最新超临界萃取技术及其应用
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
15
1.等温变压工艺。
图2中(a)流程为等温变压工艺,即超临界C02的萃取 和分离在同一温度下进行。萃取完后,通过节流降 低操作压力进入分离系统。此时C02流体对被萃取 物的溶解力逐步减小,从而使被萃取物溶解出来得 以分离,该工艺由于没有温度的变化,从而操作简 单,可实现对高沸点、热敏性、易氧化物质的接近 常温的萃取,特别适合于从天然产物中提香料,辛 香料和药用有效成份。
超临界萃取技术及其应用
一、超临界C02萃取技术的基本原理
按热力学原理,当物质所处的温度T大于其固有的临界 温度Tc,且同时压力P大于其固有的临界压力Pc时,该 物质即处于超临界状态。在此状态下,物质的气态和 液态相界消失,故称为超临界状态。这是一种可压缩 的高密度流体,是通常所说的气、液、固以外的第四 态,它的分子间力很小,类似气体。它的密度可以很 大,接近液体,所以这是一个气液不分的状态,没有 相界面.也就没有相际效应.有助于提高萃取效率和 大幅度节能。在实际应用中,作溶剂的超临界状态必 须处于高压或高密度下,以具备足够的萃取能力,故 又称为稠密气体。 C02的超临界温度Tc=31℃,超临界 压力Pc=7 .13MPa其相平衡图如图1所示。
8
9
3.一种新的单元操作 在传统的分离方法中.溶剂萃取 是利用溶剂和各溶质间的亲和性(表现在溶解度)的差异 来实现分离的;蒸馏是利用溶液中各组分的挥发度(蒸 气压)的不同来实现分离的,而SFE则是通过调节C02的 压力和温度来控制溶解度和蒸气压这两个参数来进行 分离的,故超临界C02萃取综合了溶剂萃取和蒸馏的两 种功能和特点.从它的特性和完整性来看.可相当于 一种新的单元操作。
2
3
处于超临界状态的C02即具有选择溶解其它物质的能力。 通过调整适当的温度和压力可选择性地萃取物质。然 后再经减压、升温或吸附,使溶解在超临界CO2中的被 萃取物与CO2分离,从而达到分离和提纯的目的。
4
二、超临界C02及其萃取技术的主要特点
1.CO2的物质特点: 与通常采用的超临界流体 物质,如N2、N20、CH4、C2H4、等相比,CO2 有如下特点:
14
三、超临界C02萃取工艺
超临界C02 萃取工艺是在特定的温度和压力下,先使 C02 变成为高密度超临界流体,然后对原料进行萃取, 达到萃取平衡后,再通过温度或压力的变化对所萃取 的物质进行分离,并进行C02的循环利用,整个工艺过 程可以是连续的、半连续的或间歇的。根据分离条件 的不同,超临界C02萃取有三种典型的流程,如图2所 示。
10
3、超临界C02的萃取特性
(1)溶解特性 超临界C02是一种非极性流体,符合相似 相溶的原理。其溶解力随物质极性的减弱而增大,随 物质分子量的增大而减弱。一般地表现为,对分子量 小,极性弱的物质易溶解,对分子量较大,极性较强 的物质难溶解,对分子量高,强极性的物质,如氨基 酸、蛋白质、糖和无机盐等则不溶解。在实际应用中, 有时根据需要向超临界C02中加入助溶剂,来调整其溶 解力。
12
因为若再升高压力,萃取收率的提高,相对于为获得 及保持这样高的压力所增的投资和操作费用来说就不 经济了。
温度T升高,一般情况下CO2的溶解力有所增加,且 较压力影响明显。仍以超临界CO2 萃取沙棘油为例。 F=30MPa,T=32℃时,沙棘油的收率为90.1%,当 温度升高T=40℃,油的收率提高到92.1%.但温度的 升高受到对所萃取物质热敏性要求的限制。
11
(2)溶解力与P.T的关系 超临界CO2的溶解力受P和T的 影响较大。压力P增加,超临界C02的密度增加,溶解 力也相应增加,其实验的结果也是如此。以超临界 CO2 萃取沙棘油为例,T=39℃,P=15MP。时,油的 收率为88.0%,同样温度下,增加压力P=25MPa时, 油的收率增加到90.7%。但一般当压力在40MP。时, 超临界CO2 ,的溶解力就达到了实际所能获得的最高 限。
7
(2)粘度接近于气体。超临界CO2的粘度为(3 9)×108Pa·s,接近于常温常压下的气体的粘度(1-3)×10 8Pa·s ,故其输送动力消耗远低于液体。
(3)扩散系数远大于液体。超临界CO2的扩散系数为(0.2 0.7)×10-7m2/s,液体的为(0.2 0.7)× 10-9m2/s液体 约为的100倍。故其传质速度远大于液体,可以较诀地 达到萃取相平衡,从而大大提高萃取效率。 在常温 常压下的气体、液体和超临界流体的几种物理性质如 表1所示。
13
(3)助溶剂对溶解力的影响
向超临界CO2流体中加入一定量的水、甲醇、乙酸、醋 酸乙酯等Baidu Nhomakorabea质或者是它们的混合物,可以增加溶解力, 从而改变对所萃取物质的选择性。如在超临界CO2流体 中加入总体积50~60%的甲醇后,即可以从浓度为1~3% 的发酵液中苹取L一脯氨酸,收率可达50%以上。 但 在使用助溶剂的时候,要注意助溶剂的分离和残留。
16
P1 萃取釜
P2 解吸釜
(a) 等温法
T1=T2,P1>P2
1.萃取釜,2.减压阀, 3.解吸釜 4.压缩机
时可满足对热敏性物质保护提取的要求。 由于上述 特点, CO2是目前使用最多,应用最广泛的超临界流 体。
6
2.超临界CO2的物化特性
超临界CO2与气体和液体CO2相比,有如下物化特性。这 些物化特性决定了超临界CO2流体。兼具了气体和液体优 点,它在萃取性能上超过气体或液体。
(1)密度接近于液体。在超临界区的CO2 ,其密度为 (0.2O. 9)×103kg/m3,接近于常温常压下的液体的密度 (0.6 1.6)× 103kg/m3 ,故其具有不低于或接近普通液体 的溶解能力。
5
(1) CO2来源广,价格低廉。从合成氨工厂和发酵工业装 置中可以很方便地得到CO2 ,因此CO2具有原料优势
(2) CO2 不燃烧,不助燃,故使用操作安全。 (3) CO2无毒,易挥发,不会残留,因而可满足人们对安
全卫生的要求。 (4) CO2对设备无腐蚀性,可降低设备维护维修费用,延
长设备寿命。 (5) CO2的临界温度低,接近常温,使整个工艺节能,同
1.等温变压工艺。
图2中(a)流程为等温变压工艺,即超临界C02的萃取 和分离在同一温度下进行。萃取完后,通过节流降 低操作压力进入分离系统。此时C02流体对被萃取 物的溶解力逐步减小,从而使被萃取物溶解出来得 以分离,该工艺由于没有温度的变化,从而操作简 单,可实现对高沸点、热敏性、易氧化物质的接近 常温的萃取,特别适合于从天然产物中提香料,辛 香料和药用有效成份。
超临界萃取技术及其应用
一、超临界C02萃取技术的基本原理
按热力学原理,当物质所处的温度T大于其固有的临界 温度Tc,且同时压力P大于其固有的临界压力Pc时,该 物质即处于超临界状态。在此状态下,物质的气态和 液态相界消失,故称为超临界状态。这是一种可压缩 的高密度流体,是通常所说的气、液、固以外的第四 态,它的分子间力很小,类似气体。它的密度可以很 大,接近液体,所以这是一个气液不分的状态,没有 相界面.也就没有相际效应.有助于提高萃取效率和 大幅度节能。在实际应用中,作溶剂的超临界状态必 须处于高压或高密度下,以具备足够的萃取能力,故 又称为稠密气体。 C02的超临界温度Tc=31℃,超临界 压力Pc=7 .13MPa其相平衡图如图1所示。
8
9
3.一种新的单元操作 在传统的分离方法中.溶剂萃取 是利用溶剂和各溶质间的亲和性(表现在溶解度)的差异 来实现分离的;蒸馏是利用溶液中各组分的挥发度(蒸 气压)的不同来实现分离的,而SFE则是通过调节C02的 压力和温度来控制溶解度和蒸气压这两个参数来进行 分离的,故超临界C02萃取综合了溶剂萃取和蒸馏的两 种功能和特点.从它的特性和完整性来看.可相当于 一种新的单元操作。
2
3
处于超临界状态的C02即具有选择溶解其它物质的能力。 通过调整适当的温度和压力可选择性地萃取物质。然 后再经减压、升温或吸附,使溶解在超临界CO2中的被 萃取物与CO2分离,从而达到分离和提纯的目的。
4
二、超临界C02及其萃取技术的主要特点
1.CO2的物质特点: 与通常采用的超临界流体 物质,如N2、N20、CH4、C2H4、等相比,CO2 有如下特点:
14
三、超临界C02萃取工艺
超临界C02 萃取工艺是在特定的温度和压力下,先使 C02 变成为高密度超临界流体,然后对原料进行萃取, 达到萃取平衡后,再通过温度或压力的变化对所萃取 的物质进行分离,并进行C02的循环利用,整个工艺过 程可以是连续的、半连续的或间歇的。根据分离条件 的不同,超临界C02萃取有三种典型的流程,如图2所 示。
10
3、超临界C02的萃取特性
(1)溶解特性 超临界C02是一种非极性流体,符合相似 相溶的原理。其溶解力随物质极性的减弱而增大,随 物质分子量的增大而减弱。一般地表现为,对分子量 小,极性弱的物质易溶解,对分子量较大,极性较强 的物质难溶解,对分子量高,强极性的物质,如氨基 酸、蛋白质、糖和无机盐等则不溶解。在实际应用中, 有时根据需要向超临界C02中加入助溶剂,来调整其溶 解力。
12
因为若再升高压力,萃取收率的提高,相对于为获得 及保持这样高的压力所增的投资和操作费用来说就不 经济了。
温度T升高,一般情况下CO2的溶解力有所增加,且 较压力影响明显。仍以超临界CO2 萃取沙棘油为例。 F=30MPa,T=32℃时,沙棘油的收率为90.1%,当 温度升高T=40℃,油的收率提高到92.1%.但温度的 升高受到对所萃取物质热敏性要求的限制。
11
(2)溶解力与P.T的关系 超临界CO2的溶解力受P和T的 影响较大。压力P增加,超临界C02的密度增加,溶解 力也相应增加,其实验的结果也是如此。以超临界 CO2 萃取沙棘油为例,T=39℃,P=15MP。时,油的 收率为88.0%,同样温度下,增加压力P=25MPa时, 油的收率增加到90.7%。但一般当压力在40MP。时, 超临界CO2 ,的溶解力就达到了实际所能获得的最高 限。
7
(2)粘度接近于气体。超临界CO2的粘度为(3 9)×108Pa·s,接近于常温常压下的气体的粘度(1-3)×10 8Pa·s ,故其输送动力消耗远低于液体。
(3)扩散系数远大于液体。超临界CO2的扩散系数为(0.2 0.7)×10-7m2/s,液体的为(0.2 0.7)× 10-9m2/s液体 约为的100倍。故其传质速度远大于液体,可以较诀地 达到萃取相平衡,从而大大提高萃取效率。 在常温 常压下的气体、液体和超临界流体的几种物理性质如 表1所示。
13
(3)助溶剂对溶解力的影响
向超临界CO2流体中加入一定量的水、甲醇、乙酸、醋 酸乙酯等Baidu Nhomakorabea质或者是它们的混合物,可以增加溶解力, 从而改变对所萃取物质的选择性。如在超临界CO2流体 中加入总体积50~60%的甲醇后,即可以从浓度为1~3% 的发酵液中苹取L一脯氨酸,收率可达50%以上。 但 在使用助溶剂的时候,要注意助溶剂的分离和残留。
16
P1 萃取釜
P2 解吸釜
(a) 等温法
T1=T2,P1>P2
1.萃取釜,2.减压阀, 3.解吸釜 4.压缩机
时可满足对热敏性物质保护提取的要求。 由于上述 特点, CO2是目前使用最多,应用最广泛的超临界流 体。
6
2.超临界CO2的物化特性
超临界CO2与气体和液体CO2相比,有如下物化特性。这 些物化特性决定了超临界CO2流体。兼具了气体和液体优 点,它在萃取性能上超过气体或液体。
(1)密度接近于液体。在超临界区的CO2 ,其密度为 (0.2O. 9)×103kg/m3,接近于常温常压下的液体的密度 (0.6 1.6)× 103kg/m3 ,故其具有不低于或接近普通液体 的溶解能力。
5
(1) CO2来源广,价格低廉。从合成氨工厂和发酵工业装 置中可以很方便地得到CO2 ,因此CO2具有原料优势
(2) CO2 不燃烧,不助燃,故使用操作安全。 (3) CO2无毒,易挥发,不会残留,因而可满足人们对安
全卫生的要求。 (4) CO2对设备无腐蚀性,可降低设备维护维修费用,延
长设备寿命。 (5) CO2的临界温度低,接近常温,使整个工艺节能,同