基因工程的载体和工具酶 PPT课件

合集下载

基因工程ppt课件

基因工程ppt课件
提取某种生物的全部DNA 用适当的限制酶切
一定大小的DNA片段
将DNA片段与: cDNA合成法
+ 第一步,反转录酶以RNA为模板合成一条与RNA互补 的DNA单链,形成RNA-DNA杂交分子。
+ 第二步,核酸酶H使RNA-DNA杂交分子中的RNA链降解, 使之变成单链的的基因主要是指___编__码__蛋__白__质__的__结__构__基__因_
请举出三个以上的例子
供体生物细胞
2、获人工化学合成
限制酶
取出 DNA 用限制酶剪 去与模板互补的DNA双链) 重复循环
16
实际具体过程
17
PCR技术
• 原理: DNA复制 • 前提:
一段已知目的基因的核苷酸序列 • 原料
模板DNA;DNA引物;四种脱氧 核苷酸;热稳定DNA聚合酶 (Taq酶)
• 方式:以_指__数__方式扩增,
PCR扩增仪
即_2_n__(n为扩增循环的次数)
18
1、概念:
基因工程又叫做基因拼接技术或DNA重组技术。 通俗地说,就是按照人们的意愿,把一种生物的某种 基因提取出来,加以修饰改造,然后放到另一种生物 的细胞里,定向地改造生物的遗传性状。
1
2. 基因工程最基本的工具 ──限制性内切酶
以大肠杆菌中的一种叫做EcoRІ的限制酶为例:
限制酶
结果:产生黏性未端(碱基互补配对)。
终止子:位于基因的尾端的 一段特殊的DNA片断,能 终止mRNA的转录
标记基因的作用是为了鉴别 受体细胞中是否含有目的基 因,从而将有目的基因的细
27
1、(多选)一个基因表达载体的构建应包括 ABCD
A.目的基因 B.启动子 C.终止子 D.标记基因

基因工程的概念和主要内容 ppt课件

基因工程的概念和主要内容 ppt课件
笨,没有学问无颜见爹娘 ……” • “太阳当空照,花儿对我笑,小鸟说早早早……”
4
三、基因工程的概念及主要内容
3.1 基因工程的概念 3.2 基因工程的主要内容
3.1 基因工程的概念
基因工程也就是DNA重组技术,是用人工的方法把 不同生物的遗传物质(基因)分离出来,在体外进行 剪切、拼接、重组,形成重组体,然后再把重组体引 入宿主细胞中得以高效表达,最终获得人们所需要的 基因产物。
是相同的
(6)基因可通过复制把遗传信息传递给下一代:经重组的基因一般来说是能传代的
3.2 基因工程的主要内容
与宏观的工程一样,基因工程 的操作也需要经过“切”、“接”、 “检查”等过程,只是各种操作的工 具不同,被操作的对象是肉眼难以直 接观察的核酸分子。
基因工程的概念和主要内容
1
• 一、基因研究的发展过程 • 二、DNA的组成、结构和功能 • 三、基因工程的概念及主要内容 • 四、工具酶和基因载体 • 五、基因工程的基本技术 • 六、基因工程在食品产业中的应用
精品资料
• 你怎么称呼老师? • 如果老师最后没有总结一节课的重点的难点,你
是否会认为老师的教学方法需要改进? • 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭 • “不怕太阳晒,也不怕那风雨狂,只怕先生骂我
• 基因工程研究的理论依据
(1)不同基因具有相同的物质基础:具有遗传功能的特定因彼此之间存在着间隔序列 (3)基因是可以转移的:基因可在不同生物之间转移,或在染色体DNA上移动
(4)多肽与基因之间存在对应关系:普遍认为,一种多肽就有一种相应的基因 (5)遗传密码是通用的:一系列三联密码子同氨基酸之间的对应关系,在所有生物中都

基因工程基本操作过程(ppt 31张)

基因工程基本操作过程(ppt 31张)
基因工程基本操作过程
目的基因与运载体结合
基因工程(genetic engineering)又称
基因拼接技术和DNA重组技术,是以分 子遗传学为理论基础,以分子生物学和 微生物学的现代方法为手段,将不同来 源的基因按预先设计的蓝图,在体外构 建杂种DNA分子,然后导入活细胞,以 改变生物原有的遗传特性、获得新品种、 生产新产品。基因工程技术为基因的结 构和功能的研究提供了有力的手段。 基因工程要素:包括外源DNA,载体分 子,工具酶和受体细胞等
三.基因与载体的连接 4种方法
载体DNA和目的基因DNA的连接,按DNA片
段末端性质不同,可有下述不同的连接方法:
① 粘性末端连接法
② 平端连接法 ③ 同聚物加尾连接法 ④ 人工接头连接法

(一)粘性末端DNA片段的连接
1. 同一限制酶切位点连接: 由同一限制性核酸内切酶切割的不同DNA片段具有完 全相同的末端。只要酶切割产生单链突出的粘性末端 和酶切位点附近的DNA序列不影响连接 .在连接酶的 作用下即可形成重组DNA分子. 上述方法的缺点:由限制酶产生的具有粘性末端的载 体DNA分子,在连接反应中常发生自我环化作用,并 在连接酶的作用下重新变成稳定的共价闭合环状结构。 解决方法:用细菌的碱性磷酸酶预先处理线性的载体 DNA分子,去除其5‘末端的磷酸基。
但方法较繁,需要λ核酸外切酶、S1核酶、末端转
移酶等协同作用 。
同聚物接尾法实际上是一种人工粘性末端连
接法。
优点:通过DNA加尾,既可以使两个具平末端
的DNA片段进行连接,也可以使具平末端的 DNA片段与粘性末端的DNA片段进行连接。
缺点:只对质粒载体有效;质粒和cDNA上的
同聚物长度难以控制相等,影响克隆效率;用 其转化宿主菌的效率依不同菌株而有较大差异。

基因工程-工具酶

基因工程-工具酶

基因敲入
2
能。
利用工具酶将外源DNA片段整合到目标基
因中,实现新基因的表达。
3
基因编辑
通过工具酶修饰目标基因的特定碱基, 实现精确的基因改造。
农业、医药和工业领域的应用
农业
利用基因工程和工具酶,开发抗 虫、抗病、耐旱和高产的转基因 作物。
医药
工具酶在基因治疗中起着关键作 用,用于修复人类遗传病和癌症 等疾病的基因。
基因工程-工具酶
基因工程是利用DNA技术对生物体进行改造的科学,工具酶在基因工程中起 着至关重要的作用。
工具酶的作用
工具酶是基因工程中的重要工具,用于切割、连接和修饰DNA分子,使得科 学家能够精确操控基因。
常用的工具酶类型
限制酶
识别和切割DNA序列,用于定位和克隆特定基因。
连接酶
将不同DNA片段连接在一起,构建重组DNA分子。
修饰酶
对DNA分子进行修饰,如甲基化、去甲基化等。
造极酶
用于扩增DNA序列,如聚合酶链反应(PCR)中 的DNA聚合酶。
工具酶的工作原理
工具酶通过与DNA特定序列的互作用,识别并结合到目标序列上,然后以特 定的方式切割、连接或修饰DNA分子。
பைடு நூலகம்
基因修饰的方法
1
基因敲除
通过工具酶切割目标基因,使其失去功
工业
利用工具酶进行工业发酵,生产 各种化学品、药物和生物燃料。
挑战和限制
• 技术限制:某些DNA序列难以切割或修饰。 • 安全问题:基因修饰可能带来意想不到的风险和后果。 • 伦理考虑:对基因工程的道德和伦理问题需引起广泛关注。 • 法律和监管:基因工程面临严格的法律和监管要求。

基因工程的工具酶(一)

基因工程的工具酶(一)
• 蛋白质结合在DNA片段上,能保护结合部位不被 DNase破坏,DNA分子经酶切作用后遗留下该片 段(亦称“足迹”),进而可以确定它的序列。
RNase
RNase H 作用于DNA-R链的合成。
RNase A 作用于RNA的专一性内切酶,特异 性的作用于嘧啶核苷酸,主要用于除去DNA制 备物中的RNA。
The mechanism of DNA ligase is to form two covalent phosphodiester bonds between 3' hydroxyl ends of one nucleotide with the 5' phosphate end of another. ATP is required for the ligase reaction.
子的末端一个一个地切除核苷酸。
(2)内切核酸酶(Endonuclease),从DNA 分子内部打断磷酸二酯键。内切酶可以在多核苷 酸链内的不同位置水解磷酸二酯键。
内切核酸酶
S1内切核酸酶,来源于米曲霉(Aspergillus oryzae),只切断单链DNA或RNA,产生带5'磷酸的
单链核苷酸或寡核苷酸。对双链DNA、双链RNA和 DNA-RNA杂交体相对不敏感;
子。 (2)连接酶(ligases),将核酸分子连接起来。 (3)聚合酶(polymerases),复制核酸分子的
酶。 (4)修饰酶(modifying enzyme),去除或添
加 化学基团的酶。 (5)拓扑异构酶(topoisomerases),向共价
闭合环状DNA分子中引入或消除超螺旋。
4.1.1 核酸酶(Nuclease)
从牛胰腺中制得的脱氧核糖核酸酶I(DNaseI)既能 够切断单链也能够切断双链。DNaseI是一种非特异的 内切酶,能够打断DNA内部的任意磷酸二酯键。另一 方面,称作限制性内切酶的一组特殊的酶能够在特定 的位点切开双链DNA分子。

基因操作工具酶PPT课件

基因操作工具酶PPT课件

α- 32P-dATP
EcoR I 酶切末端
同位素标记的EcoR I 酶切末端
Back
3.3 Taq DNA聚合酶
显著特点:热稳定性。70℃反应2h残留活性90 %; 93℃ 反应 2 h残留活性60% ;94℃ 反应 2 h残 留活性40%。
应用:(1)对DNA的特定片段进行体外扩增; (2) DNA序列测定。
Back
2 DNA连接酶
2.1 定义及功能 2.2 种类及作用机理 2.3 使用时的注意事项
Home
2.1 定义及功能
DNA连接酶(DNA ligase): 可使一段DNA 3`-OH末端和5`-P 末端
形成3`,5`-磷酸二酯键,把两DNA片段 连在一起封闭双链上形成的切口的酶。
OH P
5`
• 若该微生物有不同的变种和品系,再加上该变种和品系的第一个 字母(大写)
• 若从同一微生物发现多种限制性内切酶,则依照发现和分离的先 后顺序用罗马字母表示。
例如:EcoRⅠ 从大肠杆菌R株分离的第一种限制酶命名为 EcoRⅠ, 其中E 代表属名(Escherichia),co 代表种名(coli), R 代表株系(RY13),Ⅰ 代表该菌株中首次分离到。
应用:缺口平移法制备DNA分子杂交探针
缺口
DNase I DNA聚合酶 I
DNA聚合酶 I dNTP*
缺口
缺口平移法制备DNA分子探针 Back
3.2 Klenow聚合酶
活性: 5`→3`聚合活性,3`→5` 外切酶活性,无5`→3`
外切酶活性。 用途: (1)填补或标记DNA的3`隐蔽末端; (2)催化合成cDNA第二链; (3)DNA序列测定
5-7 bp非对称序 列

基因工程操作的工具酶

基因工程操作的工具酶

也称为Kronberg酶,是Kronberg等1956年发 现的第一个DNA聚合酶。
具有三种酶活性
a、5’ ---3’DNA聚合酶活性
CCGATA-OH E.coli DNA pol I CCGATAGCCT
GGCTATCGGA Mg2+ dNTP
GGCTATCGGA
.
46
b、3’ ---5’ 外切酶活性
.
44
3. DNA聚合酶
分为两类: ①依赖于DNA的DNA聚合酶,包括大肠杆菌
DNA聚合酶I(全酶)、大肠杆菌DNA聚合 酶I的Klenow大片段酶、T4 DNA聚合酶、 T7DNA聚合酶和耐高温的DNA聚合酶等。 ②依赖于RNA的DNA聚合酶,有逆转录酶。
.
45
DNA聚合酶
(1)大肠杆菌DNA聚合酶I (E.coli DNA pol I):
.
21
常见的限制性内切酶
限制性核酸内切酶名称 识别序列和切割点
EcoR Ⅰ
G↓AATTC
HindⅡ
GTPy↓PuAC
Hind Ⅲ
A↓AGCTT
BsuR I
GG↓CC
.
22
Pst Ⅰ Sma Ⅰ Xba Ⅰ Xho Ⅰ BamHⅠ Not Ⅰ
CTGCA↓G CCC↓GGG
T↓CTAGA C↓TCGAG G↓GATCC
.
14
限制性酶的识别序列一般为4~8个核苷 酸,这些序列大多呈回纹结构。
Eco RⅠ识别6个核苷酸序列,在特定的G-A 之间切割DNA分子。 5’ … G↓A –A- T –T – C … 3’ 3’ … C – T –T –A –A↑G … 5’
.
15
Pst Ⅰ酶切 5’ … C – T –G –C–A↓G … 3’ 3’ … G↑A–C – G–T– C… 5’

基因工程第1讲概论课件

基因工程第1讲概论课件
为基因工程技术的诞生典定了理论基础。
理论上的可行性。
41
二、分子遗传学新方法是基因工程的 技术基础(六大技术)
首当其冲的是要解决: ① 如何自如地得到目的基因; ② 如何在体外改造基因,得到重 组体; ③ 如何在体外转移重组基因;
直到20世纪70年代中期,相继出现了 几项关键性技术,梦想成真。
42
实际上的可操作性 材料、实验条件、时空条件、
经济条件和政策。 基础方面的基本条件(可能性+ 可行性+ 可操作性)具备, 尚需人的科学创新 思维+ 艰苦的实践。才能得到创新的发明、 发现
49
1970年, MIT 的 科学家率先提出在体 外把不同来源的遗传 物质进行重组的设想, 但遭到反对, 不予支
50







22
第一节 基因工程的 发生与发展
23
一、基因工程诞生的理论基础
2生物遗传的物质基础是 DNA 肺炎链球菌光滑型和粗糙型的转化 试验
24
● 1944年, 美 国微生物学家 Avery证明基 因就是DNA分 子, 提出 DNA 是遗传信息的 载体。
32
遗 传 密 码 表
目 录33
mRNA分子上从5 至3 的方向,每3个核 苷酸构建一个密码子, 编码某一特定氨基酸或 作为蛋白质合成的起始、终止信号, 称为三联 体密码(triplet codon), 也称遗传密码子(genetic codon)。
解决了信息语言的对应关系。
34
•密码: 43 = 64
14
(4)利用重组DNA技术可以在体外大 量扩增、纯化人们感兴趣的基因, 研 究其结构、功能及调控机制, 从而拓 宽了分子生物学的研究领域。

生物技术课件——基因工程常用工具酶

生物技术课件——基因工程常用工具酶

HO GCA…5’
5’…ACGAATTCGT…3’
T4DNA连接酶 Mg2+,ATP
3’…TGCTTAAGCA…5
反应系统:ATP,Tris-HCl,MgCl2,DTE(二硫赤藓糖醇),ATP, pH7.5,4~15℃
h
28
也可以连接两条平起末端的DNA分子,但反 应速度较慢。
5’…CGAOH
DNA聚合酶在DNA复制时起关键作用。
DNA聚合酶主要有三类:聚合酶Ⅰ(polⅠ)、 聚合酶Ⅱ(polⅡ) ,聚合酶Ⅲ(polⅢ)。其 中聚合酶Ⅰ参与DNA修复,聚合酶Ⅲ参与DNA 复制。聚合酶Ⅰ是基因工程中的常用酶。
h
32
DNA聚合酶Ⅰ在DNh A复制过程中的作用 33
DNA聚合酶Ⅰ和Ⅲ的比较
h
7
2.1.1.2 R-M系统
细菌中存在位点特异性限制酶和特异性甲基化酶,构 成了寄主控制的限制—修饰系统(R-M Restrictionmodification system)。
R-M系统是细菌安内御外的积极措施。细菌R-M系统的 限制酶可以降解DNA,为避免自身DNA的降解,细菌可 以修饰(甲基化酶)自身DNA,未被修饰的外来DNA则 会被降解。
2 基因工程常用工具酶
h
1
基因工程的重要特点之一是在体外实行DNA分子的切 割和重新连接。因此,工具酶是DNA体外操作必不可 少的工具。
取得编码某种药物的目的基因,大多需要工具酶-限 制性核酸内切酶
将目的基因与载体DNA连接在一起,也需要工具酶- DNA连接酶。
目前,许多厂商都在生产各种优质工具酶,简化了分
感染
E.coli k
Phageλ(k)
B 限制 λ(不k感)染』

基因工程-2-载体ppt课件

基因工程-2-载体ppt课件
③易操作,id)
1.柯斯载体的组成
由质粒和λ粘性末端“尾巴”两部分组成。
2.柯斯载体的特点
① 带有抗药性标记 ② 带有质粒的复制起始点 ③ 带有多个限制酶的单一切点 ④ 带有λ噬菌体粘性末端片段
3.cosmid载体的优点
insert) form URA3 auxotrophy selectable marker (yeast) yeast centromeric sequence ARS1 yeast origin of replication
第二节 噬菌体载体
一、 λ噬菌体载体
1. λ噬菌体结构特点: ①线性双链DNA分子 ②可在E.coli中大量繁殖 ③具非必需区(约1/3长度) ④两端具12个核苷酸单链互补粘性末端
⑷ 建立λDNA的体外包装。
噬菌体的包装过程
主要外壳蛋白质 是基因E的产物
连环DNA
头部前体
基因A的产物在cos 位点切割噬菌体 DNA
基因W和FII 的产物组装 蛋白质加完 包含在外壳中的 整的尾部 基因D的产物
λDNA的体外包装
头部基因 (琥珀突变型)
转录复制 蛋白质合成
体外包装的重组DNA比裸 露的DNA导入受体细胞的 效率高100-10000倍
2.酵母菌质粒载体的特点
①含有E.coli质粒的复制起始序列。
②含有酵母的筛选标记(如LEU2) ③具有合适的供外源基因插入的限制酶切割位点。
④酵母菌稳定型质粒载体
着丝粒
Type bacterial origin promoter selectable marker
selectable marker
一 基因工程的基本元件 ------载体
质粒载体
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档