新高考数学考前小题专题练:数列

合集下载

高考数学专题复习练习题12---数列求通项、求和(理)含答案解析

高考数学专题复习练习题12---数列求通项、求和(理)含答案解析

高考数学专题复习练习题12---数列求通项、求和(理)1.已知数列{}n a 的前n 项和21n n S =-,则数列2{}n a 的前10项和为( )A .1041-B .102(21)-C .101(41)3-D .101(21)3-2.已知数列{}n a 的前n 项和为n S ,满足21n n S a =-,则{}n a 的通项公式为n a =( ) A .21n -B .12n -C .21n-D .21n +3.数列{}n a 满足1(1)nn n a a n ++=-⋅,则数列{}n a 的前20项和为( )A .100-B .100C .110-D .1104.已知数列{}n a 的通项公式为100n a n n=+,则122399100||||||a a a a a a -+-++-=L ( ) A .150B .162C .180D .2105.数列{}n a 中,10a =,1n n a a +-=,若9n a =,则n =( )A .97B .98C .99D .1006.在数列{}n a 中,12a =-,111n na a +=-,则2019a 的值为( ) A .2-B .13 C .12D .327.已知n S 是数列{}n a 的前n 项和,且13n n n S S a +=++,4523a a +=,则8S =( ) A .72B .88C .92D .988.在数列{}n a 中,12a =,已知112(2)2n n n a a n a --=≥+,则n a 等于( )A .21n + B .2n C .31n + D .3n9.已知数列21()n a n n =-∈*N ,n T 为数列11{}n n a a +的前n 项和,求使不等式20194039n T ≥成立的最小 正整数( )一、选择题A .2017B .2018C .2019D .202010.已知直线20x y ++=与直线0x dy -+=互相平行且距离为m ,等差数列{}n a 的公差为d ,7835a a ⋅=,4100a a +<,令123||||||||n n S a a a a =++++L ,则m S 的值为( )A .60B .52C .44D .3611.已知定义在R 上的函数()f x 是奇函数且满足3()()2f x f x -=,(2)3f -=-,数列{}n a 是等差数列, 若23a =,713a =,则1232020()()()()f a f a f a f a ++++=L ( ) A .2-B .3-C .2D .312.已知数列满足12323(21)3nn a a a na n ++++=-⋅L ,设4n nnb a =,n S 为数列{}n b 的前n 项和.若n S λ<(常数),n ∈*N ,则λ的最小值为( )A .32B .94C .3112D .311813.已知数列{}n a 的通项公式为12n n a n -=⋅,其前n 项和为n S ,则n S = .14.设数列{}n a 满足1(1)()2n n n na n a n n +-+=∈+*N ,112a =,n a = . 15.已知数列{}n a 满足1(1)(2)nn n a a n n ---=≥,记n S 为数列{}n a 的前n 项和,则40S = .16.等差数列{}n a 中,3412a a +=,749S =,若[]x 表示不超过x 的最大整数,(如[0.9]0=,[2.6]2=,).令[lg ]()n n b a n =∈*N ,则数列{}n b 的前2000项和为 .1.【答案】C答 案 与 解 析二、填空题一、选择题【解析】∵21n n S =-,∴1121n n S ++=-,∴111(21)(21)2n n nn n n a S S +++=-=---=, 又11211a S ==-=,∴数列{}n a 的通项公式为12n n a -=,∴2121(2)4n n n a --==,∴所求值为1010141(41)143-=--. 2.【答案】B【解析】当1n =时,11121S a a =-=,∴11a =;当2n ≥时,1122n n n n n a S S a a --=-=-,∴12n n a a -=,因此12n n a -=.3.【答案】A【解析】121a a +=-,343a a +=-,565a a +=-,787a a +=-,…, 由上述可知,1219201191(13519)1101002a a a a +++++=-⨯++++=-⨯⨯=-L L . 4.【答案】B【解析】由对勾函数的性质知:当10n ≤时,数列{}n a 为递减; 当10n ≥时,数列{}n a 为递增,故12239910012239101110||||||()()()()a a a a a a a a a a a a a a -+-++-=-+-++-+-L L12111009911010010()()1100(1010)(1001)a a a a a a a a +-++-=-+-=+-+++-L (1010)162+=.5.【答案】D【解析】由1n n a a +-==,利用累加法可得,∴11)n a a -=+++L 1=,∵10a =,∴19n a ==10=,100n =. 6.【答案】B【解析】由题意得,12a =-,111n n a a +=-,∴213122a =+=,321133a =-=,4132a =-=-,…, ∴{}n a 的周期为3,∴20193673313a a a ⨯===. 7.【答案】C【解析】∵13n n n S S a +=++,∴113n n n n S S a a ++-=+=, ∴13n n a a +-=,∴{}n a 是公差为3d =的等差数列,又4523a a +=,可得12723a d +=,解得11a =,∴81878922S a d ⨯=+=. 8.【答案】B 【解析】将等式1122n n n a a a --=+两边取倒数,得到11112n n a a -=+,11112n n a a --=, 1{}n a 是公差为12的等差数列,1112a =,根据等差数列的通项公式的求法得到111(1)222n n n a =+-⨯=,故2n a n=. 9.【答案】C【解析】已知数列21()n a n n =-∈*N ,∵111111()(21)(21)22121n n a a n n n n +==--+-+, ∴11111111(1)()()(1)2335212122121n n T n n n n ⎡⎤=-+-++-=-=⎢⎥-+++⎣⎦L , 不等式20194039n T ≥,即2019214039n n ≥+,解得2019n ≥, ∴使得不等式成立的最小正整数n 的值为2019. 10.【答案】B【解析】由两直线平行得2d =-,由两直线平行间距离公式得10m ==,∵77(2)35a a ⋅-=,得75a =-或77a =, ∵410720a a a +=<,∴75a =-,29n a n =-+,∴12310|||||||||7||5||5||7||9||11|52m S a a a a =++++=+++-+-+-+-=L L . 11.【答案】B【解析】由函数()f x 是奇函数且3()()2f x f x -=,得(3)()f x f x +=, 由数列{}n a 是等差数列,若23a =,713a =,可得到21n a n =-, 可得123456()()()()()()0f a f a f a f a f a f a ++=++=,则其周期为3,12320201()()()()()3f a f a f a f a f a ++++==-L .12.【答案】C【解析】∵12323(21)3nn a a a na n ++++=-⋅L ①,当2n ≥时,类比写出12323a a a ++++L 11(1)(23)3n n n a n ---=-⋅②, 由①-②得143n n na n -=⋅,即143n n a -=⋅.当1n =时,134a =≠,∴13,143,2n n n a n -=⎧=⎨⋅≥⎩,14,13,23n n n b n n -⎧=⎪⎪=⎨⎪≥⎪⎩, 214233333n n n S -=++++=L 021*********n n-+++++L ③, 2311112313933333n n n n nS --=++++++L ④, ③-④得,0231112211111231393333339313n n n n n n n S --=++++++-=+--L ,∴316931124312n n n S +=-<⋅,∵n S λ<(常数),n ∈*N ,∴λ的最小值是3112.13.【答案】(1)21nn -+【解析】由题意得01221122232(1)22n n n S n n --=⨯+⨯+⨯++-⋅+⋅L ①,∴1221222n S =⨯+⨯3132(1)22n n n n -+⨯++-⋅+⋅L ②,①-②得231121222222(1)2112nn nn n n S n n n ---=+++++-⋅=-⋅=-⋅--L ,∴(1)21nn S n =-+.14.【答案】21n n +【解析】∵1(1)()2n n n na n a n n +-+=∈+*N ,∴11111(2)(1)12n n a a n n n n n n +-==-+++++,∴11111n n a a n n n n --=--+,…,21112123a a -=-,累加可得11121n a a n n -=-+, 二、填空题∵112a =,∴1111n a nn n n =-=++,∴21n n a n =+. 15.【答案】440【解析】由1(1)(2)nn n a a n n ---=≥可得:当2n k =时,2212k k a a k --=①;当21n k =-时,212221k k a a k --+=-②; 当21n k =+时,21221k k a a k ++=+③;①+②有:22241k k a a k -+=-,③-①得有:21211k k a a +-+=, 则40135739()S a a a a a =+++++L24640109()110(71523)1071084402a a a a ⨯+++++=⨯++++=+⨯+⨯=L L . 16.【答案】5445【解析】设等差数列{}n a 的公差为d ,∵3412a a +=,749S =,∴12512a d +=,1767492a d ⨯+=,解得11a =,2d =, ∴12(1)21n a n n =+-=-,[lg ][lg(21)]n n b a n ==-,1,2,3,4,5n =时,0n b =;650n ≤≤时,1n b =; 51500n ≤≤时,2n b =; 5012000n ≤≤时,3n b =,∴数列{}n b 的前2000项和454502150035445=+⨯+⨯=.。

专题16 数列(选填压轴题)(解析版)-【挑战压轴题】备战2023年高考数学高分必刷必过题

专题16  数列(选填压轴题)(解析版)-【挑战压轴题】备战2023年高考数学高分必刷必过题

所以 x 0, 2023 ,则方程x x 1 由 2022 个根.①④正确,
2 故选:D.
4.(2022·河南信阳·高二期末(理))二进制数是用 0 和 1 表示的数,它的基数为 2,进位
规则是“逢二进一”,借位规则是“借一当二”,二制数
a0
a1a2
ak
2
(
k
N
*
)对应的十进制数
记为 mk ,即 mk a0 2k a1 2k1 ... ak1 2 ak 20 ,其中 a0 1 , ai 0,1(i 1,2,3,,k),
317
4
c13 c23 c33 c173
56 4 c23 16 64 ,
1 所以
c18
4
,所以
7 2
1 c18
4 ,则
1 4
c18
2 7
.
故选:C.
6.(2022·江苏南京·高二期末)将等比数列bn按原顺序分成 1 项,2 项,4 项,…, 2n1 项 的各组,再将公差为 2 的等差数列an 的各项依次插入各组之间,得到新数列cn:b1 ,a1 ,
1 2
nt
0
1 2
n


n
为偶数,此时
1 2
n
0
,则此时不存在 t
N*
,使得
1 nt 2
1 n 2

综上:B 选项错误;
设 an 2n 1 ,此时满足 a1 2 1 3 0 ,
也满足 n, s N*, ans 2n s 1, an as 2n 1 2s 1 2n s 2 ,
② n, s N*, ans an as ;③ n N* ,t N*, ant an .定义:同时满足性质①和②的数

高考数学压轴专题人教版备战高考《数列》基础测试题附答案解析

高考数学压轴专题人教版备战高考《数列》基础测试题附答案解析

【高中数学】数学《数列》复习知识点一、选择题1.若{}n a 为等差数列,n S 是其前n 项和,且11223S π=,则6tan()a 的值为( )A B .C D .【答案】B 【解析】 【分析】由11162a a a +=,即可求出6a 进而求出答案. 【详解】∵()11111611221123a a S a π+===,∴623a π=,()62tan tan 3a π⎛⎫== ⎪⎝⎭故选B. 【点睛】本题主要考查等差数列的性质,熟记等差数列的性质以及等差数列前n 项和性质即可,属于基础题型.2.已知数列{}n a 是1为首项,2为公差的等差数列,{}n b 是1为首项,2为公比的等比数列,设n n b c a =,12...,(*)n n T c c c n N =+++∈,则当2019n T <时,n 的最大值是( ) A .9 B .10C .11D .12【答案】A 【解析】 【分析】由题设知21n a n =-,12n nb -=,由1121124222n n n b b bn T a a a a a a a n -+=++⋯+=+++⋯+=--和2019n T <,得1222019n n +--<,由此能求出当2019n T <时n 的最大值.【详解】{}n a Q 是以1为首项,2为公差的等差数列,21n a n ∴=-,{}n b Q 是以1为首项,2为公比的等比数列,12n n b -∴=,()()()()1121121242211221241221n n n n b b bn T c c c a a a a a a a --∴=++⋯+=++⋯+=+++⋯+=⨯-+⨯-+⨯-+⋯+⨯- ()121242n n -=+++⋯+- 12212nn -=⨯-- 122n n +=--,2019n T <Q ,1222019n n +∴--<,解得:10n <.则当2019n T <时,n 的最大值是9.故选A . 【点睛】本题考查了等差数列、等比数列的通项公式,结合含两个变量的不等式的处理问题,易出错,属于中档题.3.对于实数,[]x x 表示不超过x 的最大整数.已知正项数列{}n a 满足112n n n S a a ⎛⎫=+ ⎪⎝⎭,*n N ∈,其中n S 为数列{}n a 的前n 项和,则[][][]1240S S S +++=L ( )A .135B .141C .149D .155【答案】D 【解析】 【分析】利用已知数列的前n 项和求其n S 得通项,再求[]n S 【详解】解:由于正项数列{}n a 满足112n n n S a a ⎛⎫=+ ⎪⎝⎭,*n N ∈,所以当1n =时,得11a =,当2n ≥时,111111[()]22n n n n n n n S a S S a S S --⎛⎫=+=-+⎪-⎝⎭ 所以111n n n n S S S S ---=-,所以2=n S n ,因为各项为正项,所以=n S因为[][][]1234851,1,[]1,[][]2S S S S S S =======L ,[]05911[][]3S S S ====L ,[]161724[][]4S S S ====L ,[]252635[][]5S S S ====L , []363740[][]6S S S ====L .所以[][][]1240S S S +++=L 13+25+37+49+511+65=155⨯⨯⨯⨯⨯⨯, 故选:D 【点睛】此题考查了数列的已知前n 项和求通项,考查了分析问题解决问题的能力,属于中档题.4.执行如图所示的程序框图,若输出的S 为154,则输入的n 为( )A .18B .19C .20D .21【答案】B 【解析】 【分析】找到输出的S 的规律为等差数列求和,即可算出i ,从而求出n . 【详解】由框图可知,()101231154S i =+++++⋯+-= , 即()1231153i +++⋯+-=,所以()11532i i -=,解得18i =,故最后一次对条件进行判断时18119i =+=,所以19n =. 故选:B 【点睛】本题考查程序框图,要理解循环结构的程序框图的运行,考查学生的逻辑推理能力.属于简单题目.5.已知函数()2f x x mx =+图象在点()()1,1A f 处的切线l 与直线320x y ++=垂直,若数列()1f n ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前n 项和为n S ,则2018S 的值为( )A .20152016 B .20162017C .20172018D .20182019【答案】D 【解析】 【分析】求出原函数的导函数,得到()y f x =在1x =时的导数值,进一步求得m ,可得函数解析式,然后利用裂项相消法可计算出2018S 的值. 【详解】由()2f x x mx =+,得()2f x x m '=+,()12f m '∴=+,因为函数()2f x x mx =+图象在点()()1,1A f 处的切线l 与直线320x y ++=垂直,()123f m '∴=+=,解得1m =,()2f x x x ∴=+,则()()21111111f n n n n n n n ===-+++. 因此,20181111112018112232018201920192019S =-+-++-=-=L . 故选:D. 【点睛】本题考查利用导数研究过曲线上某点处的切线方程,训练了利用裂项相消法求数列的前n 项和,是中档题.6.已知{}n a 是单调递增的等比数列,满足352616,17a a a a ⋅=+=,则数列{}n a 的前n 项和n S = A .122n+ B .122n- C .1122n -+D .1122n -- 【答案】D 【解析】 【分析】由等比数列的性质和韦达定理可得26a a , 为方程217160x x -+= 的实根,解方程可得q和a 1,代入求和公式计算可得. 【详解】∵352616,17a a a a ⋅=+=,∴由等比数列的性质可得26261617a a a a ⋅=+=, ,26a a , 为方程217160x x -+= 的实根解方程可得2626116161a a a a ====,,或, , ∵等比数列{a n }单调递增,∴26116a a ==,,∴1122q a ,== ,∴()1112122122nn n S ----== 故选D . 【点睛】本题考查等比数列的求和公式,涉及等比数列的性质和一元二次方程的解法,属中档题.7.等比数列{}n a 的前n 项和为n S ,公比为q ,若639S S =,562S =,则1a =( ) AB .2CD .3【答案】B 【解析】 【分析】根据题意,分析可得等比数列{}n a 的公比1q ≠±,进而由等比数列的通项公式可得()()631111911a q a q qq--=⨯--,解可得2q =,又由()5151131621a q Saq-===-,解可得1a 的值,即可得答案.【详解】根据题意,等比数列{}n a 中,若639S S =,则1q ≠±, 若639S S =,则()()631111911a q a q qq--=⨯--,解可得38q=,则2q =,又由562S =,则有()5151131621a q S aq-===-,解可得12a =;故选B . 【点睛】本题考查等比数列的前n 项和公式的应用,关键是掌握等比数列的前n 项和的性质.8.等比数列{}n a 的前n 项和为n S ,若32S =,618S =,则106S S 等于( ) A .-3 B .5C .-31D .33【答案】D 【解析】 【分析】先由题设条件结合等比数列的前n 项和公式,求得公比q ,再利用等比数列的前n 项和公式,即可求解106S S 的值,得到答案. 【详解】由题意,等比数列{}n a 中32S =,618S =,可得313366316(1)1121(1)11181a q S q q a q S q q q---====--+-,解得2q =,所以101105105516(1)11133(1)11a q S q q q a q S q q---===+=---. 故选:D . 【点睛】本题主要考查了等比数列的前n 项和公式的应用,其中解答中熟记等比数列的前n 项和公式,准确计算是解答的关键,着重考查了推理与计算能力.9.已知等比数列{}n a 满足13a =,13521a a a ++=,则357a a a ++=( ) A .21 B .42 C .63 D .84【答案】B 【解析】由a 1+a 3+a 5=21得242421(1)21172a q q q q q ++=∴++=∴=∴ a 3+a 5+a 7=2135()22142q a a a ++=⨯=,选B.10.数列{}n a 的通项公式为()n a n c n N *=-∈.则“2c <”是“{}na 为递增数列”的( )条件. A .必要而不充分 B .充要C .充分而不必要D .即不充分也不必要【答案】A 【解析】 【分析】根据递增数列的特点可知10n n a a +->,解得12c n <+,由此得到若{}n a 是递增数列,则32c <,根据推出关系可确定结果. 【详解】 若“{}n a 是递增数列”,则110n n a a n c n c +-=+--->, 即()()221n c n c +->-,化简得:12c n <+, 又n *∈N ,1322n ∴+≥,32c ∴<, 则2c <¿{}n a 是递增数列,{}n a 是递增数列2c ⇒<,∴“2c <”是“{}n a 为递增数列”的必要不充分条件.故选:A . 【点睛】本题考查充分条件与必要条件的判断,涉及到根据数列的单调性求解参数范围,属于基础题.11.设数列{}n a 是等差数列,1356a a a ++=,76a =.则这个数列的前7项和等于( ) A .12 B .21C .24D .36【答案】B 【解析】 【分析】根据等差数列的性质可得3a ,由等差数列求和公式可得结果. 【详解】因为数列{}n a 是等差数列,1356a a a ++=, 所以336a =,即32a =, 又76a =, 所以73173a a d -==-,1320a a d =-=, 故1777()212a a S +== 故选:B 【点睛】本题主要考查了等差数列的通项公式,性质,等差数列的和,属于中档题.12.已知数列{}n a 是正项等比数列,若132a =,3432a a ⋅=,数列{}2log n a 的前n 项和为n S ,则n S >0时n 的最大值为 ( ) A .5 B .6C .10D .11【答案】C 【解析】2525163412132323222log 62n n n n a a a q q q a a n --⋅===⇒=⇒=⨯=⇒=-⇒ max (56)011102n n n S n n +-=>⇒<⇒= ,故选C.13.若两个等差数列{}n a 、{}n b 的前n 项和分别为n A 、n B ,且满足2131n n A n B n -=+,则371159a a ab b +++的值为( )A .3944B .58C .1516D .1322【答案】C 【解析】 【分析】利用等差中项的性质将371159a a ab b +++化简为7732a b ,再利用数列求和公式求解即可. 【详解】11337117131135971313()3333213115213()22223131162a a a a a a A b b b b b B +++⨯-==⨯=⨯=⨯=++⨯+, 故选:C. 【点睛】本题考查了等差中项以及数列求和公式的性质运用,考查了推理能力与计算能力,属于中档题.14.设等比数列{}n a 的前n 项和记为n S ,若105:1:2S S =,则155:S S =( ) A .34B .23C .12D .13【答案】A 【解析】 【分析】根据等比数列前n 项和的性质求解可得所求结果. 【详解】∵数列{}n a 为等比数列,且其前n 项和记为n S , ∴51051510,,S S S S S --成等比数列. ∵105:1:2S S =,即1051 2S S =, ∴等比数列51051510,,S S S S S --的公比为105512S S S -=-, ∴()1510105511 24S S S S S -=--=, ∴15510513 44S S S S =+=, ∴1553:4S S =. 故选A . 【点睛】在等比数列{}n a 中,其前n 项和记为n S ,若公比1q ≠,则233,,,k k k k k S S S S S --L 成等比数列,即等比数列中依次取k 项的和仍为等比数列,利用此性质解题时可简化运算,提高解题的效率.15.在等差数列{}n a 中,其前n 项和是n S ,若90S >,100S <,则在912129,,,S S S a a a ⋯中最大的是( ) A .11S a B .88S a C .55S a D .99S a 【答案】C 【解析】 【分析】由题意知5600a a >,< .由此可知569121256900...0,0,...0S S S S Sa a a a a ,,,>>><<,所以在912129...S S S a a a ,,,中最大的是55S a . 【详解】 由于191109510569()10()9050222a a a a S a S a a ++====+>,()< , 所以可得5600a a >,<. 这样569121256900...0,0,...0S S S S Sa a a a a ,,,>>><<, 而125125S S S a a a ⋯⋯<<<,>>>>0, ,所以在912129...S S S a a a ,,,中最大的是55S a . 故选C . 【点睛】本题考查等数列的性质和应用,解题时要认真审题,仔细解答.属中档题.16.已知数列{}n a 的前n 项和为n S ,且12a =,12n n n a S n++=(*n ∈N ),则n S =( ) A .121n -+ B .2n n ⋅C .31n -D .123n n -⋅【答案】B 【解析】 【分析】由题得122,1n n a n a n ++=⨯+再利用累乘法求出1(1)2n n a n -=+⋅,即得n S . 【详解】 由题得111(1)(1),,,2121n n n nn n n na n a na n a S S a n n n n ++---=∴=∴=-++++(2n ≥) 所以122,1n n a n a n ++=⨯+(2n ≥) 由题得22166,32a a a =∴==,所以122,1n n a n a n ++=⨯+(1n ≥). 所以324123134512,2,2,2,234n n a a a a n a a a a n -+=⨯=⨯=⨯=⨯L , 所以11112,(1)22n n n n a n a n a --+=⋅∴=+⋅. 所以(2)222n n n nS n n n =⨯+⋅=⋅+. 故选:B 【点睛】本题主要考查数列通项的求法,考查数列前n 项和与n a 的关系,意在考查学生对这些知识的理解掌握水平.17.已知等差数列{}n a 中,首项为1a (10a ≠),公差为d ,前n 项和为n S ,且满足15150a S +=,则实数d 的取值范围是( )A.[; B.(,-∞C.)+∞D.(,)-∞⋃+∞【答案】D 【解析】 【分析】由等差数列的前n 项和公式转化条件得11322a d a =--,再根据10a >、10a <两种情况分类,利用基本不等式即可得解. 【详解】Q 数列{}n a 为等差数列,∴1515455102a d d S a ⨯=+=+,∴()151********a S a a d +++==, 由10a ≠可得11322a d a =--,当10a >时,1111332222a a d a a ⎛⎫=--=-+≤-= ⎪⎝⎭1a 时等号成立;当10a <时,11322a d a =--≥=1a =立; ∴实数d的取值范围为(,)-∞⋃+∞.故选:D.【点睛】本题考查了等差数列前n 项和公式与基本不等式的应用,考查了分类讨论思想,属于中档题.18.《算法统宗》是中国古代数学名著,由明代数学家程大位编著,它对我国民间普及珠算和数学知识起到了很大的作用,是东方古代数学的名著.在这部著作中,许多数学问题都是以歌诀形式呈现的,如“九儿问甲歌”就是其中一首:一个公公九个儿,若问生年总不知,自长排来差三岁,共年二百又零七,借问长儿多少岁,各儿岁数要详推.在这个问题中,这位公公的长儿的年龄为( )A .23岁B .32岁C .35岁D .38岁【答案】C【解析】【分析】根据题意,得到数列{}n a 是等差数列,由9207S =,求得数列的首项1a ,即可得到答案.【详解】设这位公公的第n 个儿子的年龄为n a ,由题可知{}n a 是等差数列,设公差为d ,则3d =-, 又由9207S =,即91989(3)2072S a ⨯=+⨯-=,解得135a =, 即这位公公的长儿的年龄为35岁.故选C .【点睛】 本题主要考查了等差数列前n 项和公式的应用,其中解答中认真审题,熟练应用等差数列的前n 项和公式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.19.根据下面的程序框图,输出的S 的值为( )A .1007B .1009C .0D .-1【答案】A【解析】【分析】 按照程序框图模拟运行即可得解.【详解】1i =,1112x ==--,0(1)1S =+-=-;2i =,111(1)2x ==--, 11122S =-+=-;3i =,12112x ==-, 13222S =-+=;4i =,1112x ==--, 31(1)22S =+-=,…, 由此可知,运行程序过程中,x 呈周期性变化,且周期为3, 所以输出112672110072S ⎛⎫=-++⨯-= ⎪⎝⎭. 故选A【点睛】本题主要考查程序框图和数列的周期性,意在考查学生对这些知识的理解掌握水平和分析推理能力.20.已知数列11n a ⎧⎫-⎨⎬⎩⎭是公比为13的等比数列,且10a >,若数列{}n a 是递增数列,则1a的取值范围为( )A .(1,2)B .(0,3)C .(0,2)D .(0,1)【答案】D【解析】【分析】先根据已知条件求解出{}n a 的通项公式,然后根据{}n a 的单调性以及10a >得到1a 满足的不等关系,由此求解出1a 的取值范围.【详解】 由已知得11111113n n a a -⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,则11111113n n a a -=⎛⎫⎛⎫-+ ⎪⎪⎝⎭⎝⎭.因为10a >,数列{}n a 是单调递增数列,所以10n n a a +>>,则111111*********n n a a ->⎛⎫⎛⎫⎛⎫⎛⎫-+-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 化简得111110113a a ⎛⎫<-<-⎪⎝⎭,所以101a <<. 故选:D.【点睛】本题考查数列通项公式求解以及根据数列单调性求解参数范围,难度一般.已知数列单调性,可根据1,n n a a +之间的大小关系分析问题.。

高考数学压轴专题专题备战高考《数列》全集汇编含答案解析

高考数学压轴专题专题备战高考《数列》全集汇编含答案解析

【高中数学】数学高考《数列》试题含答案一、选择题1.在正整数数列中,由1开始依次按如下规则,将某些数取出.先取1;再取1后面两个偶数2,4;再取4后面最邻近的3个连续奇数5,7,9;再取9后面的最邻近的4个连续偶数10,12,14,16;再取此后最邻近的5个连续奇数17,19,21,23,25.按此规则一直取下去,得到一个新数列1,2,4,5,7,9,10,12,14,16,17,…,则在这个新数列中,由1开始的第2 019个数是( ) A .3 971 B .3 972C .3 973D .3 974【答案】D 【解析】 【分析】先对数据进行处理能力再归纳推理出第n 组有n 个数且最后一个数为n 2,则前n 组共1+2+3+…+n ()12n n +=个数,运算即可得解.【详解】解:将新数列1,2,4,5,7,9,10,12,14,16,17,…,分组为(1),(2,4),(5,7,9,),(10,12,14,16),(17,19,21,23,25)… 则第n 组有n 个数且最后一个数为n 2, 则前n 组共1+2+3+…+n ()12n n +=个数,设第2019个数在第n 组中,则()()120192120192n n n n ⎧+≥⎪⎪⎨-⎪⎪⎩<,解得n =64,即第2019个数在第64组中,则第63组最后一个数为632=3969,前63组共1+2+3+…+63=2016个数,接着往后找第三个偶数则由1开始的第2019个数是3974, 故选:D . 【点睛】本题考查了对数据的处理能力及归纳推理能力,考查等差数列前n 项和公式,属中档题.2.已知数列22333311313571351,,,,,,,...,,,, (2222222222)nn n ,则该数列第2019项是( ) A .1019892 B .1020192 C .1119892 D .1120192 【答案】C【解析】 【分析】由观察可得()22333311313571351,,,,,,,...,,,,...2222222222n n n ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭项数为21,1,2,4,8,...,2,...k -,注意到101110242201922048=<<=,第2019项是第12个括号里的第995项. 【详解】 由数列()22333311313571351,,,,,,,...,,,,...2222222222n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,可发现其项数为 21,1,2,4,8,...,2,...k -,则前11个括号里共有1024项,前12个括号里共有2048项,故原数列第2019项是第12个括号里的第995项,第12个括号里的数列通项为11212m -, 所以第12个括号里的第995项是1119892. 故选:C. 【点睛】本题考查数列的定义,考查学生观察找出已知数列的特征归纳出其项数、通项,是一道中档题.3.已知各项均为正数的等比数列{}n a 的前n 项和为n S ,且满足6a ,43a ,5a -成等差数列,则42S S ( ) A .3 B .9C .10D .13【答案】C 【解析】 【分析】设{}n a 的公比为0q >,由645,3,a a a -成等差数列,可得260,0q q q --=>,解得q ,再利用求和公式即可得结果. 【详解】设各项均为正数的等比数列{}n a 的公比为0q >,Q 满足645,3,a a a -成等差数列,()2465446,6,0a a a a a q q q ∴=-∴=->, 260,0q q q ∴--=>,解得3q =,则()()4124221313131103131a S S a --==+=--,故选C. 【点睛】本题主要考查等比数列的通项公式与求和公式,属于中档题. 等比数列基本量的运算是等比数列的一类基本题型,数列中的五个基本量1,,,,,n n a q n a S ,一般可以“知二求三”,通过列方程组所求问题可以迎刃而解,解决此类问题的关键是熟练掌握等比数列的有关性质和公式,并灵活应用,在运算过程中,还应善于运用整体代换思想简化运算过程.4.“中国剩余定理”又称“孙子定理”.1852年,英国来华传教士伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得到的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将1到2019这2019个数中,能被3除余2且被5整除余2的数按从小到大的顺序排成一列,构成数列{}n a ,则此数列所有项中,中间项的值为( ) A .992 B .1022C .1007D .1037【答案】C 【解析】 【分析】首先将题目转化为2n a -即是3的倍数,也是5的倍数,也即是15的倍数.再写出{}n a 的通项公式,算其中间项即可. 【详解】将题目转化为2n a -即是3的倍数,也是5的倍数,也即是15的倍数. 即215(1)n a n -=-,1513n a n =-当135n =,135151351320122019a =⨯-=<, 当136n =,136151361320272019a =⨯-=>, 故1,2,n =……,135数列共有135项.因此数列中间项为第68项,681568131007a =⨯-=. 故答案为:C . 【点睛】本题主要考查数列模型在实际问题中的应用,同时考查了学生的计算能力,属于中档题.5.《周髀算经》中有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气其日影长依次成等差数列,冬至、立春、春分日影长之和为31.5尺,前九个节气日影长之和为85.5尺,则小满日影长为( ) A .1.5尺B .2.5尺C .3.5尺D .4.5尺【解析】 【分析】结合题意将其转化为数列问题,并利用等差数列通项公式和前n 项和公式列方程组,求出首项和公差,由此能求出结果. 【详解】解:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气其日影长依次成等差数列{}n a ,冬至、立春、春分日影长之和为31.5尺,前九个节气日影长之和为85.5尺,∴()()111913631.598985.52a a d a d S a d ⎧++++=⎪⎨⨯=+=⎪⎩, 解得113.5a =,1d =-,∴小满日影长为1113.510(1) 3.5a =+⨯-=(尺). 故选C . 【点睛】本题考查等差数列的前n 项和公式,以及等差数列通项公式的运算等基础知识,掌握各公式并能熟练运用公式求解,考查运算求解能力,考查化归与转化思想,属于基础题.6.数列{a n },满足对任意的n ∈N +,均有a n +a n +1+a n +2为定值.若a 7=2,a 9=3,a 98=4,则数列{a n }的前100项的和S 100=( ) A .132 B .299C .68D .99【答案】B 【解析】 【分析】由12n n n a a a ++++为定值,可得3n n a a +=,则{}n a 是以3为周期的数列,求出123,,a a a ,即求100S . 【详解】对任意的n ∈+N ,均有12n n n a a a ++++为定值,()()123120n n n n n n a a a a a a +++++∴++-++=,故3n n a a +=,{}n a ∴是以3为周期的数列,故17298392,4,3a a a a a a ======,()()()100123979899100123133S a a a a a a a a a a a ∴=+++++++=+++L()332432299=+++=.【点睛】本题考查周期数列求和,属于中档题.7.设函数()mf x x ax =+的导数为()21f x x '=+,则数列()()2N n f n *⎧⎫⎪⎪∈⎨⎬⎪⎪⎩⎭的前n 项和是( ) A .1nn + B .21nn + C .21nn - D .()21n n+ 【答案】B 【解析】 【分析】函数()mf x x ax =+的导函数()21f x x '=+,先求原函数的导数,两个导数进行比较即可求出m ,a ,利用裂项相消法求出()()2N n f n *⎧⎫⎪⎪∈⎨⎬⎪⎪⎩⎭的前n 项和即可.【详解】Q 1()21m f x mx a x -'=+=+,1a \=,2m =,()(1)f x x x ∴=+,112()()(1)221f n n n n n ==-++, ∴111111122[()()()]2(1)1223111n n S n n n n =-+-++-=-=+++L ,故选:B . 【点睛】本题考查数列的求和运算,导数的运算法则,数列求和时注意裂项相消法的应用.8.已知数列{}n a 的奇数项依次成等差数列,偶数项依次成等比数列,且11a =,22a =,347a a +=,5613a a +=,则78a a +=( )A .4B .19C .20D .23【答案】D 【解析】 【分析】本题首先可以设出奇数项的公差以及偶数项的公比,然后对347a a +=、5613a a +=进行化简,得出公差和公比的数值,然后对78a a +进行化简即可得出结果. 【详解】设奇数项的公差为d ,偶数项的公比为q ,由347a a +=,5613a a +=,得127d q ++=,212213d q ++=,解得2d =,2q =,所以37813271623a a d q +=++=+=,故选D .【点睛】本题主要考查等差数列、等比数列的通项公式及性质等基础知识,考查运算求解能力,考查函数与方程思想、化归与转化思想等,体现基础性与综合性,提升学生的逻辑推理、数学运算等核心素养,是中档题.9.已知等比数列{}n a 的前n 项和为n S ,若1231112a a a ++=,22a =,则3S =( ) A .10 B .7C .8D .4【答案】C 【解析】 【分析】根据等比数列的性质可将已知等式变为12332224a a a S a ++==,解方程求得结果. 【详解】 由题意得:13123321231322111124a a a a a S a a a a a a a +++++=+=== 38S ∴= 本题正确选项:C 【点睛】本题考查等比数列性质的应用,关键是能够根据下角标的关系凑出关于3S 的方程,属于基础题.10.已知数列{}n a 满足:()()2*112,10n n n a a S S n +=+-=∈N ,其中n S 为数列{}n a 的前n 项和.设()()()12111()1n S S S f n n +++=+L ,若对任意的n 均有(1)()f n kf n +<成立,则k 的最小整数值为( ) A .2 B .3C .4D .5【答案】A 【解析】 【分析】当1n ≥时,有条件可得()211n n n nS S S S +--=-,从而111n n nS S S +--=,故111111n n S S +-=--,得出 11n S ⎧⎫⎨⎬-⎩⎭是首项、公差均为1的等差数列,从而求出n S 【详解】当1n ≥时,有条件可得()211n n n nS S S S +--=-,从而111n n nS S S +--=,故111111111n n n n n S S S S S +-=-=----,又1111121S ==--,11n S ⎧⎫∴⎨⎬-⎩⎭是首项、公差均为1的等差数列,11n n S ∴=-,1n n S n +=,由()()()12111()1n S S S f n n +++=+L , 得()1(1)1(1)23152,2()2223n n S f n n f n n n n +++++⎡⎫===-∈⎪⎢+++⎣⎭, 依题意知(1)()f n k f n +>, min 2k ∴=.故选:A 【点睛】本题考查数列的综合应用.属于中等题.11.执行如图所示的程序框图,若输出的S 为154,则输入的n 为( )A .18B .19C .20D .21【答案】B 【解析】 【分析】找到输出的S 的规律为等差数列求和,即可算出i ,从而求出n . 【详解】由框图可知,()101231154S i =+++++⋯+-= , 即()1231153i +++⋯+-=,所以()11532i i -=,解得18i =,故最后一次对条件进行判断时18119i =+=,所以19n =. 故选:B 【点睛】本题考查程序框图,要理解循环结构的程序框图的运行,考查学生的逻辑推理能力.属于简单题目.12.在递减等差数列{}n a 中,21324a a a =-.若113a =,则数列11{}n n a a +的前n 项和的最大值为 ( ) A .24143B .1143C .2413D .613【答案】D 【解析】设公差为,0d d < ,所以由21324a a a =-,113a =,得213(132)(13)42d d d +=+-⇒=- (正舍),即132(1)152n a n n =--=- , 因为111111()(152)(132)2215213n n a a n n n n +==----- ,所以数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和等于1111116()()213213213261313n --≤--=-⨯- ,选D. 点睛:裂项相消法是指将数列的通项分成两个式子的代数和的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如1n n c a a +⎧⎫⎨⎬⎩⎭(其中{}n a 是各项均不为零的等差数列,c 为常数)的数列. 裂项相消法求和,常见的有相邻两项的裂项求和(如本例),还有一类隔一项的裂项求和,如1(1)(3)n n ++或1(2)n n +.13.等比数列{n a }的前n 项和为n S ,若103010,30,S S ==则20S = A .10 B .20 C .20或-10 D .-20或10【答案】B 【解析】 【分析】由等比数列的性质可得,S 10,S 20﹣S 10,S 30﹣S 20成等比数列即(S 20﹣S 10)2=S 10•(S 30﹣S 20),代入可求. 【详解】由等比数列的性质可得,S 10,S 20﹣S 10,S 30﹣S 20成等比数列,且公比为10q∴(S 20﹣S 10)2=S 10•(S 30﹣S 20)即()()22020101030S S -=- 解20S =20或-10(舍去) 故选B . 【点睛】本题主要考查了等比数列的性质(若S n 为等比数列的前n 项和,且S k ,S 2k ﹣S k ,S 3k ﹣S 2k 不为0,则其成等比数列)的应用,注意隐含条件的运用14.已知数列{}n a 是1为首项,2为公差的等差数列,{}n b 是1为首项,2为公比的等比数列,设n n b c a =,12...,(*)n n T c c c n N =+++∈,则当2019n T <时,n 的最大值是( ) A .9 B .10C .11D .12【答案】A 【解析】 【分析】由题设知21n a n =-,12n nb -=,由1121124222n n n b b bn T a a a a a a a n -+=++⋯+=+++⋯+=--和2019n T <,得1222019n n +--<,由此能求出当2019n T <时n 的最大值.【详解】{}n a Q 是以1为首项,2为公差的等差数列,21n a n ∴=-,{}n b Q 是以1为首项,2为公比的等比数列,12n n b -∴=,()()()()1121121242211221241221n n n n b b bn T c c c a a a a a a a --∴=++⋯+=++⋯+=+++⋯+=⨯-+⨯-+⨯-+⋯+⨯- ()121242n n -=+++⋯+- 12212nn -=⨯-- 122n n +=--,2019n T <Q ,1222019n n +∴--<,解得:10n <.则当2019n T <时,n 的最大值是9. 故选A . 【点睛】本题考查了等差数列、等比数列的通项公式,结合含两个变量的不等式的处理问题,易出错,属于中档题.15.已知数列{}n a 是等比数列,前n 项和为n S ,则“3152a a a >+”是“210n S -<”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件 D .既不充分也不必要条件【答案】B 【解析】 【分析】根据等比数列的通项公式与求和公式,即可判断命题间的关系. 【详解】因为数列{}n a 是等比数列,前n 项和为n S 若3152a a a >+,由等比数列的通项公式可得111242a a q a q >+,化简后可得()21210q a -<.因为()2210q -≥所以不等式的解集为10a < 若210n S -<当公比1q ≠±时, 210n S -<则10a <,可得3152a a a >+ 当公比1q =±时, 由210n S -<则10a <,可得3152a a a =+ 综上可知, “3152a a a >+”是“210n S -<”的充分不必要条件 故选:B 【点睛】本题考查了等比数列的通项公式与求和公式的应用,在应用等比数列求和公式时,需记得讨论公比是否为1的情况,属于中档题.16.科赫曲线是一种外形像雪花的几何曲线,一段科赫曲线可以通过下列操作步骤构造得到,任画一条线段,然后把它均分成三等分,以中间一段为边向外作正三角形,并把中间一段去掉,这样,原来的一条线段就变成了4条小线段构成的折线,称为“一次构造”;用同样的方法把每条小线段重复上述步骤,得到16条更小的线段构成的折线,称为“二次构造”,…,如此进行“n 次构造”,就可以得到一条科赫曲线.若要在构造过程中使得到的折线的长度达到初始线段的1000倍,则至少需要通过构造的次数是( ).(取lg30.4771≈,lg 20.3010≈)A .16B .17C .24D .25【答案】D 【解析】 【分析】由折线长度变化规律可知“n 次构造”后的折线长度为43na ⎛⎫ ⎪⎝⎭,由此得到410003n⎛⎫≥ ⎪⎝⎭,利用运算法则可知32lg 2lg 3n ≥⨯-,由此计算得到结果.【详解】记初始线段长度为a ,则“一次构造”后的折线长度为43a ,“二次构造”后的折线长度为243a ⎛⎫ ⎪⎝⎭,以此类推,“n 次构造”后的折线长度为43na ⎛⎫ ⎪⎝⎭,若得到的折线长度为初始线段长度的1000倍,则410003n a a ⎛⎫≥ ⎪⎝⎭,即410003n⎛⎫≥ ⎪⎝⎭, ()()44lg lg lg 4lg32lg 2lg3lg1000333n n n n ⎛⎫∴==-=-≥= ⎪⎝⎭, 即324.0220.30100.4771n ≥≈⨯-,∴至少需要25次构造. 故选:D .【点睛】 本题考查数列新定义运算的问题,涉及到对数运算法则的应用,关键是能够通过构造原则得到每次构造后所得折线长度成等比数列的特点.17.已知数列{}n a 的前n 项和()2*23n S n n n N =+∈,则{}na 的通项公式为( ) A .21n a n =+B .21n a n =-C .41n a n =+D .41n a n =-【答案】C【解析】【分析】 首先根据223n S n n =+求出首项1a 的值,然后利用1n n n a S S -=-求出2n ≥时n a 的表达式,然后验证1a 的值是否适合,最后写出n a 的式子即可.【详解】因为223n S n n =+,所以,当2n ≥时,22123[2(1)3(1)]41n n n a S S n n n n n -=-=+--+-=+,当1n =时,11235==+=a S ,上式也成立,所以41n a n =+,故选C.【点睛】该题考查的是有关数列的通项公式的求解问题涉及到的知识点有数列的项与和的关系,即11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,算出之后再判断1n =时对应的式子是否成立,最后求得结果.18.正项等比数列{}n a 中的1a 、4039a 是函数()3214633f x x x x =-+-的极值点,则2020a =( )A .1-B .1 CD .2【答案】B【解析】【分析】根据可导函数在极值点处的导数值为0,得出140396a a =,再由等比数列的性质可得.【详解】解:依题意1a 、4039a 是函数()3214633f x x x x =-+-的极值点,也就是()2860f x x x '=-+=的两个根∴140396a a =又{}n a是正项等比数列,所以2020a =∴20201a ==.故选:B【点睛】本题主要考查了等比数列下标和性质以应用,属于中档题.19.数列{}n a 满足11a =,对任意的*n N ∈都有11n n a a n +=++,则122016111a a a +++=L ( ) A .20152016B .40322017C .40342017D .20162017【答案】B【解析】【分析】 首先根据题设条件,由11n n a a n +=++,可得到递推关系为11n n a a n +-=+; 接下来利用累加法可求得()12n n n a +=,从而()1211211na n n n n ⎛⎫==- ⎪++⎝⎭,由此就可求得122016111a a a +++L 的值. 【详解】因为111n n n a a a n a n +=++=++,所以11n n a a n +-=+,用累加法求数列{}n a 的通项得:()()1211n n n a a a a a a -=+-+⋯+-()1122n n n +=++⋯+=, 所以()1211211n a n n n n ⎛⎫==- ⎪++⎝⎭,于是1232016111111111212222320162017a a a a ⎛⎫⎛⎫⎛⎫ +++⋯+=-+-+⋯+-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 121201*********⎛⎫==- ⎪⎝⎭. 故选:B.【点睛】本题是一道考查数列的题目,掌握数列的递推关系以及求解前n 项和的方法是解答本题的关键,属于常考题.20.设数列{}n a 的前n 项和为n S 已知()*123n n a a n n N ++=+∈且1300n S =,若23a <,则n 的最大值为( )A .49B .50C .51D .52【答案】A【解析】【分析】对n 分奇偶性分别讨论,当n 为偶数时,可得2+32n n n S =,发现不存在这样的偶数能满足此式,当n 为奇数时,可得21+342n n n S a -=+,再结合23a <可讨论出n 的最大值. 【详解】当n 为偶数时,12341()()()n n n S a a a a a a -=++++⋅⋅⋅++(213)(233)[2(1)3]n =⨯++⨯++⋅⋅⋅+-+2[13(1)]32n n =⨯++⋅⋅⋅+-+⨯2+32n n =, 因为22485048+348503501224,132522S S ⨯+⨯====, 所以n 不可能为偶数;当n 为奇数时,123451()()()n n n S a a a a a a a -=+++++⋅⋅⋅++1(223)(243)[2(1)3]a n =+⨯++⨯++⋅⋅⋅+-+21342n n a +-=+ 因为2491149349412722S a a +⨯-=+=+, 2511151351413752S a a +⨯-=+=+, 又因为23a <,125a a +=,所以 12a >S 时,n的最大值为49所以当1300n故选:A【点睛】此题考查的是数列求和问题,利用了并项求和的方法,考查了分类讨论思想,属于较难题.。

2024年高考考前信息必刷卷二(新高考新题型)数学及答案

2024年高考考前信息必刷卷二(新高考新题型)数学及答案

绝密★启用前2024年高考考前信息必刷卷(新高考新题型)02数学(考试时间:120分钟试卷满分:150分)随着九省联考的结束,全国陆续有多个省份宣布在2024年的高考数学中将采用新题型模式。

新的试题模式与原模式相比变化较大,考试题型为8(单选题)+3(多选题)+3(填空题)+5(解答题),其中单选题的题量不变,多选题、填空题、解答题各减少1题,多选题由原来的0分、2分、5分三种得分变为“部分选对得部分分,满分为6分”,填空题每题仍为5分,总分15分,解答题变为5题,分值依次为13分、15分、15分、17分、17分。

新的试题模式与原模式相比,各个题目的考查内容、排列顺序进行了大幅度的调整。

多年不变的集合题从单选题的第1题变为填空题,且以往压轴的函数与导数试题在测试卷中安排在解答题的第1题,难度大幅度降低;概率与统计试题也降低了难度,安排在解答题的第2题;在压轴题安排了新情境试题。

这些变化对于打破学生机械应试的套路模式,对促使学生全面掌握主干知识、提升基本能力具有积极的导向作用。

九省联考新模式的变化,不仅仅体现在题目个数与分值的变化上,其最大的变换在于命题方向与理念的变化,与以往的试题比较,试题的数学味更浓了,试卷没有太多的废话,也没有强加所谓的情景,体现了数学的简洁美,特别是最后一道大题,题目给出定义,让考生推导性质,考查考生的数学学习能力和数学探索能力,这就要求考生在平时的学习中要注重定理、公式的推导证明,才能培养数学解决这类问题的思维素养。

试卷的命制体现“多想少算”的理念,从重考查知识回忆向重考查思维过程转变,试卷题目的设置层次递进有序,难度结构合理,中低难度的题目平和清新,重点突出;高难度的题目不偏不怪,中规中矩,体现了良好的区分性,可有效的引导考生在学习过程中从小处着手,掌握基本概念和常规计算;从大处着眼,建构高中数学的知识体系。

一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.6(1)ax -的展开式中3x 的系数为160,则=a ( )A. 2B. 2- C. 4D. 4-2.设n S 是等比数列{}n a 的前n 项和,若34564,8S a a a =++=,则96S S =( )A .2B .73C .53D .373.某学校运动会男子100m 决赛中,八名选手的成绩(单位:s )分别为:13.09,13.15,12.90,13.16,12.96,13.11,x ,13.24,则下列说法错误的是( )A .若该八名选手成绩的第75%百分位数为13.155,则13.15x =B .若该八名选手成绩的众数仅为13.15,则13.15x =C .若该八名选手成绩的极差为0.34,则12.9013.24x ≤≤D .若该八名选手成绩的平均数为13.095,则13.15x =4.在ABC 中,π3C =,AB =5AC BC +=,则ABC 的面积为( )AB.C.D.5.已知π170,sin sin ,cos cos 21010βααβαβ<<<==,则cos2α=( )A .0B .725C .2425D .16.第19届亚运会在杭州举行,为了弘扬“奉献,友爱,互助,进步”的志愿服务精神,5名大学生将前往3个场馆,,A B C 开展志愿服务工作.若要求每个场馆都要有志愿者,则当甲不去场馆A 时,场馆B 仅有2名志愿者的概率为( )A .35B .2150C .611D .347.在平行四边形ABCD 中,24AB AD ==,π3BAD ∠=,E ,H 分别为AB ,CD 的中点,将ADE V 沿直线DE 折起,构成如图所示的四棱锥A BCDE '-,F 为A C '的中点,则下列说法不正确的是( )A .平面//BFH 平面A DE'B .四棱锥A BCDE '-体积的最大值为3C .无论如何折叠都无法满足'AD BC ⊥D .三棱锥A DEH '-表面积的最大值为48.曲线C 是平面内与三个定点()11,0F -,()21,0F 和()30,1F 的距离的和等于.给出下列四个结论:①曲线C 关于x 轴、y 轴均对称;②曲线C 上存在点P ,使得3PF =③若点P 在曲线C 上,则12F PF △的面积最大值是1;④曲线C 上存在点P ,使得12F PF ∠为钝角.其中所有正确结论的序号是( )A .②③④B .②③C .③④D .①②③④二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知函数()44cos cos sin f x x x x x =+-,则下列说法正确的是( )A .最小正周期为πB .函数()f x 在区间()π,π-内有6个零点C .()f x 的图象关于点π,012⎛⎫⎪⎝⎭对称D .将()f x 的图象向左平移π4个单位,得到函数()g x 的图象,若()g x 在[]0,t 上的最大值为()0g ,则t的最大值为5π610.已知直线()():2110l a x a y +-+-=与圆22:4C x y +=交于点,A B ,点()1,1,P AB 中点为Q ,则()A .AB 的最小值为B .AB 的最大值为4C .PA PB ⋅为定值D .存在定点M ,使得MQ 为定值11.已知函数()f x 及其导函数()f x '的定义域均为R ,若()f x 是奇函数,()()210f f =-≠,且对任意,R x y ∈,()()()()()f x y f x f y f x f y ''+=+,则( )A .()112f '=-B .()60f =C .20241()1k f k ==∑D .20241()1k f k '==-∑三、填空题:本题共3小题,每小题5分,共15分.12.若复数2023i 12iz =-,则zz =13.已知三个实数a 、b 、c ,当时,且,则的取值范围是 .14.已知棱长为8的正四面体,沿着四个顶点的方向各切下一个棱长为2的小正四面体(如图),剩余中间部分的八面体可以装入一个球形容器内(容器壁厚度忽略不计),则该球形容器表面积的最小值为四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知函数421()2ln 24g x x ax x x x =--+.(1)当1a =时,求()g x 的图象在点(1,(1))g 处的切线方程;(2)若()0g x '≥,求实数a 的取值范围.16.(15分)已知椭圆2222:1(0)x y C a b a b+=>>的右焦点2F 与抛物线24y x =的焦点重合,且其离心率为12.(1)求椭圆C 的方程;(2)已知与坐标轴不垂直的直线l 与椭圆C 交于M ,N 两点,线段MN 的中点为P ,求证:MN OP k k ⋅(O 为坐标原点)为定值.17.(15分)如图,在正四棱台1111ABCD A B C D -中,1124AB A B ==.0c >23b a c ≤+2bc a =2a cb-(1)求证:平面ABCD ⊥平面11ACC A ;(2)若直线1B C 与平面11ACC A 1B CC A --的正弦值.18.(17分)某学校有甲、乙、丙三家餐厅,分布在生活区的南北两个区域,其中甲、乙餐厅在南区,丙餐厅在北区各餐厅菜品丰富多样,可以满足学生的不同口味和需求.(1)现在对学生性别与在南北两个区域就餐的相关性进行分析,得到下表所示的抽样数据,依据0.100α=的独立性检验,能否认为在不同区域就餐与学生性别有关联?就餐区域性别南区北区合计男331043女38745合计711788(2)张同学选择餐厅就餐时,如果前一天在甲餐厅,那么后一天去甲,乙餐厅的概率均为12;如果前一天在乙餐厅,那么后一天去甲,丙餐厅的概率分别为13,23;如果前一天在丙餐厅,那么后一天去甲,乙餐厅的概率均为12.张同学第1天就餐时选择甲,乙,丙餐厅的概率分别为14,14,12.(ⅰ)求第2天他去乙餐厅用餐的概率;(ⅱ)求第()*n n ∈N天他去甲餐厅用餐的概率np .附:()()()()22(),n ad bc n a b c d a b c d a c b d χ-==+++++++;α0.1000.0500.0250.010x α2.7063.8415.0246.63519.(17分)已知定义域为R 的函数()h x 满足:对于任意的x ∈R ,都有()()()2π2πh x h x h =++,则称函数()h x 具有性质P .(1)判断函数()()2,cos f x x g x x ==是否具有性质P ;(直接写出结论)(2)已知函数()()35πsin ,222f x x ωϕωϕ⎛⎫=+<<< ⎪⎝⎭,判断是否存在,ωϕ,使函数()f x 具有性质P ?若存在,求出,ωϕ的值;若不存在,说明理由;(3)设函数()f x 具有性质P ,且在区间[]0,2π上的值域为()()π0,2f f ⎡⎤⎣⎦.函数()()()sin g x f x =,满足()()2πg x g x +=,且在区间()0,2π上有且只有一个零点.求证:()2π2πf =.绝密★启用前2024年高考考前信息必刷卷(新高考新题型)02数学(考试时间:120分钟试卷满分:150分)随着九省联考的结束,全国陆续有多个省份宣布在2024年的高考数学中将采用新题型模式。

2023年数学高考复习真题演练(2021-2022年高考真题)23 数列的基本知识与概念 (含详解)

2023年数学高考复习真题演练(2021-2022年高考真题)23 数列的基本知识与概念 (含详解)

专题23 数列的基本知识与概念【考点预测】1.数列的概念(1)数列的定义:按照一定顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项. (2)数列与函数的关系:从函数观点看,数列可以看成以正整数集N *(或它的有限子集{}12n ⋯,,,)为定义域的函数()n a f n =当自变量按照从小到大的顺序依次取值时所对应的一列函数值.(3)数列有三种表示法,它们分别是列表法、图象法和通项公式法. 2.数列的分类(1)按照项数有限和无限分:(2)按单调性来分:111()n n n nn n a a a a a a C +++≥⎧⎪≥⎪⎨==⎪⎪⎩递增数列:递减数列: ,常数列:常数摆动数列 3.数列的两种常用的表示方法(1)通项公式:如果数列{}n a 的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.(2)递推公式:如果已知数列{}n a 的第1项(或前几项),且从第二项(或某一项)开始的任一项与它的前一项(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式. 【方法技巧与总结】(1)若数列{}n a 的前n 项和为n S ,通项公式为n a ,则1112n n n S n a S S n n N *-=⎧⎪=⎨-≥∈⎪⎩ , , ,注意:根据n S 求n a 时,不要忽视对1n =的验证.(2)在数列{}n a 中,若n a 最大,则11n n n n a a a a -+≥⎧⎨≥⎩ , 若n a 最小,则11.n n nn a a a a -+≤⎧⎨≤⎩【题型归纳目录】 题型一:数列的周期性 题型二:数列的单调性 题型三:数列的最大(小)项 题型四:数列中的规律问题 题型五:数列的最值问题【典例例题】题型一:数列的周期性例1.已知无穷数列{}n a 满足()21N n n n a a a x *++=-∈,且11a =,2a x =()x ∈Z ,若数列{}n a 的前2020项中有100项是0,则下列哪个不能是x 的取值( )A .1147B .1148C .1142-D .1143-例2.若[]x 表示不超过x 的最大整数(如[]2.52=,[]44=,[]2.53-=-),已知2107n n a ⎡⎤=⨯⎢⎥⎣⎦,11b a =,()*110,2n n n b a a n n -=-∈≥N ,则2019b =( )A .2B .5C .7D .8例3.数列{}n a 满足12a =,111nn na a a ++=-,其前n 项积为n T ,则10T 等于( ) A .16B .16-C .6D .6-例4.若数列{}n a 满足1222a a ==,且21n n n a a a ++=-,则{}n a 的前100项和为( ) A .67B .68C .134D .167例5.数列{}n a 满足112,0,2121,1,2n n n n n a a a a a +⎧≤<⎪⎪=⎨⎪-≤<⎪⎩若125a =,则2021a 等于( )A .15B .25C .35D .45例6.已知数列{}n a 满足,()()111122,32n n n n n a a a a a ----⎧-+>⎪=⎨-⎪⎩*(,1)n N n ∈>,若1(2,3)a ∈且记数列{}n a 的前n 项和为n S ,若2019=m S ,则2019S 的值为( ) A .60572B .3028C .60552D .3029例7.(2022·广东汕头·三模)已知数列{}n a 中,114a =-,当1n >时,111n n a a -=-,则2022a =( ) A .14-B .45C .5D .45-例8.(2022·河北·沧县中学高三阶段练习)已知数列{}n a 中,()1112n n n a a a n --=⋅+≥,12a =,则10a 等于( )A .12-B .12C .-1D .2题型二:数列的单调性例9.(2022·四川达州·二模(理))已知单调递增数列{}n a 满足9,102121,109n n m n a m n n -⎧≥⎪=⎨⎛⎫+-< ⎪⎪⎝⎭⎩,则实数m 的取值范围是( ) A .[)12,+∞B .()1,12C .()1,9D .[)9,+∞例10.(2022·河南·温县第一高级中学高三阶段练习(文))已知函数()()633,7,7x a x x f x a x -⎧--≤=⎨>⎩,若数列{}n a 满足()()*n a f n n N =∈且{}n a 是递增数列,则实数a 的取值范围是( )A .9,34⎛⎫ ⎪⎝⎭B .9,34⎡⎫⎪⎢⎣⎭C .()2,3D .[)2,3例11.(2022·浙江·高三专题练习)已知数列{}n a 的首项为11a =,2a a =,且121(2,)n n a a n n n N *++=+≥∈,若数列{}n a 单调递增,则a 的取值范围为( ) A .12a <<B .23a <<C .3522a <<D .1322a <<例12.(2022·全国·高三专题练习)已知等比数列{}n a 前n 项和n S 满足113n n S A +=-⋅(A R ∈),数列{}n b 是递增的,且2n b An Bn =+,则实数B 的取值范围为( )A .2,3⎡⎫-+∞⎪⎢⎣⎭B .[)1,-+∞C .()1,-+∞D .1,3⎛⎫-+∞ ⎪⎝⎭例13.(2022·全国·高三专题练习(理))已知数列{}n a 满足()712,83,8n n a n n a n a n *-⎧⎛⎫-+>⎪ ⎪=∈⎝⎭⎨⎪≤⎩N ,若对于任意n *∈N 都有1n n a a +>,则实数a 的取值范围是( ) A .10,3⎛⎫ ⎪⎝⎭B .10,2⎛⎫ ⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .11,32⎛⎫ ⎪⎝⎭例14.(2022·全国·高三专题练习)设数列{}n a 的通项公式为2n a n bn =+,若数列{}n a 是单调递增数列, 则实数b 的取值范围为( ) A .(2,)-+∞B .[2,)-+∞C .(3,)-+∞D .(,3)-∞-【方法技巧与总结】解决数列的单调性问题的3种方法题型三:数列的最大(小)项例15.已知数列{}n a 的首项为1,且()()*111n n n a a n n ++=∈+N ,则na的最小值是( )A .12 B .1 C .2D .3例16.已知数列{}n a 满足110a = ,12n na a n+-=,则n a n 的最小值为( )A .-1B .11 2C .163D .27 4例17.已知数列{}n a 的前n 项和n S ,且2(1)n n S a n -=-,22na n nb S =,则数列{}n b 的最小项为( )A .第3项B .第4项C .第5项D .第6项例18.已知数列{}n a 的前n 项和2212,n S n n =-数列{||}n a 的前n 项和,n T 则nT n的最小值____ 例19.数列,1n =,2,,中的最小项的值为__________.【方法技巧与总结】求数列的最大项与最小项的常用方法(1)将数列视为函数()f x 当x ∈N *时所对应的一列函数值,根据f (x )的类型作出相应的函数图象,或利用求函数最值的方法,求出()f x 的最值,进而求出数列的最大(小)项.(2)通过通项公式n a 研究数列的单调性,利用11()2n n n n a a a n a -+≥⎧⎨≥⎩≥,确定最大项,利用11()2n n nn a a a n a -+≤⎧⎨≤⎩≥,确定最小项.(3)比较法:若有1()()10n n a a f n f n -=+->+或0n a >时11n na a +>,则1n n a a +>,则数列{}n a 是递增数列,所以数列{}n a 的最小项为1(1)a f =;若有1()()10n n a a f n f n =-+-<+或0n a >时11n na a +<,则1n n a a <+,则数列{}n a 是递减数列,所以数列{}n a 的最大项为1(1)a f =. 题型四:数列中的规律问题例20.蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,如图为一组蜂巢的截面图.其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,以()f n 表示第n 幅图的蜂巢总数,则(4)f =( );()f n =( ). A .35 2331n n +- B .36 2331n n -+ C .37 2331n n -+ D .38 2331n n +-例21.由正整数组成的数对按规律排列如下:()1,1,1,2,()2,1,()1,3,()2,2,()3,1,()1,4,()2,3,()3,2,()4,1,()1,5,()2,4,⋅⋅⋅.若数对(),m n 满足()22222021m n -⋅-=,,m n N *∈,则数对(),m n 排在( )A .第386位B .第193位C .第348位D .第174位例22.已知“整数对”按如下规律排列:()()()()()1,11,22,11,32,2,,,,,()()()3,11,42,3,,()3,2,,()4,1,…,则第68个“整数对”为( ) A .()1,12B .()3,10C .()2,11D .()3,9例23.将正整数排列如下: 1 2 34 5 67 8 9 10 11 12 13 14 15 ……则图中数2020出现在 A .第64行3列B .第64行4列C .第65行3列D .第65行4列题型五:数列的最值问题例24.(2022·北京市第十二中学高三期中)已知数列{}n a 满足32n a n n=+,则数列{}n a 的最小值为( )A.343B .575C .D .12例25.(2022·全国·高三专题练习)已知数列{}n a ,2141n n a n n ,则下列说法正确的是( )A .此数列没有最大项B .此数列的最大项是3aC .此数列没有最小项D .此数列的最小项是2a例26.(2022·河南·高三阶段练习(理))在数列{}n a 中,11a =,1n n a a n --=(N n +∈,2n ≥),则11n a n ++的最小值是( ) A .12B .34C .1D .32例27.(2022·辽宁·高三阶段练习)若数列{}n a 满足24122,n nn n n a T a a a -==⋅⋅⋅,则n T 的最小值为( )A .92-B .102-C .112-D .122-例28.(2022·全国·高三专题练习)若数列{}n a 满足113a =,1n n n a a +-=,则na n的最小值为( ) A .235B .143C 12D .13例29.(2022·全国·高三专题练习)设221316n a n n =-+-,则数列{}n a 中最大项的值为( ) A .134B .5C .6D .132例30.(2022·浙江·高三专题练习)已知数列{}n a 的通项公式为211n aa n n n=-+,5a 是数列{}n a 的最小项,则实数a 的取值范围是( ) A .[]40,25-- B .[]40,0- C .[]25,25- D .[]25,0-【过关测试】一、单选题 1.(2022·陕西·交大附中模拟预测(理))函数()f x 定义如下表,数列{}()N n x n ∈满足02x =,且对任意的自然数n 均有()1n n x f x +=,则2022x =( )2.(2022·内蒙古赤峰·模拟预测(理))大衍数列来源于《乾坤谱》中对易传“大衍之数五十”的推论,主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中曾经经历过的两仪数量总和,其中一列数如下:0,2,4,8,12,18,24,32,40,50,…….按此规律得到的数列记为{}n a ,其前n 项和为n S ,给出以下结论:①22122n a n n -=-;②182是数列{}n a 中的项;③21210a =;④当n 为偶数时,()2122n n n S S S n n *++-+=+∈N .其中正确的序号是( )A .①②B .②③C .①④D .③④3.(2022·河南·模拟预测(理))观察数组()2,2,()3,4,()4,8,()5,16,()6,32,…,根据规律,可得第8个数组为( ) A .()9,128 B .()10,128 C .()9,256D .()10,2564.(2022·吉林长春·模拟预测(理))已知数列{}n a 满足()()11120n n a a +-++=,112a =,则数列{}n a 的前2022项积为( ) A .16-B .23C .6-D .325.(2022·江西·临川一中模拟预测(理))已知数列{}n a 满足()1112,21*+-==∈-n n n a a a n N a ,则2022=a ( )A .13B .1C .2D .526.(2022·全国·高三专题练习)已知数列{}n a 的通项公式为n a a n n=+,则“21a a >”是“数列{}n a 单调递增”的( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7.(2022·全国·高三专题练习)已知数列{}n a 满足()2**2,5,,1,5,.n n tn n n a t n n n ⎧-+≤∈⎪=⎨->∈⎪⎩N N 且数列{}n a 是单调递增数列,则t 的取值范围是( ) A .919,24⎛⎫⎪⎝⎭B .9,2⎛⎫+∞ ⎪⎝⎭C .()5,+∞D .(]1,48.(2022·全国·高三专题练习)若数列{an }的前n 项和Sn =n 2-10n (n ∈N *),则数列{nan }中数值最小的项是( ) A .第2项 B .第3项 C .第4项D .第5项9.(2022·上海普陀·二模)数列{}n a 的前n 项的和n S 满足*1(N )n n S S n n ++=∈,则下列选项中正确的是( )A .数列{}1n n a a ++是常数列B .若113a <,则{}n a 是递增数列C .若11a =-,则20221013S =D .若11a =,则{}n a 的最小项的值为1-10.(2022·北京四中三模)已知数列{n a }的通项为22n a n n λ=-,则“0λ<”是“*n ∀∈N ,1n n a a +>”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、多选题11.(2022·河北·衡水第一中学高三阶段练习)大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的推论.主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和,是中国传统文化中隐藏着的世界数学史上第一道数列题.其前10项依次是0,2,4,8,12,18,24,32,40,50,…,则下列说法正确的是( ) A .此数列的第20项是200B .此数列的第19项是180C .此数列偶数项的通项公式为222n a n =D .此数列的前n 项和为(1)n S n n =⋅-12.(2022·全国·高三专题练习)若数列{}n a 满足1112,012,1321,12n n n n n a a a a a a +⎧⎪⎪==⎨⎪-<<⎪⎩,则数列{}n a 中的项的值可能为( ) A .13B .2C .23D .4513.(2022·全国·高三专题练习)下列四个选项中,不正确的是( )A .数列2345,,,3456,⋯的一个通项公式是1n n a n =+ B .数列的图象是一群孤立的点C .数列1,1-,1,1-,⋯与数列1-,1,1-,1,⋯是同一数列D .数列11,24,⋯,12n是递增数列14.(2022·全国·高三专题练习)已知n S 是{}n a 的前n 项和,12a =,()1112n n a n a -=-≥,则下列选项错误的是( ) A .20212a = B .20211012S =C .331321n n n a a a ++⋅⋅=D .{}n a 是以3为周期的周期数列15.(2022·全国·高三专题练习)若数列{an }满足112,2712,62n n n n n a a a a a +⎧≤⎪⎪=⎨⎪->⎪⎩,123a =,则数列{an }中的项的值可能为( ) A .19B .16C .13D .4316.(2022·全国·高三专题练习)已知数列{}n a 满足112a =-,111n n a a +=-,则下列各数是{}n a 的项的有( )A .2-B .23C .32D .317.(2022·全国·高三专题练习(文))南宋杨辉在他1261年所著的《详解九章算术》一书中记录了一种三角形数表,称之为“开方作法本源”图,即现在著名的“杨辉三角”.如图是一种变异的杨辉三角,它是将数列{}n a 各项按照上小下大,左小右大的原则写成的,其中{}n a 是集合{}220,,s ts t s t Z +≤<∈且中所有的数从小到大排列的数列,即13a =,25a =,36a =,49a =,510a =,…,则下列结论正确的是( )A .第四行的数是17,18,20,24B .()11232-+=⋅n n n aC .()11221n n a n ++=+ D .10016640a =18.(2022·全国·高三专题练习)如图所示的数表中,第1行是从1开始的正奇数,从第2行开始每个数是它肩上两个数之和.则下列说法正确的是( )A .第6行第1个数为192B .第10行的数从左到右构成公差为102的等差数列C .第10行前10个数的和为9952⨯D .数表中第2021行第2021个数为202060612⨯19.(2022·河北·石家庄实验中学高三开学考试)大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的推论.主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和,是中国传统文化中隐藏着的世界数学史上第一道数列题.其前10项依次是0,2,4,8,12,18,24,32,40,50,…,则下列说法正确的是( ) A .此数列的第20项是200B .此数列的第19项是182C .此数列偶数项的通项公式为222n a n =D .此数列的前n 项和为(1)n S n n =⋅-20.(2022·福建漳州·三模)已知数列{n a }的前n 项和为211n S n n =-,则下列说法正确的是( ).A .{}n a 是递增数列B .{}n a 是递减数列C .122n a nD .数列{}n S 的最大项为5S 和6S21.(2022·湖南·长沙一中高三阶段练习)对于正整数n ,()n ϕ是小于或等于n 的正整数中与n 互质的数的数目.函数()n ϕ以其首名研究者欧拉命名,称为欧拉函数,例如()96ϕ=(1,2,4,5,7,8与9互质),则( )A .若n 为质数,则()1n n ϕ=-B .数列(){}n ϕ单调递增C .数列()2nn ϕ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前5项和等于72 D .数列(){}3nϕ为等比数列三、填空题22.(2022·北京·人大附中模拟预测)能说明命题“若无穷数列{}n a 满足()111,2,3,n na n a +>=,则{}n a 为递增数列”为假命题的数列{}n a 的通项公式可以为n a =__________.23.(2022·陕西·宝鸡中学模拟预测)写出一个符合下列要求的数列{}n a 的通项公式:①{}n a 是无穷数列;②{}n a 是单调递减数列;③20n a -<<.这个数列的通项可以是__________.24.(2022·海南·模拟预测)写出一个同时具有下列性质①②③的数列{}n a 的通项公式:n a =__________.①10n n a a +<;②数列{}n a 是单调递减数列;③数列{}2nn a 是一个等比数列.25.(2022·江西·临川一中模拟预测(文))已知23n a n n =+,若2nn a λ≤对于任意*n ∈N 恒成立,则实数λ的取值范围是_______.26.(2022·天津市新华中学高三期末)在数列{}n a 中,()71()8nn a n =+,则数列{}n a 中的最大项的n =________ .27.(2022·山西·模拟预测(理))数列{}n a 中,已知11a =,20a >,()*21n n n a a a n ++=-∈N ,则2022a 的取值范围是___________.28.(2022·四川成都·三模(理))已知数列{}n a 满足13a =,122n n n a a a ++=,则2022a 的值为______.29.(2022·全国·模拟预测)在数列{}n a 中,11a =,1,231,nnn n n a a a a a +⎧⎪=⎨⎪+⎩为偶数为奇数,则1232021a a a a ++++=___.专题23 数列的基本知识与概念【考点预测】1.数列的概念(1)数列的定义:按照一定顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项. (2)数列与函数的关系:从函数观点看,数列可以看成以正整数集N *(或它的有限子集{}12n ⋯,,,)为定义域的函数()n a f n =当自变量按照从小到大的顺序依次取值时所对应的一列函数值.(3)数列有三种表示法,它们分别是列表法、图象法和通项公式法. 2.数列的分类(1)按照项数有限和无限分:(2)按单调性来分:111()n n n nn n a a a a a a C +++≥⎧⎪≥⎪⎨==⎪⎪⎩递增数列:递减数列: ,常数列:常数摆动数列 3.数列的两种常用的表示方法(1)通项公式:如果数列{}n a 的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.(2)递推公式:如果已知数列{}n a 的第1项(或前几项),且从第二项(或某一项)开始的任一项与它的前一项(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式. 【方法技巧与总结】(1)若数列{}n a 的前n 项和为n S ,通项公式为n a ,则1112n n n S n a S S n n N *-=⎧⎪=⎨-≥∈⎪⎩ , , ,注意:根据n S 求n a 时,不要忽视对1n =的验证.(2)在数列{}n a 中,若n a 最大,则11n n n n a a a a -+≥⎧⎨≥⎩ , 若n a 最小,则11.n n nn a a a a -+≤⎧⎨≤⎩【题型归纳目录】 题型一:数列的周期性 题型二:数列的单调性 题型三:数列的最大(小)项 题型四:数列中的规律问题 题型五:数列的最值问题【典例例题】题型一:数列的周期性例1.已知无穷数列{}n a 满足()21N n n n a a a x *++=-∈,且11a =,2a x =()x ∈Z ,若数列{}n a 的前2020项中有100项是0,则下列哪个不能是x 的取值( )A .1147B .1148C .1142-D .1143-【答案】B 【分析】当0x ≥时,分别令1,2,3,x =,可求出数列{}n a 的前2020项中0的个数,进而得出规律,可求出满足题意的x 的取值;当0x <时,分别令1,2,3,x =---,可求出数列{}n a 的前2020项中0的个数,进而得出规律,可求出满足题意的x 的取值. 【详解】 ①当0x ≥时,若0x =,则数列{}n a 的各项为1,0,1,1,0,1,1,0,1,,此时数列{}n a 为周期数列,周期为3,由202036731=⨯+, 可知数列{}n a 的前2020项中有673项为0; 若1x =,则数列{}n a 的各项为1,1,0,1,1,0,1,1,0,,此时数列{}n a 为周期数列,周期为3,由202036731=⨯+, 可知数列{}n a 的前2020项中有673项为0; 若2x =,则数列{}n a 的各项为1,2,1,1,0,1,1,0,1,1,0,,此时数列{}n a 从第3项开始为周期数列,周期为3,由202022018236722=+=+⨯+,可知数列{}n a 的前2020项中有672项为0; 若3x =,则数列{}n a 的各项为1,3,2,1,1,0,1,1,0,1,1,0,,此时数列{}n a 从第4项开始为周期数列,周期为3,由202032017336721=+=+⨯+,可知数列{}n a 的前2020项中有672项为0; 若4x =,则数列{}n a 的各项为1,4,3,1,2,1,1,0,1,1,0,1,1,0,, 此时数列{}n a 从第6项开始为周期数列,周期为3,由202052015536712=+=+⨯+,可知数列{}n a 的前2020项中有671项为0; 依次类推,可知当()26731001146x =-=,或1147x =时, 数列{}n a 的前2020项中有100项是0;②当0x <时,若1x =-,则数列{}n a 的各项为1,1,2,3,1,2,1,1,0,1,1,0,1,1,0,-,此时数列{}n a 从第7项开始为周期数列,周期为3,由202062014636711=+=+⨯+,可知数列{}n a 的前2020项中有671项为0; 若2x =-,则数列{}n a 的各项为1,2,3,5,2,3,1,2,1,1,0,1,1,0,1,1,0,-,此时数列{}n a 从第9项开始为周期数列,周期为3,由202082012836702=+=+⨯+,可知数列{}n a 的前2020项中有670项为0; 若3x =-,则数列{}n a 的各项为1,3,4,7,3,4,1,3,2,1,1,0,1,1,0,1,1,0,-,此时数列{}n a 从第10项开始为周期数列,周期为3,由202092011936701=+=+⨯+,可知数列{}n a 的前2020项中有670项为0; 若4x =-,则数列{}n a 的各项为1,4,5,9,4,5,1,4,3,1,2,1,1,0,1,1,0,1,1,0,-,此时数列{}n a 从第12项开始为周期数列,周期为3,由20201120091136692=+=+⨯+,可知数列{}n a 的前2020项中有669项为0; 依次类推,可知当()26711001142x =--=-,或1143x =-时, 数列{}n a 的前2020项中有100项是0.综上所述,若数列{}n a 的前2020项中有100项是0, 则x 可取的值有1146,1147,1142,1143--. 故选:B . 【点睛】本题考查无穷数列,解题的关键是通过条件()21N n n n a a a x *++=-∈探究数列{}n a 的性质,利用赋值法分别令1,2,3,x =和1,2,3,x =---,可分别求出数列{}n a 的前2020项中0的个数,进而得出规律.考查学生的推理能力与计算求解能力,属于难题.例2.若[]x 表示不超过x 的最大整数(如[]2.52=,[]44=,[]2.53-=-),已知2107n n a ⎡⎤=⨯⎢⎥⎣⎦,11b a =,()*110,2n n n b a a n n -=-∈≥N ,则2019b =( )A .2B .5C .7D .8【答案】B 【分析】求出1b ,2b ,3b ,4b ,5b ,6b ,判断出{}n b 是一个以周期为6的周期数列,求出即可.【详解】解:2107n n a ⎡⎤=⨯⎢⎥⎣⎦.*111(102)n n n b a b a a n n --∈≥N =,=,,∴112027[]a b ===,2200[287]a ==, 2281028b -⨯==,同理可得:332855a b =,=;4428577a b =,=;55285711a b =,=.662857144a b =,=;72857142a =,72b =,……. ∴6n n b b +=.故{}n b 是一个以周期为6的周期数列, 则20196336335b b b ⨯+===.故选:B . 【点睛】本题考查周期数列的判断和取整函数的应用. 例3.数列{}n a 满足12a =,111nn na a a ++=-,其前n 项积为n T ,则10T 等于( ) A .16B .16-C .6D .6-【答案】D 【分析】依次代入1,2,3,4n =可得{}n a 是以4为周期的周期数列,由1231n n n n a a a a +++=可推导得到结果. 【详解】 当1n =时,121131a a a +==--;当2n =时,2321112a a a +==--;当3n =时,3431113a a a +==-;当4n =时,454121a a a +==-;…,∴数列{}n a 是以4为周期的周期数列, ()()1231123123n n n n a a a a n N *+++⎛⎫∴=⨯-⨯-⨯=∈ ⎪⎝⎭,()10891012236T T a a a a ∴=⋅==⨯-=-. 故选:D .例4.若数列{}n a 满足1222a a ==,且21n n n a a a ++=-,则{}n a 的前100项和为( ) A .67 B .68 C .134 D .167【答案】B 【分析】由题意得122,1a a ==,根据21n n n a a a ++=-,列举数列的项,得到数列从第2项起,3项一个循环求解. 【详解】因为1222a a ==, 所以122,1a a ==, 因为21n n n a a a ++=-,所以数列的项依次为2,1,1,0,1,1,0,…, 所以从第2项起,3项一个循环,所以{}n a 的前100项的和为233(110)68+⨯++=, 故选:B .例5.数列{}n a 满足112,0,2121,1,2n n n n n a a a a a +⎧≤<⎪⎪=⎨⎪-≤<⎪⎩若125a =,则2021a 等于( )A .15B .25C .35D .45【答案】B 【分析】根据数列定义求出数列的前几项后得出数列是周期数列,从而求值. 【详解】 因为12152a =<,所以23454312,,,5555a a a a ====,所以数列具有周期性,周期为4,所以2021125a a ==.故选:B . 【点睛】本题考查数列的周期性,此类问题的解法是由定义求出数列的前几项,然后归纳出周期性.例6.已知数列{}n a 满足,()()111122,32n n n n n a a a a a ----⎧-+>⎪=⎨-⎪⎩*(,1)n N n ∈>,若1(2,3)a ∈且记数列{}n a 的前n 项和为n S ,若2019=m S ,则2019S 的值为( ) A .60572B .3028C .60552D .3029【答案】C 【分析】根据递推公式可逐个代入计算,得出数列{}n a 的周期为4,再根据2019=m S 与前两项的范围可求得52a =,再分组求和求解2019S 即可. 【详解】设1(23)a a a =<<,由()()11112232n n n n n a a a a a ----⎧-+>⎪=⎨-⎪⎩,*(,1)n N n ∈>,得22(0,1)a a =-∈,3235(2,3)a a a =-=-∈,435423(0,1),3(2,3)a a a a a a =-=-∈=-=∈.故数列{}n a 的周期为4,即可得41234,6n n a a a a a a +=+++=. 12336632019m m S a a a =+++=⨯+=,又1(23)a a a =<<,22(0,1)a a =-∈.(2)3a a ∴+-=,即52a =. 12311201950443,32a a a a =⨯+++=+=, 2019116059504622S ∴=⨯+=. 故选:C . 【点睛】本题考查数列分组求和、分类讨论方法,考查推理能力与计算能力,考查逻辑推理与数学运算核心素养.属于中档题.例7.(2022·广东汕头·三模)已知数列{}n a 中,114a =-,当1n >时,111n n a a -=-,则2022a =( ) A .14-B .45C .5D .45-【答案】B【解析】由题意得:2341231141115,1,154a a a a a a =-==-==-=-,则数列{}n a 的周期为3,则20226743345a a a ⨯===. 故选:B .例8.(2022·河北·沧县中学高三阶段练习)已知数列{}n a 中,()1112n n n a a a n --=⋅+≥,12a =,则10a 等于( )A .12-B .12C .-1D .2【答案】D【解析】解:∵12a =,()1112n n n a a a n --=⋅+≥, ∴()1112n n a n a -=-≥, ∴211122a =-=,3121a =-=-,()4112a =--=,511122a =-=,…, ∴数列{}n a 是以3为周期的周期数列,10331=⨯+,∴101a a =, 故选:D .题型二:数列的单调性例9.(2022·四川达州·二模(理))已知单调递增数列{}n a 满足9,102121,109n n m n a m n n -⎧≥⎪=⎨⎛⎫+-< ⎪⎪⎝⎭⎩,则实数m 的取值范围是( )A .[)12,+∞B .()1,12C .()1,9D .[)9,+∞【答案】B【解析】{}n a 为单调递增数列,10912109m ma a >⎧⎪⎪∴+>⎨⎪>⎪⎩,即12109219219m m m m ⎧⎪>⎪⎪+>⎨⎪⎪⎛⎫>+⨯-⎪⎪⎝⎭⎩,解得:112m <<, 即实数m 的取值范围为()1,12.故选:B .例10.(2022·河南·温县第一高级中学高三阶段练习(文))已知函数()()633,7,7x a x x f x a x -⎧--≤=⎨>⎩,若数列{}n a 满足()()*n a f n n N =∈且{}n a 是递增数列,则实数a 的取值范围是( )A .9,34⎛⎫ ⎪⎝⎭B .9,34⎡⎫⎪⎢⎣⎭C .()2,3D .[)2,3【答案】C【解析】因为数列{}n a 是单调递增数列,则函数()6x f x a -=在()7,+∞上为增函数,可得1a >,函数()()33f x a x =--在[)1,7上为增函数,可得30a ->,可得3a <,且有78a a <,即()86733187a a a ---=-<,即27180a a +->,解得9a <-或2a >.综上所述,23a <<. 故选:C .例11.(2022·浙江·高三专题练习)已知数列{}n a 的首项为11a =,2a a =,且121(2,)n n a a n n n N *++=+≥∈,若数列{}n a 单调递增,则a 的取值范围为( ) A .12a <<B .23a <<C .3522a <<D .1322a <<【答案】C【解析】当2,n n N *≥∈时,121(1)n n a a n ++=+,因此有2123(2)n n a a n +++=+,(2)(1)-得:22n n a a +-=,说明该数列从第2项起,偶数项和奇数项都成等差数列,且它们的公差都是2,由121n n a a n ++=+可得:345,2a a a a =-=+,因为数列{}n a 单调递增,所以有1234a a a a <<<,即152a a a <<-<+,解得:3522a <<,故选:C例12.(2022·全国·高三专题练习)已知等比数列{}n a 前n 项和n S 满足113n n S A +=-⋅(A R ∈),数列{}n b 是递增的,且2n b An Bn =+,则实数B 的取值范围为( )A .2,3⎡⎫-+∞⎪⎢⎣⎭B .[)1,-+∞C .()1,-+∞D .1,3⎛⎫-+∞ ⎪⎝⎭【答案】C【解析】解:因为等比数列{}n a 前n 项和n S 满足113n n S A +=-⋅(A R ∈),所以1119a S A ==-,221(127)(19)18a S S A A A =-=---=-, 332(181)(127)54a S S A A A =-=---=-,因为等比数列{}n a 中2213a a a ,所以2(18)(19)(54)A A A -=--,解得13A =或0A =(舍去), 所以213n b n Bn =+,因为数列{}n b 是递增的,所以22111(1)(1)033n n b b n B n n Bn +-=+++-->,所以2133B n >--,因为*n N ∈,所以1B >-, 故选:C例13.(2022·全国·高三专题练习(理))已知数列{}n a 满足()712,83,8n n a n n a n a n *-⎧⎛⎫-+>⎪ ⎪=∈⎝⎭⎨⎪≤⎩N ,若对于任意n *∈N 都有1n n a a +>,则实数a 的取值范围是( ) A .10,3⎛⎫ ⎪⎝⎭B .10,2⎛⎫ ⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .11,32⎛⎫ ⎪⎝⎭【答案】C【解析】由条件可得011031923a a a a ⎧⎪<<⎪⎪-<⎨⎪⎪⎛⎫>-⨯+⎪ ⎪⎝⎭⎩,解出即可.【详解】因为对于任意n *∈N 都有1n n a a +>, 所以011031923a a a a ⎧⎪<<⎪⎪-<⎨⎪⎪⎛⎫>-⨯+⎪ ⎪⎝⎭⎩,解得112a <<故选:C例14.(2022·全国·高三专题练习)设数列{}n a 的通项公式为2n a n bn =+,若数列{}n a 是单调递增数列, 则实数b 的取值范围为( ) A .(2,)-+∞ B .[2,)-+∞C .(3,)-+∞D .(,3)-∞-【答案】C由数列{}n a 是单调递增数列,可得10n n a a +->,从而有21b n >--恒成立,由n ∈+N ,可求得b 的取值范围. 【详解】由数列{}n a 是单调递增数列,所以10n n a a +->,即22(1)(1)210n b n n bn n b +++--=++>,即21b n >--(n ∈+N )恒成立,又数列{}(21)n -+是单调递减数列,所以当1n =时,(21)n -+取得最大值3-,所以3b >-. 故选:C .【方法技巧与总结】解决数列的单调性问题的3种方法例15.已知数列{}n a 的首项为1,且()()*111n n n a a n n ++=∈+N ,则na的最小值是( )A .12 B .1 C .2 D .3【答案】B 【分析】 根据()111n n n a a n ++=+得出()11n n n a n a n ++-=,然后通过累加法求出1122n n a n =+-,根据均值不等式及n N +∈,即可求出结果. 【详解】 由()111n n n a a n ++=+得()11n n n a n a n ++-=所以()()()1122111122n n n n n n a n a n a a a na n a a ---=--+---++-+则()()()()()111112111122n n n n n n na n +---=-+-+++=+=+所以()111112222n n n na n-=+=+-≥ 当且仅当n =n N +∈,故取1a 或2a 最小,又121a a ==,所以n a 的最小值为1【点睛】思路点睛:本题通过累加法求数列通项公式,根据均值不等式及n N +∈,求得最值. 例16.已知数列{}n a 满足110a = ,12n na a n+-=,则n a n 的最小值为( )A .-1B .11 2C .163D .27 4【答案】C 【分析】先根据累加法得210n a n n =-+,进而得101n a n n n =+-,再结合函数()101f x x x=+-的单调性即可得当3n =时,na n 的最小值为163. 【详解】 解:由12n na a n+-=得12n n a a n +-=, 所以()121n n a a n --=-,()1222n n a a n ---=-,()2323n n a a n ---=-, ,3222a a -=⨯,2121a a -=⨯,累加上述式子得:()()()()12123211n a a n n n n n -=-+-+-+++=-⎡⎤⎣⎦,所以210n a n n =-+,()2n ≥,检验已知1n =时,210n a n n =-+满足.故210n a n n =-+,101n a n n n=+-,由于函数()101f x x x=+-在区间(上单调递减,在)+∞上单调递增,又因为*x ∈N ,当3n =时,10163133n a n =+-=,当4n =时,10114142n a n =+-=, 所以na n 的最小值为163. 故选:C .例17.已知数列{}n a 的前n 项和n S ,且2(1)n n S a n -=-,22na nn b S =,则数列{}n b 的最小项为( )A .第3项B .第4项C .第5项D .第6项【答案】A 【分析】由n S 与n a 的关系1(1)n n n a S S n -=->化简即可求出n S 及n a ,可得n b ,分析单调性即可求解. 【详解】∵1(1)n n n a S S n -=->,∴1n n n S a S --=,则21(1)n S n -=-,即2*(N )n S n n =∈,∴22(1)21n a n n n =--=-.易知0n b >,∵212+1+14422+1n n n n b b n n -==,(),244142(1)n n b n b n +∴==+当11n >+时,1n >, ∴当13n ≤<时, 1n n b b +>, 当3n ≥时,1n n b b +<, 又23132,281b b ==,∴当3n =时, n b 有最小值.故选:A 例18.已知数列{}n a 的前n 项和2212,n S n n =-数列{||}n a 的前n 项和,n T 则nT n的最小值____ 【答案】5 【分析】由n S 和1n S -的关系求出数列{}n a 的通项公式,再根据正负表示出数列{||}n a 的通项公式为144,13414,4n n n a n n -≤≤⎧=⎨-≥⎩,求出n T ,并表示出n T n ,再分别求出13n ≤≤和4n ≥时的最小值,即可判断n T n 的最小值. 【详解】由题意,数列{}n a 的前n 项和2212n S n n =-()n N *∈,所以1121210a S ==-=-,当2n ≥时,()()12221221121414n n n n n n n S n a S -⎡⎤-----=-⎣⎦=-=, 当1n =时,1411410a ⨯-=-=, 所以414n a n =-,当13n ≤≤时,0n a <,当4n ≥时,0n a >,所以144,13414,4n n n a n n -≤≤⎧=⎨-≥⎩,数列{||}n a 的前n 项和n T ,所以22212,1321236,4n n n n T n n n ⎧-+≤≤=⎨-+≥⎩,当13n ≤≤时,212n T n n=-+,当3n =时,n Tn 的最小值为6;当4n ≥时,36212n n T n n=+-, 由对勾函数的性质,当4n =时,nT n有最小值5; 综上所述,nT n的最小值为5 故答案为:5 【点睛】本题主要考查由n S 求数列通项公式的求法、等差数列前n 项和公式、对勾函数的应用,是一道综合性很强的题目,考查学生分析转化能力和计算能力,属于难题. 例19.数列,1n =,2,,中的最小项的值为__________.【分析】构造函数()ln xf x x=,利用函数单调性分析最大值,得出数列的最大项,即可得解. 【详解】 考虑函数()ln x f x x=,()21ln xf x x -'=,当0x e <<时,()21ln 0x f x x -'=>,当x e >时,()21ln 0x f x x -'=<, 所以()ln xf x x=在()0,e 单调递增,在(),e +∞单调递减, 即()1ln x f x x ==()0,e 单调递增,在(),e +∞单调递减,所以y e ==()0,e 单调递增,在(),e +∞单调递减,116689,89<<.【点睛】此题考查求数列中的最小项,利用函数单调性讨论数列的最大项和最小项,涉及导函数处理单调性问题. 【方法技巧与总结】求数列的最大项与最小项的常用方法(1)将数列视为函数()f x 当x ∈N *时所对应的一列函数值,根据f (x )的类型作出相应的函数图象,或利用求函数最值的方法,求出()f x 的最值,进而求出数列的最大(小)项.(2)通过通项公式n a 研究数列的单调性,利用11()2n n n n a a a n a -+≥⎧⎨≥⎩≥,确定最大项,利用11()2n n nn a a a n a -+≤⎧⎨≤⎩≥,确定最小项.(3)比较法:若有1()()10n n a a f n f n -=+->+或0n a >时11n na a +>,则1n n a a +>,则数列{}n a 是递增数列,所以数列{}n a 的最小项为1(1)a f =;若有1()()10n n a a f n f n =-+-<+或0n a >时11n na a +<,则1n n a a <+,则数列{}n a 是递减数列,所以数列{}n a 的最大项为1(1)a f =. 题型四:数列中的规律问题例20.蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,如图为一组蜂巢的截面图.其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,以()f n 表示第n 幅图的蜂巢总数,则(4)f =( );()f n =( ).A .35 2331n n +-B .36 2331n n -+C .37 2331n n -+D .38 2331n n +- 【答案】C 【分析】结合图形中的规律直接求出(4)f 和(5)f ,进而总结出递推公式2n ≥时,()()(1)61f n f n n --=-,利用累加法即可求出结果. 【详解】由图中规律可知:(4)37f =, 所以(2)(1)716f f -=-=,(3)(2)19726f f -=-=⨯,(4)(3)371936f f -=-=⨯, (5)(4)613746f f -=-=⨯,因此当2n ≥时,()()(1)61f n f n n --=-, 所以[][][]()()(1)(1)(2)(2)(1)(1)f n f n f n f n f n f f f =--+---++-+()()612211n n ⎡⎤=⨯-+-++++⎣⎦()1612n n -=⨯+2331n n =-+,经检验当1n =时,符合()2331f n n n =-+,所以()2331f n n n =-+,故选:C .例21.由正整数组成的数对按规律排列如下:()1,1,1,2,()2,1,()1,3,()2,2,()3,1,()1,4,()2,3,()3,2,()4,1,()1,5,()2,4,⋅⋅⋅.若数对(),m n 满足()22222021m n -⋅-=,,m n N *∈,则数对(),m n 排在( )A .第386位B .第193位C .第348位D .第174位【答案】D 【分析】 先求出,m n 的值,再根据数对的特点推出数对(),m n 的位置 【详解】解:按规律把正整数组成的数对分组:第1组为(1,1),数对中两数的和为2,共1个数对;第2组为(1,2),(2,1),数对中两数和为3,共2个数对;第3组为(1,3),(2,2),(3,1),数对中两数的和为4,共3个数;……,第n 组为(1,),(2,1),,(,1)n n n -⋅⋅⋅,数对中两数的和为1n +,共n 个数,由()22222021m n -⋅-=,得()2222023m n -⋅=,因为20237289=⨯,所以2227289m n ⎧-=⎪⎨=⎪⎩,解得317m n =⎧⎨=⎩,所以20m n +=,在所有数对中,两数之和不超过19的有1918123181712⨯+++⋅⋅⋅+==个, 所以在两数和为20的第1个数(1,19),第2个为(2,18),第3个为(3,17), 所以数对(3,17)排在第174位, 故选:D 【点睛】关键点点睛:此题考查简单的合情推理,考查等差数求和,解题的关键是由()22222021m n -⋅-=,得()2222023mn -⋅=,解出,m n 的值,考查计算能力,属于中档题例22.已知“整数对”按如下规律排列:()()()()()1,11,22,11,32,2,,,,,()()()3,11,42,3,,()3,2,,()4,1,…,则第68个“整数对”为( ) A .()1,12 B .()3,10C .()2,11D .()3,9【答案】C 【分析】设“整数对”为()()*m n m n N ∈,,,由已知可知点列的排列规律是m n +的和从2开始,依次是3,4,…,其中m 依次增大,可依次求得总对数,从而可得选项. 【详解】设“整数对”为()()*m n m n N ∈,,,由已知可知点列的排列规律是m n +的和从2开始,依次是3,4,…,其中m 依次增大.当2m n +=时只有1个()11,;当3m n +=时有2个()()1221,,,; 当4m n +=时有3个()()()132231,,,,,; …;当12m n +=时有11个()()()111210111⋯,,,,,,;其上面共有11(111)12311662⨯+++++==个数对. 所以第67个“整数对”为()112,,第68个“整数对”为()211,, 故选:C . 【点睛】本题考查知识迁移运用:点列整数对,关键在于理解和探索其规律,属于中档题. 例23.将正整数排列如下: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ……则图中数2020出现在 A .第64行3列 B .第64行4列 C .第65行3列 D .第65行4列【答案】B 【分析】计算每行首个数字的通项公式,再判断2020出现在第几列,得到答案. 【详解】每行的首个数字为:1,2,4,7,11… 111,1n n a a a n -=-=-利用累加法:112211(1)()()...()121112n n n n n n n a a a a a a a a n n ----=-+-++-+=-+-++=+计算知:642017a = 数2020出现在第64行4列 故答案选B 【点睛】本题考查了数列的应用,计算首数字的通项公式是解题的关键. 题型五:数列的最值问题例24.(2022·北京市第十二中学高三期中)已知数列{}n a 满足32n a n n=+,则数列{}n a 的最小值为( )A.343B .575 C .D .12【答案】A【解析】()32f x x x=+在(0,上单调递减,在()+∞上单调递增, ∴当()x n n N *=∈时,()()(){}min min 5,6f n f f =,又()32575555f =+=,()32346663f =+=,()min 343f n ∴=,即32n a n n =+的最小值为343. 故选:A .例25.(2022·全国·高三专题练习)已知数列{}n a ,2141n n a n n ,则下列说法正确的是( )A .此数列没有最大项B .此数列的最大项是3aC .此数列没有最小项D .此数列的最小项是2a【答案】B【解析】令10t n =-≥,则1n t =+,22,641411tty tt t t 当0=t 时,0y = 当0t >时,146y t t=++,由双勾函数的知识可得y 在()02,上单调递增,在()2,+∞上单调递减 所以当2t =即3n =时,y 取得最大值, 所以此数列的最大项是3a ,最小项为10a = 故选:B .例26.(2022·河南·高三阶段练习(理))在数列{}n a 中,11a =,1n n a a n --=(N n +∈,2n ≥),则11n a n ++的最小值是( ) A .12B .34C .1D .32【答案】C【解析】由题意可得()()()()()211221121122n n n n n n n n na a a a a a a a ---+-+=-+-+⋅⋅⋅+-+=+=,当1n =时,11a =满足上式,则()()212121112121n a n n n n n n +++⎡⎤==++-⎢⎥+++⎣⎦. 因为n ∈+N , 所以12n +≥, 所以()2131n n ++≥+,则()21121n n ++-≥+,故112112n a n +≥⨯=+,当且仅当1n =时,等号成立. 故选:C例27.(2022·辽宁·高三阶段练习)若数列{}n a 满足24122,n nn n n a T a a a -==⋅⋅⋅,则n T 的最小值为( )A .92-B .102-C .112-D .122-【答案】B【解析】因为2420,nnn a -=>所以221222log log log log n n T a a a =++⋯+.设22log 4n n b a n n ==-.若n T 有最小值,则2log n T 有最小值, 令0n b ≤,则04,n ≤≤所以当3n =或4n =时﹐n T 的最小值为102-. 故选:B例28.(2022·全国·高三专题练习)若数列{}n a 满足113a =,1n n n a a +-=,则na n的最小值为( ) A .235B .143C 12D .13【答案】A【解析】由题意可知,()()121111312(1)13(1)2n n n a a a a a a n n n -=+-++-=++++-=+-,则113122n a n n n =+-,又113122y x x =+-在( 上递减,在)+∞上递增,且56<<,5n =时,11311131235222525n n +-=⨯+-=;6n =时,11311131142362226235n n +-=⨯+-=>,故选:A .例29.(2022·全国·高三专题练习)设221316n a n n =-+-,则数列{}n a 中最大项的值为( )A .134B .5C .6D .132。

2024年高考数学专项复习数列考查的九个热点(解析版)

2024年高考数学专项复习数列考查的九个热点(解析版)

数列考查的九个热点热点题型速览热点一等差数列的基本计算热点二等比数列的基本计算热点三等差数列与等比数列的综合计算热点四数列与函数的交汇热点五数列与不等式交汇热点六数列与解析几何交汇热点七数列与概率统计交汇热点八等差数列、等比数列的判断与证明热点九数列中的“新定义”问题热点一等差数列的基本计算1(2023春·河南开封·高三通许县第一高级中学校考阶段练习)已知等差数列a n 为递增数列,S n 为其前n 项和,a 3+a 7=34,a 4⋅a 6=280,则S 11=()A.516B.440C.258D.2202(2022秋·黑龙江哈尔滨·高三哈师大附中校考期中)某种卷筒卫生纸绕在圆柱形盘上,空盘时盘芯直径为60mm ,满盘时直径为120mm ,已知卫生纸的厚度为0.1mm ,则满盘时卫生纸的总长度大约( )(π≈3.14,精确到1m )A.65mB.85mC.100mD.120m3(2020·全国高考真题(理))北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()A.3699块B.3474块C.3402块D.3339块2024年高考数学专项复习数列考查的九个热点(解析版)4(2022·全国·统考高考真题)记S n为等差数列a n的前n项和.若2S3=3S2+6,则公差d=.【规律方法】1.等差数列中的基本量a1,a n,d,n,S n,“知三可求二”,在求解过程中主要运用方程思想.要注意使用公式时的准确性与合理性,更要注意运算的准确性.在遇到一些较复杂的方程组时,要注意运用整体代换思想,使运算更加便捷.2. 在等差数列{a n}中,若出现a m-n,a m,a m+n等项时,可以利用等差数列的性质将其转化为与a m有关的条件;若求a m项,可由a m=12(a m-n+a m+n)转化为求a m-n,a m+n或a m-n+a m+n的值.3.数列的基本计算,往往以数学文化问题为背景.热点二等比数列的基本计算5(2020·全国·统考高考真题)设{a n}是等比数列,且a1+a2+a3=1,a2+a3+a4=2,则a6+a7+a8= ()A.12B.24C.30D.326(2023·广东揭阳·惠来县第一中学校考模拟预测)在《增减算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关”.其大意是:有人要去某关口,路程为378里,第一天健步行走,从第二天起由于脚痛,每天走的路程都为前一天的一半,一共走了六天,才到目的地.则此人后3天共走的里程数为()A.6B.12C.18D.427(2023·全国高考真题)已知a n为等比数列,a2a4a5=a3a6,a9a10=-8,则a7=.【规律方法】1.等比数列运算问题的一般求法是设出首项a1和公比q,然后由通项公式或前n项和公式转化为方程(组)求解.2.等比数列的通项公式及前n项和公式,共涉及五个量a1,a n,q,n,S n,知其中三个就能求另外两个,体现了用方程的思想解决问题.3.根据题目特点,可选用等比数列的性质.热点三等差数列与等比数列的综合计算8(2019·北京·高考真题)设{an}是等差数列,a1=-10,且a2+10,a3+8,a4+6成等比数列.(Ⅰ)求{an}的通项公式;(Ⅱ)记{an}的前n项和为Sn,求Sn的最小值.9(2022·全国·统考高考真题)记S n为数列a n的前n项和.已知2S nn+n=2a n+1.(1)证明:a n是等差数列;(2)若a4,a7,a9成等比数列,求S n的最小值.10(2023·天津·统考高考真题)已知a n是等差数列,a2+a5=16,a5-a3=4.(1)求a n的通项公式和2n-1i=2n-1a i .(2)已知b n为等比数列,对于任意k∈N*,若2k-1≤n≤2k-1,则b k<a n<b k+1,(Ⅰ)当k≥2时,求证:2k-1<b k<2k+1;(Ⅱ)求b n 的通项公式及其前n 项和.热点四数列与函数的交汇11(2018·浙江·高考真题)已知a 1,a 2,a 3,a 4成等比数列,且a 1+a 2+a 3+a 4=ln (a 1+a 2+a 3).若a 1>1,则A.a 1<a 3,a 2<a 4B.a 1>a 3,a 2<a 4C.a 1<a 3,a 2>a 4D.a 1>a 3,a 2>a 412(2023秋·湖南长沙·高三雅礼中学校考阶段练习)如图1所示,古筝有多根弦,每根弦下有一个雁柱,雁柱用于调整音高和音质.图2是根据图1绘制的古筝弦及其雁柱的简易平面图.在图2中,每根弦都垂直于x 轴,相邻两根弦间的距离为1,雁柱所在曲线的方程为y =1.1x ,第n 根弦(n ∈N ,从左数首根弦在y 轴上,称为第0根弦)分别与雁柱曲线和直线l :y =x +1交于点A n x n ,y n 和B n x n,y n,则20n =0y n y n=.(参考数据:取1.122=8.14.)13(2023秋·福建厦门·高三厦门一中校考阶段练习)已知数列a n 满足a 1>0,a n +1=log 2a n ,n =2k -1,k ∈N ∗2a n+2,n =2k ,k ∈N ∗.(1)判断数列a 2n -1 是否是等比数列?若是,给出证明;否则,请说明理由;(2)若数列a n 的前10项和为361,记b n =1log 2a 2n +1 ⋅a 2n +2,数列b n 的前n 项和为T n ,求证:T n <12.14(2023·全国·高三专题练习)已知A x 1,y 2 、B x 2,y 2 是函数f x =2x 1-2x ,x ≠12-1,x =12的图象上的任意两点,点M 在直线x =12上,且AM =MB .(1)求x 1+x 2的值及y 1+y 2的值;(2)已知S 1=0,当n ≥2时,S n =f 12 +f 2n +f 3n +⋅⋅⋅+f n -1n,设a n =2Sn,T n 数列a n 的前n 项和,若存在正整数c ,m ,使得不等式T m -c T m +1-c <12成立,求c 和m 的值;热点五数列与不等式交汇15(2022·浙江·统考高考真题)已知数列a n 满足a 1=1,a n +1=a n -13a 2n n ∈N ∗,则()A.2<100a 100<52 B.52<100a 100<3 C.3<100a 100<72 D.72<100a 100<416(2023·浙江嘉兴·统考模拟预测)如图,在一个单位正方形中,首先将它等分成4个边长为12的小正方形,保留一组不相邻的2个小正方形,记这2个小正方形的面积之和为S 1;然后将剩余的2个小正方形分别继续四等分,各自保留一组不相邻的2个小正方形,记这4个小正方形的面积之和为S 2.以此类推,操作n 次,若S 1+S 2+⋅⋅⋅+S n ≥20232024,则n 的最小值是()A.9B.10C.11D.1217(2023秋·四川绵阳·高三绵阳中学校考阶段练习)已知等差数列a n 的前n 项和为S n ,且S 4=4S 2,a 3n =3a n +2n ∈N *(1)求a n 的通项公式,(2)设b n =1a n a n +1,且b n 的前n 项和为T n ,证明,13≤T n <12.18(2022·全国·统考高考真题)记S n 为数列a n 的前n 项和,已知a 1=1,S n a n 是公差为13的等差数列.(1)求a n 的通项公式;(2)证明:1a 1+1a 2+⋯+1a n<2.19(2021·全国·统考高考真题)设a n 是首项为1的等比数列,数列b n 满足b n =na n3.已知a 1,3a 2,9a 3成等差数列.(1)求a n 和b n 的通项公式;(2)记S n 和T n 分别为a n 和b n 的前n 项和.证明:T n <S n2.20(2023·河南郑州·统考模拟预测)已知数列a n 与b n 的前n 项和分别为A n 和B n ,且对任意n ∈N *,a n +1-a n =32b n +1-b n 恒成立.(1)若A n =3n 2+3n2,b 1=2,求B n ;(2)若对任意n ∈N *,都有a n =B n 及b 2a 1a 2+b 3a 2a 3+b 4a 3a 4+⋯+b n +1a n a n +1<13恒成立,求正整数b 1的最小值.21(2023秋·云南·高三云南师大附中校考阶段练习)已知a n 为等差数列,b n 为等比数列,b 1=2a 1=2,a 5=5a 4-a 3 ,b 5=4b 4-b 3 ,数列c n 满足c n =1a n a n +2,n 为奇数b n,n 为偶数.(1)求a n 和b n 的通项公式;(2)证明:2ni =1c i ≥133.热点六数列与解析几何交汇22(2022·全国·统考高考真题)图1是中国古代建筑中的举架结构,AA ,BB ,CC ,DD 是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图.其中DD 1,CC 1,BB 1,AA 1是举,OD 1,DC 1,CB 1,BA 1是相等的步,相邻桁的举步之比分别为DD 1OD 1=0.5,CC 1DC 1=k 1,BB 1CB 1=k 2,AA 1BA 1=k 3.已知k 1,k 2,k 3成公差为0.1的等差数列,且直线OA 的斜率为0.725,则k 3=()A.0.75B.0.8C.0.85D.0.923(重庆·高考真题)设A x 1,y 1 ,B 4,95 ,C x 2,y 2 是右焦点为F 的椭圆x 225+y 29=1上三个不同的点,则“|AF |,|BF |,|CF |成等差数列”是“x 1+x 2=8”的()A.充要条件B.必要而不充分条件C.充分而不必要条件D.既不充分也不必要条件24(2021·浙江·统考高考真题)已知a ,b ∈R ,ab >0,函数f x =ax 2+b (x ∈R ).若f (s -t ),f (s ),f (s +t )成等比数列,则平面上点s ,t 的轨迹是()A.直线和圆B.直线和椭圆C.直线和双曲线D.直线和抛物线热点七数列与概率统计交汇25(2023秋·江西·高三校联考阶段练习)甲同学现参加一项答题活动,其每轮答题答对的概率均为13,且每轮答题结果相互独立.若每轮答题答对得5分,答错得0分,记第i 轮答题后甲同学的总得分为X i ,其中i =1,2,⋅⋅⋅,n .(1)求E X 99 ;(2)若乙同学也参加该答题活动,其每轮答题答对的概率均为23,并选择另一种答题方式答题:从第1轮答题开始,若本轮答对,则得20分,并继续答题;若本轮答错,则得0分,并终止答题,记乙同学的总得分为Y .证明:当i >24时,E X i >E Y .26(2023秋·湖北荆州·高三沙市中学校考阶段练习)在正三棱柱ABC -A 1B 1C 1中,点A 处有一只小蚂蚁,每次随机等可能地沿各条棱或侧面对角线向另一顶点移动,设小蚂蚁移动n 次后仍在底面ABC 的顶点处的概率为P n .(1)求P1,P2的值.(2)求P n.27(2019·全国·高考真题(理))为了治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得-1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得-1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.(1)求X的分布列;(2)若甲药、乙药在试验开始时都赋予4分,p i(i=0,1,⋯,8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则p0=0,p8=1,p i=ap i-1+bp i+cp i+1(i=1,2,⋯,7),其中a=P(X=-1),b=P(X=0),c=P(X=1).假设α=0.5,β=0.8.(i)证明:{p i+1-p i}(i=0,1,2,⋯,7)为等比数列;(ii)求p4,并根据p4的值解释这种试验方案的合理性.热点八等差数列、等比数列的判断与证明28【多选题】(2022·广东茂名·模拟预测)已知数列a n的前n项和为S,a1=1,S n+1=S n+2a n+1,数列2na n⋅a n+1的前n项和为Tn,n∈N*,则下列选项正确的为()A.数列a n+1是等比数列 B.数列a n+1是等差数列C.数列a n的通项公式为a n=2n-1 D.T n>129(2021·全国·统考高考真题)记S n为数列a n的前n项和,b n为数列S n的前n项积,已知2S n+1b n=2.(1)证明:数列b n是等差数列;(2)求a n的通项公式.热点九数列中的“新定义”问题30(2020·全国·统考高考真题)0-1周期序列在通信技术中有着重要应用.若序列a1a2⋯a n⋯满足a i∈{0,1}(i=1,2,⋯),且存在正整数m,使得a i+m=a i(i=1,2,⋯)成立,则称其为0-1周期序列,并称满足a i+m=a i(i=1,2,⋯)的最小正整数m为这个序列的周期.对于周期为m的0-1序列a1a2⋯a n⋯,C(k)=1 mmi=1a i a i+k(k=1,2,⋯,m-1)是描述其性质的重要指标,下列周期为5的0-1序列中,满足C(k)≤15(k=1,2,3,4)的序列是()A.11010⋯B.11011⋯C.10001⋯D.11001⋯31【多选题】(2023秋·湖南长沙·高三周南中学校考阶段练习)古希腊毕达哥拉斯学派的数学家用沙粒和小石子来研究数,他们根据沙粒或小石子所排列的形状,把数分成许多类,如图中第一行图形中黑色小点个数:1,3,6,10,⋯称为三角形数,第二行图形中黑色小点个数:1,4,9,16,⋯称为正方形数,记三角形数构成数列a n,正方形数构成数列b n,则下列说法正确的是()A.1b 1+1b 2+1b 3+⋯+1b n<2;B.1225既是三角形数,又是正方形数;C.10i =11b i +1-a i +1=95;D.∀m ∈N *,m ≥2总存在p ,q ∈N *,使得b m =a p +a q 成立;32(2022秋·山东·高三校联考阶段练习)若项数为n 的数列a n 满足:a i =a n +1-i i =1,2,3,⋯,n 我们称其为n 项的“对称数列”.例如:数列1,2,2,1为4项的“对称数列”;数列1,2,3,2,1为5项的“对称数列”.设数列c n 为2k +1项的“对称数列”,其中c 1,c 2⋯c k +1是公差为2的等差数列,数列c n 的最大项等于8,记数列c n 的前2k +1项和为S 2k +1,若S 2k +1=32,则k =.数列考查的九个热点热点题型速览热点一等差数列的基本计算热点二等比数列的基本计算热点三等差数列与等比数列的综合计算热点四数列与函数的交汇热点五数列与不等式交汇热点六数列与解析几何交汇热点七数列与概率统计交汇热点八等差数列、等比数列的判断与证明热点九数列中的“新定义”问题热点一等差数列的基本计算1(2023春·河南开封·高三通许县第一高级中学校考阶段练习)已知等差数列a n 为递增数列,S n 为其前n 项和,a 3+a 7=34,a 4⋅a 6=280,则S 11=()A.516 B.440C.258D.220【答案】D【分析】根据给定条件,利用等差数列性质求出a 4,a 6,再利用前n 项和公式求解作答.【详解】等差数列a n 为递增数列,则a 4<a 6,由a 3+a 7=34,得a 4+a 6=34,而a 4⋅a 6=280,解得a 4=14,a 6=20,所以S 11=11(a 1+a 11)2=11a 6=220.故选:D2(2022秋·黑龙江哈尔滨·高三哈师大附中校考期中)某种卷筒卫生纸绕在圆柱形盘上,空盘时盘芯直径为60mm ,满盘时直径为120mm ,已知卫生纸的厚度为0.1mm ,则满盘时卫生纸的总长度大约( )(π≈3.14,精确到1m )A.65m B.85mC.100mD.120m【答案】B【分析】依题意,可以把绕在盘上的卫生纸长度,近似看成300个半径成等差数列的圆周长,然后分别计算各圆的周长,再借助等差数列前n 项和公式求总和即可.【详解】因为空盘时盘芯直径为60mm ,则半径为30mm ,周长为2π×30=60πmm ,又满盘时直径为120mm ,则半径为60mm ,周长为2π×60=120πmm ,又因为卫生纸的厚度为0.1mm ,则60-300.1=300,即每一圈周长成等差数列,项数为300,于是根据等差数列的求和公式,得:S300=300×60π+120π2=27000πmm ,又27000πmm≈84780mm≈85m,即满盘时卫生纸的总长度大约为85m,故选:B.3(2020·全国高考真题(理))北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()A.3699块B.3474块C.3402块D.3339块【答案】C【解析】设第n环天石心块数为a n,第一层共有n环,则a n是以9为首项,9为公差的等差数列,a n=9+n-1×9=9n,设S n为a n的前n项和,则第一层、第二层、第三层的块数分别为S n,S2n-S n,S3n-S2n,因为下层比中层多729块,所以S3n-S2n=S2n-S n+729,即3n9+27n2-2n9+18n2=2n9+18n2-n9+9n2+729即9n2=729,解得n=9,所以S3n=S27=279+9×272=3402.故选:C4(2022·全国·统考高考真题)记S n为等差数列a n的前n项和.若2S3=3S2+6,则公差d=.【答案】2【分析】转化条件为2a1+2d=2a1+d+6,即可得解.【详解】由2S3=3S2+6可得2a1+a2+a3=3a1+a2+6,化简得2a3=a1+a2+6,即2a1+2d=2a1+d+6,解得d=2.故答案为:2.【规律方法】1.等差数列中的基本量a1,a n,d,n,S n,“知三可求二”,在求解过程中主要运用方程思想.要注意使用公式时的准确性与合理性,更要注意运算的准确性.在遇到一些较复杂的方程组时,要注意运用整体代换思想,使运算更加便捷.2. 在等差数列{a n}中,若出现a m-n,a m,a m+n等项时,可以利用等差数列的性质将其转化为与a m有关的条件;若求a m 项,可由a m =12(a m -n +a m +n)转化为求a m -n ,a m +n 或a m -n +a m +n 的值.3.数列的基本计算,往往以数学文化问题为背景.热点二等比数列的基本计算5(2020·全国·统考高考真题)设{a n }是等比数列,且a 1+a 2+a 3=1,a 2+a 3+a 4=2,则a 6+a 7+a 8=()A.12B.24C.30D.32【答案】D【分析】根据已知条件求得q 的值,再由a 6+a 7+a 8=q 5a 1+a 2+a 3 可求得结果.【详解】设等比数列a n 的公比为q ,则a 1+a 2+a 3=a 11+q +q 2 =1,a 2+a 3+a 4=a 1q +a 1q 2+a 1q 3=a 1q 1+q +q 2 =q =2,因此,a 6+a 7+a 8=a 1q 5+a 1q 6+a 1q 7=a 1q 51+q +q 2 =q 5=32.故选:D .6(2023·广东揭阳·惠来县第一中学校考模拟预测)在《增减算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关”.其大意是:有人要去某关口,路程为378里,第一天健步行走,从第二天起由于脚痛,每天走的路程都为前一天的一半,一共走了六天,才到目的地.则此人后3天共走的里程数为()A.6B.12C.18D.42【答案】D【分析】设第n n ∈N ∗ 天走a n 里,其中1≤n ≤6,由题意可知,数列a n 是公比为12的等比数列,利用等比数列的求和公式求出a 1的值,然后利用等比数列的求和公式可求得此人后3天共走的里程数.【详解】设第n n ∈N ∗ 天走a n 里,其中1≤n ≤6,由题意可知,数列a n 是公比为12的等比数列,所以,a 11-12 6 1-12=6332a 1=378,解得a 1=378×3263=192,所以,此人后三天所走的里程数为a 4+a 5+a 6=192×181-1231-12=42.故选:D .7(2023·全国高考真题)已知a n 为等比数列,a 2a 4a 5=a 3a 6,a 9a 10=-8,则a 7=.【答案】-2【分析】根据等比数列公式对a 2a 4a 5=a 3a 6化简得a 1q =1,联立a 9a 10=-8求出q 3=-2,最后得a 7=a 1q ⋅q 5=q 5=-2.【解析】设a n 的公比为q q ≠0 ,则a 2a 4a 5=a 3a 6=a 2q ⋅a 5q ,显然a n ≠0,则a 4=q 2,即a 1q 3=q 2,则a 1q =1,因为a 9a 10=-8,则a 1q 8⋅a 1q 9=-8,则q 15=q 5 3=-8=-2 3,则q 3=-2,则a 7=a 1q ⋅q 5=q 5=-2,故答案为:-2.【规律方法】1.等比数列运算问题的一般求法是设出首项a 1和公比q ,然后由通项公式或前n 项和公式转化为方程(组)求解.2.等比数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,q ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.3.根据题目特点,可选用等比数列的性质.热点三等差数列与等比数列的综合计算8(2019·北京·高考真题)设{an }是等差数列,a 1=-10,且a 2+10,a 3+8,a 4+6成等比数列.(Ⅰ)求{an }的通项公式;(Ⅱ)记{an }的前n 项和为Sn ,求Sn 的最小值.【答案】(Ⅰ)a n =2n -12;(Ⅱ)-30.【分析】(Ⅰ)由题意首先求得数列的公差,然后利用等差数列通项公式可得a n 的通项公式;(Ⅱ)首先求得S n 的表达式,然后结合二次函数的性质可得其最小值.【详解】(Ⅰ)设等差数列a n 的公差为d ,因为a 2+10,a 3+8,a 4+6成等比数列,所以(a 3+8)2=(a 2+10)(a 4+6),即(2d -2)2=d (3d -4),解得d =2,所以a n =-10+2(n -1)=2n -12.(Ⅱ)由(Ⅰ)知a n =2n -12,所以S n =-10+2n -122×n =n 2-11n =n -112 2-1214;当n =5或者n =6时,S n 取到最小值-30.9(2022·全国·统考高考真题)记S n 为数列a n 的前n 项和.已知2S nn+n =2a n +1.(1)证明:a n 是等差数列;(2)若a 4,a 7,a 9成等比数列,求S n 的最小值.【答案】(1)证明见解析;(2)-78.【分析】(1)依题意可得2S n +n 2=2na n +n ,根据a n =S 1,n =1S n-Sn -1,n ≥2,作差即可得到a n -a n -1=1,从而得证;(2)法一:由(1)及等比中项的性质求出a 1,即可得到a n 的通项公式与前n 项和,再根据二次函数的性质计算可得.【详解】(1)因为2S nn+n =2a n +1,即2S n +n 2=2na n +n ①,当n ≥2时,2S n -1+n -1 2=2n -1 a n -1+n -1 ②,①-②得,2S n +n 2-2S n -1-n -1 2=2na n +n -2n -1 a n -1-n -1 ,即2a n +2n -1=2na n -2n -1 a n -1+1,即2n -1 a n -2n -1 a n -1=2n -1 ,所以a n -a n -1=1,n ≥2且n ∈N *,所以a n 是以1为公差的等差数列.(2)[方法一]:二次函数的性质由(1)可得a 4=a 1+3,a 7=a 1+6,a 9=a 1+8,又a 4,a 7,a 9成等比数列,所以a 72=a 4⋅a 9,即a 1+6 2=a 1+3 ⋅a 1+8 ,解得a 1=-12,所以a n=n-13,所以S n=-12n+n n-12=12n2-252n=12n-2522-6258,所以,当n=12或n=13时,S nmin=-78.[方法二]:【最优解】邻项变号法由(1)可得a4=a1+3,a7=a1+6,a9=a1+8,又a4,a7,a9成等比数列,所以a72=a4⋅a9,即a1+62=a1+3⋅a1+8,解得a1=-12,所以a n=n-13,即有a1<a2<⋯<a12<0,a13=0.则当n=12或n=13时,S nmin=-78.【整体点评】(2)法一:根据二次函数的性质求出S n的最小值,适用于可以求出S n的表达式;法二:根据邻项变号法求最值,计算量小,是该题的最优解.10(2023·天津·统考高考真题)已知a n是等差数列,a2+a5=16,a5-a3=4.(1)求a n的通项公式和2n-1i=2n-1a i .(2)已知b n为等比数列,对于任意k∈N*,若2k-1≤n≤2k-1,则b k<a n<b k+1,(Ⅰ)当k≥2时,求证:2k-1<b k<2k+1;(Ⅱ)求b n的通项公式及其前n项和.【答案】(1)a n=2n+1,2n-1i=2n-1a i=3⋅4n-1;(2)(Ⅰ)证明见解析;(Ⅱ)b n=2n,前n项和为2n+1-2.【分析】(1)由题意得到关于首项、公差的方程,解方程可得a1=3,d=2,据此可求得数列的通项公式,然后确定所给的求和公式里面的首项和项数,结合等差数列前n项和公式计算可得2n-1i=2n-1a i=3⋅4n-1.(2)(Ⅰ)利用题中的结论分别考查不等式两侧的情况,当2k-1≤n≤2k-1时,b k<a n,取n=2k-1,当2k-2≤n≤2k-1-1时,a n<b k,取n=2k-1-1,即可证得题中的不等式;(Ⅱ)结合(Ⅰ)中的结论,利用极限思想确定数列的公比,进而可得数列的通项公式,最后由等比数列前n 项和公式即可计算其前n项和.【详解】(1)由题意可得a2+a5=2a1+5d=16a5-a3=2d=4,解得a1=3d=2,则数列a n的通项公式为a n=a1+n-1d=2n+1,求和得2n-1i=2n-1a i=2n-1i=2n-12i+1=22n-1i=2n-1i+2n-1-2n-1+1=22n-1+2n-1+1+2n-1+2+⋯+2n-1+2n-1=22n-1+2n-1⋅2n-12+2n-1=3⋅4n-1.(2)(Ⅰ)由题意可知,当2k-1≤n≤2k-1时,b k<a n,取n=2k-1,则b k<a2k-1=2×2k-1+1=2k+1,即b k<2k+1,当2k-2≤n≤2k-1-1时,a n<b k,取n=2k-1-1,此时a n=a2k-1-1=22k-1-1+1=2k-1,据此可得2k-1<b k,综上可得:2k-1<b k<2k+1.(Ⅱ)由(Ⅰ)可知:2k-1<bk<2k+1,2k+1-1<b k+1<2k+1+1则数列b n的公比q满足2k+1-12k+1=2-32k+1<q=b k+1b k<2k+1+12k-1=2+32k-1,当k∈N*,k→+∞时,2-3 2k+1→2,2+32k-1→2,所以q=2,所以2k-1<b12k-1<2k+1,即2k-12k-1=2-12k-1<b1<2k+12k-1=2+12k-1,当k∈N*,k→+∞时,2-1 2k-1→2,2+12k-1→2,所以b1=2,所以数列的通项公式为b n=2n,其前n项和为:S n=2×1-2n1-2=2n+1-2.热点四数列与函数的交汇11(2018·浙江·高考真题)已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln(a1+a2+a3).若a1>1,则A.a1<a3,a2<a4B.a1>a3,a2<a4C.a1<a3,a2>a4D.a1>a3,a2>a4【答案】B【分析】先证不等式x≥ln x+1,再确定公比的取值范围,进而作出判断.【详解】令f(x)=x-ln x-1,则f (x)=1-1x,令f(x)=0,得x=1,所以当x>1时,f (x)>0,当0<x<1时,f (x)<0,因此f(x)≥f(1)=0,∴x≥ln x+1,若公比q>0,则a1+a2+a3+a4>a1+a2+a3>ln(a1+a2+a3),不合题意;若公比q≤-1,则a1+a2+a3+a4=a1(1+q)(1+q2)≤0,但ln(a1+a2+a3)=ln[a1(1+q+q2)]>ln a1>0,即a1+a2+a3+a4≤0<ln(a1+a2+a3),不合题意;因此-1<q<0,q2∈(0,1),∴a1>a1q2=a3,a2<a2q2=a4<0,选B.【点睛】构造函数对不等式进行放缩,进而限制参数取值范围,是一个有效方法.如x≥ln x+1,e x≥x+1,e x≥x2+1(x≥0).12(2023秋·湖南长沙·高三雅礼中学校考阶段练习)如图1所示,古筝有多根弦,每根弦下有一个雁柱,雁柱用于调整音高和音质.图2是根据图1绘制的古筝弦及其雁柱的简易平面图.在图2中,每根弦都垂直于x轴,相邻两根弦间的距离为1,雁柱所在曲线的方程为y=1.1x,第n根弦(n∈N,从左数首根弦在y轴上,称为第0根弦)分别与雁柱曲线和直线l:y=x+1交于点A n x n,y n和B n x n ,y n,则20n=0y n y n=.(参考数据:取1.122=8.14.)【答案】914【分析】根据题意可得y n =n +1,y n=1.1n ,进而利用错位相减法运算求解.【详解】由题意可知:y n =n +1,y n =1.1n ,则20n =0y n y n=20n =0n +1 1.1n =1×1.10+2×1.11+⋯+20×1.119+21×1.120,可得1.1×20n =0y n y n =1×1.11+2×1.12+⋯+20×1.120+21×1.121,两式相减可得:-0.1×20n =0y n y n=1.10+1.11+⋯+1.120-21×1.121=1-1.1211-1.1-21×1.121=1-1.121+0.1×21×1.121-0.1=1+1.122-0.1=1+8.14-0.1=-91.4,所以20n =0y n y n=914.故答案为:914.13(2023秋·福建厦门·高三厦门一中校考阶段练习)已知数列a n 满足a 1>0,a n +1=log 2a n ,n =2k -1,k ∈N ∗2a n+2,n =2k ,k ∈N ∗.(1)判断数列a 2n -1 是否是等比数列?若是,给出证明;否则,请说明理由;(2)若数列a n 的前10项和为361,记b n =1log 2a 2n +1 ⋅a 2n +2,数列b n 的前n 项和为T n ,求证:T n <12.【答案】(1)数列a 2n -1 成等比数列,证明见解析(2)证明见解析【分析】(1)推导出a 2n +1=2a 2n +2=2log 2a 2n -1+2=4a 2n -1,得到结论;(2)先得到a 2n -1=a 1⋅4n -1,a 2n =2(n -1)+log 2a 1,从而得到S 10=341a 1+5log 2a 1+20,令f (x )=341x +5log 2x +20,得到函数单调递增,且由特殊点函数值得到a 1=1,b n =14n2,求出T 1=14<74,当n ≥2时,利用裂项相消法求和,得到T n <12.【详解】(1)数列a 2n -1 成等比数列,证明如下:根据a n +1=log 2a n ,n =2k -1,k ∈N ∗2a n+2,n =2k ,k ∈N ∗得,a 2n +1=2a 2n +2=2log 2a 2n -1+2=22a 2n -1=4a 2n -1;∵a 1>0,∴a 2n -1>0,a2n +1a 2n -1=4,即数列a 2n -1 成等比数列.(2)由(1)得,a 2n -1=a 1⋅4n -1,a 2n =log 2a 2n -1=2(n -1)+log 2a 1,故S 10=a 140+41+42+43+44 +5log 2a 1+2×(0+1+2+3+4)=341a 1+5log 2a 1+20,由S 10=361,得341a 1+5log 2a 1+20=361.令f (x )=341x +5log 2x +20,当x >0时,f (x )=341x +5log 2x +20单调递增,且f (1)=361=f a 1 ,故a 1=1,a 2n +1=4n =22n ,a 2n +2=log 2a 1+2n =2n ,∴b n =1log 2a 2n +1 ⋅a 2n +2=14n 2,T 1=b 1=14<12,当n ≥2时,b n =14n2<14(n -1)n =141n -1-1n∴T n =b 1+b 2+⋯+b n <141+1-12+12-13+⋯+1n -1-1n=142-1n <14×2=12,综上,知T n <1214(2023·全国·高三专题练习)已知A x 1,y 2 、B x 2,y 2 是函数f x =2x 1-2x,x ≠12-1,x =12的图象上的任意两点,点M 在直线x =12上,且AM =MB .(1)求x 1+x 2的值及y 1+y 2的值;(2)已知S 1=0,当n ≥2时,S n =f 12 +f 2n +f 3n +⋅⋅⋅+f n -1n,设a n =2Sn,T n 数列a n 的前n 项和,若存在正整数c ,m ,使得不等式T m -c T m +1-c <12成立,求c 和m 的值;【答案】(1)x 1+x 2=1,y 1+y 2=-2(2)存在,c =1,m =1【分析】(1)根据点M 在直线x =12上,设M 12,y M ,利用AM =MB ,可得x 1+x 2=1,分类讨论:①x 1=12,x 2=12;②x 1≠12时,x 2≠12,利用函数解析式,可求y 1+y 2的值;(2)由(1)知,当x 1+x 2=1时,y 1+y 2=-2,∴f k n +f n -kn=-2,代入k =0,1,2,⋯,n -1,利用倒序相加法可得S n =1-n ,从而可得数列a n 的通项与前n 项和,利用T m -c T m +1-c <12化简即可求得结论.【详解】(1)根据点M 在直线x =12上,设M 12,y M ,则AM =12-x 1,y M -y 1 ,MB =x 2-12,y 2-y M ,∵AM =MB ,∴x 1+x 2=1.①当x 1=12时,x 2=12,y 1+y 2=f x 1 +f x 2 =-1-1=-2;②当x 1≠12时,x 2≠12,y 1+y 2=2x 11-2x 1+2x 21-2x 2=2x 11-2x 2 +2x 21-2x 1 1-2x 1 1-2x 2 =2(x 1+x 2)-8x 1x 21-2(x 1+x 2)+4x 1x 2=2(1-4x 1x 2)4x 1x 2-1=-2;综合①②得,y 1+y 2=-2.(2)由(1)知,当x 1+x 2=1时,y 1+y 2=-2.∴f k n +f n -k n=-2,k =0,1,2,⋯,n -1,∴n ≥2时,S n =f 1n +f 2n +f 3n +⋯+f n -1n①S n =f n -1n +f n -2n +f n -3n +⋯+f 1n ②①+②得,2S n =-2(n -1),则S n =1-n .又n =1时,S 1=0满足上式,∴S n =1-n .∴a n =2S n=21-n ,∴T n =1+12+⋯+12n -1=1×1-12 n1-12=2-22n.∵T m -c T m +1-c <12,∴2T m -c -T m +1-c 2T m +1-c<0,∴c -2T m -T m +1c -T m +1<0,∵Tm +1=2-12m ,2T m -T m +1=4-42m -2+12m =2-32m ,∴12≤2-32m <c <2-12m <2,c ,m 为正整数,∴c =1,当c =1时,2-32m<12-12m >1,∴1<2m <3,∴m =1.【点评】作为高考热点,数列与函数的交汇问题,等差数列易于同二次函数结合,研究和的最值问题,而等比数列易于同指数函数结合,利用指数函数的单调性解决问题,递推、通项问题往往与函数的单调性、周期性相结合.热点五数列与不等式交汇15(2022·浙江·统考高考真题)已知数列a n 满足a 1=1,a n +1=a n -13a 2n n ∈N ∗,则()A.2<100a 100<52 B.52<100a 100<3 C.3<100a 100<72 D.72<100a 100<4【答案】B【分析】先通过递推关系式确定a n 除去a 1,其他项都在0,1 范围内,再利用递推公式变形得到1a n +1-1a n =13-a n >13,累加可求出1a n >13(n +2),得出100a 100<3,再利用1a n +1-1a n =13-a n<13-3n +2=131+1n +1 ,累加可求出1a n -1<13n -1 +1312+13+⋯+1n ,再次放缩可得出100a 100>52.【详解】∵a 1=1,易得a 2=23∈0,1 ,依次类推可得a n ∈0,1由题意,a n +1=a n 1-13a n ,即1a n +1=3a n 3-a n=1a n +13-a n ,∴1a n +1-1a n =13-a n >13,即1a 2-1a 1>13,1a 3-1a 2>13,1a 4-1a 3>13,⋯,1a n -1a n -1>13,(n ≥2),累加可得1a n -1>13n -1 ,即1a n >13(n +2),(n ≥2),∴a n <3n +2,n ≥2 ,即a 100<134,100a 100<10034<3,又1a n +1-1a n =13-a n <13-3n +2=131+1n +1 ,(n ≥2),∴1a 2-1a 1=131+12 ,1a 3-1a 2<131+13 ,1a 4-1a 3<131+14 ,⋯,1a n -1a n -1<131+1n,(n≥3),累加可得1a n -1<13n -1 +1312+13+⋯+1n ,(n ≥3),∴1a 100-1<33+1312+13+⋯+1100 <33+1312×4+16×96 <39,即1a 100<40,∴a 100>140,即100a 100>52;综上:52<100a 100<3.故选:B .16(2023·浙江嘉兴·统考模拟预测)如图,在一个单位正方形中,首先将它等分成4个边长为12的小正方形,保留一组不相邻的2个小正方形,记这2个小正方形的面积之和为S 1;然后将剩余的2个小正方形分别继续四等分,各自保留一组不相邻的2个小正方形,记这4个小正方形的面积之和为S 2.以此类推,操作n 次,若S 1+S 2+⋅⋅⋅+S n ≥20232024,则n 的最小值是()A.9B.10C.11D.12【答案】C【分析】由题意可知操作n 次时有2n 个边长为12n 的小正方形,即S n =2n ×12n2=12n,结合等比数列前n 项和解不等式即可.【详解】由题意可知操作1次时有21=2个边长为121=12的小正方形,即S 1=21×1212=121=12,操作2次时有22=4个边长为122=14的小正方形,即S 2=22×122 2=122=14,操作3次时有23=8个边长为123=18的小正方形,即S 3=23×1232=123=18,以此类推可知操作n 次时有2n 个边长为12n 的小正方形,即S n =2n ×12n2=12n ,由等比数列前n 项和公式有S 1+S 2+⋅⋅⋅+S n =12+12 2+⋅⋅⋅+12 n =12×1-12 n1-12=1-12 n,从而问题转换成了求1-12 n ≥20232024不等式的最小正整数解,将不等式变形为12 n ≤12024,注意到12 10=11024>12024,1211=12048<12024,且函数y =12x在R 上单调递减,所以n 的最小值是11.故选:C .17(2023秋·四川绵阳·高三绵阳中学校考阶段练习)已知等差数列a n 的前n 项和为S n ,且S 4=4S 2,a 3n =3a n +2n ∈N *(1)求a n 的通项公式,(2)设b n =1a n a n +1,且b n 的前n 项和为T n ,证明,13≤T n <12.【答案】(1)a n =2n -1(2)证明见解析【分析】(1)利用等差数列的通项公式以及前n 项和公式,列方程求解首项和公差,即得答案;(2)由(1)结论可得b n =1a n a n +1的表达式,利用裂项求和可得T n 表达式,即可证明结论.【详解】(1)设a n 的公差为d ,由S 4=4S 2得,4a 1+6d =42a 1+d ,解得d =2a 1,∵a 3n =3a n +2,即a 1+3n -1 d =3a 1+n -1 d +2,∴2d =2a 1+2,结合d =2a 1,∴d =2,a 1=1,∴a n =1+2n -1 =2n -1;(2)证明:由b n =12n -1 2n +1=1212n -1-12n +1 .∴T n =b 1+b 2+⋯+b n =121-13+13-15+⋯+12n -1-12n +1,即∴T n =121-12n +1 ,又T n 随着n 的增大增大,当n =1时,T n 取最小值为T 1=13,又n →+∞时,12n +1>0,且无限趋近于0,故T n =121-12n +1 <12,故13≤T n <12.18(2022·全国·统考高考真题)记S n 为数列a n 的前n 项和,已知a 1=1,S n a n 是公差为13的等差数列.(1)求a n 的通项公式;(2)证明:1a 1+1a 2+⋯+1a n<2.【答案】(1)a n =n n +12(2)见解析【分析】(1)利用等差数列的通项公式求得S n a n =1+13n -1 =n +23,得到S n =n +2 a n 3,利用和与项的关系得到当n ≥2时,a n =S n -S n -1=n +2 a n 3-n +1 a n -13,进而得:a n a n -1=n +1n -1,利用累乘法求得a n =n n +1 2,检验对于n =1也成立,得到a n 的通项公式a n =n n +1 2;(2)由(1)的结论,利用裂项求和法得到1a 1+1a 2+⋯+1a n =21-1n +1 ,进而证得.【详解】(1)∵a 1=1,∴S 1=a 1=1,∴S1a 1=1,又∵S n a n 是公差为13的等差数列,∴S n a n =1+13n -1 =n +23,∴S n =n +2 a n 3,∴当n ≥2时,S n -1=n +1 a n -13,∴a n =S n -S n -1=n +2 a n 3-n +1 a n -13,整理得:n -1 a n =n +1 a n -1,即a na n-1=n+1n-1,∴a n=a1×a2a1×a3a2×⋯×a n-1a n-2×a na n-1=1×31×42×⋯×nn-2×n+1n-1=n n+12,显然对于n=1也成立,∴a n的通项公式a n=n n+12;(2)1a n =2n n+1=21n-1n+1,∴1 a1+1a2+⋯+1a n=21-12+12-13+⋯1n-1n+1=21-1n+1<219(2021·全国·统考高考真题)设a n是首项为1的等比数列,数列b n满足b n=na n3.已知a1,3a2,9a3成等差数列.(1)求a n和b n的通项公式;(2)记S n和T n分别为a n和b n的前n项和.证明:T n<S n 2.【答案】(1)a n=13n-1,b n=n3n;(2)证明见解析.【分析】(1)利用等差数列的性质及a1得到9q2-6q+1=0,解方程即可;(2)利用公式法、错位相减法分别求出S n,T n,再作差比较即可.【详解】(1)因为a n是首项为1的等比数列且a1,3a2,9a3成等差数列,所以6a2=a1+9a3,所以6a1q=a1+9a1q2,即9q2-6q+1=0,解得q=13,所以a n=13n-1,所以b n=na n3=n3n.(2)[方法一]:作差后利用错位相减法求和T n=13+232+⋯+n-13n-1+n3n,S n 2=12130+131+132+⋯+13n-1 ,T n-S n2=13+232+333+⋯+n3n-12130+131+132+⋯+13n-1 =0-1230+1-1231+2-1232+⋯+n-1-123n-1+n3n.设Γn=0-1230+1-1231+2-1232+⋯+n-1-123n-1, ⑧则13Γn=0-1231+1-1232+2-1233+⋯+n-1-123n. ⑨由⑧-⑨得23Γn=-12+131+132+⋯+13n-1-n-323n=-12+131-13n-11-13-n-323n.所以Γn=-14×3n-2-n-322×3n-1=-n2×3n-1.因此T n-S n2=n3n-n2×3n-1=-n2×3n<0.故T n<S n 2.[方法二]【最优解】:公式法和错位相减求和法证明:由(1)可得S n=1×1-13n1-13=321-13n,T n=13+232+⋯+n-13n-1+n3n,①1 3T n=132+233+⋯+n-13n+n3n+1,②①-②得23T n=13+132+133+⋯+13n-n3n+1=131-13n1-13-n3n+1=121-13n-n3n+1,所以T n=341-13n-n2⋅3n,所以T n-S n2=341-13n-n2⋅3n-341-13n=-n2⋅3n<0,所以T n<S n 2 .[方法三]:构造裂项法由(Ⅰ)知b n=n13n,令c n=(αn+β)13 n,且b n=c n-c n+1,即n13 n=(αn+β)13 n-[α(n+1)+β]13n+1,通过等式左右两边系数比对易得α=32,β=34,所以c n=32n+34 ⋅13 n.则T n=b1+b2+⋯+b n=c1-c n+1=34-34+n2 13 n,下同方法二.[方法四]:导函数法设f(x)=x+x2+x3+⋯+x n=x1-x n1-x,由于x1-x n1-x'=x1-x n'1-x-x1-x n×1-x'1-x2=1+nx n+1-(n+1)x n(1-x)2,则f (x)=1+2x+3x2+⋯+nx n-1=1+nx n+1-(n+1)x n(1-x)2.又b n=n13n=13n13 n-1,所以T n=b1+b2+b3+⋯+b n=131+2×13+3×132+⋯+n⋅13n-1 =13⋅f 13 =13×1+n13n+1-(n+1)13 n1-132=341+n13n+1-(n+1)13n =34-34+n213 n,下同方法二.20(2023·河南郑州·统考模拟预测)已知数列a n与b n的前n项和分别为A n和B n,且对任意n∈N*,a n +1-a n =32b n +1-b n 恒成立.(1)若A n =3n 2+3n2,b 1=2,求B n ;(2)若对任意n ∈N *,都有a n =B n 及b 2a 1a 2+b 3a 2a 3+b 4a 3a 4+⋯+b n +1a n a n +1<13恒成立,求正整数b 1的最小值.【答案】(1)n (n +1);(2)3【分析】(1)利用a n ,S n 求通项公式,再求证{b n }是首项、公差均为2的等差数列,进而求B n ;(2)由题设易得b n +1=3b n ,等比数列前n 项和公式求B n ,进而可得b n +1a n a n +1=1B n -1B n +1,裂项相消法化简已知不等式左侧,得b 1>31-23n +1-1恒成立,进而求最小值.【详解】(1)由题设,a n =A n -A n -1=32[n 2+n -(n -1)2-n +1]=3n 且n ≥2,而a 1=A 1=3,显然也满足上式,故a n =3n ,由a n +1-a n =32b n +1-b n ⇒b n +1-b n =2,又b 1=2,所以{b n }是首项、公差均为2的等差数列.综上,B n =2×(1+...+n )=n (n +1).(2)由a n =B n ,a n +1-a n =32b n +1-b n ,则B n +1-B n =b n +1=32(b n +1-b n ),所以b n +1=3b n ,而b 1≥1,故bn +1b n=3,即{b n }是公比为3的等比数列.所以B n =b 1(1-3n )1-3=b 12(3n -1),则B n +1=b12(3n +1-1),b n +1a n a n +1=B n +1-B n B n +1B n =1B n -1B n +1,而b 2a 1a 2+b 3a 2a 3+b 4a 3a 4+⋯+b n +1a n a n +1<13,所以1B 1-1B 2+1B 2-1B 3+...+1B n -1B n +1=1B 1-1B n +1=1b 1-2b 1(3n +1-1)<13,所以1b 11-23n +1-1 <13⇒b 1>31-23n +1-1对n ∈N *都成立,所以1-23n +1-1<1,故b 1≥3,则正整数b 1的最小值为3.21(2023秋·云南·高三云南师大附中校考阶段练习)已知a n 为等差数列,b n 为等比数列,b 1=2a 1=2,a 5=5a 4-a 3 ,b 5=4b 4-b 3 ,数列c n 满足c n =1a n a n +2,n 为奇数b n,n 为偶数.(1)求a n 和b n 的通项公式;(2)证明:2ni =1c i ≥133.【答案】(1)a n =n ;b n =2n (2)证明见解析【分析】(1)设等差数列a n 的公差为d ,等比数列b n 的公比为q ,根据题意列式求d ,q ,进而可得结果;(2)利用分组求和以及裂项相消法求得T n =-14n +2+4n +13-56,进而根据数列单调性分析证明.【详解】(1)设等差数列a n 的公差为d ,等比数列b n 的公比为q ,由a 1=1,a 5=5a 4-a 3 ,可得1+4d =5d ,解得d =1。

数列大题基础练-高考数学重点专题冲刺演练(原卷版)

数列大题基础练-高考数学重点专题冲刺演练(原卷版)

【一专三练】专题01数列大题基础练-新高考数学复习分层训练(新高考通用)1.(2022·浙江·模拟预测)已知数列{}n a 满足,12(1)nn n a a +=+⋅-.(1)若11a =,数列{}2n a 的通项公式;(2)若数列{}n a 为等比数列,求1a .2.(2022·海南省直辖县级单位·校联考一模)等差数列{}n a 的首项11a =,且满足2512a a +=,数列{}n b 满足2n a n b =.(1)求数列{}n a 的通项公式;(2)设数列{}n b 的前n 项和是n T ,求n T .3.(2023·黑龙江大庆·统考一模)设{}n a 是公差不为0的等差数列,12a =,3a 是1a ,11a 的等比中项.(1)求{}n a 的通项公式;(2)设13n n n b a a +=,求数列{}n b 的前n 项和n S .4.(2023·广东惠州·统考模拟预测)数列{}n a 中,12a =,121n n a a +=-.(1)求证:数列{}1n a -是等比数列;(2)若n n b a n =+,求数列{}n b 的前n 项和n T .5.(2023·广东江门·统考一模)已知数列{}n a (N n +∈)满足11a =,133n n n a a n ++=,且n n a b n =.(1)求数列{}n b 是通项公式;(2)求数列{}n a 的前n 项和n S .6.(2023·江苏·统考一模)已知等比数列{}n a 的各项均为正数,且23439a a a ++=,54323a a a =+.(1)求{}n a 的通项公式;(2)数列{}n b 满足n n n b a =,求{}n b 的前n 项和n T .7.(2023·重庆·统考二模)已知数列{}n a 的前n 项和为n S ,且满足()115n n na n a +-+=,且15a ≠-.(1)求证:数列5n a n +⎧⎫⎨⎬⎩⎭为常数列,并求{}n a 的通项公式;(2)若使不等式20n S >成立的最小整数为7,且1Z a ∈,求1a 和n S 的最小值.8.(2023·海南海口·校考模拟预测)已知数列{}n a 的前n 项和为n S ,14a =,12n n a n S n +=.(1)求数列{}n a 的通项公式;(2)记12n n na c =-,数列{}n c 的前n 项和为n T ,求12111n T T T ++⋅⋅⋅+的值.9.(2023·山东青岛·统考一模)已知等差数列{}n a 的前n 项和为n S ,公差0d ≠,2S ,4S ,54S +成等差数列,2a ,4a ,8a 成等比数列.(1)求n S ;(2)记数列{}n b 的前n 项和为n T ,22n n n n b T S +-=,证明数列1n n b S ⎧⎫-⎨⎬⎩⎭为等比数列,并求{}n b 的通项公式.10.(2023·山东济南·一模)已知数列{}n a 满足111,(1)1n n a na n a +=-+=.(1)若数列{}n b 满足1n n a b n+=,证明:{}n b 是常数数列;(2)若数列{}n c 满足πsin 22n a n n c a ⎛⎫=+ ⎪⎝⎭,求{}n c 的前2n 项和2n S .11.(2022·辽宁鞍山·统考一模)已知等差数列{}n a 满足首项为3331log 15log 10log 42-+的值,且3718a a +=.(1)求数列{}n a 的通项公式;(2)设11n n n b a a +=,求数列{}n b 的前n 项和n T .12.(2023·广东·统考一模)已知各项都是正数的数列{}n a ,前n 项和n S 满足()2*2n n n a S a n =-∈N .(1)求数列{}n a 的通项公式.(2)记n P 是数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和,n Q 是数列121n a -⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前n 项和.当2n ≥时,试比较n P 与n Q 的大小.13.(2022·吉林长春·东北师大附中校考模拟预测)从①12n a S n n ⎛⎫=+ ⎪⎝⎭;②23S a =,412a a a =;③12a =,4a 是2a ,8a 的等比中项这三个条件中任选一个,补充到下面横线上,并解答.已知等差数列{}n a 的前n 项和为n S ,公差d 不等于零,______.(1)求数列{}n a 的通项公式;(2)若122n n n b S S +=-,数列{}n b 的前n 项和为n W ,求n W .14.(2022·广东珠海·珠海市第三中学统考二模)已知数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,1221n n n a b n -+=+-,221n n n T S n -=--.(1)求11,a b 及数列{}n a ,{}n b 的通项公式;(2)设()*21N 2n n n a n k c k b n k =-⎧=∈⎨=⎩,,,求数列{}n c 的前2n 项和2n P .15.(2022·云南大理·统考模拟预测)已知数列{}n a 的前n 项和为n S ,且满足1121,1n n S a a n+==-.(1)求数列{}n a 的通项公式;(2)若数列2,,23,,n n n C n n ⎧=⎨+⎩为奇数为偶数,求数列{}n C 的前2n 项和2n T .16.(2022·湖南永州·统考一模)已知数列{}{},n n a b 满足:111a b ==,且210n n n n a b a b ++-=.(1)若数列{}n a 为等比数列,公比为121,2q a a -=,求{}n b 的通项公式;(2)若数列{}n a 为等差数列,11n n a +-=,求{}n b 的前n 项和n T .17.(2022·广东韶关·统考一模)已知数列{}n a 的首项145a =,且满足143n n n a a a +=+,设11n nb a =-.(1)求证:数列{}n b 为等比数列;(2)若1231111140na a a a ++++> ,求满足条件的最小正整数n .18.(2022·河北·模拟预测)已知数列{}n a 的前n 项和为n S ,13a =,且1123n n n S S a +++=-.(1)求数列{}n a 的通项公式;(2)①3log n n n b a a =;②3321log log n n n b a a +=⋅;③3log n n n b a a =-.从上面三个条件中任选一个,求数列{}n b 的前n 项和n T .注:如果选择多个条件分别解答,按第一个解答计分.19.(2022·广东广州·统考一模)已知公差不为0的等差数列{}n a 中,11a =,4a 是2a 和8a 的等比中项.(1)求数列{}n a 的通项公式:(2)保持数列{}n a 中各项先后顺序不变,在k a 与1(1,2,)k a k += 之间插入2k ,使它们和原数列的项构成一个新的数列{}n b ,记{}n b 的前n 项和为n T ,求20T 的值.20.(2023·湖北·荆州中学校联考二模)已知数列{}n a ,若_________________.(1)求数列{}n a 的通项公式;(2)求数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和n T .从下列三个条件中任选一个补充在上面的横线上,然后对题目进行求解.①2123n a a a a n ++++= ;②11a =,47a =,()*112,2n n n a a a n n -+=+∈N ≥;③11a =,点(),n A n a ,()11,n B n a ++在斜率是2的直线上.21.(2023·江苏南通·二模)已知正项数列{}n a 的前n 项和为,且11a =,2218n n S S n +-=,*N n ∈.(1)求n S ;(2)在数列{}n a 的每相邻两项1k k a a +,之间依次插入12k a a a ⋯,,,,得到数列{}1121231234n b a a a a a a a a a a ⋯⋯:,,,,,,,,,,,求{}n b 的前100项和.22.(2023·江苏南通·海安高级中学校考一模)已知数列{}n a 满足()1122n n n a a a n -+=+≥,且12342,18a a a a =++=(1)求{}n a 的通项公式;(2)设1000n a n b =-,求数列{}n b 的前15项和15T (用具体数值作答).23.(2023·安徽·模拟预测)已知{}n a 为等差数列,{}n b 是公比为2的等比数列,且223344a b a b b a -=-=-.(1)证明:11a b =;(2)求集合{}1,1500k m k b a a m =+≤≤中元素个数.24.(2023·河北衡水·河北衡水中学校考三模)已知{}n a 为等差数列,1154,115n n a n a a n+-==+.(1)求{}n a 的通项公式;(2)若()()1,414n n n n b T a a =++为{}n b 的前n 项和,求n T .25.(2023·广东广州·统考二模)设数列{}n a 的前n 项和为n S ,且()22*n n S a n =-∈N .(1)求{}n a 的通项公式;(2)设2211log log n n n b a a +=⋅,记{}n b 的前n 项和为n T ,证明:1n T <.26.(2023·江苏泰州·统考一模)在①124,,S S S 成等比数列,②4222a a =+,③8472S S S =+-这三个条件中任选两个,补充在下面问题中,并完成解答.已知数列{}n a 是公差不为0的等差数列,其前n 项和为n S ,且满足__________,__________.(1)求{}n a 的通项公式;(2)求12233411111n n a a a a a a a a +++++ .注:如果选择多个方案分别解答,按第一个方案计分.27.(2023·黑龙江·黑龙江实验中学校考一模)已知数列{}n a ,前n 项和为n S ,且满足112n n n a a a +-=-,2n ≥,*N n ∈,1514a a +=,770S =,等比数列{}n b 中,1212b b +=,且12,6b b +,3b 成等差数列.(1)求数列{}n a 和{}n b 的通项公式;(2)记n c 为区间(]()*,N n n a b n ∈中的整数个数,求数列{}n c 的前n 项和n P .28.(2023·吉林·统考二模)已知数列{}n a 的前n 项和为n S ,13a =,数列n S n ⎧⎫⎨⎬⎩⎭是以2为公差的等差数列.(1)求{}n a 的通项公式;(2)设()()112n n n n n a b a a +-+=,求数列{}n b 的前2n 项和2n T .29.(2023·山西·校联考模拟预测)已知数列{}n a 满足0n a >,22112n n n n a a a a ++=+,且13a ,23a +,3a 成等差数列.(1)求{}n a 的通项公式;(2)若12,log ,n n n a n b a n ⎧⎪=⎨⎪⎩为奇数为偶数,求数列{}n b 的前2n 项和2n T .30.(2023·黑龙江哈尔滨·哈尔滨三中校考二模)已知数列{}n a 满足:15a =,134n n a a +=-,设2n n b a =-,*N n ∈.(1)求数列{}n b 的通项公式;(2)设3132312log log log n n nb b b T b b b =++⋅⋅⋅+,()*N n ∈,求证:34n T <.。

2024年新课标Ⅰ卷高考数学考前押题试卷附答案解析

2024年新课标Ⅰ卷高考数学考前押题试卷附答案解析

2024年新课标Ⅰ卷高考数学考前押题试卷(考试时间:120分钟;试卷满分:150分)第一部分(选择题共58分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合}{}{3,Z ,06A x x n n B x x ==∈=≤≤,则A B = ()A .{1,2}B .{3,6}C .{0,1,2}D .{0,3,6}2.若角α的终边位于第二象限,且1sin 2α=,则πsin 2α⎛⎫+= ⎪⎝⎭()A .12B .12-CD.3.双曲线2221(0)y x m m-=>的渐近线方程为2y x =±,则m =()A .12B .22CD .24.已知在ABC 中,点D 在边BC 上,且5BD DC = ,则AD =()A .1566AB AC + B .1566AC AB +uuur uu u r C .1455AB AC + D .4155AB AC+ 5.函数()21ex x f x -=的图象大致为()A.B.C .D.6.三个相同的圆柱的轴线123,,l l l ,互相垂直且相交于一点O ,底面半径为1.假设这三个圆柱足够的长,P 同时在三个圆柱内(含表面),则OP 长度最大值为()A .1B.2C.D.27.甲、乙两人进行一场游戏比赛,其规则如下:每一轮两人分别投掷一枚质地均匀的骰子,比较两者的点数大小,其中点数大的得3分,点数小的得0分,点数相同时各得1分.经过三轮比赛,在甲至少有一轮比赛得3分的条件下,乙也至少有一轮比赛得3分的概率为()A .209277B .210277C .211277D .2122778.已知数列{}n a 的前n 项和为n S,且()1142,N 2n n n n n a a *-=+≥∈,若11a =,则()A .202431,2S ⎛⎫∈ ⎪⎝⎭B .20243,22S ⎛⎫∈ ⎪⎝⎭C .202452,2S ⎛⎫∈ ⎪⎝⎭D .20245,32S ⎛⎫∈ ⎪⎝⎭二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知复数12,z z ,下列结论正确的有()A .若120z z ->,则12z z >B .若2212z z =,则12=z z C .1212z z z z ⋅=⋅D .若11z =,则12i z +的最大值为310.如图,点,,A B C 是函数()()sin (0)f x x ωϕω=+>的图象与直线32y =相邻的三个交点,且ππ,0312BC AB f ⎛⎫-=-= ⎪⎝⎭,则()A .4ω=B .9π182f ⎛⎫=⎪⎝⎭C .函数()f x 在ππ,32⎛⎫⎪⎝⎭上单调递减D .若将函数()f x 的图象沿x 轴平移θ个单位,得到一个偶函数的图像,则θ的最小值为π2411.已知椭圆22143x y +=的左右焦点分别为12,F F ,过1F 的直线l 交椭圆于,P Q 两点,则()A .2PF Q △的周长为4B .1PF 的取值范围是[]1,3C .PQ 的最小值是3D .若点,M N 在椭圆上,且线段MN 中点为()1,1,则直线MN 的斜率为34-第二部分(非选择题共92分)三、填空题:本题共3小题,每小题5分,共15分.12.写出一个同时具有下列性质①②③的函数()f x :,①()()()1212f x x f x f x =;②当()0,x ∈+∞时,()f x 为增函数;③()f x 为R 上偶函数.13.甲、乙两选手进行围棋比赛,如果每局比赛甲获胜的概率为23,乙获胜的概率为13,采用三局两胜制,则在甲最终获胜的情况下,比赛进行了两局的概率为.14.若关于x 的方程()2e e x xx a x +=存在三个不等的实数根,则实数a 的取值范围是.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步棸.15.已知函数()e xf x =.(1)求曲线()y f x =在0x =处的切线l 与坐标轴围成的三角形的周长;(2)若函数()f x 的图象上任意一点P 关于直线1x =的对称点Q 都在函数()g x 的图象上,且存在[)0,1x ∈,使()()2e f x x m g x -≥+成立,求实数m 的取值范围.16.为促进全民阅读,建设书香校园,某校在寒假面向全体学生发出“读书好、读好书、好读书”的号召,并开展阅读活动.开学后,学校统计了高一年级共1000名学生的假期日均阅读时间(单位:分钟),得到了如下所示的频率分布直方图,若前两个小矩形的高度分别为0.0075,0.0125,后三个小矩形的高度比为3:2:1.(1)根据频率分布直方图,估计高一年级1000名学生假期日均阅读时间的平均值(同一组中的数据用该组区间的中点值为代表);(2)开学后,学校从高一日均阅读时间不低于60分钟的学生中,按照分层抽样的方式,抽取6名学生作为代表分两周进行国旗下演讲,假设第一周演讲的3名学生日均阅读时间处于[80,100)的人数记为ξ,求随机变量ξ的分布列与数学期望.17.如图,在三棱柱111ABC A B C -中,1AA 与1BB 12AB AC A B ===,1AC BC ==(1)证明:平面11A ABB ⊥平面ABC ;(2)若点N 在棱11A C 上,求直线AN 与平面11A B C 所成角的正弦值的最大值.18.已知,A B 是椭圆22:14x E y +=的左,右顶点,点()(),00M m m >与椭圆上的点的距离的最小值为1.(1)求点M 的坐标.(2)过点M 作直线l 交椭圆E 于,C D 两点(与,A B 不重合),连接AC ,BD 交于点G .(ⅰ)证明:点G 在定直线上;(ⅱ)是否存在点G 使得CG DG ⊥,若存在,求出直线l 的斜率;若不存在,请说明理由.19.已知数列{}n a 的前n 项和为n S ,满足23n n S a +=;数列{}n b 满足121n n b b n ++=+,其中11b =.(1)求数列{}{},n n a b 的通项公式;(2)对于给定的正整数()1,2,,i i n = ,在i a 和1i a +之间插入i 个数12,,,i i ii c c c ,使1,i i a c ,21,,,i ii i c c a + 成等差数列.(i )求11212212n n n nn T c c c c c c =+++++++ ;(ii )是否存在正整数m ,使得21123123m m m m b a m b T +-++---恰好是数列{}n a 或{}n b 中的项?若存在,求出所有满足条件的m 的值;若不存在,说明理由.1.D【分析】利用交集的定义即可求解.【详解】依题意,}{}{{}3,Z 060,3,6A B x x n n x x ⋂==∈⋂≤≤=.故选:D.2.D【分析】根据已知条件利用诱导公式确定πsin cos 2αα⎛⎫+= ⎪⎝⎭,再根据角α所属象限确定cos α=-,即可求解.【详解】由诱导公式有:πsin cos 2αα⎛⎫+= ⎪⎝⎭,因为角α的终边位于第二象限,则cos 2α=-,所以πsin cos 22αα⎛⎫+== ⎪⎝⎭.故选:D.3.D【分析】借助渐近线的定义计算即可得.【详解】由题意可得21m =,又0m >,故2m =.故选:D.4.A【分析】根据向量的线性运算即可.【详解】在ABC 中,BC AC AB =-,又点D 在边BC 上,且5BD DC =,则()55156666AD AB BD AB BC AB AC AB AB AC =+=+=+-=+ ,故选:A.5.A【分析】利用导数判断函数的单调性即可得到函数的大致图象.【详解】易知R x ∈,因为()()12ex x x f x --'=,令()0f x '=,得0x =,或2x =,则()(),02,x ∞∞∈-⋃+时,()0f x '<,()0,2x ∈时,()0f x '>,所以()f x 在(),0∞-和(2,)+∞上单调递减,在()0,2上单调递增,所以选项A 符合题意,故选:A.6.B【分析】根据给定条件,构造以线段OP 为体对角线的长方体,再求出OP 的最大值.【详解】令直线123,,l l l 两两确定的平面分别为,,αβγ,显然,,αβγ两两垂直,把三个圆柱围成的几何体等分为8个部分,由对称性知,考查其中一个部分,当线段OP 在平面α或β或γ内时,1OP =,当线段OP 不在,,αβγ的任意一个内时,线段OP 可视为一长方体的体对角线,要OP 最长,当且仅当此长方体为正方体,其中一个表面正方形在α内,对角线长为1,边长即正方体的棱长为22,体对角线长为22所以OP 长度最大值为2.故选:B 7.B【分析】先根据古典概型得出一轮游戏中,甲得3分、1分、0分的概率.进而求出三轮比赛,在甲至少有一轮比赛得3分的概率,以及事件三轮比赛中,事件甲乙均有得3分的概率.即可根据条件概率公式,计算得出答案.【详解】用(),a b 分别表示甲、乙两人投掷一枚骰子的结果,因为甲、乙两人每次投掷均有6种结果,则在一轮游戏中,共包含6636⨯=个等可能的基本事件.其中,甲得3分,即a b >包含的基本事件有()()()()()()()()()()()()()()()2,1,3,1,3,2,4,1,4,2,4,3,5,1,5,2,5,3,5,4,6,1,6,2,6,3,6,4,6,5,共15个,概率为1553612p ==.同理可得,甲每轮得0分的概率也是512,得1分的概率为16.所以每一轮甲得分低于3分的概率为57111212p -=-=.设事件A 表示甲至少有一轮比赛得3分,事件B 表示乙至少有一轮比赛得3分,则事件A 表示经过三轮比赛,甲没有比赛得分为3分.则()333377C 1212P A ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,()()37138511121728P A P A ⎛⎫=-=-= ⎪⎝⎭.事件AB 可分三类情形:①甲有两轮得3分,一轮得0分,概率为221355125C 1212576P ⎛⎫⎛⎫=⨯⨯=⎪ ⎪⎝⎭⎝⎭;②甲有一轮得3分,两轮得0分,概率为212355125C 1212576P ⎛⎫⎛⎫=⨯⨯= ⎪ ⎪⎝⎭⎝⎭;③甲有一轮得3分,一轮得0分,一轮得1分,概率为33355125A 12126144P ⨯⨯⨯==.所以()12312512525175576576144288P AB P P P =++=++=175288=,所以()()()175210288|13852771728P AB P B A P A ===.故选:B .8.A【分析】先对1n a)22n ≥+≥()*21N n n ≥-∈,进而()()()()211111223212232121n a n n n n n n ⎛⎫≤<=-≥ ⎪----⎝⎭-,应用裂项相消法即可求解.【详解】因为11a =,则211402na a =+>,即20a >,结合()1142,N 2n n nn n a a *-=+≥∈,可得0n a >,则()221112422222n n n n n n a a a --⎛⎫⎛⎫-==+≥+≥ ⎝⎝,)22n≥+≥()22n≥,22,…()22n≥,()21n≥-()()21212n n n+-=-≥,当1n=1=()*21Nn n≥-∈,所以()()()()211111223212232121na nn n n nn⎛⎫≤<=-≥⎪----⎝⎭-,所以()1111111113131112335232122122212 nS an n n n⎛⎫⎛⎫<+-+-+⋅⋅⋅+-=+-=-<⎪ ⎪----⎝⎭⎝⎭,故202432S<,因为0na>,所以202412202411S a a a a=++⋅⋅⋅+>=,所以2024312S<<.故选:A.【点睛】数列与不等式结合,关键是看能不能求和,不能的要对通项公式进行放缩后进行. 9.BCD【分析】利用特殊值判断A选项;由复数的运算判断BCD.【详解】若复数122i,1iz z=+=+,满足12z z->,但这两个虚数不能比大小,A选项错误;若2212z z=,则2212z z-=,即()()1212z z z z+-=,得12z z=或12z z=-,所以12=z z,B选项正确;设()11111i R,z a b a b=+∈,()22222i R,z a b a b=+∈,则()()()()12112212121221i i iz z a b a b a a b b a b a b⋅=++=-++,12||z z⋅==12||||z z==,所以1212z z z z⋅=⋅,C选项正确;若11z=,得22111a b+=,有111a-≤≤,111b-≤≤,则12i3z+===≤,1b=时取等号,则12i z +的最大值为3,D 选项正确.故选:BCD.10.ACD【分析】令()f x =,,A B C x x x 根据π3BC AB -=求得4ω=,根据π012f ⎛⎫-= ⎪⎝⎭求得()f x 的解析式,再逐项验证BCD 选项.【详解】令()()sin 2f x x ωϕ=+得,π2π3x k ωϕ+=+或2π2π3x k ωϕ+=+,Z k ∈,由图可知:π2π3A x k ωϕ+=+,π2π+2π3C x k ωϕ+=+,2π2π3B x k ωϕ+=+,所以1π2π3C B BC x x ω⎛⎫=-=-+ ⎪⎝⎭,1π3B A AB x x ω=-=⋅,所以π12π2π33BC AB ω⎛⎫=-=-+ ⎪⎝⎭,所以4ω=,故A 选项正确,所以()()sin 4f x x ϕ=+,由π012f ⎛⎫-= ⎪⎝⎭且π12x =-处在减区间,得πsin 03ϕ⎛⎫-+= ⎪⎝⎭,所以ππ2π3k ϕ-+=+,Z k ∈,所以4π2π3k =+ϕ,Z k ∈,所以()4π4ππsin 42πsin 4sin 4333f x x k x x ⎛⎫⎛⎫⎛⎫=++=+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,9π9ππ1sin 8232f ⎛⎫⎛⎫=-+=- ⎪ ⎪⎝⎭⎝⎭,故B 错误.当ππ,32x ⎛⎫∈ ⎪⎝⎭时,π5ππ42π333x ⎛⎫+∈+ ⎪⎝⎭,因为sin y t =-在5ππ,2π33t ⎛⎫∈+ ⎝⎭为减函数,故()f x 在ππ,32⎛⎫⎪⎝⎭上单调递减,故C 正确;将函数()f x 的图象沿x 轴平移θ个单位得()πsin 443g x x θ⎛⎫=-++ ⎪⎝⎭,(0θ<时向右平移,0θ>时向左平移),()g x 为偶函数得ππ4π32k θ+=+,Z k ∈,所以ππ244k θ=+,Z k ∈,则θ的最小值为π24,故D 正确.故选:ACD.11.BCD【分析】利用椭圆的定义可判定A ,利用焦半径公式可判定B ,利用椭圆弦长公式可判定C ,利用点差法可判定D.【详解】由题意可知椭圆的长轴长24a =,左焦点()11,0F -,由椭圆的定义可知222221148PF Q C PF QF PQ PF QF PF QF a =++=+++== ,故A 错误;设()()1122,,,P x y Q x y ,11142PF x ===+,易知[][]112,242,6x x ∈-⇒+∈,故B 正确;若PQ 的斜率存在,不妨设其方程为:y kx k =+,联立椭圆方程()2222221438412043x y k x k x k y kx k ⎧+=⎪⇒+++-=⎨⎪=+⎩,则2122212284341243k x x k k x x k ⎧+=-⎪⎪+⎨-⎪=⎪+⎩,所以223334343PQ k k ===+>++,若PQ 的斜率不存在,则其方程为=1x -,与椭圆联立易得3PQ =,显然当PQ 的斜率不存在时,min 3PQ =,故C 正确;设()()3344,,,M x y N x y ,易知()()()()2233343443342244143043143x y x x x x y y y y x y ⎧+=⎪+-+-⎪⇒+=⎨⎪+=⎪⎩34343434343434PQ y y y y y y k x x x x x x +-+⇒⋅=-=⋅+-+,若MN 中点为()1,1,则3443324PQ x x y y k +=+=⇒=-,故D 正确.故选:BCD12.()2f x x =(答案不唯一)【分析】利用基本初等函数的性质,逐一分析各性质即可得解.【详解】由性质①可联想到幂函数,由性质②可知该幂函数的指数大于0,由性质③可考虑将该幂数函数的自变量加上绝对值,或指数为偶数,或指数为分式形式且分子为偶数,综上,可考虑()()0af x x a =>或()af x x =(a 为正偶数)或()nm f x x =(n 为偶数,0nm>),不妨取2a =,得()2f x x =.故答案为:()2f x x =(答案不唯一).13.35##0.6【分析】根据题意,设甲获胜为事件A ,比赛进行两局为事件B ,根据条件概率公式分别求解()P A 、()P AB 的值,进而计算可得答案.【详解】根据题意,设甲获胜为事件A ,比赛进行两局为事件B ,()P A 122221220C 3333327=⨯+⨯⨯⨯=,22224()C 339P AB =⨯⨯=,故4()1239(|)20()20527P AB P B A P A ====.故答案为:35.14.1e ,e ∞⎛⎫-+ ⎪⎝⎭【分析】0x =不是方程的根,当0x ≠时,变形为e e x x x a x =-,构造()e ex x xf x x =-,0x ≠,求导得到函数单调性,进而画出函数图象,数形结合得到答案.【详解】当0x =时,()e 0xx a x +=,2e 1x =,两者不等,故0不是方程的根,当0x ≠时,e ex x xa x =-,令()e ,0xg x x x =≠,则()()2e 1x x g x x ='-,当0x <,01x <<时,()0g x '<,()g x 单调递减,当1x >时,()0g x '>,()g x 单调递增,且当0x <时,()0g x <,当0x >时,()0g x >,画出()e ,0xg x x x=≠的图象如下:令()e xxh x =,0x ≠,则()1e xxh x ='-,当0x <,01x <<时,()0h x '>,()h x 单调递增,当1x >时,()0h x '<,()h x 单调递减,且当0x <时,()0h x <,当0x >时,()0h x >,画出()e xxh x =,0x ≠的函数图象,如下:令()e e x x x f x x =-,0x ≠,则()()()22e 11e 11e e x x x x x x f x x x x -⎛⎫-=-=-+ ⎝'⎪⎭,由于2e 10ex x x +>在()(),00,∞∞-⋃+上恒成立,故当0x <,01x <<时,()0f x '<,()e e x xxf x x =-单调递减,当1x >时,()0f x '>,()e ex x xf x x =-单调递增,其中()11e ef =-,从()(),g x h x 的函数图象,可以看出当x →-∞时,()f x ∞→+,当0x <且0x →时,()f x ∞→-,画出函数图象如下,要想e ex x xa x =-有三个不同的根,则1e ,e a ∞⎛⎫∈-+ ⎪⎝⎭.故答案为:1e ,e ∞⎛⎫-+ ⎪⎝⎭【点睛】方法点睛:对于求不等式成立时的参数范围问题或函数零点,一般有三个方法,一是分离参数法,使不等式一端是含有参数的式子,另一端是一个区间上具体的函数,通过对具体函数的研究确定含参式子满足的条件.二是讨论分析法,根据参数取值情况分类讨论,三是数形结合法,将不等式转化为两个函数,通过两个函数图像确定条件.15.(1)2(2)(,∞--【分析】(1)根据导数的几何意义求切线方程,进而求得l 与x 轴的交点与y 轴的交点,计算可得结果;(2)根据对称性求函数()g x 的解析式,将问题转化为存在[)0,1x ∈,使2e e 2e x x x m ---≥成立,构造函数()2e e 2e x xF x x -=--,转化为函数的最值问题并求解.【详解】(1)由()e x f x =,得()()01,e xf f x '==,所以切线l 的斜率(0)1k f '==.所以切线l 的方程为1y x -=,即1y x =+.令0x =,得1y =,令0y =,得=1x -,所以切线l 与x 轴交于点(1,0)-,与y 轴交于点(0,1),所以切线l 与坐标轴围成的三角形的周长为112+=.(2)设(,)Q x y ,则(2,)P x y -,由题意知(2,)P x y -在()f x 的图象上,所以2e x y -=,所以()2e xg x -=.由()()2e f x x m g x -≥+,得()()2e f x g x x m --≥,即2e e 2e x x x m ---≥,因为存在[)0,1x ∈,使()()2e f x x m g x -≥+成立,所以存在[)0,1x ∈,使2e e 2e x x x m ---≥成立,设()2e e 2e x x F x x -=--,则()2e e 2e x xF x -='+-,又()2e 0F x ≥'=,当且仅当1x =时等号成立,所以()F x 单调递增,所以当[)0,1x ∈时,()(1)2e F x F <=-,可得2e m <-,即实数m 的取值范围是(,2e).∞--16.(1)67(分钟)(2)分布列见解析;期望为1【分析】(1)根据平均数等于每个小矩形的面积乘以小矩形底边中点的横坐标之和求解;(2)依题意求出随机变量ξ的分布列,并利用数学期望公式求解.【详解】(1)由题知:各组频率分别为:0.15,0.25,0.3,0.2,0.1,日均阅读时间的平均数为:300.15500.25700.3900.21100.167⨯+⨯+⨯+⨯+⨯=(分钟)(2)由题意,在[60,80),[80,100),[100,120]三组分别抽取3,2,1人ξ的可能取值为:0,1,2则304236C C 1(0)C 5P ξ===2142363(1)5C C P C ξ===1242361(2)5C C P C ξ===所以ξ的分布列为:ξ012P153515()1310121555E ξ=⨯+⨯+⨯=17.(1)证明见解析(2)427【分析】(1)利用等腰三角形的性质作线线垂直,结合线段长度及勾股定理判定线线垂直,根据线面垂直的判定与性质证明即可;(2)建立合适的空间直角坐标系,利用空间向量计算线面角结合基本不等式求最值即可.【详解】(1)取棱1A A 中点D ,连接BD ,因为1AB A B =,所以1BD AA ⊥因为三棱柱111ABCA B C -,所以11//AA BB ,所以1BD BB ⊥,所以BD =因为2AB =,所以1AD =,12AA =;因为2AC =,1A C =22211AC AA A C +=,所以1AC AA ⊥,同理AC AB ⊥,因为1AA AB A = ,且1AA ,AB ⊂平面11A ABB ,所以AC ⊥平面11A ABB ,因为AC ⊂平面ABC ,所以平面11A ABB ⊥平面ABC ;(2)取AB 中点O ,连接1AO ,取BC 中点P ,连接OP ,则//OP AC ,由(1)知AC ⊥平面11A ABB ,所以OP ⊥平面11A ABB 因为1AO 平面11A ABB ,AB ⊂平面11A ABB ,所以1OP A O ⊥,OP AB ⊥,因为11AB A A A B ==,则1A O AB⊥以O 为坐标原点,OP ,OB ,1OA 所在的直线为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系O xyz -,则(0,1,0)A -,1A,1(0,B ,(2,1,0)C -,可设点(N a =,()02a ≤≤,()110,2,0A B =,(12,1,A C =-,(AN a =,设面11A B C 的法向量为(,,)n x y z =,得1110202n A B yn A C x y ⎧⋅==⎪⎨⋅==-⎪⎩ ,取x =0y =,2z =,所以n =设直线AN 与平面11A B C 所成角为θ,则sin cos ,n AN n AN n AN θ⋅=<>=⋅=若0a =,则21sin 7θ=,若0a≠,则42sin 7θ==,当且仅当4a a=,即2a =时,等号成立,所以直线AN 与平面11A B C427.18.(1)()3,0;(2)(ⅰ)证明见解析;(ⅱ)存在,【分析】(1)设()00,P x y ,利用两点间距离公式得PM =然后根据330,22m m ≤分类讨论求解即可;(2)(ⅰ)设直线()()1122:3,,,,l x ty C x y D x y =+,与椭圆方程联立方程,结合韦达定理得121265y y ty y +=-,写出直线AC ,BD 的方程,进而求解即可;(ⅱ)由题意点G 在以AB为直径的圆上,代入圆的方程求得4,33G ⎛± ⎝⎭,写出直线AC 的方程,与椭圆联立,求得点C 的坐标,进而可得答案.【详解】(1)设()00,P x y 是椭圆上一点,则220044x y +=,因为()022PM x =-≤≤,①若min 30,12m PM <≤=,解得0m =(舍去),②若min3,12m PM >=,解得1m =(舍去)或3m =,所以M 点的坐标位()3,0.(2)(ⅰ)设直线()()1122:3,,,,l x ty C x y D x y =+,由22314x ty x y =+⎧⎪⎨+=⎪⎩,得()224650t y ty +++=,所以12122265,44t y y y y t t +=-=++,所以121265y y ty y +=-,①由216800t ∆=->,得t >t <,易知直线AC 的方程为()1122y y x x =++,②直线BD 的方程为()2222y y x x =--,③联立②③,消去y ,得()()()()121212221211212552221x y ty y ty y y x x x y ty y ty y y ++++===--++,④联立①④,消去12ty y ,则()()12212155265526y y y x x y y y -+++==---++,解得43x =,即点G 在直线43x =上;(ⅱ)由图可知,CG DG ⊥,即AG BG ⊥,所以点G 在以AB 为直径的圆上,设4,3G n ⎛⎫ ⎪⎝⎭,则22443n ⎛⎫+= ⎪⎝⎭,所以3n =±,即4,3G ⎛ ⎝⎭.故直线AC的方程为)2y x =+,直线AC 的方程与椭圆方程联立,得291640x x +-=,因为2A x =-,所以412929C x ⎛⎫=-⋅-= ⎪⎝⎭,所以C y =故l MC k k ==19.(1)()1*1,3n n n a b n n -⎛⎫==∈ ⎪⎝⎭N (2)(i )323223n nn T +=-⨯;(ii )存在,1m =【分析】(1)根据,n n S a 的关系式可得{}n a 是首项为1,公比为13的等比数列,再根据121n n b b n ++=+可分别对{}n b 的奇数项和偶数项分别求通项公式可得()1*1,3n n n a b n n -⎛⎫==∈ ⎪⎝⎭N ;(2)(i )利用定义可求得新插入的数列公差()231n nd n =-+,求得23nk n nc =并利用错位相减法即可求出323223n nn T +=-⨯;(ii )求得1211132313123m m m m m m b a m m m b T ++-+-+=+-+---,易知对于任意正整数m 均有1131313m m m m +-+<≤-+,而1113n n a -⎛⎫=≤ ⎪⎝⎭,所以不是数列{}n a 中的项;又()*n b n n =∈N ,分别对其取值为1132,313m mm m +-+=-+时解方程可求得1m =.【详解】(1)由23n n S a +=①,当2n ≥时,1123n n S a --+=②,①-②得()11120.23n n n n n a a a a a n --+-=∴=≥,当1n =时,11123,1a a a +=∴=,{}n a ∴是首项为1,公比为13的等比数列,故()1*13n n a n -⎛⎫=∈ ⎪⎝⎭N ,由121n n b b n ++=+③.由11b =得22b =,又1223n n b b n +++=+④.④-③得22n n b b +-=,{}n b 的所有奇数项构成首项为1,公差为2的等差数列:所有偶数项构成首项为2,公差为2的等差数列.得()()()*212n 11221,2122,n n b n n b n n b n n -=+-⨯=-=+-⨯=∴=∈N .综上可得()1*1,3n n n a b n n -⎛⎫==∈ ⎪⎝⎭N ;(2)(i )在n a 和1n a +之间新插入n 个数12,,,n n nn c c c ,使121,,,,,n n n nn n a c c c a + 成等差数列,设公差为n d ,则()()111123321131nn n n n n a a d n n n -+⎛⎫⎛⎫- ⎪ ⎪-⎝⎭⎝⎭===-+-++,则111122(1)2,33(1)33(1)23n nnk n n nk n n n n k k n n n n c a kd c n n --=+⎛⎫=+=-∴=-⋅= ⎪++⎝⎭∑.112122122122333n n n nn nn T c c c c c c ⎛⎫=+++++++=+++ ⎪⎝⎭⑤则23111223333n n n T +⎛⎫=+++ ⎪⎝⎭ ⑥⑤-⑥得:21111112111233332211333333313n n n n n n n n n T +++⎛⎫-⨯ ⎪+⎛⎫=+++=-=-⎪ ⎪⎝⎭ ⎪-⎝⎭,所以可得323223n nn T +=-⨯(ii )由(1)()1*1,3n n n a b n n -⎛⎫==∈ ⎪⎝⎭N ,又323223n nn T +=-⨯,由已知1211132313123m m m m m m b a m m m b T ++-+-+=+-+---,假设11313m mm m +-+-+是数列{}n a 或{}n b 中的一项,不妨设()()()()1*130,,113313m m mm k k m k m k m +-+=>∈∴--=-⋅-+N ,因为()*10,30mm m -≥>∈N ,所以13k <≤,而1113n n a -⎛⎫=≤ ⎪⎝⎭,所以11313m mm m +-+-+不可能是数列{}n a 中的项.假设11313m mm m +-+-+是{}n b 中的项,则*k ∈N .当2k =时,有13m m -=,即113m m -=,令()()()111123,13333m m m m m m m m f m f m f m ++---+=+-=-=,当1m =时,()()12f f <;当2m ≥时,(1)()0,(1)(2)(3)(4)f m f m f f f f +-<<>>> ,由()()110,29f f ==知1113m m +-=无解.当3k =时,有10m -=,即1m =.所以存在1m =使得113313mm m m +-+=-+是数列{}n b 中的第3项;又对于任意正整数m 均有1131313m m m m +-+<≤-+,所以4k ≥时,方程11313m mm k m +-+=-+均无解;综上可知,存在正整数1m =使得21123123m m m m b a m b T +-++---是数列{}n b 中的第3项.【点睛】关键点点睛:求解是否存在正整数m ,使得21123123m m m m b a m b T +-++---恰好是数列{}n a 或{}n b 中的项时,关键是限定出1131313m mm m +-+<≤-+,再对数列{}n a 的取值范围进行限定可得不是数列{}n a 中的项,再由{}n b 只能取得正整数可知只需讨论113213mm m m +-+=-+或3有无解即可求得结论.。

高考数学解答题(新高考)数列求和(裂项相消法)(典型例题+题型归类练)(原卷版)

高考数学解答题(新高考)数列求和(裂项相消法)(典型例题+题型归类练)(原卷版)

专题06 数列求和(裂项相消法)(典型例题+题型归类练)一、必备秘籍常见的裂项技巧 类型一:等差型类型二:无理型类型三:指数型①11(1)11()()n n n n n a a a k a k a k a k++-=-++++如:11211(2)(2)22n n n n n k k k k++=-++++类型四:通项裂项为“+”型如:①()()()21111111nn n n n n n +⎛⎫-⋅=-+ ⎪++⎝⎭ ②()()131222(1)(11)1n nn n nn n n n n +⎛⎫++⋅-=+- ⎝+⎪⎭本类模型典型标志在通项中含有(1)n -乘以一个分式.二、典型例题类型一:等差型例题1.(2022·辽宁·鞍山一中模拟预测)已知n S 是等差数列{}n a 的前n 项和,0n a >,315S =,公差1d >,且___________.从①21a -为11a -与31a +等比中项,②等比数列{}n b 的公比为3q =,1124,b a b a ==这两个条件中,选择一个补充在上面问题的横线上,使得符合条件的数列{}n a 存在并作答. (1)求数列{}n a 的通项公式;(2)设数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求证:16nT <.第(2)问解题思路点拨:由(1)知:,设,则,典型的裂项相消的特征,可将通项裂项为:解答过程:由题意知:;例题2.(2022·广东佛山·模拟预测)已知数列{}n a 的前n 项和为n S ,111a =-,29a =-,且()11222n n n S S S n +-+=+≥. (1)求数列{}n a 的通项公式; (2)已知11n n n b a a +=,求数列{}n b 的前n 项和n T .感悟升华(核心秘籍)本例是裂项相消法的等差型,注意裂项,是裂通项,裂项的过程中注意前面的系数不要忽略了.第(2)问解题思路点拨:由(1)知:,,则,典型的裂项相消的特征,可将通项裂项为:解答过程:由题意知:;类型二:无理型例题3.(2022·重庆八中模拟预测)已知各项均为正数的等差数列{}n a 满足11a =,22112()n n n n a a a a ++=++.(1)求{}n a 的通项公式; (2)记11n n n b a a +=+,求数列{}n b 的前n 项和n S .第(2)问解题思路点拨:由(1)知:,,则,典型的裂项相消的无理型特征,可将通项分母有理化为:解答过程:由题意知:;例题4.(2022·福建龙岩·模拟预测)已知等差数列{}n a 的前n 项和为n S ,3518a a +=,648S =. (1)求{}n a 的通项公式; (2)设112n n n b a a +-=+,求数列{}n b 的前n 项和为n T .感悟升华(核心秘籍)本例是裂项相消法的无理型,具有明显的特征,其技巧在于分母有理化,注意裂项相消的过程中,是连续相消,还是隔项相消,计算注意细节.第(2)问解题思路点拨:由(1)知:,,则,典型的裂项相消的无理型特征,可将通项分母有理化为:解答过程:由题意知:;类型三:指数型例题5.(2022·全国·模拟预测)已知等差数列{}n a 满足()*10n n a a n +->∈N ,且141015a a a ++=,2a ,4a ,8a 成等比数列.(1)求数列{}n a 的通项公式;(2)若122n a n n n n a b a a ++⋅=⋅,求数列{}n b 的前n 项和n S .感悟升华(核心秘籍)第(2)问解题思路点拨:由(1)知:,,则,具有明显的裂项相消法的特征,但是裂项是难点,在裂项时要把握住“型”,再结合待定系数法解答过程:用待定系数法裂通项:与对比,得通分,逆向求裂项求和.例题6.(2022·江西·临川一中模拟预测(理))已知数列{}n a 的前n 项和为n S ,且21,*=-∈n n S a n N .(1)求数列{}n a 的通项公式; (2)若数列{}n b 满足22,(1)*++=∈⋅⋅+n n n b n N a n n ,求数列{}n b 的前n 项和n T .类型四:通项裂项为“+”型第(2)问解题思路点拨:由(1)知:,,则,具有明显的裂项相消法的特征,但是裂项是难点,在裂项时要把握住“型”,再结合待定系数法解答过程:用待定系数法裂通项:与对比,得通分,逆向求裂项求和例题7.(2022·吉林辽源·高二期末)已知等差数列{}n a 的前n 项和21,3n S n an b a =++=,数列{}n b 的前n 项和23n n n T b +=,12b =. (1)求数列{}n a 和{}n b 的通项公式; (2)令(1)nnn na cb =-,求数列{}nc 的前n 项和n P .【答案】(1)21n a n =+,()1n b n n =+ (2)2,?1,?1n n n n P n n n +⎧-⎪⎪+=⎨⎪-⎪+⎩为奇数为偶数感悟升华(核心秘籍)第(2)问解题思路点拨:由(1)知:,,则,注意通项中含有明显的裂项的两个特征,①含有分式②含有(注意通项中含有是裂项为“”型的重要标志),但是裂项是难点,在裂项时要把握住“型”,再结合待定系数法解答过程:用待定系数法裂通项:与对比,得则:,注意到通项中含有,需分奇偶讨论通分,逆向求当为偶数(为正),(注意此时为偶数,代入偶数的结论中)当为奇数(为偶数)综上:例题8.(2022·陕西·长安一中高二期中(文))已知等差数列{}n a 的公差为2,前n 项和为n S ,且124,,S S S成等比数列.(1)求数列{}n a 的通项公式; (2)令()1141n n n n nb a a -+=-,求数列{}n b 的前n 项和n T .三、题型归类练第(2)问解题思路点拨:由(1)知:,,则,注意通项中含有明显的裂项的两个特征,①含有分式②含有(注意通项中含有是裂项为“”型的重要标志),但是裂项是难点,在裂项时要把握住“型”,再结合待定系数法解答过程:用待定系数法裂通项:与对比,得,通分,逆向求当为奇数(为正),(注意此时为奇数,代入奇数的结论中)当为偶数(为奇数)综上:1.(2022·内蒙古·满洲里市教研培训中心模拟预测(理))已知在等差数列{}n a 中,25a =,1033a a =. (1)求数列{}n a 的通项公式; (2)设()21n n b n a =+,求数列{}n b 的前n 项和n S .2.(2022·山西运城·模拟预测(理))已知单调递增的等差数列{}n a 的前n 项和为n S ,512340,,1,S a a a =-成等比数列,正项等比数列{}n b 满足11631,23b a S b =+=+. (1)求{}n a 与{}n b 的通项公式; (2)设()3123log n n n c a b =+,求数列{}n c 的前n 项和n T .3.(2022·河南·模拟预测(理))已知正项数列{}n a 的前n 项和为n S ,且()()222220n n S n n S n n -+--+=.(1)求1a 的值和数列{}n a 的通项公式; (2)设21n n n b a a +=,求数列{}n b 的前n 项和n T .4.(2022·河北保定·一模)已知数列{}n a 的前n 项和为n S ,且1332n n S +-=.(1)求数列{}n a 的通项公式; (2)设3314log log n n n b a a +=⋅,求{}n b 的前n 项和n T .5.(2022·安徽·北大培文蚌埠实验学校高三开学考试(文))已知数列{}n a 的前n 项和为n S ,11a =,525S =,且()*1232n n n n S a S S n ++-=+∈N .(1)求数列{}n a 的通项公式; (2)设n b =,求数列{}n b 的前n 项和n T .6.(2022·江苏盐城·三模)已知正项等比数列{}n a 满足1330a a +=,请在①4120S =,②481a =,③2211120n n n n a a a a --+-=,2n ≥,*n N ∈中选择一个填在横线上并完成下面问题:(1)求{}n a 的通项公式;(2)设()()12311n n n n b a a +⋅=++,{}n b 的前n 和为n S ,求证:14n S <.7.(2022·浙江金华·模拟预测)已知数列{}{},n n a b ,其中{}n a 为等差数列,且满足11211,,32a b b ===,21141,2n n n n nn a b a b n N *++-=+∈. (1)求数列{}{},n n a b 的通项公式; (2)设212n n nn n a c a a ++=,数列{}n c 的前n 项和为n T ,求证:1n T <8.(2022·湖北·二模)已知正项等差数列{}n a 满足:()33n n a a n *=∈N ,且1382,1,a a a +成等比数列.(1)求{}n a 的通项公式;(2)设()()1121212n n n a n a a c ++=++,n R 是数列{}n c 的前n 项和,若对任意n *∈N 均有n R λ<恒成立,求λ的最小值.9.(2022·江西·临川一中高二期末(理))已知数列{}n a ,0n a >,11a =,n S 为其前n 项和,且满足()()()1112n n n n S S S S n --+-=≥.(1)求数列{}n a 的通项公式; (2)设()11nnn a b =-⋅,求数列{}n b 的前n 项和n T .10.(2022·重庆八中模拟预测)已知n S 是公差不为零的等差数列{}n a 的前n 项和,36S =,2319a a a =⋅.(2)设数列()()24141nn n a b n n +=-∈-N ,数列化{}n b 的前2n 项和为2n T ,若2112022n T +<,求正整数n 的最小值.11.(2022·天津市武清区杨村第一中学二模)已知{}n a 是等差数列,{}n b 是等比数列,且114342131,2,2,a b a b b b a a ====+.(1)求数列{}{},n n a b 的通项公式;(2)记{}n b 的前n 项和为n S ,证明:()n n n S a b n *≤⋅∈N ;(3)记()311(1)*++⋅=-∈⋅n n n nnn a b c n a a N ,求数列{}n c 的前2n 项和.12.(2022·黑龙江实验中学模拟预测(理))已知数列{}n a 满足11a =,11n n n n a a a a --=-,且0n a ≠. (1)求数列{}n a 的通项公式; (2)若()()11121n n n n b n a a ++=-+,数列{}n b 前n 项和为nT,求2022T .13.(2022·湖北·蕲春县第一高级中学模拟预测)已知数列{}n a 的前n 项和为n S ,其中1215a S ==,,当2n ≥时,1124n n n a S S +-,,成等差数列.(2)记数列()()2123211n n n a a ++⎧⎫⋅⎪⎪⎨⎬++⎪⎪⎩⎭的前n 项和n T ,求证:121855n T ≤<.。

专题四4.1 数列小题专项练课件

专题四4.1 数列小题专项练课件
-1
a1=-9,a2=-7,
a3=-5,a4=-3,a5=-1,a6=1,故数列{Tn}中的正项只有有限项,T2=63,
T4=63×15=945.故数列{Tn}中存在最大项,且最大项为 T4.故选 B.
9.(202X全国Ⅱ,文14)记Sn为等差数列{an}的前n项和.若a1=-2,a2+a6=2,则
第三部分
4.1 数列小题专项练




从202X年新高考全国卷和202X年山东新高考模拟卷对数
列的考查来看,数列在高考中考查的力度在增强.这是由于新高
考试题删除了选做题,使数列成为新高考六大解答题的必选内
容,高考对数列命题的“一大一小或一大”的趋势比较明显,数列
题和三角函数及解三角形题会交替处在解答题的第一题或第二
2:d= - .
(2)等差数列的前 n 项和
( 1 + )
(-1)
Sn= 2 =na1+ 2 d.
(3)等差数列的性质:若 m+n=p+q,则 am+an=ap+aq.
4.等比数列
(1)等比数列的通项an=a1qn-1,
通项的推广1:an=amqn-m,
通项的推广 2:q
n-m

D.若 a,b,c
1 1 1
成等差数列,则 , , 可能成等差数列

答案 BCD
解析 对于A,取a=1,b=2,c=3,得a2=1,b2=4,c2=9,所以a2,b2,c2不成等差数列,
故A错;
对于B,取a=b=c,可得2a=2b=2c,故B正确;
对于C,由题意a+c=2b,所以(ka+2)+(kc+2)=k(a+c)+4=2(kb+2),即

高考数学复习专题九考点23《数列的概念与简单表示法》练习题(含答案)

高考数学复习专题九考点23《数列的概念与简单表示法》练习题(含答案)

高考数学复习专题九考点23《数列的概念与简单表示法》练习题(含答案)1.已知数列{}n a 的通项公式为2n a n kn =-,且{}n a 单调递增,则实数k 的取值范围是( ) A.(,2]-∞B.(,2)-∞C.(,3]-∞D.(,3)-∞2.22,24,…,则162( ) A.第8项B.第9项C.第10项D.第11项3.已知在数列{}n a 中,11a =,123n n a a +=+,则n a 等于( ) A.123n -+B.123n ++C.123n --D.123n +-4.数列{}n a 中,12a =,m n m n a a a +=.若155121022k k k a a a ++++++=-,则k =( )A.2B.3C.4D.55.已知数列{}n a 满足32111232n n a a a a n ++++=-,则n a =( ) A.112n-B.312n - C.12nD.2nn 6.已知数列{}n a 的前n 项和为()*n S n ∈N ,且2n S n λ=+.若数列{}n a 为递增数列,则实数λ的取值范围为( ) A.(,1)-∞B.(,2)-∞C.(,3)-∞D.(,4)-∞7.《周髀算经》是中国古代重要的数学著作,其记载的“日月历法”曰:“阴阳之数,日月之法,十九岁为一章,四章为一部,部七十六岁,二十部为一遂,遂千百五二十岁,…,生数皆终,万物复苏,天以更远作纪历”,某老年公寓住有20位老人,他们的年龄(都为正整数)之和恰好为一遂,其中年长者已是奔百之龄(年龄介于90~100),其余19人的年龄依次相差一岁,则年龄最小者的年龄为( ) A.65B.66C.67D.688.已知数列{}n a 的前n 项和为112321 ,,0,3,2,1(3)22n n n n n n a aS a a a a n a a +--∈===⋅=++N .若100m a =,则m =( )A.50B.51C.100D.1019.若数列{}n a 满足12211,1,n n n a a a a a ++===+,则称数列{}n a 为斐波那契数列.1680年卡西尼发现了斐波那契数列的一个重要性质:211(1)(2)n n n na a a n -+-=-≥.在斐波那契数列{}n a 中,若k 满足22111(21)(21)999kki i i i i i a a i a ++==--≤-∑∑,给出下列结论:①k 可以是任意奇数;②k 可以是任意正偶数:③若k 是奇数,则k 的最大值是999;④若k 是偶数,则k 的最大值是500.其中正确结论的序号是( )A.①④B.②③C.①②D.③④10.已知集合{}{}1*21*3,,1333,n n A x x n B x x n --==∈==++++∈N N ∣∣.将A B ⋃的所有元素从小到大排列构成数列{}n c ,其前n 项和为n T ,则下列命题中真命题的个数为( ) ①202320222021c c c =+; ②{}2212n n c c --是等比数列;③使503n T >成立的n 的最小值为100; ④112ni ic =<∑恒成立. A.4B.3C.2D.111.在斐波那契数列{}n a 中,11a =,21a =,()122n n n a a a n --=+>.已知n S 为该数列的前n 项和,若2020S m =,则2022a =_____________.12.已知数列{}n a 中,11a =,()*12n n a a n +=∈N ,则数列{}n a 的通项公式为n a =___________.13.数列{}n a 满足2(1)31n n n a a n ++-=-,前16项和为540,则1=a ___________. 14.已知数列{}n a 满足12a =,且31122(2)234n n a a a a a n n-++++=-≥,则{}n a 的通项公式为_______________.15.已知正项数列{}n a 的前n 项和为n S ,11a =,2211n n n S a S λ++=-,其中λ为常数.(1)证明:12n n S S λ+=+.(2)是否存在实数λ,使得数列{}n a 为等比数列?若存在,求出λ;若不存在,请说明理由.参考答案1.答案:D解析:∵数列{}n a 中()2*n a n kn n =-∈N ,且{}n a 单调递增,10n n a a +∴->对于*n ∈N 恒成立,即()22(1)(1)210n k n n kn n k +-+--=+->对于*n ∈N 恒成立. 21k n ∴<+对于*n ∈N 恒成立,即3k <.故选D.2.答案:B22(2),3(2),4(2),…,由此可归纳该数列的通项公式为()*(2)n n ∈N .又9162(2),所以1629项.故选B.3.答案:D解析:由123n n a a +=+,得()1323n n a a ++=+,且134a +=,则{}3n a +是以4为首项,2为公比的等比数列,则1342n n a -+=⨯,所以123n n a +=-. 4.答案:C解析:因为数列{}n a 中,m n m n a a a +=,令1m =,则112n n n a a a a +==,所以数列{}n a 是首项为2,公比为2的等比数列,则11122k k k a a ++=⋅=.所以()()1011101111210122212212k k k k k k k a a a a +++++++-+++==-=--,则1111552222k k ++-=-,所以4k =,故选C. 5.答案:D 解析:32111232n n a a a a n ++++=-①,当2n 时,31211112312n n a a a a n --++++=--②,则①-②得,1111222n n n n a n -=-=,故(2)2n n n a n =.当1n =时,112a =,也符合2n n na =,故选D. 6.答案:B解析:当1n =时,111a S λ==+;当2n 时,221(1)21n n n a S S n n n λλ-==+---=--.则120n n a a --=>,所以当2n 时,数列{}n a 为递增数列.若数列{}n a 为递增数列,只需21a a >,即31λ>+,所以2λ<.故选B.7.答案:B解析:设年龄最小者的年龄为n ,年龄最大者的年龄为([90,100])m m ∈,所以(1)(18)1520n n n m ++++++=,所以191349n m +=,所以134919m n =-,所以90134919100n -,所以14565661919n ,因为年龄为正整数,所以66n =,故选B.8.答案:D 解析:因为3412122a a a a ⋅=++,所以45a =,同理可得564,7a a ==.令2(3)2nn n a b n a -=+,则11n n b b +=,因为31b =,所以3452 1,2n n n b b b b a a -======+,则有21202(1)2 2 , 32(1)21k k a k k a k k -=+-=-=+-=+,故(1)n n a n =+-.若(1)100m m a m =+-=,则101m =.故选D. 9.答案:B解析:由211(1)(2)n n n na a a n -+-=-≥可得212111(21)(21)1357(1)(21)kkk i i i i i i a ai a k +++==-⋅--=-+-++--∑∑.若k 为偶数,则22111(21)(21)1357(21)kki i i i i i a a i a k k ++==---=-+-+--=-∑∑,此时22111(21)(21)999kki i i i i i a a i a ++==--≤-∑∑,即999k -≤,k 无最大值,所以②正确,④错误;若k 为奇数,则22111(21)(21)1357(21)kki i i i i i a a i a k k ++==---=-+-++-=∑∑,此时22111(21)(21)999k ki i i i i i a a i a ++==--≤-∑∑,即999k ≤,此时k 的最大值为999,所以①错误,③正确.故选B. 10.答案:B解析:设1*3,n n a n -=∈N ,则数列{}n a 是首项为1、公比为3的等比数列,其前n 项和213113332n n n B --=++++=.因为111a B ==,且当2n ≥时,131332n n n --<<, 所以把A B ⋃的所有元素从小到大排列为122334455,,,,,,,,,B a B a B a B a B ,所以212131,32n n n n n n c B c a -+-====.对于①,1221213131322n n nn n n c c c +-+--+=+==,取1011n =,有202320222021c c c =+,故①正确.对于②,因为2213123212n nn n c c ---=-⨯=是常数,所以{}2212n n c c -- 是以1为首项、1为公比的等比数列,故②正确.对于③,易知49503a =,则数列{}n c 的前98项和()()98235012349T a a a B B B B =++++++++()234912350234950B B B B a a a B B B B =++++++++=++++()5123505014931073333224-=⨯+++-=<,前99项和515050509998999850310731531093424T T c T B --⨯-=+=+=+=>,故使得503n T >成立的n 的最小值为99,故③错误.对于④,因为当2n ≥时,0n n B a >>,所以11113n n n B a -<=, 所以2121122311111111111112122333333nn nn i i n n c B B B a a a -=+⎛⎫⎫⎛⎛⎫⎛⎫=+++++++<+++++++=-< ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎝⎭⎭∑,又因为21211112n n i i i i c c -==<<∑∑,所以112ni ic =<∑恒成立,故④正确.11.答案:1m +解析:由已知,得123a a a +=,234a a a +=,…,202020212022a a a +=,以上各式相加,得1234202020222a a a a a a +++++=,即220202022a S a +=.又21a =,2020S m =,所以20221a m =+.12.答案:12n -解析:易知0n a ≠,由()*12n n a a n +=∈N ,可得12n na a +=, 所以当2n ≥时,12nn a a -=, 所以()113211221122222n n n n n n n a a a a a a a a a a -----=⨯⨯⨯⨯=⨯⨯⨯⨯=个, 所以()122n n a n -=≥. 因为当1n =时也满足上式,所以数列{}n a 的通项公式为()1*2n n a n -=∈N . 13.答案:7解析:令()2n k k *=∈N ,则有()22261k k a a k k *++=-∈N , 2468101214165,171,942=,a a a a a a a a ∴+=+=+=+,∴前16项的所有偶数项和 517294192S =+++=偶,∴前16项的所有奇数项和 54092448S =-=奇,令()21n k k *=-∈N ,则有()212164k k a a k k *+--=-∈N .()()()211315375k a a a a a a a a +∴-=-+-+-+ ()2121281464k k a a k +-+-=++++-=()(264)(31)2k k k k k *+-=-∈N ,()211(31)k a k k a k *+∴=-+∈N ,31517192,10,24,44a a a a a a a ∴=+=+=+=+ 1111131151,70,102,140a a a a a a a =+=+=+,∴前16项的所有奇数项和13 S a a =+++奇151182102444701021408a a a =+++++++=+392448=. 17a ∴=.14.答案:1n a n =+解析:依题意数列{}n a 满足12a =,且31122234n n a a a a a n-++++=-①. 当2n =时,1222a a =-,23a =, 3112122341n n n a a aa a a n n -++++++=-+②, ②-①得11n n n a a a n +=-+,121n n a n a ++=+ 则()112n n a n n a n-+=≥, 所以13211221132112n n n n n a a a a n n a a n a a a a n n ---+=⋅⋅⋅⋅⋅=⋅⋅⋅⋅=+-, 1a ,2a 都符合上式.所以{}n a 的通项公式为1n a n =+. 故答案为:1n a n =+. 15.答案:(1)见解析 (2)存在,1λ=.解析:(1)11n n n a S S ++=-,2211n n n S a S λ++=-,()2211n n n n S S S S λ++∴=--,()1120n n n S S S λ++∴--=.0n a >,10n S +∴>,120n n S S λ+∴--=,12n n S S λ+∴=+.(2)12n n S S λ+=+, 122n n S S n λ-∴=+≥(), 两式相减,得1(22)n n a a n +≥=. 212S S λ=+,即2112a a a λ+=+, 21a λ∴=+,由20a >,得1λ>-.若{}n a 是等比数列,则2132a a a =,即22(1)(1)λλ+=+,得1λ=. 经检验,1λ=符合题意.故存在1λ=,使得数列{}n a 为等比数列.。

2023高考数学数列练习题及答案

2023高考数学数列练习题及答案

2023高考数学数列练习题及答案数列是高中数学中常见的重要概念,也是高考数学考试中的热点内容之一。

在准备2023年高考数学考试时,通过练习数列题目可以帮助我们深入理解数列的性质和应用,提高解题能力。

下面将提供一些2023年高考数学数列练习题及答案,供同学们进行复习和练习,以期取得好成绩。

练习题1:已知数列{an}满足a₁ = 2,an+1 = 2an - 1,(n ≥ 1),求a₅。

解答:根据已知条件可以得到数列的通项公式为an = 2ⁿ⁻¹。

代入n = 5,得到a₅ = 2⁴ = 16。

练习题2:已知等差数列{an}的首项是a₁ = 3,公差是d = 4,求数列的第n项an。

解答:根据等差数列的通项公式an = a₁ + (n - 1)d可以得出:an = 3 + (n - 1) × 4化简后得到an = 4n - 1。

练习题3:已知等比数列{bn}的首项是b₁ = 5,公比是q = 2,求数列的第n项bn。

解答:根据等比数列的通项公式bn = b₁ × qⁿ⁻¹可以得出:bn = 5 × 2ⁿ⁻¹。

练习题4:已知等差数列{cn}的首项是c₁ = 2,公差是d = 3,求数列的前n项和Sn。

解答:数列的前n项和Sn可以表示为Sn = n/2 × (2a₁ + (n - 1)d)。

代入已知条件得到Sn = n/2 × (2 × 2 + (n - 1) × 3)。

化简后得到Sn = 3n² - 3n。

练习题5:已知等差数列{dn}的前n项和Sn为Sn = 4n² + n,求数列的首项d₁和公差d。

解答:根据数列的前n项和的公式可以得到Sn = n/2 × (2a₁ + (n - 1)d)。

代入已知条件得到4n² + n = n/2 × (2d + (n - 1)d)。

专题3 数列专题压轴小题(原卷版)

专题3 数列专题压轴小题(原卷版)

专题3数列专题压轴小题一、单选题 1.(2021·湖北·高三期中)2021年7月24日,中共中央办公厅、国务院办公厅印发《关于进一步减轻义务教育阶段学生作业负担和校外培训负担的意见》,这个政策就是我们所说的“双减”政策,“双减”政策极大缓解了教育的“内卷”现象,而“内卷”作为高强度的竞争使人精疲力竭.数学中的螺旋线可以形象的展示“内卷”这个词,螺旋线这个名词来源于希腊文,它的原意是“旋卷”或“缠卷”,平面螺旋便是以一个固定点开始向外逐圈旋绕而形成的曲线,如图(1)所示.如图(2)所示阴影部分也是一个美丽的螺旋线型的图案,它的画法是这样的:正方形ABCD 的边长为4,取正方形ABCD 各边的四等分点E ,F ,G ,H ,作第2个正方形EFGH ,然后再取正方形EFGH 各边的四等分点M ,N ,P ,Q ,作第3个正方形MNPQ ,依此方法一直继续下去,就可以得到阴影部分的图案.设正方形ABCD 边长为1a ,后续各正方形边长依次为2a ,3a ,…,n a ,…;如图(2)阴影部分,设直角三角形AEH 面积为1b ,后续各直角三角形面积依次为2b ,3b ,…,n b ,….下列说法错误..的是( )A .从正方形ABCD 开始,连续3个正方形的面积之和为1294B.14n n a -=⨯⎝⎭C .使得不等式12n b >成立的n 的最大值为4 D .数列{}n b 的前n 项和4n S <2.(2021·云南·峨山彝族自治县第一中学高三月考(理))已知数列{}n a 满足1221nn n a a a +=+,满足()10,1a ∈,1220212020a a a ++⋅⋅⋅+=,则下列成立的是( )A .120211ln ln 2020a a ⋅> B .120211ln ln 2020a a ⋅=C .120211ln ln 2020a a ⋅<D .以上均有可能3.(2021·浙江·高三月考)已知各项都为正数的数列{}n a 满足1(2)a a a =>,1*11()n a n n nea ka n N a +-++=-+∈,给出下列三个结论:①若1k =,则数列{}n a 仅有有限项;②若2k =,则数列{}n a 单调递增;③若2k =,则对任意的0M >,陼存在*0n N ∈,使得020n n M a >成立.则上述结论中正确的为( ) A .①② B .②③ C .①③ D .①②③4.(2021·上海市大同中学三模)已知数列{}n a 满足120a a ≠,若2121nn n na a a a +++=+,则“数列{}n a 为无穷数列”是“数列{}n a 单调”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件5.(2021·浙江·模拟预测)已知正项数列{}n a 中,11a =,21112n n n a a a ++-=,若存在实数t ,使得()221,n n t a a -∈对任意的*N n ∈恒成立,则t =( ) AB.3C.2D6.(2021·江苏·海安高级中学高三期中)已知数列{}n a 的前n 项和122n n n S a +=-,若不等式223(4)n n n a λ--<-,对n N +∀∈恒成立,则整数λ的最大值为( )A .2B .3C .4D .57.(2021·安徽合肥·一模(文))将方程2sin cos x x x =的所有正数解从小到大组成数列{}n x ,记()1cos n n n a x x +=-,则122021a a a ++⋅⋅⋅+=( )A.B.C.D.8.(2021·江苏苏州·高三期中)设数列{}()m a m *∈N ,若存在公比为q 的等比数列{}()1m b m *+∈N ,使得1k k k b a b +<<,其中1,2,,k m =,则称数列{}1m b +为数列{}m a 的“等比分割数列”,则下列说法错误的是( )A .数列{}5b ;2,4,8,16,32是数列{}4a :3,7,12,24的一个“等比分割数列”B .若数列{}n a 存在“等比分割数列”{}1n b +,则有11k k n a a a a -<<<<<和111k k n n b b b b b -+<<<<<<成立,其中2,k n k *≤≤∈NC .数列{}3a :3-,1-,2存在“等比分割数列”{}4bD .数列{}10a 的通项公式为2(1,2,,10)nn a n ==,若数列{}10a 的“等比分割数列”{}11b 的首项为1,则公比1092,2q ⎛⎫∈ ⎪⎝⎭9.(2021·新疆·莎车县第一中学高三期中)已知数列{a n }满足3a 1=1,n 2a n +1﹣a n 2=n 2a n (n ∈N *),则下列选项正确的是( ) A .{a n }是递减数列B .{a n }是递增数列,且存在n ∈N *使得a n >1C .1132n a +> D .202120214043a <10.(2021·安徽·淮南第一中学高三月考(理))已知数列{}n a 满足14a =,*1144(2,N )n n n a a n n a ---=≥∈,若124(6)na n nb na -=⋅-,且存在*N n ∈,使得2460n b m m +-≥成立,则实数m的取值范围是( )A.⎣⎦B.1⎡⎣C .10,6⎡⎤⎢⎥⎣⎦D .11,32⎡⎤-⎢⎥⎣⎦11.(2021·浙江金华·高三月考)已知数列{}n a 的各项均不为零,1a a =,它的前n 项和为n S .且n a1n a +(*N n ∈)成等比数列,记1231111n nT S S S S =+++⋅⋅⋅+,则( ) A .当1a =时,202240442023T < B .当1a =时,202240442023T > C .当3a =时,202210111012T >D .当3a =时,202210111012T <12.(2021·河北石家庄·高三月考)已知数列{}n a 满足225a =,对任意的n ∈+N 有1(1)280n n n a na +--+=,设数列{}n b 满足12n n n n b a a a ++=⋅⋅,n ∈+N ,则当{}n b 的前n 项和n T 取到最大值时n 的值为( ) A .9B .10C .11D .1213.(2021·辽宁实验中学高三期中)数列{}n a 中,11a =,*1*15,3,3n n n n a a n a +-⎧+∉⎪⎪=⎨⎪∈⎪⎩N N ,使2021n a ≤对任意的n k≤(*k ∈N )恒成立的最大k 值为( ) A .1209B .1211C .1213D .121514.(2021·黑龙江·高三期中(理))设等差数列{}n a 的前n 项和为n S ,公差为d .已知312a =,100S >,60a <,则选项不正确的是( ) A .数列n n S a ⎧⎫⎨⎬⎩⎭的最小项为第6项B .2445d -<<- C .50a > D .0n S >时,n 的最大值为515.(2021·浙江·模拟预测)已知数列{}n a 满足2*112,4,N n n a a n a a n -+==∈,给出以下结论,正确的个数是( )①1n a >;②1n n a a +>;③存在无穷多个*N k ∈,使322k k a -=;④121111na a a +++< A .4B .3C .2D .116.(2021·浙江·模拟预测)已知数列{}n a 满足111,ln 2(*)2nn n a a a a n N +==-+∈,记数列{}n a 的前n 项和为n S ,则正确的是( ) A .存在0*n N ∈,使得02n a > B .存在0*n N ∈,使得001n n a a +> C .存在0*n N ∈,使得00+1+4n n a a > D .存在0*n N ∈,使得012n S >17.(2021·浙江·模拟预测)已知数列{}n a 满足13a =,246a =,2n a +=(π≈3.14)则此数列项数最多为( ) A .2019项 B .2020项 C .2021项D .2022项18.(2021·北京房山·高三开学考试)已知集合*{|21,}A x x k k N ==- ∈,*{|27,}B x x k k N ==+ ∈,从集合A 中取出m 个不同元素,其和记为S :从集合B 中取出n 个不同元素,其和记为T . 若562S T +≤,则m n +的最大值为( ) A .17B .26C .30D .3419.(2021·浙江·乐清市知临中学高三月考)设数列{}n a 满足112a =,2*1(N )2021nn n a a a n +=+∈,记12(1)(1)(1)n n T a a a =---,则使0n T <成立的最小正整数n 是( )A .2020B .2021C .2022D .202320.(2021·甘肃·嘉峪关市第一中学模拟预测(理))若数列{}n a 满足:A ∃,B R ∈,0AB ≠,使得对于*n N ∀∈,都有21n n n a Aa Ba ++=+,则称{}n a 具有“三项相关性”下列说法正确的有( ) ①若数列{}n a 是等差数列,则{}n a 具有“三项相关性” ②若数列{}n a 是等比数列,则{}n a 具有“三项相关性” ③若数列{}n a 是周期数列,则{}n a 具有“三项相关性”④若数列{}n a 具有正项“三项相关性”,且正数A ,B 满足1A B +=,12a a B +=,数列{}n b 的通项公式为n n b B =,{}n a 与{}n b 的前n 项和分别为n S ,n T ,则对*n N ∀∈,n n S T <恒成立.A .③④B .①②④C .①②③④D .①②21.(2021·上海·格致中学高三月考)正数数列{}n a 的前n 项和为n S ,()112n n n S a n N a +⎛⎫=+∈ ⎪⎝⎭,则下列选项中正确的是( ) A.2021a ≥B.2021a ≤-C .202120221a a ⋅>D .202020211a a ⋅<22.(2021·浙江·高三月考)已知数列{}n a 满足113a =,()2*12N nn n a a a n n+=+∈,则下列选项正确的是( )A .20212020a a <B .2021202114043a << C .2021202104043a << D .20211a >二、多选题23.(2021·广东·模拟预测)已知数列{}n a 中,()111131,3n n n n n n a a a a a n a a *+++->=∈-N ,且12121110a a a a +++=,设2221222212111,n n n nS a a a T a a a =+++=+++,则下列结论正确的是( ) A .12a =B .数列{}n a 单调递增C .()2591232nn n S T n +=-- D .若()12nn S T +为偶数,则正整数n 的最小值为8 24.(2021·重庆南开中学高三月考)已知数列{}n a 满足11a =,()1n a n *+=∈⎢⎥⎢⎥⎣⎦N ,其中[]x 表示不超过实数[]x 的最大整数,则下列说法正确的是( ) A .存在n *∈N ,使得132n n a -≤B .12n a ⎧⎫-⎨⎬⎩⎭是等比数列C .2020a 的个位数是5D .2021a 的个位数是125.(2021·江苏·金陵中学高三开学考试)已知数列{}n a 满足:111 ,1n n n a a a a +=+=,设(n )l n n b a n N *=∈,数列{}n b 的前n 项和为n S ,则下列选项正确的是ln 20. 693 ,ln3(9)1.09≈≈( ) A .数列{}21n a -单调递增,数列{}2n a 单调递减 B .+1ln 3n n b b +≤C .2020693S >D .212n n b b ->26.(2021·湖北武汉·高三期中)已知数列{}n a 满足10a =,()11n nn aa a e e n ++*=+∈N ,前n 项和为n S ,则下列选项中正确的是( )(参考数据:ln 20.693≈,ln3 1.099≈) A .1ln 2n n a a ++≥B .2020666S <C .()3lnln 222n a n ≤≤≥ D .{}21n a -是单调递增数列,{}2n a 是单调递减数列27.(2021·湖北·高三月考)将数列{}21n -中的各项依次按第一个括号1个数,第二个括号2个数,第三个括号4个数,第四个括号8个数,第五个括号16个数,…,进行排列:(1),(3,5),(7,9,11,13).(15,17,19,21,23,25,27,29),…,则以下结论中正确的是( ) A .第10个括号内的第一个数为1023 B .2021在第11个括号内C .前10个括号内一共有1023个数D .第10个括号内的数字之和()19202,2S ∈28.(2021·湖北黄石·高三开学考试)在平面直角坐标系中,O 是坐标原点,,n n M N 是圆222:O x y n +=上两个不同的动点,n P 是n n M N 的中点,且满足()220n n n OM ON OP n *⋅+=∈N .设,n n M N 到直线20l y n n +++=的距离之和的最大值为n a ,则下列说法中正确的是( ) A .向量n OM 与向量n ON 所成角为120︒ B .n OP n = C .22n a n n =+D .若2n n a b n =+,则数列12{}(21)(21)n nn b b b +--的前n 项和为11121n +-- 29.(2021·湖北武汉·高三开学考试)数列{}n a 依次为:1,13,13,13,15,15,15,15,15,17,17,17,17,17,17,17,19,19,…,其中第一项为11,接下来三项均为13,再接下来五项均为15,依此类推.记{}n a 的前n 项和为n S ,则( ) A .100119a =B .存在正整数k ,使得k a >C .n SD .数列n S n ⎧⎫⎨⎬⎩⎭是递减数列30.(2021·福建省福州第一中学模拟预测)斐波那契螺旋线,也称“黄金螺旋”,是根据斐波那契数列画出来的螺旋曲线,自然界中存在许多斐波那契螺旋线的图案,是自然界最完美的经典黄金比例.作图规则是在以斐波那契数为边的正方形拼成的长方形,然后在正方形里面画一个90度的扇形,连起来的弧线就是斐波那契螺旋线.它来源于斐波那契数列,又称为黄金分割数列.现将斐波那契数列记为{}n a ,121a a ==,()123n n n a a a n --=+≥,边长为斐波那契数n a 的正方形所对应扇形面积记为()*n b n ∈N ,则( )A .()2233n n n a a a n -+=+≥B .123201920211a a a a a +++⋅⋅⋅+=+C .()2020201920182021π4b b a a -=⋅ D .123202*********π4b b b b a a +++⋅⋅⋅+=⋅ 31.(2021·江苏·模拟预测)已知数列{}n a 满足11a =,()1lg 1091n an a +=++,其前n 项和为n S ,则下列结论中正确的有( ) A .{}n a 是递增数列 B .{}10n a +是等比数列 C .122n n n a a a ++>+D .(3)2n n n S +<32.(2021·全国·高三专题练习(文))已知数列{}n a 满足:1n a n =,n S 是数列{}n a 的前n 项和,()ln 1n n na b a +=,下列命题正确的是( ) A .11ln n n n a a n ++⎛⎫<< ⎪⎝⎭B .数列{}n b 是递增数列C .202120201ln 2021S S ->>D .ln 2ln 3n b ≤<33.(2021·江苏泰州·模拟预测)已知()()()232012(21)212121nn n x x x x aa x a x a x ++++=++++下列说法正确的是( )A .设1n b a =,则数列{}n b 的前n 项的和为2224n n S n +=--B .2a 22228233n n ++=--C .1n a -=222n n n +-(*n N ∈)D .()*11n n a n N a -⎧⎫-∈⎨⎬⎩⎭为等比数列34.(2021·全国·模拟预测)斐波那契数列,又称黄金分割数列,它在很多方面与大自然神奇地契合,小到地球上的动植物,如向日葵、松果、海螺的成长过程,大到海浪、飓风、宇宙星系演变,都遵循着这个规律,人们亲切地称斐波那契数列为自然界的“数学之美”,在数学上斐波那契数列{}n a 一般以递推的方式被定义:121a a ==,21++=+n n n a a a ,则( ) A .1055a =B .2211n n n a a a ++-=C.1n n a +⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭是等比数列 D .设1n n na b a +=,则112n n n n b b b b +++-<-三、双空题 35.(2021·山东济宁·高三期中)十九世纪法国数学家卢卡斯提出数列{}n L :2,1,3,4,7,…,称之为卢卡斯数列,且满足12L =,21L =,()112n n n L L L n +-=+≥,则12L =________;记n S 为数列{}n L 的前n 项和,若2023L t =,则2021S =__________.36.(2021·江苏如皋·高三月考)已知数列{}n a 对任意的*n N ∈,都有n a N *∈,且131,,2n n n n na a a a a ++⎧⎪=⎨⎪⎩为奇数为偶数,①当18a =时,2021a =___________.②若存在*m N ∈,当n m >且n a 为奇数时,n a 恒为常数P ,则P =___________.37.(2021·广东·高三月考)将正三角形(1)的每条边三等分,并以中间的那一条线段为底边向外作正三角形,然后去掉底边,得到图(2);将图(2)的每条边三等分,并以中间的那一条线段为底边向外作正三角形,然后去掉底边,得到图(3);如此类推,将图(n )的每条边三等分,并以中间的那一条线段为底边向外作三角形,然后去掉底边,得到图()1n +.上述作图过程不断的进行下去,得到的曲线就是美丽的雪花曲线.若图(1)中正三角形的边长为1,则图(n )的周长为__________,图(n )的面积为___________.38.(2021·北京二中高三月考)定义在(0,)+∞上的函数()f x 满足:①当[1,3)x ∈时,1,12,()3,23,x x f x x x -≤≤⎧=⎨-<<⎩②(3)3()f x f x =. (i )(6)f = _____;(ii )若函数()()F x f x a =-的零点从小到大依次记为12,,,,n x x x ,则当(1,3)a ∈时,12212n n x x x x -++++=_______.39.(2021·福建·三明一中模拟预测)黎曼猜想由数学家波恩哈德∙黎曼于1859年提出,是至今仍未解决的世界难题.黎曼猜想研究的是无穷级数1111()123s s s sn n n ξ∞-===+++∑,我们经常从无穷级数的部分和1111123s s ssn ++++入手.已知正项数列{}n a 的前n 项和为n S ﹐且满足11()2n n na S a +=,则n S =__________,12100111S S S ⎡⎤++=⎢⎥⎣⎦__________.(其中[]x 表示不超过x 的最大整数) 40.(2021·山东日照·高三月考)牛顿迭代法又称牛顿-拉夫逊方法,它是牛顿在17世纪提出的一种在实数集上近似求解方程根的一种方法,具体步骤如下:设r 是函数()y f x =的一个零点,任意选取0x 作为r 的初始近似值,过点()()00,x f x 作曲线()y f x =的切线1l ,设1l 与x 轴交点的横坐标为1x ,并称1x 为r 的1次近似值;过点()()11,x f x 作曲线()y f x =的切线2l ,设2l 与x 轴交点的横坐标为2x ,称2x 为r 的2次近似值,过点()()(),nnx f x n *∈N 作曲线()y f x =的切线1n l+,记1n l +与x 轴交点的横坐标为1n x +,并称1n x +为r 的1n +次近似值,设()()3220f x x x x =+-≥的零点为r ,取00x =,则r 的2次近似值为______:设()333222n n n n x x a n x *+=∈+N ,数列{}n a 的前n 项积为n T .若任意的n *∈N ,n T λ<恒成立,则整数λ的最小值为______.41.(2021·浙江浙江·模拟预测)已知等差数列{}n a 的公差大于32,且满足311πsin 2a a ⎛⎫⋅= ⎪⎝⎭,322ππ1cos 0233a a ⎛⎫⎛⎫⋅++-= ⎪ ⎪⎝⎭⎝⎭,则数列{}n a 的公差d =___________,前n 项和n S =___________.42.(2021·山西太原·一模(理))已知数列{}n a 满足1232a a ==,()*223n n n a a n +=+⨯∈N ,且()*1n n n b a a n +=+∈N .则数列{}n b 的通项公式为________.若()()*24(1)341n n n b c n n +=∈-N ,则数列{}n c 的前n 项和为________.43.(2021·浙江温州·二模)有一种病毒在人群中传播,使人群成为三种类型:没感染病毒但可能会感染病毒的S 型;感染病毒尚未康复的I 型;感染病毒后康复的R 型(所有康复者都对病毒免疫).根据统计数据:每隔一周,S 型人群中有95%仍为S 型,5%成为I 型;I 型人群中有65%仍为I 型,35%成为R 型;R 型人群都仍为R 型.若人口数为A 的人群在病毒爆发前全部是S 型,记病毒爆发n 周后的S 型人数为,n S I 型人数为n I ,则n S =_________;n I =__________.(用A 和n 表示,其中*n ∈N )四、填空题 44.(2021·上海·模拟预测)设整数数列1a ,2a ,…,10a 满足1013a a =,2852a a a +=,且{}11,2i i i a a a +∈++,1,2,,9i =⋅⋅⋅,则这样的数列的个数为___________.45.(2021·福建省福州格致中学高三月考)已知()f x 是定义在R 上的奇函数,当0x >时,121,02()1(2),22x x f x f x x -⎧-<≤⎪=⎨->⎪⎩有下列结论:①函数()f x 在()6,5--上单调递增;②函数()f x 的图象与直线y x =有且仅有2个不同的交点;③若关于x 的方程2[()](1)()0()f x a f x a a -++=∈R 恰有4个不相等的实数根,则这4个实数根之和为8;④记函数()f x 在[]()*21,2k k k -∈N 上的最大值为k a ,则数列{}n a 的前7项和为12764. 其中所有正确结论的编号是___________.46.(2021·全国·高三月考(理))已知首项为1的数列{}n a 的前n 项和为n S ,若2121n n n n n S S S S S λλ++++=+,且数列1a ,2a ,…,(3)k a k >成各项均不相等的等差数列,则k 的最大值为__________.47.(2021·上海市吴淞中学高三期中)已知数列{}n a 满足:121,()a a x x N *==∈,21n n n a a a ++=-,若前2010项中恰好含有666项为0,则x 的值为___________.48.(2021·上海市晋元高级中学高三期中)如果数列{}n a 满足:120211,2017a a ==,且对于任意*n N ∈,存在实数a 使得1n n a a +、是方程()22210x a x a a -+++=的两个根,则100a 的所有可能值构成的集合是____________.49.(2021·黑龙江·佳木斯一中高三月考(文))已知数列{}n a :2223333333441123123456712,,,,,,,,,,,,2222222222222的前n 项和为n S ,则120S =___________.50.(2021·全国·高三专题练习)将杨辉三角中的每一个数rn C 都换成分数1(1)r nn C +,就得到一个如图所示的分数三角形,称为莱布尼茨三角形,从莱布尼茨三角形可以看出:11111(1)(1)r r rn n n n C n C nC +-+=++,令2211111113123060(1)n n na nC n C -=+++++++,n S 是{}n a 的前n 项和,则n S =______.51.(2021·湖南师大附中高三月考)已知函数|1||1|e sin(1)()e x x xf x ----=,若()22(2019)(2018)(2021)20201f f f a b -+-+⋅⋅⋅+=++,a ,b ∈R .则|a b -+的最大值为___________.52.(2021·全国·高三专题练习)已知数列{}n a 的通项公式为12(1)3n n n a ⎡⎤=--⎣⎦,1n n n b a a +=,设n S 是数列{}n a 的前n 项和,若0n n b S λ->对任意*n ∈N 都成立,则实数λ的取值范围是__________.53.(2021·全国·高三月考)已知等差数列{}n a ,对任意n N +∈都有01211231C C C C 2n n n n n n n a a a a n ++++++=⋅成立,则数列121n n a a ++⎧⎫⎨⎬⎩⎭的前n 项和n T =__________. 54.(2021·河北·正定中学高三开学考试)意大利数学家斐波那契(1175年1250-年)以兔子繁殖数量为例,引入数列:1,1,2,3,5,8,⋯,该数列从第三项起,每一项都等于前两项之和,即21(*)n n n a a a n N ++=+∈,故此数列称为斐波那契数列,又称“兔子数列”,其通项公式为]n n n a =-.设n是不等式(1]211n n n ->+的正整数解,则n 的最小值为______.55.(2021·辽宁·高三月考)对于任意实数序列()()123123,,,,,,,,,,,n n A a a a a B b b b b =⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅,定义()112233*,,,,,n n A B a b a b a b a b =⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅已知数列{}{},n n a b 满足33,n n n a b a n +==,若*A B 中前n 项的和112233n n n S a b a b a b a b m =⋅+⋅+⋅+⋅⋅⋅+⋅<恒成立,则整数m 的最小值为______. 56.(2021·山东济南·高三月考)数列{}n a 共12项,且11a =,42a =,关于x 的函数()()322113n n n x f a x a x x =-+-+,n ∈+N ,若()1111n x a n +=≤≤是函数的极值点,且曲线的()4y f x =在点()()12412,a f a 处的切线的斜率为3,则满足条件的数列{}n a 的个数为__________.57.(2021·云南师大附中高三月考(理))数列{}n a 中,12a =,()*,p q p q a a a p q +=∈N ,记m b 为{}n a 中在区间(]0,m ()*m ∈N 中的项的个数,则数列{}m b 的前150项和150S =________.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8.若数列பைடு நூலகம்an}对于任意的正整数n满足:an>0且anan+1=n+1,则称数列{an}为“积增数列”.已知“积增数列”{an}中,a1=1,数列{a +a }的前n项和为Sn,则对于任意的正整数n,有()
A.Sn≤2n2+3B.Sn≥n2+4n
C.Sn≤n2+4nD.Sn≥n2+3n
9.已知数列{an}是等差数列,若a9+3a11<0,a10·a11<0,且数列{an}的前n项和Sn有最大值,那么Sn取得最小正值时n等于()
新高考数学考前小题专题练
数列
1.无穷等比数列{an}中,“a1>a2”是“数列{an}为递减数列”的()
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件
2.设Sn为等比数列{an}的前n项和,a2-8a5=0,则 的值为()
A. B.
C.2D.17
3.设{an}是首项为a1,公差为-1的等差数列,Sn为其前n项和.若S1,S2,S4成等比数列,则a1的值为()
又a10·a11<0,所以a10和a11异号,
又因为数列{an}的前n项和Sn有最大值,
所以数列{an}是递减的等差数列,所以a10>0,a11<0,
所以S19= = =19a10>0,
所以S20= =10(a1+a20)=10(a10+a11)<0,
8.解析:选D.因为an>0,所以a +a ≥2anan+1.因为anan+1=n+1,所以{anan+1}的前n项和为2+3+4+…+(n+1)= = ,所以数列{a +a }的前n项和Sn≥2× =(n+3)n=n2+3n.
9.解析:选C.因为a9+3a11<0,所以由等差数列的性质可得a9+3a11=a9+a11+2a11=a9+a11+a10+a12=2(a11+a10)<0,
A.208B.212
C.216D.220
6.设等差数列{an}的公差为d,其前n项和为Sn.若a1=d=1,则 的最小值为()
A.10B.
C. D. +2
7.已知数列{an}满足a1a2a3…an=2n2(n∈N*),且对任意n∈N*都有 + +…+ <t,则实数t的取值范围为()
A. B.
C. D.
A.2B.-2
C. D.-
4.已知数列{an}满足2a1+22a2+…+2nan=n(n∈N*),数列 的前n项和为Sn,则S1·S2·S3·…·S10=()
A. B.
C. D.
5.
如图,矩形AnBnCnDn的一边AnBn在x轴上,另外两个顶点Cn,Dn在函数f(x)=x+ (x>0)的图象上,若点Bn的坐标为(n,0)(n≥2,n∈N*),记矩形AnBnCnDn的周长为an,则a2+a3+…+a10=()
3.解析:选D.因为等差数列{an}的前n项和为Sn=na1+ d,所以S1,S2,S4分别为a1,2a1-1,4a1-6.因为S1,S2,S4成等比数列,所以(2a1-1)2=a1·(4a1-6),解得a1=- .
4.解析:选C.因为2a1+22a2+…+2nan=n(n∈N*),所以2a1+22a2+…+2n-1an-1=n-1(n≥2),两式相减得2nan=1(n≥2),a1= 也满足上式,故an= ,
17.已知数列{an}与{bn}的前n项和分别为Sn,Tn,且an>0,6Sn=a +3an,n∈N*,bn= ,若任意n∈N*,k>Tn恒成立,则k的最小值是________.
小题专题练(三)
1.解析:选B.数列{an}递减⇒an<an-1.反之不成立,例如an= ,此数列是摆动数列.故选B.
2.解析:选B.设数列{an}的公比为q,依题意得 = =q3,因此q= .注意到a5+a6+a7+a8=q4(a1+a2+a3+a4),即有S8-S4=q4S4,因此S8=(q4+1)S4, =q4+1= ,选B.
6.解析:选B.由已知得 = = + + ≥2 + = ,当且仅当n=4时“=”成立.
7.解析:选D.依题意得,当n≥2时,an= = =2n2-(n-1)2=22n-1,又a1=21=22×1-1,因此an=22n-1, = = × ,即数列 是以 为首项, 为公比的等比数列,等比数列 的前n项和等于 = < ,因此实数t的取值范围是 .
故 = = - ,
Sn=1- + - +…+ - =1- = ,
所以S1·S2·S3·…·S10= × × ×…× × = ,故选C.
5.解析:选C.由题意得|AnDn|=|BnCn|=n+ ,设点Dn的坐标为 ,则有x+ =n+ ,得x= (x=n舍去),即An ,则|AnBn|=n- ,所以矩形的周长为an=2(|AnBn|+|BnCn|)=2 +2 =4n,则a2+a3+…+a10=4(2+3+4+…+10)=216.
A.20B.17
C.19D.21
10.数列{an}满足a1= ,an+1=a -an+1(n∈N*),则m= + +…+ 的整数部分是()
A.1B.2
C.3D.4
11.已知等差数列{an}的前n项和为Sn,若a3=5,a5=3,则an=________,S7=________.
12.已知数列{an}满足a1=1,an+1=2an+1(n∈N*),记数列{an}的前n项和为Sn,则a4=________,S5=________.
15.对任一实数序列A=(a1,a2,a3,…),定义新序列ΔA=(a2-a1,a3-a2,a4-a3,…),它的第n项为an+1-an.假定序列Δ(ΔA)的所有项都是1,且a12=a22=0,则a2=________.
16.已知数列{an}的通项公式为an=-n2+12n-32,其前n项和为Sn,则对任意m,n∈N*(m<n),Sn-Sm的最大值为________.
13.已知等差数列{an}的公差为d,等比数列{bn}的公比为q.设{an},{bn}的前n项和分别为Sn,Tn.若n2(Tn+1)=2nSn,n∈N*,则d=________,q=________.
14.已知数列{an}满足(n+2)an+1=nan,a1=1,则an=________;若bn= an,Tn为数列{bn}的前n项和,则T3=________.
相关文档
最新文档