基本数量关系
常见的数量关系
常见的数量关系1、单价×数量=总价2、单产量×数量=总产量3、速度×时间=路程4、工效×时间=工作总量5、加数+加数=和一个加数=和+另一个加数被减数-减数=差减数=被减数-差被减数=减数+差因数×因数=积一个因数=积÷另一个因数被除数÷除数=商除数=被除数÷商被除数=商×除数有余数的除法:被除数=商×除数+余数一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。
例:90÷5÷6=90÷(5×6)6、1公里=1千米1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米1吨=1000千克1千克= 1000克= 1公斤= 1市斤1公顷=10000平方米。
1亩=666.666平方米。
1升=1立方分米=1000毫升1毫升=1立方厘米7、什么叫比:两个数相除就叫做两个数的比。
如:2÷5或3:6或1/3比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
8、什么叫比例:表示两个比相等的式子叫做比例。
如3:6=9:189、比例的基本性质:在比例里,两外项之积等于两内项之积。
10、解比例:求比例中的未知项,叫做解比例。
如3:χ=9:1811、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。
如:y/x=k( k一定)或kx=y12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。
常用的数量关系式
一、常用的数量关系式1、速度×时间=路程路程÷速度=时间路程÷时间=速度2、单价×数量=总价总价÷单价=数量总价÷数量=单价3、加数+加数=和和-一个加数=另一个加数4、被减数-减数=差被减数-差=减数差+减数=被减数5、因数×因数=积积÷一个因数=另一个因数6、被除数÷除数=商被除数÷商=除数商×除数=被除数在有余数的除法中: (被除数-余数)÷除数=商7、总数÷总份数=平均数8、相遇问题相遇路程=速度和×相遇时间或相遇路程=快车速度×相遇时间+慢车速度×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间二、长度单位换算1千米=1000米 1米=10分米 1分米=10厘米1米=100厘米 1厘米=10毫米三、面积单位换算1平方千米=1000000平方米=100公顷 1公顷=10000平方米1平方米=100平方分米=10000平方厘米 1平方分米=100平方厘米四、质量单位换算1吨=1000 千克 1千克=1000克 1千克=1公斤五、时间单位换算1世纪=100年 1年=12月=4个季度大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时 1时=60分 1分=60秒 1时=3600秒六、运算定律1. 加法交换律:两个数相加,交换加数的位置,它们的和不变,即a+b=b+a 。
2. 加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 。
3. 乘法交换律:两个数相乘,交换因数的位置它们的积不变,即a×b=b×a。
常见数量关系知识点总结
常见数量关系知识点总结数量关系的基本概念1. 数量数量是一个度量性质的总称,它指的是事物的大小或多少。
数量是个体与外界事物交往的要素,取决于具体事物的性质以及人对事物的需要或兴趣。
2. 关系关系是指具有某种联系的两个或两个以上的数量之间的联系。
在数量关系中,数量之间的关系可以是比例关系、倍数关系、方程关系等。
3. 数学符号在数量关系中,常常会用到一些数学符号,比如“+”、“-”、“×”、“÷”等。
这些符号用来表示不同的数学运算关系,如加法、减法、乘法、除法等。
数量关系的基本法则1. 乘法交换律两个数相乘,乘法交换律指出,交换因数的位置,积不变。
2. 乘法结合律三个数相乘,就是两个数先乘,再与另一个数相乘,乘法结合律指出相乘的三个数,先后积不变。
3. 乘法分配律两个数和一个数相乘,等于两个数分别与这个数相乘,并把积加在一起。
4. 互质数最大公因数为1的两个数称为互质数。
5. 互为倒数两数互为倒数当且仅当它们的积为1,分别成为对方的倒数。
数量关系的常见类型1. 比例关系比例是一种数量关系,它指的是两个或两个以上的量之间的关系。
比例关系常常以分数的形式来表示,其中分子表示被比较的数量,分母表示比较的基数。
2. 倍数关系倍数是指一个数是另一个数的几倍,比如3是2的倍数,表示3是2的两倍。
3. 等量关系等量关系指的是两个或两个以上的量是相等的关系,比如两个相等的长度、面积、体积等。
4. 方程关系方程是一种数量关系,它指的是一个等式,其中包含了未知数和已知数。
方程关系常常用来描述各种数量之间的关系,比如代数方程、几何方程等。
数量关系的解决方法1. 图形法通过画图,可以直观地表示出数量的关系,从而方便求解问题。
2. 代入法将已知的一些数量代入到问题中,求解出未知的数量。
3. 递推法通过已知的数量关系,不断推算出下一个的数量。
4. 代数法通过代数的方法,建立方程式来求解问题。
数量关系的应用1. 商业应用在商业中,数量关系的应用非常广泛,比如在商品的购销、利润的计算、成本的管理等方面都会涉及到数量关系。
基本数量关系
基本数量关系1 、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8 、因数×因数=积积÷一个因数=另一个因数9 、被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式1 正方形C周长S面积a边长周长=边长×4C=4a 面积=边长×边长S=a×a2 正方体V:体积a:棱长表面积=棱长×棱长×6S表=a×a×6体积=棱长×棱长×棱长V=a×a×a3 长方形C周长S面积a边长周长=(长+宽)×2C=2(a+b)面积=长×宽S=ab4 长方体V:体积s:面积a:长b: 宽h:高(1)表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)(2)体积=长×宽×高V=abh5 三角形s面积a底h高面积=底×高÷2s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6 平行四边形s面积a底h高面积=底×高s=ah7 梯形s面积a上底b下底h高面积=(上底+下底)×高÷2s=(a+b)× h÷28 圆形S面积C周长∏ d=直径r=半径(1)周长=直径×∏=2×∏×半径C=∏d=2∏r(2)面积=半径×半径×∏9 圆柱体v:体积h:高s;底面积r:底面半径c:底面周长(1)侧面积=底面周长×高(2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10 圆锥体v:体积h:高s;底面积r:底面半径体积=底面积×高÷3特殊数量关系1、和差问题的公式;总数÷总份数=平均数(和+差)÷2=大数(和-差)÷2=小数2、和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)3、差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)4、植树问题1)非封闭线路上的植树问题可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1 全长=株距×(株数+1)株距=全长÷(株数+1)2 )封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数5、盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数6、相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间6、追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间7、流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷28、浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量9、利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)。
小学数学基本数量关系式
小学数学基本数量关系式
1、每份数×份数=总数
总数÷每份数=份数
总数÷份数=每份数
2、1倍数×倍数=几倍数
几倍数÷1倍数=倍数
几倍数÷倍数=1倍数
3、速度×时间=路程
路程÷速度=时间
路程÷时间=速度
4、单价×数量=总价
总价÷单价=数量
总价÷数量=单价
5、工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率6、加数+加数=和
和-一个加数=另一个加数7、被减数-减数=差
被减数-差=减数
差+减数=被减数
8、因数×因数=积
积÷一个因数=另一个因数
9、被除数÷除数=商
被除数÷商=除数
商×除数=被除数。
常用的数量关系式
• 因为35能被7整除,所以35是7的倍数,7是35的 约数。
• 一个数的约数的个数是有限的,其中最小的约数 是1,最大的约数是它本身。例如:10的约数有1、 2、5、10,其中最小的约数是1,最大的约数是 10。
• 2. 整数的写法:从高位到低位,一级一级地写, 哪一个数位上一个单位也没有,就在那个数位上 写0。
• 3. 小数的读法:读小数的时候,整数部分按照整 数的读法读,小数点读作“点”,小数部分从左 向右顺次读出每一位数位上的数字。
• 4. 小数的写法:写小数的时候,整数部分按照整 数的写法来写,小数点写在个位右下角,小数部 分顺次写出每一个数位上的数字。
同分母分数,叫做通分。
(四)百分数
• 1 表示一个数是另一个数的百分之几的数 叫做百分数,也叫做百分率 或百分比。百分 数通常用"%"来表示。百分号是表示百分数 的符号。
(一)数的读法和写法
• 1. 整数的读法:从高位到低位,一级一级 地读。读亿级、万级时,先按照个级的读 法去读,再在后面加一个“亿”或“万” 字。每一级末尾的0都不读出来,其它数位 连续有几个0都只读一个零。
• 无限小数:小数部分的数位是无限的小数,叫做无限小数。 例如: 4.33 …… 3.1415926 ……
• 无限不循环小数:一个数的小数部分,数字排列无规律且 位数无限,这样的小数叫做无限不循环小数。 例如:π
• 循环小数:一个数的小数部分,有一个数字或者几个数字 依次不断重复出现,这个数叫做循环小数。 例如: 3.555 …… 0.0333 …… 12.109109 ……
小学数学常用的数量关系式
常用的数量关系式1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式1、正方形(C:周长 S:面积 a:边长)周长=边长×4 C=4a面积=边长×边长S=a×a2、正方体(V:体积a:棱长)表面积=棱长×棱长×6 S表=a×a×6体积=棱长×棱长×棱长V=a×a×a3、长方形(C:周长 S:面积 a:边长)周长=(长+宽)×2 C=2(a+b)面积=长×宽S=ab4、长方体(V:体积 s:面积 a:长 b: 宽 h:高)(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)(2)体积=长×宽×高V=abh5、三角形(s:面积 a:底 h:高)面积=底×高÷2 s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6、平行四边形(s:面积 a:底 h:高)面积=底×高s=ah7、梯形(s:面积 a:上底 b:下底 h:高)面积=(上底+下底)×高÷2 s=(a+b)× h÷28、圆形(S:面积 C:周长л d=直径 r=半径)(1)周长=直径×л=2×л×半径C=лd=2лr(2)面积=半径×半径×л9、圆柱体(v:体积 h:高 s:底面积 r:底面半径 c:底面周长)(1)侧面积=底面周长×高=ch(2лr或лd) (2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10、圆锥体(v:体积 h:高 s:底面积 r:底面半径)体积=底面积×高÷311、总数÷总份数=平均数12、和差问题的公式:(和+差)÷2=大数(和-差)÷2=小数13、和倍问题:和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)14、差倍问题:差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)15、相遇问题:相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间16、浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量17、利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)常用单位换算长度单位换算1千米=1000米1米=10分米 1分米=10厘米1米=100厘米 1厘米=10毫米面积单位换算1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米1平方分米=100平方厘米 1平方厘米=100平方毫米体(容)积单位换算1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升1立方厘米=1毫升 1立方米=1000升重量单位换算1吨=1000 千克 1千克=1000克 1千克=1公斤人民币单位换算1元=10角 1角=10分 1元=100分时间单位换算1世纪=100年 1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天 1日=24小时1时=60分 1分=60秒 1时=3600秒基本概念第一章数和数的运算一概念(一)整数1 整数的意义自然数和0都是整数。
小学数学应用题十一种基本数量关系附例题
小学数学应用题十一种基本数量关系附例题从一年级开始,把应用题的数量关系讲明白,把类型分清楚,使学生清晰理解和掌握各种类型中的数量关系,将是关键的一环。
也是为今后解答复合应用题打好基础的重要一步。
下面就一起来看看小学数学应用题的11种基本数量关系。
加法的种类:(2种)1、已知一部分数和另一部分数,求总数。
例:小明家养灰兔8只,养白兔4只。
一共养兔多少只?想:已知一部分数(灰兔8只)和另一部分数(白兔4只)。
求总数。
列式:8+4=12(只)答:(略)2、已知小数和相差数,求大数。
例:小利家养白兔4只,灰兔比白兔多3只。
灰兔有多少只?想:已知小数(白兔4只)和相差和(灰兔比白兔多3只),求大数。
(灰兔的只数。
)列式:4+3=7(只)答:(略)减法的种类:(3种)1、已知总数和其中一部分数,求另一部分数。
例:小丽家养兔12只,其中有白兔8只,其余的是灰兔,灰兔有多少只?想:已知总数(12只),和其中一部分数(白兔8只),求另一部分数(灰兔有多少只?)列式:12—8=4(只)2、已知大数和相差数,求小数。
例:小强家养白兔8只,养的白兔比灰兔多3只。
养灰兔多少只?想:已知大数(白兔8只)和相差数(白兔比灰兔多3只),求小数(灰兔有多少只?)列式:8-3=5(只)3、已知大数和小数,求相差数。
例:小勇家养白兔8只,灰兔5只。
白兔比灰兔多多少只?想:已知大数(白兔8只)和小数(灰兔5只),求相差数。
(白兔比灰兔多多少只?)列式:8-5=3(只)乘法的种类:(2种)1、已知每份数和份数。
求总数。
例:小利家养了6笼兔子,每笼4只。
一共养兔多少只?想:已知每份数(4只)和份数(6笼),求总数(一共养兔多少只?)也就是求6个4是多少。
用乘法计算。
列式:4×6=24(只)本类应用题值得一提的是,一定要学生分清份数与每份数两者关系,计算时一定不要列反题。
不得改变两者关系。
即:每份数×份数=总数。
决不可以列式:份数×每份数=总数。
整体常见的数量关系
整体常见的数量关系整体与其各部分之间有着总和即构成整体的部分之和,这个微观上的概念可以以不同的方式进行描述。
从数量上来说,物体的整体与其各部分的关系可以用以下四种基本的数量关系来概括。
首先是增加数量关系,增加数量关系表明,增加整体中的一部分也会增加整体的总和。
例如,如果一箱子里有三个物体,那么增加这箱子里的另一个物体也会增加这箱子里物体的总数。
其次是减少数量关系,减少数量关系表明,减少整体中的一部分也会减少整体的总和。
例如,如果一箱子里有三个物体,那么减少这箱子里的一个物体也会减少这箱子里物体的总数。
再次是分散数量关系,分散数量关系表明,增加一部分后,整体的总和也会增加,但是在不同的部分上增加的量不一定相同。
例如,如果一箱子里有三个物体,那么增加两个物体,那么这箱子里物体的总数会增加,但是有一种情况是:其中一个箱子里的物体增加了两个,而另一个箱子里的物体只增加了一个。
最后是归一关系,归一关系表明,整体总和与其各部分的关系是不变的。
例如,一箱子里有三个物体,如果将它们分别放在三个箱子里,那么这些箱子里的总数仍然是三个物体。
整体数量关系的这四种基本关系是数学分析中经常使用的方法。
它们不仅仅可以用于研究物体的整体与行为的关系,而且还可以用于研究其他种类的实体如社会、政治、经济等整体之间的关系。
比如,在研究社会经济发展的整体环境中,可以用这四种基本数量关系来解释社会经济发展的整体方向及机制;在政治领域,则可以使用这些数量关系来解释政治环境的整体性等。
此外,从科学的角度来讲,这四种基本的数量关系在物理学、化学、生物学等各个学科中也有着广泛的应用,例如,物理学中可以使用这些数量关系来解释电子在原子核中的变化,在化学中,可以使用它们来解释反应物之间的变化,在生物学中,可以使用它们来解释有机化学反应,以及蛋白质、DNA、细胞等生物元素之间的变化等。
综上所述,整体常见的数量关系是物体间构成整体的关系,它有四种基本的关系:增加数量关系、减少数量关系、分散数量关系与归一关系。
常见的数量关系
常见的数量关系 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】常见的数量关系1、单价×数量=总价2、单产量×数量=总产量3、速度×时间=路程4、工效×时间=工作总量5、加数+加数=和一个加数=和+另一个加数被减数-减数=差减数=被减数-差被减数=减数+差因数×因数=积一个因数=积÷另一个因数被除数÷除数=商除数=被除数÷商被除数=商×除数有余数的除法:被除数=商×除数+余数一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。
例:90÷5÷6=90÷(5×6)6、1公里=1千米 1千米=1000米1米=10分米 1分米=10厘米 1厘米=10毫米1平方米=100平方分米 1平方分米=100平方厘米1平方厘米=100平方毫米1立方米=1000立方分米 1立方分米=1000立方厘米1立方厘米=1000立方毫米1吨=1000千克 1千克= 1000克= 1公斤= 1市斤1公顷=10000平方米。
1亩=平方米。
1升=1立方分米=1000毫升 1毫升=1立方厘米7、什么叫比:两个数相除就叫做两个数的比。
如:2÷5或3:6或1/3比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
8、什么叫比例:表示两个比相等的式子叫做比例。
如3:6=9:189、比例的基本性质:在比例里,两外项之积等于两内项之积。
10、解比例:求比例中的未知项,叫做解比例。
如3:χ=9:1811、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。
如:y/x=k( k一定)或kx=y12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。
小学数学应用题的11种基本数量关系及练习题
小学数学应用题的11种基本数量关系加法的种类:(2种)1.已知一部分数和另一部分数,求总数。
例:小明家养灰兔8只,养白兔4只。
一共养兔多少只?想:已知一部分数(灰兔8只)和另一部分数(白兔4只)。
求总数。
列式:8+4=12(只)2.已知较小数和相差数,求较大数。
例:小利家养白兔4只,灰兔比白兔多3只。
灰兔有多少只?想:已知较小数(白兔4只)和相差数(灰兔比白兔多3只),求较大数(灰兔的只数)。
列式:4+3=7(只)减法的种类:(3种)1.已知总数和其中一部分数,求另一部分数。
例:小丽家养兔12只,其中有白兔8只,其余的是灰兔,灰兔有多少只?想:已知总数(12只),和其中一部分数(白兔8只),求另一部分数(灰兔的只数)。
列式:12-8=4(只)2.已知较大数和相差数,求较小数。
例:小强家养白兔8只,养的白兔比灰兔多3只。
养灰兔多少只?想:已知较大数(白兔8只)和相差数(白兔比灰兔多3只),求小数(灰兔的只数)。
列式:8-3=5(只)3.已知较大数和较小数,求相差数。
例:小勇家养白兔8只,灰兔5只。
白兔比灰兔多多少只?想:已知较大数(白兔8只)和较小数(灰兔5只),求相差数(白兔比灰兔多的只数)。
列式:8-5=3(只)乘法的种类:(2种)1.已知每份数和份数,求总数。
例:小利家养了6笼兔子,每笼4只。
一共养兔多少只?想:已知每份数(4只)和份数(6笼),求总数(一共养兔的只数),也就是求6个4是多少。
用乘法计算。
列式:4×6=24(只)本类应用题值得一提的是,一定要分清份数与每份数两者的关系,计算时一定不要列反,不得改变两者关系。
即“每份数×份数=总数”。
不可以列式“份数×每份数=总数”。
2.求一个数的几倍是多少?例:白兔有8只,灰兔的只数是白兔的2倍。
灰兔有多少只?想:白兔有8只,灰兔的只数是白兔的2倍,也就是求2个8是多少。
列式:8×2=16(只)除法的种类:(4种)1.已知总数和份数,求每份数。
数量关系公式大全
数量关系公式大全数量关系是数学中一个重要的概念,它描述了不同量之间的数学关系。
在实际生活和工作中,我们经常会遇到各种数量关系问题,因此掌握数量关系公式是十分重要的。
本文将为大家介绍数量关系公式的大全,帮助大家更好地理解和运用数量关系公式。
一、基本数量关系公式。
1. 相等关系,a = b,表示a和b相等。
2. 比例关系,a,b = c,d,表示a与b的比例等于c与d的比例。
3. 百分比关系,a% = b,表示a的百分之一等于b。
4. 倒数关系,a的倒数为1/a。
5. 平方关系,a²表示a的平方,a² = a a。
6. 立方关系,a³表示a的立方,a³ = a a a。
7. 平方根关系,√a表示a的平方根,(√a)² = a。
二、加减乘除的数量关系公式。
1. 加法,a + b = c,表示a与b的和等于c。
2. 减法,a b = c,表示a减去b的差等于c。
3. 乘法,a b = c,表示a与b的积等于c。
4. 除法,a / b = c,表示a除以b的商等于c。
三、比例的数量关系公式。
1. 直接比例,y = kx,表示y和x成正比,k为比例常数。
2. 反比例,xy = k,表示x和y成反比,k为比例常数。
四、百分比的数量关系公式。
1. 百分数,a% = a/100,表示a的百分之一。
2. 百分数的计算,a% b = c,表示a的百分之一乘以b等于c。
五、平均数的数量关系公式。
1. 算术平均数,(a₁ + a₂ + ... + aₙ) / n = x,表示n个数的和除以n等于平均数x。
2. 加权平均数,(a₁w₁ + a₂w₂ + ... + aₙwₙ) / (w₁ + w₂ + ... + wₙ) = x,表示每个数乘以相应权重的和除以权重的和等于加权平均数x。
六、百分比的数量关系公式。
1. 百分数,a% = a/100,表示a的百分之一。
2. 百分数的计算,a% b = c,表示a的百分之一乘以b等于c。
和差问题、和倍问题、差倍问题
和差问题、和倍问题、差倍问题一、和差问题:已知两个数的和与差,求出这两个数各是多少的应用题,叫做和差应用题。
基本数量关系是:(和+差)÷2=大数(和-差)÷2=小数例1:有甲乙两堆煤,共重52吨,已知甲比乙多4吨,两堆煤各重多少吨?分析:根据公式,我们要找出两个数的和与差,就能解决问题。
由题意:堆煤共重52吨知:两数和是52;甲比乙多4吨知:两数差是4。
甲的煤多,甲是大数,乙是小数。
故解法如下:甲:(52+4)÷2=28(吨)乙:28-4=24(吨)例2:两只笼子里共有15只鸡,从甲笼提出3只后,甲笼比乙笼还多2只,两只笼子原来各有多少只鸡?分析:从题意知:甲比乙多5只,所以,两数和是15,两数差是5.甲是大数。
甲:(15+5)÷2=10(只)乙: 15-10=5(只)练习:1、两堆石子共有800吨,第一堆比第二堆多200吨,两堆石子各有多少吨?2、黄茜和胡敏两人今年的年龄是23岁,4年后,黄茜比胡敏大3岁,问黄茜和胡敏今年各是多少岁?二、和倍问题已知两个数的和,又知两个数的倍数关系,求这两个数分别是多少,这类问题称为和倍问题。
解决和倍问题的基本方法:将小数看成1份,大数是小数的n倍,大数就是n份,两个数一共是n+1份。
基本数量关系:小数=和÷(n+1)=和÷(倍数+1)大数=小数×倍数或和-小数=大数例1 :甲班和乙班共有图书160本,甲班的图书是乙班的3倍,甲乙两班各有图书多少本?分析:从题目中知,乙班的图书数较少,故乙是小数,占1份,甲占(3+1)份。
乙:160÷(3+1)=40(本)甲:160-40=120(本)例2:果园里有梨树和桃树共165棵,桃树棵数比梨树棵数的2倍少6棵,梨树和桃树各多少棵?分析:由题意,桃树增加6棵,桃树正好是梨树的2倍,这时总数就是:165+6=171,这样就转化成标准和倍问题,将梨树看成1份,一共是3份。
数量关系知识点总结
数量关系知识点总结一、数量关系的基本概念数量关系是指两个或多个数值之间的比较和关联。
在数量关系中,数值之间可以有大小、大小关系,也可以有比例、倍数、倍率等关系。
1. 大小关系:在数量关系中,我们常常需要比较两个数值的大小。
如果一个数值比另一个数值大,我们可以用“大于”符号(>)来表示;如果一个数值比另一个数值小,我们可以用“小于”符号(<)来表示;如果两个数值相等,我们可以用“等于”符号(=)来表示。
2. 比例关系:在一定条件下,两个或多个数值之间的比较关系可以保持不变,这种关系就叫做比例关系。
比例关系通常用“:”或者“/”来表示,如a:b或a/b。
在比例关系中,我们还可以引入比例因子的概念,比例因子是指除数和被除数之间的比值。
3. 倍数关系:在数量关系中,我们常常会涉及到一个数值是另一个数值的几倍的问题。
如果一个数值是另一个数值的n倍,我们可以用乘法运算来表示,即n*a。
在倍数关系中,我们还可以引入整数倍的概念,即当n是一个整数时,a就是b的整数倍。
4. 倍率关系:倍率关系是指两个数值之间的比值关系。
如果一个数值是另一个数值的m倍,我们可以用除法运算来表示,即a/b=m。
倍率关系在概率、利率等领域有广泛的应用。
二、数量关系的运算在数量关系中,我们常常需要进行各种运算,如加法、减法、乘法、除法等。
这些运算可以帮助我们求解问题,比较大小关系,计算比例关系,等等。
1. 加法运算:加法是指将两个或多个数值相加,得到它们的总和。
在加法运算中,我们需要注意数值的正负、小数、分数等的规则,以确保计算的准确性。
2. 减法运算:减法是指将一个数值从另一个数值中减去,得到它们的差。
在减法运算中,我们也需要注意规则,如负数减法、借位减法等。
3. 乘法运算:乘法是指将两个数值相乘,得到它们的乘积。
乘法运算可以用于计算两个数值的倍数关系,计算比例关系中的比率等。
4. 除法运算:除法是指将一个数值除以另一个数值,得到它们的商。
小学数学数量关系式及公式总汇
小学数学数量关系式及公式总汇数量关系式和公式是数学中用于描述和计算数量关系的基本工具。
在小学阶段,学生主要学习到一些基本的数量关系式和公式,这些内容包括数的读法、数的大小比较、数的四则运算等。
下面是小学数学数量关系式和公式的总汇。
1.数的读法和大小比较-数字的读法:根据数字的位数和数字的读法规则,将数字读出来。
-数字的大小比较:利用大小比较符号(例如“>”、“<”、“=”)比较数字的大小关系。
2.基本的数量关系式-加法关系式:a+b=c,表示两个数相加等于另一个数。
-减法关系式:c-b=a,表示一个数减去另一个数等于第三个数。
-乘法关系式:a×b=c,表示两个数相乘等于另一个数。
-除法关系式:c÷b=a,表示一个数除以另一个数等于第三个数。
3.运算法则和公式-加法法则:a+b=b+a,两个数相加的结果与两个数的顺序无关。
-乘法法则:a×b=b×a,两个数相乘的结果与两个数的顺序无关。
-结合律:(a+b)+c=a+(b+c),三个数相加的结果与加法的顺序无关。
-分配律:a×(b+c)=a×b+a×c,一个数与两个数之和相乘的结果等于这个数分别与两个数相乘的结果之和。
4.等式和不等式-等式:两个表达式之间用等号连接的关系,例如2+3=5,表示等式两边的值相等。
-不等式:两个表达式之间用不等号(例如“>”、“<”、“≥”、“≤”)连接的关系,例如5>2,表示不等式左边的值大于右边的值。
5.平均数的计算- 平均数:若给定 n 个数 a1、a2、..、an,则平均数就是这 n 个数之和除以 n,即(a1 + a2 + ... + an) ÷ n。
-例如,求2、3、4的平均数:(2+3+4)÷3=36.实际问题的数量关系式和公式-比例关系式:a:b=c:d,表示两个比例的比值相等。
-百分数关系式:a%=a÷100,表示一个数的百分之几即是这个数除以100的结果。
(完整版)常用的数量关系式
常用的数量关系式1、速度×时间=路程路程÷速度=时间路程÷时间=速度2、单价×数量=总价总价÷单价=数量总价÷数量=单价3、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率4、加数+加数=和和-一个加数=另一个加数5、被减数-减数=差被减数-差=减数差+减数=被减数6、因数×因数=积积÷一个因数=另一个因数6、被除数÷除数=商被除数÷商=除数商×除数=被除数在有余数的除法中: (被除数-余数)÷除数=商7、总数÷总份数=平均数8、相遇问题相遇路程=速度和×相遇时间或相遇路程=快车速度×相遇时间+慢车速度×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间9、利息=本金×利率×时间10、收入-支出=结余单产量×数量=总产量量的计量在日常生活、生产劳动和科学研究中,经常要进行各种量的计量,我国法定计量单位与国际计量单位一致。
名数;数和单位名称合起来叫做名数。
单名数:只含有一种单位名称的名数叫单名数。
复名数:含有两种或两种以上单位名称的名数叫复名数。
×进率高级单位的名数低级单位的名数÷进率长度单位换算1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米面积单位换算1平方千米=1000000平方米1公顷=10000平方米1平方千米=100公顷1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米体积(容积)单位换算1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米1立方分米=1升1立方厘米=1毫升1升=1000毫升质量单位换算1吨=1000 千克1千克=1000克1千克=1公斤人民币单位换算1元=10角1角=10分1元=100分时间单位换算1世纪=100年1年=12月=4个季度大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒练习:填空(1). 1时30分=()时40分=()时时=()分0.7时=()分平方米=()平方分米125克=()千克2 立方分米=()升=()毫升10 吨=()吨()千克()元=50元8角1分(2).1米∶ 10厘米=()∶()=()∶()100毫升∶1升=()∶()=()∶ ()(3).填上适当的计量单位名称。
数学基本数量关系
数量关系——大学生联盟之家主讲:柳俊杰单位“1”的量×分率=分率所对应的量解题的思路:(1)正确判断单位“1”的量。
找准单位“1”是解题的关键。
①单位“1”的量已知,直接用乘法计算:单位“1”的量×分率=分率所对应的量②单位“1”的量未知,可以把单位“1”的量设为X,然后列方程解,也可以用除法计算:分率所对应的量÷分率=单位“1”的量(2)看量与分率是否对应。
(如果不对应,要求到对应)下列五种基本类型的解题方法:一、求:一个数的百分之几是多少?(1)判断方法:先找带有分率的关系句;再在这句话中找单位“1”;单位“1”的实际量已知。
(2)解题方法:单位“1”的实际量×问话所需的分率= 比较量例题:1、60的40%是多少?60是单位“1”60×40%=242、五(1)班有40人,男生占全班的65%,男生有多少人?本题的单位“1”是全班的人数,也就是40人,男生对应的分率是65%,求男生人数就是求40人的65%。
40×65%=26(人)答:男生有26人3、五(1)班男生有25人,女生是男生的80%,女生多少人?本题的单位“1”是男生的人数,也就是25人,女生对应的分率是80%,求女生人数就是求25人的80%。
25×80%=20(人)答:女生有20人二、已知一个数的百分之几是多少,求这个数。
(1)判断方法:先找带有分率的关系句;再在这句话中找“1”;“1”的实际量未知。
(2)解题方法:对应数量÷对应分率=“1”的实际量或设这个数(单位1)为X,用方程解。
X×对应分率=对应数量例题:1、五(1)班男生有20人,男生是全班的40%,全班有多少人?本题的单位“1”是全班的人数,是未知的,已知全班人数的40%是20人。
20人对应的分率是40%。
20 ÷40% = 50(人)数量对应分率单位“1”的实际量答:全班有50人。
六年级工程问题应用题及答案
1÷[(3/20-1/12x1)÷(3-1)]=30天
4、师徒两人共同加工一批零件,3天加工了总数的1/2。这批零件如果全部由师傅单独加 工,需10天完成。如果全部由徒弟加工,需要多少天才能完成 ?
师徒两人两天加工1/3 那么他们一天加工1/6 而师傅一天加工1/10 所 以徒弟一天加工1/6-1/10=1/15 也就是说徒弟单独做需要15天
工程问题:
一、基本数量关系:工作量=工作效率×时间 二、基本特点:设工作总量为“1”,工效=1/时间 三、基本方法:算术方法、整体思想、组合法、方程方法
类型一:
例1、一项工程,甲、乙两队合作15天完成,若甲队做5天,乙队做3天,只能完成工程的 7
30
乙队单独完成全部工程需要几天?
边讲边练:
1、师、徒二人合做一批零件,12天可以完成。师傅先做了3天,因事外出,由徒弟接着做 1天,共完成任务的 3 ,如果这批零件由师傅单独做,多少天可以完成?
15
类型二:
例题2、一项工程,甲队独做12天可以完成。甲队先做了3天,再由乙队做2天,则能完成这 项工程的 1 。现在甲、乙两队合做若干天后,再由乙队单独做。做完后发现两段所用时
2
间相等。求两段一共用了几天?
边讲边练:
8
1、一项工程,甲队独做15天完成。若甲队先做5天,乙队再做4天能完成这项工程的15 。 现由甲、乙两队合做若干天后,再由乙队单独做。做完后发现,两段时间相等。这两段时 间一共是几天?
18
作的11。这项工作如果由甲、丙合做需几小时完成?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10 ÷(60%-40%)
已知数量10对应的分率
=10÷20%
=50,(人)单位“1”的实际数量
用方程解:
解:设全班有X人。
60%X-40%X=0
20%X=10
X=50
答:全班有50人。
三、条件中有“比多(少)百分之几(几分之几)”,
(一)单位“1”已知,用乘法。
方法:(1)单位1±单位1×n%=比较量
(2)看量与分率是否对应。(如果不对应,要求到对应)
下列五种基本类型的解题方法:
一、求:一个数的百分之几是多少?
(1)判断方法:先找带有分率的关系句;再在这句话中找单位“1”;单位“1”的实际量已知。
(2)解题方法:单位“1”的实际量×问话所需的分率=比较量
例题:
1、60的40%是多少?
60是单位“1”
(2)单位1×(1±n%)=比较量
例题:
1、五(1)班男生有20人,女生比男生多了10 %,女生有多少人?
本题的单位“1”是男生的人数。是已知的。
方法一:20+20×10%
=20+2
=22(人)
方法二:20×(1+10%)
=20×110%
=22(人)
答:女生有22人。
(二)单位“1”是未知的,求单位“1”的量,用除法或用方程。
方法:比较量÷单位1
(提示:在出油率、发芽率、正确率、成活率、出勤率、含盐率等题目中,单位“1”是总数,即整体量。)
例题:
1、100千克的花生,能榨出35千克的花生油,花生的出油率是多少?
35÷100=35%
2、五(1)班有50人,男生有20人,男生占全班的百分之几?
20÷50=40%
X=630÷1.2
X=525
答:去年计划退耕还林525公顷
四、求:“比多(少)百分之几(几分之几)”?
方法:相差数÷单位1
例题:
1、男生有30人,女生有20人,男生比女生多了百分之几?女生比男生少了百分之几?
第一问:女生是单位“1”,男女生人数的差是30—20
(30-20)÷20=50%
相差数单位“1”
25×80%=20(人)
答:女生有20人
二、已知一个数的百分之几是多少,求这个数。
(1)判断方法:先找带有分率的关系句;再在这句话中找“1”;“1”的实际量未知。
(2)解题方法:对应数量÷对应分率=“1”的实际量
或设这个数(单位1)为X,用方程解。
X×对应分率=对应数量
例题:
1、五(1)班男生有20人,男生是全班的40%,全班有多少人?
60×40%=24
2、五(1)班有40人,男生占全班的65%,男生有多少人?
本题的单位“1”是全班的人数,也就是40人,男生对应的分率是65%,求男生人数就是求40人的65%。
40×65%=26(人)
答:男生有26人
3、五(1)班男生有25人,女生是男生的80%,女生多少人?
本题的单位“1”是男生的人数,也就是25人,女生对应的分率是80%,求女生人数就是求25人的80%。
第二问:男生是单位“1”,男女生人数的差是30—20
(30-20)÷30=33.3%
相差数单位“1”
2、电饭锅的原价是200元,现价是160元,电饭锅的价格降低了百分之几?
题目中原价200元是单位“1”,它们的差是200—160
(200-160)÷200=20%
相差数单位“1”
五、是(占、相当于)的百分之几(几分之几)”
方法:数量÷(1±n%)=单位一
方程X×(1±n%)=数量
例题:某地去年退耕还林630公顷,超过计划还林面积的20%,去年计划退耕还林多少公顷?
本题的单位“1”是去年计划还林面积。是要求的问题。
用除法:630÷(1+20%)
=630÷120%
=525(公顷)
用方程:
解:设去年计划退耕还林X公顷。
X×(1+20%)=630
X=50
答:这条公路长50千米
3、五(1)班男生占全班的60%,男生比女生多了10人,全班有多
少人?
本题的单位“1”是全班的人数,是未知的。这里男生占全班的60%,则女生占全班的(1-60%)这里的已知数量10人对应的分率不是60%也不是(1-60%),应当是男生比女生多的人数占全班的分率,也就是60%-(1-60%),列式就是:
基本数量关系:
单位“1”的量×分率=分率所对应的量
解题的思路:
(1)正确判断单位“1”的量。找准单位“1”是解题的关键。
①单位“1”的量已知,直接用乘法计算:单位“1”的量×分率=分率所对应的量
②单位“1”的量未知,可以把单位“1”的量设为X,然后列方程解,也可以用除法计算:分率所对应的量÷分率=单位“1”的量
本题的单位“1”是这条公路的长度,是未知的。在这里已知数量20千米和60%是不对应的,因此要先求出20所对应的分率(1-60%)
20 ÷ (1-60%)
数量对应分率
=20÷40%
=50(千米)单位“1”的实际数量
用方程解:
解:设这条公路长X千米.
X-X×60%=20或X×(1-60%)=20
40%X=20
本题的单位“1”是全班的人数,是未知的,已知全班人数的40%是20人。20人对应的分率是40%。
20 ÷ 40% = 50(人)
数量对应分率单位“1”的实际量
答:全班有50人。
用方程解:
解:设全班有X人
X×40%=20
X=20÷40%
X=50
答:全班有50人。
2、一条公路,已经修了60%,还剩下20千米,这条公路有多长?