人教版第六章 实数单元检测试题
人教版七年级数学下册 第六章 实数。单元测试题精选(Word版附答案)
![人教版七年级数学下册 第六章 实数。单元测试题精选(Word版附答案)](https://img.taocdn.com/s3/m/b1730e4b5bcfa1c7aa00b52acfc789eb172d9e23.png)
人教版七年级数学下册第六章实数。
单元测试题精选(Word版附答案)人教版七年级数学第6章《实数》单元测试题精选完成时间:120分钟满分:150分得分评卷人:______________ 姓名:______________ 成绩:______________一、选择题(本大题10小题,每小题4分,共40分。
每小题给出的四个选项中,只有一个选项是符合题意的,请将该选项的标号填入表格内)题号 1 2 3 4 5 6 7 8 9 10答案 B A D A A C D C B B二、填空题(每题5分,共20分)11.m = 3.n = 1.(m+n)^5 = 243.12.(1) 0.000 521 7 (2) 0.002 284.13.3.14.x = 8.三、解答题(共90分)15.1) x = ±5/3;2) x = 3/5.16.1.17.a = 9.b = -8.3a+b的算术平方根为 5.18.已知 $m=\lfloor 313\rfloor$。
$n=0.13$,求 $m-n$ 的值。
19.如图,计划围一个面积为 $50\text{ m}^2$ 的长方形场地,一边靠旧墙(墙长为 $10$ m),另外三边用篱笆围成,并且它的长与宽之比为 $5:2$。
讨论方案时,XXX说:“我们不可能围成满足要求的长方形场地。
”小军说:“面积和长宽比例是确定的,肯定可以围得出来。
”请你判断谁的说法正确,为什么?解:设长为 $5x$,宽为 $2x$,则面积为 $10x^2$,另一条边长为 $10-5x$,由题意得 $10x^2=(10-5x)\times2x$,解得$x=1$,长为 $5$,宽为 $2$,可以围成满足要求的长方形场地,小军的说法正确。
20.若 $x+3+(y-3)^2=3$,则 $(xy)^{\frac{2015}{3}}$ 等于多少?解:移项得 $(y-3)^2=3-x-3=-x$,所以 $xy=\frac{3-x}{y-3}$,将其代入 $(xy)^{\frac{2015}{3}}$ 得 $\left(\frac{3-x}{y-3}\right)^{\frac{2015}{3}}$,根据乘方的运算法则,得$\left(\frac{3-x}{y-3}\right)^{671}$。
人教版七年级数学下册《第六章实数》单元测试卷-附带答案
![人教版七年级数学下册《第六章实数》单元测试卷-附带答案](https://img.taocdn.com/s3/m/9a5d79bbf80f76c66137ee06eff9aef8941e4881.png)
人教版七年级数学下册《第六章实数》单元测试卷-附带答案(本试卷六个大题,23个小题。
满分120分,考试时间120分钟。
)学校:___________班级:___________姓名:___________考号:___________一、单项选择题(每小题3分,共18分.) 1.在实数√273,227,−√2,4π,0.102030……中,无理数有( )A .1个B .2个C .3个D .4个2.设a=√8,b=√283,c=3,则a ,b ,c 的大小关系为 ( )A .a<b<cB .a<c<bC .b<a<cD .c<b<a3.已知|5-a|+√b +6=0,则(a+b )2023的值为( )A .1B .-1C .±1D .-20234.已知a 的算术平方根是12.3,b 的立方根是-45.6,x 的平方根是±1.23,y 的立方根是456,则x 和y 可分别用含有a ,b 的式子表示为 ( )A .x=a100,y=1000b B .x=100a ,y=-b1000 C .x=a 100,y=-b1000D .x=a 100,y=-1000b5.某长方形的面积为36,且长是宽的3倍,则它的宽的值在如图所示的数轴上表示的大概位置是( )A .点AB .点C .点CD .点D6.在如图所示的方格中,每个小正方形的边长为1,如果把阴影部分剪拼成一个新的正方形,那么新的正方形的边长是 ( )A .2B .3C .√5D √6二、填空题(本大题共6小题,每小题3分,共18分)7.-√7的相反数是 . 8.√181的算术平方根是 .9.若将三个数-√2,√5,√10表示在如图所示的数轴上,则可能被墨迹覆盖的数是三个数中的 .10.写出一个无理数,使它与√2-1的和是有理数,该无理数可以是 . 11.已知√1.513=1.147,√15.13=2.472,√0.1513=0.5325,则√15103的值是 . 12.若√x +53-5=x ,则x 的值为 .三、解答题(本大题共5小题,每小题6分,共30分)13.(1)计算:|-6|+√16. (2)求实数x 的值:3x 2=12.14.计算:√1253+√-10003+√(-34)2. 15.计算:√-83+|√3-2|+√(-3)2.16.已知2a-1的平方根为±3,a+2b-1的立方根为2. (1)求a ,b 的值.(2)求a-2b 的算术平方根.17.已知在图1所示的5×5的方格中有两个边长为2的正方形.(1)将这两个正方形剪拼成一个大正方形,并在图2中画出示意图.(2)求(1)中拼出的大正方形的边长.(结果保留根号)图1 图2四、(本大题共3小题,每小题8分,共24分)18.下面是小贤同学探索√107的近似值的过程:∵面积为107的正方形边长是√107,且10<√107<11∴设√107=10+x,其中0<x<1,画出如图所示的示意图.∵图中S正方形=102+2×10x+x2,S正方形=107∴102+2×10x+x2=107.当x2较小时,省略x2,得20x+100≈107,得到x≈0.35,即√107≈10.35.仿照上述方法,探究√76的近似值.19.如图,已知实数-√5,-1,√5与3,其在数轴上所对应的点分别为点A,B,C,D.(1)求点C与点D之间的距离.(2)记点A与点B之间距离为a,点C与点D之间距离为b,求a-b的值.20.小明现有一块面积为900 cm2的正方形纸板,他准备用这块纸板自制一个书架装饰品,他设计了如下两种方案:方案一:沿着边的方向裁出一块面积为750 cm2的长方形纸板.方案二:沿着边的方向裁出一块面积为750 cm2的长方形纸板,且其长宽之比为3∶2.小明设计的两种方案是否可行?若可行,说明如何裁剪;若不可行,请说明理由.五、解答题(本大题共2小题,每小题9分,共18分)21.阅读材料:∵√4<√5<√9,即2<√5<3∴1<√5-1<2∴√5-1的整数部分为1∴√5-1的小数部分为√5-2.解决问题:(1)填空:√7的小数部分是.(2)已知a是√10的整数部分,b是√10的小数部分,求式子(b-√10)a-1的平方根.22.如图,这是一个无理数筛选器的工作流程图.(1)当x的值为16时,y的值为.(2)是否存在输入有意义的x的值后,却始终输不出y值?如果存在,写出所有满足要求的x的值;如果不存在,请说明理由.(3)如果输入x的值后,筛选器的屏幕显示“该操作无法运行”,请你分析输入的x的值可能是什么情况.六、解答题(本大题共12分)23.依照平方根和立方根的定义,可给出四次方根、五次方根的定义:①如果x4=a(a≥0),那么x叫作a 的四次方根;②如果x5=a,那么x叫作a的五次方根.请依据以下两个定义解决下列问题:(1)求81的四次方根.(2)求-32的五次方根.(3)求式子中x的值:x4=16.参考答案1.C2.B3.B4.D5.C6.D7.√7 8.13 9.√5 10.答案不唯一,如:-√2 11.11.4712.-4或-5或-6 提示:∵√x +53-5=x ∵√x +53=x+5.∵立方根等于本身的数有1,-1,0 ∵x+5=1或x+5=-1或x+5=0 ∵x=-4或x=-6或x=-5. 故答案为-4或-5或-6.13.(1)解:原式=6+4 .......................................................................................................................................1分 =10. ...............................................................................................................................................................3分 (2)解:化简得x 2=4. ........................................................................................................................................2分 因为(±2)2=4,所以x=±2. ...............................................................................................................................3分 14.解:原式=5-10+34=-174. ..............................................................................................................................6分 15.解:原式=-2+2-√3+3 ...............................................................................................................................3分 =3-√3. ...........................................................................................................................................................6分 16.解:(1)∵2a-1的平方根是±3,∵2a-1=9,∵a=5. .........................................................................................1分 ∵a+2b-1的立方根是2 ∵a+2b-1=8,∵5+2b-1=8∵b=2. ............................................................................................................................................................3分 (2)把a=5,b=2代入a-2b得a-2b=5-2×2=1, ........................................................................................................................................4分 a-2b 的算术平方根是1. ...............................................................................................................................6分 17.解:(1)如图所示(答案不唯一,形状一致即可). ........................................................................................3分(2)∵S大正方形=22+22=8∵大正方形的边长为√8(或写成2√2).........................................................................................................6分18.解:∵82=64,92=81而64<76<81∵√64<√76<√81,即8<√76<9∵设√76=8+x,其中0<x<1,画出如图所示的示意图. .................................................................................4分∵图中S正方形=82+2×8x+x2,S正方形=76∵82+2×8x+x2=76.当x2较小时,省略x2,得16x+64≈76,得到x≈0.75∵√76≈8.75....................................................................................................................................................8分19.解:(1)3-√5. ...............................................................................................................................................3分(2)由题意可得,a=|-√5+1|=√5-1,b=3-√5, ..................................................................................................5分∵a-b=√5-1-(3-√5)=2√5-4...........................................................................................................................8分20.解:方案一可行. ........................................................................................................................................1分因为正方形的面积为900 cm2,所以正方形的边长为√900=30(cm).........................................................2分沿着一条边的方向裁一块面积为750 cm2的长方形所以750÷30=25(cm)故宽为25 cm, ...............................................................................................................................................3分因此裁出一个长为30 cm,宽为25 cm的长方形即可................................................................................4分方案二不可行. ..............................................................................................................................................5分理由:设长方形纸板的长为3x cm、宽为2x cm则3x·2x=750,................................................................................................................................................6分x2=125,x=√125所以长方形的长为3√125cm.因为121<125<144,所以11<√125<12所以33<3√125<36,即3√125>30.因此方案二不可行. ......................................................................................................................................8分21.解:(1)√7-2. ...............................................................................................................................................3分提示:∵4<7<9,∵2<√7<3∵√7的整数部分是2∵√7的小数部分是√7-2.(2)∵a是√10的整数部分,b是√10的小数部分∵9<10<16,∵3<√10<4∵a=3,b=√10-3, ............................................................................................................................................5分∵(b-√10)a-1=9...............................................................................................................................................7分∵9的平方根为±3∵(b-√10)a-1的平方根为±3...........................................................................................................................9分22.解:(1)√2. ..................................................................................................................................................3分(2)当x=0或1时,始终输不出y值.因为0和1的算术平方根分别是0和1,一直是有理数.................6分(3)当x<0时,开平方运算无法进行. ............................................................................................................9分23.解:(1)因为(±3)4=81,所以81的四次方根是±3.......................................................................................4分(2)因为(-2)5=-32,所以-32的五次方根是-2.................................................................................................8分(3)因为(±2)4=16,所以x=±2. ......................................................................................................................12分。
【3套精选】人教版初中数学七年级下册第六章《实数》单元测试题(含答案)
![【3套精选】人教版初中数学七年级下册第六章《实数》单元测试题(含答案)](https://img.taocdn.com/s3/m/a448b3fb844769eae109ed96.png)
人教版七年级下册第六章实数单元同步测试一、选择题1、以下说法正确的选项是()A.负数没有立方根B.一个正数的立方根有两个,它们互为相反数C.假如一个数有立方根,则它必有平方根D.不为 0 的任何数的立方根,都与这个数自己的符号同号2、以下语句中正确的选项是()A.-9 的平方根是 -3B.9 的平方根是 3C.9 的算术平方根是3D.9 的算术平方根是 33、以下说法中正确的选项是()A、若 a 为实数,则a0 B 、若 a 为实数,则 a 的倒数为1aC、若 x,y 为实数,且x=y ,则x y D 、若 a 为实数,则a204、估量287 的值在A. 7和8之间B. 6和 7之间C. 3和4之间D. 2和 3之间5、以下各组数中,不可以作为一个三角形的三边长的是()A、 1、 1000、 1000B、 2、 3、5C、32,42,52D、38 , 327 , 3646、以下说法中,正确的个数是()(1)- 64 的立方根是- 4;( 2)49的算术平方根是7 ;(3)1的立方根为1;(4)1是27341的平方根。
16A 、1B 、2C 、3D 、47、一个数的平方根与立方根相等,则这个数是( )A.1B. ±1C.0D. —18、假如 3 2.37 1.333 , 3 23.7 2.872 ,那么 3 0.0237 约等于().A. 13.33B. 28.72C. 0.1333D. 0.28729、若x 1 +( y+2 ) 2=0,则( x+y ) 2017=( )A .﹣ 1B . 1C . 32017D .﹣ 3201710、若 0a 1,则 a, a 2, 1的大小关系是 ()a二、填空题11、 0.0036 的平方根 是,81 的算术平方根是.12、若a 的平方根为 3 ,则 a=.13、假如一个数的平方根是 a+6 和 2a-15 ,则这个数为。
14、比较大小:5 11(填“>”、“<”或“ =”).15、比较大小: 3 10 ________5 ( 填“>”或 “<” ) .16、立方等于它自己的数是。
第6章 实数 人教版数学七年级下册单元测试(含答案)
![第6章 实数 人教版数学七年级下册单元测试(含答案)](https://img.taocdn.com/s3/m/f2a9d856a9114431b90d6c85ec3a87c240288aa3.png)
第六章实数达标检测一、单选题:1.在实数,,,,,3.212212221…中,无理数的个数是()个.A.1B.2C.3D.4【答案】D【分析】无理数常见的三种类型(1)开不尽的方根;(2)特定结构的无限不循环小数;(3)含有π的绝大部分数,如2π.【详解】−1.414是有限小数,是有理数,是无理数,π是无理数,无限循环小数是有理数,是无理数,3.212212221…是无限不循环小数是无理数,故选:D.【点睛】本题主要考查的是无理数的认识,掌握无理数的常见类型是解题的关键.2.下列各式中,正确的是( )A.B.C.D.【答案】A【分析】根据立方根,算术平方根逐项判断即可.【详解】解:A. ,故该选项正确;B. ,故该选项错误;C. ,故该选项错误;D. ,故该选项错误.故选:A.【点睛】本题考查立方根,算术平方根,解题关键是理解立方根与算术平方根的意义.3.下列说法正确的是()A.平方根是B.的平方根是C.平方根等于它本身的数是1和0D.一定是正数【答案】D【分析】A、根据平方根的概念即可得到答案;B、的平方根其实是9的平方根;C、平方根等于它本身的数与算术平方根是它本身的数要分清楚;D、先判断出,再利用算术平方根的性质直接得到答案.【详解】A、是负数,负数没有平方根,不符合题意;B、,9的平方根是,不符合题意;C、平方根等于它本身的数是0,1的平方根是,不符合题意;D、,正数的算术平方根大于0,符合题意.故选:D.【点睛】此题考查了平方根及算术平方根的定义及性质,熟练掌握相关知识是解题关键.4.下列关于的说法中,错误的是()A.是无理数B.C.5的平方根是D.【答案】C【分析】根据无理数的定义,算术平方根的估算,平方根和化简绝对值依次判断即可.【详解】解:A、是无理数,说法正确,不符合题意;B、2<<3,说法正确,不符合题意;C、5的平方根是±,故原题说法错误,符合题意;D、,说法正确, 不符合题意;故选C.【点睛】本题考查了平方根、算术平方根的估算,无理数的定义.注意一个正数的平方根有两个,它们互为相反数.5.计算:-+-的结果是( )A.1B.-1C.5D.-3【答案】D【分析】首先求出各个根式的值,进而即可求解.【详解】-+-,=-3+2-2,=-3.故选D.【点睛】此题主要考查了实数的运算,解题关键是能够求解一些简单的二次根式的加减问题.6.如图,在数轴上表示实数的点可能().A.点P B.点Q C.点M D.点N【答案】C【分析】确定是在哪两个相邻的整数之间,然后确定对应的点即可解决问题.【详解】解:∵9<15<16,∴3<<4,∴对应的点是M.故选:C.【点睛】本题考查实数与数轴上的点的对应关系,解题关键是应先看这个无理数在哪两个有理数之间,进而求解.7.有一个数值转换器,原理如下:当输入的x为4时,输出的y是()A.4B.2C.D.-【答案】C【分析】直接利用规定的运算顺序计算得出答案.【详解】解:4的算术平方根为:=2,则2的算术平方根为:,是无理数.故选C.【点睛】本题考查算术平方根、有理数和无理数定义,正确把握运算顺序是解题关键.8.若与互为相反数,则的值为().A.B.C.D.【答案】A【分析】根据相反数与立方根的性质计算即可得答案.【详解】解:∵与是相反数,∴==∴3x-1=2y-1,整理得:3x=2y,即,故选A.【点睛】本题主要考查立方根的性质,正数的立方根是正数,负数的立方根还是负数,一个数只有一个立方根,熟练掌握立方根的性质是解题关键.9.如图所示,直径为单位1的圆从原点沿着数轴无滑动的逆时针滚动一周到达A点,则A点表示的数是( )A.﹣2π﹣1B.﹣1+πC.﹣1+2πD.﹣π【答案】D【分析】先求出圆的周长π,即得到OA的长,然后根据数轴上的点与实数一一对应的关系即可得到点A表示的数.【详解】∵直径为单位1的圆的周长=π×1=π,∴OA=π,∴点A表示的数为﹣π,故选D.【点睛】本题考查了实数与数轴,解题的关键是熟知数轴上的点与实数一一对应.10.如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是( )A.2B.C.5D.【答案】B【分析】根据三角形数列的特点,归纳出每一行第一个数的通用公式,即可求出第9行从左至右第5个数.【详解】根据三角形数列的特点,归纳出每n行第一个数的通用公式是,所以,第9行从左至右第5个数是=.【点睛】本题主要考查归纳推理的应用,根据每一行第一个数的取值规律,利用累加法求出第9行第五个数的数值是解决本题的关键,考查学生的推理能力.二、填空题:11.的算术平方根是_________;的平方根是____________.【答案】 2【分析】根据算术平方根和平方根的定义求解即可.【详解】解∵,∴的算术平方根是2,的平方根是±3.故答案为:2,±3.【点睛】本题主要考查了算术平方根,平方根的定义,解题的关键在于能够熟练掌握平方根和算术平方根的定义.12._____;______;______;______.【答案】 2 3.5【分析】根据平方根的定义、算术平方根的定义以及立方根的定义,即如果一个数的平方等于a,这个数就叫做a的平方根;一般地,如果一个正数x的平方等于a,即,那么这个正数x叫做a的算术平方根,记作;如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.这就是说,如果,那么x叫做a的立方根,记作:.计算即可.【详解】原式=2;原式;原式;原式;故答案为:2,,,.【点睛】本题主要考查了平方根,算术平方根以及立方根,熟记相关定义是解答本题的关键.13.若将三个数,,表示在数轴上,其中一个数被墨迹覆盖(如图所示),则这个被覆盖的数是______.【分析】根据被覆盖的数的范围求出被开方数的范围,然后即可得解.【详解】设被覆盖的数是,根据图形可得,∴,∴三个数,,中符合范围的是.故答案为:.【点睛】本题考查了实数与数轴的关系,根据数轴确定出被覆盖的数的取值范围是解题的关键.14.若一个正数的平方根是2a+1和﹣a+2,则a=_____,这个正数是_____.【答案】 -3 25【分析】根据已知得出方程2a+1﹣a+2=0,求出即可.【详解】解:∵一个正数的平方根是2a+1和﹣a+2,∴2a+1﹣a+2=0,解得:a=﹣3,即这个正数是[2×(﹣3)+1]2=25,故答案为:﹣3;25.【点睛】本题考查了对平方根的应用,注意:正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根.15.计算:=___.【答案】3【分析】原式利用绝对值的代数意义,以及二次根式性质化简即可得到结果.【详解】解:∵>0,<0,﹣2<0,∴原式=﹣()+|﹣2|=﹣2+3-+2=3,故答案为:3.【点睛】本题考查了绝对值的化简,二次根式的性质,准确掌握性质是解题的关键.16.比较大小:____;____;____;____.【答案】 <, <, >, >【分析】根据实数的比较大小,将根指数不同的根式化为与之相等的同根式比较,利用放缩法比较,利用中间过渡法比较,利用有理数化为根式形式比较.【详解】解:∵,,8<9,∴_<_;∵,即,∴_<___;∵,,∴,∴__>__;∵7=,_>__.故答案为<;<;>;>.【点睛】本题考查实数的大小比较,掌握实数的比较方法,化为同次根式,比较被开方数大小,放缩法比较大小,中间过渡法比较是解题关键.17.若与互为相反数,则________.【答案】2.【分析】根据相反数的概念列式,根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【详解】解:由题意得:,则:a−1=0,b+1=0,解得:a=1,b=−1,则1+1=2,故答案为:2.【点睛】本题考查了非负数的性质.解题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.18.若2+的小数部分为a,5-的小数部分为b,则a+b的值为______.【答案】1【分析】估算确定出a与b的值,即可求出所求.【详解】解:∵4<6<9,∴2<<3,即4<2+<5,2<5-<3,则a=2+-4,b=5--2,则a+b=2+-4+5--2=1.故答案为1.【点睛】本题考查有理数的大小,弄清估算的方法是解本题的关键.19.已知的立方根是3,的算术平方根是4,c是的整数部分,则的平方根为___________.【答案】±4【分析】利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a、b、c的值,代入代数式求出值后,进一步求得平方根即可.【详解】∵5a+2的立方根是3,3a+b-1的算术平方根是4,∴5a+2=27,3a+b-1=16,∴a=5,b=2,∵c是的整数部分,∴c=3,∴∴的平方根是±4.故答案为:±4.【点睛】本题主要考查的知识点是立方根的意义、算术平方根的意义、无理数的估算方法、平方根的意义、代数式求值,解题关键是读懂题意,掌握解答顺序,正确计算即可.20.已知,若,则______;________;_________;若,则_______.【答案】 214000 214【分析】根据平方根、算术平方根、立方根的概念依次求解即可.【详解】解:∵,且,∴,∵,∴,∵,∴,∵且,∴,故答案为:214000,±0.1463,-0.1289,214.【点睛】本题考查了平方根、算术平方根、立方根的概念等,属于基础题,熟练掌握其定义是解决本类题的关键.三、解答题:21.把下列各数分别填入相应的集合中:-(-230),,0,-0.99,1.31,5,,3.14246792…,-.(1)整数集合:{…}(2)非正数集合:{…}(3)正有理数集合:{…}(4)无理数集合:{…}【答案】(1)整数集合:{-(-230),0,5,…};(2)非正数集合:{0,-0.99,-,…};(3)正有理数集合:{-(-230),,1.31,5,…};(4)无理数集合:{,3.142 467 92…,…}【分析】根据整数、非负数、有理数、无理数的定义判断可得答案.【详解】解:根据整数、非负数、有理数、无理数的定义可得:(1)整数集合:{-(-230),0,5,…};(2)非正数集合:{0,-0.99,-,…};(3)正有理数集合:{-(-230),,1.31,5,…};(4)无理数集合:{,3.142 467 92…,…}【点睛】本题主要考查整数、非负数、有理数、无理数的定义.22.求下列各式的值:(1);(2);(3);(4).【答案】(1);(2);(3)0.4;(4)0.3【分析】根据平方根和立方根的定义,即可求解.【详解】解:(1);(2);(3);(4).【点睛】本题主要考查了平方根和立方根的定义,熟练掌握一般地,如果一个数的平方等于,则称是的一个平方根,记作:;如果一个数的立方等于,则称是的一个立方根,记作:是解题的关键.23.比较下列各组数的大小:(1)与6;(2)与;(3)与.【答案】(1);(2);(3)【分析】(1)直接化简二次根式进而比较得出答案;(2)直接估算无理数的取值范围进而比较即可;(3)直接估算无理数的取值范围进而比较即可.【详解】解:(1)∵,∴;(2)∵,∴;(3)∵,∴,∵,∴,∴.【点睛】本题主要考查了实数比较大小,正确估算无理数取值范围是解题关键.24.计算:(1)(2)【答案】(1)(2)9【分析】(1)根据绝对值的意义去绝对值,然后合并即可;(2)先进行开方运算,然后进行加法运算.【详解】解:(1)原式==2-4;(2)原式=-(-2)+5+2=2+5+2=9.25.求下列各式中的x:(1);(2)(3);(4).【答案】(1);(2);(3)或;(4)【分析】(1)先移项,系数化为1,再根据平方根定义进行解答.(2)由得=,再根据立方根定义即可解答.(3)由得:,再开平方后解一元一次方程即可.(4)由得:,再开平方后解一元一次方程即可.【详解】(1)移项得:,系数化为1:,∵,∴.(2)由得:,∵,∴,解得:.(3)由得:,∴或,解得:或.(4)由得:,,∴或,解得:.【点睛】本题考查平方根、立方根的意义,等式的性质,掌握等式的性质和平方根、立方根的求法是正确计算的前提.26.已知的平方根是,的算术平方根是4,求的平方根.【答案】【分析】根据平方根和算术平方根的定义即可求出和的值,进而求出a和b的值,将a和b的值代入即可求解.【详解】解:∵的平方根是,的算术平方根是4,∴=9,=16,∴a=4,b=-1把a=4,b=-1代入得:3×4-4×(-1)=16,∴的平方根为:.【点睛】本题主要考查了算术平方根和平方根,熟练掌握算术平方根和平方根的定义是解题的关键.注意:一个正数有两个平方根,它们互为相反数.27.已知M是m+3的算术平方根,N是n﹣2的立方根.求(n﹣m)2008.【答案】【分析】由M是m+3的算术平方根,N是n﹣2的立方根,建立方程组:,解方程组可得答案.【详解】解:M是m+3的算术平方根,N是n﹣2的立方根.即:解得:,【点睛】本题考查的是算术平方根,立方根的含义,二元一次方程组的解法,乘方符号的确定,掌握以上知识是解题的关键.28.观察下列各式,并用所得出的规律解决问题:(1),,,……,,,……由此可见,被开方数的小数点每向右移动______位,其算术平方根的小数点向______移动______位.(2)已知,,则_____;______.(3),,,……小数点的变化规律是_______________________.(4)已知,,则______.【答案】(1)两;右;一;(2)12.25;0.3873;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)-0.01【分析】(1)观察已知等式,得到一般性规律,写出即可;(2)利用得出的规律计算即可得到结果;(3)归纳总结得到规律,写出即可;(4)利用得出的规律计算即可得到结果.【详解】解:(1),,,……,,,……由此可见,被开方数的小数点每向右移动两位,其算术平方根的小数点向右移动一位.故答案为:两;右;一;(2)已知,,则;;故答案为:12.25;0.3873;(3),,,……小数点的变化规律是:被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)∵,,∴,∴,∴y=-0.01.【点睛】此题考查了立方根,以及算术平方根,弄清题中的规律是解本题的关键.。
人教版七年级下册新第六章实数单元测试题及复习资料
![人教版七年级下册新第六章实数单元测试题及复习资料](https://img.taocdn.com/s3/m/60d057cedbef5ef7ba0d4a7302768e9951e76ed1.png)
第六章《实数》单元测试题一、用心填一填, 一定能填对: (每空1分, 共53分)1.正数的平方根记.... , 正数的正的平方根记.... , 正数的负的平方根记.... .2.如果2=4,则叫作4..... , 记.........3.81的平方根...... , 0.64的算术平方根........5的平方根...... , 0的平方根......... .4.的算术平方根的相反数..... , 平方根的倒数......., 平方根的绝对值...... .5.的相反数的倒数...... , 这个结果的算术平方根.........6.当..... 时, 有意义, 当....时, =0.7.如果=5, 则.......8.如果一个正数的一个平方根是m,则这个数的另一个平方根......, 这个数的算术平方根......, 两个平方根的和........ .9.当>0时, 表示........, 当<0时, 表示........ .10..的负的平方根..... , 的平方根......11.的平方根...... .12.如果则是......, 是的.13.0.064的立方根.....,的立方根.......,3的立方根...... ,0的立方根.........,的立方根..... .14. 是5的 , 一个数的立方根是, 则这个数是 . 15. , , .16. .17. 当 时, 有意义.18、若, 则= , 若, 则= .19. .20. 若是225的算术平方根, 则的立方根是 .21.的平方根.......22.若是的立方根,则的平方根....... 23.25-的相反数是 .24.若, 则 .25.若有意义, 则.....26.比较大小:...., ... ......27.数轴上离原点距离是的点表示的数..... .28.无理数满足.请写出两个你熟悉的无理数.......二、你很聪明, 一定能选对: (每小题1分, 共10分)1. 0.0196的算术平方根是...)A 0.014B 0.14C 14.0-D ±0.142.下列各式正确的是...) A 5)5(2-=- B 15)15(2-=-- C 5)5(2±=- D 2121= 3.下列语句、式子..4是16的算术平方根, 即②4是16的算术平方根, 即③-7是49的算术平方根, 即④7是的算术平方根, 即其中正确的是...)A ①③B ②③C ②④D ①④4.下列说法错误的有.. )①无限小数一定是无理数;②无理数一定是无限小数;③带根号的数一定是无理数; ④不带根号的数一定是有理数.A ①②③B ②③④C ①③④D ①②④5. 的平方根是...)A 9B 3C ±3D ±96. 若一个数的算术平方根与它的立方根相同, 则这个数是...)A 1B 0或1C 0D 非负数7. 下列语句正确的是...). 的立方根是2.. . .. -3是27的负的立方根. C 216125的立方根是±65 D ()21-的立方根是-1. 8.下列说法中错误的是...). 中的可以是正数、负数或零... .中的不可能是负数...数的平方根有两个. . 数的立方根有一个.9.,则的值是...) A87 B 87- C 87± D 512343- 10. 估算的值.....)A 5和6之间B 6和7之间C 7和8之间D 8和9之间三.把下列各数填人相应的集合内: (共6分)整数集合{…}负分数集合{…}正数集合{…}负数集合{…}有理数集合{…}无理数集合{…}四、仔细算一算, 要细心哦: (每题1分, 共8分)1. ...... 2. 3. .4....... 5. ......... 6. ......7.×.....8.五、你能求出下列各式中的吗?(每题1分, 共7分)1....... 2...... 3.4..... 5.求满足≤4的非负整数.6.大于小于的所有整... 7.绝对值小于的所有整数六、解答下列各题: 试试看你是最棒的!(每题4分, 共16分)1.一个正数x的平方根是与,则是多少?2.已知: 实数、满足关系式求: 的值。
(完整版)人教版七年级数学下册第六章实数测试题(打印版7套)
![(完整版)人教版七年级数学下册第六章实数测试题(打印版7套)](https://img.taocdn.com/s3/m/e5cfb3d00740be1e640e9aa4.png)
七年级数学《实数》测试卷、选择题(每小题3分,共30分)1、C 、下列说法不正确的是(丄的平方根是125 50.2的算术平方根是0.04、—9是81的一个平方根D 、—27的立方根是—32、若的算术平方根有意义,a的取值范围是一切数B 、正数、非负数D非零数3、若x是9的算术平方根,则x是(814、在下列各式中正确的是(、.(2)2=—2 B D 、22= 2 5、估计.76的值在哪两个整数之间75 和77 B6、F列各组数中,互为相反数的组是—2 与(2)2 B 、一2 和3 8)C 、一-与227、在一2, 4,‘ 2 , 3.14 ,4个B 、3个3 27,-,这6个数中,无理数共有()5、2个8、F列说法正确的是(数轴上的点与有理数对应、数轴上的点与无理数对应C、数轴上的点与整数—对应 D 、数轴上的点与实数--- 对应9、以下不能构成三角形边长的数组是()2 2A、1, 5, 2 B 、 3 , ,4 , ,5 C 、3, 4, 5 D 、3 , 4 ,5210、若有理数a和b在数轴上所表示的点分别在原点的右边和左边,则拓2- I a—b I等于()A、a B 、一a C 、2b + a D 、2b—a二、填空题(每小题3分,共18分)11、81的平方根是 _________ , 1.44的算术平方根是____________ 。
12、一个数的算术平方根等于它本身,则这个数应是_____________ 。
13、厂8的绝对值是 __________ 。
14、__________________ 比较大小:2" 4匹。
15、________________________________________________________ 若J25.36 = 5.036 , <253.6 = 15.906 ,贝y J253600 = ____________________ 。
新人教版初中数学七年级下册第六章《实数》单元测试及答案
![新人教版初中数学七年级下册第六章《实数》单元测试及答案](https://img.taocdn.com/s3/m/3ab21c7084868762cbaed5c6.png)
人教版七年级数学下册章末质量评估第六章实数人教版七年级数学下册第六章实数单元检测卷一、选择题1. 若一个数的算术平方根等于它的相反数,则这个数是( D )A.0 B. 1C.0或1 D . 0或± 12.以下各式建立的是 ( C )A.=-1B.=± 1C.=- 1D.=± 13.与最靠近的整数是 ( B )A. 0B. 2C. 4D. 54.. 若x- 3 是 4 的平方根,则x 的值为( C)A. 2B.±2C.1或5 D. 165.以下说法中,正确的个数有( A )①两个无理数的和是无理数;②两个无理数的积是有理数;③无理数与有理数的和是无理数;④有理数除以无理数的商是无理数.A.1个B.2个C.3个D.4个6.以下选项中正确的选项是(C)A. 27 的立方根是± 3B.的平方根是± 4C. 9 的算术平方根是3D.立方根等于平方根的数是17.. 用计算器计算44.86 的值为 ( 精准到 0.01)( C )A. 6.69 B.6.7 C.6.70 D.± 6.708.一个底面是正方形的水池,容积是11.52m 3,池深 2m,则水池底边长是( C ) A. 9.25m B.13.52m C.2.4m D.4.2m9. 比较 2, ,的大小 , 正确的选项是( C )A.2<<B.2<<C.<2<D.<<210. 假如一个实数的算术平方根等于它的立方根,那么知足条件的实数有 (C)A .0 个B . 1 个 om]C .2 个D . 3 个二、填空题11. 3 的算术平方根是 ____ 3____.12. (1) 一个正方体的体积是 216cm 3,则这个正方体的棱长是____6________cm ;(2) 表示 _______9_____ 的立方根;13. 已知 a , b 为两个连续整数,且 a< 15<b ,则 a + b 的值为 7 .14. 已知一个有理数的平方根和立方根相同,则这个数是 ______0______ .15.实数 1- 2的相反数是2 - ,绝对值是 2- .113____3, 415. 0________.16.写出 9到 23之间的全部整数: 三、解答题17. 求以下各数的平方根和算术平方根:(1)1.44 ;解: 1.44 的平方根是 ± 1.44 =±1.2 ,算术平方根是1.44 = 1.2.169(2) 289;169169 13 169 13 解: 289的平方根是 ±289= ±17, 算术平方根是289=17.92(3)( - 11) .解: (-9 )2 的平方根是±(-9)2=±9 ,算术平方根是(-9 )2=9.[]1111111111 18.已知一个正数x 的两个平方根分别是3-5m和 m- 7,求这个正数x 的立方根.由已知得 (3 - 5m)+ (m- 7)=0 ,-4m- 4=0,解得: m=-1.因此 3- 5m=8, m- 7=- 8.2因此 x=( ±8) =64.19.计算:(1)2+3 2-5 2;(2)2(7- 1) +7;431(3) 0.36 ×÷;1218(4)|3-2| +| 3-2| -| 2-1| ;34(5)1-0.64 --8+-|7- 3|.25解: (1)原式=(1+3-5)×2=- 2.(2)2(7-1)+7= 27- 2+7=37- 2.2 1(3)原式= 0.6×11÷2人教版七年级数学下册第六章实数章末综合测试卷一.选择题(共10 小题)1.以下式子,表示 4 的平方根的是()A.4B.42C. -4D.±42.若a是无理数,则a 的值能够是()1A.4B. 1C. 2D.93.已知实数a, b 在数轴上对应的点如下图,则以下式子正确的选项是()A. -a<-b B. a+b<0C. |a|<|b|D.a-b>04.实数 3的大小在以下哪两个整数之间,正确的选项是()A.0和1B.1和2C.2和3D.3和 45.若一个正方形的面积为7,它的周长介于两个相邻整数之间,这两个相邻整数是()A.9,10B. 10,11C. 11,12D.12,136.在 -3、 0、 6、 4 这四个数中,最大的数是()A. -3B. 0C. 6D.47.以下说法正确的选项是()A.立方根等于它自己的实数只有0 和 1B .平方根等于它自己的实数是 0C . 1 的算术平方根是± 1D .绝对值等于它自己的实数是正数8.已知 a , b 为两个连续整数,且 a< 13<b,则 a+b 的值为()A .9B . 8C . 7D .69.假如一个实数的平方根与它的立方根相等,则这个数是()A .0B .正实数C .0和1D .110.有以下说法:①实数与数轴上的点一一对应; ②2- 7的相反数是 7-2;③在1和3 之间的无理数有且只有2, 3, 5, 7这4个;④ 2+3x-4x2是三次三项式;⑤绝对值等于自己的数是正数; 此中错误的个数为()A .1B . 2C . 3D .4二.填空题(共 6 小题)11. 4 的算术平方根是 ,-64 的立方根是 .12.若 m 为整数,且 5<m<10,则 m=13.某个正数的平方根是 x 与 y,3x-y 的立方根是 2,则这个正数是 .14.已知实数 a 、 b 都是比 2 小的数,此中 a 是整数, b 是无理数,请依据要求,分别写出一个 a 、 b 的值: a=, b=.15.如图,在数轴上点A ,B 表示的数分别是1,-2,若点B ,C 到点A 的距离相等,则点C所表示的数是.16.如图,长方形内有两个相邻的正方形, 面积分别为 4 和 3 ,那么暗影部分的面积为 .三.解答题(共 7 小题)17.求 x 的值:(1)2x 2-32=0;(2)(x-1)3=2743-64|+(-3)23 12518.计算:-|-27919.已知 2 的平方等于 a,2b-1 是 27 的立方根 , ± c-2表示 3 的平方根.( 1)求 a,b,c 的值;( 2)化简对于 x 的多项式: |x-a|-2(x+b)-c, 此中 x < 4.20.正数 x 的两个平方根分别为 3-a 和 2a+7.( 1)求 a 的值;( 2)求 44-x 这个数的立方根.21.定义新运算:对随意实数a 、b ,都有 a △ b=a 2-b 2,比如: (3△ 2)=32 -22=5,求 (1△ 2)△ 4的值.22.如图甲,这是由8 个相同大小的立方体构成的魔方,整体积为 64cm 3.( 1)这个魔方的棱长为 cm;( 2)图甲中暗影部分是一个正方形ABCD,求这个正方形的边长;(3)把正方形 ABCD 搁置在数轴上,如图乙所示,使得点A 与数1 重合,则 D 在数轴上表示的数为.23.有两个大小完整相同的长方形 OABC 和 EFGH 重合放在一同,边 OA 、 EF 在数轴上, O 为数轴原点(如图 1),长方形 OABC 的边长 OA 的长为 6 个坐标单位.( 1)数轴上点 A 表示的数为.( 2)将长方形 EFGH 沿数轴所在直线水平挪动①若挪动后的长方形 EFGH 与长方形 OABC 重叠部分的面积恰巧等于长方形OABC 面积的1 ,则3挪动后点 F 在数轴上表示的数为.②若出行 EFGH 向左水平挪动后, D 为线段 AF 的中点,求当长方形EFGH 挪动距离 x 为什么值时, D、 E 两点在数轴上表示的数是互为相反数?答案:1.D2.C3.C4.B5.B6.D7.B8.C9.A10.C11.2,-412.313.414.1,15.2+16.2-317. 解:( 1)∵ 2x2-32=0,∴2x2=32,则 x2=16,因此 x=±4 ;(2)∵(x-1)3=27,∴x-1=3,则 x=4.18.2 5解:原式=3-4+3- 3=-2.19.解:( 1)由题意知 a=22=4,2b-1=3 ,b=2;c-2=3, c=5;(2)∵ x<4,∴|x-a|-2 ( x+b)-c=|x-4|-2 ( x+2) -5=4-x-2x-4-5=-3x-5.20. 解:( 1)∵正数 x 的两个平方根是3-a 和 2a+7,∴3-a+ (2a+7)=0,解得: a=-10( 2)∵ a=-10, ∴ 3-a=13, 2a+7=-13. ∴这个正数的两个平方根是± 13,∴这个正数是 169. 44-x=44-169=-125 , -125 的立方根是 -5.21. 解:( 1△ 2)△ 4 =( 12-22)△ 4=( -3)人教版七年级数学下册第六章实数章末能力测试卷一.选择题(共 10 小题)1.计算: 27 =()A .3B .± 3C .3 3D .332 3, π,此中,无理数共有() 2.以下实数 0,,3A .1 个B .2 个C .3 个D .4 个22)3.若 a =4,b =9,且 ab<0,则 a-b 的值为(A . -2B .± 5C .5D .-54.假如一个实数的平方根与它的立方根相等,则这个数是()A .0B .正实数C .0和1D .15.给出以下说法:① -2 是 4 的平方根;②9 的算术平方根是9;③327 =-3;④ 2 的平方根是2 .此中正确的说法有()A .0 个B .1 个C .2 个D .3 个6.以下变形正确的选项是( )A . 17=±4B . 3 27 =±3C . ( 4)2 =-4D . ± 121 =± 119 37.一个数的立方根是 4 ,这个数的平方根是( )A .8B . -8C .± 8D .± 48.实数 a 、 b 在数轴上的对应点的地点如下图,则正确的结论是( ) A . b>-2B . -b<0C . -a>bD .a>-b9.在数 -3,-(-2),0, 9 中,大小在 -1 和 2 之间的数是()A . -3B . -(-2)C .0D . 910.如图将 1、2 、3 、 6 按以下方式摆列.若规定(m,n)表示第 m 排从左向右第n 个数,则 (5,4)与 (15,8)表示的两数之积是( )A .1B . 2C . 6D .3 2二.填空题(共 6 小题)11.4的平方根是, 1 的立方根是,16 的算术平方根是.912. 16 的算术平方根与 -8 的立方根之和是.13.一个正方体,它的体积是棱长为 2cm 的正方体的体积的 8 倍,则这个正方体的棱长是cm .14.对于正实数 a , b 作新定义: a ⊙ b=2 ab, 若 25 ⊙ x 2=4,则 x 的值为 .15.|15 4|=.16.数轴上从左到右挨次有 A 、B 、C 三点表示的数分别为a 、b 、 10, 此中 b 为整数,且满足|a+3|+|b-2|=b-2, 则 b-a=.三.解答题(共7 小题)4 | 364 |( 3)2 3 12517.计算:27918.求以下各式中x 的值:2(1)9x -4=0;(2)(3x-1)3 +64=0.31和 a+13,求这个数的立方根.19.已知一个数的两个平方根分别是220.已知 -8 的平方等于a, b 的平方等于121,c 的立方等于 -27,d 的算术平方根为5.(1)写出 a,b,c,d 的值;(2)求 d+3c 的平方根;(3)求代数式 a-b2+c+d 的值.21.有一个边长为 9cm 的正方形和一个长为 24cm 、宽为 6cm 的长方形,要作一个面积为这两个图形的面积之和的正方形,问边长应为多少厘米?22.已知表示a, b 两个实数的点在数轴上的地点如下图,化简|a-b|+|a+b|.23.阅读达成问题:数轴上,已知点A、 B、 C.此中, C 为线段 AB 的中点:AB 的长为,C 点表示的数(1)如图,点 A 表示的数为 -1,点 B 表示的数为3,则线段为;(2)若点 A 表示的数为 -1,C 点表示的数为2,则点 B。
人教版七年级数学下册《第六章实数》单元练习题(含答案)
![人教版七年级数学下册《第六章实数》单元练习题(含答案)](https://img.taocdn.com/s3/m/93398235ff00bed5b8f31d17.png)
第六章实数一、选择题1.若81x2=49,则x的值是()A.B.C.D. ±72.的算术平方根是()A. ±3B. 3C.D.3.若a<-2<b,且a、b是两个连续整数,则a+b的值是() A. 1B. 2C. 3D. 44.下列说法正确的是()A.-4没有立方根B. 1的立方根为±1C.的立方根是D. 5的立方根为5.下列说法错误的是()A. 5是25的算术平方根B. ±4是64的立方根C. (-4)3的立方根是-4D. (-4)2的平方根是±46.的平方根是()A.B.C.D.7.下列判断中,正确的是()A.有理数是有限小数B.无理数都是无限小数C.无限小数是无理数D.无理数没有算术平方根8.实数,-3.14,0,中,无理数共有()A. 1个B. 2个C. 3个D. 4个二、填空题9.x是16的算术平方根,那么x的算术平方根是______.10.按规律填空:,,,,,,…,________.(第n个数)11.2-的绝对值是________.12.用代数式表示实数a(a>0)的平方根________.13.若a<<b,且a、b是两个连续的整数,则a5=________.14.数轴上有A、B、C三个点,B点表示的数是1,C点表示的数是,且AB=BC,则A点表示的数是________.15.如图,M、N、P、Q是数轴上的四个点,这四个点中最适合表示的点是________.16.已知某数的两个平方根分别是a+3与2a-15,则a=________,这个数是________.三、解答题17.已知某正数的两个平方根分别是m+4和2m-16,n的立方根是-2,求-n-m的算术平方根.18.已知2a-3的平方根是±5,2a+b+4的立方根是3,求a+b的平方根.19.实数a,b,c在数轴上的对应关系如图,化简下面的式子:|a-b|-|c-a|+|b-c|+|a|.20.如图所示,数轴上表示1和对应点分别为A、B,点B到点A的距离等于点C到点O的距离相等,设点C 表示的数为x.(1)请你写出数x的值;(2)求(x-)2的立方根.21.计算:-+.答案解析1.【答案】A【解析】由81x2=49得:x2=,得:x=.2.【答案】D【解析】因为=3,所以的算术平方根是.3.【答案】A【解析】因为的整数部分是2,所以0<-2<1,因为a、b是两个连续整数,所以a=0,b=1,所以a+b=1.4.【答案】D【解析】A.-4的立方根是,故此选项错误;B.1的立方根是1,故此选项错误;C.的立方根是,故此选项错误;D.5的立方根是,故此选项正确.5.【答案】B【解析】因为=5,=4,=-4,=±4,所以选项B错误.6.【答案】B【解析】因为=,所以的平方根是.7.【答案】B【解析】A.有理数是有限小数和无限循环小数,所以A选项错误;B.无理数是无限不循环小数,都是无限小数,所以B选项正确;C.无限小数分为无限循环小数和无限不循环小数,而无限不循环小数是无理数,所以C选项错误;D.负数没有算术平方根,而无理数可分为正无理数和负无理数,其中正无理数有算术平方根,所以D选项错误.8.【答案】A【解析】是无理数,-3.14,0,是有理数.9.【答案】2【解析】因为42=16,所以16的算术平方根是4,即x=4,因为22=4,所以x的算术平方根是2.10.【答案】【解析】因为=,=,=,=,=,……所以第n个数为=.11.【答案】-2【解析】2-的绝对值是-2.12.【答案】【解析】用代数式表示实数a(a>0)的平方根为:.13.【答案】32【解析】因为4<6<9,所以2<<3,由a<<b,且a、b是两个连续的整数,得到a=2,b=3,则a5=25=32.14.【答案】2-【解析】设A点表示x,因为B点表示的数是1,C点表示的数是,且AB=BC,所以1-x=-1.解得:x=2-.15.【答案】P【解析】因为4<7<9,所以2<<3,所以在2与3之间,且更靠近3.16.【答案】449【解析】由题意得:a+3+(2a-15)=0,解得:a=4,所以(a+3)2=72=49.17.【答案】解:因为某正数的两个平方根分别是m+4和2m-16,可得:m+4+2m-16=0,解得:m=4,因为n的立方根是-2,所以n=-8,把m=4,n=-8代入-n-m=8-4=4,所以-n-m的算术平方根是2.【解析】首先根据平方根的性质,求出m值,再根据立方根的性质求出n,代入-n-m,求出这个值的算术平方根即可.18.【答案】解:因为2a-3的平方根是±5,所以2a-3=52=25,解得a=14;因为2a+b+4的立方根是3,所以2a+b+4=33=27,所以2×14+b+4=27,解得b=-5;所以a+b=14-5=9,所以a+b的平方根是±3.【解析】首先根据2a-3的平方根是±5,可得2a-3=52=25,据此求出a的值;然后根据2a+b+4的立方根是3,可得2a+b+4=33=27,据此求出b的值;最后求出a+b的值,进而求出a+b的平方根.19.【答案】解:因为由图可知,a<b<0<c,|a|>c>|b|,所以a-b<0,c-a>0,b-c<0,所以原式=b-a-(c-a)+(c-b)-a=b-a-c+a+c-b-a=-a.【解析】根据各点在数轴上的位置判断出a、b、c的符号及绝对值的大小,再去绝对值符号,合并同类项即可.20.【答案】解:(1)因为点A、B分别表示1,,所以AB=-1,即x=-1;(2)因为x=-1,所以(x-)2=(-1-)2=(-1)2=1,故(x-)2的立方根为1.【解析】(1)根据数轴上两点间的距离求出AB之间的距离即为x的值;(2)把x的值代入所求代数式进行计算即可.21.【答案】解:原式=0.5-+=0.5-1.5=-1.【解析】原式利用平方根及立方根定义计算即可得到结果.。
七年级数学下册《第六章 实数》单元测试卷及答案-人教版
![七年级数学下册《第六章 实数》单元测试卷及答案-人教版](https://img.taocdn.com/s3/m/4092e726a200a6c30c22590102020740bf1ecd64.png)
七年级数学下册《第六章 实数》单元测试卷及答案-人教版学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.) 1.已知m 2=16,则m 的值是( ) A .4 B .8 C .±4 D .±82.下列结论正确的是( )A 的平方根是 4±B .18- 没有立方根C .立方根等于本身的数是0D =3.下列说法正确的有( )①无理数是无限小数;②无限小数是无理数;③开方开不尽的数是无理数;④两个无理数的和一定是无理数;⑤无理数的平方一定是有理数. A .1个 B .2个 C .3个 D .4个 4.下列各数中,界于5和6之间的数是( )A B C D5.已知a ,b 分别是6﹣的整数部分和小数部分,那么2a ﹣b 的值是( )A B .C .D .以上答案都不对6.若一个正数的平方根是 3m + 和 215m - , n 的立方根是-2,则 2n m -+ 的算术平方根是( ) A .0 B .4 C .-4 D .4± 7.如图,如果数轴上A 、B 两点分别对应实数a 、b ,那么下列结论正确的是( )A .a +b >0B .ab >0C .a -b >0D .|a|-|b|>08.如下表:被开方数a 的小数点位置移动和它的算术平方根的小数点位置移动规律符合一定的规律,若,且 则被开方数a 的值为( )A 二、填空题:(本题共5小题,每小题3分,共15分.) 9.填空.(1)-27的立方根与的平方根的和是(2)若 =-2,则x=10的整数部分为2,则满足条件的奇数a 有 个.11.一个正数的两个平方根分别为3a +和42a -,则这个正数为 .12.数轴上有两个点A 和B ,点A 1,点B 与点A 相距3个单位长度,则点B 所表示的实数是 .13.根据图中的程序,当输入x 为64时,输出的值是 .三、解答题:(本题共5题,共45分)14153-16.计算:(1;(2)4+(-3)2×2;17.数 a , b , c 在数轴上的位置如图所示(1)化简: a c c b a b +--++ ;(2)用“<”把 a , b , -b , c 连接起来.18.已知2的平方等于a ,2b-1是27的立方根,± 表示3的平方根. (1)求a ,b ,c 的值;(2)化简关于x 的多项式:|x-a|-2(x+b )-c ,其中x <4.参考答案:1.C 2.D 3.B 4.D 5.A 6.B 7.C 8.C 9.(1)0或-6 (2)-8 10.9 11.100123432 13.2-14.解:原式5434=-+-124=-15.解:原式723=-+ 8=. 16.(1)解:原式=9-4=5(2)解:原式=4+9×2-3=4+18-3=19 17.(1)解:由图象可知c <b <0<a ,且|c|>|a|>|b| 原式= ()()()a c c b a b -++-++ = a c c b a b --+-++ =0(2)解:因为|a|>|b| ∴a b >-即 c b b a <<-< . 18.(1)解:由题意知a=22=4 ∵327∴b=2∵±c 2- 表示3的平方根 ∴c-2=3 ∴c=5;(2)解:∵x <4 ∴|x-a|-2(x+b )-c =|x-4|-2(x+2)-5 =4-x-2x-4-5 =-3x-5。
人教版七年级下册数学第六章实数 单元测试训练卷含答案
![人教版七年级下册数学第六章实数 单元测试训练卷含答案](https://img.taocdn.com/s3/m/9a73b231b94ae45c3b3567ec102de2bd9605de93.png)
22.方案一可行.
因为正方形胶合板的面积为 4 m2,所以正方形胶合板的边长为 4=2(m).
如图所示,沿着 EF 裁剪,因为 BC=EF=2 m,所以只要使 BE=CF=3÷2=1.5(m)就满足条
件.
方案二不可行.理由如下: 设所裁长方形装饰材料的长为 3x m、宽为 2x m. 则 3x·2x=3,
11. 1- 2 的相反数是_______,绝对值是_________.
12. 我们可以利用计算器求一个正数 a 的算术平方根,其操作方法是按顺序进行按键输入:
3 a = .小明按键输入 3 1 6 = 显示结果为 4,则他按键输入
3 1 6 0 0 = 显示结果应为____. 13. 计算:| 2- 3|+ 2=________. 14. 一个正数的平方根分别是 x+1 和 x-5,则 x=________. 15. 有两个正方体纸盒,已知小正方体纸盒的棱长是 5 cm,大正方体纸盒的体积比小正方体 纸盒的体积大 91 cm3,则大正方体纸盒的棱长是__ __cm. 16. 现有两个大小不等的正方体茶叶罐,大正方体茶叶罐的体积为 1 000 cm3,小正方体茶叶 罐的体积为 125 cm3,将其叠放在一起放在地面上(如图),则这两个茶叶罐的最高点 A 到地 面的距离是________cm.
()
A.2 倍 B.3 倍
C.4 倍 D.5 倍
7. 实数 a,b 在数轴上对应点的位置如图所示,则化简 (a-1)2- (a-b)2+b 的结果
是( )
A.1
B.b+1
C.2a
D.1-2a
8. 制作一个表面积为 30 cm2 的无盖正方体纸盒,则这个正方体纸盒的棱长是( )
A. 6 cm B. 5 cm
人教版数学七年级下册-第六章《实数》单元测试(含答案)
![人教版数学七年级下册-第六章《实数》单元测试(含答案)](https://img.taocdn.com/s3/m/5e4d1da5915f804d2a16c118.png)
第六章《实数》单元测试姓名:班级:座号:一、单选题(共8题;共32分)1. 9的算术平方根是()A. 81B. ±81C. 3D. ±32. -8的立方根是()A. B. C.D.3.在,1.01001000100001,2 ,3.1415,- ,,0,,这些数中,无理数共有()A. 2个B. 3个C. 4个D. 5个4.下列说法中错误的是( )A. 0的算术平方根是0B. 36的平方根为±6C.D. -4的算术平方根是-25.已知a2=25, =7,且|a+b|=a+b,则a﹣b的值为()A. 2或12B. 2或﹣12C. ﹣2或12D. ﹣2或﹣126.,则a与b的关系是()A. B. a与b相等 C. a与b互为相反数 D. 无法判定7.下列计算或说法:①±3都是27的立方根;②=a;③的立方根是2;④=±4,其中正确的个数是()A. 1个B. 2个C. 3个 D. 4个8.下列六种说法正确的个数是()①无限小数都是无理数;②正数、负数统称实数;③无理数的相反数还是无理数;④无理数与无理数的和一定还是无理数;⑤无理数与有理数的和一定是无理数;⑥无理数与有理数的积一定仍是无理数.A. 1B. 2C. 3 D . 4二、填空题(共24分)1.算术平方根等于本身的实数是________.2.﹣125的立方根是________.3.比较大小:﹣π________﹣3.14(选填“>”、“=”、“<”).4.某正数的平方根是n+l和n﹣5,则这个数为________.5.已知一个正数的两个平方根是x﹣7和3x﹣1,则x的值是________.6.方程(x﹣1)3﹣8=0的根是 ________7.若=2﹣x,则x的取值范围是________;若3+ 的小数部分是m,3﹣的小数部分是n,则m+n=________.三、求下列各式中x的值(共10分)(1)(2x﹣1)2=9 (2)2x3﹣6=四、解答题(共10分)1.已知某数的平方根是a+3和2a﹣15,求1﹣7a的立方根。
人教版七年级下学期数学《第6章 实数》 单元练习卷 包含答案
![人教版七年级下学期数学《第6章 实数》 单元练习卷 包含答案](https://img.taocdn.com/s3/m/a2b5992327d3240c8547ef02.png)
第6章实数一.选择题(共10小题)1.|1﹣|=()A.1﹣B.﹣1C.1+D.﹣1﹣2.已知+=0,则a2的值为()A.4B.1C.0D.﹣43.估计的值应在()A.5和6之间B.6和7之间C.7和8之间D.8和9之间4.对于﹣2,下列说法中正确的是()A.它是一个无理数B.它比0小C.它不能用数轴上的点表示出来D.它的相反数为+25.下列各组数中,互为相反数的一组是()A.与B.与C.与D.与6.若a2=4,b2=9,且ab<0,则a﹣b的值为()A.﹣2B.±5C.5D.﹣57.若|x+2|+=0,则的值为()A.5B.﹣6C.6D.368.若|a|=4,,且a+b<0,则a﹣b的值是()A.1,7B.﹣1,7C.1,﹣7D.﹣1,﹣7 9.已知﹣1<x<0,那么在x、2x、、﹣x2中最小的数是()A.﹣x2B.2x C.D.x10.实数a满足,则a的值不可能是()A.3B.C.2.8D.2二.填空题(共4小题)11.若x2=144,则x=,若y3=﹣64,则y=.12.已知m是的整数部分,n是的小数部分,则m2﹣n=.13.已知+=0,则x+2=.14.如图,数轴上表示1、的对应点分别为点A、点B,若点A是BC的中点,则点C表示的数为.三.解答题(共6小题)15.把下列各数填入表示它所在的数集的大括号:﹣2.4,π,2.008,﹣,﹣0.,0,﹣10,﹣1.1010010001….整数集合:{…};负分数集合:{…};正数集合:{…};无理数集合:{…}.16.在数轴上表示下列各数:,π,(﹣1)2017,的平方根,﹣|﹣3|,,并将其中的无理数用“<”连接.17.已知实数a,b,c满足:b=+4,c的平方根等于它本身.求的值.18.如图,是一个数值转换器,原理如图所示.(1)当输入的x值为16时,求输出的y值;(2)是否存在输入的x值后,始终输不出y值?如果存在,请直接写出所有满足要求的x值;如果不存在,请说明理由.(3)输入一个两位数x,恰好经过两次取算术平方根才能输出无理数,则x=.19.给出定义如下:若一对实数(a,b)满足a﹣b=ab+4,则称它们为一对“相关数”,如:,故是一对“相关数”.(1)数对(1,1),(﹣2,﹣6),(0,﹣4)中是“相关数”的是;(2)若数对(x,﹣3)是“相关数”,求x的值;(3)是否存在有理数数m,n,使数对(m,n)和(n,m)都是“相关数”,若存在,求出一对m,n的值,若不存在,说明理由.20.如图是一块正方形纸片.(1)如图1,若正方形纸片的面积为1dm2,则此正方形的对角线AC的长为dm.(2)若一圆的面积与这个正方形的面积都是2πcm2,设圆的周长为C圆,正方形的周长为C正,则C圆C正(填“=”或“<”或“>”号)(3)如图2,若正方形的面积为16cm2,李明同学想沿这块正方形边的方向裁出一块面积为12cm2的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由?参考答案一.选择题(共10小题)1.B.2.A.3.B.4.A.5.C.6.B.7.C.8.D.9.B.10.A.二.填空题(共4小题)11.±12,﹣4.12.12﹣.13.5.14.2﹣.三.解答题(共6小题)15.解:整数集合:{0,﹣10,…};负分数集合:{﹣2.4,﹣,﹣0.,…};正数集合:{π,2.008,…};无理数集合{π,﹣1.1010010001…,…}.16.解:如图所示:将其中的无理数用“<”连接为<π.17.解:∵﹣(a﹣3)2≥0,∴a=3把a代入b=+4得:∴b=4∵c的平方根等于它本身,∴c=0∴=.18.解:(1)=4,=2,则y=;(2)x=0或1时.始终输不出y值;(3)答案不唯一.x=[()2]2=25或x=[()2]2=25或x=[()2]2=49或x =[()2]2=64.故答案是:25或36或49或64.19.解:(1)∵1﹣1≠1×1+4,因此一对实数(1,1)不是“相关数”,∵﹣2﹣(﹣6)≠(﹣2)×(﹣6)+4,因此一对实数(﹣2,﹣6)不是“相关数”,∵0﹣(﹣4)=0×(﹣4)+4,因此一对实数(0,﹣4)是“相关数”,故答案为:(0,﹣4);(2)由“相关数”的意义得,x﹣(﹣3)=﹣3x+4解得,x=答:x=;(3)不存在.若(m,n)是“相关数”,则,m﹣n=mn+4,若(n,m)是“相关数”,则,n﹣m=nm+4,若(m,n)和(n,m)都是“相关数”,则有m=n,而m=n时,m﹣n=0≠mn+4,因此不存在.20.(1)解:由已知AB2=1,则AB=1,由勾股定理,AC=;或根据AC2=1,可得AC=,故答案为:(2)由圆面积公式,可得圆半径为,周长为,正方形周长为4.;故答案为:<(3)不能;由已知设长方形长和宽为3xcm和2xcm∴长方形面积为:2x•3x=12∴解得x=∴长方形长边为3>4∴他不能裁出.。
人教版七年级数学下册- 第六章 《实数》 单元试卷(含答案)
![人教版七年级数学下册- 第六章 《实数》 单元试卷(含答案)](https://img.taocdn.com/s3/m/77b9799cfe4733687f21aa7f.png)
第六章《实数》单元测试姓名:班级:座号:一、单选题(共8题;共32分)1.√83的算术平方根是()A. 2B. ±2C. √2D. ±√22.下列各等式中成立的是()A. ﹣√(−2)2=﹣2B. ﹣√3.6=﹣0.6C. √(−13)(−13)=﹣13D. √36=±63.下列4个数:√9、227、π、(√3)0,其中无理数是()A. √9B. 227C. πD. (√3)04.若x,y为实数,且|x+2|+√y−2=0,则(x y)2011的值为()A. 1B. -1C. 2D. -25.若0<a<1,则a,1a,a2从小到排列正确的是( )A. a2<a<1a B. a < 1a< a2 C. 1a<a< a2 D. a < a2 <1a6.已知a是实数√10的整数部分,b是√10的小数部分,那么a﹣b值是()A. 3+ √10B. 3﹣√10C. √10﹣3D. 6﹣√107.下列说法正确的是( )A. √16的平方根是±4B. −√6表示6的算术平方根的相反数C. 任何数都有平方根D. ﹣a2一定没有平方根8.下列命题:①若a<1,则(a﹣1)√11−a=﹣√1−a;②平行四边形既是中心对称图形又是轴对称图形;③√9的算术平方根是3;④如果方程ax2+2x+1=0有两个不相等的实数根,则实数a<1.其中正确的命题个数是()A. 1个B. 2个C. 3个D. 4个二、填空题(共8题;共20分)1.写出一个大于1且小于2的无理数________ .2.计算(﹣4)0+√9﹣(12)﹣1的结果是________ .3.比较大小:−√29________ −5.4(填<或=或>)4.比较大小:−√503________ −4(填“ <”或“ =”或“ >”).5.已知a,b为两个连续的整数,且a< √57<b,则a+b=________.6.√49=________;1﹣√33的相反数为________;| √3﹣2|=________.7.在实数√5,0,π,3.1415,﹣3,√4,2.1010010001…(相邻两个1之间0的个数逐次加1)中,无理数有________个.8.设边长为3的正方形的对角线长为a,下列关于a的四种说法:①a是无理数;②a可以用数轴上的一个点来表示;③3<a<4;④a是18的算术平方根.其中,所有正确说法的序号是________.三、计算题(共15分)(1)(−12)−5+(−14)−(−39);(2)−9÷3+(12−23)×12+32;(3)−42−√−13+√(−3)2−|1−√2|.四、解答题(共8分)1.已知x+1的平方根为±3,y-1的立方根为3,求x+y的平方根。
最新人教版初中数学七年级下册第六章《实数》单元检测试题(解析版)
![最新人教版初中数学七年级下册第六章《实数》单元检测试题(解析版)](https://img.taocdn.com/s3/m/2dd6ae22a8114431b80dd817.png)
人教版七年级数学下册第六章实数单元检测题一、选择题(每题3分,共30分)1.-3的绝对值是()A.33B.-33 C. 3 D.132.下列实数中无理数是()A. 1.21B.3-8 C.3-32 D.2273. 下列说法:①一个数的平方根一定有两个;②一个正数的平方根一定是它的算术平方根;③负数没有立方根.其中正确的个数有()A.0个B.1个C.2个D.3个4.下列说法正确的是 ()A.无限小数是无理数B.不循环小数是无理数C.无理数的相反数还是无理数D.两个无理数的和还是无理数5.如果x2=2,有;当x3=3时,有,想一想,从下列各式中,能得出的是()A.x2=±20 B.x20=2 C.x±20=20 D.x3=±206.下列选项中正确的是()A.27的立方根是±3 B.的平方根是±4C.9的算术平方根是3 D.立方根等于平方根的数是17.下列四个数中的负数是()A.﹣22 B.2)1( C.(﹣2)2 D.|﹣2|8无理数一定是无限不循环小数②算术平方根最小的数是零③﹣6是(﹣6)2的一个算术平方根④﹣=其中正确的是()A.①②③B.②③④C.①②④D.①③④9. 已知3≈1.732,30≈5.477,那么300 000≈()A.173.2 B.±173.2 C.547.7 D.±547.7二、填空题(本大题共8小题,共32分)1.比较大小:(填写“<”或“>”)2.观察分析下列数据,寻找规律:0,3,6,3,12,15,18,…,那么第13个数据是________.3.已知实数m满足+=,则m=.4.已知,a23<b,且a、b是两个连续的整数,则|a+b|= .5.若的值在两个整数a与a+1之间,则a=.6.如图,正方形ABCD被分成两个小正方形和两个长方形,如果两个小正方形的面积分别是6cm2和2cm2,那么两个长方形的面积和为cm2.7.请写出一个大于8而小于10的无理数:.8.数轴上有A、B、C三个点,B点表示的数是1,C点表示的数是,且AB=BC,则A点表示的数是.三、解答题(38分)1.(6分)已知实数a,b满足a-14+|2b+1|=0,求b a的值.2.(6分)已知,求的算术平方根.3.(6分)计算:(1)9×(﹣32)+4+|﹣3|(2) .4.(本题8分)将下列各数填在相应的集合里.π,3.141 592 6,-0.456,3.030 030 003…(每两个3之间依次多1个0).有理数集合:{ …}; 无理数集合:{ …}; 正实数集合:{ …}; 整数集合:{ …}.5.(12分)数学活动课上,张老师说:“2是无理数,无理数就是无限不循环小数,同学们,你能把2的小数部分全部写出来吗?”大家议论纷纷,晶晶同学说:“要把它的小数部分全部写出来是非常难的,但我们可以用(2-1)表示它的小数部分.”张老师说:“晶晶同学的说法是正确的,因为1<2<4,所以1<2<2,所以2的整数部分是1,将这个数减去其整数部分,差就是小数部分.”亮亮说:“既然如此,因为2<5<3,所以5的小数部分就是(5-2)了.”张老师说:“亮亮真的很聪明.”接着,张老师出示了一道练习题:已知8+3=x+y,其中x是一个整数,且0<y<1,请你求出2x+(3-y)2 019的值.参考答案:人教版初中数学七年级下册第六章《实数》检测卷一、选择题(每题3分,共30分)1. 下列各数中,没有平方根的是( )A. |-4|B. -(-4)C. (-4)2D. -422. 1的值应在( )A. 3和4之间B. 4和5之间C. 5和6之间D. 6和7之间3. 下列说法中,错误的是( )A. ±2B. 是无理数C. 是有理数D.2是分数4. 下列说法中,错误的是( )A. -4是16的一个平方根B. 17是(-17)2的算术平方根C. 164的算术平方根是18D. 0.9的算术平方根是0.035. 下列语句写成式子正确的是( )A. 4是16的算术平方根,即±4B. 4是(-4)2 4C. ±4是16的平方根,即 4D. ±4是16±46. 如图,数轴上点 N 表示的数可能是 ( )A. 10B. 5C. 3D. 27. 在实数0,π,227( ) A. 1个 B. 2个 C. 3个 D. 4个 8. a ,b ,c 在数轴上的对应点如图所示,则|a -b |+|b +c |-|a +c |的值为 ( )A. 2b +2cB. b +cC. 0D. a +b +c 9. 下列四个结论中,正确的是 ( )A. 32<52B. 54<32C. 32<2 D. 1<5410. 一个自然数的算术平方根是a ,则下一个自然数的平方根是 ( ) A. a 2+1 B. ±(a 2+1) C. a 2+1 D. ±a 2+1二、填空题(每题3分,共24分)11.的算术平方根为 ,(-3)2的平方根是 .12. -338的立方根是 ,的立方根是 . 13. 在-5,- 3,0,π,6中,最大的一个数是 .14. =9,则x = ;若x 2=9,则x = .15. 若a <b 且a ,b 为连续正整数,则a 2+b 2的平方根为 .16. 5.70618.044=.17. =3,|b|=5,且ab<0,则a+b的算术平方根为.18. 请你辨别:下图依次是面积为1,2,3,4,5,6,7,8,9的正方形,其中边长是有理数的正方形有个,边长是无理数的正方形有个.三、解答题(共66分)19. (8分)计算下列各题.(1) |3-|2;(2)20. (8分)求下列各式中的x的值.(1)(x+2)3+27=0;(2)2(2x+1)2-12=0.21. (9分)已知3既是x-1的算术平方根,又是x-2y+1的立方根,求x2-y2人教版七年级数学下册章末质量评估第六章实数人教版七年级数学下册第六章实数单元检测卷一、选择题1.若一个数的算术平方根等于它的相反数,则这个数是( D )A.0 B.1C.0或1 D.0或±12.下列各式成立的是( C )A. =-1B. =±1C. =-1D. =±13.与最接近的整数是( B )A.0 B.2 C.4 D.54..若x-3是4的平方根,则x的值为( C )A.2 B.±2 C.1或5 D.165.下列说法中,正确的个数有( A )①两个无理数的和是无理数;②两个无理数的积是有理数;③无理数与有理数的和是无理数;④有理数除以无理数的商是无理数.A.1个 B.2个 C.3个 D.4个B.的平方根是±4A.6.69 B.6.7 C.6.70 D.±6.708.一个底面是正方形的水池,容积是11.52m3,池深2m,则水池底边长是( C )A.9.25m B.13.52m C.2.4m D.4.2m9. 比较2, , 的大小,正确的是(C )A. 2< <B. 2< <C. <2<D. < <210.如果一个实数的算术平方根等于它的立方根,那么满足条件的实数有(C)A.0个B.1个om]C.2个D.3个二、填空题11.3的算术平方根是____3____.12.(1)一个正方体的体积是216cm 3,则这个正方体的棱长是____6________cm ;(2)表示_______9_____的立方根;13.已知a ,b 为两个连续整数,且a<15<b ,则a +b 的值为 7 . 14.已知一个有理数的平方根和立方根相同,则这个数是______0______.15.实数1-216.写出39到23之间的所有整数:____3,4 15.0________. 三、解答题17.求下列各数的平方根和算术平方根:(1)1.44;解:1.44的平方根是± 1.44=±1.2,算术平方根是 1.44=1.2. (2)169289; 解:169289的平方根是±169289=±1317,算术平方根是169289=1317.(3)(-911)2.解:(-911)2的平方根是±(-911)2=±911,算术平方根是(-911)2=911.[] 18.已知一个正数x 的两个平方根分别是3-5m 和m -7,求这个正数x 的立方根. 由已知得(3-5m)+(m -7)=0,-4m -4=0, 解得:m=-1.所以3-5m=8,m -7=-8. 所以x=(±8)2=64. 所以x 的立方根是4. 19.计算:(1)2+3 2-5 2;(2)2(7-1)+7;(3)0.36×4121÷318;(4)|3-2|+|3-2|-|2-1|;(5)1-0.64-3-8+425-|7-3|.解:(1)原式=(1+3-5)×2=- 2.(2)2(7-1)+7=2 7-2+7=3 7-2.(3)原式=0.6×211÷12。
【3套精选】人教版初中数学七年级下册第六章《实数》单元综合练习卷(含答案解析)
![【3套精选】人教版初中数学七年级下册第六章《实数》单元综合练习卷(含答案解析)](https://img.taocdn.com/s3/m/8f11539f6429647d27284b73f242336c1eb93061.png)
人教版七年级数学下册第六章实数质量评估试卷 一、选择题(每小题3分,共30分)1.-3的绝对值是( )A.33 B.-33C. 3 D.1 32.在实数-227,9,π,38中,是无理数的是( )A.-227 B.9C.π D.3 83.下列四个数中,最大的一个数是( ) A.2 B. 3 C.0 D.-24.某正数的平方根为a5和4a-255,则这个数为( )A.1 B.2C.4 D.95.下面实数比较大小正确的是( )A.3>7 B.3> 2C.0<-2 D.22<36.实数a在数轴上的位置如图1所示,则下列说法不正确的是( )图1A.a的相反数大于2 B.a的相反数是2C.|a|>2 D.2a<07.如图2,在数轴上点A表示的数为3,点B表示的数为6.2,点A,B之间表示整数的点共有( )图2A.3个 B.4个C.5个 D.6个8.|5-6|=( )A.5+ 6 B .5- 6C .-5- 6D .6- 59.若x-1+(y+1)2=0,则x-y的值为( )A.-1 B.1C.2 D.310. 已知3≈1.732,30≈5.477,那么300 000≈( ) A.173.2 B.±173.2C.547.7 D.±547.7二、填空题(每小题4分,共20分)11.比较大小:3-2 > -23(填“>”“<”或“=”).12.计算:9-14+38-|-2|=.13.3-5的相反数为,4-17的绝对值为的绝对值为,绝对值为327的数为 .14.用“*”表示一种新运算:对于任意正实数a,b,都有a*b=b+1,例如8*9=+1=4,那么15*196= .15.观察分析下列数据,寻找规律:0,3,6,3,12,15,18,…,那么第13个数据是个数据是.三、解答题(共70分)16.(6分)求下列各式的值.求下列各式的值.(1)252-242×32+42;(2)2014-130.36-15×900;(3)|a -π|+|2-a |(2<a <π).(精确到0.01)17.(8分)求下列各式中x 的值.的值.(1)x 2-5=4; (2)(x -2)3=-0.125.18.(8分)已知实数a ,b 满足a -14+|2b +1|=0,求b a 的值.的值.19.(8分)芳芳同学手中有一块长方形纸板和一块正方形纸板,其中长方形纸板的长为3 dm ,宽为2 dm ,且两块纸板的面积相等.,且两块纸板的面积相等.(1)求正方形纸板的边长(结果保留根号).(2)芳芳能否在长方形纸板上截出两个完整的,且面积分别为2 dm 2和3 dm 2的正方形纸板?判断并说明理由.(提示:2≈1.414,3≈1.732人教版七年级下册 第六章 实数 单元同步测试一、选择题1、下列说法正确的是(、下列说法正确的是( ) A.A.负数没有立方根负数没有立方根负数没有立方根B.B.一个正数的立方根有两个,它们互为相反数一个正数的立方根有两个,它们互为相反数一个正数的立方根有两个,它们互为相反数C.C.如果一个数有立方根,则它必有平方根如果一个数有立方根,则它必有平方根如果一个数有立方根,则它必有平方根D.D.不为不为0的任何数的立方根,都与这个数本身的符号同号的任何数的立方根,都与这个数本身的符号同号 2、下列语句中正确的是(、下列语句中正确的是() A.-9的平方根是的平方根是-3 -3 -3 B.9的平方根是3 3 C.9的算术平方根是3± D.9的算术平方根是3 3、下列说法中正确的是(、下列说法中正确的是( )A 、若a 为实数,则0³aB 、若、若a 为实数,则a 的倒数为a1C 、若x,y 为实数,且x=y x=y,则,则y x = D、若a 为实数,则02³a 4、估算728-的值在的值在A. 7和8之间之间B. 6和7之间之间C. 3和4之间之间D. 2和3之间之间 5、下列各组数中,不能作为一个三角形的三边长的是(、下列各组数中,不能作为一个三角形的三边长的是( )A 、1、10001000、、1000 1000B 、2、3、5C 、2225,4,3 D 、38,327,3646、下列说法中,正确的个数是(、下列说法中,正确的个数是( )(1)-)-6464的立方根是-的立方根是-44;(;(22)49的算术平方根是7±;(;(33)271的立方根为31;(;(44)41是161的平方根。
人教版七年级数学下册第6章《实数》单元测试题
![人教版七年级数学下册第6章《实数》单元测试题](https://img.taocdn.com/s3/m/b8f0a93f7275a417866fb84ae45c3b3567ecdd89.png)
《实数》单元测试卷一、选择题(24分)1.在﹣,﹣,0,1四个数中,最大的数是()A.1B.0C.﹣D.﹣2.9的平方根为()A.3B.﹣3C.±3D.3.下列各式正确的是()A.(﹣3)2=6B.C.﹣14=﹣1D.4.下列各数中是无理数的是()A.﹣3B.πC.9D.﹣0.115.估算的值在()A.1与2之间B.2与3之间C.3与4之间D.4与5之间6.下列各数:3.141592,,0.16,﹣π,2.010010001…(相邻两个1之间0的个数逐次加1),,,是无理数的有()个.A.5B.6C.3D.47.下列说法正确的是()A.无限小数都是无理数B.8没有立方根C.数轴上的所有点与有理数一一对应D.平方根等于本身的数是08.如图,在数轴上,点A表示,点B表示5.1,则A,B之间表示整数的点共有()A.6个B.5个C.4个D.3个二、填空题(28分)9.请你写出两个无理数,使其和为,这两个无理数可以是.10.已知下列8个数:﹣3.14,24,+17,,,﹣0.01,0,﹣12,其中整数有个,负分数有个,非负数有个.11.已知一个x平方根是a+3和3a﹣15,则这个正数x=.12.若|3x﹣2y+1|+=0,则xy的算术平方根是.13.如果=1.264,=2.723,那么=.14.已知﹣1<a<,则a可取的整数值为.15.比较大小:π+1 4.142;﹣1 1.6;+3 0;0.61.16.如果的小数部分为a,的整数部分为b,小数部分为c,则a﹣b+c﹣的值为(精确到0.01).17.对于实数x,我们规定[X)表示大于x的最小整数,如[4)=5,[)=2,[﹣2.5)=﹣2,现对64进行如下操作:64[)=9[)=4[)=3[[)=2,这样对64只需进行4次操作后变为2,类似地,只需进行4次操作后变为2的所有正整数中,最大的是.三、解答题(49分)18.把下列各数填入相应的括号里.,,0,,,﹣0.5,3.1415,0.02002000,﹣0.2121121112⋯(相邻两个2之间1的个数逐次加1).(1)正实数:{…};(2)负实数:{…};(3)有理数:{…};(4)无理数:{…}.19.计算:(1).(2).(3).20.计算.(1)已知(x﹣2)2=16,求x的值.(2)已知3(x+1)3=81,求x的值.21.已知2b﹣2a的立方根是﹣2,4a+3b的算术平方根是3.(1)求a、b的值;(2)求5a﹣b的平方根.22.观察下列两组算式,解答问题:第一组:=2,=2,、,=0第二组:=2,=3,=9,=16,=0(1)由第一组可得结论:对于任意实数a,=.(2)由第二组可得结论:当a≥0时,=.(3)利用(1)和(2)的结论计算:=,=.23.我们知道:任意一个有理数与无理数的和为无理数,任意一个不为零的有理数与一个无理数的积为无理数,而零与无理数的积为零.由此可得:如果ax+b=0,其中a,b为有理数,x为无理数,那么a=0且b=0.运用上述知识,解决下列问题:(1)如果(a﹣2)+b+3=0,其中a,b为有理数,那么a=,b=.(2)如果a﹣(1﹣)b=5,其中a,b为有理数,求a+2b的值.。
人教版七年级下数学《第六章实数》单元测评卷含答案
![人教版七年级下数学《第六章实数》单元测评卷含答案](https://img.taocdn.com/s3/m/b420fec8240c844769eaee64.png)
8. A.x C. ������
导学号 14154046 若
1 B.������
0<x<1,则 x,x2,������
, ������
中,最小的数是( )
D.x2
9.实数 a,b 在数轴上的位置如图所示,则|a|-|b|可化简为( )
A.a-b C.a+b
B.b-a D.-a-b
2 10.已知:|a|=5, ������ =7,且|a+b|=a+b,则 a-b 的值为( )
21.(8 分)已知
������ + 7
=0,求实数 a,b 的值,并求出 ������的整数部分和小数部分.
22.(10 分)利用平方根(或立方根)的概念解下列方程: (1)9(x-3)2=64; (2)(2x-1)3=-8.
23.(10 分)如图是一个体积为 25 cm3 的长方体工件,其中 a,b,c 表示的是它的长、宽、高,且 a∶b∶c=2∶1∶3,请你求出这个工件的表面积(结果精确到 0.1 ).
8
当 2m-6=-(m-2)时,解得 m=3.(4) 所以这个数为
8 2 3 2m-6=2× -6=-3.(5) 2
综上可得,这个数为 2 或-3.(6) 王老师看后说,小张的解法是错误的.你知道小张错在哪里吗?为什么?请予以改正.
第六章测评答案解析
(时间:120 分钟 满分:120 分)
一、选择题(每小题 3 分,共 30 分) 1.下列各数中最大的数是(B ) A.3 B.2 3 C.π D.-3
第六章测评
(时间:120 分钟 满分:120 分)
一、选择题(每小题 3 分,共 30 分) 1.下列各数中最大的数是( ) A.3 B.2 3 C.π D.-3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版第六章 实数单元检测试题一、选择题1.已知1x ,2x ,…,2019x 均为正数,且满足()()122018232019M x x x x x x =++++++,()()122019232018N x x x x x x =++++++,则M ,N 的大小关系是( )A .M N <B .M N >C .MND .M N ≥2.下列说法错误的是( )A .a 2与(﹣a )2相等B 互为相反数CD .|a|与|﹣a|互为相反数3.若2a a a -=,则实数a 在数轴上的对应点一定在( ) A .原点左侧B .原点或原点左侧C .原点右侧D .原点或原点右侧4.我们规定一种运算“★”,其意义为a ★b =a 2﹣ab ,如2★3=22﹣2×3=﹣2.若实数x 满足(x +2)★(x ﹣3)=5,则x 的值为( ) A .1B .﹣1C .5D .﹣55.0=,则x y +的值为( )A .10B .-10C .-6D .不能确定 6.下列各式的值一定为正数的是 ( )A .aB .2aC .2(100)a -D .20.01a +7.定义(),2f a b ab =,()22(1)g m m m =-+,例如:()1,22124f =⨯⨯=,()()2112111g -=---+=,则()1,2g f ⎡⎤-⎣⎦的值是( )A .-4B .14C .-14D .18.0,0.121221222,132π,3这6个实数中有理数的个数是( ) A .2B .3C .4D .59.给出下列说法:①﹣0.064的立方根是±0.4;②﹣9的平方根是±3;=﹣;④0.01的立方根是0.00001,其中正确的个数是( )A .1个B .2个C .3个D .4个10.下列实数中,..1π073,,,无理数的个数有( ) A .1个 B .2个 C .3个 D .4个二、填空题11.已知M 是满足不等式a <<N 是满足不等式x ≤22的最大整数,则M +N 的平方根为________.12.估计512-与0.5的大小关系是:512-_____0.5.(填“>”、“=”、“<”) 13.对于这样的等式:若(x +1)5=a 0x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5,则﹣32a 0+16a 1﹣8a 2+4a 3﹣2a 4+a 5的值为_____.14.按一定规律排列的一列数依次为:2-,5,10-,17,26-,,按此规律排列下去,这列数中第9个数及第n 个数(n 为正整数)分别是__________. 15.按下面的程序计算:若输入n=100,输出结果是501;若输入n=25,输出结果是631,若开始输入的n 值为正整数,最后输出的结果为656,则开始输入的n 值可以是________. 16.高斯函数[]x ,也称为取整函数,即[]x 表示不超过x 的最大整数. 例如:[]2.32=,[]1.52-=-. 则下列结论:①[][]2.112-+=-;②[][]0x x +-=;③若[]13x +=,则x 的取值范围是23x ≤<;④当11x -≤<时,[][]11x x ++-+的值为0、1、2.其中正确的结论有_____(写出所有正确结论的序号). 17.定义新运算a ☆b =3a ﹣2b ,则(﹣2)☆1=_____. 18.实a 、b 在数轴上的位置如图所示,则化简()2a b b a ++-=___________.19.有若干个数,第1个数记作1a ,第2个数记为2a ,第3个数记为3a ,……,第n 个数记为n a ,若1a =13,从第2个数起,每个数都等于1与前面的那个数的差的倒数,则2019a =_____.20.已知实数x 的两个平方根分别为2a +1和3-4a ,实数y 的立方根为-a 2x y +的值为______.三、解答题21.观察下列各式:111122-⨯=-+;11112323-⨯=-+; 11113434-⨯=-+; …(1)你发现的规律是_________________.(用含n 的式子表示; (2)用以上规律计算:1111223⎛⎫⎛⎫-⨯+-⨯+ ⎪ ⎪⎝⎭⎝⎭11113420172018⎛⎫⎛⎫-⨯+⋅⋅⋅+-⨯ ⎪ ⎪⎝⎭⎝⎭22.(1)观察下列式子: ①100222112-=-==; ②211224222-=-==; ③322228442-=-==; ……根据上述等式的规律,试写出第n 个等式,并说明第n 个等式成立; (2)求01220192222++++的个位数字.23.概念学习规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2, (﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把n aa a a a ÷÷÷÷个(a≠0)记作a ,读作“a 的圈n 次方”.初步探究(1)直接写出计算结果:2③=________,1)2-(⑤=________; (2)关于除方,下列说法错误的是________A .任何非零数的圈2次方都等于1;B .对于任何正整数n ,1=1;C .3④=4③D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数. 深入思考我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(﹣3)④=________;5⑥=________;1)2-(⑩=________.(2)想一想:将一个非零有理数a 的圈n 次方写成幂的形式等于________; (3)算一算:()3242162÷+-⨯④.24.阅读理解.∵4<5<9,即2<5<3. ∴1<5﹣1<2∴5﹣1的整数部分为1, ∴5﹣1的小数部分为5﹣2.解决问题:已知a 是17﹣3的整数部分,b 是17﹣3的小数部分. (1)求a ,b 的值;(2)求(﹣a )3+(b +4)2的平方根,提示:(17)2=17.25.已知2a -的平方根是2±,33a b --的立方根是3,整数c 满足不等式81c c <<+. (1)求,,a b c 的值.(2)求2232a b c ++的平方根.26.在已有运算的基础上定义一种新运算⊗:x y x y y ⊗=-+,⊗的运算级别高于加减乘除运算,即⊗的运算顺序要优先于+-⨯÷、、、运算,试根据条件回答下列问题. (1)计算:()53⊗-= ; (2)若35x ⊗=,则x = ;(3)在数轴上,数x y 、的位置如下图所示,试化简:1x y x ⊗-⊗;(4)如图所示,在数轴上,点A B 、分别以1个单位每秒的速度从表示数-1和3的点开始运动,点A 向正方向运动,点B 向负方向运动,t 秒后点A B 、分别运动到表示数a 和b 的点所在的位置,当2a b ⊗=时,求t 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】 设122018p x x x =+++,232018q x x x =++,然后求出M -N 的值,再与0进行比较即可. 【详解】解:根据题意,设122018p x x x =+++,232018q x x x =++,∴1p q x -=, ∴()()12201823201920192019()M x x x x x x p q x pq p x =++++++=•+=+•; ()()12201923201820192019()N x x x x x x p x q pq q x =++++++=+•=+•;∴20192019()M N pq p x pq q x -=+•-+•=2019()x p q •-=201910x x •>; ∴M N >; 故选:B. 【点睛】本题考查了比较实数的大小,以及数字规律性问题,解题的关键是熟练掌握作差法比较大小.2.D解析:D 【分析】利用平方运算,立方根的化简和绝对值的意义,逐项判断得结论. 【详解】 ∵(﹣a )2=a 2, ∴选项A 说法正确;a =a ,互为相反数,故选项B 说法正确;互为相反数,故选项C 说法正确; ∵|a|=|﹣a|, ∴选项D 说法错误. 故选:D . 【点睛】此题主要考查了绝对值的意义,平方运算及立方根的化简.掌握立方根的化简和绝对值的意义是解决本题的关键.3.B解析:B 【分析】根据非正数的绝对值是它的相反数,可得答案. 【详解】解:由a-|a|=2a,得|a|=-a,故a是负数或0,∴实数a在数轴上的对应点在原点或原点左侧故选:B.【点睛】本题考查了实数与数轴,利用了非负数的绝对值,非正数与数轴的关系:非正数位于原点及原点的左边.4.B解析:B【分析】根据a★b=a2-ab可得(x+2)★(x-3)=(x+2)2-(x+2)(x-3),进而可得方程:(x+2)2-(x+2)(x-3)=5,再解方程即可.【详解】解:由题意得:(x+2)2-(x+2)(x-3)=5,x2+4x+4-(x2-x-6)=5,x2+4x+4-x2+x+6=5,5x=-5,解得:x=-1,故选:B.【点睛】此题主要考查了实数运算,以及解方程,关键是正确理解所给条件a★b=a2-ab所表示的意义.5.C解析:C【分析】根据算术平方根的非负性求出x,y,然后再求x+y即可;【详解】解:由题意得:x-2=0,y+8=0∴x=2,y=-8∴x+y=2+(-8)=-6故答案为C.【点睛】本题考查了算术平方根的非负性,掌握若干个非负数之和为0,则每个非负数都为0是解答本题的关键.6.D解析:D【分析】任何数的绝对值都是一个非负数.非负数(正数和0)的绝对值是它本身,非正数(负数和0)的绝对值是它的相反数.任何数的平方都是大于等于0的. 【详解】选项A 中,当a=0,则a =0; 选项B 中,当a=0,则a²=0; 选项C 中,当a=100,则(a-100)²=0; 选项D 中,无论a 取何值,a²+0.01始终大于0. 故选:D. 【点睛】此题考查绝对值的非负性,算术平方根的非负性,解题关键在于掌握其性质.7.C解析:C 【分析】根据(),2f a b ab =,()22(1)g m m m =-+,代入求解即可.【详解】 解(),2f a b ab =,()22(1)g m m m =-+∴()1,2g f ⎡⎤-⎣⎦=()()244241-14g -=---+= 故选C. 【点睛】本题考查了新定义的有理数运算,利用(),2f a b ab =,()22(1)g m m m =-+,代入求值是解答本题的关键.8.C解析:C 【分析】根据有理数的定义:整数和分数统称为有理数即可判断. 【详解】0是整数,是有理数,0.121221222是有限小数,是有理数,13是分数,是有理数,,是有理数,2π是含π的数,是无理数,3含开方开不尽的数,是无理数,综上所述:有理数有0,0.121221222,134个, 故选C.本题考查了实数的定义,解答此题要明确有理数和无理数的概念和分类.有理数是指有限小数和无限循环小数,无理数是无限不循环小数.9.A解析:A【分析】利用平方根和立方根的定义解答即可.【详解】①﹣0.064的立方根是﹣0.4,故原说法错误;②﹣9没有平方根,故原说法错误;④0.000001的立方根是0.01,故原说法错误,其中正确的个数是1个,故选:A.【点睛】此题考查平方根和立方根的定义,熟记定义是解题的关键.10.B解析:B【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.由此分析判断即可.【详解】解:∵=-24=,故是有理数;..0.23是无限循环小数,可以化为分数,属于有理数;17属于有理数;0是有理数;π2个.故选:B.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有如下三种形式:①含π的数,如π,2π等;②开方开不尽的数;③像0.1010010001…这样有一定规律的无限不循环小数.二、填空题11.±2【分析】首先估计出a的值,进而得出M的值,再得出N的值,再利用平方根的定义得出答案.解:∵M 是满足不等式-的所有整数a 的和, ∴M=-1+0+1+2=2, ∵N 是满足不等式x≤的解析:±2 【分析】首先估计出a 的值,进而得出M 的值,再得出N 的值,再利用平方根的定义得出答案. 【详解】解:∵M a <<a 的和,∴M =-1+0+1+2=2,∵N 是满足不等式x ≤22的最大整数, ∴N =2,∴M +N =±2. 故答案为:±2. 【点睛】此题主要考查了估计无理数的大小,得出M ,N 的值是解题关键.12.> 【解析】∵ . , ∴ , ∴ ,故答案为>.解析:> 【解析】∵10.52-=-=20-> , ∴0> , ∴0.5> ,故答案为>.13.-1. 【分析】根据多项式的乘法得出字母的值,进而代入解答即可. 【详解】解:(x+1)5=x5+5x4+10x3+10x2+5x+1, ∵(x+1)5=a0x5+a1x4+a2x3+a3x2+解析:-1. 【分析】根据多项式的乘法得出字母的值,进而代入解答即可. 【详解】解:(x +1)5=x 5+5x 4+10x 3+10x 2+5x +1, ∵(x +1)5=a 0x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5,∴a 0=1,a 1=5,a 2=10,a 3=10,a 4=5,a 5=1,把a 0=1,a 1=5,a 2=10,a 3=10,a 4=5,a 5=1代入﹣32a 0+16a 1﹣8a 2+4a 3﹣2a 4+a 5中, 可得:﹣32a 0+16a 1﹣8a 2+4a 3﹣2a 4+a 5=﹣32+80﹣80+40﹣10+1=﹣1, 故答案为:﹣1 【点睛】本题考查了代数式求值,解题的关键是根据题意求得a 0,a 1,a 2,a 3,a 4,a 5的值.14.; 【解析】观察这一列数,各项的符号规律是奇数项为负,偶数项为正,故有, 又因为,,,,,所以第n 个数的绝对值是, 所以第个数是,第n 个数是,故答案为-82,. 点睛:本题主要考查了有理数的混合运解析:82-;2(1)(1)n n -⋅+ 【解析】观察这一列数,各项的符号规律是奇数项为负,偶数项为正,故有(1)n-,又因为2211=+,2521=+,21031=+,21741=+,,所以第n 个数的绝对值是21n +,所以第9个数是92(1)(91)82-⋅+=-,第n 个数是2(1)(1)nn -⋅+,故答案为-82,2(1)(1)n n -⋅+.点睛:本题主要考查了有理数的混合运算,规律探索问题通常是按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律,揭示的式子的变化规律,常常把变量和序列号放在一起加以比较,就比较容易发现其中的规律.15.131或26或5. 【解析】试题解析:由题意得,5n+1=656, 解得n=131, 5n+1=131, 解得n=26, 5n+1=26, 解得n=5.解析:131或26或5. 【解析】试题解析:由题意得,5n+1=656, 解得n=131, 5n+1=131, 解得n=26,5n+1=26,解得n=5.16.①③.【分析】根据[x]表示不超过x的最大整数,即可解答.【详解】由题意可知[-2.1]=-3,[1]=1,-3+1=-2,故①正确;②中,当x取小数时,显然不成立,例如x取2.6,[x]解析:①③.【分析】根据[x]表示不超过x的最大整数,即可解答.【详解】由题意可知[-2.1]=-3,[1]=1,-3+1=-2,故①正确;②中,当x取小数时,显然不成立,例如x取2.6,[x]+[-x]=2-3=-1,故②错误;③中,若[x+1]=3,则x+1要满足x+1≥3,且x+1<4,解得x≥2,且x<3,故③正确;④中,当-1≤x<1时,在取值范围内验证此式的值为1,2.故④错误;所以正确的结论是①③.17.﹣8【分析】原式利用题中的新定义计算即可得到结果.【详解】解:根据题中的新定义得:(﹣2)☆1=3×(−2)−2×1=−6−2=−8,故答案为−8.【点睛】此题考查了有理数的混合运算,解析:﹣8【分析】原式利用题中的新定义计算即可得到结果.【详解】解:根据题中的新定义得:(﹣2)☆1=3×(−2)−2×1=−6−2=−8,故答案为−8.【点睛】此题考查了有理数的混合运算,弄清题中的新定义是解本题的关键.18.【解析】由数轴得,a+b<0,b-a>0,|a+b|+=-a-b+b-a=-2a.故答案为-2a.点睛:根据,推广此时a 可以看做是一个式子,式子整体大于等于0,把绝对值变为括号;式子整体小解析:2a -【解析】由数轴得,a +b <0,b-a >0,=-a-b +b-a =-2a.故答案为-2a.点睛:根据,0,0a a a a a ≥⎧=⎨-<⎩,推广此时a 可以看做是一个式子,式子整体大于等于0,把绝对值变为括号;式子整体小于0,把绝对值变为括号,前面再加负号.最后去括号,化简.19.-2【分析】根据1与它前面的那个数的差的倒数,即,即可求得、、……,然后根据得到结果出现的规律,即可确定.【详解】解:=……所以数列以,,三个数循环,所以==故答案为:.【解析:-2【分析】根据1与它前面的那个数的差的倒数,即111n n a a +=-,即可求得2a 、3a 、4a ……,然后根据得到结果出现的规律,即可确定2019a .【详解】解:1a =132131213a ==-312312a ==--411123a ==+ …… 所以数列以13,32,2-三个数循环, 20193673÷=所以2019a =3a =2-故答案为:2-.【点睛】通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.20.3【分析】利用平方根、立方根的定义求出x 与y 的值,即可确定的值.【详解】解:根据题意的2a+1+3-4a=0,解得a=2,∴,,故答案为:3.【点睛】本题考查了平方根和立方根,熟解析:3【分析】利用平方根、立方根的定义求出x 与y的值.【详解】解:根据题意的2a+1+3-4a=0,解得a=2,∴25,8x y ==-,∴=,故答案为:3.【点睛】 本题考查了平方根和立方根,熟练掌握相关的定义是解题的关键.三、解答题21.(1)111111n n n n -⨯=-+++;(2)20172018- 【分析】 (1)由已知的等式得出第n 个式子为111111n n n n -⨯=-+++; (2)根据规律将原式中的积拆成和的形式,运算即可.【详解】 (1)∵第1个式子为111122-⨯=-+ 第2个式子为11112323-⨯=-+ 第3个式子为11113434-⨯=-+ ……∴第n 个式子为111111n n n n -⨯=-+++ 故答案为:111111n n n n -⨯=-+++ (2)由(1)知:原式1111111(1)()()()2233420172018=-++-++-++⋅⋅⋅+-+ 112018=-+20172018=- 【点睛】本题考查有理数的混合运算以及数字规律,分析题目,找出规律是解题关键.22.(1)11222n n n ---=,理由见解析;(2)01220192222++++的个位数字为5.【分析】(1)找规律,发现等式满足11222n n n ---=,证明,即可.(2)利用公式11222n n n ---=,分别表示每个项,利用相消法,计算结果,即可.【详解】(1)11222n n n ---=理由是:122n n -- 11122n n +--=-11222n n --=⨯-()1212n -=-⨯12n -=(2)原式=()()()()1021322020201922222222-+-+-++-2020022=-()505421=-505161=-因为6的任何整数次幂的个位数字为6.所以505161-的个位数字为5,即01220192222++++的个位数字为5. 【点睛】本题考查了与数字运算有关的规律题,仔细观察发现规律是解题的关键.23.初步探究(1)12;—8;(2)C ;深入思考(1)213;415;28;(2)21n a -;(3)—1. 【解析】试题分析:理解除方运算,利用除方运算的法则和意义解决初步探究,通过除方的法则,把深入思考的除方写成幂的形式解决(1),总结(1)得到通项(2).根据法则计算出(3)的结果.试题解析:概念学习(1)2③=2÷2÷2=,(﹣)⑤=(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣)=1÷(﹣)÷(﹣)÷(﹣)=(﹣2)÷(﹣)÷(﹣)=﹣8故答案为,﹣8;(2)A 、任何非零数的圈2次方就是两个相同数相除,所以都等于1; 所以选项A 正确; B 、因为多少个1相除都是1,所以对于任何正整数n ,1ⓝ都等于1; 所以选项B 正确;C 、3④=3÷3÷3÷3=,4③=4÷4÷4=,则 3④≠4③; 所以选项C 错误;D 、负数的圈奇数次方,相当于奇数个负数相除,则结果是负数,负数的圈偶数次方,相当于偶数个负数相除,则结果是正数.所以选项D 正确;本题选择说法错误的,故选C ;深入思考:(1)(﹣3)④=(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)=1×()2=;5⑥=5÷5÷5÷5÷5÷5=1×()4=;(﹣)⑩=(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣)=1×2×2×2×2×2×2×2×2=28; 故答案为,,28.(2)a ⓝ=a ÷a ÷a…÷a=1÷a n ﹣2=. (3):24÷23+(﹣8)×2③=24÷8+(﹣8)×=3﹣4=﹣1.【点睛】本题是有理数的混合运算,也是一个新定义的理解与运用;一方面考查了有理数的乘除法及乘方运算,另一方面也考查了学生的阅读理解能力;注意:负数的奇数次方为负数,负数的偶数次方为正数,同时也要注意分数的乘方要加括号,对新定义,其实就是多个数的除法运算,要注意运算顺序.24.(1)a =1,b 17﹣4;(2)±4.【分析】(1)根据被开饭数越大算术平方根越大,可得a ,b 的值,(2)根据开平方运算,可得平方根.【详解】解:(1161725<,∴417<<5,∴117﹣3<2,∴a =1,b 174;(2)(﹣a )3+(b+4)2=(﹣1)3+17﹣4+4)2=﹣1+17=16,∴(﹣a )3+(b+4)2的平方根是:16±4.【点睛】本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出417<5是解题关键.25.(1)6a =,8b =-,2c =;(2)12±【分析】(1)利用平方根,立方根定义以及估算方法确定出a ,b ,c 的值即可;(2)把a ,b ,c 的值代入计算即可求出所求.【详解】解:(1)根据题意得:a−2=4,a−3b−3=27,23<<,∴a=6,b=−8,c=2;(2)原式=2×62+(-8)2+23=72+64+8=144,144的平方根是±12.∴2232a b c ++的平方根是±12.【点睛】此题考查了估算无理数的大小,平方根以及立方根的定义,熟练掌握运算法则是解本题的关键.26.(1)5;(2)5或1;(3)1+y-2x ;(4)t 1=3;t 2=53 【分析】(1)根据题中的新运算列出算式,计算即可得到结果;(2)根据题中的新运算列出方程,解方程即可得到结果;(3)根据题中的新运算列出代数式,根据数轴得出x 、y 的取值范围进行化简即可;(4)根据A 、B 在数轴上的移动方向和速度可分别用代数式表示出数a 和b ,再根据(2)的解题思路即可得到结果.【详解】解:(1)5(3)5(3)(3)5⊗-=--+-=;(2)依题意得:335-+=x , 化简得:3=2-x ,所以32x -=或32x -=-,解得:x =5或x =1;(3)由数轴可知:0<x <1,y <0,所以1x y x ⊗-⊗ = (1)()-+--+x x y x x=1-++--x x y x x=12+-y x(4)依题意得:数a =−1+t ,b =3−t ;因为2a b ⊗=, 所以(1)(3)32-+--+-=t t t , 化简得:241-=-t t ,解得:t =3或t =53, 所以当2a b ⊗=时,t 的值为3或53. 【点睛】本题主要考查了定义新运算、有理数的混合运算和解一元一次方程,根据定义新运算列出关系式是解题的关键.。