数值计算与仿真(绪论)

合集下载

数值计算1-5章

数值计算1-5章

数值计算1-5章数值计算⽅法第1章绪论1.1数值计算⽅法的研究对象和特点数值计算⽅法也称数值分析,它研究⽤计算机求解各种数学问题的数值⽅法及其理论。

数学学科内容⼗分⼴泛,数值计算⽅法属于计算数学的范畴,这⾥只涉及科学和⼯程计算中常见的数学问题,如函数的插值、逼近、离散数据的拟合、数值积分与数值微分、线性和⾮线性⽅程数值解法和矩阵特征值问题数值解法和微分⽅程数值解法等.由于计算机科学与技术的迅速发展,数值计算⽅法的应⽤已经普遍深⼊到各个科学领域,很多复杂和⼤规模的计算问题都可以在计算机上进⾏计算,新的、有效的数值⽅法不断出现.现在,科学与⼯程中的数值计算已经成为各门⾃然科学和⼯程技术科学研究的⼀种重要⼿段,成为与实验和理论并列的⼀个不可缺少的环节.所以,数值计算⽅法既是⼀个基础性的,同时也是⼀个应⽤性的数学学科分⽀,与其他学科的联系⼗分紧密.⽤数值⽅法求解数学问题⾸先要构造算法,即由运算规则(包括算术运算、逻辑运算和运算顺序)构成的完整的解题过程.同⼀个数学问题可能有多种数值计算⽅法,但不⼀定都有效.评价⼀个算法的好坏主要有两条标准:计算结果的精度和得到结果所付出的代价.我们⾃然应该选择代价⼩⼜能满⾜精度要求的算法.计算代价也称为计算复杂性,包括时间复杂性和空间复杂性.时间复杂性好是指节省时间,主要由运算次数决定.空间复杂性好是指节省存储量,主要由使⽤的数据量决定.⽤计算机求数学问题的数值解不是简单地构造算法,它涉及多⽅⾯的理论问题,例如,算法的收敛性和稳定性等.除理论分析外,⼀个数值⽅法是否有效,最终要通过⼤量的数值实验来检验.数值计算⽅法具有理论性、实⽤性和实践性都很强的特点.作为数值计算⽅法的基础知识,本课程不可能⾯⾯俱到.除构造算法外,各章根据内容⾃⾝的特点,讨论的问题有所侧重.学习时我们⾸先要注意掌握⽅法的基本原理和思想,要注意⽅法处理的技巧及其与计算机的结合,要重视误差分析、收敛性和稳定性的基本理论.其次,要通过例⼦,学习使⽤各种数值⽅法解决实际计算问题,熟悉数值⽅法的计算过程.最后,为了掌握本课程的内容,还应做⼀定数量的理论分析与计算练习.1.2数值计算的误差1.2.1误差的来源应⽤数学⼯具解决实际问题,⾸先,要对被描述的实际问题进⾏抽象、简化,得到实际问题的数学模型.数学模型与实际问题之间会出现的误差,我们称之为模型误差.在数学模型中,通常要包含⼀些由观测数据确定的参数.数学模型中⼀些参数观测结果⼀般不是绝对准确的.我们把观测模型参数值产⽣的误差称为观测误差.例如,设⼀根铝棒在温度t时的实际长度为Lt,在t=0时的实际长度为L0,⽤lt来表⽰铝棒在温度为t时的长度计算值,并建⽴⼀个数学模型l t =L(1+at), a≈0.0000238/℃,其中a是由实验观测得到的常数,a∈[0.0000237,0.0000239],则称Lt -lt为模型误差,a-0.0000238是a 的观测误差.在解实际问题时,数学模型往往很复杂,因⽽不易获得分析解,这就需要建⽴⼀套⾏之有效的近似⽅法和数值⽅法.我们可能⽤容易计算的问题代替不易计算的问题⽽产⽣误差,也可能⽤有限的过程代替⽆限的过程⽽产⽣误差.我们将模型的准确解与⽤数值⽅法求得的准确解之间的误差称为截断误差或⽅法误差.例如,对函数()()35721sin 13!5!7!21!n x x x xn x x n +=-+-+++-+,该式右边有⽆限多项,计算机上⽆法计算.然⽽,根据微积分学中的泰勒(Taylor )定理,当|x |较⼩时,我们若⽤前3项作为sin x 的近似值,则截断误差的绝对值不超过77!x .⽤计算机做数值计算时,⼀般也不能获得数值计算公式的准确解,需要对原始数据、中间结果和最终结果取有限位数字.我们将计算过程中取有限位数字进⾏运算⽽引起的误差称为舍⼊误差.例如,13=0.33333…,如果我们取⼩数点后4位数字,则13-0.3333=0.000033…就是舍⼊误差.在数值分析中,除了研究数学问题的算法外,还要研究计算结果的误差是否满⾜精度要求,这就是误差估计问题.在数值计算⽅法中,主要讨论的是截断误差和舍⼊误差.1.2.2 误差与有效数字定义1.1 设x 是某实数的精确值,A x 是它的⼀个近似值,则称x -A x 为近似值A x 的绝对误差,或简称误差.Ax x x-称为x A 的相对误差.当x =0时,相对误差没有意义.在实际计算中,精确值x 往往是不知道的,所以通常把AAx x x -作为A x 的相对误差.定义1.2 设x 是某实值的精确值,A x 是它的⼀个近似值,并可对A x 的绝对误差作估计|x -A x |?A ε,则称εA 是A x 的绝对误差界,或简称误差界.称AAx ε是A x 的相对误差界.例 1.1 我们知道π=3.1415926…,若取近似值πA =3.14,则π-πA =0.0015926…,可以估计绝对误差界为0.002,相对误差界为0.0006.例 1.2 测量⼀⽊板长是954 cm,问测量的相对误差界是多⼤?解因为实际问题中所截取的近似数,其绝对误差界⼀般不超过最⼩刻度的半个单位,所以当x =954 cm 时,有A ε=0.5 cm ,其相对误差界为0.50.00052410.053%954AAx ε==< .定义1.3 设A x 是x 的⼀个近似值,将A x 写成12100.,k A i x a a a =±? , (1.1) 它可以是有限或⽆限⼩数的形式,其中i a (i =1,2,…)是0,1,…,9中的⼀个数字,1a ≠0,k 为整数.如果|x -A x |?0.5×10k n -,则称A x 为x 的具有n 位有效数字的近似值.可见,若近似值A x 的误差界是某⼀位的半个单位,该位到A x 的第⼀位⾮零数字共有n 位,则A x 有n 位有效数字.通常在x 的准确值已知的情况下,若要取有限位数的数字作为近似值,就采⽤四舍五⼊的原则,不难验证,采⽤四舍五⼊得到的近似值,其绝对误差界可以取为被保留的最后数位上的半个单位.例如|π-3.14|?0.5×210-, |π-3.142|?0.5×310-.按定义,3.14和3.142分别是具有3位和4位有效数字的近似值.显然,近似值的有效数字位数越多,相对误差界就越⼩,反之也对.下⾯,我们给出相对误差界与有效数字的关系.定理1.1 设x 的近似值A x 有(1.1)式的表达式. (1) 如果A x 有n 位有效数字,则 111×102A nAx x x a --≤; (1.2)(2) 如果()111×1021A nAx x x a --≤+, (1.3)则A x ⾄少具有n 位有效数字.证由(1.1)式可得到()111--?+≤≤?k A k a x a . (1.4)所以,当A x 有n 位有效数字时11110.5101×10,×102k nA nk Ax x x a a ----?≤=即(1.2)式得证.由(1.3)式和(1.4)式有()()nk nk AAA A a a x x x x x x ---?=?+?+≤-=-105.0101211011111,即说明A x 有n 位有效数字,(2)得证.例1.30.1%,应取⼏位有效数字?解由于因此1a =4,设有n 位有效数字,则由(1.2)式,可令11110a -?≤,即410n -?18,得n ?4.故只要对4位有效数字,其相对误差就可⼩于0.1%,4.472.例1.4 已知近似数A x 的相对误差界为0.3%,问A x ⾄少有⼏位有效数字?解设A x 有n 位有效数字,由于A x 的第⼀个有效数1a 没有具体给定,⽽我们知道1a ⼀定是1,2,…,9中的⼀个,由于()12311101000210291A Ax x x --≤<=+,故由(1.3)式知n=2,即A x ⾄少有2位有效数字.1.2.3 函数求值的误差估计对⼀元函数f(x ),⾃变量x 的⼀个近似值为A x ,以f(A x )近似f(x ),其误差界记作ε(f(A x )).若f(x )具有⼆阶连续导数,f′(A x )与f″(A x )的⽐值不太⼤,则可忽略|x -A x |的⼆次项,由Taylor 展开式得到f(A x )的⼀个近似误差界ε(f(A x ))≈|f′(A x )|ε(A x ).对n 元函数f(x 1,x 2,…,x n ),⾃变量x 1,x 2,…,x n 的近似值分别为x 1A ,x 2A ,…,x n A ,则有()()()12121,,,,,,nn A A nA k kA k k Af f x x x f x x x x x x=??-≈- ∑ ,其中()12,,,A A nA k k f f x x x x x A.因此,可以得到函数值的⼀个近似误差界()()()121,,,nAA nA kA k k Af f x x x x x εε=??≈ ∑. 特别地,对f(x 1,x 2)=x 1±x 2有ε(x 1A ±x 2A )=ε(x 1A )+ε(x 2A ).同样,可以得到ε(x 1A x 2A )≈|x 1A |ε(x 2A )+|x 2A |ε(x 1A ),()()12211222A A A A A A A x x x x x x x εεε+??≈,20A x ≠例1.5 设有长为l,宽为d 的某场地.现测得l 的近似值l A =120 m,d 的近似值d A =90 m ,并已知它们的误差界为|l-l A |?0.2 m,|d-d A |?0.2 m.试估计该场地⾯积S=ld 的误差界和相对误差界.解这⾥ε(l A )=0.2,ε(d A )=0.2,并且有2,,10800A A A S S d l S l d mld====.于是有误差界()21200.2900.242A S m ε≈?+?=,相对误差界()()420.39%10800A r A AS S l dεε=≈=.例1.6 设有3个近似数a=2.31, b=1.93, c=2.24,它们都有3位有效数字.试计算p=a+bc 的误差界和相对误差界,并问p 的计算结果能有⼏位有效数字?解 p=2.31+1.93×2.24=6.6332.于是有误差界ε(p)=ε(a)+ε(bc)≈ε(a)+|b|ε(c)+|c|ε(b) =0.005+0.005(1.93+2.24)=0.02585,相对误差界εr (p)=()0.025856.6332p pε≈≈0.39%.因为ε(p)≈0.02585<0.05,所以p=6.6332能有2位有效数字.1.2.4 计算机中数的表⽰任意⼀个⾮零实数⽤(1.1)式表⽰,是规格化的⼗进制科学记数⽅法.在计算机中通常采⽤⼆进制的数系(或其变形的⼗六进制等),并且表⽰成与⼗进制类似的规格化形式,即浮点形式±2m ×0.β1β2…βt ,这⾥整数m 称为阶码,⽤⼆进制表⽰为m=±α1α2…αs , αj =0或1(j=1,2,…,s),s 是阶的位数.⼩数0.β1β2…βt 称为尾数,其中β1=1,βj =0或1(j=2,3,…,t),t 是尾数部位的位数.s 和t 与具体的机器有关.由于计算机的字长总是有限位的,所以计算机所能表⽰的数系是⼀个特殊的离散集合,此集合的数称为机器数.⽤浮点⽅式表⽰的数有⽐较⼤的取值范围.⼗进制输⼊计算机时转换成⼆进制,并对t 位后⾯的数作舍⼊处理,使得尾数为t 位,因此⼀般都有舍⼊误差.两个⼆进制数作算术运算时,对计算结果也要作类似的舍⼊处理,使得尾数为t 位,从⽽也有舍⼊误差.在实现算法时,计算的最后结果与算法的精确解之间的误差,从根本上说是由机器的舍⼊误差造成的,包括输⼊数据和算术运算的舍⼊误差.因此有必要对计算机中数的浮点表⽰⽅法和舍⼊误差有⼀个初步的了解.有时为了分析某⼀个计算⽅法可能出现的误差现象,为了适应⼈们的习惯,我们会采⽤⼗进制实数系统进⾏误差分析.1.3 数值稳定性和要注意的若⼲原则 1.3.1 数值⽅法的稳定性实际计算时,给定的数据会有误差,数值计算中也会产⽣误差,并且,这些误差在进⼀步的计算中会有误差传播.因此,尽管数值计算中的误差估计⽐较困难,我们还是应该重视计算过程中的误差分析.定义 1.4 对于某个数值计算⽅法,如果输⼊数据的误差在计算过程中迅速增长⽽得不到控制,则称该算法是数值不稳定的,否则是数值稳定的.下⾯举例说明误差传播的现象.例 1.7 计算积分值105nxdx I x =+?, n=0,1,…,6.解由于要计算系列的积分值,我们先推导In 的⼀个递推公式.由1110555n n n n x x I I dx x --++=+?111n xdx n-==,可得下⾯两个递推算法.算法1:115n n I I n-=-,n=1,2, (6)算法2:1115n n I I n -??=-,n=6,5, (1)直接计算可得0ln 6ln 5I =-.如果我们⽤4位数字计算,得I 0的近似值为0I *=0.1823.记n n n E I I *=-,I n *为In 的近似值.对算法1,有15n n E E -=-=…=()5n-E 0.按以上初始值I0的取法有|E 0|?0.5×410-,事实上|E 0|≈0.22×410-.这样,我们得到|E 6|=65|E 0|≈0.34.这个数已经⼤⼤超过了I 6的⼤⼩,所以6I *连⼀位有效数字也没有了,误差掩盖了真值.对算法2,有E k-n =15n ??-E k ,|E 0|=615??|E 6|.如果我们能够给出I 6的⼀个近似值,则可由算法2计算I n (n=5,4,…,0)的近似值.并且,即使E 6较⼤,得到的近似值的误差将较⼩.由于()()11011616551kkk xxI d d x x k k =<<=++??,因此,可取Ik 的⼀个近似值为()()11126151k I k k *=+?? ? ?++??. 对k=6有6I *=0.0262.按0I *=0.1823和6I *=0.0262,分别按算法1和算法2计算,计算结果如表1-1,其中()1n I 为算法1的计算值, ()2n I 为算法2的计算值.易知,对于任何⾃然数n,都有0表1-1n()1nI()2nInI (4位)0 0.1823 0.1823 0.18231 0.0885 0.0884 0.08842 0.0575 0.0580 0.05803 0.0458 0.0431 0.04314 0.0210 0.0344 0.03435 0.0950 0.0281 0.02856-0.3083 0.0262 0.0243当然,数值不稳定的⽅法⼀般在实际计算中不能采⽤.数值不稳定的现象属于误差危害现象.下⾯讨论误差危害现象的其他表现及如何避免问题.1.3.2 避免有效数字的损失在数值计算中,参加运算的数有时数量级相差很⼤,⽽计算机位数有限,如不注意,“⼩数”的作⽤可能消失,即出现“⼤数”吃“⼩数”的现象. 例1.8 ⽤3位⼗进制数字计算x =101+δ1+δ2+…+δ100,其中0.1?δi ?0.4,i =1,2, (100)解在计算机内计算时,要写成浮点数形式,且要对阶.如果是101与δ1相加,对阶时,101=0.101×103,δ1=0.000×103.因此,如果我们⾃左⾄右逐个相加,则所有的δi 都会被舍掉,得x ≈101.但若把所有的δi 先加起来,再与101相加,就有111=101+100×0.1?x ?101+100×0.4=141.可见,计算的次序会产⽣很⼤的影响.这是因为⽤计算机计算时,在运算中要“对阶”,对阶引起了⼤数吃⼩数的现象.⼤数吃⼩数在有些情况下是允许的,但有些情况下则会造成谬误.在数值计算中,两个相近数相减会使有效数字严重损失.例1.9 求实系数⼆次⽅程20ax bx c ++=的根,其中b 2-4ac>0,ab ≠0. 解考虑两种算法. 算法1:1,22x a=算法2:(12b sign b x a--=, 21c x ax =,其中sign 表⽰取数的符号,即()1,0,0,0,1,0.b sign b b b >??==??-对算法1,若ac b 42>>,则是不稳定的,否则是稳定的.这是因为在算法1中分⼦会有相近数相减的情形,会造成有效数字的严重损失,从⽽结果的误差很⼤.算法2不存在这个问题,在任何情况下都是稳定的.因此称算法1是条件稳定的,算法2是⽆条件稳定的.例如,对于⽅程262.10 1.0000x x ++=,⽤4位有效数字计算,结果如下:算法1:x 1=-62.08, x 2=-0.02000. 算法2:x 1=-62.08, x 2=-0.01611.准确解是x 1=-62.083892…,x 2=-0.016107237….这⾥,ac b 42>>,所以算法1不稳定,舍⼊误差对x 2的影响⼤.在进⾏数值计算时,如果遇到两相近数相减的情形,可通过变换计算公式来避免或减少有效数字的损失.例如,如果|x |≈0,有变换公式1cos sin sin 1cos x x xx-=+.如果x 1≈x 2,有变换公式1122lg lg lgx x x x -=.如果x 〉〉1,有变换公式.此外,⽤绝对值很⼩的数作除数时,舍⼊误差会很⼤,可能对计算结果带来严重影响.因此,要避免除数绝对值远远⼩于被除数绝对值的除法运算.如果⽆法改变算法,则采⽤增加有效位数进⾏计算,或在计算上采⽤双精度运算,但这要增加机器计算时间和多占内存单元.1.3.3 减少运算次数在数值计算中,要注意简化计算步骤,减少运算次数,这也是数值分析中所要研究的重要内容.同样⼀个计算问题,如果能减少运算次数,不但可节省计算机的计算时间,还能减少误差的积累.下⾯举例说明简化计算公式的重要性.例1.10 给定x ,计算多项式()110nn n n n P x a x a xa --=+++的值.如果我们先求ak x k ,需要进⾏k 次乘法,再相加,则总共需要()12n n +次乘法和n次加法才能得到⼀个多项式的值.如果我们将多项式写成下⾯的形式()(){}1210n n n n P x x x x a x a a a a --??=+++++?? ,则只需n 次乘法和n 次加法即可得到⼀个多项式的值,这就是著名的秦九韶算法,可描述为1,,1,2,,0,n n k k k u a u u x a k n n +=??=+=--?最后有()0n u P x =.例1.11 计算ln2的值. 解如果利⽤级数()()11ln 11nn n xx n∞+=+=-∑计算ln2,若要精确到误差的绝对值⼩于10-5,要计算10万项求和,计算量很⼤,并且舍⼊误差的积累也⼗分严重.如果改⽤级数()35211ln 213!5!21!n xx x xx x n +??+=+++++ ? ?-+??来计算ln2,取x =1,则只要计算前9项,截断误差便⼩于10-10.1.4 向量和矩阵的范数为了对矩阵计算进⾏数值分析,我们需要对向量和矩阵的“⼤⼩”引进某种度量.在解析⼏何中,向量的⼤⼩和两个向量之差的⼤⼩是⽤“长度”和“距离”的概念来度量的.在实数域中,数的⼤⼩和两个数之间的距离是通过绝对值来度量的.范数是绝对值概念的⾃然推⼴.1.4.1 向量的范数定义1.5 如果向量x ∈n R 的某个实值函数f(x )=‖x ‖满⾜ (1) 正定性:x ?0,且x =0当且仅当x =0;(2) 齐次性:对任意实数α,都有αx =|α|x ; (3) 三⾓不等式:对任意x ,y ∈R n ,都有+x y ?x +y ,则称x 为n R 上的⼀个向量范数.在n R 中,记()12,,,Tn x x x =x ,实际计算中最常⽤的向量范数有: (1) 向量的∞范数1max i i nx ∞≤≤=x;(2) 向量的1范数11nii x ==∑x;(3) 向量的2范数12221in x i ==??∑x.容易验证,向量的∞范数和1范数满⾜定义1.5中的条件.对于2范数,满⾜定义1.5中的条件(1)和(2)是显然的,对于条件(3),利⽤向量内积的Cauchy-Schwarz 不等式可以验证.更⼀般地,有如下向量的p 范数1pipn px i ==??∑x,其中p ∈ [1,+∞).容易验证1ppn∞∞≤≤xxx,由此可得如下定理.定理1.2 lim pp ∞→∞=xx.下⾯,我们利⽤向量范数的连续性来说明向量范数的重要特征.定理1.3 设给定A ∈R n ×n ,x =(x 1,x 2,…,x n )T ∈R n ,则对R n 上每⼀种向量范数,‖A x ‖都是x 1,x 2,…,x n 的n 元连续函数.证设a j 为A 的列向量,将A 写成A =(a 1,a 2,…,a n ). 则由三⾓不等式,对h =(h 1,h 2,…,h n )T ∈R n,有|‖A (x +h )‖-‖A x ‖|?‖A h ‖=‖1ni i h =∑a i ‖1ni i h =∑‖a i ‖M max|h i |,其中M=1ni =∑‖a i ‖.所以,对任意的ε>0,当max|h i |<Mε时,有|‖A (x +h )‖-‖A x ‖|<ε, 这就证明了‖A x ‖的连续性.推论1.1 ‖x ‖是x 的各分量的连续函数. 向量范数的⼀个重要特征是具有等价性.定理 1.4 R n 上的所有向量范数是彼此等价的,即对R n 上的任意两种向量范数‖x ‖s和‖x ‖t ,存在常数c 1,c 2>0,使得对任意x ,有c 1‖x ‖s ?‖x ‖t ?c 2‖x ‖s .证只要就‖x ‖s =‖x ‖∞证明上式成⽴即可,即证明存在常数c 1,c 2>0,对⼀切x ∈R n且x ≠0,有c 1‖x ‖∞?‖x ‖t ?c 2‖x ‖∞.记R n 上的有界闭集D={x :x =(x 1,x 2,…,x n )T ,‖x ‖∞=1}.由定理1.3的推论知,‖x ‖t 是D 上的n 元连续函数,所以在D 上有最⼤值c 2和最⼩值c 1,且x ∈D 时有x ≠0,故有c 2?c 1>0.现考虑x ∈R n ,且x ≠0,则有∞x x ∈D,所以有c 1?‖∞x x ‖t ?c 2, ?x ∈R n ,x ≠0.从⽽对x ≠0有c 1‖x ‖∞?‖x ‖t ?c 2‖x ‖∞.⽽x =0时上式⾃然成⽴,定理得证.由于向量范数之间具有等价性,对于范数的极限性质,我们只需对⼀种范数进⾏讨论,其余范数也都具有相似的结论.⽐如,我们可以⽅便地讨论向量序列的收敛性.定义1.6 设向量序列x (k)=()()()()12,,,Tk k k nx x x ∈R n ,k=1,2,…,若存在x *=()12 ,,,Tn x x x ***∈R n ,使得()lim k iik x x *→∞=, i =1,2,…,n,则称序列{x (k)}收敛于x *,记为()lim k ik *→∞=x x.按定义有)()lim lim 0k k k k **→∞→∞∞=?-=xx xx.⼜因为()()()12k k k c c ***∞∞-≤-≤-xxxxxx,所以有()()lim lim 0k k k k **→∞→∞=?-=xx xx.因此,若向量序列在⼀种范数下收敛,则在其他范数下也收敛.不必强调是在哪种范数意义下收敛.1.4.2矩阵的范数定义1.7 如果矩阵A ∈R n ×n 的某个实值函数f(A )=‖A ‖满⾜ (1) 正定性:‖A ‖?0,且‖A ‖=0当且仅当A =0;(2) 齐次性:对任意实数α,都有‖αA ‖=|α|‖A ‖;(3) 三⾓不等式:对任意A ,B ∈R n ×n ,都有‖A +B ‖?‖A ‖+‖B ‖; (4) 相容性:对任意A ,B ∈R n ×n ,都有‖A B ‖?‖A ‖‖B ‖;则称‖A ‖为Rn ×n上的⼀个矩阵范数.可以验证,对()ij n na ?=A ,12211Fn n a ij i j ?? ?=∑∑ ?==??A是⼀种矩阵范数,称之为Froben i us 范数,简称F 范数.由于矩阵与向量常常同时参与讨论与计算,矩阵范数与向量范数之间需要有⼀种联系. 定义1.8 对于给定的R n 上的⼀种向量范数‖x ‖和R n ×n 上的⼀种矩阵范数‖A ‖,如果满⾜‖A x ‖?‖A ‖‖x ‖,则称矩阵范数‖A ‖与向量范数‖x ‖相容.上⾯的定义1.7是矩阵范数的⼀般定义,下⾯我们通过已给的向量范数来定义与之相容的矩阵范数.定义 1.9 设x ∈R n ,A ∈R n ×n ,对给出的⼀种向量范数v x ,相应地定义⼀个矩阵的⾮负函数m axvvx v≠=A x Ax.称之为由向量范数导出的矩阵范数,也称为算⼦范数或从属范数.由定义可得vvv≤A xAx,1max vvv==xAAx.算⼦范数满⾜矩阵范数⼀般定义中的条件(1)和(2)是显然的,现验证满⾜条件(3)和(4).对任意的A ,B ∈R n ×n ,有()1maxvvv =+=+xA B x11max max v vvvvvxx==≤+=+Ax BxAB1max vvv==xABABx1max vvvvvv=≤=xABxA.因此,算⼦范数满⾜矩阵范数⼀般定义中的条件(3)和(4).由常⽤的向量范数,可以导出与其相容的矩阵算⼦范数.定理1.5 设A ∈R n ×n ,记()ij n na ?=A ,则(1)11max nij i nj a ∞≤≤==∑A,称之为矩阵A 的⾏范数;(2) 111m ax nij j ni a ≤≤==∑A ,称之为矩阵A 的列范数;(3)2=A称之为矩阵A 的2范数或谱范数,其中,()max TλA A 表⽰T A A的最⼤特征值.证这⾥只对(1)和(3)给出证明,(2)的证明同理可得. 先证明(1):设x =(x 1,x 2,…,x n )T ≠0,不妨设A ≠0,则有1111max max nnij j ij i ni nj j xa x xa ∞∞≤≤≤≤===≤∑∑A .111max max nij xi nj a ∞∞∞=≤≤===∑AAx.设矩阵A 的第p ⾏元素的绝对值之和达到最⼤,即111max nnpj ij i nj j a a ≤≤===∑∑.取向量()12,,,Tn ξξξ= ξ,其中1,0,1,0.a pj j apjξ≥??=?-显然,‖ξ‖∞=1,⽽且1111m ax m axnn∞∞=≤≤===≥==∑∑xAA xA ξ.于是(1)得证.再证明(3):显然,A TA 是对称半正定矩阵,它的全部特征值均⾮负,设为120n λλλ≥≥≥≥ .由实对称矩阵的性质,各特征值对应的特征向量必正交.设对应的标准正交特征向量为12,,,nu u u ,即T i i i λ=A Au u (i =1,2,…,n),(u i ,u j )=δi j (i ,j=1,2,…,n).对向量x ∈R n ,‖x ‖2=1,可由R n 的⼀组基u i (i =1,2,…,n)线性表⽰,即有1niii c ==∑x u ,22211nii c===∑x11nnT Ti ii i i cc λλλ====≤=∑∑A xx A A x .另⼀⽅⾯,取ξ=u 1,显然有‖ξ‖2=1,211112T T Tλλ===A ξξA A ξu u .因此,2221m ax ===xAA x得证.由定理1.5可见,计算⼀个矩阵的⾏范数和列范数是⽐较容易的,⽽矩阵的2范数计算却不⽅便,但由于它有许多好的性质,所以在理论上还是有⽤的.例1.12 设矩阵1234-??=解 {}m ax 3,77∞==A,{}1m ax 4,66==A ,10141420T-??=-A A ()21014det 3041420Tλλλλλ--==-+-I A A ,求得115λ=+215λ=-因此25.46=≈A.定义1.10 设A ∈R n ×n 的特征值为λi (i =1,2,…,n),称()1max i i nρλ≤≤=A为A 的谱半径.谱半径在⼏何上可解释为以原点为圆⼼,能包含A 的全部特征值的圆的半径中最⼩者.例1.13 计算例1.12中矩阵的谱半径.解由A 的特征⽅程()2=--=-I A得12λ=,22λ=所以() 5.372ρ=≈A .定理1.6 设A ∈R n ×n ,则有()ρ≤A A .证设A x =λx ,x ≠0,且|λ|=ρ(A ),必存在向量y ,使x y T 不是零矩阵.于是()TTTTA ρλ==≤A xyxyxyA xy,即得ρ(A )?‖A ‖.例1.14 设矩阵A 与矩阵B 是对称的,求证ρ(A +B )?ρ(A )+ρ(B ).证因T =A A ,于是有()()()222max max 2A A AA ,即‖A ‖2=ρ(A ).同理‖B ‖2=ρ(B ).由于A +B =(A +B )T,因此()()()222ρρρ+=+≤+=+A B A BABA B .定理1.7 如果‖B ‖<1,则I ±B 为⾮奇异矩阵,且()111-±≤-I B B,这⾥的矩阵范数是指矩阵的算⼦范数.证若I ±B 奇异,则存在向量x ≠0,使(I ±B )x =0,故有ρ(B )?1,这与‖B ‖<1⽭盾,所以I ±B ⾮奇异.由于()()11--±=± I B I B I B ,于是得()()11--±≤+±I B I BI B .上的任意两种矩阵范数都是等价的,即对Rn ×n上的任意两种矩阵范数sA和t A ,存在常数c 1,c 2>0,使得12stsc c ≤≤AAA.由矩阵范数的等价性,我们可以⽤矩阵的范数描述矩阵序列的极限性质.定义1.11 设矩阵序列()()()kk n nijn na ??=∈A R,k=1,2,…,若存在()n nij n na **=∈A R,使得()lim k ijijk a a *→∞()lim k k *→∞=AA.可以验证()()lim lim 0k k k k **→∞→∞=?-=AA AA.评注本章介绍了数值计算的研究对象、误差及相关概念、数值计算的稳定性及构造算法的基本原则.考虑到矩阵计算的数值分析,本章还介绍了向量范数和矩阵范数的基本概念和常⽤定理.误差分析问题是数值分析中重要⽽困难的问题.误差的基本概念和误差分析的若⼲原则,对学习本课程是很有必要的.但是,作为⼯程或科学计算的实际问题则要复杂得多,往往要根据不同问题分门别类地进⾏分析.例如,由于舍⼊误差有随机性,有⼈应⽤概率的观点研究误差规律.在⼯程计算中,常⽤⼏种不同办法(包括实验⽅法)进⾏⽐较,以确定计算结果的可靠性.20世纪60年代以来,发展了两种估计误差的理论:⼀种是J.H.W i lk i nson 等⼈针对计算机浮点算法提出了⼀套预先估计的研究误差的⽅法,使矩阵运算的舍⼊误差研究获得了新发展;另⼀种是R .E.Moore 等⼈应⽤区间分析理论估计误差,开创了研究误差的新⽅法. 关于范数⽅⾯,所述内容是为以下各章服务的⼀些初步概念和常⽤的定理,对本书够⽤就可以了.例如只讨论了R n ×n 的范数,⽽没有顾及R n ×m .⼜例如介绍了R n 和R n ×n 上范数的等价性,此性质对有限维空间都是成⽴的,⽽对于C[a,b]则没有这个性质,这些都是赋范线性空间有关的问题,详细讨论这些问题是泛函分析的内容.习题 11.1 已知e=2.71828…,问下列近似值A x 有⼏位有效数字,相对误差界是多少? (1) x =e, A x =2.7; (2) x =e, A x =2.718; (3) x =e100, A x =0.027; (4) x =e100, A x =0.02718. 1.2 设原始数据的下列近似值每位都是有效数字:1x *=1.1021, 2x *=0.031, 3x *=56.430. 试计算(1) 1x *+2x *+3x *;(2),并估计它们的相对误差界.1.3 设x 的相对误差界为δ,求n x 的相对误差界.1.4 设x >0,x 的相对误差界为δ,求ln2的绝对误差界.1.5 为了使计算球体体积时的相对误差不超过1%,问测量半径R 时的允许相对误差界是多少?1.6 三⾓函数值取4位有效数字,怎样计算1-cos2°才能保证精度? 1.7 设0Y =28,按递推公式nY=1n Y --…,计算.若取27.982(5位有效数字),试问计算Y 100将有多⼤误差?1.8 求解⽅程25610x x ++=,使其根⾄少具有4位有效数字(≈27.982).1.9 正⽅形的边长⼤约为100 cm ,应怎样测量才能使其⾯积的误差不超过21cm ? 1.10 序列{yn}满⾜递推关系1101n n y y -=-,n=1,2,….若y 0 1.41(3位有效数字),计算到y 10时的误差有多⼤?这个计算过程稳定吗?1.11 对积分11n x n I x edx -=,n=0,1,…,验证101I e-=-,11n n I nI -=-.若取e -1≈0.3679,按递推公式11n n I nI -=-,⽤4位有效数字计算I 0,I 1,…,I 9,并证明这种算法是不稳定的.1.12 反双曲正弦函数为()(ln f x x =+.如何计算f(x )才能避免有效数字的损(1) sin x -siny ; (2) arctan x -arctany ;(3)2; (4)212xe-.1.14 已知三⾓形⾯积1sin 2s ab C=,其中C 为弧度,0π,且测量a,b,C 的误差分别为Δa,Δb,ΔC ,证明⾯积的误差Δs 满⾜s a b C s ab C≤++ .1.15 设P ∈R n ×n 且⾮奇异,⼜设‖x ‖为R n 上的⼀种向量范数,定义p=xP x.试证明‖x‖P 是R n 上的⼀种向量范数.1.16 设A ∈R n ×n 为对称正定矩阵,定义()12,A=xA x x .试证明‖x‖A 为R n 上的⼀种向量范数.1.17 设矩阵0.60.50.10.3??=2F≤≤AA,并说明‖A ‖F 与‖x‖2相容.1.19 设P ∈Rn ×n且⾮奇异,⼜设‖x‖为R n上的⼀种向量范数,定义范数‖x‖P =‖P x ‖.证明对应于‖x‖P 的算⼦范数1 p-=APAP.1.20 设A 为⾮奇异矩阵,求证:11m iny ∞-≠∞∞=A y yA.。

数值计算方法习题答案(第二版)(绪论)

数值计算方法习题答案(第二版)(绪论)

数值计算⽅法习题答案(第⼆版)(绪论)数值分析(p11页)4 试证:对任给初值x 0,0)a >的⽜顿迭代公式112(),0,1,2,......k a k k x x x k +=+= 恒成⽴下列关系式:2112(1)(,0,1,2,....(2)1,2,......k k k x k x x k x k +-=-=≥=证明:(1)(21122k k k k k k x a x x x x +-??-=+==? ??(2)取初值00>x ,显然有0>k x ,对任意0≥k ,a a x a x x a x x k k k k k ≥+-= +=+2121216 证明:若k x 有n 位有效数字,则n k x -?≤-110218,⽽()k k k k k x x x x x 288821821-=-???? ??+=-+ nn k k x x 2122110215.22104185.28--+?=??<-∴>≥ 1k x +∴必有2n 位有效数字。

8 解:此题的相对误差限通常有两种解法.①根据本章中所给出的定理:(设x 的近似数*x 可表⽰为m n a a a x 10......021*?±=,如果*x 具有l 位有效数字,则其相对误差限为()11 **1021--?≤-l a x x x ,其中1a 为*x 中第⼀个⾮零数)则7.21=x ,有两位有效数字,相对误差限为025.010221111=??≤--x x e 71.22=x ,有两位有效数字,相对误差限为025.010221122=??≤--x x e 3 2.718x =,有两位有效数字,其相对误差限为:00025.010221333=??≤--x e x ②第⼆种⽅法直接根据相对误差限的定义式求解对于7.21=x ,0183.01<-e x∴其相对误差限为00678.07.20183.011≈<-x e x 同理对于71.22=x ,有003063.071.20083.022≈<-x e x 对于718.23=x ,有00012.0718.20003.033≈<-x e x备注:(1)两种⽅法均可得出相对误差限,但第⼀种是对于所有具有n 位有效数字的近似数都成⽴的正确结论,故他对误差限的估计偏⼤,但计算略简单些;⽽第⼆种⽅法给出较好的误差限估计,但计算稍复杂。

绪论

绪论

15
从(2.2)可得到具有 n 位有效数字的近似数 x*,其绝对 (2.2)可得到具有 误差限为
1 ε* = ×10m−n+1, 2− x * ≤ 1 ×10m−n+1. 2.2) (2.2) x 2 相同的情况下, 越小, 在m 相同的情况下, n越大则 10m−n+1 越小,故有效位数越
多,绝对误差限越小. 绝对误差限越小.
24
~ 当初值取为 I0 ≈ 0.6321 = I0 时,用(3.2)递推 3.2)
计算公式为
~ I0 = 0.6321 ; (A) ~ ~ ( 1 ). n −1 InI=1− nIn=1 2,n −), ,2,L 表1=1 In =1− n−1 (n , L ~ ~ 1 ~ n I (用 计算) n In(用 计算) (A) (A) 3.2) 计算结果见表1 ∫ ex In 列− 计算结果见表−1-1的dx =1. e−1. n(3.2) I0 =e1 0 0 0.6321 ↓~ 5 0.1480 ↓ ~ 近似 就是初值误差, 用 I0 I0 产生的误差 E0 = I0 − I0 就是初值误差, 1 0.3679 6 0.1120 2 7 0.2160 它对后面计算结果是有影响的. 0.2642 它对后面计算结果是有影响的. 3 0.2074 8 −0.7280 4 0.1704 9 7.552
22
0.3.2
算法的数值稳定性
用一个算法进行计算, 用一个算法进行计算,如果初始数据误差在计算中传播 使计算结果的误差增长很快,这个算法就是数值不稳定的 使计算结果的误差增长很快,这个算法就是数值不稳定的. 数值不稳定 例5 计算 In = e
− 1

1
0
xnexdx (n = 0,1 L 并估计误差. , )并估计误差.

数值计算方法

数值计算方法

k4 hf (tn h, yn k3 ))
这里, f (x, y) y 2x ;h为步长。 y
现取h=0.05,其结果见下表:
xn
yn
y
xn
0
1.00000 1.00000 1.2
0.2
1.18322 1.18322 1.4
0.4
1.34164 1.34164 1.6
0.6
1.48324 1.48324 1.8
|,当C
1,
Cr 1时有
e( f ) e(x*)
er ( f ) er (x* )
这表明当C 1, Cr 1时,函数值的误差 是可以控制的,或是稳定的。
一般分别称C, Cr为f (x)在绝对意义下 和相对意义下的条件数。
当C 1称f (x)为良态; 当C 1称f (x)为病态。
例题
| e(x* ) || x* x | 1 10mn 2
则称x*为x的具有n位有效数的近似数。
绝对误差,相对误差,有效数是度量近似数 精度的常用三种。实际计算时最终结果均以 有效数给出。同时也就隐含了绝对误差和相 对误差界。
如 x 2, x* 1.4142, m 1, n 5
则x*的绝对误差界 1 104
n i 1
f xi*
n
( xi* xi )
i 1
f xi*
e( xi* )
因此绝对误差界为
e( f )
n i 1
f xi*
e( xi* )
同理相对误差为
er ( f )
n f(x*) i1 xi*
f
xi* (x*
)
er
( xi*
)
相对误差界
| er ( f ) |

数值计算方法课后习题答案

数值计算方法课后习题答案

第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。

[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x x x x x , 相对误差为****ln ln )(ln )(ln x x x x rδεε==。

2、设x 的相对误差为2%,求n x 的相对误差。

[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而nx 的误差为nn x x nxn x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。

3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。

[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。

4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。

(1)*4*2*1x x x ++; [解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=++∑x x x x x f x x x e nk k k εεεε;(2)*3*2*1x x x ;[解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。

计算方法绪论

计算方法绪论
风阻系数 0.5 0.28~0.4 0.15 0.1~0.2 0.08 0.05
高尔夫球的表面有凹坑,能增加旋转时的提升力,考虑 到这个因素,我把我计算时的高尔夫球的风阻系数取为:
C 0.15
有报道说,顶级专业选手击出的球的初速高达时速180英 里,一般专业选手达160英里时速(约71.1米/秒),业 余选手在126英里时速的水平。计算中,我取初速
y' (0) w0 sin c21
则 x c11t
y
0.5gt2
c21t
✓ 把复杂因素尽可能在符合需求的条件下简化。 8
(2)有空气阻力(但不空考虑风的影响等)
m m
d2x dt2 d2y dt2
k wn 1 k wn 1
dx
dt dy
dt
mg
其中 w ( dx)2 ( dy )2 dt dt
• 数值积分方法(例如复合辛普森公式)求定积分。
求得 x(t)和 y(t) 的离散点值 x j 和 y j
(xj, yj)
16
接下来,我们根据这些离散点值,找到一条通过这些 点的光滑曲线,从而给出高尔夫球的完整轨迹。需要: • 插值方法(例如三次样条多项式插值)。
17
• 数据的拟合(例如最小二乘法)
4
• 数值计算方法的研究内容 计算机应用的两大领域: * 数值应用领域 * 非数值应用领域 数值计算方法是数值应用领域的基
础,其主要工作是要设计和分析各种算 法,这些算法是以数值的形式求解科学 和工程中提出的各种数学问题。它是用 近似的方法来处理各种连续的量、函数 和方程,获得它们的数值解(近似解)。
取适当的初值 x0 ,迭代收敛可得到1个根。
✓ 把非线性问题,通过线性化的方法近似求解。

数值分析 第1章 绪论

数值分析 第1章 绪论

3 x 2 y z 39 2 x 3 y z 34
x 2 y 3 z 26
a11 a21 a n1
a12 a22 an 2
a1n a2 n ann
x1 b1 x2 b2 x b n n
输出 x1, x2 结 束
输出无解信息
二、算法优劣的判别
计算量的大小 例:用行列式解法求解线性方程组: n阶方程组,要计算n + 1个n阶行列式的值, 总共需要做n! (n - 1) (n + 1) 次乘法运算。
n=20 需要运 算多少次? n=100?
存贮量 逻辑结构
§3 误
一、误差的来源与分类
f1 ( x1 , x2 , xn ) 0 f ( x , x , x ) 0 2 1 2 n f n ( x1 , x2 , xn ) 0
记为 F ( x) 0 其中, : D R F
n
R ,
n
x ( x1 , x2 , , xn )
山 东 科 技 大 学 信 息 科 学 与 工 程 学 院
§1
Introduction
数值分析 能够做什么?
应用问题举例
1、一个两千年前的例子
今有上禾三秉,中禾二秉,下禾一秉, 实三十九斗; 上禾二秉,中禾三秉,下禾一秉, 实三十四斗; 上禾一秉,中禾二秉,下禾三秉, 实二十六斗。 问上、中、下禾实一秉各几何? 答曰:上禾一秉九斗四分斗之一。中禾 一秉四斗四分斗之一。下禾一秉二斗四 分斗之三。-------《九章算术》
Axb
2、天体力学中的Kepler方程

数值分析 第1章 绪论 张铁版

数值分析 第1章 绪论  张铁版

3.绝对值太小的数不宜作除数 例7 仿计算机,采用3位十进制,用消元法求解方程组
1.00105 x 1.00y 1.00 1.00x 1.00y 2.00
105 x 1105
1.00001 0.9999899
(2) (1) 10
1.00105 x 1.00 y 1.00 解: x得, 消 5 5 5 (1.00 1.0010 ) y (2.00 1.0010 )
算法1:直接计算 n(n 1) 乘法次数:1+2+ +n= 2 加法次数:n
算法2:秦九韶算法(Hernor算法):
S n an , S k xS k 1 ak , (k n - 1, ,0) P ( x) S . 0 n
乘法次数:n,加法次数:n
( ) n1 Rn ( x) x (n 1)! f
( n1)
截断误差:
舍入误差 R 3.14159 0.0000026. 数制转换、机器数.
§1.3 绝对误差、相对误差与有效数字
定义1 绝对误差,简称误差:
e x * x, 其中x为准确值x *的近似值.
误差限: | e | 的一个上界,即 x * x .
5
y
2 105 1105
1.00 10 x 1.00 y 1.00 x* 0.00, y* 1.00 y 1.00
错.为什么,怎么办?
4.简化计算程序,减少运算次数 减少运算次数可以不但节省时间,而且减少舍入误差. 例8 计算多项式的值 Pn ( x) an x n an1x n1 a1x a0 .
1 1 e1 * I 9 0.0684, ( I 9 ( ) 0.0684) 2 10 10 ( B) * * I n1 1 (1 I n ), n 9,8,,1. n

数值分析课后习题与解答

数值分析课后习题与解答

课后习题解答第一章绪论习题一1.设x>0,x*的相对误差为δ,求f(x)=ln x的误差限。

解:求lnx的误差极限就是求f(x)=lnx的误差限,由公式(1.2.4)有已知x*的相对误差满足,而,故即2.下列各数都是经过四舍五入得到的近似值,试指出它们有几位有效数字,并给出其误差限与相对误差限。

解:直接根据定义和式(1.2.2)(1.2.3)则得有5位有效数字,其误差限,相对误差限有2位有效数字,有5位有效数字,3.下列公式如何才比较准确?(1)(2)解:要使计算较准确,主要是避免两相近数相减,故应变换所给公式。

(1)(2)4.近似数x*=0.0310,是3位有数数字。

5.计算取,利用:式计算误差最小。

四个选项:第二、三章插值与函数逼近习题二、三1.给定的数值表用线性插值与二次插值计算ln0.54的近似值并估计误差限.解:仍可使用n=1及n=2的Lagrange插值或Newton插值,并应用误差估计(5.8)。

线性插值时,用0.5及0.6两点,用Newton插值误差限,因,故二次插值时,用0.5,0.6,0.7三点,作二次Newton插值误差限,故2.在-4≤x≤4上给出的等距节点函数表,若用二次插值法求的近似值,要使误差不超过,函数表的步长h 应取多少?解:用误差估计式(5.8),令因得3.若,求和.解:由均差与导数关系于是4.若互异,求的值,这里p≤n+1.解:,由均差对称性可知当有而当P=n+1时于是得5.求证.解:解:只要按差分定义直接展开得6.已知的函数表求出三次Newton均差插值多项式,计算f(0.23)的近似值并用均差的余项表达式估计误差.解:根据给定函数表构造均差表由式(5.14)当n=3时得Newton均差插值多项式N3(x)=1.0067x+0.08367x(x-0.2)+0.17400x(x-0.2)(x-0.3)由此可得f(0.23)N3(0.23)=0.23203由余项表达式(5.15)可得由于7.给定f(x)=cosx的函数表用Newton等距插值公式计算cos0.048及cos0.566的近似值并估计误差解:先构造差分表计算,用n=4得Newton前插公式误差估计由公式(5.17)得其中计算时用Newton后插公式(5.18)误差估计由公式(5.19)得这里仍为0.5658.求一个次数不高于四次的多项式p(x),使它满足解:这种题目可以有很多方法去做,但应以简单为宜。

第一章 数值计算方法 绪论

第一章  数值计算方法  绪论

er
e x
因为
e x
e x
er
e x
x x
x
e(x x)
(e )2
xx x ( x e )
( 1
e x
)2
e x
相对误差也可正可负
相对误差限——相对误差的绝对值的上界
r
/* relative accuracy */
e x
x x x
r
Def 1.3 (有效数字/*Significant Digits*/ )
0
e
记为
I
* 0
则初始误差
E0
I0
I
0
0.5 108
此公式精确成立
1
e
1 0
xn
e0
dx
In
1 e
1 x n e1 dx
0
1 e(n 1 )
In
1 n1
I 1
1
1
I 0
0.36787944
... ... ... ...
I 10
1
10
I 9
0.08812800
I 11
1 11
I 10
0.03059200
求函数y y(x)在某些点
xi
n i 1
的近似函数值
数学问题 数值问题
数值问题的来源:
实际 问题
建立数学模型
数值 求解 问题
设计高效、可 靠的数值方法
数值 问题
重点讨论
近似结果
输出
上机 计算
程序 设计
可 收敛性:方法的可行性
则数
靠 性
稳定性:初始数据等产生的误差对结果的影响
值分

数值计算方法课后习题答案(李庆扬等) (修复的)

数值计算方法课后习题答案(李庆扬等) (修复的)

,。

第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。

[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x xx x x , 相对误差为****ln ln )(ln )(ln x x x x rδεε==。

2、设x 的相对误差为2%,求n x 的相对误差。

[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而nx 的误差为nn x x nxn x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。

3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。

[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。

4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。

(1)*4*2*1x x x ++;[解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=++∑x x x x x f x x x e nk k k εεεε;(2)*3*2*1x x x ;[解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。

华中科技大学论文规定+格式

华中科技大学论文规定+格式

校研 [2005] 51号华中科技大学博士、硕士学位论文撰写规定学位论文是学位申请人为申请学位而撰写的学术论文,是评判学位申请人学术水平的重要依据和获得学位的必要条件,也是科研领域中的重要文献资料和社会的宝贵财富。

为进一步提高我校博士、硕士学位论文的质量,规范学位论文格式,特作如下规定。

一、基本要求1.硕士学位论文应能表明作者确已在本门学科上掌握了坚实的基础理论和系统的专门知识,并对所研究课题有新的见解,有从事科学研究工作或独立担负专门技术工作的能力。

2.博士学位论文应能表明作者确已在本门学科上掌握了坚实宽广的基础理论和系统深入的专门知识,并具有独立从事科学研究工作的能力,在科学或专门技术上做出了创造性的成果。

3.学位论文一般应用中文撰写,硕士学位论文正文应不少于2万字,博士学位论文正文要求5-8万字。

学位论文内容应立论正确、推理严谨、文字简练、层次分明、说理透彻、数据真实可靠。

4.论文作者应在选题前后阅读有关文献,硕士学位申请人的文献阅读量不少于40篇,其中外文文献至少应占三分之一;博士学位申请人的文献阅读量不少于60篇,其中外文文献至少应占三分之二。

综述部分应对所读文献加以分析和综合。

5.量和单位及其符号均应符合国家标准的规定,国家标准中未规定的,应执行国际标准或行业标准;不同的量必须用不同的符号表示,不得一符多义,含义相同的量则必须用同一符号表示。

学位论文应用最新颁布的汉语简化文字,符合《出版物汉字使用管理规定》;专业术语应统一使用全国自然科学名词审定委员会公布的各学科名词,或本学科权威专著和期刊通用的专业术语,且前后应一致;标点符号的使用应符合国家标准《标点符号用法》的规定;数字的使用应符合国家标准《出版物上数字用法的规定》。

6.图要精选,切忌与文字或表内容重复,图中文字、数据和符号应准确无误且与文字叙述一致,图应有图号和图名,图名应简洁明确且与图中内容相符。

表应有表序和表名,表名应简洁并与内容相符。

第1章数值分析-绪论

第1章数值分析-绪论

实际运算 Er (a) (x a) / a
r / a
例5 a=3.14是π的近似值。
E(a) 3.14 0.002
Er
(a)
0.002
0.002 3.14
6.36942104
三、有效数字 例如 3.14159265...
取3位,a=3.14,δ≤0.002 取5位,a=3.1416,δ≤0.000008
a 10m 0.a1a2...an
a1是1到9中的一个整数, a2,…,an为0到9中的任
意整数。m为整数,

E(a) x a 1 10mn 2
成立,
ห้องสมุดไป่ตู้
则称a近似 x 有n位有效数字。
【注】 近似数的有效数字不但给出了近似值的大小, 而且还指出了它的绝对误差限。
数值分析——绪论
例6 设 x 0.002567, a 0.00256 102 0.256 则 x a 0.00005 1 104
2
因为m=-2,所以n=2, 即a有2位有效数字。
若 a 0.00257 102 0.257

x a 0.000003 0.000005 1 105 2
因为m=-2,所以n=3, 即a有3位有效数字。
例7 设x =8.00001,则a=8.0000具有5位有效数字。
例如,用毫米刻度的米尺测量一长度 x , 读出和该长度接近的刻度 a, a 是 x
的近似值,它的误差限是0.5mm.如读出的长度 是765mm,则
x 765 0.5 764.5 x 765.5
数值分析——绪论
对于一般情形 x a 即
a x a ,有时记为 x=a
例4 绝对误差的局限性例子。

计算方法第一章 绪论

计算方法第一章 绪论

知称道,实为Er际近(x)计似算值时x的通相常对取误差,由于精确值 一般x不*
x* x
Er (x)
作为近似值x的相对误差。
x
若能求出一个正数 ,使r 得
E,r (x则) 称r 为近似r
值x的相对误差限。它是无量纲的数,通常用百分
比表示。
2021/6/26
整理课件
15
例:甲用米尺测量10M长的物体,所产生的绝对 误差为2cm,乙用同一米尺测量1M长的物体,所产 生的绝对误差为1cm,他们谁的测量精度好?
用计算机解决科学计算问题的一般过程,可以概括为:
实际问题→数学模型→计算方法→ 程序设计→上机计算→结果分析
整理课件
由实际问题应用有关科学知识和数学理论建立
数学模型这一过程,通常作为应用数学的任务。 而根据数学模型提出求解的计算方法直到编出程 序上机算出结果,进而对计算结果进行分析,这 一过程则是计算数学的任务,也是数值计算方法 的研究对象。
第二,有可靠的理论分析,能任意逼近并达到精度要 求,对近似算法要保证方法的收敛性和数值稳定性,还要对 误差进行分析,这些都建立在相应数学理论基础上。
第三,要有好的计算复杂性(即时间复杂性和空间复杂 性);时间复杂性好是指节省时间,空间复杂性好是指节省 存储量,这也是建立算法要研究的问题,它关系到算法能否 在计算机上实现。
x x * 0.04 0.05 1 101 2
x 又 (0.3289) 1,故02该不等式又可写为
x x * 1 10 23 2
x 故 有3位有效数字,分别是 3,2,8。 x x 由于 中的数字9不是有效数字,故 不是有效数。
思考: 3.1415有几位有效数字?
2021/6/26

第一章数值计算方法绪论

第一章数值计算方法绪论

er ( y )
e ( y ) f(x)f(x) x xx f ( x ) xx f(x) x

x f(x) f(x)

er (x)
相对误差条件数
注:关于多元函数 yf(x1,x2,...xn ,)可类似讨论, 理论工具:Taylor公式
2、向后误差分析法:把舍入误差的累积与导出 A 的已
数值计算方法
第0章 课程介绍
什么是数值计算方法? 数值计算方法特点 数值计算方法重要性 本课程主要内容 本课程要求
什么是数值计算方法?
实际 问题
建立数学模型
近似结果 输
上机

计算
设计高效、 可靠的数值 方法
程序 设计
什么是数值计算方法? 数值计算方法是一种研究并解决数学问题的数值
若 x 的每一位都是有效数字,则x 称是有效数。
特别地,经“四舍五入”得到的数均为有效数
5.定理:
将 x 近似值 x 表示为 x 0.a 1a2 ak an 10m,
若 x * 有k位有效数字,则
; | er
|
1 2a1
10(k1)
x 反之,若
er
1 , 10(k1) 则
注:(1)
近似数
x
1
,
x
2
四则运算得到的误差分别为
| e(x1 x2)| |e(x1)e(x2)|,
er ( x1 x2 )

e(x1) x1 x2

e(x2) x1 x2
,
(避免两近似数相减)
e
(
x x
1 2
)

x1e(x2) x2e(x1) x22

数值分析第一章绪论习题答案

数值分析第一章绪论习题答案

第一章绪论1设x 0, x的相对误差为「.,求In x的误差。

* * e* x * _x解:近似值x*的相对误差为:.=e*x* x*1 而In x 的误差为e In x* =lnx*「lnx e*x*进而有;(ln x*)::.2•设x的相对误差为2%求x n的相对误差。

解:设f(x—,则函数的条件数为Cp^胡1n A.x nx .又7 f '(x)= nx n」C p|=nn又;;r((x*) n) : C p ;,x*)且e r (x*)为2.;r((x*)n) 0.02 n3 •下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字:X; h.1021 , x;=0.031 , x3 =385.6 x;=56.430, x5 =7 1.0.解:x;=1.1021是五位有效数字;X2 =0.031是二位有效数字;X3 =385.6是四位有效数字;x4 = 56.430是五位有效数字;x5 -7 1.0.是二位有效数字。

4.利用公式(2.3)求下列各近似值的误差限:⑴ 为+X2+X4,(2) x-i x2x3,(3) x2/ x4.* * * *其中X1,X2,X3,x4均为第3题所给的数。

解:*1 4;(x-| ) 102* 1 3;(x 2) 102* 1 1;(x 3) 10 * 1 3;(x 4) 102* 1 1;(x 5) 102 (1);(为 X 2 X 4)=;(为)亠:(x 2)亠:(x 4)=1 10 4 110 J 丄 10^2 2 2= 1.05 10”* * * (2)(X 1X 2X 3)* * * ** * ** *X 1X 2 8(X 3) + X 2X 3 g(xj + X 1X 3 名(X 2)1 1 0.031 汉 385.6 汉?汉10鼻 + 1.1021 域 385.6 汉?汉10(3) XX 2/X 4)X 40.031 110” 56.430 丄 10’2 256.430 56.430=10°5计算球体积要使相对误差限为 1,问度量半径R 时允许的相对误差限是多少? 43解:球体体积为V R 3则何种函数的条件数为=1.1021汉 0.031 汉 * 汉10」+0.215RV' R 4 - R2Ik -3;r(V*) : C pL;r(R*) =3;r(R*)1故度量半径R时允许的相对误差限为;r(R*) 1 :0.3336•设Y0=28,按递推公式丄J783 (n=1,2,…)100计算到Y oo。

(完整版)数值计算方法教案

(完整版)数值计算方法教案

《计算方法》教案课程名称:计算方法适用专业:医学信息技术适用年级:二年级任课教师:***编写时间:2011年 8月新疆医科大学工程学院张利萍教案目录《计算方法》教学大纲 (4)一、课程的性质与任务 (4)二、课程的教学内容、基本要求及学时分配 (4)三、课程改革与特色 (5)四、推荐教材及参考书 (5)《计算方法》教学日历..................................... 错误!未定义书签。

第一章绪论 .. (6)第1讲绪论有效数字 (6)第2讲误差………………………………………………………………………………第二章线性方程组的直接法 (14)第3讲直接法、高斯消去法 (14)第4讲高斯列主元消去法 (22)第5讲平方根法、追赶法 (29)第三章插值法与最小二乘法 (31)第6讲机械求积、插值型求积公式 (32)第7讲牛顿柯特斯公式、复化求积公式 (37)第8讲高斯公式、数值微分 (42)第9讲第10讲第12讲第四章数值积分与数值微分 (48)第11讲欧拉公式、改进的欧拉公式 (48)第12讲龙格库塔方法、亚当姆斯方法 (52)第13讲收敛性与稳定性、方程组与高阶方程 (56)第14讲第15讲第五章微分常微分方程的差分方法 (59)第16讲迭代收敛性与迭代加速 (60)第17讲牛顿法、弦截法 (64)第18讲第19讲第20讲第六章线性方程组的迭代法 (67)第21讲迭代公式的建立 (68)第22讲第23讲第24讲向量范数、迭代收敛性 (71)第25讲《计算方法》教学大纲课程名称:计算方法/Computer Numerical Analysis B学时/学分:54/4先修课程:高等数学、线性代数、高级语言程序设计(如:Matlab语言)适用专业:计算机科学与技术、信息管理与信息系统开课学院(部)、系(教研室):医学工程技术学院、医学信息技术专业一、课程的性质与任务计算方法是一门专业必修课。

有限元与数值模拟-第1章 绪论

有限元与数值模拟-第1章 绪论
1 2
绪论
有限元分析的力学基础 有限元分析的数学求解原理 杆梁结构的有限元分析 连续体弹性问题的有限元分析 有限元法应用中的若干实际考虑 有限元分析的应用领域
2
3
4 5
6
7
1 绪论
绪论
概念 发展
应用
基本思想 有限元分析的步骤及解决工程问题的方式
牵涉的知识(及有限元研究的内容)
1 dy 2 1 2 (1)导出泛函表达式: I [ y( x )] y 0 2 dx 2
1
2 y1 0 dx y(0) 0, y(1) 0
y dx
(2)选择整个求解域内,并满足边界条件的试探函数。

e w
Q

dx
Q

x
x
x
x+△x
e w TP TW Q x 0 TE TP x e x w
8
d 2T Q 0 2 dx
e w TP TW Q x 0 TE T1 P 绪论 /1.1 概念 x e x w
1 绪论/1.2 发展
有限元的发生与发展——工程科学、数学、计算机应用
• 1795年,Gauss提出加权余量法 • 1915年,Galerkin提出权函数与基函数相同的加权余量法—— Galerkin 法,是推导有限元方程的数学方法之一。 • 1870年,L. Rayleigh,1909年Ritz各自独立地提出采用总体试探函数来 近似求解泛函极值问题的方法——瑞利-里兹(Rayleigh-Ritz)方法, 简称为Ritz法,是推导有限元方程的重要方法。 • 1941年,A.hrennikoff,1943年D.McHenry,1949年N.M.Newmark提 出采用简单弹性杆(和梁的)排列代替连续的平面弹性体的方法,即采用 结构力学的离散分析方法解决连续体问题——直接法有限元。 • 1943年,Courant 对Ritz法进行推广,引入三角域上的分片线性试探函 数,结合最小势能原理求解扭转问题,开创了变分法有限元。为有限元研 究奠定了重要的数学基础——数学方面。 • 1946年,电子计算机诞生,并用于杆系结构力学的数值计算。 • 1954-1955年,J.H.Argris发表了一系列论文,将弹性结构的基本能量原 理进行推广和统一,发展了结构力学分析的矩阵方法。1960年出版了《 能量原理和结构分析(Energy Theorems and Structural Analysis)》 14 一书——有限元法雏形。

计算方法_第一章_绪论

计算方法_第一章_绪论

第一章绪论1.1 "数值分析"研究对象与特点"数值分析"是计算数学的一个主要部分.而计算数学是数学科学的一个分支,它研究用计算机求解数学问题的数值计算方法及其软件实现.计算数学几乎与数学科学的一切分支有联系,它利用数学领域的成果发展了新的更有效的算法及其理论,反过来很多数学分支都需要探讨和研究适用于计算机的数值方法.因此,"数值分析"内容十分广泛.但本书作为"数值分析"基础,只介绍科学与工程计算中最常用的基本数值方法,包括线性方程组与非线性方程求根、插值与最小二乘拟合、数值积分与常微分方程数值解法等.这些都是计算数学中最基础的内容.近几十年来由于计算机的发展及其在各技术科学领域的应用推广与深化,新的计算性学科分支纷纷兴起,如计算力学、计算物理、计算化学、计算经济学等等,不论其背景与含义如何,要用计算机进行科学计算都必须建立相应的数学模型,并研究其适合于计算机编程的计算方法.因此,计算数学是各种计算性科学的联系纽带和共性基础,是一门兼有基础性、应用性和边缘性的数学学科.计算数学作为数学科学的一个分支,当然具有数学科学的抽象性与严密科学性的特点,但它又具有广泛的应用性和边缘性特点.现代科学发展依赖于理论研究、科学实验与科学计算三种主要手段,它们相辅相成,互相独立,可以互相补充又都不可缺少,作为三种科学研究手段之一的科学计算是一门工具性、方法性、边缘性的新学科,发展迅速,它的物质基础是计算机(包括其软硬件系统),其理论基础主要是计算数学.计算数学与计算工具发展密切相关,在计算机出现以前,数值计算方法只能计算规模小的问题,并且也没形成单独的学科,只有在计算机出现以后,数值计算才得以迅速发展并成为数学科学中一个独立学科--计算数学.当代计算能力的大幅度提高既来自计算机的进步,也来自计算方法的进步,计算机与计算方法的发展是相辅相成、互相促进的.计算方法的发展启发了新的计算机体系结构,而计算机的更新换代也对计算方法提出了新的标准和要求.例如为在计算机上求解大规模的计算问题、提高计算效率,诞生并发展了并行计算机.自计算机诞生以来,经典的计算方法业已经历了一个重新评价、筛选、改造和创新的过程,与此同时,涌现了许多新概念、新课题和能充分发挥计算机潜力、有更大解题能力的新方法,这就构成了现代意义下的计算数学.这也是数值分析的研究对象与特点.概括地说,数值分析是研究适合于在计算机上使用的实际可行、理论可靠、计算复杂性好的数值计算方法.具体说就是:第一,面向计算机,要根据计算机特点提供实际可行的算法,即算法只能由计算机可执行的加减乘除四则运算和各种逻辑运算组成.第二,要有可靠的理论分析,数值分析中的算法理论主要是连续系统的离散化及离散型方程数值求解.有关基本概念包括误差、稳定性、收敛性、计算量、存储量等,这些概念是刻画计算方法的可靠性、准确性、效率以及使用的方便性.第三,要有良好的复杂性及数值试验,计算复杂性是算法好坏的标志,它包括时间复杂性(指计算时间多少)和空间复杂性(指占用存储单元多少).对很多数值问题使用不同算法,其计算复杂性将会大不一样,例如对20阶的线性方程组若用代数中的Cramer法则作为算法求解,其乘除法运算次数需要,若用每秒运算1亿次的计算机计算也要30万年,这是无法实现的,而用"数值分析"中介绍的Gauss消去法求解,其乘除法运算次数只需3 060次,这说明选择算法的重要性.当然有很多数值方法不可能事先知道其计算量,故对所有数值方法除理论分析外,还必须通过数值试验检验其计算复杂性.本课程虽然只着重介绍数值方法及其理论,一般不涉及具体的算法设计及编程技巧,但作为基本要求仍希望读者能适当做一些计算机上的数值试验,它对加深算法的理解是很有好处的.讲解:(1)计算数学是研究用计算机求解数学问题的数值计算方法及其软件实现,"数值分析"是计算数学的主要部分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数值分析:
线性方程、非线性方程、数值积分、数值微分、 线性方程、非线性方程、数值积分、数值微分、 矩阵特征值、常微分方程、偏微分方程等 矩阵特征值、常微分方程、 预备知识: 预备知识:
数学分析( )、高等代数 数学分析 方法工具: 积分、微分、偏微分等)、高等代数、 方法工具: (积分、微分、偏微分等)、高等代数、概 率统计、工程数学(积分变换、实变函数、复变函数等)、 率统计、工程数学(积分变换、实变函数、复变函数等)、 误差分析、插值法、曲线拟合法(最小二乘法) 误差分析、插值法、曲线拟合法(最小二乘法) 微分几何等 物理学定理公式等
输入输出和面向对象的编程特点,是基于矩阵/ 输入输出和面向对象的编程特点,是基于矩阵/数组的语 言。
• (3)MATLAB的数学函数库包含了大量的计算算法。 MATLAB的数学函数库包含了大量的计算算法。 • (4)MATLAB的图形处理系统能够将二维和三维数组的数 MATLAB的图形处理系统能够将二维和三维数组的数
本课程的目的: 本课程的目的:
应用MATLAB工具实现数值分析的内容和过程 应用MATLAB工具实现数值分析的内容和过程
• 预备知识:高等数学、概率统计、线性代数 预备知识:高等数学、概率统计、 • 教学参考书
– 张学敏、倪虹霞:《MATLAB基础及应用》,中国电 张学敏、倪虹霞:《MATLAB基础及应用》 力出版社,2009年 力出版社,2009年 – 江世宏:《 MATLAB语言与数学实验》,科学出版社, 江世宏:《 MATLAB语言与数学实验》 2007年 2007年 – 朱衡均等:《 MATLAB语言及实践教程》(第2版), 朱衡均等:《 MATLAB语言及实践教程》(第2 清华大学出版社,2009年 清华大学出版社,2009年 – 张磊、毕靖、郭莲英:《MATLAB实用教程》,人民 张磊、毕靖、郭莲英:《MATLAB实用教程》 邮电出版社,2008年 邮电出版社,2008年 – 周建兴等:《 MATLAB从入门到精通》,人民邮电出 周建兴等:《 MATLAB从入门到精通》 版社,2008年 版社,2008年
据用图形表示出来。
• (5)MATLAB应பைடு நூலகம்程序接口使MATLAB语言能与C或 MATLAB应用程序接口使MATLAB语言能与C
FORTRAN等其他编程语言进行交互。 FORTRAN等其他编程语言进行交互。
MATLAB的特点 MATLAB的特点
• 1. 运算功能强大 • 2. 编程效率高 • 3. 强大而智能化的作图功能 • 4. 可扩展性强 • 5. Simulink动态仿真功能 Simulink动态仿真功能
• MATLAB 系 统 由 MATLAB 开 发 环 境 、 MATLAB 语 言 、
MATLAB数学函数库、MATLAB图形处理系统和MATLAB应 MATLAB数学函数库、MATLAB图形处理系统和MATLAB应 用程序接口(API)五大部分组成。 用程序接口(API)五大部分组成。
• (1)MATLAB开发环境是一个集成的工作环境。 MATLAB开发环境是一个集成的工作环境。 • (2)MATLAB语言具有程序流程控制、函数、数据结构、 MATLAB语言具有程序流程控制、函数、数据结构、
MATLAB是一个交互式开发系统,其基本数据单元是矩阵。 是一个交互式开发系统,其基本数据单元是矩阵。 是一个交互式开发系统 MathWorks公司的描述:计算、 MathWorks公司的描述:计算、可视化及编程一体化 公司的描述 版为平台进行介绍。 以MATLAB 7.x和simulink 6.x版为平台进行介绍。 和 版为平台进行介绍
箱实际上是MATLAB的 文件和高级MATLAB语言的集合, 箱实际上是MATLAB的M文件和高级MATLAB语言的集合, 用于解决某一方面的专门问题或实现某一类的新算法。
• 包括应用数学类、统计类、控制系统类、通讯类、信号处
理类、图像处理类、金融工具类等25个常用工具箱。 理类、图像处理类、金融工具类等25个常用工具箱。
常用网址:
• • • • •
• MATLAB的工具箱(Toolbox)是一个专业家族产品,工具 MATLAB的工具箱(Toolbox)是一个专业家族产品,工具
• MATLAB的启动和退出 MATLAB的启动和退出
1
绪 论
MATLAB 是Matrix Laboratory的缩写 的缩写
70年代后期,FORTRAN语言集 70年代后期,FORTRAN语言集 年代后期 1984年 MathWorks公司正式推出的商业化版本, 语言; 1984年,MathWorks公司正式推出的商业化版本,C语言; 公司正式推出的商业化版本 1992年 基于Windows平台的Matlab4.0, 1992年,基于Windows平台的Matlab4.0,…6.5 Windows平台的Matlab4.0 2004年 2004年,7.x
教学内容

• • • • • • • •
绪论 认识MATLAB 第1章 认识MATLAB MATLAB程序设计 第2章 MATLAB程序设计 MATLAB绘图 第3章 MATLAB绘图 MATLAB符号计算 第4章 MATLAB符号计算 第5章 MATLAB数值计算 MATLAB数值计算 第6章 图形用户界面 Simulink仿真 第7章 Simulink仿真 MATLAB综合实训 第8章 MATLAB综合实训
相关文档
最新文档