2019高考数学《函数的图像》题型专题汇编

合集下载

专题07 函数的图象-2019年高考数学(理)母题题源系列(全国Ⅲ专版)(解析版)

专题07 函数的图象-2019年高考数学(理)母题题源系列(全国Ⅲ专版)(解析版)

【母题原题1】【2019年高考全国Ⅲ卷理数】函数3222x xx y -=+在[]6,6-的图像大致为 A . B .C .D .【答案】B【解析】设32()22x xx y f x -==+,则332()2()()2222x x x x x x f x f x ----==-=-++,所以()f x 是奇函数,图象关于原点成中心对称,排除选项C .又34424(4)0,22f -⨯=>+排除选项D ;36626(6)722f -⨯=≈+,排除选项A ,故选B . 【名师点睛】本题通过判断函数的奇偶性,缩小考察范围,通过计算特殊函数值,最后做出选择.本题较易,注重了基础知识、基本计算能力的考查.【母题原题2】【2018年高考全国Ⅲ卷理数】函数422y x x =-++的图像大致为【答案】D【解析】函数过定点()0,2,排除A ,B ,求得函数的导数()32()42221f 'x x x x x =-+=--,由()0f 'x >得()22210x x -<,得2x <-或02x <<,此时函数单调递增,排除C ,故选D .【名师点睛】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及0,0,,x x x x +-→→→+∞→-∞时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.【命题意图】本类题通常主要考查识图、辨图的能力.【命题规律】这类试题在考查题型上主要以选择题的形式出现.常见的命题角度有:(1)知图选式;(2)知式选图.【答题模板】1.知图选式(1)从图象的左右、上下分布,观察函数的定义域、值域;(2)从图象的变化趋势,观察函数的单调性;(3)从图象的对称性方面,观察函数的奇偶性;(4)从图象的循环往复,观察函数的周期性.利用上述方法,排除、筛选错误与正确的选项.2.知式选图(1)从函数的定义域,判断图象左右的位置;从函数的值域,判断图象上下的位置;(2)从函数的单调性(有时可借助导数判断),判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的周期性,判断图象的循环往复;(5)从函数的极值点判断函数图象的拐点.识图与辨图是一个比较综合的问题.解答该类问题的关键是要充分从解析式与图象中发现有价值的信息,最终使二者相吻合.【方法总结】1.根据函数解析式识别函数图象(1)直接根据函数解析式作出函数图象,或者根据图象变换作出函数图象.(2)利用间接法,从如下几个方面入手:①从函数的定义域判断图象的左右位置,从函数的值域判断图象的上下位置;②从函数的奇偶性判断图象的对称性,如奇函数的图象关于原点对称,偶函数的图象关于y轴对称;③从函数的单调性判断图象的变化趋势;④从函数的周期性判断图象的循环往复;⑤从特殊点出发,排除不符合要求的选项.灵活应用上述方法,可以很快判断出函数的图象.2.根据实际背景、图形判断函数图象以实际背景、图形为依托,判断其中某两个量构成的函数的图象时,一是根据已知条件求出函数解析式,进而判断函数的图象(定量分析),二是根据自变量取不同值时函数值的变化、增减速度等判断函数图象(定性分析).注意实际问题中的定义域的限制.排除法是解决利用函数图象判断问题的主要方法,即根据选项的差异性选取函数性质的某一个方面,如函数的单调性、函数图象与两坐标轴的交点位置、函数值的符号等排除干扰项,从而得出正确的结果.提醒:对于函数图象的识别问题,需要注意以下三关:(1)取“特殊点关”,即根据已知函数的解析式选取特殊的点,判断选项中的图象是否经过这些点,若不满足则排除;(2)用“性质关”,即根据选项中的图象特点,结合函数的奇偶性、单调性等来排除选项;(3)用“极限思想关”,即应用极限思想来处理,达到巧解妙算的效果,使解题过程费时少,准确率高.【备考建议】通过本题求解过程中出现的失误,在备考中我们要关注以下几点:(1)平时涉及函数图象的问题时,要规范准确地画出图象,切忌不用尺规草草完成.(2)加强通过解析式分析其图象的对称性、周期性等性质的训练以提高解决这类问题的能力.(3)训练由图分析其函数性质的解题技巧.1.【四川省成都七中2019届高三5月高考模拟测试数学】函数ln|| ()x f x xx=+的图像大致为A .B .C .D .【答案】A【解析】由题意知,函数ln ||()x f x x x=+,满足ln ||ln ||()()()x x f x x x f x x x--=-+=-+=--, 所以函数()y f x =为奇函数,图像关于原点对称,所以B 选项错误; 又因为(1)10f =>,所以C 选项错误; 又因为ln 2(2)202f =+>,所以D 选项错误,故选A . 【名师点睛】本题主要考查了函数图像的识别问题,其中解答中熟记函数的奇偶性的判定方法,以及准确运算特殊点的函数值是解答的关键,着重考查了推理与运算能力,属于基础题.2.【四川省双流中学2019届高三第一次模拟考试数学】函数()1e xf x x-=的大致图像为A .B .C .D .【答案】B【解析】函数的定义域为{}|0 x x ≠,()()()112e 1e x x xf x f x x x--'-=⇒=, 当1x >时,()0f x '>,所以()f x 单调递增;当01,0x x <<<时,()0f x '<,所以()f x 单调递减,显然当0x >时,()0f x >;当0x <时,()0f x <,综上所述,本题选B .【名师点睛】本题考查了识别函数的图像.解决此类问题从定义域、值域、单调性、奇偶性、周期性、对称性入手,经常要用导数研究单调性、极值、零点. 3.【四川省内江市2019届高三第三次模拟考试数学】函数()1cos f x x x x ⎛⎫=+⎪⎝⎭在[)(]3,00,3-上的图像大致是A .B .C .D .【答案】A【解析】f (–x )=(–x 1x -)cos (–x )=–(x 1x+)cos x =–f (x ),函数是奇函数,图像关于原点对称,排除C ,D ;f (1)=2cos1>0,排除B ,故选A .【名师点睛】本题主要考查函数图像的识别和判断,利用函数奇偶性和对称性的关系,利用排除法是解决本题的关键.4.【四川省华文大教育联盟2019届高三第二次质量检测考试数学】函数()()23ln 1x f x x +=的大致图像是A .B .C .D .【答案】A【解析】由题意可知函数()f x 为奇函数,可排除B 选项; 当0x <时,()0f x <,可排除D 选项; 当1x =时,()1ln 2f =,当3x =时,ln10ln10(3),ln 22727f =>, 即()()13f f >,可排除C 选项,故选A .【名师点睛】本题考查了函数图像的判断,函数对称性的应用,属于中档题. 5.【四川省宜宾市2019届高三第二次诊断性考试数学】函数()1sin ln 1x f x x x -=⋅+的大致图像为A .B .C .D .【答案】D【解析】()()111sin lnsin ln sin ln 111x x x f x x x x f x x x x --+--=-⋅=-⋅=⋅=-+-+,则函数()f x 是偶函数,图像关于y 轴对称,排除A ,C ,()13sin3ln 02f =<,排除B ,故选D .【名师点睛】本题主要考查函数图像的识别和判断,利用函数的奇偶性和对称性以及函数值的符号是否对应,利用排除法是解决本题的关键.6.【2019年四川省达州市高三一诊数学】函数()2log 1y x =+与函数3223y x x =-+在区间[]0,1上的图像大致是A .B .C .D .【答案】A【解析】函数()2log 1y x =+的图像可以由函数2log y x =(过点(1,0),(2,1))的图像向左平移一个单位长度(过点(0,0),(1,1))得到.对于函数3223y x x =-+,得2'66y x x =-+,令2()66f x x x =-+,则()126f 'x x =-+,当102x <<时,()0f 'x >,即函数()f x 的单调递增,从而函数3223y x x =-+增长越来越快,其图像在此区间越来越陡峭; 当112x <<时,()0f 'x <,即函数()f x 的单调递减,从而函数3223y x x =-+增长越来越慢,其图像在此区间越来越平缓,故选A .【名师点睛】本题考查了函数的图像及用函数二阶导研究函数陡峭及平缓程度,属中档题.7.【四川省内江市2019届高三第一次模拟考试数学】函数()()21=ln 2ex f x x -+-的图像大致是A .B .C .D .【答案】C【解析】因为函数的定义域为R ,故排除B ,因为()10ln20ef =->,所以排除C , 当x →+∞时,因为指数函数比对数函数增长速度要快, 所以当x →+∞时,有()()21ln 2e0x f x x -=+-<,所以排除D ,故选A .【名师点睛】该题是一道判断函数图像的题目,总体方法是对函数解析式进行分析,注意从函数的定义域、图像所过的特殊点以及对应区间上函数图像的变化趋势,来选出正确的结果,注意对不正确的选项进行排除.8.【四川省成都市实验外国语学校2019届高三二诊模拟考试数学】函数()233sin 22f x x x x ππ⎛⎫=-≤≤ ⎪⎝⎭的图像大致为【答案】D 【解析】因为()()233sin 22x f x x x f x ππ-≤≤-=-=-,,所以()f x 为奇函数,排除A ,C , 又因为3322x ππ-≤≤时,()32f x f π⎛⎫≤ ⎪⎝⎭,故选D .9.【贵州省遵义市绥阳中学2019届高三模拟(二)数学】函数24cos 2xy x =+π的部分图像大致是A .B .C .D .【答案】C【解析】由题意,因为()24cos2x f x x =+π,所以()()()()24cos 2x f x f x x --==-+π,所以函数()24cos2x f x x =+π是偶函数,图像关于y 轴对称,排除选项D ; 又因为当0x =时,2y =π,所以排除选项A ; 令1x =,则4cos2+1y =π,则0y <,故选C . 【名师点睛】本题主要考查了具体函数图像的识别问题,其中解答中熟练应用函数的奇偶性和特殊点的函数值进行合理排除是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.10.【贵州省黔东南州2019届高三下学期第一次模拟考试数学】函数()222x xf x x -=--的图像大致为A .B .C .D .【答案】B【解析】()()f x f x -=,()f x ∴为偶函数,排除C ,又()10f <,()30f >,()40f <,从而排除A ,D ,故选B .【名师点睛】本题考查函数图像的识别与函数的奇偶性,根据函数的奇偶性和特殊值验证,即可得出结果,属于基础题型.11.【贵州省2019届高三上学期高考教学质量测评卷(一)数学】函数lncos 22y x x ππ⎛⎫=-<< ⎪⎝⎭的图像是A .B .C .D .【答案】B【解析】由函数的解析式可知函数为偶函数,则函数图像关于y 轴对称,选项A ,C 错误; 当3x π=时,1lncos ln 032y π==<,选项D 错误;故选B . 12.【四川省棠湖中学2019届高三4月月考数学】函数21010()x xf x x --=的图像大致为 A . B .C .D .【答案】 B【解析】f (x )定义域为R ,且f (–x )=21010x xx --=–f (x ), ∴f (x )是奇函数,图像关于原点对称,排除A ;又当x >0时,10x >1>10–x ,∴f (x )>0,排除D ,当x →+∞时,f (x )→+∞,排除C ,故选B .13.【四川省乐山市高中2019届高三第三次调查研究考试数学】函数y =2x sin2x 的图像可能是A .B .C .D .【答案】D【解析】令()2sin2xf x x =, 因为x ∈R ,()()()2sin22sin2x x f x x x f x --=-=-=-, 所以()2sin2x f x x =为奇函数,排除选项A ,B ; 因为π,π2x ⎛⎫∈ ⎪⎝⎭时,()0f x <,所以排除选项C ,选D . 14.【云南省玉溪市第一中学2019届高三上学期第二次调研考试数学】2ln ||()x f x x x=-,则函数y =f (x )的大致图像为A .B .C .D .【答案】A【解析】由题f (x )既不是奇函数也不是偶函数,排除B ,C ,当0<x <1时,ln|x |<0,f (x )>0,排除D ,故选A .【名师点睛】此类题一般通过函数定义域,奇偶性,某一区间的单调性和特殊值点等巧选图像,避免大量计算.15.【西藏自治区拉萨中学2019届高三第六次月考数学】函数21()ln(4)e x f x x -=+-的图像大致是A .B .C .D .【答案】B【解析】当0x =时,()10ln 40ef =->,所以可排除C ,D 选项, 当3x =时,()22e 3ln13e ln13ln e f =-=-,22e e 4e 2216>>=2e ln e ln16∴>, ()2e 3ln13ln e 0f ∴=-<,可知()()030f f ⋅<,故()f x 在()0,3上存在零点,所以可排除A 选项,故选B .【名师点睛】本题考查由解析式判断函数图像,解决此类问题通常采用排除法,通过单调性、奇偶性、特殊值、零点的方式排除错误选项,得到最终结果.16.【西藏自治区拉萨中学2019届高三第五次月考数学】函数()2ln f x x x x =+-的图像大致为A .B .C .D .【答案】C【解析】当0x >时,()2ln f x x x x =+-,则()221'x x f x x -+=, 由于2210x x -+>恒成立,故()'0f x >,函数()f x 在区间()0,+∞上单调递增,据此排除选项D ;当0x >时,()()2ln f x x x x =-+-,则()221'x x f x x -+=, 由于2210x x -+>恒成立,故()'0f x <,函数()f x 在区间(),0-∞上单调递减,据此排除选项AB ;故选C .【名师点睛】函数图像的识辨可从以下方面入手:(1)从函数的定义域,判断图像的左右位置;从函数的值域,判断图像的上下位置.(2)从函数的单调性,判断图像的变化趋势.(3)从函数的奇偶性,判断图像的对称性.(4)从函数的特征点,排除不合要求的图像.利用上述方法排除、筛选选项.。

2019高考数学《函数的图像》题型专题汇编

2019高考数学《函数的图像》题型专题汇编

2019高考数学《函数的图像》题型专题汇编题型一 作函数的图象1、分别画出下列函数的图象:(1)y =|lg(x -1)|; (2)y =2x +1-1; (3)y =x 2-|x |-2; (4)y =2x -1x -1.解 (1)首先作出y =lg x 的图象,然后将其向右平移1个单位,得到y =lg(x -1)的图象,再把所得图象在x 轴下方的部分翻折到x 轴上方,即得所求函数y =|lg(x -1)|的图象,如图①所示(实线部分).(2)将y =2x 的图象向左平移1个单位,得到y =2x +1的图象,再将所得图象向下平移1个单位,得到y =2x+1-1的图象,如图②所示.(3)y =x 2-|x |-2=⎩⎪⎨⎪⎧x 2-x -2,x ≥0,x 2+x -2,x <0,其图象如图③所示.(4)∵y =2+1x -1,故函数的图象可由y =1x 的图象向右平移1个单位,再向上平移2个单位得到,如图④所示.题型二 函数图象的辨识1、函数y =x 2ln|x ||x |的图象大致是( )答案 D解析 从题设解析式中可以看出函数是偶函数,x ≠0,且当x >0时,y =x ln x ,y ′=1+ln x ,可知函数在区间⎝⎛⎭⎫0,1e 上单调递减,在区间⎝⎛⎭⎫1e ,+∞上单调递增.由此可知应选D.2、设函数f (x )=2x ,则如图所示的函数图象对应的函数解析式是( )A .y =f (|x |)B .y =-|f (x )|C .y =-f (-|x |)D .y =f (-|x |) 答案 C解析 题图中是函数y =-2-|x |的图象,即函数y =-f (-|x |)的图象,故选C. 3、函数f (x )=1+log 2x 与g (x )=⎝⎛⎭⎫12x在同一直角坐标系下的图象大致是( )答案 B解析 因为函数g (x )=⎝⎛⎭⎫12x 为减函数,且其图象必过点(0,1),故排除A ,D.因为f (x )=1+log 2x 的图象是由y =log 2x 的图象上移1个单位得到的,所以f (x )为增函数,且图象必过点(1,1),故可排除C ,故选B. 4、函数f (x )=⎝⎛⎭⎫21+e x -1·sin x 的图象的大致形状为( )答案 A解析 ∵f (x )=⎝ ⎛⎭⎪⎫21+e x -1·sin x ,∴f (-x )=⎝ ⎛⎭⎪⎫21+e -x -1·sin(-x ) =-⎝ ⎛⎭⎪⎫2e x1+e x -1sin x =⎝ ⎛⎭⎪⎫21+e x -1·sin x =f (x ),且f (x )的定义域为R , ∴函数f (x )为偶函数,故排除C ,D ;当x =2时,f (2)=⎝ ⎛⎭⎪⎫21+e 2-1·sin 2<0,故排除B , 只有A 符合.5、若函数f (x )=(ax 2+bx )e x 的图象如图所示,则实数a ,b 的值可能为( )A .a =1,b =2B .a =1,b =-2C .a =-1,b =2D .a =-1,b =-2解析:选B.令f (x )=0,则(ax 2+bx )e x =0,解得x =0或x =-b a ,由图象可知,-b a >1,又当x >-ba 时,f (x )>0,故a >0,结合选项知a =1,b =-2满足题意,故选B.6、如图,有四个平面图形分别是三角形、平行四边形、直角梯形、圆.垂直于x 轴的直线l :x =t (0≤t ≤a )经过原点O 向右平行移动,l 在移动过程中扫过平面图形的面积为y (图中阴影部分),若函数y =f (t )的大致图象如图所示,那么平面图形的形状不可能是( )解析:选C.由y =f (t )的图象可知面积递增的速度先快后慢,对于选项C ,后半程是匀速递增,所以平面图形的形状不可能是C.7、函数f (x )=|x |+ax2(其中a ∈R )的图象不可能是( )解析:选C.当a =0时,函数f (x )=|x |+ax 2=|x |,函数的图象可以是B ;当a =1时,函数f (x )=|x |+a x 2=|x |+1x2,函数的图象可以是A ;当a =-1时,函数f (x )=|x |+a x 2 =|x |-1x 2,x >0时,|x |-1x 2=0只有一个实数根x =1,函数的图象可以是D ;所以函数的图象不可能是C.故选C.8、已知f (x )=⎩⎨⎧-2x ,-1≤x ≤0,x ,0<x ≤1,则下列函数的图象错误的是( )解析:选D.在坐标平面内画出函数y =f (x )的图象,将函数y =f (x )的图象向右平移1个单位长度,得到函数y =f (x -1)的图象,因此A 正确;作函数y =f (x )的图象关于y 轴的对称图形,得到y =f (-x )的图象,因此B 正确;y =f (x )在[-1,1]上的值域是[0,2],因此y =|f (x )|的图象与y =f (x )的图象重合,C 正确;y =f (|x |)的定义域是[-1,1],且是偶函数,当0≤x ≤1时,y =f (|x |)=x ,这部分的图象不是一条线段,因此选项D 不正确.故选D.9、如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP =x .将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为( )答案 B解析 当x ∈⎣⎡⎦⎤0,π4时,f (x )=tan x +4+tan 2x ,图象不会是直线段,从而排除A ,C ;当x ∈⎣⎡⎦⎤π4,3π4时,f ⎝⎛⎭⎫π4=f ⎝⎛⎭⎫3π4=1+5,f ⎝⎛⎭⎫π2=2 2.∵22<1+5, ∴f ⎝⎛⎭⎫π2<f ⎝⎛⎭⎫π4=f ⎝⎛⎭⎫3π4,从而排除D ,故选B.10、已知函数f (x )的图象如图所示,则f (x )的解析式可以是( )A .f (x )=ln|x |xB .f (x )=e xx C .f (x )=1x 2-1 D .f (x )=x -1x答案 A解析 由函数图象可知,函数f (x )为奇函数,应排除B ,C.若函数为f (x )=x -1x ,则x →+∞时,f (x )→+∞,排除D ,故选A.11、函数f (x )=e x -e -xx 2的图象大致为( )答案 B解析 ∵y =e x -e -x 是奇函数,y =x 2是偶函数,∴f (x )=e x -e -xx 2是奇函数,图象关于原点对称,排除A 选项.当x =1时,f (1)=e -e -11=e -1e >0,排除D 选项.又e>2,∴1e <12,∴e -1e >32,排除C 选项.故选B.12、已知定义在区间[0,4]上的函数y =f (x )的图象如图所示,则y =-f (2-x )的图象为( )答案 D解析 方法一 先作出函数y =f (x )的图象关于y 轴的对称图象,得到y =f (-x )的图象; 然后将y =f (-x )的图象向右平移2个单位,得到y =f (2-x )的图象;再作y =f (2-x )的图象关于x 轴的对称图象,得到y =-f (2-x )的图象.故选D.方法二 先作出函数y =f (x )的图象关于原点的对称图象,得到y =-f (-x )的图象;然后将y =-f (-x )的图象向右平移2个单位,得到y =-f (2-x )的图象.故选D. 方法三 当x =0时,y =-f (2-0)=-f (2)=-4.故选D.题型三 函数图象的应用命题点1 研究函数的性质1、已知函数f (x )=x |x |-2x ,则下列结论正确的是( ) A .f (x )是偶函数,单调递增区间是(0,+∞) B .f (x )是偶函数,单调递减区间是(-∞,1) C .f (x )是奇函数,单调递减区间是(-1,1) D .f (x )是奇函数,单调递增区间是(-∞,0) 答案 C解析 将函数f (x )=x |x |-2x ,去掉绝对值,得f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2-2x ,x <0,画出函数f (x )的图象,如图,观察图象可知,函数f (x )的图象关于原点对称,故函数f (x )为奇函数,且在(-1,1)上单调递减.2、已知函数f (x )=|log 3x |,实数m ,n 满足0<m <n ,且f (m )=f (n ),若f (x )在[m 2,n ]上的最大值为2,则nm =________. 答案 9解析 作出函数f (x )=|log 3x |的图象,观察可知0<m <1<n 且mn =1.若f (x )在[m 2,n ]上的最大值为2,从图象分析应有f (m 2)=2, ∴log 3m 2=-2,∴m 2=19.从而m =13,n =3,故nm=9.3、若函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <-1,ln (x +a ),x ≥-1的图象如图所示,则f (-3)等于___解析:由图象可得a (-1)+b =3,ln(-1+a )=0,所以a =2,b =5,所以f (x )=⎩⎪⎨⎪⎧2x +5,x <-1,ln (x +2),x ≥-1,故f (-3)=2×(-3)+5=-1.答案:-14、已知f (x )=2x -1,g (x )=1-x 2,规定:当|f (x )|≥g (x )时,h (x )=|f (x )|;当|f (x )|<g (x )时,h (x )=-g (x ),则h (x )( )A .有最小值-1,最大值1B .有最大值1,无最小值C .有最小值-1,无最大值D .有最大值-1,无最小值答案 C解析 画出y =|f (x )|=|2x -1|与y =g (x )=1-x 2的图象,它们交于A ,B 两点.由“规定”,在A ,B 两侧,|f (x )|≥g (x ),故h (x )=|f (x )|;在A ,B 之间,|f (x )|<g (x ),故h (x )=-g (x ).综上可知,y =h (x )的图象是图中的实线部分,因此h (x )有最小值-1,无最大值.5、已知函数f (x )=⎩⎪⎨⎪⎧|x |,x ≤m ,x 2-2mx +4m ,x >m ,其中m >0.若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是____________. 答案 (3,+∞)解析 在同一坐标系中,作y =f (x )与y =b 的图象.当x >m 时,x 2-2mx +4m =(x -m )2+4m -m 2,所以要使方程f (x )=b 有三个不同的根,则有4m -m 2<m ,即m 2-3m >0.又m >0,解得m >3.6、不等式3sin ⎝⎛⎭⎫π2x -12log x <0的整数解的个数为________.答案 2解析 不等式3sin ⎝⎛⎭⎫π2x -12log x <0,即3sin ⎝⎛⎭⎫π2x <12log x .设f (x )=3sin ⎝⎛⎭⎫π2x ,g (x )=12log x ,在同一坐标系中分别作出函数f (x )与g (x )的图象,由图象可知,当x 为整数3或7时,有f (x )<g (x ),所以不等式3sin ⎝⎛⎭⎫π2x -12log x <0的整数解的个数为2.7、已知函数f (x )=⎩⎪⎨⎪⎧sin πx ,0≤x ≤1,log 2 020x ,x >1,若实数a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则a +b +c 的取值范围是__________. 答案 (2,2 021)解析 函数f (x )=⎩⎪⎨⎪⎧sin πx ,0≤x ≤1,log 2 020x ,x >1的图象如图所示,不妨令a <b <c ,由正弦曲线的对称性可知a +b =1,而1<c <2 020,所以2<a +b +c <2 021.8、已知点A (1,0),点B 在曲线G :y =ln x 上,若线段AB 与曲线M :y =1x 相交且交点恰为线段AB 的中点,则称B 为曲线G 关于曲线M 的一个关联点.那么曲线G 关于曲线M 的关联点的个数为________.解析:设B (x 0,ln x 0),x 0>0,线段AB 的中点为C ,则C ⎝⎛⎭⎪⎫x 0+12,ln x 02,又点C 在曲线M 上,故ln x 02=2x 0+1,即ln x 0=4x 0+1.此方程根的个数可以看作函数y =ln x 与y =4x +1的图象的交点个数.画出图象(如图),可知两个函数的图象只有1个交点. 答案:19、已知y =f (x )是定义在R 上的偶函数,当x ≥0时,f (x )=x 2-2x . (1)求当x <0时,f (x )的解析式;(2)作出函数f (x )的图象,并指出其单调区间; (3)求f (x )在[-2,5]上的最小值,最大值.解:(1)设x <0,则-x >0,因为x >0时,f (x )=x 2-2x .所以f (-x )=(-x )2-2·(-x )=x 2+2x .因为y =f (x )是R 上的偶函数,所以f (x )=f (-x )=x 2+2x . (2)函数f (x )的图象如图所示:由图可得:函数f (x )的单调递增区间为(-1,0)和(1,+∞);单调递减区间为(-∞,-1)和(0,1). (3)由(2)中函数图象可得:在[-2,5]上,当x =±1时,取最小值-1,当x =5时,取最大值15. 10、已知函数f (x )=x |m -x |(x ∈R ),且f (4)=0. (1)求实数m 的值; (2)作出函数f (x )的图象;(3)根据图象指出f (x )的单调递减区间;(4)若方程f (x )=a 只有一个实数根,求a 的取值范围. 解:(1)因为f (4)=0,所以4|m -4|=0,即m =4.(2)f (x )=x |x -4|=⎩⎪⎨⎪⎧x (x -4)=(x -2)2-4,x ≥4,-x (x -4)=-(x -2)2+4,x <4,f (x )的图象如图所示.(3)f (x )的单调递减区间是[2,4].(4)从f (x )的图象可知,当a >4或a <0时,f (x )的图象与直线y =a 只有一个交点,方程f (x )=a 只有一个实数根,即a 的取值范围是(-∞,0)∪(4,+∞). 命题点2 解不等式1、 函数f (x )是定义在[-4,4]上的偶函数,其在[0,4]上的图象如图所示,那么不等式f (x )cos x<0的解集为________________.答案 ⎝⎛⎭⎫-π2,-1∪⎝⎛⎭⎫1,π2 解析 当x ∈⎝⎛⎭⎫0,π2时,y =cos x >0.当x ∈⎝⎛⎭⎫π2,4时,y =cos x <0. 结合y =f (x ),x ∈[0,4]上的图象知,当1<x <π2时,f (x )cos x <0.又函数y =f (x )cos x 为偶函数,所以在[-4,0]上,f (x )cos x <0的解集为⎝⎛⎭⎫-π2,-1, 所以f (x )cos x<0的解集为⎝⎛⎭⎫-π2,-1∪⎝⎛⎭⎫1,π2. 2、定义在R 上的奇函数f (x ),满足f ⎝⎛⎭⎫-12=0,且在(0,+∞)上单调递减,则xf (x )>0的解集为________. 解析:因为函数f (x )是奇函数,在(0,+∞)上单调递减,且f ⎝⎛⎭⎫-12=0,所以f ⎝⎛⎭⎫12=0,且在区间(-∞,0)上单调递减,因为当x <0,若-12<x <0时,f (x )<0,此时xf (x )>0,当x >0,若0<x <12时,f (x )>0,此时xf (x )>0,综上xf (x )>0的解集为⎝⎛⎭⎫-12,0∪⎝⎛⎭⎫0,12. 答案:⎝⎛⎭⎫-12,0∪⎝⎛⎭⎫0,12 命题点3 求参数的取值范围1、已知函数()12log ,020x x x f x x >⎧⎪⎨⎪≤⎩,=,,若关于x 的方程f (x )=k 有两个不等的实数根,则实数k 的取值范围是________. 答案 (0,1]解析 作出函数y =f (x )与y =k 的图象,如图所示,由图可知k ∈(0,1].2、已知函数f (x )=|x -2|+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根,则实数k 的取值范围是__________. 答案 ⎝⎛⎭⎫12,1解析 先作出函数f (x )=|x -2|+1的图象,如图所示,当直线g (x )=kx 与直线AB 平行时斜率为1,当直线g (x )=kx 过A 点时斜率为12,故f (x )=g (x )有两个不相等的实根时,k 的取值范围为⎝⎛⎭⎫12,1.3、设函数f (x )=|x +a |,g (x )=x -1,对于任意的x ∈R ,不等式f (x )≥g (x )恒成立,则实数a 的取值范围是__________. 答案 [-1,+∞)解析 如图作出函数f (x )=|x +a |与g (x )=x -1的图象,观察图象可知,当且仅当-a ≤1,即a ≥-1时,不等式f (x )≥g (x )恒成立,因此a 的取值范围是[-1,+∞).4、给定min{a ,b }=⎩⎪⎨⎪⎧a ,a ≤b ,b ,b <a ,已知函数f (x )=min{x ,x 2-4x +4}+4,若动直线y =m 与函数y =f (x )的图象有3个交点,则实数m 的取值范围为________.解析:函数f (x )=min{x ,x 2-4x +4}+4的图象如图所示,由于直线y =m 与函数y =f (x )的图象有3个交点,数形结合可得m 的取值范围为(4,5). 答案:(4,5)5、直线y =k (x +3)+5(k ≠0)与曲线y =5x +17x +3的两个交点坐标分别为A (x 1,y 1),B (x 2,y 2),则x 1+x 2+y 1+y 2=________.解析:因为y =5x +17x +3=2x +3+5,其图象关于点(-3,5)对称.又直线y =k (x +3)+5过点(-3,5),如图所示.所以A ,B 关于点(-3,5)对称,所以x 1+x 2=2×(-3)=-6,y 1+y 2=2×5=10. 所以x 1+x 2+y 1+y 2=4.答案:46、函数f (x )的图象与函数h (x )=x +1x +2的图象关于点A (0,1)对称.(1)求f (x )的解析式;(2)若g (x )=f (x )+ax,且g (x )在区间(0,2]上为减函数,求实数a 的取值范围.解:(1)设f (x )图象上任一点P (x ,y )(x ≠0),则点P 关于(0,1)点的对称点P ′(-x ,2-y )在h (x )的图象上,即2-y =-x -1x +2,即y =f (x )=x +1x(x ≠0).(2)g (x )=f (x )+ax =x +a +1x ,g ′(x )=1-a +1x2.因为g (x )在(0,2]上为减函数,所以1-a +1x 2≤0在(0,2]上恒成立,即a +1≥x 2在(0,2]上恒成立,所以a +1≥4,即a ≥3, 故实数a 的取值范围是[3,+∞).《函数的图像》课后作业1、y =2|x |sin 2x 的图象可能是( )答案 D解析 由y =2|x |sin 2x 知函数的定义域为R ,令f (x )=2|x |sin 2x ,则f (-x )=2|-x |sin(-2x )=-2|x |sin 2x .∵f (x )=-f (-x ),∴f (x )为奇函数.∴f (x )的图象关于原点对称,故排除A ,B. 令f (x )=2|x |sin 2x =0,解得x =k π2(k ∈Z ),∴当k =1时,x =π2,故排除C.故选D.2、如图,不规则四边形ABCD 中,AB 和CD 是线段,AD 和BC 是圆弧,直线l ⊥AB 交AB 于E ,当l 从左至右移动(与线段AB 有公共点)时,把四边形ABCD 分成两部分,设AE =x ,左侧部分的面积为y ,则y 关于x 的图象大致是( )答案 C解析 当l 从左至右移动时,一开始面积的增加速度越来越快,过了D 点后面积保持匀速增加,图象呈直线变化,过了C 点后面积的增加速度又逐渐减慢.故选C.3、已知函数f (x )=log a x (0<a <1),则函数y =f (|x |+1)的图象大致为( )答案 A解析 方法一 先作出函数f (x )=log a x (0<a <1)的图象,当x >0时,y =f (|x |+1)=f (x +1),其图象由函数f (x )的图象向左平移1个单位得到,又函数y =f (|x |+1)为偶函数,所以再将函数y =f (x +1)(x >0)的图象关于y 轴对称翻折到y 轴左边,得到x <0时的图象,故选A. 方法二 因为|x |+1≥1,0<a <1, 所以f (|x |+1)=log a (|x |+1)≤0,故选A.4、函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <-1,ln (x +a ),x ≥-1 的图象如图所示,则f (-3)等于( )A .-12B .-54C .-1D .-2答案 C解析 由图象可得-a +b =3,ln(-1+a )=0,得a =2,b =5,∴f (x )=⎩⎪⎨⎪⎧2x +5,x <-1,ln (x +2),x ≥-1,故f (-3)=2×(-3)+5=-1,故选C.5、函数f (x )的图象向右平移1个单位,所得图象与曲线y =e x 关于y 轴对称,则f (x )的解析式为( ) A .f (x )=e x +1B .f (x )=e x -1C .f (x )=e-x +1D .f (x )=e-x -1答案 D解析与y =e x 的图象关于y 轴对称的函数为y =e -x .依题意,f (x )的图象向右平移一个单位,得y =e -x 的图象.∴f (x )的图象由y =e -x 的图象向左平移一个单位得到. ∴f (x )=e -(x +1)=e -x -1.6、已知函数f (x )的定义域为R ,且f (x )=⎩⎪⎨⎪⎧2-x -1,x ≤0,f (x -1),x >0,若方程f (x )=x +a 有两个不同实根,则实数a的取值范围为( ) A .(-∞,1) B .(-∞,1] C .(0,1) D .(-∞,+∞)答案 A解析 当x ≤0时,f (x )=2-x -1,当0<x ≤1时,-1<x -1≤0,f (x )=f (x -1)=2-(x -1)-1.类推有f (x )=f (x -1)=22-x -1,x ∈(1,2],…,也就是说,x >0的部分是将x ∈(-1,0]的部分周期性向右平移1个单位得到的,其部分图象如图所示.若方程f (x )=x +a 有两个不同的实数根,则函数f (x )的图象与直线y =x +a 有两个不同交点,故a <1,即a 的取值范围是(-∞,1).7、设函数y =f (x +1)是定义在(-∞,0)∪(0,+∞)上的偶函数,在区间(-∞,0)上是减函数,且图象过点(1,0),则不等式(x -1)f (x )≤0的解集为______________. 答案 {x |x ≤0或1<x ≤2}解析 画出f (x )的大致图象如图所示.不等式(x -1)f (x )≤0可化为⎩⎨⎧ x >1,f (x )≤0或⎩⎨⎧x <1,f (x )≥0.由图可知符合条件的解集为{x |x ≤0或1<x ≤2}. 8、设函数y =f (x )的图象与y =2x -a的图象关于直线y =-x 对称,且f (-2)+f (-4)=1,则实数a =________.答案 -2解析 由函数y =f (x )的图象与y =2x -a 的图象关于直线y =-x 对称,可得f (x )=-a -log 2(-x ),由f (-2)+f (-4)=1,可得-a -log 22-a -log 24=1,解得a =-2.9、已知f (x )是以2为周期的偶函数,当x ∈[0,1]时,f (x )=x ,且在[-1,3]内,关于x 的方程f (x )=kx +k +1(k ∈R ,k ≠-1)有四个实数根,则k 的取值范围是__________. 答案 ⎝⎛⎭⎫-13,0 解析 由题意作出f (x )在[-1,3]上的示意图如图所示,记y =k (x +1)+1,∴函数y =k (x +1)+1的图象过定点A (-1,1).记B (2,0),由图象知,方程有四个实数根,即函数f (x )与y =kx +k +1的图象有四个交点, 故k AB <k <0,k AB =0-12-(-1)=-13,∴-13<k <0.10、给定min{a ,b }=⎩⎪⎨⎪⎧a ,a ≤b ,b ,b <a ,已知函数f (x )=min{x ,x 2-4x +4}+4,若动直线y =m 与函数y =f (x )的图象有3个交点,则实数m 的取值范围为__________. 答案 (4,5)解析 作出函数f (x )的图象,函数f (x )=min{x ,x 2-4x +4}+4的图象如图所示,由于直线y =m 与函数y =f (x )的图象有3个交点,数形结合可得m 的取值范围为(4,5).11、数f (x )=⎩⎪⎨⎪⎧log 2(1-x )+1,-1≤x <0,x 3-3x +2,0≤x ≤a 的值域为[0,2],则实数a 的取值范围是_____答案 [1,3]解析 先作出函数f (x )=log 2(1-x )+1,-1≤x <0的图象,再研究f (x )=x 3-3x +2,0≤x ≤a 的图象.令f ′(x )=3x 2-3=0,得x =1(x =-1舍去),由f ′(x )>0,得x >1, 由f ′(x )<0,得0<x <1.又f (0)=f (3)=2,f (1)=0.所以1≤a ≤ 3.12已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x -1,x ≥0,x 2-2x -1,x <0,则对任意x 1,x 2∈R ,若0<|x 1|<|x 2|,下列不等式成立的是( )A .f (x 1)+f (x 2)<0B .f (x 1)+f (x 2)>0C .f (x 1)-f (x 2)>0D .f (x 1)-f (x 2)<0 答案 D解析 函数f (x )的图象如图实线部分所示,且f (-x )=f (x ),从而函数f (x )是偶函数且在[0,+∞)上是增函数, 又0<|x 1|<|x 2|,∴f (x 2)>f (x 1),即f (x 1)-f (x 2)<0.13、函数f (x )=x|x -1|,g (x )=1+x +|x |2,若f (x )<g (x ),则实数x 的取值范围是____________.答案 ⎝ ⎛⎭⎪⎫-∞,-1+52∪⎝ ⎛⎭⎪⎫1+52,+∞解析 f (x )=⎩⎪⎨⎪⎧1+1x -1,x >1,-1+11-x ,x <1,g (x )=⎩⎪⎨⎪⎧1+x ,x ≥0,1,x <0,作出两函数的图象如图所示.当0≤x <1时,由-1+11-x =x +1,解得x =5-12;当x >1时,由1+1x -1=x +1,解得x =5+12.结合图象可知,满足f (x )<g (x )的x 的取值范围是⎝ ⎛⎭⎪⎫-∞,5-12∪⎝ ⎛⎭⎪⎫1+52,+∞. 14、函数f (x )=⎩⎪⎨⎪⎧(x -1)2,0≤x ≤2,14x -12,2<x ≤6.若在该函数的定义域[0,6]上存在互异的3个数x 1,x 2,x 3,使得f (x 1)x 1=f (x 2)x 2=f (x 3)x 3=k ,则实数k 的取值范围是__________. 答案 ⎝⎛⎦⎤0,16解析 由题意知,直线y =kx 与函数y =f (x )的图象至少有3个公共点.函数y =f (x ),x ∈[0,6]的图象如图所示,由图知k 的取值范围是⎝⎛⎦⎤0,16.15、已知函数f (x )=2x ,x ∈R .(1)当实数m 取何值时,方程|f (x )-2|=m 有一个解?两个解? (2)若不等式f 2(x )+f (x )-m >0在R 上恒成立,求实数m 的取值范围. 解 (1)令F (x )=|f (x )-2|=|2x -2|, G (x )=m ,画出F (x )的图象如图所示.由图象可知,当m =0或m ≥2时,函数F (x )与G (x )的图象只有一个交点,原方程有一个实数解; 当0<m <2时,函数F (x )与G (x )的图象有两个交点,原方程有两个实数解.(2)令f (x )=t (t >0),H (t )=t 2+t ,t >0,因为H (t )=⎝⎛⎭⎫t +122-14在区间(0,+∞)上是增函数, 所以H (t )>H (0)=0.因此要使t 2+t >m 在区间(0,+∞)上恒成立,应有m ≤0,即所求m 的取值范围为(-∞,0].16、数()2131log 1,x x x f x x x ⎧≤⎪⎨>⎪⎩-+,,=,g (x )=|x -k |+|x -2|,若对任意的x 1,x 2∈R ,都有f (x 1)≤g (x 2)成立,求实数k 的取值范围.解 对任意的x 1,x 2∈R ,都有f (x 1)≤g (x 2)成立,即f (x )max ≤g (x )min .观察f (x )=2131log 1,x x x x x ⎧≤⎪⎨>⎪⎩-+,,,的图象可知,当x =12时,函数f (x )max =14.因为g (x )=|x -k |+|x -2|≥|x -k -(x -2)|=|k -2|,所以g (x )min =|k -2|,所以|k -2|≥14,解得k ≤74或k ≥94.故实数k 的取值范围是⎝⎛⎦⎤-∞,74∪⎣⎡⎭⎫94,+∞.。

【高考专题】最新2019年高考数学 函数图象 专题复习(含答案)文理通用版

【高考专题】最新2019年高考数学 函数图象 专题复习(含答案)文理通用版

2019年高考数学函数图象 文理通用一.选择题(共40小题)1.函数4()|41|x x f x =-的图象大致是( ) A . B .C .D .2.已知22(2)(2sin 1)(4)f x x ln x =-,则数()f x 的部分图象大致为( )A .B .C .D . 3.x 为实数,[]x 表示不超过x 的最大整数,()[]f x x x =-,若()f x 的图象上恰好存在一个点与2()(1)(20)g x x a x =+--剟的图象上某点关于y 轴对称,则实数a 的取值范围为( )A .(0,1)B .1(1,)4--C .1(0,1)(1,)4--D .1(0,1](1,]4--⋃ 4.函数sin31cos x y x=+,(,)x ππ∈-图象大致为( ) A . B . C . D .5.函数()cos sin f x x x x =-,[x π∈-,]π的大致图象为( )A .B .C .D .6.函数1(1)y ln x x =-+的图象大致为( ) A . B . C . D .7.函数(1)cos ()1x x e x f x e -=+的部分图象大致为( ) A . B .C . D .8.函数1()(1)x x e f x x e +=-(其中e 为自然对数的底数)的图象大致为( ) A . B . C . D .9.函数2()(1)f x ln x x =+-的图象大致是( )A .B .C .D .10.函数2()sin cos f x x x =+的部分图象符合的是( )A .B .C .D .11.将函数()f x 的图象沿x 轴向左平移1个单位长度,得到奇函数()g x 的图象,则()f x 可能是下列函数中的哪个函数?( )A .1()1f x x =+B .11()x x f x e e --=-C .2()f x x x=+ D .2()log (1)1f x x =++ 12.函数sin y x x π=-的大致图象是( )A .B .C .D .13.如图,在直角坐标系xOy 中,边长为1的正方形OMNP 的两个顶点在坐标轴上,点A ,B 分别在线段MN ,NP 上运动.设PB MA x ==,函数()f x OA BA =,()g x OA OB =,则()f x 与()g x 的图象为( )A .B .C .D .14.函数2()sin f x x x x =+的图象大致为( )A .B .C .D . 15.函数2(1)21ln x y x x +=-+的部分图象大致是( ) A . B . C . D .16.如图,一高为H 且装满水的鱼缸,其底部装有一排水小孔,当小孔打开时,水从孔中匀速流出,水流完所用时间为T .若鱼缸水深为h 时,水流出所用时间为t ,则函数()h f t =的图象大致是( )A .B .C .D .17.函数3()cos f x x x x =-的大致图象为( )A .B .C .D .18.已知函数2|1()|23x f x x e x -=--+,则()f x 的大致图象是( )A .B .C .D .19.函数()f x =( ) A .B .C .D . 20.函数1(1)y x ln x =-+的图象大致为( ) A . B . C . D .21.函数2()(41)x f x x x e =-+的大致图象是( )A .BC .D .22.已知函数()f x 的图象如图所示,则()f x 的解析式可能是( )A .||()cos x f x e x =B .()||cos f x ln x x =C .||()cos x f x e x =+D .()||cos f x ln x x =+23.函数1()sin 1x f x x ln x -=+的大致图象为( ) A . B .C .D .24.函数3()||y x x ln x =-的图象是( )A .B .C .D .25.函数||sin 2()2x x f x =的图象大致为( )A .B .C .D .26.函数2()()x f x x tx e =+(实数t 为常数,且0)t <的图象大致是( )A .B .C .D .27.函数2()(2)||f x x ln x =-的图象为( )A .B .C .D .28.函数()1ln xf x x =+,的图象大致是( ) A . B .C . D .29.函数()cos sin f x x x x =-在[3x π∈-,3]π的大致图象为( )A .B .C .D . 30.函数233()sin ()22f x x x x ππ=-剟的图象大致为( ) A . B .C .D .31.函数2||8x y ln x =-的图象大致为( ) A . B . C . D .32.反映函数2()||f x x x -=-基本性质的图象大致为( )A .B .C .D .33.函数433()x xf x x --=的大致图象为( ) A . B . C . D .34.函数2()22x x f x x -=--的图象大致为( )A .B .C .D .35.函数()|1||1|f x ln x ln x =+--的大致图象为( )A .B .C .D .36.函数11x y lnx -=+的图象大致为( ) A . B . C . D .37.设函数2()1xx xe f x e =+的大致图象是( ) A . B .C .D . 38.函数()||cos f x x x =的部分图象为( )A.B.C.D.39.函数()sin2cosf x x x x=+的大致图象有可能是() A.B.C.D.40.函数1()()cosf x x xx=+在[3-,0)(0⋃,3]的图象大致为()A.B.C.D.参考答案一.选择题(共40小题)【解答】解:4()()()|41|x x f x f x f x --=≠≠--, 故()f x 为非奇非偶函数,故排除A ,B .当x →+∞时,()0f x →,当x →-∞时,()f x →+∞,故排除C ,故选:D .【解答】解:2(2)cos2(2)f x xln x =-,令2x t =,则2()cos f t t lnt =-,(0)t ≠2()cos f x xlnx ∴=-,(0)x ≠.cos y x =为偶函数,2y lnt =为偶函数,2()cos f x xlnx ∴=-,(0)x ≠.为偶函数.排除B ,C .当(0,1)x ∈时,cos 0x -<,20lnx <.所以当(0,1)x ∈时,()0f x >,排除A .故选:D .【解答】解:设()h x 与()g x 关于y 轴对称,则2()()(1)h x g x x a =-=--,(02)x 剟.()f x 的图象上恰好存在一个点与2()(1)(20)g x x a x =+--剟的图象上某点关于y 轴对称,可以等价为()f x 与()h x 在[0,2]上有一个交点,①当0a <时,()f x 与()h x 图象如图:当()h x 与()f x 在[1,2]的部分相切时,联立()h x 与()f x 在[1,2]的部分2(1)1y x a y x ⎧=--⎨=-⎩, 得2320x x a -+-=,由△0=得,14a =-, 当1a -…时,()h x 始终在1y =上方,与()f x 无交点.故此时1(1,)4a ∈--. ②0a =时,有两个交点,不成立.③当0a >时,()f x 与()h x 图象如图:要使()f x 与()h x 在[0,2]上有一个交点,需满足:(0)0(2)(0)1h h h ⎧⎨=⎩……,即(0a ∈,1]. 综上,1(0,1](1,]4--⋃. 故选:D .【解答】解:函数sin31cos x y x =+满足sin3()()1cos x f x f x x--==-+,函数为奇函数,排除A , 由于3sin2()121cos 2f πππ==-+,sin ()031cos 3f πππ==+,2sin 2()0231cos 3f πππ==+ 故排除B ,C故选:D .【解答】解:()cos sin (cos sin )()f x x x x x x x f x -=-+=--=-,函数()f x 是奇函数,图象关于原点对称,排除A ,C()cos sin 102222f ππππ=-=-<,排除B , 故选:D .【解答】解:由于函数1(1)y ln x x=-+在(1,0)-,(0,)+∞单调递减,故排除B ,D , 当1x =时,120y ln =->,故排除C ,故选:A .【解答】解:(1)cos()(1)cos ()()11x x x x e x e x f x f x e e ------==-=-++, ∴函数()f x 为奇函数,故排除B ,D ,当x →+∞时,()0f x →,故排除C ,故选:A .【解答】解:当0x >时,1x e >,则()0f x <;当0x <时,1x e <,则()0f x <,所以()f x 的图象恒在x 轴下方,排除B ,C ,D , 故选:A .【解答】解:代0x =,知函数过原点,故排除D .代入1x =,得0y <,排除C .带入0.0000000001x =-,0y <,排除A .故选:B .【解答】解:函数()f x 是偶函数,图象关于y 轴对称,(0)sin0cos01f =+=排除C ,22()sin cos sin 02424f ππππ=+=>,排除A ,D , 故选:B .【解答】解:A .将函数()f x 的图象沿x 轴向左平移1个单位长度得到12y x =+,图象关于原点不对称,不是奇函数,不满足条件. B .将函数()f x 的图象沿x 轴向左平移1个单位长度,得到x x y e e -=-,则此时函数为奇函数,满足条件. C .将函数()f x 的图象沿x 轴向左平移1个单位长度,得到211y x x =+++,(0)1230f =+=≠,则函数不是奇函数,D .将函数()f x 的图象沿x 轴向左平移1个单位长度,得到2log (2)1y x =++,定义域关于原点不对称,不是奇函数,故选:B .【解答】解:()sin (sin )()f x x x x x f x ππ-=-+=--=-,则函数()f x 是奇函数,图象关于原点对称,排除B ,C ,当x →+∞,()f x →+∞,排除A ,故选:D .【解答】解:由已知可得(1,)A x ,(,1)B x ,[0x ∈,1],则(1,1)BA x x =--,(1,)OA x =,(,1)OB x =,所以2()1(1)(1)f x OA BA x x x x ==-+-=-,()2g x OA OB x ==,故选:A .【解答】解:函数2()sin f x x x x =+是偶函数,关于y 轴对称,故排除B , 令()sin g x x x =+,()1cos 0g x x ∴'=+…恒成立,()g x ∴在R 上单调递增,(0)0g =,()()0f x xg x ∴=…,故排除D ,当0x >时,()()f x xg x =单调递增,故当0x <时,()()f x xg x =单调递减,故排除C . 故选:A .【解答】解:当2x =时,f (2)330441ln ln ==>-+,故排除C , 当12x =时,3132()401224lnf ln ==>,故排除D , 当x →+∞时,()0f x →,故排除B ,故选:A .【解答】解:函数()h f t =是关于t 的减函数,故排除C ,D ,则一开始,h 随着时间的变化,而变化变慢,超过一半时,h 随着时间的变化,而变化变快, 故对应的图象为B ,【解答】解:函数33()cos()()cos ()f x x x x x x x f x -=----=-+=-,则函数()f x 是奇函数,图象关于原点对称,排除C ,D ,33()cos ()()022222f πππππ=-=-<,排除B , 故选:A .【解答】解:由题意知2|12|1()|2323|x x f x x e x x x e --=--+=-+-,223y x x =-+对称轴为1x =,|1|x y e -=对称轴为1x =,所以知()f x 的对称轴为1x =,排除B ,D . 代特殊值3x =得0y <,排除C ,选A .故选:A .【解答】解:1(0)02ln f ==,排除C ,Df (1)11)0ln e e -=<+,排除B 故选:A .【解答】解:f (1)1012ln =>-,排除C ,D , 由10(1)y x ln x ==-+,则方程无解,即函数没有零点,排除B , 故选:A .【解答】解:当0x <时,2410x x -+>,0x e >,所以()0f x >,故可排除B ,C ; 当2x =时,f (2)230e =-<,故可排除D .故选:A .【解答】解:由图可知()02f π>,故可排除A ,B ; 对于||:()cos x C f x e x =+,当(0,1)x ∈时()0f x >,故可排除C .故选:D .【解答】解:111()sin sin sin ()111x x x f x x lnx ln x ln f x x x x --+--=-=-==-+-+,则函数()f x 是偶函数,图象关于y 轴对称,排除A ,C ,f (3)1sin302ln =<,排除B ,【解答】解:3()()||()f x x x ln x f x -=--=-,函数是奇函数,图象关于原点对称,排除B , 函数的定义域为{|0}x x ≠,由()0f x =,得3()||0x x ln x -=,即2(1)||0x ln x -=,即1x =±,即函数()f x 有两个零点,排除D , f (2)620ln =>,排除A ,故选:C .【解答】解:||||sin(2)sin 2()()22x x x x f x f x ----===-,函数()f x 是奇函数,图象关于原点对称,排除A ,B , ||44sin(2)14()0422f ππππ⨯==>,排除C , 故选:D .【解答】解:由()0f x =得20x tx +=,得0x =或x t =-,即函数()f x 有两个零点,排除A ,C , 函数的导数22()(2)())[(2)]x x x f x x t e x tx e x t x t e '=+++==+++,当x →-∞时,()0f x '>,即在x 轴最左侧,函数()f x 为增函数,排除D , 故选:B .【解答】解:22()(2)||(2)||()f x x ln x x ln x f x -=--=-=,则函数()f x 是偶函数,图象关于y 轴对称,排除A ,D ,当x →+∞时,()f x →+∞,排除C ,故选:B .【解答】解:||||()()1||1||ln x ln x f x f x x x --===+-+,则函数()f x 是偶函数,图象关于y 轴对称,排除B ,D f (1)0=,则f (e )1011lne e e ==>++,排除A , 故选:C .【解答】解:()cos sin (cos sin )()f x x x x x x x f x -=-+=--=-,函数()f x 是奇函数,图象关于原点对称,排除B ,D()cos sin 0f πππππ=-=-<,排除C ,故选:A .【解答】解:因为233,()sin ()22x f x x x f x ππ--=-=-剟,所以()f x 为奇函数,图象关于原点对称,排除A ,C , 又因为()333222x f x f πππ⎛⎫- ⎪⎝⎭时剟?,排除B 故选:D .【解答】解:函数的定义域为{|0}x x ≠, 则22()()||||()88x x f x ln x ln x f x --=--=-=,则函数()f x 是偶函数,图象关于y 轴对称,排除B , 当x →+∞时,y →+∞,排除A ,2222()2088e e f e lne =-=-<, ∴函数在0x >时,存在负值,排除C ,故选:D .【解答】解:函数22()||()||()f x x x x x f x ---=---=-=,则()f x 是偶函数,排除C 且在(0,)+∞上是增函数,排除B 、D ,故选:A .【解答】解:443333()()x x x xf x f x x x -----==-=-,则()f x 是奇函数,则图象关于原点对称,排除A , f (1)183033=-=>,排除D , 当x →+∞,3x →+∞,则()f x →+∞,排除C ,故选:B .【解答】解:2()22()x x f x x f x --=--=,则()f x 是偶函数,排除C ,f (3)1798088=--=>,排除A , f (5)112532703232=--=--<,排除D , 故选:B .【解答】解:()|1||1|(|1||1|)()f x ln x ln x ln x ln x f x -=--+=-+--=-,即()f x 是奇函数, 图象关于原点对称,排除A ,C ,f (2)3130ln ln ln =-=>,排除B ,故选:D .【解答】解:当x →+∞时,y →+∞,排除D ,由0y =得101x lnx -=+,得10x -=,即1x =, 即函数只有一个零点,排除A ,B ,故选:C .【解答】解:f (1)201e e =>+,排除D ,122(1)011e ef e e ----==-<++,排除B ,C 故选:A .【解答】解:()||cos()||cos ()f x x x x x f x -=--==,则函数()f x 是偶函数,图象关于y 轴对称,排除A ,B ,1()cos 33362f ππππ==>,故排除D , 故选:C .【解答】解:()sin(2)cos()sin2cos ()f x x x x x x x f x -=--+-=+=,则函数()f x 是偶函数,排除D , 由()2sin cos cos 0f x x x x x =+=,得cos (2sin 1)0x x x +=, 得cos 0x =,此时2x π=或32π, 由2sin 10x x +=得1sin 2x x =-, 作出函数sin y x =和12y x=-,在(0,2)π内的图象,由图象知两个函数此时有两个不同的交点, 综上()f x 在(0,2)π有四个零点,排除B ,C ,故选:A .【解答】解:11()()cos()()cos ()f x x x x x f x x x-=---=-+=-,函数是奇函数,图象关于原点对称,排除B ,D ,f (1)2cos10=>,排除C ,故选:A .。

【高考专题】2019年 高考数学 函数图像 专项练习32题(含答案)

【高考专题】2019年 高考数学 函数图像 专项练习32题(含答案)

2019年 高考数学 函数图像 专项练习32题一、选择题1.函数y=5-|x|的图象是( )2.函数的图象可能是( ).3.函数y=2x -x 2的图像大致是( )4.函数的图像大致为( )5.函数)1(>=a xxa y x 的图象的大致形状是( )6.函数)1ln(23x x x y -++=的图象大致为( )7.函数y=e ∣x ∣-4cosx(e 为自然对数的底数)的图象可能是( )8.函数的图象大致为( )9.函数的图像大致为( )10.函数,则y=f(x+1)的图象大致是( )11.已知函数f(x)=4-x2,y=g(x)是定义在R上的奇函数,当x>0时,g(x)=logx,则函数f(x)·g(x)的大致2图象为( )12.函数y=-x4+x2+2的图像大致为( )13.已知a是常数,函数的导函数的图像如图所示,则函数的图像可能是( )14.已知lga+lgb=0,则函数y=a x与函数y=-logx的图象可能是( )b15.已知函数,则函数的大致图象是( )16.函数的大致图象为( )17.函数y=2x+1-2x2的图象大致是( )18.函数的部分图象大致为( )19.设f′(x)是函数f(x)的导函数,y=f′(x)的图象如图所示,则y=f(x)的图象最有可能的是 ( )20.设函数f(x)在定义域内可导,y=f(x)的图象如图所示,则导函数y=f′(x)的图象可能为( )21.已知函数y=xf′(x)的图象如图所示(其中f′(x)是函数f(x)的导函数),下面四个图象中y=f(x)的图象大致是( )22.设函数y=f(x)在定义域内可导,其图象如图所示,则导函数y=f′(x)的大致图象为( )23.函数f(x)在其定义域内可导,其图象如图所示,则导函数y=f′(x)的图象可能为( )24.已知函数f(x)=0.25x2+cosx,f/(x)是函数f(x)的导函数,则f/(x)的图象大致是( )25.函数y=sinx2的图象是( )26.函数的图象大致是( )27.函数f(x)=log∣2x-1∣的图象大致是( )228.幂函数f(x)=x a满足f(2)=4,那么函数g(x)=∣log(x+1)∣的图象大致为( )a29.函数y=e-∣x-1∣的图象大致形状是 ( )30.函数f(x)=-e-ln∣x∣+x的大致图象为( )31.函数f(x)=2-∣x∣+1的图像大致为 ( )32.函数在同一平面直角坐标系内的大致图象为 ( )参考答案1.D2.D3.A4.B5.B6.B7.C8.D9.C10.B11.D12.D13.D14.D15.A16.D17.B18.A19.C20.D21.C.22.D.23.C.24.A25.D26.D27.A28.C29.B30.B31.A32.C。

【高考专题】2019年 高考数学 函数图象 专题复习(含答案)

【高考专题】2019年 高考数学 函数图象 专题复习(含答案)

高考数学函数图象(文理通用)专题复习一、选择题:1.已知函数,则函数y=f(x)的大致图象为( )2.若函数f(x)=ka x-a-x(a>0且a≠1)在R上既是奇函数又能是增函数,则g(x)=log a(x+k)的图像为( )3.函数与在同一直角坐标系下的图象大致是( )4.函数的图象大致是( )5.函数的图象大致为( )6.函数f(x)=1+log2x与g(x)=2-x+1在同一直角坐标系下的图象大致是 ( )7.幂函数f(x)=x a满足f(2)=4,那么函数的图象大致为( )8.函数的图象大致是( )9.函数的图象大致是( )10.函数f(x)=(x2﹣2x)e x的图象大致是( )11.已知,则函数与函数在同一坐标系中图象可能是( )12.函数的图象大致形状是 ( )13.函数的大致图象为( )14.函数的图像大致为( )15.函数在同一平面直角坐标系内的大致图象为 ( )16.函数f(x)=x+的图象是( )17.在直角坐标系中,方程|x|∙y=1的曲线是( )18.若函数f(x)=(k-1)ax-a-x(a>0,a≠1)在R上既是奇函数,又是减函数,则g(x)=log a(x+k)图象是( )A.选项AB.选项BC.选项CD.选项D19.函数f(x)=ln(x2+1)的图象大致是( )A.选项AB.选项BC.选项CD.选项D20.函数y=4cosx﹣e|x|(e为自然对数的底数)的图象可能是( )21.函数的大致图象为( )22.函数的部分图象大致是( )23.函数的图象大致是( )24.函数的图象大致是( )25.函数y=的图象可能是( )26.已知函数则函数的大致图象为( )27.函数的图象大致为( )28.函数的图象大致是( )29.函数的图象的大致形状是( )30.函数f(x)=()cosx的图象大致为( )31.函数的图象大致是( )32.函数的图象大致为()33.函数的图象可能为( )34.函数y=x2+ln|x|的图象大致为( )35.函数的图象可能为( ).36.函数的图像为()37.若实数x,y满足,则y关于x的函数的图像大致形状是( )38.若点坐标的满足,则点的轨迹图像大致是( )39.若当时,函数始终满足,则函数的图象大致为( )40.函数(其中e为自然对数的底)的图象大致是( )参考答案1.答案为:A.2.答案为:C;3.答案为:C;4.答案为:A.5.答案为:C.6.答案为:C.7.答案为:C.8.答案为:D.9.答案为:D.10.答案为:A.11.答案为:B解析:,,,其中,若,指数函数和对数函数两个均递减,四个选择支均不是,若,指数函数和对数函数两个均递增.12.答案为:B.13.答案为:B.14.答案为:A.15.答案为:C.16.答案为:C.17.答案为:C.18.答案为:A解析:方法一f(x)=(k-1)ax-a-x(a>0,a≠1)在R上是奇函数,∴f(-x)=-f(x),即(k-1)a-x-ax=-[(k-1)ax-a-x],∴(k-2)(ax+a-x)=0,∴k=2.又f(x)是减函数,∴0<a<1,则g(x)=log a(x+k)的图象,如选项A所示.方法二:∵f(x)=(k-1)ax-a-x(a>0,a≠1)在R上是奇函数,∴f(0)=0,∴k=2.又f(x)是减函数,∴0<a<1,则g(x)=log a(x+2),观察题干四个选项,只有A符合题意.19.答案为:A.20.答案为:A.21.答案为:A.22.答案为:C.23.答案为:A.24.答案为:D.25.答案为:B.26.答案为:A.27.答案为:A.28.答案为:A.29.答案为:D.30.答案为:C.31.答案为:C.32.答案为:B.33.答案为:A.34.答案为:A.解析:∵f(﹣x)=x2+ln|x|=f(x),∴y=f(x)为偶函数,∴y=f(x)的图象关于y轴对称,故排除B,C,当x→0时,y→﹣∞,故排除D,或者根据,当x>0时,y=x2+lnx为增函数,故排除D,35.答案为:A.36.答案为:A;37.答案为:B.38.答案为:B.39.答案为:B.40.答案为:A.。

高考专题 《函数图像问题》考题归纳及详解

高考专题  《函数图像问题》考题归纳及详解

高考专题《函数图像问题》考题归纳及详解一.选择题(共34小题)1.函数f(x)=(x2﹣2x)e x的图象大致是()A. B.C.D.2.函数y=x+cosx的大致图象是()A.B.C.D.3.函数y=的图象大致是()A. B.C.D.4.函数y=xln|x|的大致图象是()A.B.C.D.5.函数f(x)=x2﹣2|x|的图象大致是()A. B.C.D.6.函数f(x)=+ln|x|的图象大致为()A.B.C.D.7.在下列图象中,二次函数y=ax2+bx及指数函数y=()x的图象只可能是()A.B. C.D.8.函数y=xln|x|的图象大致是()A.B.C.D.9.f(x)=的部分图象大致是()A.B.C. D.10.函数的图象大致为()A. B. C. D.11.函数f(x)=(其中e为自然对数的底数)的图象大致为()A. B.C.D.12.函数f(x)=(2x﹣2﹣x)cosx在区间[﹣5,5]上的图象大致为()A. B.C.D.13.函数的部分图象大致为()A.B.C.D.14.函数f(x)=的部分图象大致为()A.B.C.D.15.函数的部分图象大致为()A.B.C.D.16.函数y=x(x2﹣1)的大致图象是()A.B. C. D.17.函数y=x﹣2sinx,x∈[﹣,]的大致图象是()A.B.C.D.18.函数f(x)=的部分图象大致是()A.. B..C..D..19.函数y=﹣2x2+2|x|在[﹣2,2]的图象大致为()A.B.C.D.20.函数的图象大致是()A.B.C.D.21.函数f(x)=(x∈[﹣2,2])的大致图象是()A.B.C.D.22.函数的图象大致是()A.B.C.D.23.函数y=的大致图象是()A.B.C.D.24.函数y=sinx(1+cos2x)在区间[﹣2,2]上的图象大致为()A.B.C.D.25.函数f(x)=(x2﹣3)•ln|x|的大致图象为()A. B. C. D.26.函数f(x)=﹣e﹣ln|x|+x的大致图象为()A.B.C.D.27.函数y=1+x+的部分图象大致为()A.B.C.D.28.函数y=的部分图象大致为()A.B.C.D.29.函数f(x)=x•ln|x|的图象可能是()A.B.C.D.30.函数f(x)=e ln|x|+的大致图象为()A.B.C.D.31.函数y=的一段大致图象是()A. B.C.D.32.函数的图象大致是()A.B.C.D.33.函数的大致图象是()A.B.C.D.34.函数的图象大致为()A.B.C.D.二.解答题(共6小题)35.在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρcosθ=4.(1)M为曲线C1上的动点,点P在线段OM上,且满足|OM|•|OP|=16,求点P的轨迹C2的直角坐标方程;(2)设点A的极坐标为(2,),点B在曲线C2上,求△OAB 面积的最大值.36.在直角坐标系xOy中,曲线C1的参数方程为(t 为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.37.在直角坐标系xOy中,曲线C1的参数方程为(α为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+)=2.(1)写出C1的普通方程和C2的直角坐标方程;(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P 的直角坐标.38.在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)若a=﹣1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a.39.在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),曲线C的参数方程为(s为参数).设P为曲线C上的动点,求点P到直线l的距离的最小值.40.在直角坐标系xOy中,直线l1的参数方程为,(t为参数),直线l2的参数方程为,(m为参数).设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.(1)写出C的普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:ρ(cosθ+sinθ)﹣=0,M为l3与C的交点,求M的极径.函数图像问题高考试题精选参考答案与试题解析一.选择题(共34小题)1.函数f(x)=(x2﹣2x)e x的图象大致是()A. B.C.D.【解答】解:因为f(0)=(02﹣2×0)e0=0,排除C;因为f'(x)=(x2﹣2)e x,解f'(x)>0,所以或时f(x)单调递增,排除B,D.故选A.2.函数y=x+cosx的大致图象是()A.B.C.D.【解答】解:由于f(x)=x+cosx,∴f(﹣x)=﹣x+cosx,∴f(﹣x)≠f(x),且f(﹣x)≠﹣f(x),故此函数是非奇非偶函数,排除A、C;又当x=时,x+cosx=x,即f(x)的图象与直线y=x的交点中有一个点的横坐标为,排除D.故选:B.3.函数y=的图象大致是()A. B.C.D.【解答】解:当x>0时,y=xlnx,y′=1+lnx,即0<x<时,函数y单调递减,当x>,函数y单调递增,因为函数y为偶函数,故选:D4.函数y=xln|x|的大致图象是()A.B.C.D.【解答】解:令f(x)=xln|x|,易知f(﹣x)=﹣xln|﹣x|=﹣xln|x|=﹣f(x),所以该函数是奇函数,排除选项B;又x>0时,f(x)=xlnx,容易判断,当x→+∞时,xlnx→+∞,排除D选项;令f(x)=0,得xlnx=0,所以x=1,即x>0时,函数图象与x轴只有一个交点,所以C选项满足题意.故选:C.5.函数f(x)=x2﹣2|x|的图象大致是()A. B.C.D.【解答】解:∵函数f(x)=x2﹣2|x|,∴f(3)=9﹣8=1>0,故排除C,D,∵f(0)=﹣1,f()=﹣2=0.25﹣<﹣1,故排除A,故选:B当x>0时,f(x)=x2﹣2x,∴f′(x)=2x﹣2x ln2,故选:B6.函数f(x)=+ln|x|的图象大致为()A.B.C.D.【解答】解:当x<0时,函数f(x)=,由函数y=、y=ln(﹣x)递减知函数f(x)=递减,排除CD;当x>0时,函数f(x)=,此时,f(1)==1,而选项A的最小值为2,故可排除A,只有B正确,故选:B.7.在下列图象中,二次函数y=ax2+bx及指数函数y=()x的图象只可能是()A.B. C.D.【解答】解:根据指数函数y=()x可知a,b同号且不相等则二次函数y=ax2+bx的对称轴<0可排除B与D选项C,a﹣b>0,a<0,∴>1,则指数函数单调递增,故C 不正确故选:A8.函数y=xln|x|的图象大致是()A.B.C.D.【解答】解:∵函数f(x)=xln|x|,可得f(﹣x)=﹣f(x),f(x)是奇函数,其图象关于原点对称,排除A,D,当x→0时,f(x)→0,故排除B又f′(x)=lnx+1,令f′(x)>0得:x>,得出函数f(x)在(,+∞)上是增函数,故选:C.9.f(x)=的部分图象大致是()A.B.C. D.【解答】解:∵f(﹣x)=f(x)∴函数f(x)为奇函数,排除A,∵x∈(0,1)时,x>sinx,x2+x﹣2<0,故f(x)<0,故排除B;当x→+∞时,f(x)→0,故排除C;故选:D10.函数的图象大致为()A. B. C. D.【解答】解:函数是非奇非偶函数,排除A、B,函数的零点是x=e﹣1,当x=e时,f(e)=,排除选项D.故选:C.11.函数f(x)=(其中e为自然对数的底数)的图象大致为()A. B.C.D.【解答】解:f(﹣x)====f(x),∴f(x)是偶函数,故f(x)图形关于y轴对称,排除B,D;又x→0时,e x+1→2,x(e x﹣1)→0,∴→+∞,排除C,故选A.12.函数f(x)=(2x﹣2﹣x)cosx在区间[﹣5,5]上的图象大致为()A. B.C.D.【解答】解:当x∈[0,5]时,f(x)=(2x﹣2﹣x)cosx=0,可得函数的零点为:0,,,排除A,B,当x=π时,f(π)=﹣2π+2﹣π,<0,对应点在x轴下方,排除选项C,故选:D.13.函数的部分图象大致为()A.B.C.D.【解答】解:∵f(﹣x)=﹣f(x),可得f(x)为奇函数,排除B,∵<1,排除A.当x>0时,,,∴在区间(1,+∞)上f (x)单调递增,排除D,故选C.14.函数f(x)=的部分图象大致为()A.B.C.D.【解答】解:函数f(x)==﹣,当x=0时,可得f(0)=0,f(x)图象过原点,排除A.当﹣<x<0时;sin2x<0,而|x+1|>0,f(x)图象在上方,排除C.当x<﹣1,x→﹣1时,sin(﹣2)<0,|x+1|→0,那么f(x)→∞,当x=﹣时,sin2x=﹣,y=﹣=,对应点在第二象限,排除D,B满足题意.故选:B.15.函数的部分图象大致为()A.B.C.D.【解答】解:∵f(﹣x)=﹣f(x),可得f(x)为奇函数,排除B,∵<1,排除A.当x>0时,,,∴在区间(1,+∞)上f (x)单调递增,排除D,故选C.16.函数y=x(x2﹣1)的大致图象是()A.B. C. D.【解答】解:∵函数y=x(x2﹣1),令f(x)=x(x2﹣1),则f(﹣x)=﹣x(x2﹣1)=﹣f(x),故函数f(x)为奇函数,又当0<x<1时,f(x)<0,综上所述,函数y=x(x2﹣1)的大致图象是选项A.故选:A.17.函数y=x﹣2sinx,x∈[﹣,]的大致图象是()A.B.C.D.【解答】解:f(﹣x)=﹣x+2sinx=﹣(x﹣2sinx)=﹣f(x),所以函数为奇函数,故函数的图象关于原点对称,只有CD适合,y′=1﹣2cosx,由y′=0解得x=,∴当x=时,函数取极值,故D适合,故选:D.18.函数f(x)=的部分图象大致是()A.. B..C..D..【解答】解:由x2+|x|﹣2=0,解得x=﹣1或x=1,∴函数的定义域为(﹣∞,﹣1)∪(﹣1,1)∪(1,+∞),∵f(﹣x)==﹣f(x),∴f(x)为奇函数,∴f(x)的图象关于原点对称,故排除A,令f(x)=0,解得x=0,故排除C,当x=时,f()=<0,故排除B,故选:D19.函数y=﹣2x2+2|x|在[﹣2,2]的图象大致为()A.B.C.D.【解答】解:由y=﹣2x2+2|x|知函数为偶函数,即其图象关于y 轴对称,故可排除B,D.又当x=2时,y=﹣2•(﹣2)2+22=﹣4.所以,C是错误的,故选:A.20.函数的图象大致是()A.B.C.D.【解答】解:解:定义域为(﹣∞,0)∪(0,+∞),f(x)=)=﹣,∴f(﹣x)=f(x),f(x)为偶函数,.∴其图象关于y轴对称,可排除A、C,;又当x→0时,cos(πx)→1,x2→0,∴f(x)→﹣∞.故可排除B;而D均满足以上分析.故选:D.21.函数f(x)=(x∈[﹣2,2])的大致图象是()A.B.C.D.【解答】解:函数f(x)=(x∈[﹣2,2])满足f(﹣x)=﹣f(x)是奇函数,排除D,x=1时,f(1)=>0,对应点在第一象限,x=2时,f(2)=<0,对应点在第四象限;所以排除B,C;故选:A.22.函数的图象大致是()A.B.C.D.【解答】解:函数满足f(﹣x)=﹣f(x),故函数图象关于原点对称,排除A、B,当x∈(0,)时,,故排除D,故选:C23.函数y=的大致图象是()A.B.C.D.【解答】解:函数y=的导数为,令y′=0,得x=,时,y′<0,时,y′>0,时,y′<0.∴函数在(﹣),()递减,在()递增.且x=0时,y=0,故选:C24.函数y=sinx(1+cos2x)在区间[﹣2,2]上的图象大致为()A.B.C.D.【解答】解:函数y=sinx(1+cos2x),定义域为[﹣2,2]关于原点对称,且f(﹣x)=sin(﹣x)(1+cosx)=﹣sinx(1+cosx)=﹣f(x),则f(x)为奇函数,图象关于原点对称,排除D;由0<x<1时,y=sinx(1+cos2x)=2sinxcos2x>0,排除C;又2sinxcos2x=0,可得x=±(0<x≤2),则排除A,B正确.故选B.25.函数f(x)=(x2﹣3)•ln|x|的大致图象为()A. B. C. D.【解答】解:函数f(x)=(x2﹣3)•ln|x|是偶函数;排除选项A,D;当x→0时,f(x)→+∞,排除选项B,故选:C.26.函数f(x)=﹣e﹣ln|x|+x的大致图象为()A.B.C.D.【解答】解:函数f(x)=﹣e﹣ln|x|+x是非奇非偶函数,排除A,D;当x>0时,f(x)=﹣e﹣lnx+x=x﹣,函数是增函数,排除C;故选:B.27.函数y=1+x+的部分图象大致为()A.B.C.D.【解答】解:函数y=1+x+,可知:f(x)=x+是奇函数,所以函数的图象关于原点对称,则函数y=1+x+的图象关于(0,1)对称,当x→0+,f(x)>0,排除A、C,点x=π时,y=1+π,排除B.故选:D.28.函数y=的部分图象大致为()A.B.C.D.【解答】解:函数y=,可知函数是奇函数,排除选项B,当x=时,f()==,排除A,x=π时,f(π)=0,排除D.故选:C.29.函数f(x)=x•ln|x|的图象可能是()A.B.C.D.【解答】解:函数f(x)=x•ln|x|是奇函数,排除选项A,C;当x=时,y=,对应点在x轴下方,排除B;故选:D.30.函数f(x)=e ln|x|+的大致图象为()A.B.C.D.【解答】解:∵f(x)=e ln|x|+∴f(﹣x)=e ln|x|﹣f(﹣x)与f(x)即不恒等,也不恒反,故函数f(x)为非奇非偶函数,其图象不关于原点对称,也不关于y轴对称,可排除A,D,当x→0+时,y→+∞,故排除B故选:C.31.函数y=的一段大致图象是()A. B.C.D.【解答】解:f(﹣x)=﹣=﹣f(x),∴y=f(x)为奇函数,∴图象关于原点对称,∴当x=π时,y=﹣<0,故选:A.32.函数的图象大致是()A.B.C.D.【解答】解:由题意,函数在(﹣1,1)上单调递减,在(﹣∞,﹣1),(1,+∞)上单调递减,故选A.33.函数的大致图象是()A.B.C.D.【解答】解:f(﹣x)===﹣f(x),∴f(x)是奇函数,图象关于原点对称,故A,C错误;又当x>1时,ln|x|=lnx>0,∴f(x)>0,故D错误,故选B.34.函数的图象大致为()A.B.C.D.【解答】解:f(﹣x)==﹣=﹣f(x),∴函数f(x)为奇函数,则图象关于原点对称,故排A,B,当x=时,f()==故选:D二.解答题(共6小题)35.在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρcosθ=4.(1)M为曲线C1上的动点,点P在线段OM上,且满足|OM|•|OP|=16,求点P的轨迹C2的直角坐标方程;(2)设点A的极坐标为(2,),点B在曲线C2上,求△OAB 面积的最大值.【解答】解:(1)曲线C1的直角坐标方程为:x=4,设P(x,y),M(4,y0),则,∴y0=,∵|OM||OP|=16,∴=16,即(x2+y2)(1+)=16,∴x4+2x2y2+y4=16x2,即(x2+y2)2=16x2,两边开方得:x2+y2=4x,整理得:(x﹣2)2+y2=4(x≠0),∴点P的轨迹C2的直角坐标方程:(x﹣2)2+y2=4(x≠0).(2)点A的直角坐标为A(1,),显然点A在曲线C2上,|OA|=2,∴曲线C2的圆心(2,0)到弦OA的距离d==,∴△AOB的最大面积S=|OA|•(2+)=2+.36.在直角坐标系xOy中,曲线C1的参数方程为(t 为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.【解答】解:(Ⅰ)由,得,两式平方相加得,x2+(y﹣1)2=a2.∴C1为以(0,1)为圆心,以a为半径的圆.化为一般式:x2+y2﹣2y+1﹣a2=0.①由x2+y2=ρ2,y=ρsinθ,得ρ2﹣2ρsinθ+1﹣a2=0;(Ⅱ)C2:ρ=4cosθ,两边同时乘ρ得ρ2=4ρcosθ,∴x2+y2=4x,②即(x﹣2)2+y2=4.由C3:θ=α0,其中α0满足tanα0=2,得y=2x,∵曲线C1与C2的公共点都在C3上,∴y=2x为圆C1与C2的公共弦所在直线方程,①﹣②得:4x﹣2y+1﹣a2=0,即为C3 ,∴1﹣a2=0,∴a=1(a>0).37.在直角坐标系xOy中,曲线C1的参数方程为(α为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+)=2.(1)写出C1的普通方程和C2的直角坐标方程;(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P 的直角坐标.【解答】解:(1)曲线C1的参数方程为(α为参数),移项后两边平方可得+y2=cos2α+sin2α=1,即有椭圆C1:+y2=1;曲线C2的极坐标方程为ρsin(θ+)=2,即有ρ(sinθ+cosθ)=2,由x=ρcosθ,y=ρsinθ,可得x+y﹣4=0,即有C2的直角坐标方程为直线x+y﹣4=0;(2)由题意可得当直线x+y﹣4=0的平行线与椭圆相切时,|PQ|取得最值.设与直线x+y﹣4=0平行的直线方程为x+y+t=0,联立可得4x2+6tx+3t2﹣3=0,由直线与椭圆相切,可得△=36t2﹣16(3t2﹣3)=0,解得t=±2,显然t=﹣2时,|PQ|取得最小值,即有|PQ|==,此时4x2﹣12x+9=0,解得x=,即为P(,).另解:设P(cosα,sinα),由P到直线的距离为d==,当sin(α+)=1时,|PQ|的最小值为,此时可取α=,即有P(,).38.在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)若a=﹣1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a.【解答】解:(1)曲线C的参数方程为(θ为参数),化为标准方程是:+y2=1;a=﹣1时,直线l的参数方程化为一般方程是:x+4y﹣3=0;联立方程,解得或,所以椭圆C和直线l的交点为(3,0)和(﹣,).(2)l的参数方程(t为参数)化为一般方程是:x+4y﹣a ﹣4=0,椭圆C上的任一点P可以表示成P(3cosθ,sinθ),θ∈[0,2π),所以点P到直线l的距离d为:d==,φ满足tanφ=,且的d 的最大值为.①当﹣a﹣4≤0时,即a≥﹣4时,|5sin(θ+4)﹣a﹣4|≤|﹣5﹣a﹣4|=5+a+4=17解得a=8≥﹣4,符合题意.②当﹣a﹣4>0时,即a<﹣4时|5sin(θ+4)﹣a﹣4|≤|5﹣a﹣4|=5﹣a﹣4=1﹣a=17解得a=﹣16<﹣4,符合题意.39.在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),曲线C的参数方程为(s为参数).设P为曲线C上的动点,求点P到直线l的距离的最小值.【解答】解:直线l的直角坐标方程为x﹣2y+8=0,∴P到直线l的距离d==,∴当s=时,d取得最小值=.40.在直角坐标系xOy中,直线l1的参数方程为,(t为参数),直线l2的参数方程为,(m为参数).设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.(1)写出C的普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:ρ(cosθ+sinθ)﹣=0,M为l3与C的交点,求M的极径.【解答】解:(1)∵直线l1的参数方程为,(t为参数),∴消掉参数t得:直线l1的普通方程为:y=k(x﹣2)①;又直线l2的参数方程为,(m为参数),同理可得,直线l2的普通方程为:x=﹣2+ky②;联立①②,消去k得:x2﹣y2=4,即C的普通方程为x2﹣y2=4;(2)∵l3的极坐标方程为ρ(cosθ+sinθ)﹣=0,∴其普通方程为:x+y﹣=0,联立得:,∴ρ2=x2+y2=+=5.∴l3与C的交点M的极径为ρ=.。

2019秋高三数学上学期期末试题汇编:8.函数的图像 1 Word版含解析

2019秋高三数学上学期期末试题汇编:8.函数的图像 1 Word版含解析

姓名,年级:时间:(山东省德州市2019届高三期末联考数学(理科)试题)10。

如果是抛物线上的点,它们的横坐标,是抛物线的焦点,若,则()A. 2028 B。

2038 C. 4046 D。

4056【答案】B【解析】【分析】由抛物线性质得|P n F|x n+1,由此能求出结果.【详解】∵P1,P2,…,P n是抛物线C:y2=4x上的点,它们的横坐标依次为x1,x2,…,x n,F是抛物线C的焦点,,∴=(x1+1)+(x2+1)+…+(x2018+1)=x1+x2+…+x2018+2018=2018+20=2038.故选:B.【点睛】本题考查抛物线中一组焦半径和的求法,是中档题,解题时要认真审题,注意抛物线的性质的合理运用.(山东省潍坊市2019届高三上学期期末测试数学(理科)试题)12.已知偶函数的定义域为,且满足,当时,,.①方程有个不等实根;②方程只有个实根;③当时,方程有个不等实根;④存在使。

A. ①②B. ①③C. ①④D. ②④【答案】B【解析】【分析】本道题一个一个分析,结合换元思想和二次函数单调性,即可。

【详解】1号得到:.令,代入原式,得到或,解得两个方程各有一个根,故正确;2号建立方程,解得,所以为偶函数,而,,故不止一个实根,故错误。

3号解得x=2,0,—2。

—4,….。

而令,故的范围为,因而,一共有七个根,故正确.4选项当,,而当,根本就不存在这样的点,故错误。

【点睛】本道题考查了二次函数的性质和偶函数的性质,难度较大。

(福建省宁德市 2019届高三第一学期期末质量检测数学理科试题)16。

已知函数,,。

若在上的最大值为2,则的值为__________.【答案】2【解析】【分析】本道题是一道数形结合题型,通过绘图,结合图形理解,发现必过点,代入,即可.【详解】令,,可知周期为4,故关于x=1对称,而也是关于x=1对称,故关于对称,在上,递增,而递减,故递增,在上,递减,递增,故递减,当,而最大值为2,所以为的交点,所以代入的解析式中,得到,而,所以t=2.【点睛】本道题考查了数形结合思想,难度较大.(湖北省2019届高三1月联考测试数学(理)试题)16.设函数,若函数有4个零点,则的取值范围为__.【答案】【解析】【分析】由题意可知函数为偶函数,函数有4个零点转化为函数在有2个零点,即研究函数的单调性与最值即可.【详解】由题意可知,函数的定义域,,即,∴函数为偶函数,若函数有4个零点,即函数在有2个零点,当x>0时,,易知:函数在上单调递减,在上单调递增,且时,,且时,,故只需:的最小值∴,解得∴的取值范围为.故答案为:【点睛】(1)函数零点个数(方程根的个数)的判断方法:①结合零点存在性定理,利用函数的单调性、对称性确定函数零点个数;②利用函数图像交点个数判断方程根的个数或函数零点个数.(2)本题将方程实根个数的问题转化为两函数图象交点的问题解决,解题时注意换元法的应用,以便将复杂的问题转化为简单的问题处理。

2019年高考数学试题分类汇编函数附答案详解

2019年高考数学试题分类汇编函数附答案详解

2019年高考数学试题分类汇编函数一、选择题.1、(2019年高考全国卷1文理科3)已知0.20.32log 0.220.2a b c ===,,,则 A .a b c << B .a c b <<C .c a b <<D .b c a <<答案:B解析: 001log 2.0log 22<⇒=<=a a ,112202.0>⇒=>=b b ,1012.02.003.0<<⇒=<=c c ,b c a <<∴,故选B2、(2019年高考全国卷1文理科5)函数f (x )=2sin cos ++x xx x 在[,]-ππ的图像大致为A .B .C .D .答案:D解析:因为)()(x f x f -=-,所以)(x f 为奇函数又01)(2>-=πππf ,124412)2(22>+=+=πππππf ,故选D 3、(2019年高考全国卷1理科11)关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④ B .②④C .①④D .①③答案:C解析:由)(|sin |||sin |)sin(|||sin )(x f x x x x x f =+=-+-=-,故①正确;),2(ππ∈x 时,x x x x f sin 2sin sin )(=+=,函数递减,故②错误;],0[π∈x 时,x x x x f sin 2sin sin )(=+=,函数有2个零点,0)()0(==πf f ,而],0[π∈x 时0)()0(=-=πf f ,所以函数有且只有3个零点,故③错误;函数为偶函数,只需讨论0>x ,N k k k x ∈+∈),2,2(πππ时,x x x x f sin 2sin sin )(=+=,最大值为2,N k k k x ∈++∈),22,2(ππππ时,0sin sin )(=-=x x x f ,故函数最大值为2,故④正确。

(推荐)函数的图像-2019年领军高考数学(理科)必刷题

(推荐)函数的图像-2019年领军高考数学(理科)必刷题

考点10 函数的图像1.函数的部分图象大致为()A. B.C. D.【答案】D2.通过绘制函数的图象,下列对其图象的对称性描述正确的一项是A.既是轴对称图形,又是中心对称图形B.是轴对称图形,不是中心对称图形C.是中心对称图形,不是轴对称图形D.既不是轴对称图形,也不是中心对称图形【答案】B【解析】由函数,可得,,即,所以函数的图象只关于对称,故选B.学科@网3.函数的图象是A. B.C. D.【答案】A4.若定义在上的偶函数,满足且时,,则方程的实根个数是()A. 2个 B. 3个 C. 4个 D. 6个【答案】C【解析】由f(x+2)=f(x)可得函数的周期为2,又函数为偶函数且当x∈[0,1]时,f(x)=x,故可作出函数f(x)得图象,∴方程f(x)=log3|x|的解个数等价于f(x)与y=log3|x|图象的交点,由图象可得它们有4个交点,故方程f(x)=log3|x|的解个数为4故选:C5.已知函数,当时,取得最小值,则函数的图象为()【答案】B6.函数的图像可能是()A. B.C. D.【答案】A【解析】设,其定义域关于坐标原点对称又是奇函数,故排除令,则,,故排除故选.7.函数的图象是( )A. B.C. D.【答案】B8.函数关于直线对称,则函数关于()A.原点对称 B.直线对称 C.直线对称 D.直线对称【答案】D【解析】将函数的图象向左平移个单位长度即可得到函数的图象,结合函数关于直线对称,可知函数关于直线对称.本题选择D选项. 学科&网9.下列四个图中,函数的图象可能是A. B. C. D.【答案】C10.定义在R上的偶函数f(x)满足f(x+1)=-f(x),当x∈[0,1]时,f(x)=-2x+1,设函数,则函数f(x)与g(x)的图象交点个数为()A. 3 B. 4 C. 5 D. 6【答案】B【解析】:∵f(x+1)=-f(x),∴f(x+2)=-f(x+1)=f(x),∴f(x)的周期为2.∴f(1-x)=f(x-1)=f(x+1),故f(x)的图象关于直线x=1对称.又的图象关于直线x=1对称,作出f(x)的函数图象如图所示:由图象可知两函数图象在(-1,3)上共有4个交点,故选B. 学科&网11.函数的图象大致为A. B.C. D.【答案】B12.定义在R上的奇函数满足,且当时,不等式恒成立,则函数的零点的个数为A. 1 B. 2 C. 3 D. 4【答案】C13.已知某函数图象如图所示,则图象所对应的函数可能是()A. B. C. D.【答案】D【解析】【分析】对给出的四个选项分别进行分析、讨论后可得结果.【详解】14.点P在边长为1的正方形ABCD的边上运动,M是CD的中点,则当P沿A﹣B﹣C﹣M运动时,点P经过的路程x与△APM的面积y的函数y=f(x)的图象的形状大致是图中的()A. B. C. D.【答案】A【解析】①当点P在AB上时,如图:②当点P在BC上时,如图:③当点P在CM上时,如图,综上①②③,得到的三个函数都是一次函数,由一次函数的图象与性质可以确定y与x的图形.只有A的图象是三个一次函数,且在第二段上y随x的增大而减小,故选:A.15.如果一个点是一个指数函数和一个对数函数的图像的交点,那么称这个点为"好点".下列四个点P1(1,1),P2(1,2),P3(,),P4(2,2)中,"好点"有()个A. 1 B. 2 C. 3 D. 4【答案】B故选:B.16.已知函数,则的大致图象为()A. B.C. D.【答案】A17.函数的图象大致是()A. B. C. D.【答案】D【解析】当x<0时,函数f(x)=,由函数y=、y=ln(﹣x)递减知函数f(x)=递减,排除A、B;当x>0时,函数f(x)=,此时,f(1)==1,而选项A的最小值为2,故可排除C,只有D正确,故选:D.18.函数的部分图像为A. B.C. D.【答案】D19.已知函数,则的图象大致为( )A. B. C. D.【答案】A【解析】因为,所以函数是奇函数,其图象关于原点对称,可排除选项;又因为,可排除选项.故选A.20.函数,定义函数,给出下列命题:①;②函数是偶函数;③当a<0时,若0<m<n<1,则有F(m)﹣F(n)<0成立;④当a>0时,函数有4个零点.其中正确命题的序号为________________________ .【答案】②③④∴当x>0时,F(x)的最小值为F(1)=1,∴当x>0时,函数F(x)的图象与y=2有2个交点,又函数F(x)是偶函数,∴当x<0时,函数F(x)的图象与y=2也有2个交点,画出图象如下图:故当a>0时,函数y=F(x)−2有4个零点.所以④正确.综上可得②③④正确.21.已知 m,n,α,β∈R,m<n,α<β,若α,β是函数f(x)=2(x﹣m)(x﹣n)﹣7的零点,则m,n,α,β四个数按从小到大的顺序是_____(用符号“<“连接起来).【答案】22.函数满足,,当时, ,过点且斜率为的直线与在区间上的图象恰好有个交点,则的取值范围为_________.【答案】【解析】∵,∴,即,∴函数的周期为.由时,,则当时,,故,因此当时,.结合函数的周期性,画出函数图象如下图所示.综上可得的取值范围为.23.设函数,,对于任意的,不等式恒成立,则实数的取值范围是__________.【答案】.(注:文档可能无法思考全面,请浏览后下载,供参考。

全国卷一专用2019年高考理科数学总复习函数的图象

全国卷一专用2019年高考理科数学总复习函数的图象

8. (2017陕西师范附属二模)已知直线y=x 与函数 则实数m 的取值范围是 ________________ . (2,x > m 2 f (x )= - 的图象恰有三个公共点,)全国卷一专用2019年高考理科数学总复习函数的图象 一、基础巩固组1.已知f (x ) =2x ,则函数y=f (|x- 1|)的图象为(3. 为了得到函数 y=log 2仇*•一的图象,可将函数y=log 次的图象上所有的点的( 1 ,横坐标不变,再向右平移1个单位长度1■,纵坐标不变,再向左平移1个单位长度2倍,纵坐标不变,再向左平移1个单位长度 2倍,横坐标不变,再向右平移1个单位长度 A.纵坐标缩短到原来的 B. 横坐标缩短到原来的 C. 横坐标伸长到原来的D. 纵坐标伸长到原来的,则函数F (x )=f (x ) • g (x )的大致图象为 ,则a 的取值范4. 已知函数 f (x ) =-x +2, g ( x ) =log 2|x|5. 已知函数 围是( ) A. ":• " 2 B.( - yV ) C. 一 = D. ■ " ~6. 已知函数f (x )( x € R)满足f (x ) =f (2 -x ),若函数y=|x -2x-3|与y=f (x )图象的交点为(X 1,y 1),( X 2,y 2),…,(x m , yn),则- .x =( ) A.0 B. m C.2m D.4m 卩唯片>0, 7. (2017河南洛阳统考)已知函数f (x )= - 则实数a 的取值范围是 _____________ .关于x 的方程f (x ) +x-a=O 有且只有一个实根,(lg|x|5x 丰 0±9.已知定义在R 上的函数f (x )= - 若关于x 的方程f (x )=c (c 为常数)恰有3个不同的实数根 X i , X 2, X 3,贝U X l +X 2+X 3=.二、综合提升组三、创新应用组14. (2017山东潍坊一模,理10)已知定义在 R 上的奇函数f (x )满足f (x+2) =f (2 -x ),当x € [0,2] m-12一一 一 一 E 时,f (x )=-4x +8x.若在区间[a , b ]上,存在mm>3)个不同整数X i (i= 1,2,…,n ),满足::h.|f (X i )-f (x i+1) | >72,则b-a 的最小值为( )110.已知函数f (X )=H :L .I ;“「则y=f ( x )的图象大致为(111.函数 f ( X ) =| In X |-flgxIQO,12. 已知f (x )= - 贝U 函数y=2f 2(x )-3f (x )+1的零点个数是f|H|显 £ m,13.(2017安徽淮南一模)已知函数f (x )丈.其中m 0若存在实数的方程f (x ) =b 有三个不同的根,则m 的取值范围是 ___________ .b ,使得关于XA. 15B.16C.1715. (2017广东、江西、福建十校联考)已知函数方程f 一' =a的实根个数为()D.18 d0g5(l*X)(X <1), f(x)= ••当1<a<2时,则关于X的D.8函数的图象1. D f (|x- 1|)=2lx-11.当x=0时,y=2.可排除选项A,C.当x=-1时,y=4.可排除选项B.故选D2. D 设f(x)=sin( x2).因为y=f(-x)=sin(( -x)2)=sin( x2)=f(x),所以y=f(x)为偶函数,所以函数y=f (x)的图象关于y轴对称,故排除A,C;当x= 而时,y=0,故排除B,故选D.3. A y=log 2血-J=log 2(x-1 一jog 2( x-1).将y=log 2x的图象上所有点的纵坐标缩短到原来的_,横1 1坐标不变,可得y=_log 2X的图象,再向右平移1个单位长度,可得y=_log 2( x-1)的图象,也即y=log 2—1的图象.4. B易知函数F(x)为偶函数,故排除选项A,D;当x=_时,F - log更=「<0,故排除选项C, 选B.5. B由已知得与函数f (x)的图象关于y轴对称的图象的解析式为h(x) =x2+e-x-」(x>0).x 1 x 1令h(x) =g(x),得ln( x+a)=e= ,作函数Mx^e:一的图象,显然当a<0时,函数y=ln( x+a)的图象与Mx)的图象一定有交点.1当a>0时,若函数y=ln( x+a)的图象与Mx)的图象有交点,则ln a< ",则0<a< 二综上a< 「故选B.6. B由题意可知y=f (x)与y=|x2-2x- 3|的图象都关于直线x=1对称,所以它们的交点也关于直线x=1对称.y m当m为偶数时,—_X i=2 -=my m*l当m为奇数时,-.x i =2 - +仁m故选B.7. (1,+8)问题等价于函数y=f (x)与y=-x+a的图象有且只有一个交点,画出两个函数的大致图象如图所示,结合函数图象可知a>1.8. [-1,2) 画出函数图象如图所示由图可知,当m=-1时,直线y=x 与函数图象恰好有 3个公共点,当m=2时,直线y=x 与函数图象只有2个公共点,故m 的取值范围是[-1,2).9. 0函数f (x )的图象如图,方程f (x )=c 有3个不同的实数根, 即y=f (X )与y=c 的图象有3个交点,易知c=1,且一根为 由lg |X |= 1知另两根为-10和10,故X i +X 2+X 3=0. 10. B 当X =1时,y= ____ <0,排除A;当X =0时,y 不存在,排除11.C 由函数的定义域为 X >0,可知排除选项 A;当X >1时,f 当X>2时,f' (X )<0,即f (x )在(1,2)内递增,在(2, +R)内递减,排除选项B,D,故选C 112.5 方程2f 2(X ) -3f (X ) +1=0的解为f (x )=_或1.作出y=f (x )的图象,由图象知零点的个数为 5.\\x\^ < 阻13.(3,)当m :0时,函数f (X )JC F • im ::的图象如图所示2 2 2 2■/ 当 x>m 时,f (X ) =X - 2mx+4m= x-m ) +4m-m>4m-m,二要使得关于X 的方程f (X ) =b 有三个不同的根,必须4m-m<mm :0), 即 m>3mm»),解得 m :3,故m 的取值范围是(3, +R).14. D 由题意得 f (X )的图象关于直线 X =2 对称,f (X +2+2) =f (2 -X - 2) =f ( -X ) =-f ( X ),即 f ( X +4)=- f (x ),则f (X +8) =-f (X +4) =f (x ). ••• f (X )的周期为8,函数f (X )的图象如图所示.0. (4去諾D;f 】::'<0,故选 B . 1 _ 1 4-x 2 (X )=— "X =—,当 1<X <2 时,f (X ) >0,T f(-1)=-4,f(0) =0,f(1) =4,f (2) =0,f(3) =4,f (4) =0,……,|f (-1)-f (0) |= 4, |f (0)-72f(1) |=4, |f (1) -f ⑵ |=4, |f ⑵-f (3) |=4,……, 匸=18,故b-a 的最小值为18,故选D.115. B 令x+_-2=t,则f(t)=a,作出y=f(x)的函数图象如图所示.由图可知,当1<a<2时,关于t的方程f (t)=a有3个解. 不妨设3个解分别为t 1, t2, t 3,且t 1<t 2<t3,则-24<t1<-4,1 <t2<2,2 <t 3<3.1当x+ _- 2=t 1,即x2-(2+tJx+1=0,2•/-24<t1<-4, A △ =(2 +t1) -4>0,1A方程x+ ■- 2=t 1有2解,1 1同理方程x+ _-2=t2有2解,x+ _-2=t3有2解,•••当1<a<2时,关于x的方程f 一=a有6解.故选B.。

2019届高考(文)《函数的图象》专题达标试卷(含答案)

2019届高考(文)《函数的图象》专题达标试卷(含答案)

温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。

关闭Word文档返回原板块。

课时提升作业(十)函数的图象(45分钟100分)一、选择题(每小题6分,共48分)1.函数y=的图象大致是( )2.(2018·宜昌模拟)在同一坐标系中画出函数y=log a x,y=a x,y=x+a的图象,可能正确的是( )3.设函数f(x)=2x,则如图所示的函数图象对应的函数是( )A.y=f(|x|)B.y=-|f(x)|C.y=-f(-|x|)D.y=f(-|x|)4.(2018·四川高考)函数y=的图象大致是( )5.(2018·咸宁模拟)函数f(x)=|tanx|,则函数y=f(x)+log4x-1与x轴的交点个数是( )A.1B.2C.3D.46.(2018·郑州模拟)若f(x)是偶函数,且当x∈[0,+∞)时,f(x)=x-1,则f(x-1)<0的解集是( )A.(-1,0)B.(-∞,0)∪(1,2)C.(1,2)D.(0,2)7.(2018·武汉模拟)设定义域为R的函数f(x)=若关于x的方程f2(x)+bf(x)+c=0有三个不同的实数根x1,x2,x3,则++等于( )A.5B.4C.1D.08.(2018·黄冈模拟)若直线y=kx+1与曲线y=-有四个公共点,则k的取值集合是( )[:A. B.C. D.二、填空题(每小题6分,共24分)9.把函数y=log3(x-1)的图象向右平移个单位,再把横坐标缩小为原来的,所得图象的函数解析式是.10.(2018·成都模拟)已知函数f(x)=|x+1|+|x-a|的图象关于直线x=1对称,则a的值是.11.(2018·石家庄模拟)已知函数f(x)=+与g(x)=4x+x的交点的横坐标为x0,当x1<x0时f(x) g(x)(从>,<,=,≥,≤中选择正确的一个填到横线上).12.(能力挑战题)已知函数f(x)=若关于x的方程f(x)=k有两个不同的实根,则实数k的取值范围是.三、解答题(每小题14分,共28分)13.已知函数y=f(x)同时满足以下五个条件:(1)f(x+1)的定义域是[-3,1].(2)f(x)是奇函数.(3)在[-2,0)上,f′(x)>0.(4)f(-1)=0.(5)f(x)既有最大值又有最小值.请画出函数y=f(x)的一个图象,并写出相应于这个图象的函数解析式.14.利用函数图象讨论方程|1-x|=kx的实数根的个数.答案解析1.【解析】选D.函数y=f(x)=为奇函数,所以图象关于原点对称,排除A,B.当x=1时,f(1)==0,排除C,选D.2.【解析】选D.分0<a<1和a>1两种情形,易知A,B,C均错.3.【解析】选C.因为当x=0时,y=-1,所以排除A,D.又因为函数的图象关于y轴对称,所以函数为偶函数,所以排除B,故选C.4.【解析】选C.首先考虑当x<0时,函数值应为正值,所以排除选项B,当x=0时解析式没有意义,故排除选项A,当x无穷大时,考虑指数函数比幂函数增长快,所以函数值越来越小,故选C.【方法技巧】巧用函数值的变化趋势及特殊值知式选图,对于给解析式选图象问题除掌握一般方法外,还应根据解析式结合所给图象,灵活运用特殊值及函数值的变化趋势排除错误的选择支,快速选择.5.【解析】选 C.函数y=f(x)+log4x-1与x轴的交点个数,为方程f(x)+log4x-1=0的解的个数,即方程f(x)=-log4x+1解的个数,也即函数y=f(x),y=-log4x+1的图象交点个数,作出两个函数图象可知,它们有3个交点.故选C.【误区警示】本题易由于转化失误,误为y=f(x)与y=log4x-1的图象交点而误选.6.【思路点拨】先作出f(x)的图象,再通过图象变换作出函数y=f(x-1)的图象,数形结合求解.【解析】选D.根据函数的性质作出函数f(x)的图象如图,把函数f(x)向右平移1个单位,得到函数f(x-1),如图,则不等式f(x-1)<0的解集为(0,2).7.【解析】选A.先作出f(x)的图象如图从图象上看,若f2(x)+bf(x)+c=0有两个f(x)值,那么方程会有至少4个根,所以t2+bt+c=0只能有一个根1,这时f(x)=1时,x=0,1,2,所以++=0+12+22=5.8.【解析】选A.由f(x)=-是偶函数,考察x>0的情形,y=作图:k=0时,直线y=kx+1与曲线有四个交点,满足题意;k≠0时,若直线y=kx+1与y=相切,由kx+1=,得kx2+x-2=0,Δ=0,k=-,直线绕(0,1)逆时针旋转,开始出现5个交点,顺时针旋转,3个交点,k=-符合题意,根据对称性,k=也满足题意,故为.9.【解析】y=log3(x-1)的图象向右平移个单位得到y=log3,再把横坐标缩小为原来的,得到y=log3.故应填y=log3.答案:y=log310.【解析】令x+1=0得x=-1,令x-a=0得x=a,由两零点关于x=1对称,得=1,所以a=3.答案:3【加固训练】已知函数f(x)的定义域为(3-2a,a+1),且f(x+1)为偶函数,则实数a的值可以是( )A. B.2 C.4 D.6【解析】选B.因为函数f(x+1)为偶函数,所以f(-x+1)=f(x+1),即函数f(x)关于x=1对称,所以区间(3-2a,a+1)关于x=1对称,所以=1,即a=2,所以选B.11.【解析】f(x)为减函数,g(x)为增函数,故两函数只有1个交点,图象如图所示,故当x1<x0时,f(x)>g(x).答案:>12.【解析】当x≥4,f(x)=1+单调递减,且1<1+≤2,当0<x<4时,f(x)=lo g2x单调递增,且f(x)=log2x≤2,所以要使方程f(x)=k有两个不同的实根,如图知则有1<k<2.答案:(1,2)13.【解析】本题答案不唯一.由(1)知,-3≤x≤1,-2≤x+1≤2,故f(x)的定义域是[-2,2].由(3)知,f(x)在[-2,0)上是增函数.综合(2)和(4)知,f(x)在(0,2]上也是增函数,且f(-1)=f(1)=0,f(0)=0.故函数y=f(x)的一个图象可以如图所示,与之相应的函数解析式是f(x)=【加固训练】已知函数f(x)=(1)在如图所示给定的直角坐标系内画出f(x)的图象.(2)写出f(x)的单调递增区间.(3)由图象指出当x取什么值时f(x)有最值.【解析】(1)函数f(x)的图象如图所示.(2)由图象可知,函数f(x)的单调递增区间为[-1,0],[2,5].(3)由图象知当x=2时,f(x)min=f(2)=-1,当x=0时,f(x)max=f(0)=3.14.【解析】在同一坐标系中画出y=|1-x|、y=kx的图象.由图象可知,当-1≤k<0时,方程没有实数根;当k=0或k<-1或k≥1时,方程只有一个实数根;当0<k<1时,方程有两个不相等的实数根.关闭Word文档返回原板块。

专题01 函数的图像与性质(解析版)

专题01  函数的图像与性质(解析版)

专题01 函数的图像与基本性质1、(2019年江苏卷).函数y =_____. 【答案】[1,7]-.【解析】由已知得2760x x +-≥, 即2670x x --≤ 解得17x -≤≤, 故函数的定义域为[1,7]-.2、(2019年江苏卷).设(),()f x g x 是定义在R 上的两个周期函数,()f x 的周期为4,()g x 的周期为2,且()f x 是奇函数.当2(]0,x ∈时,()f x =(2),01()1,122k x x g x x +<≤⎧⎪=⎨-<≤⎪⎩,其中0k >.若在区间(0]9,上,关于x 的方程()()f x g x =有8个不同的实数根,则k 的取值范围是_____.【答案】1,34⎡⎫⎪⎢⎪⎣⎭. 【解析】当(]0,2x ∈时,()f x =即()2211,0.x y y -+=≥又()f x 为奇函数,其图象关于原点对称,其周期为4,如图,函数()f x 与()g x 的图象,要使()()f x g x =在(]0,9上有8个实根,只需二者图象有8个交点即可.当1g()2x =-时,函数()f x 与()gx 的图象有2个交点;当g()(2)x k x =+时,()g x 的图象为恒过点()2,0-的直线,只需函数()f x 与()g x 的图象有6个交点.当()f x 与()g x 图象相切时,圆心()1,0到直线20kx y k -+=的距离为11=,得4k =,函数()f x 与()g x 的图象有3个交点;当g()(2)x k x =+过点1,1()时,函数()f x 与()g x 的图象有6个交点,此时13k =,得13k =. 综上可知,满足()()f x g x =在(]0,9上有8个实根的k 的取值范围为134⎡⎫⎪⎢⎪⎣⎭,. 3【2019年高考全国Ⅲ卷理数】若()f x 是定义域为R 的偶函数,且在(0,)+∞单调递减,则( )A. 233231(log )(2)(2)4f f f -->> B. 233231(log )(2)(2)4f f f -->>C. 233231(2)(2)(log )4f f f -->> D.233231(2)(2)(log )4f f f -->>答案:C解析:依据题意函数为偶函数且函数在(0,)+∞单调递减,则函数在(,0)-∞上单调递增;因为3331(log )(log 4)(log 4)4f f f =-=;又因为233230221log 4--<<<<;所以233231(2)(2)(log )4f f f -->>;故选C.4.【2019年高考全国Ⅰ卷文数】已知0.20.32log 0.2,2,0.2a b c ===,则( )A .B .C .D .【答案】Ba b c <<a c b <<c a b <<b c a <<【解析】22log 0.2log 10,a =<=0.20221,b =>=0.3000.20.21,c <=<=即01,c <<则a c b <<. 故选B .5、【2019年高考全国Ⅱ卷文数】设f (x )为奇函数,且当x ≥0时,f (x )=e 1x -,则当x <0时,f (x )= ( ) A .e 1x -- B .e 1x -+ C .e 1x --- D .e 1x --+【答案】D【解析】由题意知()f x 是奇函数,且当x ≥0时,f (x )=e 1x -, 则当0x <时,0x ->,则()e 1()xf x f x --=-=-,得()e 1xf x -=-+.故选D .6、【2019年高考全国Ⅲ卷文数】函数()2sin sin2f x x x =-在[0,2π]的零点个数为( ) A .2 B .3 C .4D .5【答案】B【解析】由()2sin sin 22sin 2sin cos 2sin (1cos )0f x x x x x x x x =-=-=-=, 得sin 0x =或cos 1x =,[]0,2πx ∈,0πx ∴=、或2π.()f x ∴在[]0,2π的零点个数是3.故选B .7、【2019年高考天津文数】已知0.223log 7,log 8,0.3a b c ===,则a ,b ,c 的大小关系为( )A .c b a <<B .a b c <<C .b c a <<D .c a b <<【答案】A【解析】∵0.200.30.31c =<=,22log 7log 42a =>=, 331log 8log 92b <=<=,∴c b a <<. 故选A .8、【2019年高考北京文数】下列函数中,在区间(0,+∞)上单调递增的是( ) A .12y x = B .y =2x - C .12log y x =D .1y x=【答案】A【解析】易知函数122,log xy y x -==,1y x=在区间(0,)+∞上单调递减, 函数12y x =在区间(0,)+∞上单调递增. 故选A.9、【2019年高考全国Ⅰ卷文数】函数f (x )=在[,]-ππ的图像大致为( ) A .B .C .D .【答案】D 【解析】由22sin()()sin ()()cos()()cos x x x xf x f x x x x x -+----===--+-+,得()f x 是奇函数,其图象关于原点对称.又22π1π42π2()1,π2π()2f ++==>2π(π)01πf =>-+, 可知应为D 选项中的图象. 故选D .10、【2019年高考北京文数】在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮2sin cos ++x xx x度满足212152–lg E m m E =,其中星等为k m 的星的亮度为k E (k =1,2).已知太阳的星等是–26.7,天狼星的星等是–1.45,则太阳与天狼星的亮度的比值为( ) A .1010.1B .10.1C .lg10.1D .10−10.1【答案】A【解析】两颗星的星等与亮度满足12125lg 2E m m E -=, 令211.45,26.7m m =-=-, 则()121222lg( 1.4526.7)10.1,55E m m E =-=⨯-+= 从而10.11210E E =. 故选A.11、【2019年高考浙江】在同一直角坐标系中,函数1x y a =,1(2log )ay x =+(a >0,且a ≠1)的图象可能是( )【答案】D【解析】当01a <<时,函数xy a =的图象过定点(0,1)且单调递减,则函数1x y a=的图象过定点(0,1)且单调递增,函数1log 2a y x ⎛⎫=+⎪⎝⎭的图象过定点1(,0)2且单调递减,D 选项符合; 当1a >时,函数xy a =的图象过定点(0,1)且单调递增,则函数1xy a =的图象过定点(0,1)且单调递减,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭的图象过定点1(,02)且单调递增,各选项均不符合. 综上,选D.12、【2019年高考全国Ⅲ卷文数】设()f x 是定义域为R 的偶函数,且在()0,+∞单调递减,则( )A .f (log 314)>f (322-)>f (232-)B .f (log 314)>f (232-)>f (322-)C .f (322-)>f (232-)>f (log 314) D .f (232-)>f (322-)>f (log 314) 【答案】C 【解析】()f x 是定义域为R 的偶函数,331(log )(log 4)4f f ∴=.223303322333log 4log 31,1222,log 422---->==>>∴>>,又()f x 在(0,+∞)上单调递减,∴23323(log 4)22f f f --⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭, 即23323122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选C .13、【2019年高考天津文数】已知函数01,()1,1.x f x x x⎧≤≤⎪=⎨>⎪⎩若关于x 的方程1()()4f x x a a =-+∈R 恰有两个互异的实数解,则a 的取值范围为( ) A .59,44⎡⎤⎢⎥⎣⎦B .59,44⎛⎤⎥⎝⎦C .59,{1}44⎛⎤⎥⎝⎦D .59,{1}44⎡⎤⎢⎥⎣⎦【答案】D【解析】作出函数01,()1,1x f x x x⎧≤≤⎪=⎨>⎪⎩的图象,以及直线14y x =-,如图,关于x 的方程1()()4f x x a a =-+∈R 恰有两个互异的实数解, 即为()y f x =和1()4y x a a =-+∈R 的图象有两个交点, 平移直线14y x =-,考虑直线经过点(1,2)和(1,1)时,有两个交点,可得94a =或54a =, 考虑直线1()4y x a a =-+∈R 与1y x =在1x >时相切,2114ax x -=, 由210a ∆=-=,解得1a =(1-舍去), 所以a 的取值范围是{}59,149⎡⎤⎢⎥⎣⎦.故选D.一、函数的性质 1、求函数的单调区间首先应注意函数的定义域,函数的单调区间都是其定义域的子集;其次掌握一次函数、二次函数等基本初等函数的单调区间.常用方法:根据定义、利用图象和单调函数的性质、利用导数的性质. 2、复合函数的单调性对于复合函数y =f [g (x )],若t =g (x )在区间(a ,b )上是单调函数,且y =f (t )在区间(g (a ),g (b ))或者(g (b ),g (a ))上是单调函数,若t =g (x )与y =f (t )的单调性相同(同时为增或减),则y =f [g (x )]为增函数;若t =g (x )与y =f (t )的单调性相反,则y =f [g (x )]为减函数.简称:同增异减. 3、正确理解奇函数和偶函数的定义,必须把握好两个问题:(1)定义域在数轴上关于原点对称是函数f (x )为奇函数或偶函数的必要非充分条件; (2)f (-x )=-f (x )或f (-x )=f (x )是定义域上的恒等式.4、奇函数的图象关于原点对称,偶函数的图象关于y 轴对称,反之也成立.利用这一性质可简化一些函数图象的画法,也可以利用它去判断函数的奇偶性.5、判断函数的奇偶性,首先应该判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件.6、判断函数f (x )是奇函数,必须对定义域内的每一个x ,均有f (-x )=-f (x ),而不能说存在x 0使f (-x 0)=-f (x 0).对于偶函数的判断以此类推.7、分段函数奇偶性判定时,要以整体的观点进行判断,不可以利用函数在定义域某一区间上不是奇偶函数而否定函数在整个定义域上的奇偶性. 二、抽象函数的问题:我们把没有给出具体 解析式的函数称为抽象函数。

2014-2019年高考数学真题分类汇编专题2:函数4(函数的图像)带详细答案

2014-2019年高考数学真题分类汇编专题2:函数4(函数的图像)带详细答案

2014-2019年高考数学真题分类汇编专题2:函数(函数的图像)(一)基本函数图像的应用选择题1.(2014•上海理)设2(),0()1,0x a x f x x a x x ⎧-⎪=⎨++>⎪⎩…,若(0)f 是()f x 的最小值,则a 的取值范围为( ) A .[1-,2] B .[1-,0] C .[1,2] D .[0,2]【考点】分段函数的应用【分析】当0a <时,显然(0)f 不是()f x 的最小值,当0a …时,解不等式:220a a --…,得12a -剟,问题解决.【解答】解;当0a <时,显然(0)f 不是()f x 的最小值, 当0a …时,2(0)f a =, 由题意得:21a x a x++…, 解不等式:220a a --…,得12a -剟,02a ∴剟,故选:D .【点评】本题考察了分段函数的问题,基本不等式的应用,渗透了分类讨论思想,是一道基础题. 2.(2014•山东理)已知函数()|2|1f x x =-+,()g x kx =.若方程()()f x g x =有两个不相等的实根,则实数k 的取值范围是( ) A .1(0,)2B .1(2,1)C .(1,2)D .(2,)+∞【考点】函数的零点【分析】画出函数()f x 、()g x 的图象,由题意可得函数()f x 的图象(蓝线)和函数()g x 的图象(红线)有两个交点,数形结合求得k 的范围.【解答】解:由题意可得函数()f x 的图象(蓝线) 和函数()g x 的图象(红线)有两个交点, 如图所示:12OA K =,数形结合可得112k <<, 故选:B .【点评】本题主要考查函数的零点与方程的根的关系,体现了转化、数形结合的数学思想,属于基础题. 3.(2014•辽宁文)已知()f x 为偶函数,当0x …时,1cos ,[0,]2()121,(,)2x x f x x x π⎧∈⎪⎪=⎨⎪-∈+∞⎪⎩,则不等式1(1)2f x -…的解集为( )A .1[4,24][33,7]4B .3[4-,11][34-,2]3C .1[3,34][43,7]4D .3[4-,11][33-,3]4【考点】分段函数的应用【分析】先求出当0x …时,不等式1()2f x …的解,然后利用函数的奇偶性求出整个定义域上1()2f x …的解,即可得到结论.【解答】解:当[0x ∈,1]2,由1()2f x =,即1cos 2x π=,则3x ππ=,即13x =,当12x >时,由1()2f x =,得1212x -=,解得34x =, 则当0x …时,不等式1()2f x …的解为1334x 剟,(如图) 则由()f x 为偶函数,∴当0x <时,不等式1()2f x …的解为3143x --剟, 即不等式1()2f x …的解为1334x 剟或3143x --剟, 则由13134x -剟或31143x ---剟,解得4734x 剟或1243x剟, 即不等式1(1)2f x -…的解集为12{|43x x 剟或47}34x 剟, 故选:A .【点评】本题主要考查不等式的解法,利用分段函数的不等式求出0x …时,不等式1()2f x …的解是解决本题的关键.4.(2015•北京理)如图,函数()f x 的图象为折线ACB ,则不等式2()log (1)f x x +…的解集是( )A .{|10}x x -<…B .{|11}x x -剟C .{|11}x x -<…D .{|12}x x -<…【考点】指、对数不等式的解法【分析】在已知坐标系内作出2log (1)y x =+的图象,利用数形结合得到不等式的解集. 【解答】解:由已知()f x 的图象,在此坐标系内作出2log (1)y x =+的图象,如图满足不等式2()log (1)f x x +…的x 范围是11x -<…;所以不等式2()log (1)f x x +…的解集是{|11}x x -<…; 故选:C .【点评】本题考查了数形结合求不等式的解集;用到了图象的平移.5.(2015•山东理)设函数31,1()2,1x x x f x x -<⎧=⎨⎩…,则满足(f f (a )())2f a =的a 的取值范围是( )A .2[3,1]B .[0,1]C .2[3,)+∞D .[1,)+∞【考点】分段函数的应用【分析】令f (a )t =,则()2t f t =,讨论1t <,运用导数判断单调性,进而得到方程无解,讨论1t …时,以及1a <,1a …,由分段函数的解析式,解不等式即可得到所求范围. 【解答】解:令f (a )t =,则()2t f t =, 当1t <时,312t t -=,由()312t g t t =--的导数为()322t g t ln '=-,在1t <时,()0g t '>,()g t 在(,1)-∞递增,即有()g t g <(1)0=, 则方程312t t -=无解; 当1t …时,22t t =成立,由f (a )1…,即311a -…,解得23a …,且1a <; 或1a …,21a …解得0a …,即为1a …. 综上可得a 的范围是23a ….故选:C .【点评】本题考查分段函数的运用,主要考查函数的单调性的运用,运用分类讨论的思想方法是解题的关键.6.(2016•天津理)已知函数2(43)3,0()(0,1)(1)1,0ax a x a x f x a a log x x ⎧+-+<⎪=>≠⎨++⎪⎩…在R 上单调递减,且关于x 的方程|()|2f x x =-恰好有两个不相等的实数解,则a 的取值范围是( )A .(0,2]3B .2[3,3]4C .1[3,23]{}34D .1[3,23){}34【考点】函数的零点与方程根的关系;分段函数的应用【分析】利用函数是减函数,根据对数的图象和性质判断出a 的大致范围,再根据()f x 为减函数,得到不等式组,利用函数的图象,方程的解的个数,推出a 的范围. 【解答】解:log (1)1y a x =++在[0,)+∞递减,则01a <<, 函数()f x 在R 上单调递减,则:23402010(43)03(01)1a aa a a log -⎧⎪⎪<<⎨⎪+-+++⎪⎩……;解得,1334a 剟; 由图象可知,在[0,)+∞上,|()|2f x x =-有且仅有一个解, 故在(,0)-∞上,|()|2f x x =-同样有且仅有一个解,当32a >即23a >时,联立2|(43)3|2x a x a x +-+=-, 则△2(42)4(32)0a a =---=,解得34a =或1(舍去), 当132a 剟时,由图象可知,符合条件, 综上:a 的取值范围为1[3,23]{}34,故选:C .【点评】本题考查了方程的解个数问题,以及参数的取值范围,考查了学生的分析问题,解决问题的能力,以及数形结合的思想,属于中档题.7.(2017•天津文)已知函数||2,1()2, 1.x x f x x x x +<⎧⎪=⎨+⎪⎩…,设a R ∈,若关于x 的不等式()||2x f x a +…在R 上恒成立,则a 的取值范围是( ) A .[2-,2]B .[-C .[-D.[-【考点】分段函数的应用【分析】根据题意,作出函数()f x 的图象,令()||2xg x a =+,分析()g x 的图象特点,将不等式()||2x f x a +…在R 上恒成立转化为函数()f x 的图象在()g x 上的上方或相交的问题,分析可得(0)(0)f g …,即2||a …,解可得a 的取值范围,即可得答案.【解答】解:根据题意,函数||2,1()2, 1.x x f x x x x +<⎧⎪=⎨+⎪⎩…的图象如图: 令()||2xg x a =+,其图象与x 轴相交与点(2,0)a -, 在区间(,2)a -∞-上为减函数,在(2,)a -+∞为增函数, 若不等式()||2xf x a +…在R 上恒成立,则函数()f x 的图象在 ()g x 上的上方或相交,则必有(0)(0)f g …,即2||a …,解可得22a -剟, 故选:A .【点评】本题考查分段函数的应用,关键是作出函数()f x 的图象,将函数的恒成立问题转化为图象的上下位置关系.8.(2017•天津理)已知函数23,1()2,1x x x f x x x x ⎧-+⎪=⎨+>⎪⎩…,设a R ∈,若关于x 的不等式()||2x f x a +…在R 上恒成立,则a 的取值范围是( ) A .47[16-,2] B .47[16-,39]16C.[-2] D.[-39]16【考点】函数恒成立问题;分段函数的应用【分析】讨论当1x …时,运用绝对值不等式的解法和分离参数,可得22133322x x a x x -+--+剟,再由二次函数的最值求法,可得a 的范围;讨论当1x >时,同样可得322()22x x a x x-++剟,再由基本不等式可得最值,可得a 的范围,求交集即可得到所求范围. 【解答】解:当1x …时,关于x 的不等式()||2xf x a +…在R 上恒成立, 即为22332xx x a x x -+-+-+剟,即有22133322x x a x x -+--+剟, 由2132y x x =-+-的对称轴为114x =<,可得14x =处取得最大值4716-;由2332y x x =-+的对称轴为314x =<,可得34x =处取得最小值3916,则47391616a-剟① 当1x >时,关于x 的不等式()||2xf x a +…在R 上恒成立, 即为22()2x x a x x x -+++剟,即有322()22x x a x x-++剟,由32()2322yx x x =-+-=-…1)x =>取得最大值-由1222y x x x x=+=…(当且仅当21)x =>取得最小值2.则2a -② 由①②可得,47216a -剟. 另解:作出()f x 的图象和折线||2xy a =+ 当1x …时,23y x x =-+的导数为21y x '=-, 由1212x -=-,可得14x =,切点为1(4,45)16代入2x y a =--,解得4716a =-;当1x >时,2y x x=+的导数为221y x '=-,由22112x -=,可得2(2x =-舍去), 切点为(2,3),代入2xy a =+,解得2a =. 由图象平移可得,47216a -剟. 故选:A .【点评】本题考查分段函数的运用,不等式恒成立问题的解法,注意运用分类讨论和分离参数法,以及转化思想的运用,分别求出二次函数和基本不等式求最值是解题的关键,属于中档题.9.(2017•山东理)已知当[0x ∈,1]时,函数2(1)y mx =- 的图象与y m =的图象有且只有一个交点,则正实数m 的取值范围是( )A .(0,1][23,)+∞B .(0,1][3,)+∞C .[23,)+∞D .(0[3,)+∞【考点】函数的图象与图象的变换【分析】根据题意,由二次函数的性质分析可得:2(1)y mx =- 为二次函数,在区间1(0,)m为减函数,1(m ,)+∞为增函数,分2种情况讨论:①、当01m <…时,有11m…,②、当1m >时,有11m <,结合图象分析两个函数的单调性与值域,可得m 的取值范围,综合可得答案. 【解答】解:根据题意,由于m 为正数,2(1)y mx =- 为二次函数,在区间1(0,)m为减函数,1(m ,)+∞为增函数,函数y m =+为增函数, 分2种情况讨论: ①、当01m <…时,有11m…, 在区间[0,1]上,2(1)y mx =- 为减函数,且其值域为2[(1)m -,1],函数y m =为增函数,其值域为[m ,1]m +, 此时两个函数的图象有1个交点,符合题意; ②、当1m >时,有11m<, 2(1)y mx =- 在区间1(0,)m为减函数,1(m ,1)为增函数,函数y m =为增函数,其值域为[m ,1]m +,若两个函数的图象有1个交点,则有2(1)1m m -+…,解可得0m …或3m …, 又由m 为正数,则3m …;综合可得:m 的取值范围是(0,1][3,)+∞; 故选:B .【点评】本题考查函数图象的交点问题,涉及函数单调性的应用,关键是确定实数m 的分类讨论. 10.(2019•新课标2理)设函数f (x )的定义域为R ,满足f (x+1)=2f (x ),且当x ∈(0,1]时,f (x )=x (x ﹣1).若对任意x ∈(﹣∞,m],都有f (x )≥﹣,则m 的取值范围是( ) A .(﹣∞,]B .(﹣∞,]C .(﹣∞,]D .(﹣∞,]11.(2018•新课标Ⅰ理9)已知函数,0(),0x e x f x lnx x ⎧=⎨>⎩…,()()g x f x x a =++.若()g x 存在2个零点,则a 的取值范围是( ) A .[1-,0)B .[0,)+∞C .[1-,)+∞D .[1,)+∞【考点】分段函数的应用【分析】由()0g x =得()f x x a =--,分别作出两个函数的图象,根据图象交点个数与函数零点之间的关系进行转化求解即可.【解答】解:由()0g x =得()f x x a =--,作出函数()f x 和y x a =--的图象如图:当直线y x a =--的截距1a -…,即1a -…时,两个函数的图象都有2个交点, 即函数()g x 存在2个零点, 故实数a 的取值范围是[1-,)+∞, 故选:C .【点评】本题主要考查分段函数的应用,利用函数与零点之间的关系转化为两个函数的图象的交点问题是解决本题的关键.12.(2019•天津文8)已知函数1,()1,1x f x x x⎧⎪=⎨>⎪⎩剟若关于x 的方程1()()4f x x a a R =-+∈恰有两个互异的实数解,则a 的取值范围为( ) A .5[4,9]4B .5(4,9]4C .5(4,9]{1}4D .5[4,9]{1}4【考点】分段函数的应用【分析】分别作出()y f x =和14y x =-的图象,考虑直线经过点(1,2)和(1,1)时,有两个交点,直线与1y x =在1x >相切,求得a 的值,结合图象可得所求范围. 【解答】解:作出函数1,()1,1x f x x x ⎧⎪=⎨>⎪⎩剟的图象,以及直线14y x =-的图象,关于x 的方程1()()4f x x a a R =-+∈恰有两个互异的实数解,即为()y f x =和14y x a =-+的图象有两个交点,平移直线14y x =-,考虑直线经过点(1,2)和(1,1)时,有两个交点,可得94a =或54a =, 考虑直线与1y x =在1x >相切,可得2114ax x -=,由△210a =-=,解得1(1a =-舍去), 综上可得a 的范围是5[4,9]{1}4.故选:D .【点评】本题考查分段函数的运用,注意运用函数的图象和平移变换,考查分类讨论思想方法和数形结合思想,属于中档题.填空题1.(2014•新课标Ⅰ文)设函数113,1(),1x e x f x x x -⎧<⎪=⎨⎪⎩…,则使得()2f x …成立的x 的取值范围是 8x … .【考点】分段函数的应用【分析】利用分段函数,结合()2f x …,解不等式,即可求出使得()2f x …成立的x 的取值范围. 【解答】解:1x <时,12x e -…,21x ln ∴+…,1x ∴<;1x …时,132x …,8x ∴…, 18x ∴剟,综上,使得()2f x …成立的x 的取值范围是8x …. 故答案为:8x ….【点评】本题考查不等式的解法,考查分段函数,考查学生的计算能力,属于基础题.2.(2014•上海理)设2,(,)(),[,)x x a f x x x a ∈-∞⎧=⎨∈+∞⎩,若f (2)4=,则a 的取值范围为 (-∞,2] .【考点】分段函数的应用【分析】可对a 进行讨论,当2a >时,当2a =时,当2a <时,将a 代入相对应的函数解析式,从而求出a 的范围.【解答】解:当2a >时,f (2)24=≠,不合题意; 当2a =时,f (2)224==,符合题意; 当2a <时,f (2)224==,符合题意;2a ∴…,故答案为:(-∞,2].【点评】本题考察了分段函数的应用,渗透了分类讨论思想,本题是一道基础题.3.(2015•浙江文)已知函数2,1()66,1x x f x x x x ⎧⎪=⎨+->⎪⎩…,则((2)f f -= 12- ,()f x 的最小值是6 . 【考点】函数的最值及其几何意义【分析】由分段函数的特点易得((2))f f -=的值;分别由二次函数和基本不等式可得各段的最小值,比较可得.【解答】解:由题意可得2(2)(2)4f -=-=,((2))f f f ∴-=(4)614642=+-=-; 当1x …时,2()f x x =,由二次函数可知当0x =时,函数取最小值0;当1x >时,6()6f x x x=+-,由基本不等式可得6()666f x x x x x =+--=…,当且仅当6x x=即x =6;2660-<,()f x∴的最小值为6故答案为:12-;6 【点评】本题考查函数的最值,涉及二次函数的性质和基本不等式,属中档题.4.(2015•浙江理)已知函数223,1()(1),1x x f x xlg x x ⎧+-⎪=⎨⎪+<⎩…,则((3))f f -= 0 ,()f x 的最小值是 3 . 【考点】函数的值【分析】根据已知函数可先求(3)1f -=,然后代入可求((3))f f -;由于1x …时,2()3f x x x =+-,当1x <时,2()(1)f x lg x =+,分别求出每段函数的取值范围,即可求解【解答】解:223,1()(1),1x x f x xlg x x ⎧+-⎪=⎨⎪+<⎩…, (3)101f lg ∴-==,则((3))f f f -=(1)0=,当1x …时,2()33f x x x=+-…,即最小值3, 当1x <时,211x +…,2()(1)0f x lg x =+…最小值0,故()f x 的最小值是3-.故答案为:0;3.【点评】本题主要考查了分段函数的函数值的求解,属于基础试题.5.(2015•江苏)已知函数()||f x lnx =,20,01()|4|2,1x g x x x <⎧=⎨-->⎩…,则方程|()()|1f x g x +=实根的个数为 4 . 【考点】函数的零点与方程根的关系【分析】:由|()()|1f x g x +=可得()()1g x f x =-±,分别作出函数的图象,即可得出结论.【解答】解:由|()()|1f x g x +=可得()()1g x f x =-±.()g x 与()()1h x f x =-+的图象如图所示,图象有2个交点()g x 与()()1x f x ϕ=--的图象如图所示,图象有两个交点;所以方程|()()|1f x g x +=实根的个数为4.故答案为:4.【点评】本题考查求方程|()()|1f x g x +=实根的个数,考查数形结合的数学思想,考查学生分析解决问题的能力,属于中档题.6.(2015•安徽文)在平面直角坐标系xOy 中,若直线2y a =与函数||1y x a =--的图象只有一个交点,则a 的值为 12- . 【考点】函数的零点与方程根的关系【分析】由已知直线2y a =与函数||1y x a =--的图象特点分析一个交点时,两个图象的位置,确定a .【解答】解:由已知直线2y a =是平行于x 轴的直线,由于y x a =-为一次函数,其绝对值的函数为对称图形,故函数||1y x a =--的图象是折线,所以直线2y a =过折线顶点时满足题意,所以21a =-,解得12a =-; 故答案为:12-.【点评】本题考查了函数的图象;考查利用数形结合求参数.7.(2016•天津文)已知函数2(43)3,0()(0,1)(1)1,0ax a x a x f x a a log x x ⎧+-+<⎪=>≠⎨++⎪⎩…在R 上单调递减,且关于x 的方程|()|23x f x =-恰有两个不相等的实数解,则a 的取值范围是 1[3,2)3 . 【考点】分段函数的应用【分析】由减函数可知()f x 在两段上均为减函数,且在第一段的最小值大于或等于第二段上的最大值,作出|()|f x 和23x y =-的图象,根据交点个数判断3a 与2的大小关系,列出不等式组解出. 【解答】解:()f x 是R 上的单调递减函数,2(43)3y x a x a ∴=+-+在(-∞.,0)上单调递减,log (1)1a y x =++在(0,)+∞上单调递减,且()f x 在(,0)-∞上的最小值大于或等于(0)f . ∴34020131a a a -⎧⎪⎪<<⎨⎪⎪⎩……,解得1334a 剟. 作出|()|y f x =和23x y =-的函数草图如图所示: 由图象可知|()|23x f x =-在[0,)+∞上有且只有一解,|()|23x f x =-恰有两个不相等的实数解, 2(43)323x x a x a ∴+-+=-在(,0)-∞上只有1解, 即28(4)3203x a x a +-+-=在(,0)-∞上只有1解, ∴28(4)4(32)0384302a a a ⎧---=⎪⎪⎨-⎪-<⎪⎩或28(4)4(32)03320a a a ⎧--->⎪⎨⎪-<⎩,解得5136a =或23a <, 又1334a 剟,∴1233a <…. 故答案为1[3,2)3.【点评】本题考查了分段函数的单调性,函数零点的个数判断,结合函数函数图象判断端点值的大小是关键,属于中档题.8.(2017•新课标Ⅲ文理)设函数1,0()2,0x x x f x x +⎧=⎨>⎩…,则满足1()()12f x f x +->的x 的取值范围是 1(4-,)+∞ .【考点】函数的值【分析】根据分段函数的表达式,分别讨论x 的取值范围,进行求解即可.【解答】解:若0x …,则1122x --…, 则1()()12f x f x +->等价为11112x x ++-+>,即122x >-,则14x >-, 此时104x -<…, 当0x >时,()21x f x =>,1122x ->-, 当102x ->即12x >时,满足1()()12f x f x +->恒成立, 当11022x ->-…,即102x >…时,1111()12222f x x x -=-+=+>,此时1()()12f x f x +->恒成立, 综上14x >-, 故答案为:1(4-,)+∞. 【点评】本题主要考查不等式的求解,结合分段函数的不等式,利用分类讨论的数学思想进行求解是解决本题的关键.9.(2018•天津文14)已知a R ∈,函数2222,0()22,0x x a x f x x x a x ⎧++-=⎨-+->⎩….若对任意[3x ∈-,)+∞,()||f x x …恒成立,则a 的取值范围是 1[8,2] . 【考点】函数恒成立问题【分析】根据分段函数的表达式,结合不等式恒成立分别进行求解即可.【解答】解:当0x …时,函数2()22f x x x a =++-的对称轴为1x =-,抛物线开口向上,要使0x …时,对任意[3x ∈-,)+∞,()||f x x …恒成立,则只需要(3)|3|3f --=…,即9623a -+-…,得2a …,当0x >时,要使()||f x x …恒成立,即2()22f x x x a =-+-,在射线y x =的下方或在y x =上,由222x x a x -+-…,即220x x a -+…,由判别式△180a =-…, 得18a …,综上128a 剟, 故答案为:1[8,2].【点评】本题主要考查不等式恒成立问题,利用分段函数的不等式分别进行转化求解即可.注意数形结合.10.(2018•天津理14)已知0a >,函数222,0()22,0x ax a x f x x ax a x ⎧++=⎨-+->⎩….若关于x 的方程()f x ax =恰有2个互异的实数解,则a 的取值范围是 (4,8) .【考点】分段函数的应用【分析】分别讨论当0x …和0x >时,利用参数分离法进行求解即可.【解答】解:当0x …时,由()f x ax =得22x ax a ax ++=,得20x ax a ++=,得2(1)a x x +=-,得21x a x =-+, 设2()1x g x x =-+,则22222(1)2()(1)(1)x x x x x g x x x +-+'=-=-++, 由()0g x '>得21x -<<-或10x -<<,此时递增,由()0g x '<得2x <-,此时递减,即当2x =-时,()g x 取得极小值为(2)4g -=,当0x >时,由()f x ax =得222x ax a ax -+-=,得220x ax a -+=,得2(2)a x x -=,当2x =时,方程不成立,当2x ≠时,22x a x =- 设2()2x h x x =-,则22222(2)4()(2)(2)x x x x x h x x x ---'==--, 由()0h x '>得4x >,此时递增,由()0h x '<得02x <<或24x <<,此时递减,即当4x =时,()h x 取得极小值为h (4)8=, 要使()f x ax =恰有2个互异的实数解,则由图象知48a <<,故答案为:(4,8)【点评】本题主要考查函数与方程的应用,利用参数分离法结合函数的极值和导数之间的关系以及数形结合是解决本题的关键.(二)函数图像的判断1.(2015•新课标Ⅱ文理)如图,长方形ABCD 的边2AB =,1BC =,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记BOP x ∠=.将动点P 到A ,B 两点距离之和表示为x 的函数()f x ,则()y f x =的图象大致为( )A .B .C .D .【考点】正切函数的图象【分析】根据函数图象关系,利用排除法进行求解即可.【解答】解:当04x π剟时,tan BP x =,AP =此时()tan f x x =,04x π剟,此时单调递增,当P 在CD 边上运动时,344x ππ剟且2x π≠时, 如图所示,1tan tan()tan tan PQ POB POQ x POQ OQ OQ π∠=-∠==-∠=-=-, 1tan OQ x∴=-, 11tan PD AO OQ x ∴=-=+,11tan PC BO OQ x =+=-,PA PB ∴+,当2x π=时,PA PB +=当P 在AD 边上运动时,34x ππ剟,tan PA PB x +=, 由对称性可知函数()f x 关于2x π=对称, 且()()42f f ππ>,且轨迹为非线型, 排除A ,C ,D ,故选:B .【点评】本题主要考查函数图象的识别和判断,根据条件先求出04x π剟时的解析式是解决本题的关键.2.(2015•北京理)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,如图描述了甲、乙、丙三辆汽车在不同速度下燃油效率情况,下列叙述中正确的是( )A .消耗1升汽油,乙车最多可行驶5千米B .以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C .某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油D .甲车以80千米/小时的速度行驶1小时,消耗10升汽油【考点】函数的图象与图象的变换【分析】根据函数图象的意义逐项分析各说法是否正确.【解答】解:对于A ,由图象可知当速度大于40/km h 时,乙车的燃油效率大于5/km L ,∴当速度大于40/km h 时,消耗1升汽油,乙车的行驶距离大于5km ,故A 错误;对于B ,由图象可知当速度相同时,甲车的燃油效率最高,即当速度相同时,消耗1升汽油,甲车的行驶路程最远,∴以相同速度行驶相同路程,三辆车中,甲车消耗汽油最少,故B 错误;对于C ,由图象可知当速度小于80/km h 时,丙车的燃油效率大于乙车的燃油效率,∴用丙车比用乙车更省油,故C 正确;对于D ,由图象可知当速度为80/km h 时,甲车的燃油效率为10/km L ,即甲车行驶10km 时,耗油1升,故行驶1小时,路程为80km ,燃油为8升,故D 错误.故选:C .【点评】本题考查了函数图象的意义,属于中档题.3.(2015•浙江文)函数1()()cos (f x x x x xππ=--剟且0)x ≠的图象可能为( ) A . B .C .D .【考点】函数的图象与图象的变换【分析】由条件可得函数()f x 为奇函数,故它的图象关于原点对称;再根据但是当x 趋向于0时,()0f x >,结合所给的选项,得出结论.【解答】解:对于函数1()()cos (f x x x x xππ=--剟且0)x ≠,由于它的定义域关于原点对称, 且满足1()()cos ()f x x x f x x-=-+=-,故函数()f x 为奇函数,故它的图象关于原点对称. 故排除A 、B .当x π=,()0f x <,故排除C ,但是当x 趋向于0时,()0f x <,故选:D .【点评】本题主要考查函数的奇偶性的判断,奇函数的图象特征,函数的定义域和值域,属于中档题.4.(2015•安徽理)函数2()()ax b f x x c +=+的图象如图所示,则下列结论成立的是( )A .0a >,0b >,0c <B .0a <,0b >,0c >C .0a <,0b >,0c <D .0a <,0b <,0c <【考点】函数的图象与图象的变换【分析】分别根据函数的定义域,函数零点以及(0)f 的取值进行判断即可.【解答】解:函数在P 处无意义,由图象看P 在y 轴右边,所以0c ->,得0c <,2(0)0b f c=>,0b ∴>, 由()0f x =得0ax b +=,即b x a=-, 即函数的零点0b x a=->, 0a ∴<,综上0a <,0b >,0c <,故选:C .【点评】本题主要考查函数图象的识别和判断,根据函数图象的信息,结合定义域,零点以及(0)f 的符号是解决本题的关键.5.(2016•浙江文)函数2sin y x =的图象是( )A .B .C .D【考点】函数的图象与图象的变换【分析】根据函数奇偶性的性质,以及函数零点的个数进行判断排除即可.【解答】解:22sin()sin x x -=,∴函数2sin y x =是偶函数,即函数的图象关于y 轴对称,排除A ,C ;由2sin 0y x ==,则2x k π=,0k …,则x =0k …, 故函数有无穷多个零点,排除B ,故选:D .【点评】本题主要考查函数图象的识别和判断,根据函数奇偶性和函数零点的性质是解决本题的关键.比较基础.6.(2017•新课标Ⅰ文)函数sin 21cos x y x =-的部分图象大致为( )A .B .C .D .【考点】函数的图象与图象的变换【分析】判断函数的奇偶性排除选项,利用特殊值判断即可. 【解答】解:函数sin 21cos xy x=-,可知函数是奇函数,排除选项B , 当3x π=时,2()1312f π==-A ,x π=时,()0f π=,排除D .故选:C .【点评】本题考查函数的图形的判断,三角函数化简,函数的奇偶性以及函数的特殊点是判断函数的图象的常用方法.7.(2017•新课标Ⅲ文)函数2sin 1xy x x=++的部分图象大致为( ) A . B . C . D .【考点】函数的图象与图象的变换【分析】通过函数的解析式,利用函数的奇偶性的性质,函数的图象经过的特殊点判断函数的图象即可. 【解答】解:函数2sin 1x y x x =++,可知:2sin ()xf x x x =+是奇函数,所以函数的图象关于原点对称, 则函数2sin 1xy x x=++的图象关于(0,1)对称, 当0x +→,()0f x >,排除A 、C ,当x π=时,1y π=+,排除B . 故选:D .【点评】本题考查函数的图象的判断,函数的奇偶性以及特殊点是常用方法. 8.(2018•浙江)函数||2sin 2x y x =的图象可能是( )A .B .C .D .【考点】函数的图象与图象的变换;正弦函数的图象 【分析】直接利用函数的图象和性质求出结果.【解答】解:根据函数的解析式||2sin 2x y x =,得到:函数的图象为奇函数, 故排除A 和B . 当2x π=时,函数的值也为0,故排除C . 故选:D .【点评】本题考查的知识要点:函数的性质和赋值法的应用.9.(2018•新课标Ⅱ文理3)函数2()x xe ef x x --=的图象大致为( )A .B .C .D .【考点】函数的图象与图象的变换;6B :利用导数研究函数的单调性【分析】判断函数的奇偶性,利用函数的定点的符号的特点分别进行判断即可. 【解答】解:函数22()()()x x x xe e e ef x f x x x -----==-=--,则函数()f x 为奇函数,图象关于原点对称,排除A , 当1x =时,f (1)10e e=->,排除D .当x →+∞时,()f x →+∞,排除C , 故选:B .【点评】本题主要考查函数的图象的识别和判断,利用函数图象的特点分别进行排除是解决本题的关键. 10.(2019•新课标Ⅰ文理)函数2sin ()cos x xf x x x +=+的图象在[π-,]π的大致为( )A .B .C .D .【考点】3A :函数的图象与图象的变换,三角函数的图象与性质【分析】由()f x 的解析式知()f x 为奇函数可排除A ,然后计算()f π,判断正负即可排除B ,C . 【解答】解:2sin ()cos x xf x x x+=+,[x π∈-,]π, 22sin sin ()()cos()cos x x x xf x f x x x x x --+∴-==-=--++,()f x ∴为[π-,]π上的奇函数,因此排除A ;又22sin ()0cos 1f πππππππ+==>++,因此排除B ,C ; 故选:D .【点评】本题考查了函数的图象与性质,解题关键是奇偶性和特殊值,属基础题.11.(2019•新课标Ⅲ理7)函数3222x xx y -=+在[6-,6]的图象大致为( )A .B .C .D .【考点】函数的图象与图象的变换【分析】由3222x xx y -=+的解析式知该函数为奇函数可排除C ,然后计算4x =时的函数值,根据其值即可排除A ,D .【解答】解:由32()22x xx y f x -==+在[6-,6],知332()2()()2222x x x xx x f x f x ----==-=-++,()f x ∴是[6-,6]上的奇函数,因此排除C又f (4)1182721=>+,因此排除A ,D .故选:B .【点评】本题考查了函数的图象与性质,解题关键是奇偶性和特殊值,属基础题. 12.(2019•浙江)在同一直角坐标系中,函数1xy a =,11()2ay og x =+,(0a >且1)a ≠的图象可能是( )A .B .C .D .【考点】函数的图象与图象的变换【分析】对a 进行讨论,结合指数,对数的性质即可判断; 【解答】解:由函数1xy a=,11()2a y og x =+, 当1a >时,可得1xy a =是递减函数,图象恒过(0,1)点, 函数11()2a y og x =+,是递增函数,图象恒过1(2,0);当10a >>时,可得1x y a=是递增函数,图象恒过(0,1)点, 函数11()2a y og x =+,是递减函数,图象恒过1(2,0);∴满足要求的图象为:D故选:D .【点评】本题考查了指数函数,对数函数的图象和性质,属于基础题.填空题1.(2017•北京文理14)三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中i A 的横、纵坐标分别为第i 名工人上午的工作时间和加工的零件数,点i B 的横、纵坐标分别为第i 名工人下午的工作时间和加工的零件数,1i =,2,3.(1)记i Q 为第i 名工人在这一天中加工的零件总数,则1Q ,2Q ,3Q 中最大的是 1Q . (2)记i p 为第i 名工人在这一天中平均每小时加工的零件数,则1p ,2p ,3p 中最大的是 .【考点】函数的图象与图象的变换【分析】(1)若i Q 为第i 名工人在这一天中加工的零件总数,则i i Q A =的综坐标i B +的纵坐标;进而得到答案.(2)若i p 为第i 名工人在这一天中平均每小时加工的零件数,则i p 为i i A B 中点与原点连线的斜率;进而得到答案.【解答】解:(1)若i Q 为第i 名工人在这一天中加工的零件总数, 11Q A =的纵坐标1B +的纵坐标; 22Q A =的纵坐标2B +的纵坐标, 33Q A =的纵坐标3B +的纵坐标,由已知中图象可得:1Q ,2Q ,3Q 中最大的是1Q ,(2)若i p 为第i 名工人在这一天中平均每小时加工的零件数, 则i p 为i i A B 中点与原点连线的斜率, 故1p ,2p ,3p 中最大的是2p 故答案为:1Q ,2p【点评】本题考查的知识点是函数的图象,分析出i Q 和i p 的几何意义,是解答的关键.。

考点10函数的图像 2019年高考数学(文)必刷题Word版含解析

考点10函数的图像 2019年高考数学(文)必刷题Word版含解析

考点10 函数的图像1.设函数与函数的图象恰有3个不同的交点,则实数的取值范围为()A. B.C. D.【答案】C2.已知函数,则在的图像大致为()A. B.C. D.【答案】C3.函数的图象大致为()A. B.C. D.【答案】B【解析】试题分析:函数为奇函数,不选A,C ;当时为单调增函数,选B.4.函数f(x)= ln|x+1|的图像大致是( )A .B .C .D .【答案】A5.已知函数则函数的大致图象是A .B .C .D .【答案】A 【解析】因为函数为分段函数,且两段分别为指数和对数函数,当时,其中对数函数一段图象在 为空心点,所以当,即时,图象必在处为空心点,故选A.6.函数(其中e 为自然对数的底)的大致图象为A .B .C .D .【答案】C7.函数的图像大致是()A. B. C. D.【答案】C【解析】 [法一]首先看到四个答案支中,是偶函数的图象,是奇函数的图象,因此先判断函数的奇偶性,因为,所以函数是奇函数,排除;又时,,选择是明显的.[法二]化为分段函数,画出图象,选C.8.函数的部分图象大致为A. B.C. D.【答案】B9.函数的图象大致是( )A. B.C. D.【答案】A10.函数的图像大致为A. B.C. D.【答案】D11.(题文)定义在上的函数,满足,且当时,,若函数在上有零点,则实数的a取值范围是()A. B. C. D.【答案】B【解析】因为当时,,所以时,所以,此时,故.所以在上的图象如图,要使函数在上有零点,只要直线与的图象有交点,由图象可得,所以使函数在上有零点,则实数的取值范围是.故选:B.12.函数的图象大致是A. B.C. D.【答案】B13.已知函数,若,则实数的取值范围是A. B. C. D.【答案】B【解析】。

历年高考数学真题精选05 函数的图象

历年高考数学真题精选05 函数的图象
A. B.
C. D.
23.(2011•山东)函数 的图象大致是
A. B.
C. D.
24.函数 的图象大致是
A. B.
C. D.
25.(2010•江西)如图,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记 时刻五角星露出水面部分的图形面积为 ,则导函数 的图象大致为
A. B.
C. D.
26.(2010•全国新课标)如图,质点 在半径为2的圆周上逆时针运动,其初始位置为 , ,角速度为1,那么点 到 轴距离 关于时间 的函数图象大致为
A. B.
C. D.
35.(2005•湖北)函数 的图象大致是
A. B.
C. D.
36.(2002•上海)函数 , , 的大致图象是
A. B.
C. D.
37.(2009•浙江)已知 是实数,则函数 的图象不可能是
A. B.
C. D.
38.(2012•山东)函数 的图象大致为
A. B.
C. D.
39.(2015•新课标Ⅱ)如图,长方形 的边 , , 是 的中点,点 沿着边 , 与 运动,记 .将动点 到 , 两点距离之和表示为 的函数 ,则 的图象大致为
A. B.
C. D.
17.(2013•新课标Ⅰ)函数 在 , 的图象大致为
A. B.
C. D.
18.(2013•浙江)已知函数 的图象是下列四个图象之一,且其导函数 的图象如图所示,则该函数的图象是
A. B.
C. D.
19.(2013•江西)如图,半径为1的半圆 与等边三角形 夹在两平行线 , 之间, , 与半圆相交于 , 两点,与三角形 两边相交于 , 两点.设弧 的长为 , ,若 从 平行移动到 ,则函数 的图象大致是

2019年高考数学(理)热点题型和提分秘籍专题07函数的图象(题型专练)含解析

2019年高考数学(理)热点题型和提分秘籍专题07函数的图象(题型专练)含解析

1.函数y =log 2|x |的图象大致是( )【解析】函数y =log 2|x |为偶函数,作出x >0时y =log 2x 的图象,图象关于y 轴对称,应选C. 【答案】C2.已知函数f (x )的图象如图所示,则f (x )的解析式可以是( )A .f (x )=ln|x |xB .f (x )=exxC .f (x )=1x 2-1D .f (x )=x -1x【答案】A 3.函数f (x )=11+|x |的图象是( )【答案】C4.函数f (x )=2x -4sin x ,x ∈⎣⎢⎡⎦⎥⎤-π2,π2的图象大致是( )【解析】因为函数f (x )是奇函数,所以排除A 、B.f ′(x )=2-4cos x ⎝⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤-π2,π2,令f ′(x )=2-4cos x =0⎝⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤-π2,π2,得x =±π3,所以选D.【答案】D5.已知lg a +lg b =0,函数f (x )=a x与函数g (x )=-log b x 的图象可能是( )【解析】∵lg a +lg b =0,∴lg ab =0,ab =1,∴b =1a.∴g (x )=-log b x =log a x ,∴函数f (x )与g (x )互为反函数,图象关于直线y =x 对称,故选B. 【答案】B6.函数f (x )=ln ⎝⎛⎭⎪⎫x -sin x x +sin x 的图象大致是( )【答案】A7.函数f (x )=4x-12x 的图象关于( )A .原点对称B .直线y =x 对称C .直线y =-x 对称D .y 轴对称【解析】由题意可知,函数f (x )的定义域为R ,且f (x )=4x-12x =2x -2-x ,f (-x )=2-x -2x=-f (x ),所以函数f (x )为奇函数,故选A.【答案】A8.下列函数f (x )图象中,满足f (14)>f (3)>f (2)的只可能是( )【解析】因为f (14)>f (3)>f (2),所以函数f (x )有增有减,不选A ,B.又C 中,f (14)<f (0)=1,f (3)>f (0),即f (14)<f (3),所以不选C ,选D.【答案】D9.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别是棱A 1B 1,CD 的中点,点M 是EF 上的动点(不与E ,F 重合),FM =x ,过点M 、直线AB 的平面将正方体分成上下两部分,记下面那部分的体积为V (x ),则函数V (x )的大致图象是( )【答案】C10.已知函数f (x )满足f (x )=f ⎝ ⎛⎭⎪⎫1x ,当x ∈[1,3]时,f (x )=ln x ,若在区间⎣⎢⎡⎦⎥⎤13,3内,曲线g (x )=f (x )-ax 与x 轴有三个不同的交点,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,1eB.⎝ ⎛⎭⎪⎫0,12eC.⎣⎢⎡⎭⎪⎫ln33,1e D.⎣⎢⎡⎭⎪⎫ln33,12e【解析】当x ∈⎣⎢⎡⎦⎥⎤13,1时,1x ∈[1,3],f (x )=f ⎝ ⎛⎭⎪⎫1x =-ln x ,∴f (x )=⎩⎪⎨⎪⎧ln x ,x ∈[1,3],-ln x ,x ∈⎣⎢⎡⎭⎪⎫13,1.作出其图象,【答案】C11.函数f (x )=2x 2-mx +3,当x ∈[-2,+∞)时,f (x )是增函数,当x ∈(-∞,-2]时,f (x )是减函数,则f (1)的值为( )A .-3B .13C .7D .5【解析】函数f (x )=2x 2-mx +3图象的对称轴为直线x =m 4,由函数f (x )的增减区间可知m4=-2,∴m =-8,即f (x )=2x 2+8x +3,∴f (1)=2+8+3=13。

专题05 函数的图象-2019年高考理数母题题源系列(全国Ⅰ专版)(原卷版)

专题05 函数的图象-2019年高考理数母题题源系列(全国Ⅰ专版)(原卷版)

f
(x)

2 1 ex
1 sin
x
图象的大
致形状是
A.
B.
C.
D.
4.【河南省郑州市 2019 届高三第三次质量检测数学试题】我国著名数学家华罗庚先生曾说:数缺形时少直
观,形缺数时难入微,数形结合百般好,隔裂分家万事休,在数学的学习和研究中,常用函数的图象来
研究函数的性质,也常用函数的解析式来琢磨函数的图象的特征,如函数
1.【安徽省安庆市 2019 届高三模拟考试(二模)数学试题】函数 f x ln x2 的图象的大致形状是
x
2.【湖南省雅礼中学
2019
届高考模拟卷(二)数学试题】函数
f
x

4x2 1 的大致图象是 2x4
3
A.
B.
C.
D.
3.【山东省临沂市、枣庄市
2019
届高三第二次模拟预测数学试题】函数
【命题意图】 (1)考查函数图象的辨识与变换; (2)考查函数图象的应用问题,运用函数图象理解和研究函数的性质; (3)考查运用数形结合思想分析与解决问题的能力. 【命题规律】 高考对函数图象的考查形式多样,命题角度主要有: (1)函数图象的变换;
1
(2)函数图象的识别,即由函数的性质及解析式选择图象; (3)函数图象的应用,即由函数的图象来研究函数的性质、图象的变换、利用数形结合解决问题等,其重 点是基本初等函数的图象以及函数的性质在图象上的直观体现. 【答题模板】 解答此类题目,一般考虑如下四步: 第一步:确定图象的范围.即根据解析式,确定函数的定义域、值域,以确定图象的大体位置; 第二步:研究图象的对称性.根据函数的奇偶性,确定图象的对称性; 第三步:研究图象的变化趋势.根据函数单调性定义或导数,研究函数的单调性,明确图象的变化趋势. 第四步:研究图象上的特殊点.根据函数解析式,计算函数值,函数的特征点,排除不合要求的图象. 【方法总结】 (一)有关图象辨识问题的常见类型及解题思路: (1)由实际情景探究函数图象.关键是将生活问题转化为我们熟悉的数学问题求解,要注意实际问题中的 定义域问题. (2)借助动点探究函数图象.解决此类问题可以根据已知条件求出函数解析式后再判断函数的图象;也可 采用“以静观动”,即将动点处于某些特殊的位置处考察图象的变化特征,从而作出选择. (3)由解析式确定函数图象.此类问题往往从以下几方面判断: ①从函数的定义域,判断图象左右的位置,从函数的值域,判断图象的上下位置; ②从函数的单调性,判断图象的变化趋势; ③从函数的奇偶性,判断图象的对称性; ④从函数的周期性,判断图象的循环往复. 利用上述方法,排除、筛选错误或正确的选项. (4)同一坐标系下辨析不同函数图象.解决此类问题时,常先假定其中一个函数的图象是正确的,然后再 验证另一个函数图象是否符合要求,逐项作出验证排查. (5)利用函数性质探究函数图象,往往结合偶函数图象关于 y 轴对称,奇函数图象关于原点对称这一结论进 行判断. (二)函数图象应用的常见题型及求解策略 (1)利用函数图象确定函数解析式,要注意综合应用奇偶性、单调性等相关性质,同时结合自变量与函数 值的对应关系. (2)利用函数图象研究两函数图象交点的个数时,常将两函数图象在同一坐标系内作出,利用数形结合求
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019高考数学《函数的图像》题型专题汇编题型一 作函数的图象1、分别画出下列函数的图象:(1)y =|lg(x -1)|; (2)y =2x +1-1; (3)y =x 2-|x |-2; (4)y =2x -1x -1.解 (1)首先作出y =lg x 的图象,然后将其向右平移1个单位,得到y =lg(x -1)的图象,再把所得图象在x 轴下方的部分翻折到x 轴上方,即得所求函数y =|lg(x -1)|的图象,如图①所示(实线部分).(2)将y =2x 的图象向左平移1个单位,得到y =2x +1的图象,再将所得图象向下平移1个单位,得到y =2x+1-1的图象,如图②所示.(3)y =x 2-|x |-2=⎩⎪⎨⎪⎧x 2-x -2,x ≥0,x 2+x -2,x <0,其图象如图③所示.(4)∵y =2+1x -1,故函数的图象可由y =1x 的图象向右平移1个单位,再向上平移2个单位得到,如图④所示.题型二 函数图象的辨识1、函数y =x 2ln|x ||x |的图象大致是( )答案 D解析 从题设解析式中可以看出函数是偶函数,x ≠0,且当x >0时,y =x ln x ,y ′=1+ln x ,可知函数在区间⎝⎛⎭⎫0,1e 上单调递减,在区间⎝⎛⎭⎫1e ,+∞上单调递增.由此可知应选D.2、设函数f (x )=2x ,则如图所示的函数图象对应的函数解析式是( )A .y =f (|x |)B .y =-|f (x )|C .y =-f (-|x |)D .y =f (-|x |) 答案 C解析 题图中是函数y =-2-|x |的图象,即函数y =-f (-|x |)的图象,故选C. 3、函数f (x )=1+log 2x 与g (x )=⎝⎛⎭⎫12x在同一直角坐标系下的图象大致是( )答案 B解析 因为函数g (x )=⎝⎛⎭⎫12x 为减函数,且其图象必过点(0,1),故排除A ,D.因为f (x )=1+log 2x 的图象是由y =log 2x 的图象上移1个单位得到的,所以f (x )为增函数,且图象必过点(1,1),故可排除C ,故选B. 4、函数f (x )=⎝⎛⎭⎫21+e x -1·sin x 的图象的大致形状为( )答案 A解析 ∵f (x )=⎝ ⎛⎭⎪⎫21+e x -1·sin x ,∴f (-x )=⎝ ⎛⎭⎪⎫21+e -x -1·sin(-x ) =-⎝ ⎛⎭⎪⎫2e x1+e x -1sin x =⎝ ⎛⎭⎪⎫21+e x -1·sin x =f (x ),且f (x )的定义域为R , ∴函数f (x )为偶函数,故排除C ,D ;当x =2时,f (2)=⎝ ⎛⎭⎪⎫21+e 2-1·sin 2<0,故排除B , 只有A 符合.5、若函数f (x )=(ax 2+bx )e x 的图象如图所示,则实数a ,b 的值可能为( )A .a =1,b =2B .a =1,b =-2C .a =-1,b =2D .a =-1,b =-2解析:选B.令f (x )=0,则(ax 2+bx )e x =0,解得x =0或x =-b a ,由图象可知,-b a >1,又当x >-ba 时,f (x )>0,故a >0,结合选项知a =1,b =-2满足题意,故选B.6、如图,有四个平面图形分别是三角形、平行四边形、直角梯形、圆.垂直于x 轴的直线l :x =t (0≤t ≤a )经过原点O 向右平行移动,l 在移动过程中扫过平面图形的面积为y (图中阴影部分),若函数y =f (t )的大致图象如图所示,那么平面图形的形状不可能是( )解析:选C.由y =f (t )的图象可知面积递增的速度先快后慢,对于选项C ,后半程是匀速递增,所以平面图形的形状不可能是C.7、函数f (x )=|x |+ax2(其中a ∈R )的图象不可能是( )解析:选C.当a =0时,函数f (x )=|x |+ax 2=|x |,函数的图象可以是B ;当a =1时,函数f (x )=|x |+a x 2=|x |+1x2,函数的图象可以是A ;当a =-1时,函数f (x )=|x |+a x 2 =|x |-1x 2,x >0时,|x |-1x 2=0只有一个实数根x =1,函数的图象可以是D ;所以函数的图象不可能是C.故选C.8、已知f (x )=⎩⎨⎧-2x ,-1≤x ≤0,x ,0<x ≤1,则下列函数的图象错误的是( )解析:选D.在坐标平面内画出函数y =f (x )的图象,将函数y =f (x )的图象向右平移1个单位长度,得到函数y =f (x -1)的图象,因此A 正确;作函数y =f (x )的图象关于y 轴的对称图形,得到y =f (-x )的图象,因此B 正确;y =f (x )在[-1,1]上的值域是[0,2],因此y =|f (x )|的图象与y =f (x )的图象重合,C 正确;y =f (|x |)的定义域是[-1,1],且是偶函数,当0≤x ≤1时,y =f (|x |)=x ,这部分的图象不是一条线段,因此选项D 不正确.故选D.9、如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP =x .将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为( )答案 B解析 当x ∈⎣⎡⎦⎤0,π4时,f (x )=tan x +4+tan 2x ,图象不会是直线段,从而排除A ,C ;当x ∈⎣⎡⎦⎤π4,3π4时,f ⎝⎛⎭⎫π4=f ⎝⎛⎭⎫3π4=1+5,f ⎝⎛⎭⎫π2=2 2.∵22<1+5, ∴f ⎝⎛⎭⎫π2<f ⎝⎛⎭⎫π4=f ⎝⎛⎭⎫3π4,从而排除D ,故选B.10、已知函数f (x )的图象如图所示,则f (x )的解析式可以是( )A .f (x )=ln|x |xB .f (x )=e xx C .f (x )=1x 2-1 D .f (x )=x -1x答案 A解析 由函数图象可知,函数f (x )为奇函数,应排除B ,C.若函数为f (x )=x -1x ,则x →+∞时,f (x )→+∞,排除D ,故选A.11、函数f (x )=e x -e -xx 2的图象大致为( )答案 B解析 ∵y =e x -e -x 是奇函数,y =x 2是偶函数,∴f (x )=e x -e -xx 2是奇函数,图象关于原点对称,排除A 选项.当x =1时,f (1)=e -e -11=e -1e >0,排除D 选项.又e>2,∴1e <12,∴e -1e >32,排除C 选项.故选B.12、已知定义在区间[0,4]上的函数y =f (x )的图象如图所示,则y =-f (2-x )的图象为( )答案 D解析 方法一 先作出函数y =f (x )的图象关于y 轴的对称图象,得到y =f (-x )的图象; 然后将y =f (-x )的图象向右平移2个单位,得到y =f (2-x )的图象;再作y =f (2-x )的图象关于x 轴的对称图象,得到y =-f (2-x )的图象.故选D.方法二 先作出函数y =f (x )的图象关于原点的对称图象,得到y =-f (-x )的图象;然后将y =-f (-x )的图象向右平移2个单位,得到y =-f (2-x )的图象.故选D. 方法三 当x =0时,y =-f (2-0)=-f (2)=-4.故选D.题型三 函数图象的应用命题点1 研究函数的性质1、已知函数f (x )=x |x |-2x ,则下列结论正确的是( ) A .f (x )是偶函数,单调递增区间是(0,+∞) B .f (x )是偶函数,单调递减区间是(-∞,1) C .f (x )是奇函数,单调递减区间是(-1,1) D .f (x )是奇函数,单调递增区间是(-∞,0) 答案 C解析 将函数f (x )=x |x |-2x ,去掉绝对值,得f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2-2x ,x <0,画出函数f (x )的图象,如图,观察图象可知,函数f (x )的图象关于原点对称,故函数f (x )为奇函数,且在(-1,1)上单调递减.2、已知函数f (x )=|log 3x |,实数m ,n 满足0<m <n ,且f (m )=f (n ),若f (x )在[m 2,n ]上的最大值为2,则nm =________. 答案 9解析 作出函数f (x )=|log 3x |的图象,观察可知0<m <1<n 且mn =1.若f (x )在[m 2,n ]上的最大值为2,从图象分析应有f (m 2)=2, ∴log 3m 2=-2,∴m 2=19.从而m =13,n =3,故nm=9.3、若函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <-1,ln (x +a ),x ≥-1的图象如图所示,则f (-3)等于___解析:由图象可得a (-1)+b =3,ln(-1+a )=0,所以a =2,b =5,所以f (x )=⎩⎪⎨⎪⎧2x +5,x <-1,ln (x +2),x ≥-1,故f (-3)=2×(-3)+5=-1.答案:-14、已知f (x )=2x -1,g (x )=1-x 2,规定:当|f (x )|≥g (x )时,h (x )=|f (x )|;当|f (x )|<g (x )时,h (x )=-g (x ),则h (x )( )A .有最小值-1,最大值1B .有最大值1,无最小值C .有最小值-1,无最大值D .有最大值-1,无最小值答案 C解析 画出y =|f (x )|=|2x -1|与y =g (x )=1-x 2的图象,它们交于A ,B 两点.由“规定”,在A ,B 两侧,|f (x )|≥g (x ),故h (x )=|f (x )|;在A ,B 之间,|f (x )|<g (x ),故h (x )=-g (x ).综上可知,y =h (x )的图象是图中的实线部分,因此h (x )有最小值-1,无最大值.5、已知函数f (x )=⎩⎪⎨⎪⎧|x |,x ≤m ,x 2-2mx +4m ,x >m ,其中m >0.若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是____________. 答案 (3,+∞)解析 在同一坐标系中,作y =f (x )与y =b 的图象.当x >m 时,x 2-2mx +4m =(x -m )2+4m -m 2,所以要使方程f (x )=b 有三个不同的根,则有4m -m 2<m ,即m 2-3m >0.又m >0,解得m >3.6、不等式3sin ⎝⎛⎭⎫π2x -12log x <0的整数解的个数为________.答案 2解析 不等式3sin ⎝⎛⎭⎫π2x -12log x <0,即3sin ⎝⎛⎭⎫π2x <12log x .设f (x )=3sin ⎝⎛⎭⎫π2x ,g (x )=12log x ,在同一坐标系中分别作出函数f (x )与g (x )的图象,由图象可知,当x 为整数3或7时,有f (x )<g (x ),所以不等式3sin ⎝⎛⎭⎫π2x -12log x <0的整数解的个数为2.7、已知函数f (x )=⎩⎪⎨⎪⎧sin πx ,0≤x ≤1,log 2 020x ,x >1,若实数a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则a +b +c 的取值范围是__________. 答案 (2,2 021)解析 函数f (x )=⎩⎪⎨⎪⎧sin πx ,0≤x ≤1,log 2 020x ,x >1的图象如图所示,不妨令a <b <c ,由正弦曲线的对称性可知a +b =1,而1<c <2 020,所以2<a +b +c <2 021.8、已知点A (1,0),点B 在曲线G :y =ln x 上,若线段AB 与曲线M :y =1x 相交且交点恰为线段AB 的中点,则称B 为曲线G 关于曲线M 的一个关联点.那么曲线G 关于曲线M 的关联点的个数为________.解析:设B (x 0,ln x 0),x 0>0,线段AB 的中点为C ,则C ⎝⎛⎭⎪⎫x 0+12,ln x 02,又点C 在曲线M 上,故ln x 02=2x 0+1,即ln x 0=4x 0+1.此方程根的个数可以看作函数y =ln x 与y =4x +1的图象的交点个数.画出图象(如图),可知两个函数的图象只有1个交点. 答案:19、已知y =f (x )是定义在R 上的偶函数,当x ≥0时,f (x )=x 2-2x . (1)求当x <0时,f (x )的解析式;(2)作出函数f (x )的图象,并指出其单调区间; (3)求f (x )在[-2,5]上的最小值,最大值.解:(1)设x <0,则-x >0,因为x >0时,f (x )=x 2-2x .所以f (-x )=(-x )2-2·(-x )=x 2+2x .因为y =f (x )是R 上的偶函数,所以f (x )=f (-x )=x 2+2x . (2)函数f (x )的图象如图所示:由图可得:函数f (x )的单调递增区间为(-1,0)和(1,+∞);单调递减区间为(-∞,-1)和(0,1). (3)由(2)中函数图象可得:在[-2,5]上,当x =±1时,取最小值-1,当x =5时,取最大值15. 10、已知函数f (x )=x |m -x |(x ∈R ),且f (4)=0. (1)求实数m 的值; (2)作出函数f (x )的图象;(3)根据图象指出f (x )的单调递减区间;(4)若方程f (x )=a 只有一个实数根,求a 的取值范围. 解:(1)因为f (4)=0,所以4|m -4|=0,即m =4.(2)f (x )=x |x -4|=⎩⎪⎨⎪⎧x (x -4)=(x -2)2-4,x ≥4,-x (x -4)=-(x -2)2+4,x <4,f (x )的图象如图所示.(3)f (x )的单调递减区间是[2,4].(4)从f (x )的图象可知,当a >4或a <0时,f (x )的图象与直线y =a 只有一个交点,方程f (x )=a 只有一个实数根,即a 的取值范围是(-∞,0)∪(4,+∞). 命题点2 解不等式1、 函数f (x )是定义在[-4,4]上的偶函数,其在[0,4]上的图象如图所示,那么不等式f (x )cos x<0的解集为________________.答案 ⎝⎛⎭⎫-π2,-1∪⎝⎛⎭⎫1,π2 解析 当x ∈⎝⎛⎭⎫0,π2时,y =cos x >0.当x ∈⎝⎛⎭⎫π2,4时,y =cos x <0. 结合y =f (x ),x ∈[0,4]上的图象知,当1<x <π2时,f (x )cos x <0.又函数y =f (x )cos x 为偶函数,所以在[-4,0]上,f (x )cos x <0的解集为⎝⎛⎭⎫-π2,-1, 所以f (x )cos x<0的解集为⎝⎛⎭⎫-π2,-1∪⎝⎛⎭⎫1,π2. 2、定义在R 上的奇函数f (x ),满足f ⎝⎛⎭⎫-12=0,且在(0,+∞)上单调递减,则xf (x )>0的解集为________. 解析:因为函数f (x )是奇函数,在(0,+∞)上单调递减,且f ⎝⎛⎭⎫-12=0,所以f ⎝⎛⎭⎫12=0,且在区间(-∞,0)上单调递减,因为当x <0,若-12<x <0时,f (x )<0,此时xf (x )>0,当x >0,若0<x <12时,f (x )>0,此时xf (x )>0,综上xf (x )>0的解集为⎝⎛⎭⎫-12,0∪⎝⎛⎭⎫0,12. 答案:⎝⎛⎭⎫-12,0∪⎝⎛⎭⎫0,12 命题点3 求参数的取值范围1、已知函数()12log ,020x x x f x x >⎧⎪⎨⎪≤⎩,=,,若关于x 的方程f (x )=k 有两个不等的实数根,则实数k 的取值范围是________. 答案 (0,1]解析 作出函数y =f (x )与y =k 的图象,如图所示,由图可知k ∈(0,1].2、已知函数f (x )=|x -2|+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根,则实数k 的取值范围是__________. 答案 ⎝⎛⎭⎫12,1解析 先作出函数f (x )=|x -2|+1的图象,如图所示,当直线g (x )=kx 与直线AB 平行时斜率为1,当直线g (x )=kx 过A 点时斜率为12,故f (x )=g (x )有两个不相等的实根时,k 的取值范围为⎝⎛⎭⎫12,1.3、设函数f (x )=|x +a |,g (x )=x -1,对于任意的x ∈R ,不等式f (x )≥g (x )恒成立,则实数a 的取值范围是__________. 答案 [-1,+∞)解析 如图作出函数f (x )=|x +a |与g (x )=x -1的图象,观察图象可知,当且仅当-a ≤1,即a ≥-1时,不等式f (x )≥g (x )恒成立,因此a 的取值范围是[-1,+∞).4、给定min{a ,b }=⎩⎪⎨⎪⎧a ,a ≤b ,b ,b <a ,已知函数f (x )=min{x ,x 2-4x +4}+4,若动直线y =m 与函数y =f (x )的图象有3个交点,则实数m 的取值范围为________.解析:函数f (x )=min{x ,x 2-4x +4}+4的图象如图所示,由于直线y =m 与函数y =f (x )的图象有3个交点,数形结合可得m 的取值范围为(4,5). 答案:(4,5)5、直线y =k (x +3)+5(k ≠0)与曲线y =5x +17x +3的两个交点坐标分别为A (x 1,y 1),B (x 2,y 2),则x 1+x 2+y 1+y 2=________.解析:因为y =5x +17x +3=2x +3+5,其图象关于点(-3,5)对称.又直线y =k (x +3)+5过点(-3,5),如图所示.所以A ,B 关于点(-3,5)对称,所以x 1+x 2=2×(-3)=-6,y 1+y 2=2×5=10. 所以x 1+x 2+y 1+y 2=4.答案:46、函数f (x )的图象与函数h (x )=x +1x +2的图象关于点A (0,1)对称.(1)求f (x )的解析式;(2)若g (x )=f (x )+ax,且g (x )在区间(0,2]上为减函数,求实数a 的取值范围.解:(1)设f (x )图象上任一点P (x ,y )(x ≠0),则点P 关于(0,1)点的对称点P ′(-x ,2-y )在h (x )的图象上,即2-y =-x -1x +2,即y =f (x )=x +1x(x ≠0).(2)g (x )=f (x )+ax =x +a +1x ,g ′(x )=1-a +1x2.因为g (x )在(0,2]上为减函数,所以1-a +1x 2≤0在(0,2]上恒成立,即a +1≥x 2在(0,2]上恒成立,所以a +1≥4,即a ≥3, 故实数a 的取值范围是[3,+∞).《函数的图像》课后作业1、y =2|x |sin 2x 的图象可能是( )答案 D解析 由y =2|x |sin 2x 知函数的定义域为R ,令f (x )=2|x |sin 2x ,则f (-x )=2|-x |sin(-2x )=-2|x |sin 2x .∵f (x )=-f (-x ),∴f (x )为奇函数.∴f (x )的图象关于原点对称,故排除A ,B. 令f (x )=2|x |sin 2x =0,解得x =k π2(k ∈Z ),∴当k =1时,x =π2,故排除C.故选D.2、如图,不规则四边形ABCD 中,AB 和CD 是线段,AD 和BC 是圆弧,直线l ⊥AB 交AB 于E ,当l 从左至右移动(与线段AB 有公共点)时,把四边形ABCD 分成两部分,设AE =x ,左侧部分的面积为y ,则y 关于x 的图象大致是( )答案 C解析 当l 从左至右移动时,一开始面积的增加速度越来越快,过了D 点后面积保持匀速增加,图象呈直线变化,过了C 点后面积的增加速度又逐渐减慢.故选C.3、已知函数f (x )=log a x (0<a <1),则函数y =f (|x |+1)的图象大致为( )答案 A解析 方法一 先作出函数f (x )=log a x (0<a <1)的图象,当x >0时,y =f (|x |+1)=f (x +1),其图象由函数f (x )的图象向左平移1个单位得到,又函数y =f (|x |+1)为偶函数,所以再将函数y =f (x +1)(x >0)的图象关于y 轴对称翻折到y 轴左边,得到x <0时的图象,故选A. 方法二 因为|x |+1≥1,0<a <1, 所以f (|x |+1)=log a (|x |+1)≤0,故选A.4、函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <-1,ln (x +a ),x ≥-1 的图象如图所示,则f (-3)等于( )A .-12B .-54C .-1D .-2答案 C解析 由图象可得-a +b =3,ln(-1+a )=0,得a =2,b =5,∴f (x )=⎩⎪⎨⎪⎧2x +5,x <-1,ln (x +2),x ≥-1,故f (-3)=2×(-3)+5=-1,故选C.5、函数f (x )的图象向右平移1个单位,所得图象与曲线y =e x 关于y 轴对称,则f (x )的解析式为( ) A .f (x )=e x +1B .f (x )=e x -1C .f (x )=e-x +1D .f (x )=e-x -1答案 D解析与y =e x 的图象关于y 轴对称的函数为y =e -x .依题意,f (x )的图象向右平移一个单位,得y =e -x 的图象.∴f (x )的图象由y =e -x 的图象向左平移一个单位得到. ∴f (x )=e -(x +1)=e -x -1.6、已知函数f (x )的定义域为R ,且f (x )=⎩⎪⎨⎪⎧2-x -1,x ≤0,f (x -1),x >0,若方程f (x )=x +a 有两个不同实根,则实数a的取值范围为( ) A .(-∞,1) B .(-∞,1] C .(0,1) D .(-∞,+∞)答案 A解析 当x ≤0时,f (x )=2-x -1,当0<x ≤1时,-1<x -1≤0,f (x )=f (x -1)=2-(x -1)-1.类推有f (x )=f (x -1)=22-x -1,x ∈(1,2],…,也就是说,x >0的部分是将x ∈(-1,0]的部分周期性向右平移1个单位得到的,其部分图象如图所示.若方程f (x )=x +a 有两个不同的实数根,则函数f (x )的图象与直线y =x +a 有两个不同交点,故a <1,即a 的取值范围是(-∞,1).7、设函数y =f (x +1)是定义在(-∞,0)∪(0,+∞)上的偶函数,在区间(-∞,0)上是减函数,且图象过点(1,0),则不等式(x -1)f (x )≤0的解集为______________. 答案 {x |x ≤0或1<x ≤2}解析 画出f (x )的大致图象如图所示.不等式(x -1)f (x )≤0可化为⎩⎨⎧ x >1,f (x )≤0或⎩⎨⎧x <1,f (x )≥0.由图可知符合条件的解集为{x |x ≤0或1<x ≤2}. 8、设函数y =f (x )的图象与y =2x -a的图象关于直线y =-x 对称,且f (-2)+f (-4)=1,则实数a =________.答案 -2解析 由函数y =f (x )的图象与y =2x -a 的图象关于直线y =-x 对称,可得f (x )=-a -log 2(-x ),由f (-2)+f (-4)=1,可得-a -log 22-a -log 24=1,解得a =-2.9、已知f (x )是以2为周期的偶函数,当x ∈[0,1]时,f (x )=x ,且在[-1,3]内,关于x 的方程f (x )=kx +k +1(k ∈R ,k ≠-1)有四个实数根,则k 的取值范围是__________. 答案 ⎝⎛⎭⎫-13,0 解析 由题意作出f (x )在[-1,3]上的示意图如图所示,记y =k (x +1)+1,∴函数y =k (x +1)+1的图象过定点A (-1,1).记B (2,0),由图象知,方程有四个实数根,即函数f (x )与y =kx +k +1的图象有四个交点, 故k AB <k <0,k AB =0-12-(-1)=-13,∴-13<k <0.10、给定min{a ,b }=⎩⎪⎨⎪⎧a ,a ≤b ,b ,b <a ,已知函数f (x )=min{x ,x 2-4x +4}+4,若动直线y =m 与函数y =f (x )的图象有3个交点,则实数m 的取值范围为__________. 答案 (4,5)解析 作出函数f (x )的图象,函数f (x )=min{x ,x 2-4x +4}+4的图象如图所示,由于直线y =m 与函数y =f (x )的图象有3个交点,数形结合可得m 的取值范围为(4,5).11、数f (x )=⎩⎪⎨⎪⎧log 2(1-x )+1,-1≤x <0,x 3-3x +2,0≤x ≤a 的值域为[0,2],则实数a 的取值范围是_____答案 [1,3]解析 先作出函数f (x )=log 2(1-x )+1,-1≤x <0的图象,再研究f (x )=x 3-3x +2,0≤x ≤a 的图象.令f ′(x )=3x 2-3=0,得x =1(x =-1舍去),由f ′(x )>0,得x >1, 由f ′(x )<0,得0<x <1.又f (0)=f (3)=2,f (1)=0.所以1≤a ≤ 3.12已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x -1,x ≥0,x 2-2x -1,x <0,则对任意x 1,x 2∈R ,若0<|x 1|<|x 2|,下列不等式成立的是( )A .f (x 1)+f (x 2)<0B .f (x 1)+f (x 2)>0C .f (x 1)-f (x 2)>0D .f (x 1)-f (x 2)<0 答案 D解析 函数f (x )的图象如图实线部分所示,且f (-x )=f (x ),从而函数f (x )是偶函数且在[0,+∞)上是增函数, 又0<|x 1|<|x 2|,∴f (x 2)>f (x 1),即f (x 1)-f (x 2)<0.13、函数f (x )=x|x -1|,g (x )=1+x +|x |2,若f (x )<g (x ),则实数x 的取值范围是____________.答案 ⎝ ⎛⎭⎪⎫-∞,-1+52∪⎝ ⎛⎭⎪⎫1+52,+∞解析 f (x )=⎩⎪⎨⎪⎧1+1x -1,x >1,-1+11-x ,x <1,g (x )=⎩⎪⎨⎪⎧1+x ,x ≥0,1,x <0,作出两函数的图象如图所示.当0≤x <1时,由-1+11-x =x +1,解得x =5-12;当x >1时,由1+1x -1=x +1,解得x =5+12.结合图象可知,满足f (x )<g (x )的x 的取值范围是⎝ ⎛⎭⎪⎫-∞,5-12∪⎝ ⎛⎭⎪⎫1+52,+∞. 14、函数f (x )=⎩⎪⎨⎪⎧(x -1)2,0≤x ≤2,14x -12,2<x ≤6.若在该函数的定义域[0,6]上存在互异的3个数x 1,x 2,x 3,使得f (x 1)x 1=f (x 2)x 2=f (x 3)x 3=k ,则实数k 的取值范围是__________. 答案 ⎝⎛⎦⎤0,16解析 由题意知,直线y =kx 与函数y =f (x )的图象至少有3个公共点.函数y =f (x ),x ∈[0,6]的图象如图所示,由图知k 的取值范围是⎝⎛⎦⎤0,16.15、已知函数f (x )=2x ,x ∈R .(1)当实数m 取何值时,方程|f (x )-2|=m 有一个解?两个解? (2)若不等式f 2(x )+f (x )-m >0在R 上恒成立,求实数m 的取值范围. 解 (1)令F (x )=|f (x )-2|=|2x -2|, G (x )=m ,画出F (x )的图象如图所示.由图象可知,当m =0或m ≥2时,函数F (x )与G (x )的图象只有一个交点,原方程有一个实数解; 当0<m <2时,函数F (x )与G (x )的图象有两个交点,原方程有两个实数解.(2)令f (x )=t (t >0),H (t )=t 2+t ,t >0,因为H (t )=⎝⎛⎭⎫t +122-14在区间(0,+∞)上是增函数, 所以H (t )>H (0)=0.因此要使t 2+t >m 在区间(0,+∞)上恒成立,应有m ≤0,即所求m 的取值范围为(-∞,0].16、数()2131log 1,x x x f x x x ⎧≤⎪⎨>⎪⎩-+,,=,g (x )=|x -k |+|x -2|,若对任意的x 1,x 2∈R ,都有f (x 1)≤g (x 2)成立,求实数k 的取值范围.解 对任意的x 1,x 2∈R ,都有f (x 1)≤g (x 2)成立,即f (x )max ≤g (x )min .观察f (x )=2131log 1,x x x x x ⎧≤⎪⎨>⎪⎩-+,,,的图象可知,当x =12时,函数f (x )max =14.因为g (x )=|x -k |+|x -2|≥|x -k -(x -2)|=|k -2|,所以g (x )min =|k -2|,所以|k -2|≥14,解得k ≤74或k ≥94.故实数k 的取值范围是⎝⎛⎦⎤-∞,74∪⎣⎡⎭⎫94,+∞.。

相关文档
最新文档