是⊙O 的直径,∠D =40°求:∠A O 1B 、∠ACB 和∠CAD 的度数。

3.已知:如图20,在△ABC 中,∠BAC=120°,AB=AC ,BC=43,以A 为圆心,2为半径作⊙A ,试问:直线BC 与⊙A 的关系如何?并证明你的结论。

ABC4.如图,ABCD 是⊙O 的内接四边形,DP ∥AC ,交BA 的延长线于P ,求证:AD ·DC =PA ·BC 。

5.如图⊿ABC 中∠A =90°,以AB 为直径的⊙O 交BC 于D ,E 为AC 边中点,求证:DE 是⊙O 的切线。

6.如图,已知扇形OACB 中,∠AOB =120°,弧AB 长为L =4π,⊙O ′和弧AB 、OA 、OB 分别相切于点C 、D 、E ,求⊙O 的周长。

P AB CDO图③图②图①B M P PEED D B C B C A A N M PE D C A 7.如图,半径为2的正三角形ABC 的中心为O ,过O 与两个顶点画弧,求这三条弧所围成的阴影部分的面积。

8.如图,ΔABC 的∠C =Rt ∠,BC =4,AC =3,两个外切的等圆⊙O 1,⊙O 2各与AB ,AC ,BC 相切于F ,H ,E ,G ,求两圆的半径。

9.如图①、②、③中,点E 、D 分别是正△ABC 、正四边形ABCM 、正五边形ABCMN 中以C 点为顶点的相邻两边上的点,且BE = CD ,DB 交AE 于P 点。

⑴求图①中,∠APD 的度数;⑵图②中,∠APD 的度数为___________,图③中,∠APD 的度数为___________; ⑶根据前面探索,你能否将本题推广到一般的正n 边形情况.若能,写出推广问题和结论;若不能,请说明理由。

参考答案一、1、C 2、B 3、B 4、D 5、C 6、B 7、C 8、D9、C 10、A 11、D 12、A 13、D 14、B 15、C 二、1、4 cm 或 14cm ; 2、9π; 3、32π,34π; 4、4:3;5、)3824(+π;6、12+2π;7、(38π-34)cm 2;8、7cm 或1cm ; 9、65°,50°;10、16πcm 2。

三、1、命题1,条件③④结论①②, 命题2,条件②③结论①④.证明:命题1∵OE ⊥CD , OF ⊥AB, OE=OF ,∴AB=CD, PO 平分∠BPD 。

相关文档
最新文档