重点高中自主招生数学模拟试题(含答案)

合集下载

2024初升高自主招生数学试卷(四)及参考答案

2024初升高自主招生数学试卷(四)及参考答案

2024初升高自主招生数学模拟试卷(四)一、选择题1.将4046减去它的,再减去余下的,再减去余下的,再减去余下的,…依此类推,直至最后减去余下的则最后余下的数为()A.4B.3C.2D.12.若正实数a,b,c满足不等式组则a,b,c的大小关系为()A.b<a<cB.b<c<aC.c<b<aD.c<a<b3.若实数a,b满足等式2a-b=2a2-2则a b=()A. C. D.44.在Rt△ABC中,∠ABC=90°,AB=2,BC=33,点D是平面内一动点,且上ADB=30°,连CD,则CD长的最大值是()A.8B.9C.10D.115.已知三个实数x1,x2,x3它们中的任何一个数加上其余两数积的6倍总等于7,则这样的三元数组(x1,x2,x3)共有组()A.3B.4C.5D.66.如图,在Rt△ABC中,∠BAC=90°,sin B=45,点D是边BC的中点,以AD为底边在其右侧作等腰△ADE,使∠ADE=∠B,连CE,则CEBC ()A.65 B.56 C.58 D.5127.四边形ABCD 中,AC ,BD 是其两对角线,△ABC 是等边三角形,AD =6,BD =10,CD =8,则∠ADC =()A.30°B.45°C.60°D.75°二、填空题8.已知19个连续整数的和为380,则紧接在这19个数后面的21个连续偶数的和是__.9.已知x =54-,则(2x +1)(x +1)(2x +3)(x +2)=.10.在实数范围内因式分解:a 2-2b 2+3c 2-ab +bc +4ca =.11.在平面直角坐标系xOy 中,点A (4,0),B (4,),连OB ,AB ,若线段OB ,AB 分别交双曲线(0k y k x =>,0)x >于点D ,E (异于点B ),若DE 丄OB ,则k 的值为.12.把两个半径为8和一个半径为9的圆形纸片放在桌面上,使它们两两相外切,若要用一个圆形纸片把这三个圆形纸片完全盖住,则这个大圆形纸片的最小半径等于.13.在菱形ABCD 中,∠A =60°,点E ,F 分别在边AD ,AB 上,将△AEF 沿着EF 对折,使点A 恰好落在对角线BD 上的点G ,若DG =4,BG =6,则△AEF 的面积等于.14.对于任意不为0的实数a ,b ,c 定义一种新运算“#”:①a #a =1;②a #(b #c )=(a #b )c ,则关于x 的方程(x 2)#2=x +4的根为.三、解答题15.回答下列问题:(1)解方程:x =(x 2+4x 一3)2+4x 2+16x 一15;(2)求所有的实数a ,使得关于x 的方程x 2-(2a -1)x +4a -3=0的两根均为整数.16.如图,点E是正方形ABCD的边CD上一动点(异于C,D),连BE,以BE为对角线作正方形BGEF,EF与BD交于点H,连AF.(1)求证:A,F,C三点共线;(2)若CE:DE=1:2,求DHBH的值.17.在平面直角坐标系xOy中,抛物线C1:y=ax2+bx+c(a>0)经过点(0,-3)和(4,-11),且在x轴上截得的线段长为(1)求抛物线C1的解析式;(2)已知点A在抛物线C1上,且在其对称轴右侧,点B在抛物线C1的对称轴上,若△OAB是以OB为斜边的等腰直角三角形,求点A的坐标;(3)将抛物线C1向左平行移动3个单位得到抛物线C2,直线y=kx(k≠0)与C2交于E,F两点,直线2y xk=-与C2交于G,H两点,若M,N分别为线段EF和线段GH的中点,连接MN.求证:直线MN过定点.18.如图,等边△ABC内有一动点D,△CDE是等边三角形(点B,E在直线AC两侧),直线BD与直线AE交于点F.(1)判断∠AFC的大小是否为定值?若是定值,求出其大小;若不是定值,请说明理由.(2)若AB=5,CD=3,求线段AF长的最小值.参考答案1.答案:C解析:令,第二次余下的数为,,.故选:C.2.答案:B解析:由题意可得,因a ,b ,c 均为正实数,于是因此,故选:B.3.答案:A,根据非负性可知,所以故选:A.4.答案:B解析:要使长取到最大,则点C 与点D 位于直线两侧.延长到点E ,使4046=11211123323a a a ⎛⎫⨯-=⨯= ⎪⎝⎭13111,4434a a ⎛⎫⨯-=⨯= ⎪⎝⎭ 1202211114046220232023202220232023a a ⎛⎫⨯-=⨯==⨯= ⎪⎝⎭117,531326c abc c a a b c a ⎧<++<⎪⎪⎪<++<⎨⎪⎪⎪⎩11753132,6153,4a b c c a b c a c a b b ++⎧<<⎪⎪++⎪<<⎨⎪++⎪<<⎪⎩711133356a b c c ++>>>>>>b c a <<(21)20a b -+-=1,22a b ==b a =CD AB CB BE =连,则,,于是点D 在以为直径的圆上(与E 在直线同侧),设圆心为O ,则,当C ,O ,D 三点共线时,长取到最大,最大值为,故选:B.5.答案:C 解析:由条件知①-②得,,所以或.当时,代入③得,又代入①得,消去得,解得于是,或.当,解得或故选:C.6.答案:D解析:由条件知,,所以,所以,又公共,所以,所以也是等腰三角形,于是发现,故选:D.7.答案:A解析:以为一边在四边形外作等边,连,则可证,所以,又,,于是,所以,故选:A.AE 30AEB ∠=︒4AE =AE AB 7OC ==CD 729+=12321331267,67,,67,x x x x x x x x x +=⎧⎪+=⎨⎪+=⎩①②③()()123160x x x --=12x x =316x =12x x =23267x x +=22367x x x +=3x ()()()222161670x x x --+=2x =()()123,,1,1,1x x x =1141,,666⎛⎫ ⎪⎝⎭777,,666⎛⎫--- ⎪⎝⎭3x =121274136x x x x +==1216416x x ⎧=⎪⎪⎨⎪=⎪⎩12x x ⎧=⎪⎪⎨⎪⎪⎩AD BD DC ==B BAD ADE ∠=∠=∠//DE AB CDE B ADE ∠=∠=∠DE ADE CDE ≌△△CDE △CDE BAD ∽△△11552236BC CD AB AB ===⨯=15226CE BD ==⨯=CD ABCD CDE △AE BCD ACE ≌△△10BD AE ==6AD =8DE =222AD DE AE +=90ADE ∠=︒906030ADC ∠=-=︒︒︒8.答案:1050解析:设19个连续整数中最小的整数是,则最大的整数是,,解得,所以紧接在这19个数后面的21个连续偶数分别为30,32,34,,70,.9.答案:42解析:由条件得,又.10.答案:解析:利用待定系数法或双十字相乘法.解析:由条件知,设,则,,又,,所以,,于是于,所以(舍)或12.答案:18解析:要使大圆形纸片的半径最小,只需这个大圆形纸片与三个小圆形纸片均内切,设最小半径大小为r ,则,解得.解析:作于点P ,设,则,,,,n 18n +380=11n = 1050=22540x x +-=()()()()()()()()211232212123x x x x x x x x ⎡⎤⎡⎤++++=++++⎣⎦⎣⎦()()222522536742x x x x =++++=⨯=()()23a b c a b c ++-+:OB y =()D t 2k =2OD t =8OB =60AOB ∠=︒82BD t =-60BED ∠=︒DE =BE =AE ==E ⎛ ⎝k =2=4=t =k =222(8)8(915)r r -=++-18r =FP BD ⊥BP x =PF =2BF x =PF =102AF GF x ==-在中,,即,解得所以14.答案:4或-2解析:令,因,由得,令,由得,于是,所以,解方程得两根分别为4或-2.15.答案:(1)解析:(1)原方程可化为令,则原方程可化为,于是,整理得,所以于是或,当时,,解得当时,,解得综上,原方程的根为(2)不妨设两根为,,则根据韦达定理可知,,于是,所以6PG x=-Rt PFQ △222PF PG GF +=2223(6)(102)x x x +-=-x =AF =AE =AEF △b c a ==#1a a =()()###a b c a b c =#1a a =c b =()()###a b c a b c =()()###a b b a b b =()##1a b b a a ==#a b =)2#2x x =+4x =+x ==()()222434433x x x x x =+-++--243x x t +-=243x t t =+-()224343x t t t x x -=+--+-()2250x t x t -+-=()()50x t x t -++=x t =50x t ++=x t =2330x x +-=x =50x t ++=2520x x ++=x =x =x =1x ()212x x x ≤1221x x a +=-1243x x a =-()121221x x x x -+=-()()12223x x --=因,为整数,,于是,也为整数,且,所以或,当时,解得,此时当时,解得,此时16.答案:(1)见解析解析:证明:(1)在正方形和正方形中,所以,即,所以,所以,又,所以A ,F ,C 三点共线(2)因,设,则,,因,,公共,所以,于是即,解得所以17.答案:(1)(2)或1x 2x 12x x ≤12x -22x -1222x x -≤-122123x x -=⎧⎨-=⎩122321x x -=-⎧⎨-=-⎩122123x x -=⎧⎨-=⎩1235x x =⎧⎨=⎩a =122321x x -=-⎧⎨-=-⎩1211x x =-⎧⎨=⎩12a =ABCD BGEF 45ABD FBE ∠=∠=BE BF==ABD DBF FBE DBF ∠-∠=∠-∠ABF DBE ∠=∠ABF DBE ∽△△45BAF BDC ∠=∠=︒45BAC ∠=︒:1:2CE DE =CE t =2DE t =BD =BE =45BEH BDE ∠=∠=︒DBE ∠BEH BDE ∽△△=2BE BD BH =⋅210t BH =⋅BH =DH BD BH =-=-==263y x x =--()7,4()6,3-(3)解析:(1)由条件可知又,解得所以抛物线的解析式为.(2)当点A 在x 轴上方时,过点A 作轴于点P ,过点B 作直线的垂线,垂足为点Q ,因,,所以,又,,所以,于是.设,则,所以,解得,所以点同理当点A 在x 轴下方时,可求得,综上所述,点A 的坐标为或.(3)由条件知,联立得,于是点,同理可得,设,则,解得所以,其过定点.18.答案:(1)的大小是定值,定值大小为,理由见解析()0,1316411,c a b c ⎧⎪=-⎪⎪++=-⎨=0a >163a b c =⎧⎪=-⎨⎪=-⎩1C 263y x x =--AP x ⊥AP 90OAP BAQ ∠+∠=︒90OAP AOP ∠+∠=︒AOP BAQ ∠=∠OA AB =90OPA AQB ∠=∠=︒OAP ABQ ≌△△AP BQ =()2,63A m m m --3m >2633m m m --=-7m =()7,4A ()6,3A -()7,4()6,3-22:12C y x =-212y kx y x =⎧⎨=-⎩2120x kx --=2,22k k M ⎛⎫ ⎪⎝⎭212,N k k ⎛⎫- ⎪⎝⎭:MN y px q =+222221k k p q p q kk ⎧=+⎪⎪⎨⎪=-+⎪⎩p q ⎧=⎪⎨⎪=⎩22:1k MN y x k-=+()0,1AFC ∠120︒(2)解析:(1)的大小是定值,定值大小为,理由如下:在等边和等边中,,,,于是,即,所以,所以,所以C ,D ,F ,E 四点共圆,所以,于是(2)由(1)知,所以A,F ,C ,B 四点共圆.若最大,则最小.当时,最大,因,,所以,由(1)得,,于是在和中,,所以,所以,于是所以线段长的最小值为.4AFC ∠120︒ABC △CDE △AC BC =CE CD =60ACB DCE CDE ∠=∠=∠=︒ACB ACD DCE ACD ∠-∠=∠-∠ACE BCD ∠=∠ACE BCD ≌△△BDC AEC ∠=∠60CFE CDE ∠=∠=︒180********AFC CFE ∠=-∠=︒-=︒︒︒12060180AFC ABC ︒∠+︒+∠==︒CBF ∠AF CD BF ⊥CBF ∠5AB =3CD =4BD ==ACE BCD ≌△△4AE BD ==90AEC BDC ∠=∠=︒Rt CEF △Rt CDF △CE CD =CF CF=Rt Rt CEF CDF ≌△△30ECF DCF ∠=∠=︒EF =4AF AE EF =-=-AF 4。

高中自主招生数学模拟试题及答案(供参考)

高中自主招生数学模拟试题及答案(供参考)

唐山市 唐山一中 自主招生测试题一、填空题(本大题共10小题,每小题5分,共50分)1.四个实数中,每三个数的和分别为2,4,5,7,则这四个实数的积是2.若实数a 满足42a a -+=,则1a a-的值是 3.如图,三角形ABC 的面积为2,点D 、E 分别在边AB 、AC 上,,AD AE x y AB AC ==,且12y x -=,则三角形BDE 面积的最大值是 4.若关于x 的方程||2||x b a --=有四个实数解,则化简||||||||a b a b a ba b a b a b +-++++-的结果是 5.若非零的实数,,,a x y z满足等式=22x y xy yz zx+++的值是6.如图,在直角三角形ABC 中,4,3AC BC ==,D 是斜边AB 上一动点,DE BC ⊥,DF AC ⊥,垂足分别是,E F ,当EF 的长最小时,cos FED ∠=7.多项式6431x x x -++被2x x -除的余式是 8.已和,,a b c 是互不等的实数,三个方程①20x ax b ++=; ②20x bx c ++=;③20x cx a ++=中,①②有公共根p ,②③有公共根q ,③①有公共根r ,则abc =9.我们有一个结论:对于任何一个正整数n ,若n 是偶数,将其减半;若n 是奇数,将其乘以3加1,不断重复这样的过程,经过若干步后,一定可以得到1.如正整数6n =,按上述规则变换后,可得一列数:6,3,10,5,16,8,4,2,1.如果正整数n 按上述变换后的第8个数是1(n 是第1个数,1可多次出现),则n 的所有可能值的个数是 10.如图的一个无穷数表,其中2014在表中出现的次数是二、解答题(本大题5小题,共70分)11.(本题满分12分)已知点(A B ,函数1533y x =+的图象是直线l ,点(,)P a b 在l 上,满足APB ∠是钝角,试求a 的取值范围.12.(本题满分12分)已知关于x 的函数2y kx =-(1)求k 的取值范围;(2)若函数图象与x 轴有两个不同的交点1(,0),(x x .试A DEA CBDFEl求k 的值,并根据图象指出当13k x k ++≤≤时,函数的最大值和最小值.13.(本题满分12分)如图,点D 是三角形ABC 外接圆上一点,DB 的延长线交过点A 的切线于点E .若AB AC =,AC ∥BD,AE =4DB =,求FC 的长.14.(本题满分16分)如图,点C 在以AB 为直径的⊙O 上,过点B 、C 作圆的切线交于点P ,点Q 是BC 的中点,求证:AB AQ AC AP ⋅=⋅.15.(本题满分18分)编号为1,2,,25的2515号卡片给乙后,甲手中卡片编号的平均数增加0.250.25试题及解答一、填空题(本大题共10小题,每小题5分,共50分)1.四个实数中,每三个数的和分别为2,4,5,7,则这四个实数的积是 解:这四个实数的和为245763+++=,所以这四个数分别是62,64,65,67----,即4,2,1,1-,其积是-8. 2.若实数a 满足42a a -+=,则1a a-的值是 解:去分母得242a a -+,移项得2240a a -+=. t =,则方程变为2340t t +-=,∴1t =或4t =-(舍去).1=得2210a a --=,所以1a a-=2. 3.如图,三角形ABC 的面积为2,点D 、E 分别在边AB 、AC 上,,AD AE x y AB AC ==,且12y x -=,则三角形BDE 面积的最大值是 解:∵(1)(1)2(1)BDEABE ABE ABC BD AES S x S x S x y AB AC∆∆∆∆==-=-=- 221192(1)()212()248x x x x x =-+=-++=--+,∴三角形BDE 面积的最大值是98. 4.若关于x 的方程||2||x b a --=有四个实数解,则化简||||||||a b a b a ba b a b a b +-++++-的结果是 解:显然0a ≥.若0a =,则方程可变为|2|x b -=,方程最多两解,不合题意,所以0a >. 方程可化为|2|x b a -=±.当b a <时,方程可化为|2|x b a -=+,有两解,不合题意. 当b a =时,|2|2,|2|0x a x -=-=,有三解,不合题意.当b a >时,|2|,|2|x b a x b a -=+-=-方程有四解,符合题意.A BD E故0b a >>.从而||1111||||||a b a b a b a b a b a ba b a b a b a b b a a b+-+-+++=+++=-++=+-+-2. 5.若非零的实数,,,a x y z 满足等式=,则22x y xy yz zx+++的值是解:若320x y -=,则=430y z -=; 若430y z -==320x y -=;若320x y -≠且430y z -≠,则由230(32)0y x a x y ->⎧⎨-⎩≥得0a <;由430(43)0y z a y z ->⎧⎨-⎩≥得0a >,矛盾.故320x y -=且430y z -=.于是643x y z ==,可令2,3,4x t y t z t ===,所以 2222222496128x y t t xy yz zx t t t ++==++++12. 6.如图,在直角三角形ABC 中,4,3AC BC ==,D 是斜边AB 上一动点,DE BC ⊥,DF AC ⊥,垂足分别是,E F ,当EF 的长最小时,cos FED ∠=解:连结CD ,则CD EF =,所以EF 的长最小时即为CD 的长最小,此时CD AB ⊥,于是FED FCD B ∠=∠=∠,所以cos cos BC FED B AB ∠===35. 7.多项式6431x x x -++被2x x -除的余式是解:64341(1)(1)(1)(1)1x x x x x x x x x x -++=+-++-++,所以余式是+1x .8.已和,,a b c 是互不等的实数,三个方程①20x ax b ++=; ②20x bx c ++=;③20x cx a ++=中,①②有公共根p ,②③有公共根q ,③①有公共根r ,则abc =解:由20p ap b ++=,20p bp c ++=得,()0a b p b c -+-=,∴c bp a b-=-. 同理a c q b c -=-,b ar c a-=-. ∴1pqr =-.又,,p q r 互不相等,如p q =,则,p q ①③的公共根,于是p q r ==,从而1p q r ===-,代入①②③有1,1,1b a c b a c -=--=--=-,三式相加得03=-,矛盾. 由上述结论可知,①的两根为,p r ;②的两根为,p q ;③的两根为,q r . 由根与系数关系,有,,a pr b pq c rq ===,故222abc p q r ==1.9.我们有一个结论:对于任何一个正整数n ,若n 是偶数,将其减半;若n 是奇数,将其乘以3加1,不断重复这样的过程,经过若干步后,一定可以得到1.如正整数6n =,按上述规A CBDFE则变换后,可得一列数:6,3,10,5,16,8,4,2,1.如果正整数n 按上述变换后的第8个数是1(n 是第1个数,1可多次出现),则n 的所有可能值的个数是 解:反推∴n 的所有可能值的个数是6.2014在表中出现的次数是解:观察知,表中第m 行第n 列的数是1mn +.由12014mn +=得201331161mn ==⨯⨯,m是2013的正约数,所以(,)m n 有8对,从而2014在表中出现的次数是8. 二、解答题(本大题5小题,共70分)11.(本题满分12分)已知点(A B ,函数1533y x =+的图象是直线l ,点(,)P a b 在l 上,满足APB ∠是钝角,试求a 的取值范围.解:以AB 为直径作圆,交l 于点,C D ,则点P 在线段CD 上(不含端点).………4分 设点00(,)C x y ,则00220015(1)335(2)y x x y ⎧=+⎪⎨⎪+=⎩…………………………6分 把(1)代入(2),整理得,220x x +-=,∴2,1x x =-=,……………………………8分 ∴(2,1),(1,2)C D -.故a 的取值范围是21a -<<.……………12分12.(本题满分12分)已知关于x 的函数22(1)3y kx k x k =-+++的图象与x 轴有交点. (1)求k 的取值范围;(2)若函数图象与x 轴有两个不同的交点12(,0),(,0)x x ,且212122(1)34kx k x k x x ++++=.试求k 的值,并根据图象指出当13k x k ++≤≤时,函数的最大值和最小值. 解:(1)当0k =时,函数为23y x =-+,图象与x 轴有交点.…………………2分 当0k ≠时,图象与x 轴有交点的条件是解得1k ≤.…………………………………………………………………………分 综上,k 的取值范围是1k ≤.……………………………………………………4分 (2)12122(1)3,k k x x x x k k+++==.………………………………………………5分 由2112(1)30kx k x k -+++=得,21132(1)kx k k x ++=+,16 81 2 32 464 108 1128 20316 25 l∴212122(1)34kx k x k x x ++++=可化为12122(1)()4k x x x x ++=………………………………………………………8分∴2(1)32(1)4k k k k k+++⋅=⋅解得,1k =或2k =-.…………………………………………………………………10分 但1k =时,函数图象与x 轴仅有一个交点,舍去. 2k =-时,函数为22132212()22y x x x =-++=--+,画图可知当1x -≤≤1时,最大值为32,最小值为3-.…………………………………………………………………………12分13.(本题满分12分)如图,点D 是三角形ABC 外接圆上一点,DB 的延长线交过点A 的切线于点E .若AB AC =,AC ∥BD,AE =4DB =,求FC 的长.解:∵AE 是圆的切线,∴2AE EB ED =⋅.设EB x =,则(4)45x x +=,解得5x =.…………………3分 ∵AE 是圆的切线,∴EAB ACB ∠=∠. ∵AB AC =,∴ACB ABC ∠=∠,∴EAB ABC ∠=∠,∴AE ∥BC ,…………………………5分 又BD ∥AC ,∴四边形AEBC 是平行四边形,………………7分∴5BC AE AC BE ====.又由AC ∥BD 得,BF BDFC AC=45=,解得FC =.…………12分 14.(本题满分16分)如图,点C 在以AB 为直径的⊙O 上,过点B 、C 作圆的切线交于点P ,点Q 是BC 的中点,求证:AB AQ AC AP ⋅=⋅. 证明:连接OP ,则点Q 在OP 上.…………………2分∵OB PB ⊥,OP BC ⊥,∴2PB PQ PO =⋅.…………4分 设PA 交⊙O 于M ,则2PB PM PA =⋅.……………6分 ∴PQ PO PM PA ⋅=⋅, ∴POM ∆∽PAQ ∆, ∴OM AQOP AP=…………………………………………8分 ∴OB AQOP AP=…………………………………………10分 又∵OQ ∥AC , ∴BOP BAC ∠=∠,∴OBP ∆Rt ∽ACB ∆Rt , ∴OB ACOP AB =,………………………………………12分 ∴AQ ACAP AB=,∴AB AQ AC AP ⋅=⋅.…………………………………16分 15.(本题满分18分)编号为1,2,,25的25张卡片分别拿在甲、乙两人手中.甲将手中的15号卡片给乙后,甲手中卡片编号的平均数增加0.25,乙手中卡片编号的平均数也增加0.25,求原来甲、乙手中各有多少张卡片,并写出一种原来甲手中所持卡片的编号数. 解:12325325++++=.…………………………………………………………2分 设乙原来手中有卡片x 张,平均数为y , 则原来甲手中有25x -张卡片,平均数为32525xyx--.…………………………………4分由题意得,150.25(1)13103250.25(2)2425xy y x xy xy xx +⎧=+⎪⎪+⎨--⎪=+⎪--⎩………………………………………6分 由(1)得,59144y x =- (3)……………………………………………………………8分 由(2)得,1(310)(25)(325)(24)(25)(24)4xy x xy x x x --=--+--,22131025253103252424325(25)(24)4xy x x y xy x x y x x ⨯--+=⨯--++--,即11550(25)(24)4xy x x x =----………………………………………………………11分将(3)代入(2)得,259111550(25)(24)444x x x x x -=----, 解得16x =.………………………………………………………………………………15分 故原来甲手中有9张卡片,乙手中有16张卡片.把16x =代入(3),得434y =. 于是甲原来9张卡片总和为325153xy -=,平均数为17.因此,可写出如下一种原来甲、乙手中所持的卡片:甲:13,14,15,16,17,18,19,20,21.…………………………………………………………18分。

2023年上海高中自主招生考试数学全真模拟试卷含详细参考答案

2023年上海高中自主招生考试数学全真模拟试卷含详细参考答案

2023年上海自主招生数学全真模拟试卷(一)一.填空题1.关于x 的一元二次方程2(31)80x a x a +-++=有两个不相等的实数根12,x x ,且121,1x x <>,则实数a 的取值范围为_________2.设x =48(1)x +=________3.若1x x -=,则1064108211x x x x x x ++++++的值为___________4.,x,y 的值分别是_____5.已知平行四边形ABCD 的周长为52,自顶点D 作DE ⟂AB ,DF ⟂BC ,点E 、F 为垂足,若DE=5,DF=8,则BE+BF=__________.6.请将112、16、14、13、512、12、712、23、34填入以下方格,使得每行、每列、每条对角线上的数之和都相等.7.已知梯形的一条底边比另一条底边长100个单位,梯形两腰中点的连线把梯形分成面积比为2:3的两部分.设x 是连接梯形的两腰,平行于梯形底边,并分梯形为面积相等的两部分的线段长度,则x 2=________.8.在△ABC 中,AB=7,BC=8,CA=9,过△ABC 的内切圆圆心I ,作DE||BC ,分别与AB 、AC 相交于点D 、E ,则DE 的长为________.9.实系数二次多项式()p x 满足对所有的实数,都有2222()243x x p x x x -+≤≤-+,已知(11)181p =,则(16)_____p =10.如图,△ABC 的三边长BC=a ,CA=b ,AB=c ,a 、b 、c 都是整数,且a 、b 的最大公约数为2.点G 、I 分别为△ABC 的重心和内心,∠GIC=90°,则△ABC 的周长为________二.解答题.11.若两个不相等的实数a 、b ,使得2a b +与2a b +都是有理数,则称数对(a,b )是和谐的.(1)找出一对无理数,使得(a,b )是和谐的;(2)证明:若(a,b )是和谐的,且a+b 是不等于1的有理数,则a 、b 都是有理数;(3)证明:若(a,b )是和谐的,且a b是有理数,则a 、b 都是有理数.12.试求实数a 、b 使得抛物线21y x ax b =++与22y x bx a =++与x 轴有4个交点,且相邻两个点之间的距离相等.13.如图,C 是线段AB 的中点,△DCE 和△BDF 都是等腰直角三角形,连接AE 、AF ,请猜想∠EAF 的度数并证明.14.已知a+b+c 是a 、b 、c 的倍数,且每个数都不大于2021,则满足条件的(a,b,c )有几组?(3个数顺序不同,视为不同组数)参考答案1.解:题目已知等价于函数2()(31)8f x x a x a =+-++与x 轴的两交点横坐标121,1x x <>即有(1)480,2f a a =+<<-;下图方便同学们理解:2.设1y =≠,则有842842481644(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)4(1),1,(1)125(1)y x y y y y y y y y y y y x x y -==++++++++--===+=-3.由已知得22242211(,717x x x x x x-=+=⇒+=,代入得原式=6424244242828842422242444(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)[(1)](1)(7)742(1)249247x x x x x x x x x x x x x x x x x x x x x x x x +++-++-++==++++++-+-===+--4.原代数式理解为坐标系中点A(-3,-2)B(x ,0)C(0,y )D(1,2),AB+BC+CD 的最小值,AB+BC+CD AD ≥,当点A 、B 、C 、D 共线时取最小值,AD :y=x +1,此时易得x =-1,y=15.①DE 、DF 在外面时,易知AB:BC=8:5,而AB+BC=26,故AB=16,BC=10,而AE=5,CF=8BE+BF=26+13②DE 、DF 在外面时,易知AB:BC=8:5,而AB+BC=26,故AB=16,BC=10,而,CF=86.通分易知分母为12的分数,由三阶幻方的方法得到结果:7.设梯形较短的底长为a ,则其较长的底的长度为a +100,中位线长为a +50,由梯形面积计算公式得(2a +100):(2a +150)=2:3得a =75,设平分梯形面积的线段长为x ,延长两腰交于一点,以75、x 、175为底的三形都相似,相似比为752:x 2:1752,2222275175,18125x x x -=-=8.设ABC 的三边长为a 、b 、c ,内切圆I 的半径为r ,BC 边上的高为h ,则由等面积法可得11()22ah a b c r =++,r a h a b c =++而ADE~ABC 得h r DE h BC -=,DE=()()16(1)3h r a r a b c a h h a b c -+=-==++9.配方得22(1)1()2(1)1x p x x -+≤≤-+,左右两边表示的抛物线顶点都是(1,1),故p(x)的顶点也是(1,1),设2()(1)1p x a x =-+,9(11)181,,(16)4065p a p ===10.如图延长GI ,与边BC 、CA 分别交于点P 、Q ,连接GC ,作GEBC ,GFAC ,设内切圆的半径为r ,BC 、CA 边上的高分别为,a b h h ,易知CP=CQ ,由PQC GPC GQC S S S ,∆∆∆=+,12E GF ()3a b r G h h =+=+,2S 2S 2S 162(),,3ABC ABC ABC ab a b c a b c a b a b∆∆∆=+++=+++而G 、I 不重合,ABC 不是正三角形;不妨设a>b ,(a,b )=2,设a =2m ,b=2n ,(m,n )=1,故612,()|12,|24,14,10,11,ab mn m n a b a b c a b m n=++===++此时周长为35.11.(1)(a,b 112,222-是和谐的.(答案不唯一)(2)由已知22()()()(1)t a b a b a b a b =+-+=-+-是有理数,a+b=s 是有理数,1t a b a b -=+-,解得1()21t a s s =+-是有理数,b=s-a 是有理数.(3)若20a b +=则a b b =-是有理数,因此22()a a b b =+-也是有理数;若20a b +≠,2221()(1()()1a a b b b x a a b b b ++==++是有理数,a y b =也是有理数,因此2211,1y x xy b b xy y x--==--是有理数,因此22()a a b b =+-也是有理数;12.设y 1与x 轴交于x 1,x 2,(x 1>x 2)设y2与x 轴相交于x3,x4,①当y 1与y 2在x 轴的交点不交错时,x 1>x 2>x 3>x 4,(y 1的两个交点都在y 2两交点的右侧),或x 3>x 4>x 1>x 2或x 1>x 3>x 4>x 2,由距离公式可得a=b ,矛盾;②当y 1与y 2在x 轴的交点交错时,即x 1>x 3>x 2>x 4或x 3>x 1>x 4>x 2,此时有x 1-x 3=x 3-x 2=x 2-x 4,x 3为x 1和x 2的中点,即点(,0)2a -,代入得2042a ab a -+=同理2b 042ab b -+=得4,0a b =-=或0,4a b ==-13.分析:题目中出现两个等腰直角三角形和中点,与中点有关的辅助线较多,给同学们很多思考方向,例如倍长中线;而等腰直角三角形性质特殊,也可以由此作为突破点进行思考.而两个等腰直角三角形可构造手拉手模型,亦可构造相似.方法一:构造正方形构造正方形CDGE ,易知△GDF ≌△CDB ,△AEC ≌△FEG,得△EAF 为等腰直角三角形,故∠EAF=45°方法二:手拉手全等延长DC 至G ,使CG=CD ,连接AG 、EG ,易证△CDB ≌△CGA ,而∠CDB=∠CGA ,∠AGE=∠CGA-45°,而∠EDF=45°+∠CDB-90°=∠CDB-45°,故∠AGE=∠EDF ;而AG=DF ,EG=ED ,得△AGE ≌△FDE ,得△AEF 为等腰直角三角形,故EAF=45°方法三:相似三角形取BF的中点G,连接EG、CF、EF,DG:DF=1:√2,CD:DE=1:√2,而∠EDF=∠CDG,故△DEF~△DCG,故CG:EF=1:√2,而CG:AF=1:√2,故EF:AF=1:√2,而∠AFE=45°,故△AEF为等腰直角三角形,故∠EAF=45°14.符合条件的类型为(k,k,k)有2021组,(k,k,2k)有1010X3=3030组,(k,2k,3k)有673X6=4038组,共9089组.。

2024年省示范高中自主招生素质检测数学试题及参考答案

2024年省示范高中自主招生素质检测数学试题及参考答案

学校姓名考场座位号2024年自主招生素质检测数学试题注意事项:1.本试卷满分为150分,考试时间为120分钟㊂2.全卷包括 试题卷 (4页)和 答题卡 (2页)两部分㊂3.答题一律要求用0.5m m 黑色签字笔在答题卡上规定的地方答卷,作图题使用2B 铅笔作答,考试不使用计算器㊂4.考试结束后,请将 试题卷 和 答题卡 一并交回㊂一㊁选择题:共10小题,每小题5分,共50分㊂在每小题给出的四个选项中,只有一项是符合题目要求的㊂1.由5个相同的小立方体搭成的几何体如图所示,现拿走一个小立方体,得到几何体的主视图与左视图均没有变化,则拿走的小立方体是A .①B .②C .③D .④2.黄山景色绝美,景观奇特. 五一 假期,黄山风景区进山游客近13万人,黄山景区门票旺季190元/人,以此计算, 五一 假期黄山景区进山门票总收入用科学计数法表示为A .0.247ˑ107B .2.47ˑ107C .2.47ˑ108D .247ˑ1053.下列因式分解正确的是A .2x 2+y 2+4x y =(2x +y )2B .x 3-2x y +x y 2=x (x -y )2C .x 2-(3y -1)2=(x -1+3y )(x +1-3y )D .a x 2-a y 2+1=a (x +y )(x -y )+14.已知点A (x 1,y 1),B (x 2,y 2)是抛物线y =a x 2-3x +3上两点,当a -x 1-x 2=2时,y 1=y 2,则该抛物线与坐标轴的交点个数为A .3个或0个B .3个或1个C .2个或0个D .2个5.若关于x 的不等式组x +2a <03x +a <15的解集中的任意x 的值,都能使不等式x -4<0成立,则实数a 的取值范围为A .a <-3B .a <-2C .a ȡ-2D .a ȡ36.如图,已知әA B C 中,A D 为øB A C 的平分线,A B =8,B C =6,A C =10,则D C 的值为A .10B .2C .5D .17.如图,B (-2,0),C (4,0),且B E 所在的直线与A C 垂直,øA C B -øB A O =45ʎ,连接O D ,若射线O D 上有一点M ,横坐标为6,则әB O M 的面积为A .3B .6C .23D .728.定义:用M a ,b ,c 表示这三个数的中位数,用M i n {a ,b ,c }表示这三个数的最小数.例如:M {-1,12,0}=0,M i n {-1,12,0}=-1.如果M {4,x 2,2x -1}=M i n {4,x 2,2x -1},则x 的值为A .2或-2B .1或12C .2或12D .1或529.如图,әA B C 中,A B =B C ,øB =120ʎ,E 为平面内一点,若A E =3,C E =2,则B E 的值可能为A .2.5B .3C .0.3D .0.510.如图,直线A B :y =13x +b 与反比例函数y =kx相交于点A (3,5),与y 轴交于点B ,将射线A B 绕点A 逆时针旋转45ʎ,交反比例函数图象于点C ,则点A ㊁B ㊁C 构成的三角形面积为A .12B .1110C .232D .554二㊁填空题:共4小题,每小题5分,共20分㊂11.某市为改善市容,绿化环境,计划经过两年时间,绿地面积增加44%,则这两年平均绿地面积的增长率为.12.若x 9+x 8+ +x 2+x +1=0,则x 的值为.13.定义:对于函数y =l g x (x >0),y 随x 的增大而增大,且l g 10=1,l g xy=l g x -l g y ,l g x y =l g x +l g y .若1a +5b =5,则l g a +l g b 的最大值为.14.已知二次函数y =2x 2+b x +c 图象的对称轴为直线x =34,且过点(3,10),若其与直线y =3交于A ㊁B 两点,与直线y =x +5交于P ㊁Q 两点,则P Q 2A B值为.三㊁解答题:共5题,共80分㊂解答应写出文字说明,证明过程和解题步骤㊂15.(12分)(1)若13a +25b =1,23a +35b =3,求a 2-b 2+8b -172025;(2)先化简再求值:m +2m -m -1m -2ːm -4m 2-4m +4,其中m =2s i n 30ʎ㊃t a n 45ʎ-32t a n 30ʎ.16.(12分)请按以下要求完成尺规作图.(1)如图1,菱形A B C D 中,点P 在对角线B D 上,请作出一对以B D 所在直线为对称轴的全等三角形,使交B A 于点M ,交B C 于点N ,әP B M ɸәP B N .你有几种解法?请在下图中完成;(保留必要作图痕迹,不写作法)(2)如图2,点P 是菱形A B C D 内部一点,请作出一条过点P 的直线,交射线B A ㊁射线B C 于点M ㊁N ,且B M =B N ,聪明的你肯定有多种不同作法?请在下图中完成两种作法,并选择其中一种证明:B M =B N .(保留必要作图痕迹,不写作法)17.(15分)如图,直角三角形A B C中,以直角边A B为直径作圆交A C于点D,过点D作D MʅA B于点M,E为D M的中点,连接A E并延长交B C于点F,B F=E F.(1)求证:C F=B F;(2)求t a nøD E F;(3)若D F=2,求圆的面积.18.(19分)已知四边形A B C D,A B=4,点P在射线B C上运动,连接A P.(1)若四边形A B C D为正方形,点M在A P上,且øA D M=øA P D.请判断A M㊁A P㊁A C之间数量关系,并说明理由;(2)若四边形A B C D为菱形呢?øB=60ʎ,其他条件与(1)同,则(1)中的结论还成立吗?并说明理由;(3)若四边形A B C D为正方形,将线段A P绕点P顺时针旋转90ʎ于P Q,此时D Q的最小值为多少?A Q+D Q的最小值呢?并说明理由.19.(22分)已知抛物线y=a x2+b x+c的顶点坐标为A(1,4),与x轴交点分别为点B㊁C(点B在点C 左侧),与y轴交点为D,一次函数y=k x+4(k>0)与x轴所形成的夹角的正切值为4,方程k x+4=a x2+b x+c有两个相等的实数根.(1)求该抛物线的解析式;(2)点M是该抛物线上一动点,则在抛物线对称轴上是否存在点N,使得以A㊁B㊁M㊁N为顶点的四边形为平行四边形?若存在,请求出所有满足条件的点N坐标及该平行四边形的面积;若不存在,请说明理由;(3)若将该抛物线向左平移1个单位,再向下平移4个单位得到抛物线y',点D关于x轴的对称点为D',若过点D'的直线与y'交于P㊁Q两点(点P在点Q左侧),点Q关于y轴的对称点为Q',若әP Q O与әP Q Q'面积相等,求直线P Q的解析式.2024年自主招生素质检测数学参考答案选择题:共10小题,每小题5分,满分50分㊂题号12345678910答案CBCBCABDAD填空题:共4小题,每小题5分,满分20分㊂11.20% 12.-1 13.1 14.2654.ʌ解析ɔ x 1+x 2=a -2,抛物线的对称轴x =--32a,ʑ32a =a -22⇒a 2-2a -3=0⇒(a +1)(a -3)=0⇒a 1=-1,a 2=3,ʑ①当a 1=-1时,y =-x 2-3x +3,Δ=9+12>0,与坐标轴的交点个数为3个;②当a 2=3时,y =3x 2-3x +3,Δ=9-4ˑ3ˑ3<0,与坐标轴的交点个数为1个.5.ʌ解析ɔ x <-2a ,x <15-a 3,①-2a >15-a 3,解得a <-3,ʑx <15-a 3,ȵx <4,ʑ15-a 3ɤ4,解得a ȡ3(舍去);②-2a ɤ15-a 3,解得a ȡ-3,ʑx <-2a ,ȵx <4,ʑ-2a ɤ4,解得a ȡ-2.6.ʌ解析ɔ 由角平分线定理S әA B D S әA C D =A B ㊃h A C ㊃h =45=B D D C ,ʑ45=6-D C D C ,解得D C =103.7.ʌ解析ɔ øB E O =øB A E +øA B E ,øA C B =øB A O +45ʎ,R t әB O E ʐR t әB D C ,ʑøB E O =øA C B ,ʑøA B D =45ʎ,则әA B D 为等腰直角三角形,A D =B D ,ʑR t әA E D ɸR t әB C D ,ʑA E =B C ,S әA E D =S әB C D ,ʑh 1=h 2,ʑ点D 在øA O C 的角平分线上,M (6,6),S әB O M =2ˑ62=6.8.ʌ解析ɔ 由图像知x 2=2x -1,解得x =1;或2x -1=4,解得x =52.9.ʌ解析ɔ 设B E =x ,将әA B E 绕B 点顺时针旋转120ʎ到әC B E ',C E '=A E =3,øE B E '=120ʎ,B E =B E '=x ,易得E E '=3x ,在әC E E '中,C E '-C E <E E '<C E '+C E ,即3-2<3x <2+3,解得33<x <533.10.ʌ解析ɔ 由题知,直线y =13x +b 与反比例函数y =k x相交于点A(3,5),则13ˑ3+b =5,解得b =4,k =15,法一:直线A C 与y 轴交于点M ,从M 点作直线A B 的垂线,垂足为N ,A M =(m -5)2+32,MN =(4-m )s i n θ=(4-m )310,A M =2MN ,ʑ(m -5)2+9=95(m -4)2⇒5(m -5)2+45=9(m -4)2,2m 2-11m -13=0⇒(2m -13)(m +1)=0,ʑm =132(舍)或m =-1,直线A C 的方程为y =2x -1.2x -1=15x ⇒2x 2-x -15=0⇒(2x +5)(x -3)=0,解得x 1=-52,x 2=3,ʑ点C (-52,-6),S әA B C =5ˑ(3+52)2=554.法二:易知l A B :y =13x +4,设l A C :y =k 2x +b ,由倒角公式得t a n 45ʎ=k 2-k 11+k 1k 2=k 2-131+13k 2=1,k 2-13=13k 2+1,两边平方得k 2=2或k 2=-12(舍),又l A C 过点A ,ʑl A C :y =2x -1(与y 轴交点为M ),与y =15x 联立得x C =-52,ʑS әA B C =12BM |x A -x C |=554.12.ʌ答案ɔ -1ʌ解析ɔ 若x =0,等式不成立,则x ʂ0,等式两边同乘x ,ʑx 10+x 9+x 8+ +x 2+x =0⇒x 10-1=0⇒x 10=1,解得x =ʃ1.当x =1时,等式不成立;当x =-1时,等式成立.13.ʌ解析ɔ l g a +l g b =l ga b ,即求a b 的最大值,12a +54b ȡ212a ㊃54b =258a b ,258a b ɤ5⇒a b ɤ10.14.ʌ解析ɔ 由题知,-b 4=34,解得b =-3,抛物线过点(3,10),代入数据解得c =1,抛物线y =2x 2-3x +1,当y =3时,2x 2-3x +1=3,解得x 1=-12,x 2=2,A B =52,当y =x +5时,2x 2-3x +1=x +5⇒x 2-2x -2=0⇒x 3+x 4=2,x 3x 4=-2,(x 3-x 4)2=(x 3+x 4)2-4x 3x 4=12,P Q =(1+k 2)(x 3-x 4)2=26,P Q 2A B =265.15.(12分)ʌ解析ɔ (1)13a +25b =1, ①23a +35b =3, ②①+②得a +b =4,(2分) a 2-b 2+8b -17=(a +b )(a -b )+8b -17=4a -4b +8b -17=4a +4b -17=-1,(4分)a 2-b 2+8b -17 2025=-1.(6分)(2)原式=m +2m -m -1m -2㊃(m -2)2m -4=m 2-4-(m 2-m )m (m -2)㊃(m -2)2m -4=m -4m (m -2)㊃(m -2)2m -4=m -2m,(8分)m =2ˑ12-32ˑ33=12,(10分) ʑ原式=12-212=-3.(12分) 16.(12分)ʌ解析ɔ (1)提示:作P M ㊁P N 分别垂直于A B ㊁A C ,如图1;(2分)过P 点作MN 垂直于B D ,如图2;(4分)P 作E F ʊB C A B 于点E C D 于点F E M =E P M P 交B C 于点N作法二:先作B M '=B N ',交A B 于点M ',交B C 于点N ',连接M 'N ',将直线M 'N '平移过点P ,交A B 于点M ,交B C 于点N ,即MN 为所求直线,如图4;(8分)选择作法一证明:ȵE M =E P ,ʑøE M P =øE P M ,ȵE F ʊB C ,ʑøE P M =øB NM ,ʑøE M P =øB NM ,ʑB M =B N .(12分)选择作法二证明:ȵB M '=B N ',ʑøB M 'N '=øB N 'M ',M 'N 'ʊMN ,ʑøB MN =øB M 'N ',øB NM =øB N 'M ',ʑøB MN =øB NM ,ʑB M =B N .(12分)(作法不限,合理即可)17.ʌ解析ɔ (1)ȵD M ʊB C ,ʑәA D E ʐәA C F ,әA E M ʐәA F B ,ʑA E A F =D E C F ,A E A F =E M B F,(2分) ȵD E =E M ,ʑC F =B F ;(4分)(2)取A B 的中点O ,即为圆心,连接O F ,设圆O 的半径为r ,延长A B 交D F 延长线于G ,由(1)知,F 为R t әB C D 中斜边B C 的中点,ʑD F =B F =E F ,ʑøF D E =øD E F =øA E M ,ȵøG +øG D M =øE A M +øA E M =90ʎ,则øG =øE A M ,ʑA F =F G ,在әA F G 中,F B ʅA G ,则A B =B G =2r ,A O =r ,O G =3r ,(6分)ȵO F ʊA C ,ʑO G A O =F G D F=3,即F G =3D F ,(8分) ȵD F =B F ,ʑF G =3B F ,ʑc o s øB F G =B F F G =13,ʑt a n øD E F =t a n øE D F =t a n øB F G =B G B F=22;(10分)(3)ȵD F =B F ,ʑB F =2,由(2)知,t a n øB F G =B G B F=22,ʑB G =42,(12分)ȵB G =2r ,ʑr =22.(13分)S 圆O =πr 2=8π.(15分)18.ʌ解析ɔ (1)A C 2=2A M ㊃A P .(2分)理由如下:如图1,ȵøA D M =øA P D ,øD A M =øP A D ,ʑәA D M ʐәA P D ,ʑA D A P =A M A D ,ʑA D 2=A M ㊃A P ,在正方形A B C D 中,A D =22A C,ʑ(22A C )2=A M ㊃A P ,ʑA C 2=2A M ㊃A P .(6分)(2)(1)中的结论不成立.(7分) 理由如下:如图2,ȵøA D M =øA P D ,øD A M =øP A D ,ʑәA D M ʐәA P D ,ʑA D A P =A M A D,ʑA D 2=A M ㊃A P ,ȵ在菱形A B C D 中,øB =60ʎ,则B C =A B =A C =A D ,ʑA C 2=A M ㊃A P .(11分)(3)如图3,过点Q 分别作Q E ʅB C 的延长线于点E ,Q F ʅC D 于点F ,ʑQ F =C E ,设B P =m ,A P =Q P ʑR t әA B P ɸR t әP E Q ,则B P =Q E =m ,A B =P E =4,ȵC E +P C =B P +P C =4,ʑC E =B P =m ,在R t әD F Q 中,Q F =C E =m ,D F =C D -C F =4-m ,(15分) D Q 2=D F 2+Q F 2=(4-m )2+m 2=2m 2-8m +16=2(m -2)2+8,当m =2时,D Q 取得最小值,D Q m i n =22,(17分) 分析易知Q 在C D '上运动,作D 关于C D '的对称点C ',连接Q C ',则(A Q +D Q )m i n =(A Q +Q C ')m i n =A C '=42+82=45.(19分) 19.ʌ解析ɔ (1)由题可知k =4,ʑy =4x +4(2分) 2的顶点坐标为A y =a x -12即4x +4=a (x -1)2+4⇒a x 2-(2a +4)x +a =0有两个相等的实数根,ʑΔ=(2a +4)2-4a 2=0,解得a =-1,ʑ抛物线的解析式为y =-(x -1)2+4=-x 2+2x +3;(5分)(2)设M 点坐标为(m ,-m 2+2m +3),N 点坐标为(1,n ),A (1,4),令-x 2+2x +3=0,解得x 1=-1,x 2=3,所以B (-1,0),C (3,0),(7分)若A B 为对角线,1-12=m +12,解得m =-1(舍去);若A M 为对角线,m +12=1-12,解得m =-1(舍去);若A N 为对角线,1+12=m -12,解得m =3;(9分) 4+n 2=0-m 2+2m +32,解得n =-4,此时M (3,0),N (1,-4),(10分)S ▱A B M N =4ˑ82=16;(12分) (3)由题可知,抛物线y '=-x 2,点D (0,3)关于x 轴的对称点D '(0,-3),直线P Q 过点D ',设直线P Q 的解析式为y P Q =k x -3,若k >0,如图1,S әP Q O =S әP Q Q ',则Q 'O ʊP Q ,则әQ 'H O ɸәQ H D ',所以O H =12O D '=32,H (0,-32),所以Q (62,-32),Q '(-62,-32),直线P Q 的解析式为y P Q =62x -3;(16分)若k <0,如图2,过点Q '作直线l ʊP Q ,取l 与y 轴交点M ,作O L ʅP Q 于点L ,MH ʅP Q 于点H ,所以O L ʊHM ,S әP Q O =S әP Q O ',所以O L =HM ,所以四边形O L MH 为平行四边形,则对角线互相平分,所以M (0,-6),同理,әD 'K Q ɸәM K Q ',所以D 'K =K M =12D 'M =32,所以K (0,-92),(20分) 因为点Q 的纵坐标为-92,所以Q (322,-92),直线P Q 的解析式为y P Q =-22x -3.(21分)综上,直线P Q 的解析式为y P Q =6x -3或y P Q =-2x -3.分)。

高中自主招生数学试题及答案

高中自主招生数学试题及答案

高中自主招生数学试题及答案一、选择题(每题3分,共15分)1. 下列哪个数是无理数?A. πB. √2C. 0.33333(无限循环)D. 1/32. 已知函数f(x) = 2x^2 + 3x - 5,求f(-2)的值。

A. -15B. -9C. -3D. 13. 一个圆的半径为5,求其面积。

A. 25πB. 50πC. 75πD. 100π4. 已知等差数列的前三项分别为1,4,7,求第10项的值。

A. 26B. 27C. 28D. 295. 一个三角形的内角和为多少度?A. 180°B. 360°C. 540°D. 720°二、填空题(每题2分,共10分)6. 若a,b,c是三角形的三边长,且满足a^2 + b^2 = c^2,那么这个三角形是_________三角形。

7. 一个函数的导数f'(x) = 3x^2 - 2x,当x=1时,其导数的值为_________。

8. 已知等比数列的首项为2,公比为3,求其第5项的值是_________。

9. 一个正方体的体积为27,它的边长是_________。

10. 圆的周长公式为C = 2πr,若半径r=4,则周长为_________。

三、解答题(共75分)11. 解一元二次方程:x^2 - 5x + 6 = 0。

(10分)12. 证明:若a,b,c是实数,且a + b + c = 0,则(1/a) + (1/b) + (1/c) ≥ 9。

(15分)13. 已知函数f(x) = x^3 - 3x^2 + 2,求其导数并讨论其在x=1处的单调性。

(20分)14. 解不等式:|x - 2| + |x + 3| ≥ 5。

(15分)15. 已知一个圆的圆心在原点,半径为1,求圆上任意一点到直线y = x的距离。

(15分)四、结束语本试题旨在考察学生对高中数学基础知识的掌握情况和解题能力。

希望同学们在解答过程中能够认真思考,仔细作答,展现出自己的数学素养。

省级重点高中自主招生数学真题8套(含答案)

省级重点高中自主招生数学真题8套(含答案)

省重点高中自主招生数学真题8套(含答案)第1套一、选择题(每小题5分,满分30分。

以下每小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的。

请将正确选项的代号填入题后的括号里,不填、多填或错填得0分。

)1、已知实数a 、b 、c 满足0254=-+-+++a b c b a ,那么bc ab +的值为( ) A 、0B 、16C 、-16D 、-32 2、设βα、是方程02322=--x x 的两个实数根,则βααβ+的值是( )A 、-1B 、1C 、32-D 、32 3、a 、b 、c 均不为0,若0<=-=-=-abc cxz b z y a y x ,则),(bc ab p 不可能在( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限4、在ABC ∆中,C B ∠=∠2,下列结论成立的是( ) A 、AB AC 2= B 、AB AC 2< C 、AB AC 2> D 、AC 与AB 2大小关系不确定5、已知关于x 的不等式7<a x 的解也是不等式12572->-aa x 的解,则a 的取值范围 是( )A 、910-≥aB 、910->a C 、0910<≤-a D 、0910<<-a 6、如图,□ DEFG 内接于ABC ∆,已知ADE ∆、EFC ∆、DBG ∆的面积为1、3、1,那么□ DEFG 的面积为( ) A 、32B 、2C 、3D 、4 第6题图二、填空题(每小题5分,共30分)1、已知质数x 、y 、z 满足5719=-yz x ,则z y x ++= 。

2、已知点A (1,3),B (4,-1),在x 轴上找一点P ,使得AP -BP 最大,那么P 点的坐标是 。

3、已知AB 是⊙O 上一点,过点C 作⊙O 的切线交直线AB 于点D ,则当△ACD 为等腰三解形时,∠ACD 的度数为 。

重点高中自主招生数学试题3含答案

重点高中自主招生数学试题3含答案

重点高中自主招生数学模拟试题3(A 卷共100分)一、选择题:(每小题3分,共30分) 姓名 成绩一、选择题:(每小题3分,共30分) 1、下列四个点中,在双曲线x2y =上的点是( )。

A 、(1,1) B 、(-1,2) C 、(1,-2) D 、(1,2) 2、 .一元二次方程2210x x --=的根的情况为( )A.有两个相等的实数根 B.有两个不相等的实数根 C.只有一个实数根 D.没有实数根3、某几何体的三视图如下所示,则该几何体可以是( ).4、Rt△ABC 中,∠C=90°,已知cosA=35,那么tanA 等于( )A.43 B 。

34 C.45 D.545、现有2008年奥运会福娃卡片20张,其中贝贝6张,京京5张,欢欢4张,迎迎3张,妮妮2张,每张卡片大小、质地均匀相同,将画有福娃的一面朝下反扣在桌子上,从中随机抽取一张,抽到京京的概率是 ( ) A 、101 B 、103 C 、41 D 、516、如图,是一水库大坝横断面的一部分,坝高h =6m ,迎水斜坡AB =10m ,斜坡的坡角为α,则tan α的值为( )A 、53 B 、54 C 、34 D 、43 7、如图所示,在菱形ABCD 中,AC 、BD 相交于点O ,E 为AB 中点,若OE =3,则菱形ABCD 的周长是( ).A 、12B 、18C 、24D 、308、下列命题中,假命题是( )A .平行四边形的对角线互相平分 B .矩形的对角线相等C .等腰梯形的对角线相等D .菱形的对角线相等且互相平分 9、如图,AB 是⊙O 直径,130AOC ∠=,则D ∠=( )A .65 B .25 C .15 D .3510、二次函数2y ax bx c =++的图像如图所示,则点c Q a b ⎛⎫ ⎪⎝⎭,在( )A .第一象限B .第二象限C .第三象限D .第四象限二、填空题:(每小题4分,共16分)将答案直接写在该题目中的横线上. 11.在Rt ABC △中,90C ∠=,5AC =,4BC =,(第10题图)yxO D B O A C(第9题图)A B C O E (第7题图) ABq h (第6题图)O xAB 11y则=A cos .12、小华在解一元二次方程042=-x x 时,只得出一个根是4=x , 则被他漏掉的一个根是=x13、如图,⊙O 的半径是10cm ,弦AB 的长是12cm ,OC 是⊙O 的 半径且OC AB ⊥,垂足为D ,则CD =__________cm 。

高中自主招生数学模拟试卷(解析版)

高中自主招生数学模拟试卷(解析版)

【解答】 解:∵ 0< x< 1, ∴取 x= ,
∴ = 2, x2= ,
∴ x2< x< ,
故选: C. 【点评】 本题考查了不等式的性质,有理数的大小比较的应用,能选择适当的方法比较整式的大 小是解此题的关键.
4.( 4 分)初三体育素质测试,某小组
编号
1
2
5 名同学成绩如下所示,有两个数据被遮盖,如图:
A .4 米
B.3.8 米
C. 3.6 米
D. 3.4 米
10.( 4 分)如图,三角形 ABC 和 DEF 是两个形状大小完全相同的等腰直角三角形,∠
B=∠ DEF
= 90°,点 B,C,E,F 在同一直线上,现从点 C,E 重合的位置出发,让三角形 ABC 在直线 EF
上向右作匀速运动, 而 DEF 的位置不动, 设两个三角形重合部分的面积为 y,运动的距离为 x,下
3
4
5
方差
平均成绩
得分
38
34

37
40

37
那么被遮盖的两个数据依次是(

A .35, 2
B.36, 4
C. 35,3
D. 36,3
5.( 4 分)若代数式
y2+y﹣ 2= 0,则代数式
32
y +4 y +y+2014
的值为(

A .2020
B.2025
C. 2014
D. 2015
6.( 4 分)下列命题正确的是(
27.( 14 分)在平面直角坐标系中,抛物线 与 y 轴交于点 C.
y=ax2﹣ 5ax+4 a 与 x 轴交于 A、B( A 点在 B 点的左侧)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

F重点中学自主招生数学模拟试题答题时注意:1、试卷满分150分;考试时间:120分钟.2、试卷共三大题,计16道题。

考试结束后,将本卷及演算的草稿纸一并上交。

一、选择题(共5小题,每题6分,共30分.以下每小题均给出了代号为A,B,C,D 的四个选项,其中有且只有一个选项是正确的.请将正确选项的代号填入题后的括号内.不填、多填或错填均不得分)1、如果关于x 的方程2230x ax a -+-=至少有一个正根,则实数a 的取值范围是( ) A 、22<<-a B 、23≤<a C 、23≤<-a D 、23≤≤-a 2、如图,已知:点E 、F 分别是正方形ABCD 的边BC AB 、的中点,DF BD 、分别交CE 于点H G 、,若正方形ABCD 的面积是240,则四边形BFHG 的面积等于……………………( ) A 、26 B 、28 C 、24 D 、303 、设z y x 、、是两两不等的实数,且满足下列等式:66633633)()(z x x y x z x x y x ---=-+-,则代数式xyz z y x 3333-++的值是………………… ( )A 、0B 、1C 、3D 、条件不足,无法计算4、如图,四边形BDCE 内接于以BC 为直径的⊙A ︒=∠=∠=30,53cos ,10BCE BCD BC ,则线段DE 的长是………………… ( )A 、89B 、73C 、4+33D 、3+435、某学校共有3125名学生,一次活动中全体学生被排成 一个n 排的等腰梯形阵,且这n 排学生数按每排都比前一排 多一人的规律排列,则当n 取到最大值时,排在这等腰梯形阵最外面的一周的学生总人数是………………… ( )A 、296B 、221C 、225D 、641二、填空题:(共5小题,每题6分,共30分)6、已知:实常数d c b a 、、、同时满足下列两个等式:⑴0cos sin =-+c b a θθ; ⑵0sin cos =+-d b a θθ(其中θ为任意锐角),则d c b a 、、、之间的关系式是:。

7、函数4433221-+-+-+-=x x x x y 的最小值是 。

8、已知一个三角形的周长和面积分别是84、210,一个单位圆在它的内部沿着三边匀速无摩擦地滚动一周后回到原来的位置(如图),则这个三角形的内部以及边界没有被单位圆滚过的部分的面积是 。

9、已知:253+=x ,则2可用含x 的有理系数三次多项式来表示为:2= 。

10、设p 、q 、r 为素数,则方程 2223r q p p ++= 的所有可能的解p 、q 、r 组成的三元数组( p , q , r )是 。

三、解答题(共6题,共90分)11、(本题满分12分)赵岩,徐婷婷,韩磊不但是同班同学,而且是非常要好的朋友,三个人的学习成绩不相伯仲,且在整个年级中都遥遥领先,高中毕业后三个人都如愿的考入自己心慕以久的大学.后来三个人应母校邀请给全校学生作一次报告.报告后三个人还出了一道数学题:有一种密码把英文按字母分解,英文中的26a b c z L L ,,,,个字母(不论大小写)依次用12326L ,,,,这26个自然数表示,并给出如下一个变换公式:⎪⎩⎪⎨⎧+++=的正偶数)是不超过其中的正奇数)是不超过其中26(13]21[26(1]2[x x x xy ;已知对于任意的实数x ,记号[x ]表示不超过x 的最大整数;将英文字母转化成密码,如1713]218[8=++→,即q h 变成 ,再如61]211[11=+→,即f k 变成。

他们给出下列一组密码:etwcvcjw ej ncjwwcabqcv ,把它翻译出来就是一句很好的临别赠言。

现在就请你把它翻译出来,并简单地写出翻译过程。

D12、(本题满分15分)如果有理数m 可以表示成22562y xy x +-(其中y x 、是任意有理数)的形式,我们就称m 为“世博数”。

⑴ 个“世博数”b a 、之积也是“世博数”吗?为什么?⑵ 证明:两个“世博数”b a 、(0≠b )之商也是“世博数”。

13、(本题满分15分)如图,在四边形ABCD 中,已知△ABC 、△BCD 、△ACD 的面积之比是3∶1∶4,点E 在边AD 上,CE 交BD 于G ,设k EADEGD BG ==。

⑴求32207+k 的值; ⑵若点H 分线段BE 成2=HEBH的两段,且2222p DH BH AH =++,试用含p 的代数式表示△ABD 三边长的平方和。

14、(本题满分16分)观察下列各个等式:ΛΛΛ,304321,14321,521,112222222222=+++=++=+=。

⑴你能从中推导出计算222224321n +++++Λ的公式吗?请写出你的推导过程; ⑵请你用⑴中推导出的公式来解决下列问题:已知:如图,抛物线322++-=x x y 与x 、y 轴的正半轴分别交于点B A 、,将线段OAn 等分,分点从左到右依次为1654321-n A A A A A A A 、、、、、、、Λ,分别过这1-n 个点作x 轴的垂线依次交抛物线于点1654321-n B B B B B B B 、、、、、、、Λ,设△1OBA 、 △211A B A 、△322A B A 、△433A B A 、…、△A B A n n 11--的面积依次为n S S S S S 、、、、、Λ4321 。

①当2010n =时,求123452010S S S S S S ++++++L 的值;②试探究:当n取到无穷无尽时,题中所有三角形的面积和将是什么值?为什么?15、(本题满分16分)有如图所示的五种塑料薄板(厚度不计):①两直角边分别为3、4的直角三角形ABC;36的等腰三角形JKL;②腰长为4、顶角为︒120的等腰三角形OMN;③腰长为5、顶角为︒④两对角线和一边长都是4且另三边长相等的凸四边形PQRS;⑤长为4且宽(小于长)与长的比是黄金分割比的黄金矩形WXYZ。

它们都不能折叠,现在将它们一一穿过一个内、外径分别为2.4、2.7的铁圆环。

我们规定:如果塑料板能穿过铁环内圈,则称为此板“可操作”;否则,便称为“不可操作”。

⑴证明:第④种塑料板“可操作”;⑵求:从这五种塑料板中任意取两种至少有一种“不可操作”的概率。

Y16、(本题满分16分)定义:和三角形一边和另两边的延长线同时相切的圆叫做三角形这边上的旁切圆。

如图所示,已知:⊙I 是△ABC 的BC 边上的旁切圆,F E 、分别是切点,IC AD ⊥于点D 。

⑴试探究:F E D 、、三点是否同在一条直线上?证明你的结论。

⑵设,6,5===BC AC AB 如果△DIE 和△n EF DE =,试作出分别以m nn m 、为6的一个一元二次方程。

F2012年重点中学自主招生数学模拟试题一参考答案与评分标准一、选择题(共5小题,每题6分,共30分.以下每小题均给出了代号为A,B,C,D 的四个选项,其中有且只有一个选项是正确的.请将正确选项的代号填入题后的括号内.不填、多填或错填均不得分)1、如果关于x 的方程2230x ax a -+-=至少有一个正根,则实数a 的取值范围是( C ) A 、22<<-a B 、23≤<a C 、23≤<-a D 、23≤≤-a 2、如图,已知:点E 、F 分别是正方形ABCD 的边BC AB 、的中点,DF BD 、分别交CE 于点H G 、,若正方形ABCD 的面积是240,则四边形BFHG 的面积等于……………………( B ) A 、26 B 、28 C 、24 D 、303 、设z y x 、、是两两不等的实数,且满足下列等式:66633633)()(z x x y x z x x y x ---=-+-,则代数式xyz z y x 3333-++的值是………………… ( A )A 、0B 、1C 、3D 、条件不足,无法计算4、如图,四边形BDCE 内接于以BC 为直径的⊙A ︒=∠=∠=30,53cos ,10BCE BCD BC ,则线段DE 的长是………………… ( D )A 、89B 、73C 、4+33D 、3+435、某学校共有3125名学生,一次活动中全体学生被排成 一个n 排的等腰梯形阵,且这n 排学生数按每排都比前一排 多一人的规律排列,则当n 取到最大值时,排在这等腰梯形阵最外面的一周的学生总人数是………………… ( B )A 、296B 、221C 、225D 、641二、填空题:(共5小题,每题6分,共30分。

不设中间分)6、已知:实常数d c b a 、、、同时满足下列两个等式:⑴0cos sin =-+c b a θθ;⑵0sin cos =+-d b a θθ(其中θ为任意锐角),则d c b a 、、、之间的关系式是: 2222d c b a +=+ 。

7、函数4433221-+-+-+-=x x x x y 的最小值是 8 。

8、已知一个三角形的周长和面积分别是84、210,一个单位圆在它的内部沿着三边匀速无摩擦地滚动一周后回到原来的位置(如图),则这个三角形的内部以及边界没有被单位圆滚过的部分的面积是 84—π 。

9、已知:253+=x ,则2可用含x 的有理系数三次多项式来表示为:2=x x 611613+-。

10、设p 、q 、r 为素数,则方程 2223r q p p ++= 的所有可能的解p 、q 、r 组成的三元数组( p , q , r )是 )3,3,3( 。

三、解答题(共6题,共90分。

学生若有其它解法,也按标准给分)11、(本题满分12分)赵岩,徐婷婷,韩磊不但是同班同学,而且是非常要好的朋友,三个人的学习成绩不相伯仲,且在整个年级中都遥遥领先,高中毕业后三个人都如愿的考入自己心慕以久的大学,后来三个人应母校邀请给全校学生作一次报告。

报告后三个人还出了一道数学题:有一种密码把英文按字母分解,英文中的26a b c z L L ,,,,个字母(不论大小写)依次用12326L ,,,,这26个自然数表示,并给出如下一个变换公式:⎪⎩⎪⎨⎧+++=的正偶数)是不超过其中的正奇数)是不超过其中26(13]21[26(1]2[x x x xy ;已知对于任意的实数x ,记号[x ]表示不超过x 的最大整数。

将英文字母转化成密码,如1713]218[8=++→,即q h 变成 ,再如61]211[11=+→,即f k 变成。

他们给出下列一组密码:etwcvcjw ej ncjwwcabqcv ,把它翻译出来就是一句很好的临别赠言。

现在就请你把它翻译出来,并简单地写出翻译过程。

相关文档
最新文档