超临界萃取的发展与应用
超临界co2萃取技术应用
超临界co2萃取技术应用超临界CO2萃取技术是一种高效、环保的物质提取方法,已广泛应用于食品、药品、化妆品等领域。
本文将介绍超临界CO2萃取技术的原理、应用和优势。
一、超临界CO2萃取技术的原理超临界CO2萃取技术是利用超临界状态下的CO2作为溶剂,通过调节温度和压力,使CO2同时具备液态和气态的性质。
在超临界状态下,CO2的密度和溶解能力大大增强,能够高效地溶解目标物质。
二、超临界CO2萃取技术的应用1. 食品领域超临界CO2萃取技术可以用于提取植物中的天然色素、香料和营养成分。
例如,可以从咖啡豆中提取咖啡因,从茶叶中提取茶多酚,从辣椒中提取辣椒素等。
相比传统的有机溶剂提取方法,超临界CO2萃取技术更为安全,无残留物,且不会破坏目标物质的活性成分。
2. 药品领域超临界CO2萃取技术在药物制备中具有广泛应用。
它可以用于从植物中提取药用成分,如从中药材中提取有效化合物。
此外,超临界CO2萃取技术还可以用于制备纳米药物载体、纯化药物和去除残留有机溶剂等。
3. 化妆品领域超临界CO2萃取技术可以用于提取植物中的天然香精、抗氧化剂和保湿剂等。
与传统的提取方法相比,超临界CO2萃取技术更为温和,可以避免高温处理对活性成分的破坏,同时还能减少有机溶剂的使用。
三、超临界CO2萃取技术的优势1. 高效性:超临界CO2萃取技术具有高萃取效率和短时间的特点。
由于CO2的高扩散性和低粘度,可以迅速渗透到物质内部,实现快速均匀溶剂萃取。
2. 环保性:超临界CO2萃取技术不使用有机溶剂,避免了有机溶剂对环境的污染和残留物的安全隐患。
而且超临界CO2是一种无毒、无味、无色的气体,在溶剂回收后可以重复利用,实现零排放。
3. 选择性:通过调节超临界CO2萃取的温度和压力,可以实现对目标物质的选择性提取。
不同的物质在超临界CO2中的溶解度有差异,可以根据需要调整条件,实现对不同成分的分离和纯化。
4. 适用性广泛:超临界CO2萃取技术适用于多种物质的提取和分离,不仅可以处理固体和液体样品,还可以处理热敏性物质。
超临界流体萃取技术在天然产物提取中的应用
超临界流体萃取技术在天然产物提取中的应用一、引言天然产物一直以来都是人们关注的焦点,具有丰富的化学成分和生物活性,被广泛用于医药、化妆品、食品等领域。
然而,传统的提取方法中存在着溶剂残留多、精细度低、效率不高等问题。
为了解决这些问题,超临界流体萃取技术应运而生,成为提取天然产物的热门方法之一。
本文将分析超临界流体萃取技术在天然产物提取中的应用,并探讨其优势和发展趋势。
二、超临界流体的特点超临界流体是介于气态和液态之间的状态,在具有高等密度的同时具有低表面张力,因此能够更好地渗透到植物材料的细胞中,提高提取效率。
此外,超临界流体具有可控性好、易分离、无毒副产物等优点,成为提取天然产物的理想选择。
三、超临界流体萃取技术的原理超临界流体萃取技术是利用超临界流体对天然产物进行提取的方法。
其原理主要是利用超临界流体的高渗透性和选择性,将超临界流体与植物材料接触,通过高压高温的环境将有机物溶解在超临界流体中,然后经过降温减压等操作将提取物分离出来。
四、超临界流体萃取技术在中药提取中的应用中药作为我国的传统药物,具有丰富的生物活性成分,但传统提取方法中存在着溶剂残留多、成分变化大等问题。
超临界流体萃取技术能够在无机溶剂的情况下高效提取中药,保持天然产物的活性成分,提高提取精度和效率,因此在中药提取中得到了广泛应用。
五、超临界流体萃取技术在食品萃取中的应用食品作为日常生活中的必需品,具有丰富的营养成分和生物活性物质。
传统的食品提取方法如水提取、有机溶剂提取等存在着提取效率低、残留溶剂多等问题,而超临界流体萃取技术能够在无机溶剂的情况下提取食品中的有效成分,保持其天然风味和营养成分,被广泛应用于食品工业中。
六、超临界流体萃取技术在化妆品提取中的应用化妆品是女性日常生活中必不可少的产品,其中的成分主要由植物提取物组成。
传统的化妆品提取方法存在着成分不稳定、提取效果不佳等问题。
超临界流体萃取技术能够高效提取植物成分,不仅保持成分的原生性和稳定性,还能够有效去除有害物质,提高化妆品的品质。
超临界萃取的原理及应用
超临界萃取的原理及应用1. 超临界萃取的定义超临界萃取是一种利用超临界流体(超临界流体是指在临界点以上高于常规状态的流体)作为溶剂进行物质萃取的过程。
超临界萃取被广泛应用于食品、药物、石油、化工等领域。
2. 超临界萃取的原理超临界萃取的原理基于超临界流体具有较高的溶解能力、低粘度、可调节性和良好的传质性质。
以下是超临界萃取的主要原理:•原理一:溶解能力超临界流体具有高溶解度,对一些常规溶剂不能溶解的物质具有较好的溶解能力。
超临界流体作为溶剂可以提高产率和提纯度。
•原理二:传质性质超临界流体具有较低的粘度和较高的扩散系数,使得物质的传质速率较快,可以实现较高的传质速度和高效的分离。
•原理三:可调节性超临界流体的密度和溶解度随温度和压力变化较大,可以通过调节温度和压力来控制超临界萃取的效果和选择性。
3. 超临界萃取的应用超临界萃取在多个领域得到了广泛的应用,以下是一些典型的应用案例:•应用一:食品工业超临界萃取广泛应用于食品工业中的食品添加剂的提取和分离。
例如,超临界CO2可以用于提取咖啡因、香料、色素等。
•应用二:药物工业超临界萃取被用于药物工业中的药物提取和制备。
超临界CO2被广泛用于提取中草药中的有效成分,用于制备药物。
•应用三:环境保护超临界萃取可以用于环境保护中的土壤和水体中的有机物的提取和分离。
超临界水可以有效地去除污染物,具有较低的环境污染风险。
•应用四:石油化工超临界萃取可以用于石油化工中的油品提取和分离。
超临界CO2被广泛用于提取石油中的烃类和杂质。
•应用五:化学工业超临界萃取可以用于化学工业中的有机物的制备和分离。
超临界CO2可以用于制备聚合物、溶剂和催化剂等。
4. 超临界萃取的优势超临界萃取具有以下优势:•无需添加有机溶剂,对环境友好;•萃取过程简单、高效;•可控性高,可以调节温度、压力等参数来控制萃取效果;•萃取产物纯度高、质量稳定。
5. 超临界萃取的发展趋势随着科技的进步和人们对环境友好型工艺的重视,超临界萃取技术在各行业的应用和发展更加广泛。
超临界流体萃取技术及其在食品工业中的应用
超临界流体萃取技术及其在食品工业中的应用一、本文概述《超临界流体萃取技术及其在食品工业中的应用》这篇文章旨在深入探讨超临界流体萃取(SFE)技术的原理、特点及其在食品工业中的广泛应用。
超临界流体萃取作为一种新兴的分离技术,其独特的萃取效率和环保特性使其在食品加工、提取和纯化等领域具有广阔的应用前景。
本文将首先概述超临界流体萃取技术的基本原理和优势,然后详细介绍其在食品工业中的具体应用案例,包括天然产物的提取、油脂的精炼、食品中农药残留的去除等。
通过本文的阐述,旨在为读者提供一个全面、深入的了解超临界流体萃取技术的平台,并为其在食品工业中的进一步应用提供参考和指导。
二、超临界流体萃取技术原理超临界流体萃取(Supercritical Fluid Extraction,简称SFE)是一种基于物质在超临界状态下具有特殊溶解能力的分离技术。
其技术原理主要是利用超临界流体(如二氧化碳、乙醇等)的物理化学性质,在特定的温度和压力下,使流体兼具气体和液体的双重特性,从而实现对目标物质的高效、选择性萃取。
在超临界状态下,流体的密度、扩散系数和溶解度等参数均会发生显著变化,这些变化使得超临界流体具有优异的渗透能力和溶解能力。
通过调整温度和压力,可以控制超临界流体的溶解度和选择性,从而实现对目标物质的高效萃取。
在食品工业中,超临界流体萃取技术主要用于提取食品中的天然成分,如色素、香气成分、油脂等。
与传统的提取方法相比,超临界流体萃取具有操作温度低、提取时间短、提取效率高、溶剂用量少、提取物纯度高等优点。
由于超临界流体萃取过程中无需使用有机溶剂,因此可以避免溶剂残留对食品质量和安全性的影响。
超临界流体萃取技术的核心设备是超临界萃取装置,其主要包括高压釜、压缩机、分离器、热交换器等部分。
在萃取过程中,首先将超临界流体通过压缩机增压至所需压力,然后通过热交换器加热至所需温度,形成超临界流体。
接着,将超临界流体与待提取的物料接触,利用超临界流体的溶解能力将目标物质萃取出来。
超临界co2萃取技术应用
超临界co2萃取技术应用超临界CO2萃取技术应用超临界CO2萃取技术是一种利用超临界CO2作为溶剂,通过调节温度和压力来实现物质的萃取分离的技术。
该技术具有环境友好、高效、无残留溶剂等优点,在食品、医药、化工等领域有着广泛的应用。
一、食品领域的应用超临界CO2萃取技术在食品领域的应用主要包括咖啡因的去除、食用油的提取和天然色素的制备等方面。
1. 咖啡因的去除咖啡因是咖啡、茶叶等饮品中的重要成分,但过量摄入咖啡因会对人体健康造成一定影响。
超临界CO2萃取技术可以将咖啡豆或茶叶中的咖啡因高效地去除,而不破坏其他有益物质的完整性,从而制备出低咖啡因的咖啡或茶叶产品。
2. 食用油的提取超临界CO2萃取技术可以高效地从植物种子或果实中提取食用油。
相比传统的溶剂提取方法,超临界CO2萃取技术不仅可以提取更高纯度的食用油,而且避免了有害残留溶剂对人体健康的影响。
3. 天然色素的制备超临界CO2萃取技术还可以用于从植物中提取天然色素。
天然色素具有天然、安全、无污染等特点,被广泛应用于食品、饮料、化妆品等领域。
超临界CO2萃取技术可以高效地提取天然色素,并且不会破坏其化学结构和生物活性。
二、医药领域的应用超临界CO2萃取技术在医药领域的应用主要包括天然药物的提取和纯化、药物载体的制备等方面。
1. 天然药物的提取和纯化许多药物来自于植物或动物的天然来源,超临界CO2萃取技术可以高效地从植物或动物中提取天然药物,并且不会破坏其活性成分。
此外,超临界CO2还可以用于天然药物的纯化,提高药物的纯度和质量。
2. 药物载体的制备药物载体是指将药物包裹在一定的材料中,以增加药物的稳定性和生物利用度。
超临界CO2萃取技术可以制备微米级的药物载体,通过调节温度和压力,将药物高效地包裹在载体中,提高药物的传输效果和治疗效果。
三、化工领域的应用超临界CO2萃取技术在化工领域的应用主要包括有机合成反应的催化剂回收、溶剂的回收利用等方面。
超临界流体萃取
7.3.4 在化工方面的应用
在美国超临界技术还用来制备液体燃料。 以甲苯为萃取剂,在Pc=100atm,Tc=400~ 440℃条件下进行萃取,在SCF溶剂分子的扩散 作用下,促进煤有机质发生深度的热分解,能使 三分之一的有机质转化为液体产物。此外,从 煤炭中还可以萃取硫等化工产品。美国最近研 制成功用超临界二氧化碳既作反应剂又作萃取 剂的新型乙酸制造工艺。俄罗斯、德国还把 SFE法用于油料脱沥青技术。
47
8.2 SFE-SFC联用
SFE-SFC直接联用在大分子分析中较 具优势,在环境有机污染物和其它方面 也很有发展前途。
48
8.3 SFE-HPLC、SFE-TLC联用
SFE-HPLC具有高选择性、高灵敏度、 自动化程度高等特点。
29
七、超临界流体萃取技术的应用
7.1
超临界CO2萃取技术在中药开
发方面的应用
7.2 超临界流体技术在其他方面的应用
30
7.1超临界CO2萃取技术在中药开发方面的应用
在超临界流体技术中,超临界流体萃取技术 与天然药物现代化关系密切。SFE对非极性和中 等极性成分的萃取,可克服传统的萃取方法中因 回收溶剂而致样品损失和对环境的污染,尤其适 用于对温热不稳定的挥发性化合物提取;对于极 性偏大的化合物,可采用加入极性的夹带剂如乙 醇、甲醇等,改变其萃取范围提高抽提率。因此 其在中草药的提取方面具有着广泛的应用。
好,廉价易得等优点。
12
2.2 超临界流体萃取
溶质在SCF中的溶解度大致可认为随SCF的密度 增大而增大。
SCF的密度随流体压力和温度的改变而发生十分 明显的变化。
在较高压力下,使溶质溶解于SCF中,然后使 SCF溶液的压力降低,或温度升高,这时溶解 于SCF中的溶质就会因SCF的密度下降,溶解 度降低而析出。
超临界萃取的技术原理及应用
超临界萃取的技术原理及应用一、超临界萃取的技术原理利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。
在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地把极性大小、沸点高低和分子量大小的成分依次萃取出来。
当然,对应各压力范围所得到的萃取物不可能是单一的,但可以控制条件得到最佳比例的混合成分,然后借助减压、升温的方法使超临界流体变成普通气体,被萃取物质则完全或基本析出,从而达到分离提纯的目的,所以超临界CO2流体萃取过程是由萃取和分离过程组合而成的。
超临界CO2是指处于临界温度与临界压力以上状态的一种可压缩的高密度流体,是通常所说的气、液、固三态以外的第四态,其分子间力很小,类似于气体,而密度却很大,接近于液体,因此具有介于气体和液体之间的气液两重性质,同时具有液体较高的溶解性和气体较高的流动性,比普通液体溶剂传质速率高,并且扩散系数介于液体和气体之间,具有较好的渗透性,而且没有相际效应,因此有助于提高萃取效率,并可大幅度节能。
超临界CO2的物理化学性质与在非临界状态的液体和气体有很大的不同。
由于密度是溶解能力、粘度是流体阻力、扩散系数是传质速率高低的主要参数,因此超临界CO2的特殊性质决定了超临界CO2萃取技术具有一系列的重要特点。
超临界CO2的粘度是液体的百分之一,自扩散系数是液体的100倍,因而具有良好的传质特性,可大大缩短相平衡所需时间,是高效传质的理想介质;具有比液体快得多的溶解溶质的速率,有比气体大得多的对固体物质的溶解和携带能力;具有不同寻常的巨大压缩性,在临界点附件,压力和温度的微小变化会引起CO2的密度发生很大的变化,所以可通过简单的变化体系的温度或压力来调节CO2的溶解能力,提高萃取的选择性;通过降低体系的压力来分离CO2和所溶解的产品,省去消除溶剂的工序。
在传统的分离方法中,溶剂萃取是利用溶剂和各溶质间的亲和性的差异来实现分离的;蒸馏是利用溶液中各组分的挥发度的不同来实现分离的。
超临界流体萃取的原理和应用
超临界流体萃取的原理和应用一、超临界流体萃取的原理超临界流体萃取是一种利用超临界流体对物质进行分离和提取的技术。
所谓超临界流体,是指在高于其临界温度和临界压力条件下的流体状态。
在这种状态下,超临界流体既具有气体的低粘度和高扩散性,又具有液体的高溶解力和可控性。
超临界流体萃取的基本原理是通过调节温度和压力,使超临界流体的密度和溶解力发生变化,从而实现对目标物质的选择性提取。
超临界流体萃取的主要原理包括溶解度变化原理、扩散速率变化原理和传质机理变化原理。
1. 溶解度变化原理超临界流体的溶解力随温度和压力的变化而变化。
通过调节温度和压力,可以使溶解度增大或减小,从而实现对目标物质的选择性提取。
当温度和压力适当增大时,超临界流体的溶解力会增大,有助于提高目标物质的萃取效率。
2. 扩散速率变化原理超临界流体的扩散速率比常规溶剂要快得多。
基于扩散速率变化原理,超临界流体可以更快地进入被提取物质的内部,提高物质的提取速率。
此外,超临界流体的扩散速率还受到温度和压力的影响,可以通过调节参数来控制提取速率。
3. 传质机理变化原理超临界流体的传质机理与常规溶剂有所不同。
超临界流体通过质量传递和热传递来实现物质的提取和分离。
传质机理的变化使得超临界流体的提取效率更高,同时还可以减少对环境的影响。
二、超临界流体萃取的应用超临界流体萃取技术在许多领域都有广泛的应用,主要包括化学、食品、药物和环境等。
1. 化学领域超临界流体萃取技术在化学合成、催化反应、分析测试等方面有着重要的应用。
超临界流体可以作为溶剂或反应介质,用于提取和分离化学物质,提高反应速率和选择性,减少催化剂的使用量。
2. 食品领域超临界流体萃取技术可以用于提取天然食品成分,如咖啡因、花青素、香料等。
相比传统的有机溶剂提取方法,超临界流体萃取技术具有高效、环保、无残留等优点,被广泛应用于食品加工和营养保健等领域。
3. 药物领域超临界流体萃取技术在药物研发、制备和分析中有着重要的应用。
超临界流体萃取技术的应用与发展
超临界流体萃取技术的应用与发展摘要:介绍了超临界流体萃取技术(SFE)的原理、特点及工艺。
阐述了超临界流体萃取技术的发展与研究应用概况,并对超临界流体萃取技术的发展前景进行了展望。
关键词:超临界流体;萃取;应用;发展随着现代工业的高速发展,绿色化学、清洁生产技术成为各国研究的热点,超临界流体萃取技术作为一种高效、清洁、节能的分离方法,受到了越来越多的关注,由于萃取过程容易控制调节、萃取效率高、能耗低,使得该技术广泛应用于各个领域。
1.超临界萃取技术简介1.1超临界流体临界态指气、液两态差异消失,相变为零时的特有状态。
处于临界态的温度和压力称为临界温度和临界压力,二者合称为临界点。
在临界点附近,温度和压力的微小变化都会使物体的密度发生极大变化。
我们把超过临界点的气体称为超临界流体(SCF),超临界流体具有其它流体所不具备的良好溶解性、流动性和传递性。
1.2技术原理超临界萃取是利用在临界压力和临界温度附近具有特殊性能的超临界流体作为萃取溶剂的一种萃取技术。
超临界流体是一种被加热和压缩至临界温度与临界压力以上的流体,临界状态是不够稳定的特殊状态,在这种状态下气体和液体之间的性质差别将消失,两者之间的界面亦将消失。
由于超临界流体具有介于气体和液体之间的物理性质,具有近液体的溶解能力,有气体对固体和高黏度物质较强的渗透性,并且随温度和压力的微小变化有较大变化,因此具有比液体溶剂更好的萃取效率和更高的萃取速度。
SFE正是利用这一性质以及相似相容的原理,在较高的压力下,使溶质溶解在SCF中,然后使SCF溶液的压力降低或温度升高,这时溶解于SCF中的溶质就会因SCF的密度下降,溶解度降低而析出,从而达到萃取分离的目的。
1.3工艺流程压力和温度的微小变化都可以引起密度很大的变化,并相应地表现为溶解度的变化,因此可以用压力、温度的变化来实现萃取和分离的过程,以超临界萃取二氧化碳为例,气体经换热器换热和加压泵加压达到工艺过程所需要的温度和压力(一般均高于临界温度和临界压力),使其成为超临界二氧化碳流体,流体进入萃取釜与物料充分接触进行选择性萃取所需要的组分,经节流阀降压至二氧化碳的临界压力以下,随后进入分离釜,溶质从萃取液中解析出来成为产品,定期从釜内排出,解析后的二氧化碳再循环使用。
超临界流体萃取技术及其应用前景
超临界流体萃取技术及其应用前景随着人们对天然资源的需求增加,如何高效有效地提取和利用它们已成为人们面临的一个难题。
而超临界流体萃取技术就是其中的一种新型技术,在萃取天然物质方面表现出了独特的优势,其应用前景也越来越广阔。
一、超临界流体萃取技术的定义及原理超临界流体萃取技术指的是将一定物质通过高压和高温处理后,使之达到超临界状态,进而作为溶剂进行物质的提取、分离和纯化的一种技术。
其主要原理在于在超临界状态下,可控制流体溶解性、扩散性、表面张力和密度等物理化学性质,即在高温与高压作用下,流体将呈现出类似气体和液态的混合状态,故此也被称为“气-液混合物”或“超临界流体”。
二、超临界流体萃取技术的应用1、天然植物提取物超临界流体萃取技术在提取天然植物物质方面拥有很大的优势,不仅具有高效提取、低耗能、易分离等特点,而且对提取物质的品质和纯度的要求也很高。
据研究表明,采用超临界流体萃取技术提取的植物物质中,含量高、活性强,可能有助于减少二次污染和产生有害物质。
常见的植物提取物如茶叶、红枣、桂花、白芍药等。
2、农产品萃取超临界流体萃取技术还可以应用于农产品领域,如茶叶多酚、葡萄籽提取物、西红柿红素、番茄红素、苦瓜苦素、榨菜素等萃取工艺方面,可以帮助提高产品的产量和纯度。
3、药物提取超临界流体萃取技术在药物提取方面也具有不错的应用前景,能够提取多种天然草药中的有效成分,如黄芪、人参、当归、酒枣、枸杞等,而且在提取过程中不会对提取物产生不良影响。
三、超临界流体萃取技术的优势和发展现状与传统的提取技术相比,超临界流体萃取技术有以下几点优势:提取速度快,纯度高、产品无残留、副产物少等,而且工艺稳定可控,有利于环保和资源节约。
目前,这一技术已经被广泛应用于食品、化学制品、药品等各个领域,其未来发展的前景也越来越被人们所看好。
四、结语如今,超临界流体萃取技术已经成为在提取天然物质方面备受人们关注的一种新型技术,其优越的性能和无污染环保的特点也使得其应用前景越来越广阔。
超临界萃取
超临界萃取1. 引言超临界萃取是一种利用超临界流体作为萃取介质的分离技术。
超临界流体是指在超过其临界点(临界温度和临界压力)的条件下存在的物质状态,表现出独特的物理和化学性质。
这种技术已经在化学、食品、制药和环境保护等领域得到广泛应用。
本文将介绍超临界萃取的原理、应用和优缺点。
2. 超临界萃取原理超临界萃取的原理基于超临界流体的特殊性质。
在超临界条件下,流体的密度和溶解性都显著增强,从而增强了其对目标物质的溶解能力。
超临界萃取可以选择性地提取目标物质,同时不引入有毒或有害的溶剂。
超临界萃取的基本步骤包括: - 原料准备:选择合适的原料,通常为植物或动物组织。
- 超临界流体的选择:根据目标物质的特性选择合适的超临界流体,常用的有二氧化碳和乙醇。
- 超临界萃取设备:使用高压容器和恒温器来实现超临界条件。
- 萃取过程:将原料置于超临界流体中,通过参数控制溶解和分离的过程。
- 分离和回收:通过减压和蒸发等方法将目标物质从超临界流体中分离提取,并回收使用。
3. 超临界萃取的应用3.1 化学领域超临界萃取在化学合成中的应用越来越广泛。
它可以用于分离和纯化有机化合物,提取天然产物和制备新型材料。
由于超临界流体可调节的溶解能力,可以选择性地提取目标物质,避免了传统方法中使用大量有机溶剂带来的环境问题。
3.2 食品工业在食品工业中,超临界萃取被广泛用于营养成分的提取,如咖啡因从咖啡中的提取,花青素从葡萄皮中的提取等。
超临界萃取不仅能够提取目标物质,还可以保留原料的营养成分,提高产品的质量。
3.3 制药领域超临界萃取在制药领域中也有重要的应用。
它可以用于药物的分离和提纯,提高药物的纯度和效果。
此外,超临界萃取还可以用于药物的微粒化和载药体系的制备,提高药物的生物利用度和稳定性。
4. 超临界萃取的优缺点4.1 优点•高效:超临界流体具有较高的扩散速度和溶解能力,能够在较短时间内完成目标物质的提取。
•环保:超临界流体通常采用二氧化碳等无毒无害的物质,不会对环境和人体健康造成危害。
超临界流体萃取技术
1. 超临界流体萃取技术的发展
• 1966年开始用超临界CO2和超临界正戊烷来萃取多
环芳烃、染料和环氧树脂等。
• 1978年超临界流体技术被应用于从聚合物中提取各 类添加剂。
• 20世纪80年代,超临界流体的溶解能力及高扩散的 性能逐步得到认可,于是被作为一种优良的萃取溶剂 用于萃取过程。
• 现在随着人们环保意识的增强,而超临界流体正是 “绿色化学”倡导的清洁溶剂,正逐渐取代一些实验 室里常用的高毒、高污染的有机溶剂。
对压力而言,压力
溶解度 。但压力的影响不是孤立的。
因此,在具体的应用中,需要仔细考虑分析物本身特点,综合考
虑温度和压力两个影响因素。
死体积本意是指色谱柱中未被固定相占据的空隙体积,也即色谱柱内流动相 的体积。但在实际测量时,它包括了柱外死体积(色谱仪中的管路和连接头间 的空间以及进样系统和检测器的空间)。
临界点数据 理解压力/MPa
7.39
临界密度ρ/(g/cm2) 0.448
氨
-33.4
132.3
11.28
0.24
甲烷
-160.0
-83.0
4.6
0.16
表
乙烷
-88.0
32.4
4.89
0.203
丙烷
-44.5
97
4.26
0.220
:
丁烷
-0.5
152.0
3.80
0.228
常
2,3-二甲基丁烷
58.0
226.0
3.14
0.241
用
Байду номын сангаас
乙烯
-103.7
9.5
5.07
0.20
超临界流体萃取局限性及发展前景
超临界流体萃取局限性及发展前景超临界流体萃取是一种利用超临界流体作为溶剂进行物质萃取的方法。
超临界流体具有介于气体和液体之间的特性,有较高的扩散系数和较低的粘度,因此在物质萃取中有很大的应用潜力。
然而,超临界流体萃取技术仍然存在一些局限性,同时也面临着一些挑战。
首先,超临界流体的操作条件相对较为严苛。
超临界流体的温度和压力通常需要非常严格的控制,以保证萃取效果。
同时,一些物质在超临界条件下很难溶解,导致萃取效率较低。
因此,超临界流体的操作条件需要仔细优化,增加了工艺的复杂度和成本。
其次,超临界流体萃取技术对设备的要求相对较高。
由于超临界流体的性质,需要使用耐压、耐高温的设备,这增加了设备的成本。
同时,在大规模应用中,需要大量的超临界流体和大型设备,使得成本进一步增加。
此外,超临界流体萃取技术在一些领域的应用还比较有限。
虽然在食品、制药、化工等领域已经有一些应用案例,但在其他领域,尤其是高端应用领域,如新材料研发、环境保护等方面的应用还比较有限。
这主要是由于超临界流体的操作条件和设备要求限制了其在这些领域的推广应用。
然而,尽管存在一些局限性,超临界流体萃取技术仍然具有很大的发展前景。
首先,超临界流体萃取可以替代传统的有机溶剂萃取。
由于超临界流体具有较低的毒性和环境友好性,可以显著减少对环境的污染。
因此,超临界流体萃取在环境保护领域具有广阔的应用前景。
其次,超临界流体萃取可以提高产品的纯度和品质。
由于超临界流体的较高扩散系数和较低粘度,可以更好地控制物质的分离和提取过程,从而提高产品的纯度和品质。
这使得超临界流体萃取在食品、医药等领域的应用更加广泛。
此外,随着科学技术的不断进步,超临界流体的操作条件和设备性能也在不断改善。
新型的超临界流体、新型的设备和工艺方法的出现,为超临界流体萃取的应用扩展提供了更多的可能性。
例如,超临界流体萃取与其他技术的结合,如超声波辅助、微波辅助等,可以进一步提高萃取效率和产品品质。
超临界流体萃取技术及其应用简介
超临界流体萃取技术及其应用简介一、本文概述《超临界流体萃取技术及其应用简介》一文旨在全面介绍超临界流体萃取(Supercritical Fluid Extraction,简称SFE)这一先进的分离和提取技术,以及其在各个领域的广泛应用。
本文将概述超临界流体萃取技术的基本原理、特点、优势以及在实际应用中的成功案例,从而揭示这一技术在现代科学和工业中的重要地位。
超临界流体萃取技术利用超临界流体(如二氧化碳)的特殊性质,通过调整压力和温度实现对目标组分的有效提取。
与传统的提取方法相比,超临界流体萃取具有操作简便、提取效率高、溶剂残留低、环境友好等诸多优点,因此受到广泛关注。
本文将从理论基础入手,详细阐述超临界流体萃取技术的原理及其在不同领域的应用。
通过案例分析,我们将展示这一技术在医药、食品、化工、环保等领域取得的显著成果,以及其对现代工业发展的推动作用。
我们将对超临界流体萃取技术的发展前景进行展望,以期为读者提供全面的技术信息和应用参考。
二、超临界流体萃取技术的基本原理超临界流体萃取(Supercritical Fluid Extraction,简称SFE)是一种先进的提取分离技术,其基本原理是利用超临界状态下的流体作为萃取剂,从目标物质中分离出所需组分。
超临界流体指的是在温度和压力超过其临界值后,流体既非液体也非气体的状态,具有介于液体和气体之间的独特物理性质,如密度、溶解度和扩散系数等。
在超临界状态下,流体对许多物质表现出很强的溶解能力,这主要得益于其特殊的物理性质。
通过调整温度和压力,可以控制超临界流体的溶解能力和选择性,从而实现对目标组分的有效提取。
常用的超临界流体包括二氧化碳(CO₂)、乙烯、氨等,其中二氧化碳因其无毒、无臭、化学性质稳定且易获取等优点,被广泛应用于超临界流体萃取中。
在超临界流体萃取过程中,目标物质与超临界流体接触后,其中的目标组分因溶解度差异而被选择性溶解在超临界流体中。
超临界萃取技术的研究及其应用
超临界萃取技术的研究及其应用超临界萃取技术是一种高效的分离、纯化和提取技术,在化学、材料、医药和农业等领域有着广泛的应用。
本文将介绍超临界萃取技术的原理、研究进展和应用现状,以及未来的发展方向。
一、超临界萃取技术的原理超临界萃取技术是利用超临界流体作为萃取剂,将目标化合物从复杂混合物中分离和纯化的一种方法。
超临界流体是指在临界点以上,温度和压力高于与其相平衡的液体或气体,呈现出独特物理和化学性质的流体状态。
在这种状态下,超临界流体的密度和黏度与液体相接近,同时具有气体的扩散性和可压缩性,因此能够有效地穿透样品固相,并与目标化合物进行高效的质量转移。
在超临界萃取过程中,选用合适的萃取剂对样品进行处理,使得目标化合物在超临界状态下可溶,且与其他杂质化合物分离。
然后通过减压或改变温度等条件使得萃取溶液进一步分离,分离出的物质经过相应处理即可得到高纯度和高价值的化合物。
二、超临界萃取技术的研究进展超临界萃取技术最早起源于1965年美国宇航局为太空食品制备而开发的超临界二氧化碳萃取技术,但直至20世纪80年代后期才得到广泛应用。
近年来,由于其高效、环保和可持续等优点,超临界萃取技术在多个领域得到了广泛研究和应用。
在化学和化工领域,超临界萃取技术被广泛应用于化学反应、溶剂脱除、多相反应等诸多领域。
例如,在无机化学中,研究人员利用超临界CO2对含有难以分离、高氯化物的铝垃圾进行萃取,从中提取出高品质的铝锂混合物。
在纳米材料制备方面,超临界萃取技术也被用于制备纳米金属颗粒、纳米氧化物和纳米碳材料等。
在医药领域,超临界萃取技术被广泛应用于药物提取、纯化和制备。
例如,利用超临界二氧化碳萃取法,可以从自然植物中提取有效成分,如花青素、黄酮类、生物碱和多糖等,具有高效、节能、环保等优点。
在食品工业中,超临界萃取技术被广泛应用于精制食用油、提取天然色素、中草药成分和香气等。
例如,研究人员通过超临界萃取技术,成功分离出咖啡中的苦味物质和咖啡因,从而得到口感更佳的咖啡粉。
超临界流体萃取技术在食品领域中的应用
超临界流体萃取技术在食品领域中的应用超临界流体萃取技术(Supercritical Fluid Extraction,简称SFE)是一种高效、环保、节能的物理萃取技术,已经广泛应用于化学、生物、制药等领域。
近年来,其在食品领域中的应用也越来越受到关注。
本文将探讨超临界流体萃取技术在食品领域中的应用及其优势。
一、超临界流体萃取技术简介超临界流体是介于气体和液体之间的物质状态,具有非常特殊的物理和化学性质,例如导热性良好、扩散速度快、渗透性强、析出速度快等。
当压力和温度都在其临界点以上时,液体和气体的界限消失,分子变得高度活跃,这种状态下的流体就是超临界流体。
超临界流体的物理特性使其成为一种优良的萃取溶剂。
超临界流体萃取技术是利用超临界流体作为溶剂,将目标化合物从固体、液体或气体混合物中分离出来的过程。
其涉及一系列的步骤,包括样品清洁、研磨、装样、超临界萃取、分离收集等。
与传统方法相比,超临界流体萃取技术具有高效、环保、节能等优点。
二、超临界流体萃取技术在食品领域中的应用超临界流体萃取技术在食品领域中的应用是多方面的,例如:1. 食品中色素、香料等化合物的提取超临界流体萃取技术可以用于提取食品中的色素、香料等化合物。
这些化合物是食品工业中必不可少的成分,但大多数传统提取方法会造成环境污染、化学药品残留、毒性物质残留等问题。
超临界流体萃取技术可以提取出高纯度、低残留、绿色环保的色素、香料等化合物。
2. 食品中花青素的提取花青素是一类常见的天然色素,广泛存在于紫色、蓝色或红色的植物中。
由于其具有良好的食品保护性能和药用价值,因此在食品工业中应用非常广泛。
超临界流体萃取技术可以将花青素从植物中提取出来,并用于食品加工中。
3. 食品中活性成分的提取超临界流体萃取技术可以用于提取食品中的活性成分。
例如,茶叶中的儿茶素、生姜中的姜黄素、白芍中的酚酸类等。
这些活性成分具有许多保健作用,超临界流体萃取技术可以提取出高品质的活性成分,用于药、保健品等领域。
超临界CO2萃取技术在精细化工中的应用
超临界CO2萃取技术在精细化工中的应用超临界CO2萃取技术是一种近年来快速发展起来的新型分离技术,逐渐被广泛应用于精细化工领域。
相比传统的分离技术,比如萃取、蒸馏等方法,超临界CO2萃取技术具有无毒、无残留、高效率、环保等优势,越来越受到人们的重视。
一、超临界CO2萃取技术的原理超临界CO2萃取技术是利用超临界CO2对原料进行浸提或萃取的一种方法。
超临界CO2是指在临界温度和临界压力下,CO2的物理状态从气态转化为液态,较低的表面张力和高的扩散系数使得超临界CO2具有较好的渗透性和溶解性。
在萃取过程中,首先将原料和超临界CO2放入反应容器中,在加热的同时增加压力,待达到临界点后继续加压,使CO2变成超临界状态。
当超临界CO2经过原料时,会溶解原料的有机成分,然后在减压条件下收集超临界CO2和萃取物,最后通过去除CO2的方法得到纯净的萃取物。
二、超临界CO2萃取技术的应用1. 食品工业中的应用超临界CO2萃取技术在食品加工中的应用越来越广泛,比如萃取茶叶、咖啡、香料等,可以提取更多有机成分,而且纯度更高,口感更佳。
此外,超临界CO2萃取技术还可以用于腌制、干燥等处理过程。
2. 医药工业中的应用超临界CO2萃取技术在医药工业中的应用也十分广泛。
它可以萃取草药中的有效成分,从而提高药效。
此外,它还可以用于提取芳香化合物,纯化细胞膜,制备微粒等。
3. 化妆品工业中的应用在化妆品工业中,超临界CO2萃取技术也是一种非常常用的分离技术,比如提取植物精油、色素等。
相比传统的提取方法,超临界CO2萃取技术可以使得产品更加纯净无毒,保证了化妆品的质量。
4. 精细化工中的应用超临界CO2萃取技术在精细化工中的应用也越来越多,比如分离漆酚、染料、化妆品添加剂等有机物质。
与传统的萃取方法相比,超临界CO2萃取技术具有低能耗、高效率、无污染等优势,充分符合现代化工的要求。
三、超临界CO2萃取技术的前景近年来,随着超临界CO2萃取技术的不断发展,其应用范围也越来越广泛。
超临界流体萃取技术的应用与发展
超临界流体萃取技术的应用与发展超临界流体萃取技术的应用与发展概述超临界流体萃取技术是近年来在化工、制药、环境保护和食品工业等领域内得到广泛应用的一种新型分离技术。
它利用超临界流体的特殊性质,如高溶解能力、可调控的密度和粘度等,实现了高效、环保和可持续的萃取过程。
本文将介绍超临界流体萃取技术的原理、应用及其在未来的发展前景。
一、超临界流体萃取技术的原理在超临界状态下,物质的密度和粘度会发生显著变化,从而使溶质与溶剂之间的相互作用力产生变化,进而影响了物质的溶解度和传质速率。
超临界流体的密度接近液相,而粘度接近气相,具有溶剂的高扩散性和低表面张力的特点。
同时,超临界流体具有易于操作、易于回收的特点,能够实现绿色化学过程的目标。
二、超临界流体萃取技术的应用领域1. 化工工业:超临界流体萃取技术可以用于分离和回收有机催化剂、染料和高值化学品等。
与传统的有机溶剂萃取相比,超临界流体萃取具有更高的提取效率和更低的环境污染。
2. 制药工业:超临界流体萃取技术可用于提取天然药物中的有效成分,如植物提取物、中草药和藻类等。
超临界流体的温和条件和可调控的萃取效果可保持提取物的活性和药效。
3. 环境保护:超临界流体萃取技术可以用于处理工业废水、固体废物和大气污染物等。
其高效的溶质传质性能和可回收利用的特点能够有效降低废物的处理成本和环境风险。
4. 食品工业:超临界流体萃取技术可用于提取食品中的香精、色素和活性成分等。
相比传统的提取方法,超临界流体萃取具有无残留、高效率和无毒副产物等优势。
三、超临界流体萃取技术的发展前景1. 新型工艺改进:随着超临界流体萃取技术的不断发展,新型的工艺改进也将推动其应用范围的拓展。
例如,超临界萃取与其他分离和纯化技术的复合应用,将进一步提高分离效率和回收率。
2. 新型超临界流体的研究:目前,二氧化碳是超临界流体萃取的主要溶剂。
未来的研究将着重于寻找更加环保、高效和可持续的溶剂替代物,如氢气、氮气和BASF公司研发的丁烷等。
超临界CO2萃取技术在医药制造中的应用
超临界CO2萃取技术在医药制造中的应用随着现代医学技术不断发展,越来越多的新型药物被研制出来。
而在这些药物的制造过程中,超临界CO2萃取技术广泛应用。
这项技术凭借其高效、环保、可控制等特点,被越来越多的制药厂家所青睐。
一、超临界CO2萃取技术简介超临界CO2萃取技术是一种特殊的萃取方法,它通过压缩并加热CO2将其变为超临界状态,与物质进行接触,从而实现分离和提取物质的目的。
该技术具有成分分离纯度高、副反应少、操作方便、提取效率高等优点。
相较于传统的萃取方法,超临界CO2萃取技术不需要使用有毒有害的化学溶剂,且操作环境下的废气和废液对环境污染风险极小。
二、超临界CO2萃取技术在医药制造中的应用1. 药物成分提取超临界CO2萃取技术被广泛应用于生产中草药提取物或天然产物中的化合物。
该技术能够高效、准确地爬取药物杂质,从而提高药物的纯度。
使用超临界CO2萃取技术可以大量提取葛根、罗汉果、橙皮、桂皮、海藻、枸杞、绿茶和红枣等多种植物的天然活性成分。
2. 键合物的制备键合物是药物制造中的重要组成部分,它们是由结合多个化合物组成的复合物。
使用超临界CO2萃取技术可用于制备亲水性键合物。
例如,该技术可用于制备含有亲水性多肽的键合物,可用于治疗关节炎、糖尿病和其他慢性疾病。
3. 药物制剂的制备超临界CO2萃取技术也可用于药物制剂的制备。
该技术可用于制剂多种类型的药物,如肽、蛋白质和基因药物。
此外,该技术还可用于制备具有特定药效的微粒和胶囊。
4. 医用气体制备使用超临界CO2萃取技术可以制备出一种医用气体,这种气体可以用于呼吸疗法。
医用气体制备需要高质量和高纯度的制剂,超临界CO2萃取技术可以提供适合的瓶装气体,从而确保最终产品的质量和安全性。
三、超临界CO2萃取技术的优势和发展前景1.高效性超临界CO2萃取技术的使用,会极大地提高药物制造的效率。
该技术可以在不使用任何有害化学溶剂的前提下很快地提取所需的药物成分,这样可以节省时间和金钱。
超临界萃取的原理和应用
超临界萃取的原理和应用1. 什么是超临界萃取超临界萃取是一种可控的物质分离技术,它利用超临界流体作为萃取剂,在超临界状态下实现物质的分离和回收。
超临界流体是介于气体和液体之间的状态,具有较高的溶解能力和渗透能力。
超临界萃取主要应用于化学、食品、医药等产业,具有高效、环保、无残留等优点。
2. 超临界萃取的原理超临界萃取利用物质在超临界状态下的性质,通过调节温度和压力,使物质从固体或液体转化为超临界流体。
在超临界状态下,物质的密度和粘度减小,扩大了物质和溶剂之间的接触面积,从而提高了分离效率。
超临界萃取的原理主要包括以下几个方面:•溶解能力增强:超临界流体的密度和粘度较低,分子间距离较大,使得超临界流体具有较强的溶解能力,能够高效地溶解物质。
•传质速度快:超临界流体的扩散系数较大,传质速度快,利于物质的分离和回收。
•可控性强:通过调节温度和压力,可以控制超临界流体的物性参数,从而对物质的分离过程进行调控。
•无残留:超临界流体在正常环境下转化为气体,不留下残留物,对环境友好。
3. 超临界萃取的应用超临界萃取技术在多个领域都得到了广泛应用,以下列举了一些典型的应用案例:3.1 药物提取超临界萃取技术可用于药物的提取和纯化过程。
通过调节超临界流体的温度和压力,可以选择性地提取目标药物,并去除其他杂质。
这种方法不仅效率高,而且对药物结构没有破坏,避免了传统提取方法中可能存在的热力学或化学反应。
3.2 天然气和石油萃取超临界萃取技术被广泛用于天然气和石油的分离和提纯过程。
通过调节超临界流体的物性参数,可以高效地分离出石油中的混合物,如石脑油、甲烷等。
这种方法操作简单,无需添加其他化学物质,不会对环境造成污染。
3.3 食品加工超临界萃取技术在食品加工领域也得到了广泛应用。
通过超临界萃取技术,可以从天然植物材料中提取出天然色素、香料和营养成分。
与传统提取方法相比,超临界萃取不会破坏原料中的活性成分,还可以避免使用有害溶剂,提高了食品加工的安全性和质量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
超临界萃取的发展与应用————————————————————————————————作者: ————————————————————————————————日期:ﻩ超临界萃取的发展与应用[摘要] 现如今,生态环境的日益恶化和能源的日益枯竭已经成为了人类生存面临的两大难题,为了缓解这些问题,科学家和研究者们提出了一系列的方案和技术,如绿色工艺,原子经济,绿色化学等等。
因此,新的绿色、环境友好型的技术和工艺越来越受到人们的关注和重视。
近几十年来兴起的超临界萃取技术就是一项环境友好型的技术,因其独特的物理化学性质和所具备的许多优点,因此越来越受到人们的重视,并且随着研究的不断深入,超临界萃取技术的应用也越来越广泛。
[关键词] 超临界流体;超临界二氧化碳;应用;前景1超临界流体物质是以气、液和固3种形式存在,在不同的压力和温度下可以进行相的转换。
在温度高于某一数值时,任何大的压力均不能使该纯物质由气相转化为液相,此时的温度即被称之为临界温度Tc;而在临界温度下,气体能被液化的最低压力称为临界压力Pc。
当物质所处的温度高于临界温度,压力大于临界压力时,该物质处于超临界状态。
在压温图中,高于临界温度和临界压力的区域就称为超临界区,如果流体被加热或被压缩至其临界温度(Tc)和临界压力(Pc)以上状态时,向该状态气体加压,气体不会液化,只是密度增大,具有类似液体性质,同时还保留有气体性能,这种状态的流体称为超临界流体。
超临界流体的密度与液体相近,其对溶质的溶解能力比临界点状态以下的要大,而粘度却接近与气体,自扩散系数通常是普通液体的100多倍,且几乎不存在表面张力。
因此SCF的许多物理性质介于气体及液体之间,从而致使其具有良好的质量及热量传输性质(扩散性、粘度、热传导、热容)。
此外,在临界点附近稍微改变温度及压力,其密度通常会发生较大的变化,利用超临界流体这一特性可改变溶质在其中的溶解度。
超临界流体既具有气体的高扩散能力,又具有液体的强溶解能力的特点。
表1 相的物理性质相密度(g/ml) 扩散系数(cm2粘度(g/c气体(G)10-310-110-4超临界流体(SC0.3~0.910-4~10-310-4~10-3液体(L)110-510-2因此,超临界流体具有较好的流动性及传递性能,可被用作溶剂以替代传统有机溶剂。
超临界二氧化碳是目前研究最广泛的流体,且已经应用到工业生产。
2超临界萃取在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地依次把极性大小,沸点高低和分子量大小的成分萃取出来。
同时超临界流体的密度,极性和介电常数随着密闭体系压力的增加而增加,利用预定程序的升压可将不同极性的成分进行分步提取。
当然,对应各压力范围所得到的萃取物不可能是单一的,但可以通过控制条件得到最佳比例的混合成分,然后借助减压,升降温的方法使超临界流体变成普通气体或液体,被萃取物质则自动完全析出,从而达到分离提纯的目的,并将萃取与分离两过程合为一体,这就是超临界流体萃取分离的基本原理。
超临界二氧化碳之所以被应用的最广泛,除了它本身的特点——临界温度31.265℃,接近于室温,容易到达临界状态以外,作为超临界萃取流体,它还具备其他很多方面的优良性能:(1)超临界CO2流体常态下是无色无味无毒的气体,与萃取成分分离后,完全没有溶剂的残留,可以有效地避免传统溶剂萃取条件下溶剂毒性的残留。
同时也防止了提取过程对人体的毒害和对环境的污染,是一种天然且环保的萃取技术。
(2)萃取温度低,CO2的临界温度为31.265℃,临界压力为72.9atm,可以有效地防止热敏性成分的氧化,逸散和反应,完整保留生质物体的生物活性;同时也可以把高沸点,低挥发度,易热解的物质在其沸点温度以下萃取出来。
(3)CO2价格便宜,纯度高,容易取得,且在生产过程中循环使用,从而降低成本;(4)萃取和分离合二为一,当饱含溶解物的二氧化碳超临界流体流经分离器时,由于压力下降使得CO2与萃取物迅速回复成为分离的两相(气液分离)而立即分开,不存在物料的相变过程,不需回收溶剂,操作方便;不仅萃取效率高,而且能耗较少,节约成本,并且符合环保节能的潮流。
(5)萃取操作容易,压力和温度都可以成为调节萃取过程的参数。
在临界点附近,温度压力的微小变化,都会引起CO2密度显着变化,从而引起待萃物的溶解度发生变化,可通过控制温度或压力的方法达到萃取目的。
压力固定,改变温度可将物质分离;反之温度固定,降低压力使萃取物分离;因此技术流程短,耗时少,占地小,同时对环境真正友善,萃取流体CO2可循环使用,并不会排放废二氧化碳导致温室效应。
成为真正“绿色化”生产制程。
(6)超临界流体的极性可以改变,一定温度条件下,只要改变压力或加入适宜的夹带剂即可提取不同极性的物质,可选择范围广。
从超临界二氧化碳流体的性质来看,它应用于萃取时有一些特点:萃取速度高与液体萃取,特别适合于固态物质的分离提取;在接近常温的条件下操作,能耗低于一般精馏发,适合于热敏性物质和易氧化物质的分离;传热速率快,温度易于控制;适合于挥发性物质的分离。
基于超临界二氧化碳萃取技术具有以上的优势和特点,它在许多领域均得到了广泛的应用。
3 超临界二氧化碳萃取技术的应用早在100年前已为Hannay和Hogarth就发现了超临界流体,但由于技术、装备等原因,时至20世纪30年代,Pilat和Gadlewicz才有了用液化气体提取“大分子化合物”的设想。
1954年Zosol用实验的方法证实了二氧化碳超临界萃取可以萃取油料中的油脂。
直到70年代的后期,德国的Stahl等人首先在高压实验装置的研究取得了突破性进展之后,SFE这一新的提取、分离技术的研究及应用,才有了可喜的实质性进展。
现在超临界二氧化碳萃取技术已经被应用到了化工、食品、医药、生物活性物提取等各个领域。
3.1 在化工领域的应用利用超临界二氧化碳,取代现行有机溶剂的染色技术,对于环保,废水处理与制造成本上,有非常多的优点。
由于超临界二氧化碳流体,基本上的特性较接近气体,故对于应用于取代有机液体,进行聚酯纤维的染色技术制程而言,不会有排废问题的产生,同时还能减少用水量和废弃物的量,增加产量,减少能源消耗。
美国杜邦公司在北卡罗兰那州,投资达4 000万美元的新建研究工厂投资案,最受到关注,主要的研究方向就是想利用超临界二氧化碳,作为反应溶液,以生产含氟聚合物。
此外,下列的化工产业也开始使用超临界二氧化碳萃取技术,以降低生产过程的污染物产生:1.石油残渣油的脱沥;2.原油的回收,润滑油的再生;3.烃的分离,煤液化油的提取;4.含有难分解物质的废液的处理。
3.2在食品领域的应用在食品领域方面,超临界二氧化碳萃取主要用于植物油脂(大豆油、蓖麻油、棕油、可可脂、玉米油、米糠油、小麦胚芽油等)的提取;动物油脂(鱼油、肝油、各种水产油)的提取;食品原料(米、面、禽蛋)的脱脂;脂质混合物(甘油酯、脂肪酸、卵磷脂等)的分离与精制;油脂的脱色和脱臭;超临界状态下借助酶进行交换;植物色素和天然香味成分的提取;咖啡、红茶脱除咖啡因;啤酒花的提取;软饮料的制造;发酵酒精的浓缩等。
美国采用超临界二氧化碳萃取法提取豆油获得成功,产品质量大幅度提高,且无污染问题。
目前,已经可以用超临界二氧化碳从葵花籽、红花籽、花生、小麦胚芽、棕榈、可可豆中提取油脂,且提出的油脂中含中性脂质,磷含量低,着色度低,无臭味。
这种方法比传统的压榨法的回收率高,而且不存在溶剂法的溶剂分离问题。
3.3 在医药领域的应用超临界二氧化碳萃取技术提取天然药物:邓启焕等利用超临界二氧化碳,以一种特殊的醇类物质为夹带剂,萃取银杏黄酮和银杏内酯。
此法的萃取率达 3.4%,比溶剂法的1%高出2倍;流程短,萃取批操作时间比溶剂法缩短11倍,提高了工作效率;银杏叶有效成分的质量(银杏黄酮含量为28%,银杏内酯的含量为7.2%),均高于国际现行公认的质量标准,不存在有机溶剂残留和重金属残留。
超临界二氧化碳萃取技术在手性药物合成中的应用:刘艳等将超临界酶催化反应用于手性化合物合成和拆分。
用米赫毛霉脂肪酶作催化剂,以布洛芬和丙醇为底物进行合成和拆分,得到S-型异丁苯丙酸丙酯占90%以上。
通过操纵超临界条件可以控制产物的立体选择性。
3.4 在生物活性物质提取中的应用Lucien等报道,采用SFE-CO2技术提取、浓缩沙丁鱼油中的EPA和DH A,可使EPA和DHA分别从原先的17%、12%提高到58%和67%。
Emanuele和Maria用SFE-CO2从干蛋黄中提取蛋黄磷酯,一定条件下,100克样品中可提取67克蛋黄磷脂。
与传统溶剂法相比,纯度和提取率提高,产品色泽好。
Baysal等从西红柿糜烂废弃物中提取β-胡萝卜素,以5%的乙醇为夹带剂,在一定条件下提取率为50%。
李新等分别用石油醚和SFE-CO2技术萃取螺旋藻中的β-胡萝卜素,结果表明:SFE-CO2技术具有效率高、速度快、工艺简单、产品色味纯正等优点。
3.5在其他方面的应用除以上介绍的几类应用领域之外,超临界二氧化碳萃取技术还被应用到其他许多领域。
如化妆品行业、制备超细颗粒材料、农药残留分析以及精密仪器清洗等。
更多的有前途的应用正在开发之中。
随着人们对超临界萃取技术的研究不断深入,技术的不断提高,超临界萃取技术在日后应用必将更为广泛。
4 超临界萃取技术的前景与展望经过40多年的研究,人们对于超临界萃取技术已有了深刻的认识。
保健品、化妆品、食品添加剂、香料、天然中草药的萃取和提纯仍然是超临界流体的研究和应用的重要领域。
对于超临界萃取的研究和开发工作可谓方兴未艾,主要原因是巨大的潜在市场需求。
目前国际上SFE技术的研究和应用正方兴未艾,德国、日本和美国已处于领先地位,在医药、化工、食品、轻工、环保等方面研究成果不断问世,工业化的大型SFE设备有5000L~10000L的规模,日本已成功研制出超临界色谱分析仪。
目前国际上超临界流体萃取的研究重点已有所转移,为得到纯度较高的高附加值产品,对超临界流体逆流萃取和分馏萃取的研究越来越多;超临界条件下的反应的研究成为重点,特别是超临界水和超临界二氧化碳条件下的各类反应,更为人们所重视;超临界流体技术应用的领域更为广泛。
除了天然产物的提取、有机合成外还有环境保护、材料加工、油漆印染、生物技术和医学等;有关超临界流体技术的基础理论研究得到加强。
国际上的这些动向值得我们关注。
SFE技术对于中药现代化至关重要。
要从单纯的中间原料提取转向兼顾复方中药新药的开发利用,或对现行生产的名优中成药工艺改进或二次开发上;加强分析型超临界流体萃取或超临界色谱在中药分析中的应用,不断改革传统的分析方法;超临界流体结晶技术及其超细颗粒的制备可用于中药新剂型的开发,应加强在中药制剂中的应用,以推动中药制剂的现代化。