高一数学下期末考试题附答案

合集下载

2022-2023学年度第二学期期末考试卷高一数学试卷(答案版)

2022-2023学年度第二学期期末考试卷高一数学试卷(答案版)

2022-2023学年度第二学期期末考试卷高中数学答案120α=>,25,),二、多选题15.【答案】π12【详解】如图所示:设ADN α∠=,大正方形边长为a ,则cos DN a α=,sin AN a α=,cos sin MN a a αα=-,则()()()21cos sin cos sin 2S a a a a αααα=-+⨯阴,()()()22ABCD1cos sin cos sin 528a a a a S S a αααα-+⨯==阴,2215sin cos 2sin cos sin cos 28αααααα+-+=,化为33sin248α=,则1sin22α=,由题意π0,4α⎛⎫∈ ⎪⎝⎭,则π20,2α⎛⎫∈ ⎪⎝⎭,故π26α=,解得π12α=.故答案为:π12.16.【答案】10-【详解】设28(1)716y ax a x a =++++,其图象为抛物线,对于任意一个给定的a 值其抛物线只有在开口向下的情况下才能满足0y ≥而整数解只有有限个,所以a<0,因为0为其中一个解可以求得167a ≥-,又a Z ∈,所以2a =-或1a =-,则不等式为22820x x --+≥和290x -+≥,可分别求得2552x --≤≤-和33x -≤≤,因为x 位整数,所以4,3,2,1x =----和3,2,1,0,1,2,3x =---,所以全部不等式的整数解的和为10-.故答案为:10-.17.【答案】(1)52k ≥(2)1k ≤【详解】(1)由2511x x -<+,移项可得25101x x --<+,通分并合并同类项可得601x x -<+,等价于()()610x x -+<,解得16x -<<,则{}16A x x =-<<;由A B A = ,则A B ⊆,即1621k k -≤-⎧⎨≤+⎩,解得52k ≥.(2)p 是q 的必要不充分条件等价于B A ⊆.①当B =∅时,21k k -≥+,解得13k ≤-,满足.②当B ≠∅时,原问题等价于131216k k k ⎧>-⎪⎪-≥-⎨⎪+≤⎪⎩(不同时取等号)解得113k -<≤.综上,实数k 的取值范围是1k ≤.18.【答案】(1)π()sin(2)3f x x =+,(2){}2[3,2)-f=,的奇函数,所以()00),0∞和()+上分别单调递增.0,∞。

上海市莘庄中学2023-2024学年高一下学期期末考试数学试题(含答案)

上海市莘庄中学2023-2024学年高一下学期期末考试数学试题(含答案)

莘庄中学2023学年第二学期高一年级数学期末2024.06一、填空题(本大题共有12题,满分54分,第题每题4分,第7-12题每题5分)1.函数的最小正周期是______.2.直线倾斜角大小为______3.已知复数z 满足(i 是虚数单位),则______.4.已知,,,若向量与垂直(O 为坐标原点),则实数x 的值为______.5.若是方程的一个根,则______.6.若直线:与直线:平行,则实数______.7.若,则的值为______.8.平面向量与是单位向量,夹角为60°,那么,向量、构成平面的一个基.若,则将有序实数对称为向量的在这个基下的斜坐标,表示为.设,,则______.9.已知直线与直线:的夹角为,且经过点,直线的方程是______.10.已知,点是平面上一个动点,则当t 由0连续变到时,线段AP 扫过的面积是______.11.已知平面向量,满足,,,若平面向量满足,则的最大值为______.16~()()sin f x x =π10x y --=()117i z i +=-z =()2,1A ()4,2B -()1,C x -OA OB + OC32i +()20,x bx c b c R ++=∈c =1l 260x ay +-=2l ()()150x a y a +-++=a =()1sin cos tan tan 22π⎛⎫π-θ-θ=θ-θ ⎪⎝⎭sin 2θ1e 2e 1e 2e12a xe ye =+ ,x y 〈〉a,a x y =〈〉 1,1a =〈-〉2,b 0=〈〉 a b ⋅= 2l 1l 30x -+=3π(2l ()0,2A sin 2,cos 2P -33t t-⎛⎫ππ⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭3πa b 3a = 4b = 4a b ⋅= c1c b -= c a -12.已知复数,,i 为虚数单位,若,复数,对应的向量分别为,,存在θ使得等式成立,则实数λ的取值范围为______.二.选择题(本大题共4题,13、14题4分,15、16题5分,共18分)13.已知函数的图象关于y 轴对称,则实数φ的取值可能是( )A.B .C .D .14.点关于直线l :的对称点的坐标是( )A .B .C .D .15.已知,顺次连接函数与的任意三个相邻的交点都构成一个等边三角形,则( )A.B .C .D .16.已知向量、、满足,,,则下列四个命题中,正确命题的个数是( ).①若,则的最小值为;②若,则存在唯一的y ,使得;③若,则的最小值为;④若,则的最小值为.A .1B .2C .3D .4三.解答题(本大题共5题,共78分)17.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.12sin z =θ-()212cos z i =+θ5,26ππ⎡⎤θ∈⎢⎥⎣⎦1z 2z ab ()()0a b a b λ-⋅-λ= ()()sin f x x =+ϕ4π3π2ππ()2,3P 0x y +=()2,3--()2,3-()3,2()3,2--0ω>()()0f x x =ωω>()g x x =ωω=2π4π6π8πa b c 1a b ==12a b ⋅=- (),0c xa yb x y R y =+∈≥ 、1x =c 1x =0a c ⋅=1c =x y +1-1c = a c b c ⋅+⋅12-已知复数,且为纯虚数.(1)求实数a 的值;(2)设复数,且复数对应的点在第二象限,求实数b 的取值范围.18.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.的内角A ,B ,C 的对边分别为a ,b ,c ,已知.(1)求;(2)若,的面积为2,求b .19.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.如图,A 、B 是海岸线OM 、ON 上的两个码头,海中小岛有码头Q 到海岸线OM 、ON 的距离分别为2km .测得,.以点O 为坐标原点,射线OM 为x 轴的正半轴,建立如图所示的直角坐标系.码头Q 在第一象限,且三个码头A 、B 、Q 均在一条航线上.(1)求码头Q 点的坐标;()11z ai a R =+∈()13z i +212023b i z z -=2z ABC △()2sin 8sin 2BA C +=cosB 6a c +=ABC △tan 3MON ∠=-6OA km =(2)海中有一处景点P (设点P 在平面xOy 内,,且),游轮无法靠近.求游轮在水上沿旅游线AB 航行时离景点P 最近的点C 的坐标.20.(本题满分18分)本题共有3个小题第1小题4分,第2小题6分,第3小题8分.已知函数的图象如图所示.(1)求函数的单调递减区间;(2)将函数的图象向右平移个单位长度得到曲线C ,把C 上各点的横坐标伸长到原来的2倍,纵坐标不变,得到的曲线对应的函数记作,求函数的最小值;(3)在(2)的题干下,若函数在内恰有6个零点,求m 的值.PQ OM ⊥6PQ km =()()sin 0,0,2f x A x A π⎛⎫=ω+ϕ>ω>ϕ≤ ⎪⎝⎭()f x ()y f x =6π()y g x =()()2x h x f g x ⎛⎫= ⎪⎝⎭()()()22F x g x mg x m R π⎛⎫=-+∈ ⎪⎝⎭()0,4π21.(本题满分18分)本题共有3个小题第1小题4分,第2小题6分,第3小题8分.在梯形ABCD 中,,,,,P ,Q 分别为直线BC ,CD 上的动点.(1)当P ,Q 为线段BC ,CD 上的中点,试用和来表示;(2)若,求;(3)若,,,,G 为的重心,若D ,G ,B 在同一条直线上,求λμ的最大值.AB CD ∥2AB BC ==1CD =120BCD ∠=︒AB ADQP 14BP BC =AP BP BC =μ DQ DC =λ0λ>0μ>APQ △参考答案一、填空题1.2;2.; 3.5; 4.; 5.13; 6.2; 7.; 8.1;9.或;;12.11.已知平面向量,满足,,,若平面向量满足,则的最大值为______.【解析】如图,设,设,则又向量满足,即在以为圆心,1为半径的圆上,即当三点共线,且在之间时,取得最大值.故答案为.12.已知复数,,i为虚数单位,若,复数,对应的向量分别为,,存在θ使得等式成立,则实数λ的取值范围为______.4π23-3x =90x +-=3π1+[2-+a b 3a = 4b = 4a b ⋅= c 1c b -=c a -1+,OA a OB b == OC c =3,4OA OB ==••34a b OA OB cos ∴==⨯⨯4AOB ∠=1,3cos AOB ∴∠=AB ∴===c 1c b -=1,OC OB ∴-= 1,BC = C ∴B ,c a OC OA AC -=-=∴,,A B C B AC AC 1AB r +=+1+12sin z =θ-()212cos z i =+θ5,26ππ⎡⎤θ∈⎢⎥⎣⎦1z 2z a b ()()0a b a b λ-⋅-λ=【答案】【解析】由题意,等式成立,即即整理可得:而所以,可得,因为,所以,所以,所以,即,解得,所以实数的取值范围为.二、选择题13.C14.D15.A16.D16.已知向量、、满足,,,则下列四个命题中,正确命题的个数是( ).①若,则的最小值为;②若,则存在唯一的y ,使得;③若,则的最小值为;④若,则的最小值为.A .1B .2C .3D .4【答案】D【解析】对①,若,[2-+(2a sin ,=θ- ()12,b ,cos =θ ()()•0a b a b λ--λ=()212(2sin ,cos sin λθ---θ⋅θ-λ,2)0,cos -λθ=()()212sin sin λθ-⋅θ-λ()()220cos cos +-θ⋅-λθ=()228sin θ-θλ+λ()20sin +-θ+θ=243sin sin π⎛⎫-θ+θ=-θ- ⎪⎝⎭()281403sin π⎛⎫λ-λ+θ-= ⎪⎝⎭2231sin πλ⎛⎫θ-= ⎪λ+⎝⎭526,ππ⎡⎤θ∈⎢⎥⎣⎦362,πππ⎡⎤θ-∈⎢⎥⎣⎦1132sin ,π⎛⎫⎡⎤θ-∈ ⎪⎢⎥⎝⎭⎣⎦212121λ+λ (22)1421⎧λ+≤λ⎨λ≤+λ⎩22R ⎧-≤λ≤+⎪⎨λ∈⎪⎩λ22⎡+⎣a b c 1a b ==12a b ⋅=- (),0c xa yb x y R y =+∈≥ 、1x =c 1x =0a c ⋅=1c =x y +1-1c = a c b c ⋅+⋅12-11,,2a b a b ==⋅=-()0,c xa yb x,y R,y =+∈ …∴1x =则,当且仅当时,取得等号,的最小值为的最小值为①正确;对②,若,由得存在唯一的,使得,②正确;对③,若,则当且仅当时,取得等号,又,当且仅当,时取得等号,③正确;对④,若,则,由③知,④正确.故答案为:D.三.解答题17.(1)-3 (2)18.(1)(2)219.(1)(4,2) (2)(1,5)20.已知函数的图象如图所示.(1)求函数的单调递减区间;(2)将函数的图象向右平移个单位长度得到曲线C ,把C 上各点的横坐标伸长到原来的2倍,纵坐标不变,得到的曲线对应的函数记作,求函数22222222113321212244c x a xya b y b y y y y y ⎛⎫⎛⎫=+⋅+=+⨯-+=-+=-+ ⎪ ⎪⎝⎭⎝⎭ …12y =2c ∴ 3,4c ∴ ∴1x =•0a c = 21•0,2xa ya b x y +=-=110,2y ∴-=2,y ∴=∴2y =•0a c =∴1c = ()22221c xa ybx y xy ==+=+-()()222332x y x y xy x y +⎛⎫=+-+-⋅ ⎪⎝⎭…()24x y +=1x y ==()0y …()21,2,4x y x y +∴≤∴+…0,1y x y x ∴+-………0y =1x =-∴1c = 11••222x y a c b c x y x y +⎛⎫+=-+-+= ⎪⎝⎭1x y +- (1),22x y +∴≥-∴1(,3)3-1517()()sin 0,0,2f x A x A π⎛⎫=ω+ϕ>ω>ϕ≤ ⎪⎝⎭()f x ()y f x =6π()y g x =的最小值;(3)在(2)的题干下,若函数在内恰有6个零点,求m 的值.【答案】(1)(2)(3)或.【解析】(1)由图可得,最小正周期,则,由,可得,又,所以,所以,由,可得,所以的单调递减区间为(2)由题意得,所以的最小值为(3)令,可得令,得,由于,故方程必有两个不同的实数根,且,由知异号,不妨设,,若,则,()()2x h x f g x ⎛⎫= ⎪⎝⎭()()()22F x g x mg x m R π⎛⎫=-+∈ ⎪⎝⎭()0,4π7,1212k ,k k Z ππ⎡⎤+π+π∈⎢⎥⎣⎦14-1m =1m =-1A =721212T ππ⎛⎫=⨯-=π ⎪⎝⎭22T πω==77211212f sin ⎛⎫⎛⎫π=⨯π+ϕ=- ⎪ ⎪⎝⎭⎝⎭52,3k k Z πϕ=-+π∈2πϕ≤3πϕ=()23f x sin x π⎛⎫=+ ⎪⎝⎭3222,232k x k k Z ππππ+≤+≤+π∈7,1212k x k k Z ππ+π≤≤+π∈()f x 7,1212k ,k k Zππ⎡⎤+π+π∈⎢⎥⎣⎦()g x sinx =()()23x h x f g x sin x sinxπ⎛⎫⎛⎫==+ ⎪ ⎪⎝⎭⎝⎭2122sin x x =+=()1124cos x +-112,264sin x π⎛⎫=-+ ⎪⎝⎭()()2x h x f g x ⎛⎫= ⎪⎝⎭111;244-+=-()222F x sin x msinx cos x π⎛⎫=-+= ⎪⎝⎭()221msinx sin x msinx m R +=-++∈()0F x =2210sin x msinx --=[]11t sinx ,=∈-2210t mt --=280Δm =+>12,t t 12121,22m t t t t +==-12102t t =-<12,t t 10t >20t <11t >2111022t ,t ⎛⎫=-∈- ⎪⎝⎭,无解,在内有四个零点,不符题意;若,则在内有2个零点,在内有4个零点,符合题意,此时,得;若,在有4个零点,故在内应恰有2个零点,,此时,综上所述,或.21.在梯形ABCD 中,,,,,P ,Q 分别为直线BC ,CD 上的动点.(1)当P ,Q 为线段BC ,CD 上的中点,试用和来表示;(2)若,求;(3)若,,,,G 为的重心,若D ,G ,B 在同一条直线上,求λμ的最大值.【答案】(1)(2)(3)1【解析】(1)由已知可得,;1sinx t =2sinx t =()04,π11t =21,12t sinx =-=()04,π12sinx =-()04,π1122m-=1m =1211101,22t t t <<=-<-1sinx t =()04,π2sinx t =()04,π21t ∴=-111,1222mt =-+=1,m ∴=-1m =1m =-AB CD ∥2AB BC ==1CD =120BCD ∠=︒AB ADQP 14BP BC =AP BP BC =μ DQ DC =λ0λ>0μ>APQ △1122AB AD -12QP DB =,QP DB ()1111122222QP DB QP DB AB AD AB AD ∴=∴==-=- ()112,44BP BC AP AB BP AB BC =∴=+=+ //,120,60,120,AB CD BCD ABC AB,BC ∠=∴∠=∴=••AB BC AB AC cos<AB,BC >∴= 12222⎛⎫=⨯⨯-=- ⎪⎝⎭14AP AB BC ∴=+== ==(3)设线段的中点为,连接,交与点,由已知为的重心,由重心性质可得,又设,可得,当且仅当时等号成立,的最大值为1.PQ E AE BD G G APQ ∆23AG AE = 12AE AQ QE AQ QP =+=+ ()111222AQ AP AQ AP AQ =+-=+ ()AP AB BP AB BC AB BA AD DC =+=+μ=+μ++ 12AB AD AQ AD DQ μ⎛⎫=-+μ=+ ⎪⎝⎭ 2AD DC AD AB λ=+λ=+ 1133AG AP AQ ∴=+ 2163AB AD -μ+λμ+=+ ,B t BD = ()()1AG AB BG AB t BD AB t AD AB t AB t AD =+=+=+-=-+ 21613t t -μ+λ⎧=-⎪⎪∴⎨μ+⎪=⎪⎩21163-μ+λμ+∴+=2212λ+μ⎛⎫λ+μ=∴λμ= ⎪⎝⎭…1λ=μ=∴λμ。

浙江省宁波市2023-2024学年高一下学期期末考试数学试题卷含答案

浙江省宁波市2023-2024学年高一下学期期末考试数学试题卷含答案

镇海2023学年第二学期期末考试高一数学试题卷(答案在最后)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.点P 是椭圆2212x y +=上一动点,则点P 到两焦点的距离之和为()A.2B.C. D.4【答案】C 【解析】【分析】由椭圆的定义求解即可.【详解】由2212x y +=可得:a =,由椭圆的定义可知:点P到两焦点的距离之和为2a =.故选:C .2.若{,,}a b c是空间中的一组基底,则下列可与向量,2a c a c +-构成基底的向量是()A.aB.2a b+C.2a c+D.c【答案】B 【解析】【分析】借助空间中基底定义,计算该向量能否用,2a c a c +-表示即可得.【详解】由{,,}a b c 是空间中的一组基底,故,,a b c两两不共线,对A :有()()1223a a c a c ⎡⎤=++-⎣⎦,故A 错误;对B :设()()22a b m a c n a c +=++- ,则有()()22a b m n a m n c +=++-,该方程无解,故2a b +可与,2a c a c +-构成基底,故B 正确;对C :有()()12423a c a c a c ⎡⎤+=+--⎣⎦,故C 错误;对D :有()()123c a c a c ⎡⎤=+--⎣⎦,故D 错误.故选:B.3.l 为直线,α为平面,则下列条件能作为l α∥的充要条件的是()A.l 平行平面α内的无数条直线B.l 平行于平面α的法向量C.l 垂直于平面α的法向量D.l 与平面α没有公共点【答案】D 【解析】【分析】根据直线与平面平行的定义,由于定义是充要条件得到选项.【详解】对A :没有强调l α⊄,故A 错误;对B :l 平行于平面α的法向量,可得l α⊥,故B 错误;对C :同A 一样,没有强调l α⊄,故C 错误;对D :根据直线与平面平行的定义:直线与平面没有公共点时,直线与平面平行.所以“直线l 与平面α没有公共点”是“l α∥”的充要条件.故D 正确.故选:D4.己知 (2,2,1)(1,1,0)a b ==,,则a 在b 上的投影向量的坐标为()A.(1,1,0)B.(1,2,0)C.(2,2,0)D.(1,1,1)【答案】C 【解析】【分析】根据投影向量的概念求解即可.【详解】向量a 在b上的投影向量为:()()21,1,02,2,0a b b bb⋅⋅⨯==,故选:C5.点()()1122,,,P x y Q x y 为直线20kx y -+=上不同的两点,则直线111:1l x x y y -=与直线222:1l x x y y -=的位置关系是()A.相交B.平行C.重合D.不确定【答案】A 【解析】【分析】利用这两直线的斜率来结合已知条件,即可以作出判断.【详解】由点()()1122,,,P x y Q x y 为直线20kx y -+=上不同的两点,则直线111:1l x x y y -=与直线222:1l x x y y -=的斜率存在时一定为1212x x y y ,,可以把这两个斜率看成直线上两点到原点的斜率的倒数,由已知可得OP OQ k k ≠,则1212x x y y ≠,即两直线不可能平行与重合,则只能相交;若直线111:1l x x y y -=与直线222:1l x x y y -=的斜率有一个不存在,则另一个斜率必存在,也能判定两直线相交;故选:A.6.如图,平行六面体各棱长为1,且1160A AB A AD BAD ∠=∠=∠=︒,动点P 在该几何体内部,且满足1(1)(,R)AP xAB y AD x y AA x y =++--∈ ,则||AP的最小值为()A.4B.3C.62D.12【答案】B 【解析】【分析】由平面向量共面定理可知:点P 在平面1BDA 内,则||AP的最小值即为点P 到平面1BDA 的距离,求出三棱锥1A A BD -为正四面体,过点A 作AH ⊥平面1BDA ,求解AH 即可得出答案.【详解】因为1(1)(,R)AP xAB y AD x y AA x y =++--∈,则()()111AP AA x AB AA y AD AA -=-+- ,即111A P xA B y A D =+ ,由平面向量共面定理可知:点P 在平面1BDA 内,则||AP的最小值即为点P 到平面1BDA 的距离,连接11,,,BD DA A B 因为平行六面体各棱长为1,且1160A AB A AD BAD ∠=∠=∠=︒,所以111BD DA A B ===,所以三棱锥1A A BD -为正四面体,过点A 作AH ⊥平面1BDA ,因为1A H ⊂平面1BDA ,所以AH ⊥1A H ,如图,所以1223323A H ==⨯=,所以3AH ===,所以||AP的最小值为3AH =.故选:B .7.实数,x y 满足2222x y x y +=-,则|3|x y -+的最小值为()A.3B.7C. D.3+【答案】A 【解析】【分析】化简2222x y x y +=-可得()()22112x y -++=,|3|x y -+表示为圆上点到直线30x y -+=【详解】化简2222x y x y +=-可得()()22112x y -++=,即(),x y 在圆上,则|3|x y -+表示为圆上点到直线30x y -+=倍,圆心()1,1-到直线距离为d =则|3|x y -+的最小值为3-=.故选:A8.在棱长为2的正四面体O ABC -中,棱,OA BC 上分别存在点,M N (包含端点),直线MN 与平面ABC ,平面OBC 所成角为θ和ϕ,则sin sin θϕ+的取值范围是()A.2,33⎡⎢⎣⎦B.2,33⎡⎢⎣⎦C.,33⎣⎦D.,33⎣⎦【答案】C 【解析】【分析】建立空间直角坐标系,然后利用空间向量得到3sin sin θϕ+=最后根据,a b 范围求sin sin θϕ+的取值范围即可.【详解】如图,取ABC 的中心1O ,连接1OO ,取BC 中点F ,连接1O F ,过点1O 作1O E BC ∥交AB 于点E ,以1O 为原点,分别以111,,O E O F O O 为,,x y z 轴建立空间直角坐标系,因为O ABC -为正四面体,所以13O A =,13O F =,13O O =,()10,0,0O,1,,03B ⎛⎫ ⎪ ⎪⎝⎭,1,,03C ⎛⎫- ⎪ ⎪⎝⎭,0,0,3O ⎛⎫ ⎪ ⎪⎝⎭,10,0,3O O ⎛⎫= ⎪ ⎪⎝⎭,1,,33OB ⎛⎫=- ⎪ ⎪⎝⎭,1,,33OC ⎛⎫=-- ⎪ ⎪⎝⎭,设230,3M a ⎛⎫- ⎪ ⎪⎝⎭,3,,03N b ⎛⎫ ⎪ ⎪⎝⎭,230,3a ⎡∈⎢⎣⎦,[]1,1b ∈-,则(),MN b a =,由题意得1O O uuu r可以作为平面ABC 的一个法向量,则113sin a MN O O MN O Oθ⋅==,设平面OBC 的法向量为(),,m x y z =,033033m OB x y z m OC x y z ⎧⋅=+-=⎪⎪⎨⎪⋅=-+-=⎪⎩,则0x =,令y =4z =,所以4m ⎛= ⎝⎭ ,33332sin a m MNm MNϕ--⋅==33sin sin θϕ-+=因为0,3a ⎡∈⎢⎣⎦,[]1,1b ∈-,所以[]2332,3a -+∈,[]20,1b ∈,⎤⎦,3sin sin ,33θϕ+=⎥⎣⎦.故选:C.【点睛】关键点点睛:本题关键在于利用相似设出点M 的坐标,然后利用空间向量的方法求出线面角,最后求范围即可.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,部分选对的得部分.9.已知椭圆222:14x y C a +=的焦点分别为12,FF ,焦距为P 为椭圆C 上一点,则下列选项中正确的是()A.椭圆C 的离心率为53B.12F PF △的周长为3C.12F PF ∠不可能是直角D.当1260F PF ∠=︒时,12F PF △的面积为3【答案】AD【解析】【分析】先确定椭圆的方程,再根据方程分析椭圆的性质.【详解】由题意,焦距为2c =⇒c =,又2<,所以椭圆焦点必在x 轴上,由245a -=3a ⇒=.所以椭圆的离心率3c e a ==,故A 正确;根据椭圆的定义,12F PF △的周长为226a c +=+,故B 错误;如图:取()0,2M 为椭圆的上顶点,则()()123,23,250MF MF ⋅=-⋅--=-<,所以12F MF ∠为钝角,所以椭圆上存在点P ,使得12F PF ∠为直角,故C 错误;如图:当1260F PF ∠=︒时,设11PF t =,22PF t =,则1222121262cos6020t t t t t t +=⎧⎨+-︒=⎩⇒12221212620t t t t t t +=⎧⎨+-=⎩⇒12163t t =,所以12121116343sin 6022323F PF S t t =︒=⨯⨯=,故D 正确.故选:AD10.已知圆221:(1)(2)9C x y a -+-=,圆2222:82120,C x y x ay a a +-+++=∈R .则下列选项正确的是()A.直线12C C 恒过定点(3,0)B.当圆1C 和圆2C 外切时,若,P Q 分别是圆12,C C 上的动点,则max ||10PQ =C.若圆1C 和圆2C 共有2条公切线,则43a <D.当13a =时,圆1C 与圆2C 相交弦的弦长为2【答案】ABD 【解析】【分析】根据圆的方程确定圆心,可求出直线12C C 的方程,即可判断A ;根据圆1C 和圆2C 外切求出a 的值,数形结合,可判断B ;根据两圆公切线条数判断两圆相交,列不等式求解判断C ;求出两圆的公共弦方程,即可求得两圆的公共弦长,判断D.【详解】对于A ,由圆221:(1)(2)9C x y a -+-=,圆2222:82120,C x y x ay a a +-+++=∈R ,可知()()121,2,4,C a C a -,故直线12C C 的方程为(4)y a a x +=--,即()3y a x =--,即得直线12C C 恒过定点(3,0),A 正确;对于B ,2222:82120,C x y x ay a a +-+++=∈R 即()()222:44,C x y a a -++=∈R ,当圆1C 和圆2C 32=+,解得43a =±,当43a =时,如图示,当12,,,P C C Q 共线时,max 12||32510PQ C C =++==;同理求得当43a =-时,max ||10PQ =,B 正确;对于C ,若圆1C 和圆2C 共有2条公切线,则两圆相交,则123232C C -<<+,即15<<,解得4433a -<<,C 错误对于D ,当13a =时,两圆相交,2212:(1)(93C x y -+-=,()2221:443C x y ⎛⎫-++= ⎪⎝⎭,将两方程相减可得公共弦方程596203x y --=,则121,3C ⎛⎫⎪⎝⎭到596203x y --=4=,则圆1C 与圆2C相交弦的弦长为2=,D 正确,故选:ABD11.埃舍尔是荷兰著名的版画家,《哈利波特》《盗梦空间》《迷宫》等影片的灵感都来源于埃舍尔的作品.通过著名的《瀑布》(图1)作品,可以感受到形状渐变、几何体组合和光学幻觉方面的魅力.画面中的两座高塔上方各有一个几何体,右塔上的几何体首次出现,后称“埃舍尔多面体”(图2),其可以用两两垂直且中心重合的三个正方形构造.如图4,,,,(1,2,3)n n n n A B C D n =分别为埃舍尔多面体的顶点,,(1,2,3)n n P Q n =分别为正方形边上的中点,埃舍尔多面体的可视部分是由12个四棱锥构成.为了便于理解,图5中构造了其中两个四棱锥11122A PE P E -与22131,,(1,2)n n A P E P F E F n -=分别为线段的中点.左塔上方是著名的“三立方体合体”(图3),取棱长为2的正方体ABCD A B C D -''''的中心O ,以O 为原点,,,x y z 轴均平行于正方体棱,建立如图6所示的空间直角坐标系,将正方体分别绕,,x y z 轴旋转45︒,将旋转后的三个正方体,1,2,3n n n n n n n n A B C D A B C D n ''''-=(图7,8,9)结合在一起便可得到“三立方体合体”(图10),下列有关“埃舍尔多面体”和“三立方体合体”的说法中,正确的是()A.在图5中,1322A P E P ⊥B.在图5中,直线12Q A 与平面122A E P 所成角的正弦值为63C.在图10中,设点nA '的坐标为(),,,1,2,3n n n x y z n =,则()122239n n n n x y z =∑++=D.在图10中,若E 为线段22B C 上的动点(包含端点),则异面直线2D E 与23A A 所成角余弦值的最大值为22【答案】BCD 【解析】【分析】利用建立空间直角坐标系,结合空间向量法可以解决各个问题.【详解】对A ,在图5中,如图建系,设1231OP OP OP ===,则()10,1,1A ,()31,0,0P ,()20,1,0P ,2111,,222E ⎛⎫-⎪⎝⎭,所以()13221111,1,1,,,222A P E P ⎛⎫=--=- ⎪⎝⎭,则()132********1,1,1,,02222222A P E P ⎛⎫⋅=--⋅-=-+=≠ ⎪⎝⎭ ,13A P 与22E P 不垂直,故A 错误;对B ,由图知:()10,0,1Q -,()21,1,0A ,()10,1,1A ,1111,,222E ⎛⎫⎪⎝⎭,()20,1,0P 则()121,1,1Q A = ,()120,0,1A P =-,22111,,222E P ⎛⎫=-- ⎪⎝⎭,设平面122A E P 的法向量为(),,n x y z =,则122200n A P n E P ⎧⋅=⎪⎨⋅=⎪⎩ ,得01110222z x y z -=⎧⎪⎨-+-=⎪⎩,令1y =得,01z x ==,,即()01,1n =,,又由121212cos ,3Q A nQ A n Q A n⋅==,所以直线12Q A 与平面122A E P所成角的正弦值为3,故B 正确;对C ,在平面直角坐标系中,正方形绕中心旋转45︒,1A 坐标由()11,变为(),所以结合图形可知:点1A '的坐标为(1,0,2,点2A '的坐标为(0,1,2,-点3A '的坐标为)2,0,1,-则()()()()322211212129n n n n xy z =++=+++++=∑,故C 正确;对D ,由图知:)22,1,0A -,)22,1,0B ,(22C ,(20,2D -,)32,0,1A ,则()2301,1A A =,,由E 为线段22B C 上的动点(包含端点),则可设222C E C B λ=,[]0,1λ∈,所以())222222220,2,02,0,22,2,2D E D C C E D C C B λλλλ=+=+=+-=-,则22322322223222cos ,44221D E A A D E A A D E A A λλλλ⋅--==⋅+⋅+2t λ=,22t ∈,则()223222cos ,322121221212333t D E A A tt tt ==⎛⎫-+-+-+⎪⎝⎭,由1221,2t ⎤∈⎥⎣⎦,得2212221,32318t ⎛⎛-≥-= ⎪ ⎝⎭⎝⎭即22322cos ,=211121232318333D E A A t=≤⎛⎫⨯+-+⎪⎝⎭ 所以异面直线2D E 与23A A 所成角余弦值的最大值为22,故D 正确;故选:BCD.【点睛】关键点点睛:就是针对旋转后的点的空间坐标表示,这里先通过借助平面旋转时的坐标变化关系,再来写空间旋转后的点的坐标表示,只有表示出各点坐标,再就是借助空间向量的运算就能求解各选项问题.三、填空题:本题共3小题,每小题5分,共15分.12.在空间直角坐标系中,点(2,0,0)A 为平面α外一点,点(0,1,1)B 为平面α内一点.若平面α的一个法向量为(1,1,2)-,则点A 到平面α的距离是_______.【答案】62【解析】【分析】根据条件,利用点到面的距离的向量法,即可求出结果.【详解】由题知(2,1,1)AB =-,又平面α的一个法向量为(1,1,2)n =-,所以点A 到平面α的距离为62AB n d n ⋅==,故答案为:2.13.已知点P 是直线80-+=x y 上的一个动点,过点P 作圆()()22:114C x y -+-=的两条切线,与圆切于点,M N ,则cos MPN ∠的最小值是_______.【答案】34##0.75【解析】【分析】结合切线的性质与二倍角公式可将求cos MPN ∠的最小值转化为求sin MPC ∠的最大值,结合三角函数定义与点到直线距离公式计算即可得.【详解】由题意可得PM CM ⊥、PN CN ⊥,MPC NPC ∠=∠,设MPC α∠=,则2MPN α∠=,则2cos cos 212sin MPN αα∠==-,由()()22:114C x y -+-=可得圆心为()1,1C ,半径为2r =,则2sin MC PCPC α==,又min PC ==,则()max min 2sin 4PC α===,则()22min 23cos 12sin 1244MPN α⎛⎫∠=-=-⨯= ⎪ ⎪⎝⎭.故答案为:34.14.已知椭圆2222:1(0)x y C a b a b+=>>的左,右焦点分别是12(,0),(,0)F c F c -,下顶点为点()0,M b -,直线2MF 交椭圆C 于点N ,设1△MNF 的内切圆与1NF 相切于点E ,若122NE F F ==,则椭圆C 的离心率为_______,1△MNF 的内切圆半径长为_______.【答案】①.12##0.5②.5【解析】【分析】借助切线长定理与椭圆性质可得12F E FF =,从而可结合椭圆定义得到a 的值,即可得其离心率;借助余弦定理的推论可得三角形各边长,结合面积公式运用等面积法即可求取内切圆半径.【详解】设1△MNF 的内切圆与NM 、1MF 相切于点F ,G ,由切线长定理可得11F E FG =,MF MG =,NE NF =,又12MF MF a ==,则12FG FF =,故12F E FF =,由椭圆定义可知122NF NF a +=,即122222NE EF NF NE FF NF NE a ++=++==,故2a NE ==,又1222F F c ==,则12c e a ==;则2π6OMF ∠=,故12π3F MF ∠=,设1EF m =,则2422NF m m =--=-,即12NF m =+,4NM m =-,则有()()()22222111442πcos 32224m m MF MN NF MF MN m +--++-==⨯⋅⨯⨯-,计算可得45m =,则()11π24sin 235MNF S m =⨯⨯-= ,又184MNF C a == ,则11412MNF MNF S r C r =⋅= ,即有45r =,即5r =.故答案为:12;5.【点睛】关键点点睛:本题关键点一个是借助切线长定理与椭圆性质得到12F E FF =,从而可结合椭圆定义得到a 的值,第二个是借助等面积法求取内切圆半径.四、解答题:本题共5小题,共77分.解答应写出文字说明、正明过程或演算步骤.15.已知直线l 经过点(4,4)A ,且点(5,0)B 到直线l 的距离为1.(1)求直线l 的方程;(2)O 为坐标原点,点C 的坐标为(6,3)-,若点P 为直线OA 上的动点,求||||PB PC +的最小值,并求出此时点P 的坐标.【答案】(1)4x =或158920x y +-=(2)10,1515,77P ⎛⎫⎪⎝⎭【解析】【分析】(1)考虑直线l 的斜率存在和不存在情况,存在时,设直线方程,根据点到直线的距离求出斜率,即得答案.(2)确定(6,3)-关于直线OA 的对称点,数形结合,利用几何意义即可求得答案.【小问1详解】由题意知直线l 经过点(4,4)A ,当直线斜率不存在时,方程为4x =,此时点(5,0)B 到直线l 的距离为1,符合题意;当直线l 斜率存在时,设方程为4(4)y k x -=-,即440kx y k --+=,则由点(5,0)B 到直线l 的距离为11=,解得158k =-,即得15604088x y --++=,即158920x y +-=,故直线l 的方程为4x =或158920x y +-=;【小问2详解】由点(4,4)A ,可得直线OA 的方程为y x =,故点(5,0)B 关于y x =的对称点为1(0,5)B ,连接1PB ,则1PB PB =,则11||||||||||10PB PC PB PC B C +=+≥==,当且仅当1,,B P C 共线时,等号成立,即||||PBPC +的最小值为10,此时1B C 的方程为53455063y x x +=+=-+-,联立y x =,解得157x y ==,即151577P ,⎛⎫ ⎪⎝⎭.16.如图,正三棱柱111ABC A B C -所有的棱长均为2,点D 在棱11A B 上,且满足11123A D A B =,点E 是棱1BB 的中点.(1)证明://EC 平面1AC D ;(2)求直线AE 与平面1AC D 所成角的正弦值.【答案】(1)证明见解析(2)65【解析】【分析】(1)(2)建立空间直角坐标系,利用空间向量证明线面平行,也可利用空间向量求线面角的大小.【小问1详解】如图:取AB 的中点O ,因为三棱柱是正三棱柱且棱长为2,故以O 为原点,建立空间直角坐标系,则()1,0,0A -,()3,0C ,()13,2C ,1,0,23D ⎛⎫ ⎪⎝⎭,()1,0,1E ,所以4,0,23AD ⎛⎫= ⎪⎝⎭ ,113,03DC ⎛⎫=- ⎪⎝⎭,()3,1EC =--.设平面1AC D 的法向量为(),,n x y z =,由1n ADn DC ⎧⊥⎪⎨⊥⎪⎩ ⇒()()4,,,0,2031,,3,003x y z x y z ⎧⎛⎫⋅= ⎪⎪⎪⎝⎭⎨⎛⎫⎪⋅-= ⎪⎪⎝⎭⎩⇒460330x z x +=⎧⎪⎨-+=⎪⎩,取()6n =-.因为()()16EC n ⋅=--⋅-9360=-++=,又直线EC ⊄平面1AC D ,所以//EC 平面1AC D .【小问2详解】因为()2,0,1AE =,设直线AE 与平面1AC D 所成的角为θ,则sin θcos ,n AE n AE n AE ⋅===⋅5=.17.已知圆C 的圆心在x轴上,且过(-.(1)求圆C 的方程;(2)过点(1,0)P -的直线与圆C 交于,E F 两点(点E 位于x 轴上方),在x 轴上是否存在点A ,使得当直线变化时,均有PAE PAF ∠=∠?若存在,求出点A 的坐标;若不存在,请说明理由.【答案】(1)224x y +=(2)存在,且()4,0A -【解析】【分析】(1)设出圆的方程,借助代入所过点的坐标计算即可得;(2)圆问题可转化为在x 轴上是否存在点A ,使0AE AF k k +=,设出直线方程,联立曲线,借助韦达定理与斜率公式计算即可得.【小问1详解】设圆C 为()222x a y r -+=,则有()()2222212a r a r ⎧--+=⎪⎨⎪-=⎩,解得24a r =⎧⎨=⎩,故圆C 的方程为224x y +=;【小问2详解】由题意可得,直线EF 斜率不为0,故可设:1EF l x my =-,()11,E x y ,()22,F x y ,联立2214x my x y =-⎧⎨+=⎩,有()221230m y my +--=,2224121216120m m m ∆=++=+>,12221my y m +=+,12231y y m -=+,设(),0A t ,1t ≠-,由PAE PAF ∠=∠,则有0AE AF k k +=,即()()()()12211212120y x t y x t y yx t x t x t x t -+-+==----,即()1221120y x y x t y y +-+=,()()()()12211212211211y x y x t y y y my y my t y y +-+=-+--+()()()()1212222216216210111m t m m t m my y t y y m m m +--+-=-++=-==+++,即()()621240m m t m t ++=+=,则当4t =-时,0AE AF k k +=恒成立,故存在定点()4,0A -,使得当直线变化时,均有PAE PAF ∠=∠.18.如图,三棱柱111ABC A B C -中,ABC 为等边三角形,1π4B BC ∠=,平面11ABB A ⊥平面11CBB C .(1)求证:1AC BB ⊥;(2)若12BB ==,点E 是线段AB 的中点,(i )求平面1ECC 与平面1ACC 夹角的余弦值;(ii )在平面11ABB A 中是否存在点P ,使得14PB PB +=且1PC PC =P 的位置;若不存在,请说明理由.【答案】(1)答案见解析(2)(i )10;(ii )存在,(2,0,0)P -【解析】【分析】(1)用线面垂直的判定定理证明BB 1⊥平面AOC ,后转移到线线垂直即可.(2)(i )空间向量解题,先求出平面1ECC 与平面1ACC 的法向量,后按照夹角公式求解即可.(ii )设假设存在(,0,)P x z ,若1PC PC =22560x z x +++=(∗).1142PB PB BB +=>=,则根据椭圆定义知道P 的轨迹为椭圆,求出轨迹方程为:22143x z +=,整理得22334z x =-,联立(∗),解出即可【小问1详解】如图,过A 作1BB 的垂线AO ,交1BB 于O ,连接OC ,则,AO OB AO OC ⊥⊥.ABC 为等边三角形,则AB AC =,又AO AO =,则Rt Rt AOB AOC ≅ ,则BO CO =,则π4OCB ∠=,则π2COB ∠=,即11,,B B CO B B AO CO AO O ⊥⊥= ,,CO AO ⊂平面AOC ,则1BB ⊥平面AOC ,AC ⊂平面AOC ,则1AC BB ⊥.【小问2详解】(i )由(1)可知OB ,OA ,OC 两两垂直,则可以O 为原点,建立如图所示空间坐标系O -xyz .122BB ==,点E 是线段AB 的中点,则2AB BC CA ===1OA OB OC ===.1111(0,0,1),(1,0,0),(0,1,0),(1,0,0),(2,1,0),(,0,22A B C B C E --,111(2,0,0),(0,1,1),(,1,)22CC CA CE =-=-=- .设平面1ECC 法向量(,,)m x y z = ,则100m CE m CC ⎧⋅=⎪⎨⋅=⎪⎩ 即1102220x y z x ⎧-+=⎪⎨⎪-=⎩解得012x y z =⎧⎪=⎨⎪=⎩,故(0,1,2)m = ;同理平面1ACC 法向量(0,1,1)n = .则cos ,2510m n m n m n ⋅==⋅ ,设平面1ECC 与平面1ACC 夹角θ,则310cos 10θ=.(ii )平面11ABB A 中,假设存在(,0,)P x z ,若15PCPC =222215(2)1x z x z ++=--++,整理得,22560x z x +++=(∗).1142PB PB BB +=>=,则根据椭圆定义知道P 在以1BB 为焦距的椭圆上,且1142,22PB PB a c BB +====,解得2,1,3a c b ===则P 的轨迹方程为:22143x z +=,整理得22334z x =-,与(∗)联立方程组.2222560334x z x z x ⎧+++=⎪⎨=-⎪⎩,解得120x z =-⎧⎨=⎩,22180)x z =-<(,舍去.故在平面11ABB A 中存在点P ,使得14PB PB +=且1PCPC =P 坐标为(2,0,0)-.19.在空间直角坐标系O xyz -中,己知向量(,,)u a b c = ,点()0000,,P x y z .若直线l 以u 为方向向量且经过点0P ,则直线l 的标准式方程可表示为000(0)x x y y z z abc a b c---==≠;若平面α以u 为法向量且经过点0P ,则平面α的点法式方程可表示为()()()0000a x x b y y c z z -+-+-=,一般式方程可表示为0ax by cz d +++=.(1)若平面1:210x y α+-=,平面1:210y z β-+=,直线l 为平面1α和平面1β的交线,求直线l 的单位方向向量(写出一个即可);(2)若三棱柱的三个侧面所在平面分别记为22αβγ、、,其中平面2α经过点(4,0,0),(3,1,1)-,(1,5,2)-,平面2:4y z β+=,平面:(1)(2)30mx m y m z γ+++++=,求实数m 的值;(3)若集合{}(,,)|4,4,4M x y z x y y z z x =+≤+≤+≤,记集合M 中所有点构成的几何体为S ,求几何体S 的体积和相邻两个面(有公共棱)所成二面角的大小.【答案】(1)212,,333⎛⎫--⎪⎝⎭(2)1m =-(3)体积为128,相邻两个面(有公共棱)所成二面角为2π3【解析】【分析】(1)记平面1α,1β的法向量为11(1,2,0),(0,2,1)αβ==-,设直线l 的方向向量(,,)l x y z = ,由直线l 为平面1α和平面1β的交线,则1l α⊥,1l β⊥ ,列出方程即可求解;(2)设2:α10ax by cz +++=,由平面2α经过点(4,0,0),(3,1,1)-,(1,5,2)-,列出方程中求得2:4x y α+=,记平面22αβγ、、的法向量为22(1,1,0),(0,1,1),(,1,2)m m m αβγ===++ ,求出2α与2β交线方向向量为()1,1,1p =- ,根据p γ⊥ ,即可求得m 的值;(3)由题可知,S 由一个边长是4的正方体和6个高为2的正四棱锥构成,即可计算出体积,设几何体S 相邻两个面(有公共棱)所成二面角为()0,πθ∈,由题得出平面EBC 和平面ECD 的法向量,根据两平面夹角的向量公式计算即可.【小问1详解】记平面1α,1β的法向量为11(1,2,0),(0,2,1)αβ==-,设直线l 的方向向量(,,)l x y z = ,因为直线l 为平面1α和平面1β的交线,所以1l α⊥,1l β⊥ ,即112020l x y l y z αβ⎧⋅=+=⎪⎨⋅=-=⎪⎩ ,取2x =,则(2,1,2)l =-- ,所以直线l 的单位方向向量为212,,333⎛⎫--⎪⎝⎭.【小问2详解】设2:α10ax by cz +++=,由平面2α经过点(4,0,0),(3,1,1)-,(1,5,2)-,所以4103105210a a b c a b c +=⎧⎪+-+=⎨⎪-+++=⎩,解得14140a b c ⎧=-⎪⎪⎪=-⎨⎪=⎪⎪⎩,即2:4x y α+=,所以记平面22αβγ、、的法向量为22(1,1,0),(0,1,1),(,1,2)m m m αβγ===++ ,与(1)同理,2α与2β确定的交线方向向量为()1,1,1p =-,所以p γ⊥ ,即()1210p m m m m γ⋅=-+++=+= ,解得1m =-.【小问3详解】由集合{}(,,)|4,4,4M x y z x y y z z x =+≤+≤+≤知,S 由一个边长是4的正方体和6个高为2的正四棱锥构成,如图所示,13224433V =⨯⨯⨯=正四棱锥,3244461283S V =⨯⨯+⨯=,设几何体S 相邻两个面(有公共棱)所成二面角为()0,πθ∈,平面:40EBC x z +-=,设平面EBC 法向量1(1,0,1)n = ,平面:40ECD y z +-=,设平面ECD 法向量2(0,1,1)n = ,所以121cos cos ,2n n θ== ,所以几何体S相邻两个面(有公共棱)所成二面角为2π3.【点睛】关键点点睛:本题第三问的关键是作出空间图形,求出相关法向量,利用二面角的空间向量求法即可.。

重庆市2023-2024学年高一下学期7月期末考试数学试题含答案

重庆市2023-2024学年高一下学期7月期末考试数学试题含答案

高2026届高一(下)期末考试数学试卷(答案在最后)注意事项:1.答题前,考生务必将自己的姓名、准考证号、班级、学校在答题卡上填写清楚.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试卷上作答无效.3.考试结束后,请将答题卡交回,试卷自行保存.满分150分,考试用时120分钟.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c,若π1,3a b A ===,则B =()A.π3B.π2C.π6 D.π4【答案】C 【解析】【分析】利用正弦定理结合b a <进行求解即可.【详解】由正弦定理得:31sin sin A B=,则1sin 2B ==,由b a <得B A <,所以π6B =,故选:C .2.某校高一年级有四个班共有学生200人,其中1班60人,2班50人,3班50人,4班40人.该校要了解高一学生对食堂菜品的看法,准备从高一年级学生中随机抽取40人进行访谈,若采取按比例分配的分层抽样,且按班级来分层,则高一2班应抽取的人数是()A.12B.10C.8D.20【答案】B 【解析】【分析】由分层抽样的概念求解.【详解】解:依题意高一2班应抽取的人数为504010200⨯=人,故选:B .3.已知平面四边形OABC 用斜二测画法画出的直观图是边长为1的正方形O A B C '''',则原图形OABC 中的AB =()A.B. C.3 D.2【答案】C 【解析】【分析】根据斜二测画法规则结合勾股定理即可求解.【详解】根据斜二测画法规则, 1,2OA O A OB O B ''''====OA OB ⊥,则3AB ==,故选:C .4.已知m ,n 是两条不重合的直线,α,β是两个不重合的平面,则下列结论正确的是()A.若αβ∥,m β∥,则m α∥B.若,m n αα⊥⊥,则m n ∥C.若m α∥,m β∥,则αβ∥D.若,m n m α⊥⊂,则n α⊥【答案】B 【解析】【分析】根据线线,线面,面面的平行关系,垂直关系,判断选项.【详解】A 中m 可能在α内,错误;B 中由线面垂直的性质显然正确;C 中α与β可能相交,错误;D 中n 可能在α内,可能平行于α,可能与α斜交,错误.故选:B5.甲、乙、丙3人独立参加一项挑战,已知甲、乙、丙能完成挑战的概率分别为13、13、14,则甲、乙、丙中有人完成挑战的概率为()A.15B.13C.25D.23【答案】D 【解析】【分析】由独立乘法公式以及对立事件概率公式即可求解.【详解】由题意,甲、乙、丙三人都没完成挑战的概率11111113343P ⎛⎫⎛⎫⎛⎫=-⨯-⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,再由对立事件关系,则甲、乙、丙中有人完成挑战的概率12133P =-=,故选:D .6.平行六面体1111ABCD A B C D -中,底面ABCD 为正方形,11π3A AD A AB ∠=∠=,11AA AB ==,E 为11CD 的中点,则异面直线BE 和DC 所成角的余弦值为()A.0B.2C.12D.4【答案】A 【解析】【分析】由11·2BE DC AA AD AB AB ⎛⎫⋅=+- ⎪⎝⎭求解即可.【详解】解:由题意,11π111cos 32AA AB AA AD ==⨯⨯= ,·0AB AD =,又D C A B =,1111112BE AE AB AA A D D E AB AA AD AB =-=++-=+- ,所以1111·00222BE DC AA AD AB AB ⎛⎫⋅=+-=+-= ⎪⎝⎭,即有BE DC ⊥u u r u u u r ,故选:A .7.甲在A 处收到乙在航行中发出的求救信号后,立即测出乙在方位角(是从某点的正北方向线起,依顺时针方向到目标方向线之间的水平夹角)为45°、距离A 处为10n mile 的C 处,并测得乙正沿方位角为105°的方向,以6n mile/h 的速度航行,甲立即以14n mile/h 的速度前去营救,甲最少需要()小时才能靠近乙.A.1B.2C.1.5D.1.2【答案】A 【解析】【分析】设甲乙相遇在点B 处,需要的时间为t 小时,则6,14BC t AB t ==,在△ABC 中,由余弦定理求解.【详解】解:设甲乙相遇在点B 处,需要的时间为t 小时,则6,14BC t AB t ==,又4575120,10ACB AC ∠=︒+︒=︒=,在△ABC 中,由余弦定理得:222(14)10(6)210(6)cos120t t t =+-⨯⨯⨯︒,则28350t t --=,即()()8510t t +-=,解得1t =或58t =-(舍去),故选:A .8.已知向量,OA OB 满足1,2==OA OB uu r uu u r ,且向量OB 在OA 方向上的投影向量为OA.若动点C 满足12OC = ,则CA CB的最小值为()A.12-B.4263- C.172D.574-【答案】D 【解析】【分析】应用数形结合及极化恒等式,化221·4CB CA CM AB =- ,求解即可.【详解】解:如图,根据投影向量,OA AB ⊥,则60AOB ∠=︒,且3AB =,因为12OC = ,所以点C 在以O 为圆心,半径12r =的圆上运动.设M 是AB 的中点,由极化恒等式得:22213·44CB CA CM AB CM =-=- ,因为min712CMOM r -=-=,此时2382735274444CM ---=-= ,即CA CB 的最小值为5274-,故选:D .二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.设复数z 的共轭复数为z ,i 为虚数单位,若()2i 1i z +=+,则()A.复数z 的虚部为1- B.2z =C.z 在复平面内对应的点在第一象限 D.816z =【答案】AD 【解析】【分析】由题意,1i21i iz +=-=--,再依次判断.【详解】解:由题意,1i21i iz +=-=--,则虚部为1-,()()22112z =-+-=,则A 正确,B 错误;1i z =-+在复平面内对应的点()1,1-在第二象限,C 错误;()221i 2i z =--=,()()22422i 4z z ===-,()()2284416z z ==-=,D 正确,故选:AD .10.一个袋子中有大小相同,标号分别为1,2,3,4的4个小球.采用不放回方式从中任意摸球两次,一次摸一个小球.设事件A =“第一次摸出球的标号小于3”,事件B =“第二次摸出球的标号小于3”,事件C =“两次摸出球的标号都是偶数”,则()A.()()P A P B =B.()16P AB =C.()23P A B ⋃= D.()112P AC =【答案】ABD 【解析】【分析】写出样本空间以及各个事件所包含的基本事件,再结合古典概型概率计算公式逐一验算即可求解.【详解】由题意,摸球两次的样本空间()()()()()()()()()()()(){}1,2,1,3,1,4,2,1,2,3,2,4,3,1,3,2,3,4,4,1,4,2,4,3Ω=,事件()()()()()(){}1,2,1,3,1,4,2,1,2,3,2,4A =,事件()()()()()(){}1,2,2,1,3,1,3,2,4,1,4,2B =,事件()(){}2,4,4,2C =,所以()(){}1,2,2,1AB =,(){}2,4AC =,()()()()()()()()()(){}1,2,1,3,1,4,2,1,2,3,2,4,3,1,3,2,4,1,4,2A B = ,利用古典概型计算公式,()()61122P A P B ===,()21126P AB ==,()105126P A B == ,()112P AC =,故选:ABD .11.如图,在棱长为2的正方体1111ABCD A B C D -中,点M 为线段1CC 上的动点,O 为正方体内一点,则以下命题正确的是()A.1B M DM +取得最小值B.当M 为线段1CC 中点时,平面1BMD 截正方体所得的截面为平行四边形C.四面体ABMD 的外接球的表面积为5π时,1CM =D.若1,2AO CO A O ==,则点O 【答案】ABD 【解析】【分析】对于A ,将平面11BB C C 沿1C C 翻折到与平面11DD C C 为同一平面,结合勾股定理以及三角形三边关系即可判断;对于B ,设N 是1A A 的中点,得出四边形1NBMD 是菱形即可判断;对于C ,当1CM =时,验算四面体ABMD 的外接球的表面积即可判断;对于D ,找出点O 的轨迹即可验算求解.【详解】选项A 中,将平面11BB C C 沿1C C 翻折到与平面11DD C C 为同一平面,则11B M DM B D +≥==,当D ,M ,1B 三点共线时,等号成立,故A 正确;选项B 中,设N 是1A A 的中点,连接1D N ,NB ,而正方体的棱长为2,且,M N 分别为11,CC AA 的中点,所以11NB BM MD D N ====所以四边形1NBMD 是菱形,所以平面1BMD 就是平面1BMD N ,此截面是平行四边形,故B 正确;选项C 中,当1CM =时,因为CM ,AD ,AB 两两垂直,所以四面体ABMD 的外接球的直径23R ==,则32R =,此时外接球表面积24π9πR =,故C 错误;选项D 中,由AO CO =,所以点O 在AC 的中垂面11D DBB 上,设11B D 的中点为H ,则1A H =,因为1DD ⊥平面1111D C B A ,1A H ⊂平面1111D C B A ,所以11A H DD ⊥,又因为111A H B D ⊥,1111B D DD D = ,11B D ⊂平面1111D C B A ,1DD ⊂平面1111D C B A ,所以1A H ⊥平面11D DBB ,则HO ==所以点O 在以H 为圆心,r =的半圆上运动,点O ,故D 正确.故选:ABD .【点睛】关键点点睛:判断D 选项的关键的得出点O 首先在面11D DBB 上,进一步得出HO ==O 的轨迹,由此即可顺利得解.三、填空题:本题共3小题,每小题5分,共15分.12.已知向量()()1,1,,2a b m ==-,若()//a a b + ,则m =______.【答案】2-【解析】【分析】首先求出a b +的坐标,再由向量共线的坐标表示计算可得.【详解】因为()()1,1,,2a b m ==- ,所以()()()1,1,21,1a b m m +=+-=+-,又因为()//a a b +,所以()()1111m ⨯+=⨯-,所以2m =-.故答案为:2-.13.已知圆锥的轴截面是一个边长为2的等边三角形,则该圆锥的侧面积为______.【答案】2π【解析】【分析】由轴截面得到圆锥的底面半径和母线,利用侧面积公式求出答案.【详解】由题意得,圆锥的底面半径为1r =,母线长为2l =,故圆锥的侧面积为ππ122πrl =⨯⨯=.故答案为:2π14.记△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知sin sin cos cos a A c C a C c A +=+,若△ABC 的面积()20S tb t =>,则t 的最大值为______.【答案】14##0.25【解析】【分析】利用正弦定理将已知式子统一成角的形式,化简得22sin sin sin A C B +=,然后由已知得221sin 2ab C S t b b==,化简后利用正弦定理统一成角的形式,再利用基本不等式可求得结果.【详解】因为sin sin cos cos a A c C a C c A +=+所以由正弦定理得()22sin sin sin sin A C A C B +=+=,由()20S tb t =>得:22221sin sin sin sin sin 122sin 4sin 4ab C S A C A C t b b B B +===≤=,当且仅当sin sin A C =,即45A C ==︒,90B =︒时等号成立,故答案为:14.四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.15.为调查外地游客对洪崖洞景区的满意程度,某调查部门随机抽取了100位游客,现统计参与调查的游客年龄层次,将这100人按年龄(岁)(年龄最大不超过65岁,最小不低于15岁的整数)分为5组,依次为[)[)[)[)[]15,25,25,35,35,45,45,55,55,65,并得到频率分布直方图如下:(1)求实数a 的值;(2)估计这100人年龄的样本平均数(同一组数据用该区间的中点值作代表);(3)估计这100人年龄的第80百分位数.(结果保留一位有效数字,四舍五入)【答案】(1)0.035a =;(2)41.5(3)51.7【解析】【分析】(1)根据频率之和为1得到方程,求出实数a 的值;(2)利用平均数的定义进行求解;(3)先确定年龄的第80百分位在[)45,55之内,设第80百分位数为x ,得到方程,求出答案.【小问1详解】由题知,()100.010.0150.030.011a ⨯++++=,则0.035a =;【小问2详解】由图样本平均数200.1300.15400.35500.3600.141.5x =⨯+⨯+⨯+⨯+⨯=;【小问3详解】由题知,年龄在[)15,55的频率为0.9,年龄在[)15,45的频率为0.6,则年龄的第80百分位在[)45,55之内,设第80百分位数为x ,则()0.6450.030.8x +-⨯=,解得51.7x ≈.16.如图,在直四棱柱1111ABCD A B C D -中,四边形ABCD 是一个菱形,60,DAB ∠=︒,点P 为1BC 上的动点.(1)证明:DP ∥平面11AB D ;(2)试确定点P 的位置,使得BC DP ⊥.【答案】(1)证明见解析(2)点P 为1BC 中点【解析】【分析】(1)由11BD B D ∥得到BD ∥平面11AB D ,同理得到1BC ∥面11AB D ,得到面面平行,进而得到线面平行;(2)作出辅助线,得到DE BC ⊥,结合BC EP ⊥,得到线面垂直,故BC EP ⊥,结合1BC CC ⊥,EP ⊂平面1BCC ,所以1EP CC ∥,证明出结论.【小问1详解】由题知,由1111,BB DD BB DD =∥,则四边形11BB D D 为平行四边形,所以11BD B D ∥,因为11B D ⊂平面11AB D ,BD ⊄平面11AB D ,所以BD ∥平面11AB D ,同理可证1BC ∥面11AB D ,由BD ⊂面1BDC ,1BC ⊂面1BDC ,1BD BC B = ,所以平面1BDC ∥平面11AB D ,又PD ⊂面1BDC ,所以DP ∥面11AB D ;【小问2详解】取BC 中点E ,连接DE ,PE .在△BDC 中,π,3BC DC BCD =∠=,则△BDC 为正三角形,所以DE BC ⊥,又BC DP ⊥,DE BC E ⋂=,,DE BC ⊂平面EDP ,所以BC ⊥面EDP ,因为EP ⊂平面EDP ,所以BC EP ⊥.在面1BCC 中,1BC CC ⊥,EP ⊂平面1BCC ,所以1EP CC ∥,在1BCC 中,E 为BC 中点,所以EP 为中位线,则点P 为1BC 中点.17.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,cos cos 2sin sin A B c a A B b ⎫=+=⎪⎭.(1)求A 的大小;(2)已知233AB AC AD =+ ,若A 为钝角,求ABD △面积的取值范围.【答案】(1)π3或2π3;(2)0,9⎛ ⎝⎦【解析】【分析】(1)由正弦定理和正弦和角公式得到3sin 2A =,求出π3A =或2π3;(2)由233AB AC AD =+ 得到2BD DC = ,故36ABD S bc =△,以由(1)知,2π3A =,且2a =,由余弦定理224b c bc ++=,由基本不等式得43bc ≤,求出403bc <≤,得到ABD △面积的取值范围.【小问1详解】cos cos 2sin cos cos sin 2sin sin sin sin sin sin A B c B A B A C A B bA B B +⎫+=⇒=⎪⎭,()sin 2sin sin 2sin sin sin sin sin sin sin B A C C C A B B A B B+=⇒=,因为在△ABC 中,()sin sin 0,sin 0B A C B +=>>,所以化简得:sin 2A =,又0πA <<,解得:π3A =或2π3;【小问2详解】由233AB AC AD =+ 得:()322AD AB AC AD DB AD DC =+=+++ ,则2BD DC = ,从而2213sin 3326ABD ABC S S bc A bc ==⨯=△△,因为A 为钝角,所以由(1)知,2π3A =,且2a =,由余弦定理2222cos a b c bc A =+-可得:224b c bc ++=,因为222b c bc +≥,所以42bc bc ≥+,所以43bc ≤,当且仅当3b c ==时等号成立,又b ,c 可以无限接近0,所以403bc <≤,从而0,69ABD S bc ⎛=∈ ⎝⎦△,故△ABD 面积的取值范围为0,9⎛ ⎝⎦.18.已知三棱台111ABC A B C -中,△ABC 为正三角形,1111112A B AA BB AB ====,点E 为线段AB 的中点.(1)证明:1A E ∥平面11B BCC ;(2)延长111,,AA BB CC 交于点P ,求三棱锥P -ABC 的体积最大值;(3)若二面角1A CC B --的余弦值为13,求直线1BB 与平面11ACC A 所成线面角的余弦值.【答案】(1)证明见解析(2)1(3)33【解析】【分析】(1)设F 是BC 的中点,连接EF ,1C F ,则利用三角形中位线定理结合已知可证得四边形11A EFC 是平行四边形,则11A E C F ∥,再由线面平行的判定定理可证得结论;(2)由题意可得当平面PAB ⊥平面ABC 时,该三棱锥的体积最大,由已知可得△PAB 是边长2的正三角形,从而可求出三棱锥的体积;(3)由题意可得二面角1A CC B --的平面角是1AC B ∠,利用余弦定可求出其余弦值,作1BO AC ⊥于点O ,连接PO ,则可得∠BPO 为直线1BB 与平面11ACC A 所成角,然后在BPO △中可求得结果.【小问1详解】证明:如图,设F 是BC 的中点,连接EF ,1C F ,在三棱台111ABC A B C -中,因为1112A B AB =,所以1112A C AC =,且11A C AC ∥,因为E ,F 分别是AB ,BC 的中点,所以EF AC ∥,12EF AC =,所以11A C ∥EF ,11A C EF =,所以四边形11A EFC 是平行四边形,所以11A E C F ∥,又1A E ⊄平面11B BCC ,1C F ⊂平面11B BCC ,所以1A E ∥平面11B BCC ;【小问2详解】因为2AB =,又122sin 602ABC S =⨯⨯⨯︒=△为定值,所以当平面PAB ⊥平面ABC 时,该三棱锥的体积最大.因为11A B ∥AB ,1112A B AB =,所以11,A B 分别是PA ,PB 的中点,所以2PA PB AB ===,因此△PAB 是边长2的正三角形,因为PE AB ⊥,因为平面PAB ⊥平面ABC ,平面PAB ⋂平面ABC AB =,PE ⊂平面PAB ,所以PE ⊥平面ABC ,又PE =,则1133P ABC ABC V PE S -== △;则三棱锥P -ABC 的体积最大值为1.【小问3详解】如图,2PA AC PB BC ====,1C 是PC 的中点,则11,AC PC BC PC ⊥⊥,所以二面角1A CC B --的平面角是1AC B ∠,又11AC BC =,由余弦定理得:222111111cos 23AC BC AB AC B AC BC +-∠== ,解得113AC BC ==作1BO AC ⊥于点O ,连接PO ,因为PC ⊥平面1AC B ,所以PC BO ⊥,又11AC PC C = ,1,AC PC ⊂平面11ACC A ,所以BO ⊥平面11ACC A ,则∠BPO 为直线1BB 与平面11ACC A 所成角,由262,33PB BO ==,则22233PO PB BO =-,从而3cos 3PO BPO PB ∠==,所以直线1BB 与平面11ACC A 所成线面角的余弦值为33.19.球面三角学是研究球面三角形的边、角关系的一门学科.如图,球O 的半径为R .A 、B 、C 为球面上三点,劣弧BC 的弧长记为a ,设0O 表示以O 为圆心,且过B 、C 的圆,同理,圆32,O O 的劣弧AC 、AB 的弧长分别记为b ,c ,曲面ABC (阴影部分)叫做球面三角形.若设二面角,,C OA B A OB C B OC A ------分别为α,β,γ,则球面三角形的面积为()2πABC S R αβγ=++- 球面.(1)若平面OAB 、平面OAC 、平面OBC 两两垂直,求球面三角形ABC 的面积;(2)若平面三角形ABC 为直角三角形,ACBC ⊥,设123,,AOC BOC AOB θθθ∠=∠=∠=.则:①求证:123cos cos cos 1θθθ+-=;②延长AO 与球O 交于点D ,若直线DA ,DC 与平面ABC 所成的角分别为ππ,43,(],0,1BE BD λλ=∈ ,S 为AC 中点,T 为BC 中点,设平面OBC 与平面EST 的夹角为θ,求sin θ的最小值,及此时平面AEC 截球O 的面积.【答案】(1)2π2R (2)①证明见解析;②sin 5θ=,253π78R 【解析】【分析】(1)根据题意结合相应公式分析求解即可;(2)①根据题意结合余弦定理分析证明;②建系,利用空间向量求线面夹角,利用基本不等式分析可知点E ,再利用空间向量求球心O 到平面AEC 距离,结合球的性质分析求解.【小问1详解】若平面OAB ,OAC ,OBC 两两垂直,有π2αβγ===,所以球面三角形ABC 面积为()22ππ2ABC S R R αβγ=++-=球面.【小问2详解】①证明:由余弦定理有:222212222222223222AC R R R cos BC R R R cos AB R R R cos θθθ⎧=+-⎪=+-⎨⎪=+-⎩,且222AC BC AB +=,消掉2R ,可得123cos cos cos 1θθθ+-=;②由AD 是球的直径,则,AB BD AC CD ⊥⊥,且AC BC ⊥,CD BC C ⋂=,,CD BC ⊂平面BCD ,所以AC ⊥平面BCD ,且BD ⊂平面BCD ,则AC BD ⊥,且AB AC A ⋂=,,AB AC ⊂平面ABC ,可得BD ⊥平面ABC ,由直线DA ,DC 与平面ABC 所成的角分别为ππ,43,所以ππ,43DAB DCB ∠=∠=,不妨先令R =2AD AB BD BC AC =====,由AC BC ⊥,AC BD ⊥,BC BD ⊥,以C 为坐标原点,以CB ,CA 所在直线为x ,y 轴,过点C 作BD 的平行线为z 轴,建立如图空间直角坐标系,设(,BE t t =∈,则())()0,2,0,,0,0,0,A BC D ,可得()0,1,0,,0,02S T ⎛⎫ ⎪ ⎪⎝⎭,),,1,22E t O ⎛⎫ ⎪ ⎪⎝⎭,则),22CB CO ⎛⎫== ⎪ ⎪⎝⎭,,1,0,22ST TE t ⎛⎫⎛⎫=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭设平面OBC 法向量()111,,m x y z =,则11110022m CB m CO x y z ⎧⋅==⎪⎨⋅=++=⎪⎩,取12z =-,则110y x ==,可得()2m =- ,设平面EST 法向量()222,,n x y z =,则22220202n ST x y n TE x tz ⎧⋅=-=⎪⎪⎨⎪⋅=+=⎪⎩,取2x =,则22,1y t z ==-,可得),,1n t =- ,要使sin θ取最小值时,则cos θ取最大值,因为cos cos,m nm nm nθ⋅======,令(]1,1,13m m=+∈,则()2218mt t-==,可得()2221888293129621218m mt m mm mm+===≤=+-+--+-+,当且仅当3,m t==取等.则cosθ10sin5θ==为最小值,此时点E,可得CE=,()0,2,0CA=,设平面AEC中的法向量(),,k x y z=,则20k CE zk CA y⎧⋅==⎪⎨⎪⋅==⎩,取1x=,则0,y z==-,可得(1,0,k=-,可得球心O到平面AEC距离为AO kdk⋅==设平面AEC截球O圆半径为r,则2225326r R d=-=,所以截面圆面积为225353πππ2678r R==.【点睛】方法点睛:1.利用空间向量求线面角的思路直线与平面所成的角θ主要通过直线的方向向量与平面的法向量的夹角ϕ求得,即sin cosθϕ=;2.利用空间向量求点到平面距离的方法设A为平面α内的一点,B为平面α外的一点,n为平面α的法向量,则B到平面α的距离AB ndn⋅=.。

湖北省武汉2023-2024学年高一下学期期末考试数学试卷含答案

湖北省武汉2023-2024学年高一下学期期末考试数学试卷含答案

武汉2023-2024学年度下学期期末考试高一数学试卷(答案在最后)命题教师:考试时间:2024年7月1日考试时长:120分钟试卷满分:150分一、选择题:本题共8小题,每题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z 满足(2i)3i z +=-,则z =()A.1i +B.1i- C.1i-+ D.1i--【答案】A 【解析】【分析】先利用复数的除法运算法则化简得到复数z ,再根据共轭复数的概念即可求解.【详解】因为(2i)3i z +=-,所以3i (3i)(2i)1i 2i 41z ---===-++,所以1i z =+.故选:A2.△ABC 中,60A =︒,BC =AC =C 的大小为()A.75︒B.45︒C.135︒D.45︒或135︒【答案】A 【解析】【分析】利用正弦定理可得sin B =45B = ,由三角形内角和即可求解.【详解】由正弦定理可得sin sin BC AC A B=,故32sin 2B ==,由于60A =︒,故0120B ︒︒<<,故45B = ,18075C A B =--= ,故选:A3.已知数据1x ,2x ,L ,9x 的方差为25,则数据131x +,231x +,L ,931x +的标准差为()A.25B.75C.15D.【答案】C 【解析】【分析】根据方差的性质求出新数据的方差,进而计算标准差即可.【详解】因为数据1x ,2x ,L ,9x 的方差为25,所以另一组数据131x +,231x +,L ,931x +的方差为2325225⨯=,15=.故选:C4.在正方形ABCD 中,M 是BC 的中点.若AC AM BD λμ=+,则λμ+的值为()A.43B.53C.158D.2【答案】B 【解析】【分析】建立平面直角坐标系,利用向量的坐标运算求解作答.【详解】在正方形ABCD 中,以点A 为原点,直线AB ,AD 分别为x ,y 轴建立平面直角坐标系,如图,令||2AB =,则(2,0),(2,2),(0,2),(2,1)B C D M ,(2,2),(2,1),(2,2)AC AM BD ===-,(22,2)AM BD λμλμλμ+=-+ ,因AC AM BD λμ=+ ,于是得22222λμλμ-=⎧⎨+=⎩,解得41,33λμ==,53λμ+=所以λμ+的值为53.故选:B5.正三棱柱111ABC A B C -的底面边长为2D 为BC 中点,则三棱锥11A B DC -的体积为A.3B.32C.1D.32【答案】C 【解析】【详解】试题分析:如下图所示,连接AD ,因为ABC ∆是正三角形,且D 为BC 中点,则AD BC ⊥,又因为1BB ⊥面ABC ,故1BB AD ⊥,且1BB BC B ⋂=,所以AD ⊥面11BCC B ,所以AD 是三棱锥11A B DC -的高,所以11111133133A B DC B DC V S AD -∆=⋅==.考点:1、直线和平面垂直的判断和性质;2、三棱锥体积.6.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若cos cos sin sin()sin B C AA C b c C ⎛⎫++= ⎪⎝⎭,3B π=,则a c +的取值范围是()A.332⎛⎝ B.332⎛⎝ C.332⎣ D.332⎡⎢⎣【答案】A 【解析】【分析】利用三角恒等变换及正弦定理将cos cos sin sin()sin B C AA C bc C ⎛⎫++=⎪⎝⎭进行化简,可求出b 的值,再利用边化角将a c +化成角,然后利用辅助角公式及角的范围即可得到答案.【详解】由题知cos cos sin sin()sin B C AA C bc C ⎛⎫++=⎪⎝⎭,3B π=∴cos cos sin sin sin B C AB bc C ⎛⎫+=⎪⎝⎭即cos cos 3sin B C Ab c C+=由正弦定理化简得∴sin cos cos 3sin 3A cB bC C ⋅+⋅==∴23sin sin cos cos sin 3AC B C B +=∴23sin sin()sin 3AB C A +==∴2b =3B π=∴1sin sin sin a b cA B C===∴23sin sin sin sin()sin cos )3226a c A C A A A A A ππ+=+=+-=+=+ 203A π<<∴5666A πππ<+<∴)26A π<+≤即2a c <+≤故选:A .【点睛】方法点睛:边角互化的方法(1)边化角:利用正弦定理2sin sin sin a b cr A B C===(r 为ABC 外接圆半径)得2sin a r A =,2sin b r B =,2sin c r C =;(2)角化边:①利用正弦定理:sin 2aA r=,sin 2b B r =,sin 2c C r=②利用余弦定理:222cos 2b c a A bc+-=7.设O 为△ABC 的外心,若2AO AB AC =+,则sin BAC ∠的值为()A.4B.4C.4-D.4【答案】D 【解析】【分析】设ABC 的外接圆半径为R ,由已知条件可得,2AC BO = ,所以12AC R =,且//AC BO ,取AC的中点M ,连接OM 可得π2BOM ∠=,计算cos sin BOC MOC ∠=-∠的值,再由余弦定理求出BC ,在ABC 中,由正弦定理即可求解.【详解】设ABC 的外接圆半径为R ,因为2AO AB AC =+ ,2AC AO AB BO =-=,所以1122AC BO R ==,且//AC BO ,取AC 的中点M ,连接OM ,则OM AC ⊥,因为//AC BO ,所以OM BO ⊥,即π2BOM ∠=,所以11π124cos cos sin 24AC RMC BOC MOC MOC OC OB R ⎛⎫∠=+∠=-∠=-=-=-=- ⎪⎝⎭,在BOC中由余弦定理可得:2BC R ===,在ABC中,由正弦定理得:2sin 224RBCBAC RR ∠===.故选:D8.高为8的圆台内有一个半径为2的球1O ,球心1O 在圆台的轴上,球1O 与圆台的上底面、侧面都相切.圆台内可再放入一个半径为3的球2O ,使得球2O 与球1O 、圆台的下底面及侧面都只有一个公共点.除球2O ,圆台内最多还能放入半径为3的球的个数是()A.1 B.2C.3D.4【答案】B 【解析】【详解】作过2O 的圆台的轴截面,如图1.再作过2O 与圆台的轴垂直的截面,过截面与圆台的轴交于圆O .由图1.易求得24OO =.图1这个问题等价于:在以O 为圆心、4为半径的圆上,除2O 外最多还可放几个点,使以这些点及2O 为圆心、3为半径的圆彼此至多有一个公共点.由图2,3sin45sin sin604θ︒<=︒,有4560θ︒<<︒.图2所以,最多还可以放入36013122θ︒⎡⎤-=-=⎢⎣⎦个点,满足上述要求.因此,圆台内最多还可以放入半径为3的球2个.二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知某地区有小学生120000人,初中生75000人,高中生55000人,当地教育部门为了了解本地区中小学生的近视率,按小学生、初中生、高中生进行分层抽样,抽取一个容量为2000的样本,得到小学生,初中生,高中生的近视率分别为30%,70%,80%.下列说法中正确的有()A.从高中生中抽取了460人B.每名学生被抽到的概率为1125C.估计该地区中小学生总体的平均近视率为60%D.估计高中学生的近视人数约为44000【答案】BD 【解析】【分析】根据分层抽样、古典概型、频率公式等知识对选项进行分析,从而确定正确选项.【详解】高中生抽取5500020004401200007500055000⨯=++人,A 选项错误.每名学生被抽到的概率为200011200007500055000125=++,B 选项正确.学生总人数为1200007500055000250000++=,估计该地区中小学生总体的平均近视率为1200007500055000132.50.30.70.80.53250000250000250000250⨯+⨯+⨯==,C 选项错误.高中学生近视人数约为550000.844000⨯=人,D 选项正确.故选:BD10.G 是ABC 的重心,2,4,120,AB AC CAB P ∠=== 是ABC 所在平面内的一点,则下列结论正确的是()A.0GA GB GC ++= B.AB 在AC上的投影向量等于12- AC .C.3AG =D.()AP BP CP ⋅+ 的最小值为32-【答案】ACD 【解析】【分析】根据向量的线性运算,并结合重心的性质,即可判断A ,根据投影向量的定义,判断B ;根据向量数量积公式,以及重心的性质,判断C ;根据向量数量积的运算率,结合图形转化,即可判断D.【详解】A.以,GB GC 为邻边作平行四边形GBDC ,,GD BC 交于点O ,O 是BC 的中点,因为G 是ABC 的重心,所以,,A G O 三点共线,且2AG GO =,所以2GB GC GD GO +== ,2GA AG GO =-=- ,所以0GA GB GC ++=,故A 正确;B.AB 在AC 上的投影向量等于1cos1204AC AB AC AC ⨯=-,故B 错误;C.如图,因为()12AO AB AC =+ ,所以()222124AO AB AC AB AC =++⋅,即211416224342AO ⎛⎫=+-⨯⨯⨯= ⎪⎝⎭,即3AO = 因为点G 是ABC 的重心,22333AG AO ==,故C 正确;D.取BC 的中点O ,连结,PO PA ,取AO 中点M ,则2PA PO PM += ,()12AO AB AC =+,()()2221124816344AO AB AB AC AC =+⋅+=⨯-+= ,则()()()()221224AP BP CP PA PB PC PA PO PA PO PA PO ⎡⎤⋅+=⋅+=⋅=⨯+--⎢⎥⎣⎦,222132222PM OA PM =-=- ,显然当,P M 重合时,20PM = ,()AP BP CP ⋅+ 取最小值32-,故D 正确.故选:ACD【点睛】关键点点睛:本题的关键是对于重心性质的应用,以及向量的转化.11.如图,在棱长为2的正方体1111ABCD A B C D -中,O 为正方体的中心,M 为1DD 的中点,F 为侧面正方形11AA D D 内一动点,且满足1B F ∥平面1BC M ,则()A.三棱锥1D DCB -的外接球表面积为12πB.动点F 的轨迹的线段为22C.三棱锥1F BC M -的体积为43D.若过A ,M ,1C 三点作正方体的截面Ω,Q 为截面Ω上一点,则线段1AQ 长度的取值范围为45,225⎡⎢⎣⎦【答案】AC 【解析】【分析】选项A :三棱锥1D DCB -的外接球即为正方体的外接球,结合正方体的外接球分析;选项B :分别取1AA ,11A D 的中点H ,G ,连接1B G ,GH ,1HB ,1AD ;证明平面1B GH ∥平面1BC M ,从而得到点F 的轨迹为线段GH ;选项C :根据选项B 可得出GH ∥平面1BC M ,从而得到点F 到平面1BC M 的距离为H 到平面1BC M 的距离,再结合线面垂直及等体积法,利用四棱锥的体积求解所求三棱锥的体积;选项D :设N 为1BB 的中点,从而根据面面平行的性质定理可得到截面Ω即为面1AMC N ,从而线段1AQ 长度的最大值为线段11A C 的长,最小值为四棱锥11A AMC N -以1A 为顶点的高.【详解】对于A :由题意可知:三棱锥1D DCB -的外接球即为正方体的外接球,可知正方体的外接球的半径3R =所以三棱锥1D DCB -的外接球表面积为24π12πR =,故A 正确;对于B :如图分别取1AA ,11A D 的中点H ,G ,连接1B G ,GH ,1HB ,1AD .由正方体的性质可得11B H C M ∥,且1B H ⊂平面1B GH ,1C M ⊄平面1B GH ,所以1C M //平面1B GH ,同理可得:1BC //平面1B GH ,且111BC C M C ⋂=,11,BC C M ⊂平面1BC M ,所以平面1B GH ∥平面1BC M ,而1B F ∥平面1BC M ,所以1B F ⊂平面1B GH ,所以点F 的轨迹为线段GH ,其长度为12222⨯=,故B 错误;对于C :由选项B 可知,点F 的轨迹为线段GH ,因为GH ∥平面1BC M ,则点F 到平面1BC M 的距离为H 到平面1BC M 的距离,过点B 作1BP B H ⊥,因为11B C ⊥平面11ABB A ,BP ⊂平面11ABB A ,所以11B C BP ⊥,又1111⋂=B C B H B ,111,B C B H ⊂平面11B C MH ,所以BP ⊥平面11B C MH ,所以1111111111114252232335F BC M H BC M B C MH B B C MH B C MHV V V V S BP ----====⨯=⨯⨯⨯⨯,故C 正确;对于D :如图,设平面Ω与平面11AA B B 交于AN ,N 在1BB 上,因为截面Ω⋂平面11AA D D AM =,平面11AA D D ∥平面11BB C C ,所以1AM C N ∥,同理可证1AN C M ∥,所以截面1AMC N 为平行四边形,所以点N 为1BB 的中点,在四棱锥11A AMC N -中,侧棱11A C 最长,且11A C =设棱锥11A AMC N -的高为h ,因为1AM C M ==1AMC N 为菱形,所以1AMC 的边1AC ,又1AC =则112AMC S =⨯=△1111111142223323C AA M AA M V SD C -=⋅=⨯⨯⨯⨯=△,所以1111114333A AMC AMC C AA M V S h V --=⋅===△,解得3h =.综上,可知1AQ 长度的取值范围是,3⎡⎢⎣,故D 错误.故选:AC【点睛】关键点睛:由面面平行的性质得到动点的轨迹,再由锥体的体积公式即可判断C ,D 选项关键是找到临界点,求出临界值.三、填空题:本小题共3小题,每小题5分,共15分.12.已知复数()221i i()z m m m =-++⋅∈R 表示纯虚数,则m =________.【答案】1-【解析】【分析】根据2i 1=-和复数的分类要求得出参数值;【详解】因为复数()()2221ii=11i()z m m mm m =-++⋅-+-⋅∈R 表示纯虚数,所以210,10,m m ⎧-=⎨-≠⎩解得1m =-,故答案为:1-.13.定义集合(){},02024,03,,Z |A x y x y x y =≤≤≤≤∈,则从A 中任选一个元素()00,x y ,它满足00124x y -+-<的概率是________.【答案】42025【解析】【分析】利用列举法求解符合条件的()00,x y ,即可利用古典概型的概率公式求解.【详解】当0y =时,02024,Z x x ≤≤∈,有2025种选择,当1,2,3y =时,02024,Z x x ≤≤∈,分别有2025种选择,因此从A 中任选一个元素()00,x y ,共有202548100⨯=种选择,若00y =,则022y -=,此时由00124x y -+-<得012x -<,此时0x 可取0,1,2,若01y =或3,则021y -=,此时由00124x y -+-<得013x -<,此时0x 可取0,1,2,3,若02y =,则020y -=,此时由00124x y -+-<得014x -<,此时0x 可取0,1,2,3,4,综上可得满足00124x y -+-<的共有342516+⨯+=种情况,故概率为16481002025=故答案为:4202514.在ABC 和AEF △中,B 是EF的中点,1,6,AB EF BC CA ====,若2AB AE AC AF ⋅+⋅= ,则EF 与BC的夹角的余弦值等于__________.【答案】23【解析】【分析】【详解】由题意有:()()2AB AE AC AF AB AB BE AC AB BF ⋅+⋅=⋅++⋅+=,即22AB AB BE AC AB AC BF +⋅+⋅+⋅= ,而21AB =,据此可得:11,AC AB BE BF ⋅=⨯-=- ,即()112,2BF AC AB BF BC +⋅--=∴⋅= ,设EF 与BC 的夹角为θ,则2cos 2,cos 3BF BC θθ⨯⨯=∴= .四、解答题:本小题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.某学校为了解本校历史、物理方向学生的学业水平模拟测试数学成绩情况,分别从物理方向的学生中随机抽取60人的成绩得到样本甲,从历史方向的学生中随机抽取n 人的成绩得到样本乙,根据两个样本数据分别得到如下直方图:已知乙样本中数据在[70,80)的有10个.(1)求n 和乙样本直方图中a 的值;(2)试估计该校物理方向的学生本次模拟测试数学成绩的平均值和历史方向的学生本次模拟测试数学成绩的第75百位数(同一组中的数据用该组区间中点值为代表);(3)采用分层抽样的方法从甲样本数据中分数在[60,70)和[70,80)的学生中抽取6人,并从这6人中任取2人,求这两人分数都在[70,80)中的概率.【答案】(1)50n =,0.018a =;(2)物理方向的学生本次模拟测试数学成绩的平均值为81.5,历史方向的学生本次模拟测试数学成绩的第75百位数为88.25;(3)25【解析】【分析】(1)由频率分布直方图得乙样本中数据在[70,80)的频率为0.2,这个组学生有10人,由此能求出n ,由乙样本数据直方图能求出a ;(2)利用甲、乙样本数据频率分布直方图能估计估计该校物理方向的学生本次模拟测试数学成绩的平均值和历史方向的学生本次模拟测试数学成绩的第75百位数;(3)由频率分布直方图可知从分数在[60,70)和[70,80)的学生中分别抽取2人和4人,将从分数在[60,70)中抽取的2名学生分别记为1A ,2A ,从分数在[70,80)中抽取的4名学生分别记为1b ,2b ,3b ,4b ,利用列举法能求出这两人分数都在[70,80)中的概率.【小问1详解】解:由直方图可知,乙样本中数据在[70,80)的频率为0.020100.20⨯=,则100.20n=,解得50n =;由乙样本数据直方图可知,(0.0060.0160.0200.040)101a ++++⨯=,解得0.018a =;【小问2详解】解:甲样本数据的平均值估计值为(550.005650.010750.020850.045950.020)1081.5⨯+⨯+⨯+⨯+⨯⨯=,乙样本数据直方图中前3组的频率之和为(0.0060.0160.02)100.420.75++⨯=<,前4组的频率之和为(0.0060.0160.020.04)100.820.75+++⨯=>,所以乙样本数据的第75百位数在第4组,设第75百位数为x ,(80)0.040.420.75x -⨯+=,解得88.25x =,所以乙样本数据的第75百位数为88.25,即物理方向的学生本次模拟测试数学成绩的平均值为81.5,历史方向的学生本次模拟测试数学成绩的第75百位数为88.25;【小问3详解】解:由频率分布直方图可知从分数在[60,70)和[70,80)的学生中分别抽取2人和4人,将从分数在[60,70)中抽取的2名学生分别记为1A ,2A ,从分数在[70,80)中抽取的4名学生分别记为1b ,2b ,3b ,4b ,则从这6人中随机抽取2人的基本事件有:12(,)A A ,11(,)A b ,12(,)A b ,13(,)A b ,14(,)A b ,21(,)A b ,22(,)A b ,23(,)A b ,24(,)A b ,12()b b ,,13(,)b b ,14(,)b b ,23(,)b b ,24(,)b b ,34(,)b b 共15个,所抽取的两人分数都在[70,80)中的基本事件有6个,即这两人分数都在[70,80)中的概率为62155=.16.(建立空间直角坐标系答题不得分)如图,在四棱锥11A BCC B -中,平面ABC ⊥平面11BCC B ,△ABC 是正三角形,四边形11BCC B 是正方形,D 是AC 的中点.(1)求证:1//AB 平面1BDC ;(2)求直线BC 和平面1BDC 所成角的正弦值的大小.【答案】(1)证明见解析(2)55【解析】【分析】(1)连接1B C ,交1BC 于点O ,连接OD ,由中位线的性质,可知1//OD AB ,再由线面平行的判定定理,得证;(2)过点C 作1CE C D ⊥于点E ,连接BE ,可证CE ⊥平面1BDC ,从而知CBE ∠即为所求,再结合等面积法与三角函数的定义,得解.【小问1详解】连接1B C ,交1BC 于点O ,连接OD ,则O 为1B C 的中点,因为D 是AC 的中点,所以1//OD AB ,又OD ⊂平面1BDC ,1AB ⊄平面1BDC ,所以1AB ∥平面1BDC .【小问2详解】过点C 作1CE C D ⊥于点E ,连接BE ,因为四边形11BCC B 是正方形,所以1BC CC ⊥,又平面ABC⊥平面11BCC B ,1CC ⊂平面11BCC B ,平面ABC ⋂平面11BCC B BC =,所以1CC ⊥平面ABC ,因为BD ⊂平面ABC ,所以1CC BD ⊥,因为ABC 是正三角形,且D 是AC 的中点,所以BD AC ⊥,又1CC AC C =I ,1,⊂CC AC 平面1ACC ,所以BD ⊥平面1ACC ,因为CE ⊂平面1ACC ,所以BD CE ⊥,又1C D BD D =I ,1,C D BD ⊂平面1BDC ,所以CE ⊥平面1BDC ,所以CBE ∠就是直线BC 和平面1BDC 所成角,设2BC =,在1Rt DCC 中,11CE DC CD CC ⋅=⋅,所以5CE ==,在Rt BCE 中,5sin 25CE CBE BC ∠===.17.甲、乙两人进行乒乓球对抗赛,每局依次轮流发球,连续赢2个球者获胜,且比赛结束,通过分析甲、乙过去比赛的数据知,甲发球甲赢的概率为23,乙发球甲赢的概率为25,不同球的结果互不影响,已知某局甲先发球.(1)求该局打4个球甲赢的概率;(2)求该局打5个球结束的概率.【答案】(1)875(2)44675【解析】【分析】(1)先设甲发球甲赢为事件A ,乙发球甲赢为事件B ,然后分析这4个球的发球者及输赢者,即可得到所求事件的构成,利用相互独立事件的概率计算公式即可求解;(2)先将所求事件分成甲赢与乙赢这两个互斥事件,再分析各事件的构成,利用互斥事件和相互独立事件的概率计算公式即可求得概率.【小问1详解】设甲发球甲赢为事件A ,乙发球甲赢为事件B ,该局打4个球甲赢为事件C ,由题知,2()3P A =,2()5P B =,则C ABAB =,所以23228()()()(()()353575P C P ABAB P A P B P A P B ===⨯⨯⨯=,所以该局打4个球甲赢的概率为875.【小问2详解】设该局打5个球结束时甲赢为事件D ,乙赢为事件E ,打5个球结束为事件F ,易知D ,E 为互斥事件,D ABABA =,E ABABA =,F D E =⋃,所以()()()()()()()P D P ABABA P A P B P A P B P A ==2222281135353675⎛⎫⎛⎫=-⨯⨯-⨯⨯= ⎪ ⎪⎝⎭⎝⎭,()()()()()()()P E P ABABA P A P B P A P B P A ==2222241113535375⎛⎫⎛⎫⎛⎫=⨯-⨯⨯-⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以8444()()()()67575675P F P D E P D P E =⋃=+=+=,所以该局打5个球结束的概率为44675.18.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,22cos a c b C -=.(1)求B ;(2)若点D 为边BC 的中点,点E ,F 分别在边AB ,AC (包括顶点)上,π6EDF ∠=,2b c ==.设BDE α∠=,将DEF 的面积S 表示为α的函数,并求S 的取值范围.【答案】(1)π3(2)3ππ,π328sin 23S αα=≤≤⎛⎫- ⎪⎝⎭,3,84S ⎡∈⎢⎣⎦【解析】【分析】(1)由题干及余弦定理可得222a c b ac +-=,再根据余弦定理即可求解;(2)由题可得ABC 为等边三角形,ππ32α≤≤,在BDE 与CDF 中,分别由正弦定理求出DE ,DF ,根据三角形面积公式可得3ππ,2ππ3216sin sin 36S ααα=≤≤⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,由三角恒等变换及正弦函数的图象与性质即可求解.【小问1详解】因为22cos a c b C -=,所以222222222a b c a b c a c b ab a +-+--=⋅=,即222a cb ac +-=,所以2221cos 222a cb ac B ac ac +-===.因为()0,πB ∈,所以π3B =.【小问2详解】由π3B=及2b c==可知ABC为等边三角形.又因为π6EDF∠=,BDEα∠=,所以ππ32α≤≤.在BDE中,2π3BEDα∠=-,由正弦定理可得sin sinDE BDB BED∠=,即32π2sin3DEα=⎛⎫-⎪⎝⎭.在CDF中,π6CFDα∠=-,由正弦定理可得sin sinDF CDC CFD∠=,即π2sin6DFα=⎛⎫-⎪⎝⎭.所以31π3ππsin,2ππ2ππ8632 sin sin16sin sin3636Sααααα=⨯⨯=≤≤⎛⎫⎛⎫⎛⎫⎛⎫----⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.因为2ππ11sin sin cos sin sin cos362222αααααα⎛⎫⎛⎫⎛⎫⎛⎫--=+-⎪⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭2213313sin cos cos sin sin2cos224444αααααα=-+=-1πsin223α⎛⎫=-⎪⎝⎭,因为ππ32α≤≤,所以ππ2π2,333α⎡⎤-∈⎢⎥⎣⎦,所以π3sin2,132α⎤⎛⎫-∈⎥⎪⎝⎭⎣⎦,所以1π1sin2,2342α⎤⎛⎫-∈⎥⎪⎝⎭⎣⎦.所以2ππ16sin sin36αα⎛⎫⎛⎫⎡⎤--∈⎪ ⎪⎣⎦⎝⎭⎝⎭,所以33,2ππ8416sin sin36αα⎡∈⎢⎛⎫⎛⎫⎣⎦--⎪ ⎪⎝⎭⎝⎭,所以333,2ππ8416sin sin36Sαα⎡=∈⎢⎛⎫⎛⎫⎣⎦--⎪ ⎪⎝⎭⎝⎭.所以S 的取值范围为3,84⎡⎢⎣⎦.19.(建立空间直角坐标系答题不得分)如图,在三棱柱ADP BCQ -中,侧面ABCD 为矩形.(1)若PD⊥面ABCD ,22PD AD CD ==,2NC PN =,求证:DN BN ⊥;(2)若二面角Q BC D --的大小为θ,π2π,43θ⎡⎤∈⎢⎥⎣⎦,且2cos 2AD AB θ=⋅,设直线BD 和平面QCB 所成角为α,求sin α的最大值.【答案】(1)证明见解析(2)12-【解析】【分析】(1)问题转化为证明DN⊥平面BCP ,即证明ND BC ⊥和DN PC ⊥,ND BC ⊥转化为证明BC ⊥平面PQCD ,而ND BC ⊥则只需证明PDN PCD△△(2)作出二面角Q BC D --的平面角以及直线BD 与平面QCB 所成的角,列出sin α的表达式,最后把问题转化为函数最值问题.【小问1详解】因为PD⊥平面ABCD ,BC ⊂平面ABCD ,所以PD BC ⊥,又CD BC ⊥,PD CD D ⋂=,,PD CD ⊂平面PCD ,所以BC ⊥平面PQCD ,又ND ⊂平面PQCD ,所以ND BC ⊥,在Rt PCD 中,2PD ==,则CD =3PC =,所以2NC =,1PN =,由PN PDND PC=,DPN CPD ∠=∠,所以PDN PCD △△,所以DN PC ⊥,又因为ND BC ⊥,PC BC C ⋂=,,PC BC ⊂平面BCP ,所以DN⊥平面BCP ,又因为BN ⊂平面BCP ,所以DN BN ⊥.【小问2详解】在平面QBC 中,过点C 作CF BC ⊥,因为ABCD 为矩形,所以BC CD ⊥,所以DCF ∠为二面角Q BC D --的平面角,且DCF θ∠=,又⋂=CF CD C ,,CD CF ⊂平面CDF ,所以BC ⊥平面CDF ,在平面CDF 中,过点D 作DG FC ⊥,垂足为G ,连接BG ,因为BC ⊥平面CDF ,DG ⊂平面CDF ,所以DG BC ⊥,又BC FC C ⋂=,,BC FC ⊂平面BCQ ,所以DG ⊥平面BCQ ,所以DBG ∠为直线BD 与平面QCB 所成的角,即DBG α∠=,sin DG DC θ=,又因为2cos 2AD AB θ=⋅,所以222sin 32cos 14cos 2DGBDAB AD αθθ===+++π2π,43θ⎡⎤∈⎢⎥⎣⎦可得12cos ,22θ⎡∈-⎢⎣⎦,21cos 0,2θ⎡⎤∈⎢⎥⎣⎦,设32cos t θ=+,2,32t ⎤∈+⎥⎦,则23cos 2t θ-=,()2223sin 1cos 14t θθ-=-=-,所以()2222563125651sin 14222t t t t α⎛⎫-++ ⎪--+⎝⎭=-=≤=,当且仅当25t =时等号,所以sin α51-.【点睛】关键点点睛:本题的关键是作出二面角Q BC D --的平面角以及直线BD 与平面QCB 所成的角,然后写出sin α的表达式,最后求函数最值问题利用了换元法和基本不等式.。

福建省福建师范大学附属中学2023-2024学年高一下学期7月期末考试数学试题(含答案)

福建省福建师范大学附属中学2023-2024学年高一下学期7月期末考试数学试题(含答案)

福建师大附中2023-2024学年第二学期期末考试高一数学试卷时间:120分钟满分:150分试卷说明:(1)本卷共四大题,20小题,解答写在答卷的指定位置上,考试结束后,只交答卷.(2)考试过程中不得使用计算器或具有计算功能的电子设备.第Ⅰ卷(选择题,共58分)一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.设i 为虚数单位,复数满足,则复数的虚部是( )A .B .C .3iD .32.某汽车生产厂家用比例分配的分层随机抽样方法从A ,B ,C 三个城市中抽取若干汽车进行调查,各城市的汽车销售总数和抽取数量如右表所示,则样本容量为( )城市销售总数抽取数量A 420m B 28020C 700nA .60B .80C .100D .1203.某校文艺部有4名学生,其中高一、高二年级各2名,从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为( )A.B .C .D .4.设是两条不同的直线,是两个不同的平面,给出下列说法,其中正确的是( )A .若,则B .若,则C .若,则D .若,则5.如图,在三棱锥中,分别是,的中点,则异面直线所成角的余弦值为()z ()i 142i z +=+z i-1-16131223,m n ,αβ,,m n m n αβ⊥⊥∥αβ⊥,m m αβ⊥∥αβ⊥,,m n m n αβ⊥⊂⊂αβ⊥,,m n m n αβ⊥⊂⊥αβ⊥A BCD -6,4,,AB AC BD CD AD BC M N ======AD BC ,AN CMA.B .C .D .6.有一组样本数据:,其平均数为2024.由这组数据得到一组新的样本数据:,那么这两组数据一定有相同的( )A .极差B .中位数C .方差D .众数7.已知正四棱台上底面边长为1,下底面边长为2,体积为7,则正四棱台的侧棱与底面所成角的正切值为( )ABCD .8.已知三棱锥中,平面,底面是以为直角顶点的直角三角形,且,三棱锥,过点作于,过作于,则三棱锥外接球的体积为()A .BCD .二、选择题:本题共3小题,每小题6分,共18分。

2023-2024学年北京市海淀区高一下学期7月期末考试数学试题+答案解析

2023-2024学年北京市海淀区高一下学期7月期末考试数学试题+答案解析

2023-2024学年北京市海淀区高一下学期7月期末考试数学试题一、单选题:本题共10小题,每小题5分,共50分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.若复数z满足,则z的虚部为()A. B.2 C. D.i2.已知向量,则()A.0B.C.D.3.函数的部分图象如图所示,则其解析式为()A. B.C. D.4.若,且,则()A. B. C. D.75.在中,点D满足,若,则()A. B. C.3 D.6.已知,则下列直线中,是函数对称轴的为()A. B. C. D.7.在平面直角坐标系xOy中,点,点,其中若,则()A. B. C. D.8.在中,已知则下列说法正确的是()A.当时,是锐角三角形B.当时,是直角三角形C.当时,是钝角三角形D.当时,是等腰三角形9.已知是非零向量,则“”是“对于任意的,都有成立”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件10.定义域为、的函数的图象的两个端点分别为点是的图象上的任意一点,其中,点N满足向量,点O为坐标原点.若不等式恒成立,则称函数在上为k函数.已知函数在上为k函数,则实数k的取值范围是()A. B. C. D.二、填空题:本题共5小题,每小题5分,共25分。

11.知复数z满足,则__________,__________.12.在中,,P满足,则__________.13.在中,若,则k的一个取值为__________;当时,__________.14.一名学生想测算某风景区山顶上古塔的塔尖距离地面的高度,由于山崖下河流的阻碍,他只能在河岸边制定如下测算方案:他在河岸边设置了共线的三个观测点A,B,如图,相邻两观测点之间的距离为200m,并用测角仪器测得各观测点与塔尖的仰角分别为,,,根据以上数据,该学生得到塔尖距离地面的高度为___________________15.已知函数,给出下列四个结论:①对任意的,函数是周期函数;②存在,使得函数在上单调递减;③存在,使得函数的图象既是轴对称图形,又是中心对称图形;④对任意的,记函数的最大值为,则其中所有正确结论的序号是__________.三、解答题:本题共4小题,共48分。

贵州省遵义市2023-2024学年高一下学期7月期末考试 数学含答案

贵州省遵义市2023-2024学年高一下学期7月期末考试 数学含答案

遵义市2023~2024学年度第二学期期末质量监测高一数学(答案在最后)一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.已知集合{}1,2,3,4,5,6U =,{}1,2,3,4A =,{}3,4,5,6B =,则()U A B =ð()A.{}1,3,5 B.{}2,4,6 C.{}1,2,5,6 D.{}3,5,62.在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若10a =,14b =,23B π=,则sin A =()A. B.514C.514-D.143.如图,向量AB a =,BD b =,DC c = ,则AC 向量可以表示为()A.a b c++r r rB.a b c+-r r rC.a b c -+r r rD.a b c--4.已知3sin 4α=,且π0,2α⎛⎫∈ ⎪⎝⎭,则sin 2α=()A.8-B.378C.9714-D.97145.某中学高一年级甲、乙两班参加了物理科的调研考试,其中甲班40人,乙班35人,甲班的平均成绩为82分,乙班的平均成绩为85分,那么甲、乙两班全部75名学生的平均成绩是多少分()A.82.4B.82.7C.83.4D.83.56.已知()1,2A ,()2,3B ,()2,5C -,则三角形ABC 的面积为()A.3B.5C.7D.87.遵义市正安县被誉为“中国吉他之乡”,正安县地标性建筑“大吉他”位于正安县吉他广场的中心,现某中学数学兴趣小组准备在吉他广场上对正安“大吉他”建筑的高度进行测量,采用了如图所示的方式来进行测量:在地面选取相距30米的C 、D 两观测点,且C 、D 与“大吉他”建筑的底部B 在同一水平面上,在C 、D 两观测点处测得“大吉他”建筑顶部A 的仰角分别为45︒,30︒,测得30CBD ∠=︒,则“大吉他”建筑AB 的估计高度为多少米()A.米B.34米C.米D.30米8.已知函数()f x 的定义域为R ,()()()2f x y f x f y +=+-,则()A.()00f = B.函数()2f x -是奇函数C.若()22f =,则()20242f =- D.函数()f x 在()0,∞+单调递减二、多项选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对得6分,选对但不全的得部分分,有选错的得0分.9.已知复数23i z =+(i 是虚数单位),则下列正确的是()A.z =B.z 的虚部是3C.若i z t +是实数,则0=t D.复数z 的共轭复数为23iz =-+10.已知事件A 、B 发生的概率分别为()13P A =,()14P B =,则下列说法正确的是()A.若A 与B 相互独立,则()12P A B = B.若()14P AB =,则事件A 与B 相互独立C.若A 与B 互斥,则()12P A B =D.若B 发生时A 一定发生,则()14P AB =11.将函数sin 1y x =+图象上所有的点向左平移π3个单位,再把所得各点的横坐标缩短为原来的12π(纵坐标不变)得到函数()y f x =的图象,则下列关于()y f x =说法正确的是()A.()f x 的最小正周期为1B.()f x 在5ππ,1212⎡⎤-⎢⎥⎣⎦上为增函数C.对于任意x ∈R 都有()223f x f x ⎛⎫++-= ⎪⎝⎭D.若方程()1102f x ωω⎛⎫=> ⎪⎝⎭在[)0,2上有且仅有4个根,则117,63ω⎡⎤∈⎢⎥⎣⎦三、填空题:本题共3小题,每小题5分,共15分.12.已知角的终边经过点1(2P ,则tan α的值为____________.13.若函数()sin()f x A x ωϕ=+0,0,||2A πωϕ⎛⎫>>< ⎪⎝⎭的部分图像如图所示,则函数()y f x =的解析式为_______.14.窗花是贴在窗纸或窗户玻璃上的剪纸,是中国古老的传统民间艺术之一,如图是一个正八边形的窗花,从窗花图中抽象出的几何图形是一个正八边形,正八边形ABCDEFGH 的边长为4,P 是正八边形ABCDEFGH 内的动点(含边界),则AP AB ⋅的取值范围为________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知向量()1,4a =- ,()2,1b =-r(1)求5877a b -;(2)若向量()2,c m = ,向量ma c + 与向量a mb +共线,求m 的值.16.2024年5月3日,搭载嫦娥六号探测器的长征五号遥八运载火箭,在中国文昌航天发射场成功发射,这是我国航天器继嫦娥五号之后,第二次实现月球轨道交会对接,为普及探月知识,某校开展了“探月科普知识竞赛”活动,现从参加该竞赛的学生中随机抽取了80名,统计他们的成绩(满分100分),其中成绩不低于80分的学生被评为“探月达人”,将数据整理后绘制成如图所示的频率分布直方图.(1)估计参加这次竞赛的学生成绩的75%分位数;(2)若在抽取的80名学生中,从成绩在[)70,80,[)80,90,[]90,100中采用分层抽样的方法随机抽取6人,再从这6人中选择2人,求被选中的2人均为“探月达人”的概率.17.已知在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且cos sin sin 2A BC a b a cπ⎛⎫-- ⎪⎝⎭=+-(1)求角B ;(2)若点D 在AC 上,BD 为ABC ∠的角平分线,3BD =,求2a c +的最小值.18.已知函数()()π14sin cos R 6f x x x x ⎛⎫=-++∈ ⎪⎝⎭(1)求函数()f x 的最小值,以及()f x 取得最小值时x 的集合;(2)已知ππ2βα<<<,π82125f αβ-⎛⎫-= ⎪⎝⎭,π102613f β⎛⎫+=- ⎪⎝⎭,求cos α的值.19.若函数()f x 在定义域区间[],a b 上连续,对任意1x ,[]2,x a b ∈恒有()()121222f x f x x x f ++⎛⎫≥⎪⎝⎭,则称函数()f x 是区间[],a b 上的上凸函数,若恒有()()121222f x f x x x f ++⎛⎫≤⎪⎝⎭,则称函数()f x 是区间[],a b 上的下凸函数,当且仅当12x x =时等号成立,这个性质称为函数的凹凸性.上述不等式可以推广到取函数定义域中的任意n 个点,即若()f x 是上凸函数,则对任意1x ,2x ,…,[],n x a b ∈恒有()()()1212n nf x f x f x x x x f n n ++++++⎛⎫≥⎪⎝⎭,若()f x 是下凸函数,则对任意1x ,2x ,…,[],n x a b ∈恒有()()()1212n n f x f x f x x x x f n n ++++++⎛⎫≤⎪⎝⎭,当且仅当12n x x x === 时等号成立.应用以上知识解决下列问题:(1)判断函数()()21R f x x x =+∈在定义域上是上凸函数还是下凸函数(说明理由);(2)证明()sin h x x =,()0,πx ∈上是上凸函数;(3)若A 、B 、C 、()0,πD ∈,且πA B C D +++=,求sin sin sin sin A B C D +++的最大值.遵义市2023~2024学年度第二学期期末质量监测高一数学一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.已知集合{}1,2,3,4,5,6U =,{}1,2,3,4A =,{}3,4,5,6B =,则()U A B =ð()A.{}1,3,5 B.{}2,4,6 C.{}1,2,5,6 D.{}3,5,6【答案】C 【解析】【分析】根据交集和补集含义即可得到答案.【详解】由题意得{}3,4A B = ,则(){}1,2,5,6U A B = ð.故选:C.2.在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若10a =,14b =,23B π=,则sin A =()A.5314-B.514C.514-D.14【答案】D 【解析】【分析】根据正弦定理即可得到答案.【详解】根据正弦定理有sin sin a b A B =,即10sin 2A =sin 14A =.故选:D.3.如图,向量AB a =,BD b =,DC c = ,则AC 向量可以表示为()A.a b c ++r r rB.a b c+-r r rC.a b c-+r r rD.a b c--【答案】A【解析】【分析】利用图形结合向量线性运算即可.【详解】AC AD DC A a b c B BD DC =+=++++=.故选:A.4.已知3sin 4α=,且π0,2α⎛⎫∈ ⎪⎝⎭,则sin 2α=()A. B.8C.14-D.14【答案】B 【解析】【分析】首先求出cos 4α=,再利用二倍角正弦公式即可.【详解】因为π0,2α⎛⎫∈ ⎪⎝⎭,3sin 4α=,则cos 4α==,则3sin 22sin cos 24ααα==⨯⨯.故选:B.5.某中学高一年级甲、乙两班参加了物理科的调研考试,其中甲班40人,乙班35人,甲班的平均成绩为82分,乙班的平均成绩为85分,那么甲、乙两班全部75名学生的平均成绩是多少分()A.82.4B.82.7C.83.4D.83.5【答案】C 【解析】【分析】根据平均数计算公式直接求解即可.【详解】全班75名学生的平均成绩4035828583.47575x =⨯+⨯=.故选:C .6.已知()1,2A ,()2,3B ,()2,5C -,则三角形ABC 的面积为()A.3B.5C.7D.8【答案】A 【解析】【分析】根据两点间的距离判定三角形为直角三角形,求解即可.【详解】||AB == ,||BC ===,||AC ===222||||AC AB BC ∴+=,所以三角形ABC 为直角三角形,1=2S ∴⨯,故选:A .7.遵义市正安县被誉为“中国吉他之乡”,正安县地标性建筑“大吉他”位于正安县吉他广场的中心,现某中学数学兴趣小组准备在吉他广场上对正安“大吉他”建筑的高度进行测量,采用了如图所示的方式来进行测量:在地面选取相距30米的C 、D 两观测点,且C 、D 与“大吉他”建筑的底部B 在同一水平面上,在C 、D 两观测点处测得“大吉他”建筑顶部A 的仰角分别为45︒,30︒,测得30CBD ∠=︒,则“大吉他”建筑AB 的估计高度为多少米()A.米 B.34米C.米D.30米【答案】D 【解析】【分析】根据仰角可得BC AB h ==,BD ==,在三角形BCD 利用余弦定理即可求解.【详解】设教学楼的高度为h ,在直角三角形ABC 中,因为45ACB ∠= ,所以BC AB h ==,在直角三角形ABD 中,因为30ADB ∠= ,所以tan 30ABBD= ,所以BD ==,在BCD △中,由余弦定理可得2222cos CD BC BD BC BD CBD =+-⋅∠,代入数值可得)22233022h h =+-⨯,解得30h =或30h =-(舍),故选:D.8.已知函数()f x 的定义域为R ,()()()2f x y f x f y +=+-,则()A.()00f = B.函数()2f x -是奇函数C.若()22f =,则()20242f =- D.函数()f x 在()0,∞+单调递减【答案】B 【解析】【分析】对A ,赋值法令0x y ==求解;对B ,赋值法结合奇函数的定义判断;对C ,令2y =求得函数的周期求解;对D ,利用单调性定义结合赋值法求解判断.【详解】对于A ,令0x y ==,可得()()()0002f f f =+-,解得()02f =,故A 错误;对于B ,令y x =-,可得()()()02f f x f x =+--,又()02f =,则()()()222f x f x f x ⎡⎤--=-+=--⎣⎦,所以函数()2f x -是奇函数,故B 正确;对于C ,令2y =,得()()()()222f x f x f f x +=+-=,则()f x 是周期函数,周期为2,所以()()202402f f ==,故C 错误;对于D ,令1x x =,21y x x =-,且210x x >>,则()()()1211212f x x x f x f x x +-=+--,即()()()21212f x f x f x x -=--,而0x >时,()f x 与2大小不定,故D 错误.故选:B.二、多项选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对得6分,选对但不全的得部分分,有选错的得0分.9.已知复数23i z =+(i 是虚数单位),则下列正确的是()A.z =B.z 的虚部是3C.若i z t +是实数,则0=tD.复数z 的共轭复数为23iz =-+【答案】AB 【解析】【分析】对A ,根据复数的模的计算公式即可判断;对B ,根据复数虚部的定义即可判断;对C ,根据复数的分类可判断;对D ,根据共轭复数的定义即可判断.【详解】对于A ,z ==A 正确;对于B ,复数23i z =+的虚部为3,故B 正确;对于C ,因为()i 23i z t t +=++是实数,则30t +=,即3t =-,故C 错误;对于D ,复数23i z =+的共轭复数为23i z =-,故D 错误.故选:AB.10.已知事件A 、B 发生的概率分别为()13P A =,()14P B =,则下列说法正确的是()A.若A 与B 相互独立,则()12P A B = B.若()14P AB =,则事件A 与B 相互独立C.若A 与B 互斥,则()12P A B = D.若B 发生时A 一定发生,则()14P AB =【答案】ABD 【解析】【分析】根据互斥事件和独立事件的概率公式逐项判断.【详解】对于A ,若A 与B 相互独立,则()()()1113412P AB P A P B ==⨯=,所以()()()()111134122P A B P A P B P AB ⋃=+-=+-=,故A 对;对于B ,因为()13P A =,()14P B =,则()()131144P B P B =-=-=,因为()()()131344P A P B P AB =⨯==,所以事件A 与B 相互独立,故B 对;对于C ,若A 与B 互斥,则()()()1173412P A B P A P B ⋃=+=+=,故C 错;对于D ,若B 发生时A 一定发生,则B A ⊆,则()()14P AB P B ==,故D 对.故选:ABD11.将函数sin 1y x =+图象上所有的点向左平移π3个单位,再把所得各点的横坐标缩短为原来的12π(纵坐标不变)得到函数()y f x =的图象,则下列关于()y f x =说法正确的是()A.()f x 的最小正周期为1B.()f x 在5ππ,1212⎡⎤-⎢⎥⎣⎦上为增函数C.对于任意x ∈R 都有()223f x f x ⎛⎫++-= ⎪⎝⎭D.若方程()1102f x ωω⎛⎫=> ⎪⎝⎭在[)0,2上有且仅有4个根,则117,63ω⎡⎤∈⎢⎥⎣⎦【答案】AC 【解析】【分析】根据图象变换得到()f x 的解析式,进而可判断A ,B ,C 选项;对D ,题意转化为πsin π03x ω⎛⎫+= ⎪⎝⎭在[)0,2上有且仅有4个根,根据正弦函数的性质求解判断.【详解】把函数sin 1y x =+图象上所有的点向左平移π3个单位,可得πsin 13y x ⎛⎫=++ ⎪⎝⎭,再把所得各点的横坐标缩短为原来的12π(纵坐标不变)得到函数()πsin 2π13f x x ⎛⎫=++ ⎪⎝⎭,对于A ,周期2π12πT ==,故A 正确;对于B ,令πππ2π2π2π232k x k -+≤+≤+,Z k ∈,即511212k x k -++≤≤,Z k ∈,所以函数()f x 的单调递增区间为51,1212k k ⎡⎤-++⎢⎥⎣⎦,Z k ∈,故B 错误;对于C ,()22ππsin 2π1sin 2π13333f x f x x x ⎡⎤⎛⎫⎛⎫⎛⎫++-=++++-++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦5ππsin 2πsin 2π233x x ⎛⎫⎛⎫=+--+ ⎪ ⎪⎝⎭⎝⎭ππsin 2π2πsin 2π233x x ⎡⎤⎛⎫⎛⎫=-+--+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ππsin 2πsin 2π2233x x ⎛⎫⎛⎫=---+= ⎪ ⎪⎝⎭⎝⎭.故C 正确;对于D ,根据题意方程112f x ω⎛⎫= ⎪⎝⎭即πsin π03x ω⎛⎫+= ⎪⎝⎭在[)0,2上有且仅有4个根,ππππ2π333x ωω∴≤+<+,由正弦函数性质得π4π2π5π3ω<+≤,解得11763ω<≤,故D 错误.故选:AC.三、填空题:本题共3小题,每小题5分,共15分.12.已知角的终边经过点1(2P ,则tan α的值为____________.【答案】【解析】【详解】试题分析:.考点:三角函数的定义13.若函数()sin()f x A x ωϕ=+0,0,||2A πωϕ⎛⎫>>< ⎪⎝⎭的部分图像如图所示,则函数()y f x =的解析式为_______.【答案】1()2sin(24f x x π=+【解析】【分析】根据函数()f x 的图象求得2,4A T π==,得到1()2sin()2f x x ϕ=+,再由(22f π=和题设条件,求得4πϕ=,即可求得函数的解析式.【详解】由函数()f x 的图象可得72,()422A T πππ==--=,所以22142T ππωπ===,即1()2sin()2f x x ϕ=+,又由()22f π=,即1sin()122πϕ⨯+=,可得2,42k k Z ππϕπ+=+∈,即2,4k k Z πϕπ=+∈,又因为||2ϕπ<,所以4πϕ=,所以1()2sin()24f x x π=+.故答案为:1()2sin(24f x x π=+.14.窗花是贴在窗纸或窗户玻璃上的剪纸,是中国古老的传统民间艺术之一,如图是一个正八边形的窗花,从窗花图中抽象出的几何图形是一个正八边形,正八边形ABCDEFGH 的边长为4,P 是正八边形ABCDEFGH 内的动点(含边界),则AP AB ⋅的取值范围为________.【答案】⎡-+⎣【解析】【分析】建立平面直角坐标系,得到向量的坐标,用向量的数量积坐标运算即可求解.【详解】以A 为坐标原点,,AB AF 所在直线分别为轴,建立平面直角坐标系,则()()0,0,4,0A B 过H 作AF的垂线,垂足为N ,正八边形ABCDEFGH 中,边长为4,所以()821801358HAB ︒︒-⨯∠==,所以AN HN =,所以222AN HN HA AN +=⇒=,所以4AF =+,设(),P x y ,则()()4,0,,AB AP x y == ,所以4AP AB x ⋅=,因为P 是正八边形ABCDEFGH 内的动点(含边界),所以x 的范围为4x -≤≤+所以416x -≤≤+故答案为:⎡-+⎣.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知向量()1,4a =- ,()2,1b =-r(1)求5877a b -;(2)若向量()2,c m = ,向量ma c + 与向量a mb +共线,求m 的值.【答案】(1)5(2)1-或89【解析】【分析】(1)根据向量的坐标运算,向量模的公式运算得解;(2)根据向量的坐标运算求得ma c + 和a mb +坐标,再由向量共线即可计算出m 的值.【小问1详解】因为()1,4a =- ,()2,1b =-r,所以()5858582,43,4777777a b ⎛⎫-=--⨯⨯+=- ⎪⎝⎭r r ,所以58577a b -==r r .【小问2详解】因为()2,5ma c m m +=-+r r ,()21,4a mb m m +=--+r r,又ma c + 与a mb +共线,所以()()()24521m m m m -+-+=-,所以2980m m +-=,解得1m =-或89.所以m 的值为1-或89.16.2024年5月3日,搭载嫦娥六号探测器的长征五号遥八运载火箭,在中国文昌航天发射场成功发射,这是我国航天器继嫦娥五号之后,第二次实现月球轨道交会对接,为普及探月知识,某校开展了“探月科普知识竞赛”活动,现从参加该竞赛的学生中随机抽取了80名,统计他们的成绩(满分100分),其中成绩不低于80分的学生被评为“探月达人”,将数据整理后绘制成如图所示的频率分布直方图.(1)估计参加这次竞赛的学生成绩的75%分位数;(2)若在抽取的80名学生中,从成绩在[)70,80,[)80,90,[]90,100中采用分层抽样的方法随机抽取6人,再从这6人中选择2人,求被选中的2人均为“探月达人”的概率.【答案】(1)82.5;(2)15.【解析】【分析】(1)根据给定的频率分布直方图,结合75%分位数的意义列式计算即得.(2)求出抽取的6人中,“探月达人”人数,再利用列举法求出概率.【小问1详解】由频率分布直方图知,成绩在[40,50),[50,60),[60,70),[70,80),[80,90)内的频率依次为:0.05,0.15,0.2,0.3,0.2,则成绩在80分以下的频率为0.7,成绩在90分以下频率为0.9,因此参加这次竞赛的学生成绩的75百分位数为(80,90)x ∈,由(80)0.020.05x -⨯=,解得82.5x =,所以参加这次竞赛的学生成绩的75百分位数为82.5.【小问2详解】由于0.30.20.163,62,610.30.20.10.30.20.10.30.20.1⨯=⨯=⨯=++++++,则6人中,成绩在[70,80),[80,90),[90,100]内的学生分别为3人,2人,1人,其中有3人为“探月达人”,设为a ,b ,c ,有3人不是“探月达人”,设为,,d e f ,则从6人中选择2人作为学生代表,有,,,,,,,,,,,,,,ab ac ad ae af bc bd be bf cd ce cf de df ef ,共15种,其中2人均为“探月达人”为,,ab ac bc ,共3种,所以被选中的2人均为“探月达人”的概率为31155=.17.已知在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且cos sin sin 2A BC a b a cπ⎛⎫-- ⎪⎝⎭=+-(1)求角B ;(2)若点D 在AC 上,BD 为ABC ∠的角平分线,BD =,求2a c +的最小值.【答案】(1)π3B =(2)6+【解析】【分析】(1)利用正弦定理进行角换边,再结合余弦定理即可得到答案;(2)根据面积法得1112a c +=,再利用乘“1”法即可得到最小值.【小问1详解】因为sin sin sin C A Ba b a c-=+-,所以由正弦定理可得c a ba b a c-=+-,即222a c b ac +-=,又因为222cos 2a c b B ac+-=,则1cos 2B =,因为(0,π)B ∈,所以π3B =.【小问2详解】因为ABD CBD ABC S S S += 所以1π1π1πsin sin sin 262623AB BD BC BD AB BC ⨯+⨯=⨯,因为BD =,所以c BD a BD ⨯+⨯=,所以2()c a ac ⨯+=,即1112a c +=,所以22242(2)66c a a c a c a c a c ⎛⎫+=++=++≥+⎪⎝⎭,当且仅当22a c ==+时,2a c +取得最小值6+.18.已知函数()()π14sin cos R 6f x x x x ⎛⎫=-++∈ ⎪⎝⎭(1)求函数()f x 的最小值,以及()f x 取得最小值时x 的集合;(2)已知ππ2βα<<<,π82125f αβ-⎛⎫-= ⎪⎝⎭,π102613f β⎛⎫+=- ⎪⎝⎭,求cos α的值.【答案】(1)最小值为2-,x 的集合为,|ππZ 3x x k k ⎧⎫⎨⎬⎩⎭=-+∈(2)6365-【解析】【分析】(1)利用三角恒等变换得π()2sin 26f x x ⎛⎫=+ ⎪⎝⎭,则得到其最小值和此时所对应的x 的集合;(2)首先求出4sin()5αβ-=,再计算出3cos()5αβ-=,5cos 13β=-,12sin 13β=,最后化简为繁,利用两角和的余弦公式即可得到答案.【小问1详解】21()14sin cos cos 1cos 2cos 22f x x x x x x x ⎛⎫=-++=-++ ⎪ ⎪⎝⎭π121cos 22sin 26x x x ⎛⎫=-+++=+ ⎪⎝⎭当ππ22π,Z 62x k k +=-+∈,即ππ,Z 3x k k =-+∈时,()f x 取得最小值2-,此时x 的集合为,|ππZ 3x x k k ⎧⎫⎨⎬⎩⎭=-+∈.【小问2详解】πππ82sin 22sin()21221265f αβαβαβ⎛⎫--⎛⎫⎛⎫-=-+=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则4sin()5αβ-=,因为ππ2β<<,所以ππ2β-<-<-,又因为ππ2α<<,所以ππ22αβ-<-<,所以3cos()5αβ-=,因为πππ102sin 22sin 2cos 26266213f βπβββ⎛⎫⎛⎫⎛⎫⎛⎫+=++=+==- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以5cos 13β=-,因为ππ2β<<,所以12sin 13β==,cos cos[()]cos()cos sin()sin ααββαββαββ=-+=---354126351351365⎛⎫=⨯--⨯=- ⎪⎝⎭.19.若函数()f x 在定义域区间[],a b 上连续,对任意1x ,[]2,x a b ∈恒有()()121222f x f x x x f ++⎛⎫≥⎪⎝⎭,则称函数()f x 是区间[],a b 上的上凸函数,若恒有()()121222f x f x x x f ++⎛⎫≤⎪⎝⎭,则称函数()f x 是区间[],a b 上的下凸函数,当且仅当12x x =时等号成立,这个性质称为函数的凹凸性.上述不等式可以推广到取函数定义域中的任意n 个点,即若()f x 是上凸函数,则对任意1x ,2x ,…,[],n x a b ∈恒有()()()1212n n f x f x f x x x x f n n ++++++⎛⎫≥⎪⎝⎭,若()f x 是下凸函数,则对任意1x ,2x ,…,[],n x a b ∈恒有()()()1212n n f x f x f x x x x f n n ++++++⎛⎫≤⎪⎝⎭,当且仅当12n x x x === 时等号成立.应用以上知识解决下列问题:(1)判断函数()()21R f x x x =+∈在定义域上是上凸函数还是下凸函数(说明理由);(2)证明()sin h x x =,()0,πx ∈上是上凸函数;(3)若A 、B 、C 、()0,πD ∈,且πA B C D +++=,求sin sin sin sin A B C D +++的最大值.【答案】(1)下凸函数,理由见解析(2)证明见解析(3)【解析】【分析】(1)作差()()121222f x f x x x f ++⎛⎫-⎪⎝⎭,化简即可证明;(2)任意取12,(0,π)x x ∈,作差()()12122112sin sin cos cos 222222h x h x x x x x x x h ++⎛⎫⎛⎫⎛⎫-=-- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,再分析其符号即可;(3)根据(2)中结论得sin sin sin sin sin 44A B C D A B C D ++++++⎛⎫≤ ⎪⎝⎭,代入计算即可得到答案.【小问1详解】下凸函数,理由如下:任意取12,R x x ∈,因为()()()()22221212*********22424f x f x x x x x x x x x f ++-+++⎛⎫-=+-=- ⎪⎝⎭即()()121222f x f x x x f ++⎛⎫≤⎪⎝⎭,当且仅当12x x =时等号成立,故2()1(R)f x x x =+∈是下凸函数.【小问2详解】任意取12,(0,π)x x ∈,不妨设12x x ≤,()()12121212sin sin sin 2222h x h x x x x x x x h ++++⎛⎫⎛⎫-=-⎪ ⎪⎝⎭⎝⎭12121122sincos cos sin sin cos sin cos 22222222x x x x x x x x=+--2112sin sin cos cos 2222x x x x ⎛⎫⎛⎫=-- ⎪⎪⎝⎭⎝⎭,由于12π0222x x <≤<,根据sin y x =在π0,2⎛⎫ ⎪⎝⎭上单调递增,cos y x =在π0,2⎛⎫⎪⎝⎭上单调递减,则2112sin sin ,cos cos 2222x x x x ≥≥,所以()()121222h x h x x x h ++⎛⎫≥⎪⎝⎭,即函数()h x 是上凸函数.【小问3详解】当(0,,π,),A B C D ∈,且πA B C D +++=,由(2)知()sin ,(0,π)h x x x =∈是上凸函数,所以sin sin sin sin πsin sin 4442A B C D A B C D++++++⎛⎫≤==⎪⎝⎭,故πsin sin sin sin 4sin 4sin 244A B C D A B C D +++⎛⎫+++≤== ⎪⎝⎭所以当且仅当π4A B C D ====时等号成立,即sin sin sin sin A B C D +++的最大值为.【点睛】关键点点睛:本题第二问的关键是作差因式分解得()()12122112sin sin cos cos 222222h x h x x x x x x x h ++⎛⎫⎛⎫⎛⎫-==- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,再分析其正负即可.。

高一下学期期末考试数学试题与答案

高一下学期期末考试数学试题与答案

高一下学期期末考试数学试题一、单选题(本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.复平面内复数z 所对应的点为()2,1--,则i z +=()A B .2CD .12.如图所示,梯形A B C D ''''是平面图形ABCD 用斜二测画法得到的直观图,22A D B C ''''==,1A B ''=,则平面图形ABCD 中对角线AC 的长度为()ABC D .53.在平行四边形ABCD 中,15,,56BE BC DF DC M == 是线段EF 的中点,则AM =()A .1325AB AD + B .1223AB AD + C .112123AB AD + D .113125AB AD+4.“春雨惊春清谷天,夏满芒夏暑相连,秋处露秋寒霜降,冬雪雪冬小大寒,每月两节不变史,最多相差一两天.”中国农历的“二十四节气”,凝结着中华民族的智慧,是中国传统文化的结晶,如五月有立夏、小满,六月有芒种、夏至,七月有小暑、大暑,现从五月、六月、七月这六个节气中任选两个节气,则这两个节气恰在同一个月的概率为()A .12B .13C .15D .1105.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知ABC 的面积为222S a b c =+-,则tan C 的值为()A .14B .12C .2D .46.如图,在长方体1111ABCD A B C D -中,11,2AB AD AA ===,且E 为1DD 的中点,则直线1BD 与AE 所成角的大小为()A .π3B .π4C .π6D .5π67.为了提高学生锻炼身体的积极性,某班以组为单位组织学生进行了花样跳绳比赛,每组6人,现抽取了两组数据,其中甲组数据的平均数为8,方差为4,乙组数据满足如下条件时,若将这两组数据混合成一组,则关于新的一组数据说法错误的是()A .若乙组数据的平均数为8,则新的一组数据的平均数一定为8B .若乙组数据的方差为4,则新的一组数据的方差一定为4C .若乙组数据的平均数为8,方差为4,则新的一组数据的方差一定为4D .若乙组数据的平均数为4,方差为8,则新的一组数据的方差一定为108.在三棱锥S ABC -中,底面ABC 是边长为3的等边三角形,SA =SB =的表面积为21π,则二面角S AB C --的余弦值为()A .12-B .12C .13-D .13二、多选题(本题共3小题,每小题6分,共18分。

2023-2024学年度河北省唐山市高一年级第二学期末考试数学试卷(含答案)

2023-2024学年度河北省唐山市高一年级第二学期末考试数学试卷(含答案)

2023-2024学年度河北省唐山市高一年级第二学期末考试数学试卷一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知复数z=3−i,则z的虚部为( )A. −1B. 1C. −iD. 32.某学校高一、高二、高三年级学生人数之比为3:2:2,利用分层抽样的方法抽取容量为35的样本,则从高一年级抽取学生人数为( )A. 7B. 10C. 15D. 203.已知圆锥的高为2,其底面圆的半径为1,则圆锥的侧面积为( )A. πB. 2πC. 5πD. (5+1)π4.若一组数据的平均数为5,方差为2,将每一个数都乘以2,再减去1,得到一组新数据,则新数据的平均数和方差分别为( )A. 9,3B. 9,8C. 9,7D. 10,85.已知A,B是两个随机事件且概率均大于0,则下列说法正确的为( )A. 若A与B互斥,则A与B对立B. 若A与B相互独立,则A与B互斥C. 若A与B互斥,则A与B相互独立D. 若A与B相互独立,则A与B相互独立6.设m,n是两条不同的直线,α,β是两个不同的平面,则( )A. 若m⊥n,n//α,则m⊥αB. 若m⊥α,n//α,则m⊥nC. 若m⊥α,α⊥β,则m//βD. 若m⊥n,n⊥β,则m//β7.在正四面体ABCD中,E是棱BD的中点,则异面直线CE与AB所成角的余弦值为( )A. −56B. 56C. −36D. 368.已知锐角△ABC的面积为43,B=π3,则边AB的取值范围是( )A. (2,22)B. [22,4]C. (22,42)D. [22,42]二、多选题:本题共3小题,共18分。

在每小题给出的选项中,有多项符合题目要求。

9.已知复数z=1−2i,则( )A. |z|=5B. z+z=2C. z⋅z=5D. 1z表示的点在第一象限10.已知平行四边形ABCD的两条对角线交于点O,AE=14AC,则( )A. DE =34DA +14DCB. DE =14DA +34DCC. BE =32BO +12BCD. BE =32BO−12BC 11.在直三棱柱ABC−A 1B 1C 1中,高为ℎ,BA =BC = 3,∠ABC =90∘,下列说法正确的是( )A. V C 1−A 1ABB 1=2V A 1−ABCB. 若存在一个球与棱柱的每个面都内切,则ℎ=2 6− 3C. 若ℎ=3,则三棱锥A 1−ABC 外接球的体积为9π2D. 若ℎ=3,以A 为球心作半径为2的球,则球面与三棱柱表面的交线长度之和为23π12三、填空题:本题共3小题,每小题5分,共15分。

高一下学期期末考试数学试题(含答案)

高一下学期期末考试数学试题(含答案)

33高一下学期期末数学试卷第Ⅰ卷(选择题 共50分)一、选择题(本大题共 10 小题,每小题 5 分,共 50 分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知α是第二限角,则下列结论正确的是A .sinα•cosα>0B .sinα•tanα<0C .cosα•tanα<0D .以上都有可能( )2.化简 AB + BD - AC - CD =()A . 0B . ADC . BCD . DA3.若 P (-3,4) 为角α终边上一点,则 cos α=()A. -B. 455 C. - D. - 44 34. 若 a = 1, b = 2, 且 a , b 的夹角为120 则 a + b 的值()A .1B . 3C . 2D . 2π5. 下列函数中,最小正周期是A. y = tan 2x的偶函数为() 2B. y = cos(4x + πC. y = 2 cos 22x -1 2D. y = cos 2x6. 将函数 y = sin(3x + π 的图象向左平移π) 个单位,再将所得图象上所有点的横坐标缩短到原 6 61来的 倍(纵坐标不变),则所得图象的函数解析式为( )2A. y =sin( 3 x + 2π2 3B. y = sin(6x + π3C. y = sin 6xD. y = sin(6x +2π37. 如右图,该程序运行后的输出结果为()A .0B .3C .12D .-2))) )8. 函数 y =cos(π π-2x )的单调递增区间是4()5π 5A .[k π+ 8 ,k π+ 8 π]B .[2k π+ 8 ,2k π+ π]83 C .[k π- 8 π,k π+ π3]D .[2k π- 8 8 π,2k π+ π](以上 k ∈Z )89. 已知直线 y = x + b,b ∈[﹣2,3],则直线在 y 轴上的截距大于 1 的概率是()1 234A.B .C .D .555510. 右面是一个算法的程序.如果输入的 x 的值是 20,则输出的 y 的值是()A .100B .50C .25D .150第Ⅱ卷(非选择题 共 100 分)二、填空题(本题共 5 小题,每题 5 分,共 25 分)11.若 a = (2,3) 与b = (-4, y ) 共线,则 y =.12. 某工厂生产 A ,B ,C 三种不同型号的产品,产品数量之比依次为 2∶3∶5.现用分层抽样方法抽出一个容量为 n 的样本,样本中 A 种型号的产品有 16 件,那么此样本的容量 n =.13. 设扇形的周长为8cm ,面积为 4cm 2,则扇形的圆心角的弧度数是 .14. 若tan α= 1,则2sin α+ cos α 2 s in α- 3cos α= .15. 函数 y=Asin(ωx+φ)( A >0,ω>0,|φ|<π ) ,在同一个周期内,当 x= π时, y 有最大值 2,3当 x=0 时,y 有最小值-2,则这个函数的解析式为.三、解答题(本大题共 6 小题,满分 75 分,解答须写出文字说明、证明过程或演算步骤)16.(本小题满分 12 分)某中学团委组织了“弘扬奥运精神,爱我中华”的知识竞赛,从参加考试的 学生中抽出 60 名学生,将其成绩(均为整数)分成六段[40,50),[50,60),…,[90,100]后画出如下部分频率分布直方图.观察图形给出的信息,回答下列问题:(1) 求第四小组的频率,并补全这个频率分布直方图; (2) 估计这次考试的及格率(60 分及以上为及格)和平均分.-α 17.(本小题满分 12 分)已知函数 f (x ) = 2sin 1 x + 2 3 cos 1x .2 2(1) 求函数 f (x ) 的最小正周期及值域; (2) 求函数 f (x ) 的单调递增区间.18.(本小题满分 12 分)已知|a |=3,|b |=2,a 与 b 的夹角为 60°,c =3a +5b ,d =m a -3b .(1) 当 m 为何值时,c 与 d 垂直? (2) 当 m 为何值时,c 与 d 共线?19.(本小题满分 12 分)设函数 f (x )=a ·b ,其中向量 a =(m ,cos2x ),b =(1+sin2x,1),x ∈R ,且⎡π ⎤ 函数 y =f (x )的图象经过点 ⎢⎣ 4 , 2⎥⎦. (1) 求实数 m 的值;(2) 求函数 f (x )的最小值及此时x 值的集合.20.(本小题满分 13 分)已知π < α< π,且sin(π-α) = 4;25sin(2π+α) tan(π-α) cos(-π-α)(1) 求 sin(3π 2 π) cos( 2+α)的值;(2) 求 sin 2α- cos 2α 5π 的值.tan(α- )421.(本小题满分 14 分)某班数学兴趣小组有男生三名,分别记为 a 1 , a 2 , a 3 ,女生两名,分别记为b 1 , b 2 ,现从中任选 2 名学生去参加校数学竞赛.(1) 写出这种选法的样本空间; (2) 求参赛学生中恰有一名男生的概率; (3) 求参赛学生中至少有一名男生的概率.) 数学参考答案及评分标准一、选择题(本大题共 10 小题,每小题 5 分,共 50 分。

南京金陵中学2023-2024学年高一下学期期末考试题(含答案)

南京金陵中学2023-2024学年高一下学期期末考试题(含答案)

2023-2024学年第二学期高一年级期末测试数学试卷命题:高一数学备课组审核:一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i 为虚数单位,复数z 满足|z |=1,则|z -i |的最大值为()A .1B .2C .3D .42.已知数据3,7,a ,6的平均数是4,则这组数据的标准差为()A .152B .294C .302D .2923.抛掷一枚质地均匀的骰子两次,A 表示事件“第一次抛掷,骰子正面向上的点数是3”,B 表示事件“两次抛掷,骰子正面向上的点数之和是4”,C 表示事件“两次抛掷,骰子正面向上的点数之和是7”,则()A .A 与B 互斥B .B 与C 互为对立C .A 与B 相互独立D .A 与C 相互独立4.已知两个不重合的平面α,β和三条不重合的直线a ,b ,c ,则下列四个命题中正确的是()A .若a ∥b ,b ⊂α,则a ∥αB .若a ⊥b ,b ⊥c ,则a ∥cC .a ∥β,b ∥β,a ⊂α,b ⊂α,则α∥βD .a ∥α,a ⊂β,α∩β=b ,则a ∥b5.已知sin(θ+π6)=2cos θ,则tan2θ=()A .33B .3C .-3D .236.已知非零向量a ,b 满足(a -b )⊥(a +2b ),且2|a |=3|b |,则向量a ,b 的夹角的余弦值为()A .-16B .-38C .16D .387.如图,正方体ABCD -A 1B 1C 1D 1的棱长为3,线段B 1D 1上有两个动点E ,F ,且EF =2,则三棱锥A -BEF 的体积是()A .32B .322C .22D .128.如图是古希腊数学家波克拉底研究的几何图形,此图由三个半圆构成,直径分别为直角三角形ABC 的斜边AB ,直角边BC ,AC ,N 为AC 的中点,点D 在以AC 为直径的半圆上,已知cos ∠DNC =725,cos ∠DAB =3365,ABCDN则以直角边AC ,BC 为直径的两个半圆的面积之比为()A .16:9B .144:25C .225:64D .160:81二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得3分,有选错的得0分.9.已知复数z 1,z 2,下列说法正确的是()A .若z 1=z 2-,则z 1-=z 2B .若|z 1|=|z 2|,则z 21=z 22C .若z 2≠0,则(z1z 2)-=z 1-z 2-D .若|z 1|=|z 2|,则z 1·z 1-=z 2·z 2-10.已知向量a =(3,sin θ),b =(cos θ,1),0≤θ≤π,下列说法正确的是()A .若a ⊥b ,则tan θ=-3B .a 与b 一定不是平行向量C .|a +b |的最大值为22D .若|a |=6|b |,且b 在a 上的投影向量为-24a ,则a 与b 的夹角为5π611.如图,四边形ABCD 是边长为2a 的正方形,点E ,F 分别为边BC ,CD 的中点,将△ABE ,△ECF ,△FDA 分别沿AE ,EF ,FA 折起,使B ,C ,D 三点重合于点P ,则()A .AP ⊥EFB .点P 在平面AEF 内的射影为△AEF 的外心C .二面角A -EF -P 的正弦值为13D .四面体P -AEF 的外接球的体积为6πa 3三、填空题:本题共3小题,每小题5分,共15分.12.在正四棱台ABCD -A 1B 1C 1D 1中,AB =2,A 1B 1=1,AA 1=2,则该棱台的体积为__________.13.甲、乙、丙三人参加一次考试,他们合格的概率分别为23,34,25,那么三人中恰有两人合格的概率是_________.14.如图,在△ABC 中,D 是BC 的中点,E 在AB 边上,BE =2EA ,AD 与CE 交于点O ,若→AB ·→AC =6→AO ·→EC ,则AB AC的值是_________.A BCDEOAEFP ABC DEF四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.15.(13分)已知复数z=1-i.;(1)若z1=z3-4i,求z1(2)若|z2|=2,且z·z2是纯虚数,求z2.16.(15分)某学校承办了2024年某次大型体育比赛的志愿志选拔面试工作.现随机抽取了100名候选者的面试成绩并分成五组:第一组[45,55),第二组[5565),第三组[65,75),第四组[75,85),第五组[85,95],绘制成如图所示的频率分布直方图,已知第三、四、五组的频率之和为0.7,第一组和第五组的频率相同.(1)求a、b的值,并估计这100名候选者面试成绩的中位数;(2)在第四、五两组志愿者中,按比例分层抽样抽取5人,然后再从这5人中选出2人,求选出的两个来自同一组概率.(要求列出样本空间进行计算)如图,在直三棱柱ABC-A1B1C1中,M为棱AC的中点,AB=BC,AC=2AA1.(1)求证:B1C//平面A1BM;(2)求证:AC1⊥平面A1BM.A BCA1B1C1 M如图,已知△ABC中,AC=4,∠BCA=90°,∠BAC=60°,M,N为线段AB上两点,且∠MCN=30°.(1)若CM⊥AB,求→CB的值;CM·→(2)设∠ACM=θ,试将△MCN的面积S表示为θ的函数,并求其最大值.(3)若BN=6AM,求cos∠ACM的值.8已知如图一,在矩形ABCD 中,AB =5,AD =为θ的二面角A'-BD -C .(1)(2)当θ=π2时,求B 到平面A'CD 的距离;(3)①当cos θ=13,求cos ∠A'BC 的值.②如图二,在三棱锥O -EFG 中,已知∠OEF =α,∠FEG =β,∠OEG =γ,二面角O -EF -G 的大小为θ.试直接写出利用α,β,γ的三角函数表示cos θ的结论,不需要证明.FA'BCDH2023-2024学年第二学期高一年级期末测试数学试卷命题:高一数学备课组审核:一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i为虚数单位,复数z满足|z|=1,则|z-i|的最大值为() A.1B.2C.3D.4【答案】B【解析】设复数z在复平面内所对的点为Z,由|z|=1知,Z在以(0,0)为圆心,半径为1的圆上,|z-i|表示点Z与(0,1)的距离,∴|z-i|max=1+1=2.故选B.2.已知数据3,7,a,6的平均数是4,则这组数据的标准差为()A.152B.294C.302D.292【答案】C【解析】由3+7+a+64=4,得a=0,方差=(3-4)2+(7-4)2+(0-4)2+(6-4)24=304,故标准差=302.故选C.3.抛掷一枚质地均匀的骰子两次,A表示事件“第一次抛掷,骰子正面向上的点数是3”,B表示事件“两次抛掷,骰子正面向上的点数之和是4”,C表示事件“两次抛掷,骰子正面向上的点数之和是7”,则() A.A与B互斥B.B与C互为对立C.A与B相互独立D.A与C相互独立【答案】D【解析】显然选项A,选项B错误.对于选项C与D,先后抛掷两枚骰子出现点数的所有可能情况为36种,P(A)=636=16,P(B)=336=112,P(C)=636=16,P(AB)=136,P(AC)=136.由于P(AB)≠P(A)P(B),P(AC)=P(A)P(C),所以A与B不独立,A与C相互独立,故选D.4.已知两个不重合的平面α,β和三条不重合的直线a,b,c,则下列四个命题中正确的是() A.若a∥b,b⊂α,则a∥αB.若a⊥b,b⊥c,则a∥cC.a∥β,b∥β,a⊂α,b⊂α,则α∥βD.a∥α,a⊂β,α∩β=b,则a∥b【答案】D【解析】a∥b,b⊂α时存在a⊂α的情形,所以选项A错误;当a∩c=A,且b垂直于a,c 确定的平面时也满足a⊥b,b⊥c,所以选项B错误;对于C选项,当α∩β=l时,存在a⊂α,b⊂α,且a∥l,b∥l的情形,此时符合a∥β,b∥β,故选项C错误;根据线面平行的性质定理,知选项D正确,故选D.5.已知sin(θ+π6)=2cosθ,则tan2θ=()A .33B .3C .-3D .23【答案】C【解析】由sin(θ+π6)=2cos θ,得32sin θ+12cos θ=2cos θ,化简得32sin θ-32cos θ=0,解得tan θ=3,由二倍角公式得tan2θ=2tan θ1-tan 2θ=2×31-(3)2=-3,故选C .6.已知非零向量a ,b 满足(a -b )⊥(a +2b ),且2|a |=3|b |,则向量a ,b 的夹角的余弦值为()A .-16B .-38C .16D .38【答案】A【解析】∵向量a ,b 满足(a -b )⊥(a +2b ),∴(a -b )·(a +2b )=0,即a 2+a ·b -2b 2=0,∴a ·b =2b 2-a 2=2b 2-94b 2=-14b 2,∴cos <a ,b >=a ·b |a ||b |=-14b 232b 2=-16,故选A .7.如图,正方体ABCD -A 1B 1C 1D 1E ,F ,且EF =2,则三棱锥A -BEF 的体积是()A .32B .322D .12【答案】A【解析】由于△BEF 的高=BB 1=3,所以△BEF 的面积S =12×2×3=322,又A 到平面BEF 的距离即A 到平面BB 1D 1D 的距离,所以三棱锥A -BEF 的高=12AC =322,所以三棱锥A -BEF 的体积=13×322×322=32,故选A .8.如图是古希腊数学家波克拉底研究的几何图形,此图由三个半圆构成,直径分别为直角三角形ABC 的斜边AB ,直角边BC ,AC ,N 为AC 的中点,点D 在以AC 为直径的半圆上,已知cos ∠DNC =725,cos ∠DAB =3365,则以直角边AC ,BC 为直径的两个半圆的面积之比为()A .16:9B .144:25C .225:64D .160:81ABCDN【答案】B【解析】由题意可知∠DNC =2∠DAN ,所以cos ∠DAN =1+cos ∠DNC 2=45,sin ∠DAN =1-cos ∠DNC 2=35,因为cos ∠DAB =3365,所以sin ∠DAB =1-(3365)2=5665,cos ∠CAB =cos(∠DAB -∠DAN )=3365×45+5665×35=1213,tan ∠CAB =512,所以Rt △BCA中,AC BC =125,所以以直角边AC ,BC 为直径的两个半圆的面积之比为144:25,故选B .二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得3分,有选错的得0分.9.已知复数z 1,z 2,下列说法正确的是()A .若z 1=z 2-,则z 1-=z 2B .若|z 1|=|z 2|,则z 21=z 22C .若z 2≠0,则(z 1z 2)-=z 1-z 2-D .若|z 1|=|z 2|,则z 1·z 1-=z 2·z 2-【答案】ACD【解析】若z 1=z 2-,则z 1与z 2互为共轭复数,所以z 1-=z 2,故选项A 正确;不妨取z 1=1,z 2=i ,则|z 1|=|z 2|,而z 12=1,z 22=-1,所以z 12≠z 22,故选项B 错误;根据共轭复数的性质知,选项C 正确;若|z 1|=|z 2|,又|z 1|2=z 1·z 1-,|z 2|2=z 2·z 2-,则z 1·z 1-=z 2·z 2-,故选项D 正确.故选ACD .10.已知向量a =(3,sin θ),b =(cos θ,1),0≤θ≤π,下列说法正确的是()A .若a ⊥b ,则tan θ=-3B .a 与b 一定不是平行向量C .|a +b |的最大值为22D .若|a |=6|b |,且b 在a 上的投影向量为-24a ,则a 与b 的夹角为5π6【答案】ABD【解析】对于选项A ,若a ⊥b ,则a ·b =3cos θ+sin θ=0,所以tan θ=-3,故选项A 正确;对于选项B ,由于sin θcos θ<3,所以sin θcos θ≠3,a 与b 一定不是平行向量,故选项B 正确;对于选项C ,因为a +b =(3+cos θ,sin θ+1),所以|a +b |=(3+cos θ)2+(sin θ+1)2=5+4sin(θ+π3),所以当θ=π6时|a +b |取得最大值,最大值为3,故选项C 错误;对于选项D ,b 在a 上的投影向量为a ·b |a |·a|a |=a ·b |a |2·a =-24a ,所以a ·b |a |2=-24,所以cos <a ,b >=a ·b |a ||b |=6×a ·b |a |2=6×(-24)=-32,又0≤<a ,b >≤π,所以<a ,b >=5π6,故选项D 正确.故选ABD .11.如图,四边形ABCD 是边长为2a 的正方形,点E ,F 分别为边BC ,CD 的中点,将△ABE ,△ECF ,△FDA 分别沿AE ,EF ,FA 折起,使B ,C ,D 三点重合于点P ,则()A .AP ⊥EFB .点P 在平面AEF 内的射影为△AEF 的外心C .二面角A -EF -P 的正弦值为13D .四面体P -AEF 的外接球的体积为6πa 3【答案】AD【解析】对于选项A ,∵AP ⊥PF ,AP ⊥PE ,∵PE ∩PF =P ,∴AP ⊥平面PEF ,∵EF ⊂平面PEF ,∴AP ⊥EF ,故选项A 正确;对于选项B ,设P 在底面AEF 上的射影为O ,又因为AP ⊥EF ,则AO ⊥EF ,同理可证EO ⊥AF ,FO ⊥AE ,即点P 在平面AEF 内的射影为ΔAEF 的垂心,又由△AEF 的形状得其垂心与外心不重合,所以选项B 错误;对于选项C ,设AO 与EF 交于点G ,易得∠PGA 为二面角A -EF -P 的平面角.在Rt △APG中,有cos ∠PGA =PG AG =13,故选项C 错误;对于选项D ,由于三棱锥P -AEF 的三条侧棱PA 、PE 、PF 两两互相垂直,且PA =2a ,PE =PF =a .把该三棱锥补形为长方体,则其对角线长为22+12+12a =6a ,则其外接球的半径为62a ,则其外接球的体积V =43π×(62a )3=6πa 3,故选项D 正确.故选AD .三、填空题:本题共3小题,每小题5分,共15分.12.在正四棱台ABCD -A 1B 1C 1D 1中,AB =2,A 1B 1=1,AA 1=2,则该棱台的体积为__________.【答案】766【解析】如图,将正四棱台ABCD -A 1B 1C 1D 1补成正四棱锥,则AO=2,SA =22,OO 1=62,故V =13(S 1+S 2+S 1S 2)h ,V =13×(22+12+22×12)×62=766.13.甲、乙、丙三人参加一次考试,他们合格的概率分别为23,34,25,那么三人中恰有两人合格的概率是_________.【答案】715【解析】由题意知本题是一个相互独立事件同时发生的概率,三个人中恰有2个合格,包括三种情况,这三种情况是互斥的,∴三人中恰有两人合格的概率13×34×25+23×14×25+23×34×35=715.14.如图,在△ABC 中,D 是BC 的中点,E 在AB 边上,BE =2EA ,AD 与CE 交于点O ,若→AB ·→AC =6→AO ·→EC ,则AB AC的值是_________.【答案】3【解析】设→AO =λ→AD ,则→AO =λ2→AB +λ2→AC =3λ2→AE +λ2→AC ,由于C ,O ,E 三点共线,所以A B CDEO A EF PA B C D E ⇒F3λ2+λ2=1,解得λ=12.所以→AO =14→AB +14→AC ,又→EC =→AC -→AE =→AC -13→AB .由→AB ·→AC =6→AO ·→EC ,得→AB ·→AC =6(14→AB +14→AC )·(→AC -13→AB ),化简得3→AC 2=→AB 2,所以AB AC=3.四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.15.(13分)已知复数z =1-i .(1)若z 1=z3-4i,求z 1;(2)若|z 2|=2,且z ·z 2是纯虚数,求z 2.解(1)∵复数z =1-i ,∴z 1=z 3-4i =1-i 3-4i =(1-i)(3+4i)(3-4i)(3+4i)=3+4i -3i -4i 232-(4i)2=7+i 25=725+125i .··············6分(2)设z 2=a +b i ,a ,b ∈R ,∵|z 2|=a 2+b 2=2,∴a 2+b 2=4①.······················································8分又∵z ·z 2=(1-i)(a +b i)=(a +b )+(b -a )i ,∴a +b =0,b -a ≠0②,······································································10分由①②联立,解得a =2b =-2或a =-2b =2,∴z 2=2-2i 或z 2=-2+2i .····························································13分16.(15分)某学校承办了2024年某次大型体育比赛的志愿志选拔面试工作.现随机抽取了100名候选者的面试成绩并分成五组:第一组[45,55),第二组[5565),第三组[65,75),第四组[75,85),第五组[85,95],绘制成如图所示的频率分布直方图,已知第三、四、五组的频率之和为0.7,第一组和第五组的频率相同.(1)求a 、b 的值,并估计这100名候选者面试成绩的中位数;(2)在第四、五两组志愿者中,按比例分层抽样抽取5人,然后再从这5人中选出2人,求选出的两个来自同一组概率.(要求列出样本空间进行计算)解(1)因为第三、四、五组的频率之和为0.7,所以(0.045+0.020+a )×10=0.7,解得a =0.005,·····················································································2分所以前两组的频率之和为1-0.7=0.3,即(a +b )×10=0.3,所以b =0.025;··························································4分面试成绩的中位数为65+0.20.45×10≈69.4.··················································7分(2)第四、第五两组志愿者分别有20人,5人,故按照分层抽样抽得的第四组志愿者人数为4,分别设为a ,b ,c ,d ,第五组志愿者人数为1,设为e ,····················································································9分则样本空间Ω={(a ,b ),(a ,c ),(a ,d ),(a ,e ),(b ,c ),(b ,d ).(b ,e ),(c ,d ),(c ,e ),(d ,e )},样本空间共包含10个样本点.··············································11分设“从这5人中选出2人来自同一组”的事件记为A ,则A ={(a ,b ),(a ,c ),(a ,d ),(b ,c ),(b ,d ),(c ,d )},A 包含6个样本点,·········································································································13分故选出的两人来自同一组的概率为610=35.·················································15分17.(15分)如图,在直三棱柱ABC -A 1B 1C 1中,M 为棱AC 的中点,AB =BC ,AC =2AA 1.(1)求证:B 1C //平面A 1BM ;(2)求证:AC 1⊥平面A 1BM .解(1)连接AB 1,与A 1B 两线交于点O ,连接OM ,在△B 1AC 中M ,O 分别为AC ,AB 1的中点,所以OM //B 1C ,······················································································又OM ⊂平面A 1BM ,B 1C ⊄平面A 1BM ,所以B 1C //平面A 1BM .·················································(2)因为在直三棱柱ABC -A 1B 1C 1中,AA 1⊥底面ABC ,BM ⊂平面ABC ,所以AA 1⊥BM .又M 为棱AC 的中点,AB =BC ,所以BM ⊥AC .因为AA 1∩AC =A ,AA 1,AC ⊂平面ACC 1A 1,所以BM ⊥平面ACC 1A 1,·············································又AC 1⊂平面ACC 1A 1,所以BM ⊥AC 1.··························因为AC =2AA 1.不妨设AC =2,所以AA 1=2,AM =1.在Rt △ACC 1和Rt △A 1AM 中,tan ∠AC 1C =tan ∠A 1MA =2,所以∠AC 1C =∠A 1MA ,即∠AC 1C +∠C 1AC =∠A 1MA +∠C 1AC =90°,所以A 1M ⊥AC 1,···················································································13分又BM ∩A 1M =M ,BM ,A 1M ⊂平面A 1BM ,A BC A 1B 1C 1MABCA 1B 1C 1MO所以AC 1⊥平面A 1BM .··········································································15分18.(17分)如图,已知△ABC 中,AC =4,∠BCA =90°,∠BAC =60°,M ,N 为线段AB 上两点,且∠MCN =30°.(1)若CM ⊥AB ,求→CM ·→CB 的值;(2)设∠ACM =θ,试将△MCN 的面积S 表示为θ的函数,并求其最大值.(3)若BN =68AM ,求cos ∠ACM 的值.解(1)△CAM 中,AC =4,CM ⊥AB ,∠MAC =∠BAC =60°,所以CM =AC ·sin60°=23.所以→CM ·→CB =|→CM |·|→CB |·cos ∠BCM =|→CM |·→CM |=12.······························4分(2)在△ACM 中,∠ACM =θ(0°≤θ≤60°),AC =4,∠MAC =60°,所以CM sin60°=AC sin (60°+θ),所以CM =23sin (θ+60°),·······································6分在△ACN 中,∠ACN =θ+30°,AC =4,∠NAC =60°,所以CNsin60°=AC sin (90°+θ),所以CN =23sin (θ+90°)=23cos θ,······························8分所以S ΔCMN =12CM ·CN ·sin30°=3sin (θ+60°)cos θ=312sin θcos θ+32cos 2θ=6sin2θ2+3cos2θ2+32=122sin (2θ+60°)+3,······························11分因为0°≤θ≤60°,所以60°≤2θ+60°≤180°,所以当且仅当2θ+60°=180°,即θ=60°时,△CMN 的面积取最大值为43.························································12分(3)当BN =68AM 时,S △CBN =68S △CAM ,即12·BC ·CN ·sin ∠BCN =68·12·AC ·CM ·sin ∠ACM ,即8CN ·sin ∠BCN =2CM ·sin ∠ACM .设∠ACM =θ,由(2)得CM =23sin (θ+60°),CN =23cos θ,且∠BCN =60°-θ,所以42sin(60°-θ)sin(60°+θ)=sin θcos θ,·················································14分42[(32cos θ)2-(12sin θ)2]=sin θcos θ,所以2sin 2θ+sin θcos θ-32cos 2θ=0,两边同除以cos2θ,得2tan2θ+tanθ-32=0,解得tanθ=2,或tanθ=-322(舍去).·····················································16分此时cos∠ACM=3 3.············································································17分19.(17分)已知如图一,在矩形ABCD中,AB=5,AD=为θ的二面角A'-BD-C.(1)(2)当θ=π2时,求B到平面A'CD的距离;(3)①当cosθ=13,求cos∠A'BC的值.②如图二,在三棱锥O-EFG中,已知∠OEF=α,∠FEG=β,∠OEG=γ,二面角O-EF-G的大小为θ.试直接写出利用α,β,γ的三角函数表示cosθ的结论,不需要证明.解(1)过A'作A'H⊥BD于H,连接AH,CH.因为二面角A'-BD-C的大小为π2,所以平面A'BD⊥平面BCD,因为A'H⊥BD,平面A'BD∩平面BCD=BD,A'H⊂平面A'BD,所以A'H⊥平面BCD,所以∠A'CH为A'C与平面BCD的所成角.·················································2分在Rt△BA'D中,A'B=5,AD=25,所以A'H=5·25(5)2+(25)2=2.Rt△A'HB中,BH=A'B2-A'H2=52-22=1.因为在Rt△DBC中,BC=25,cos∠CBD=25 5,所以在△HBC中,HC2=BC2+BH2-2BC·BH·cos∠CBD=(25)2+12-2·25·1·255=13,FA'B C DHA'BCDH G所以HC =13.在Rt △A'CH 中,tan ∠A'CH =A'H HC =213=21313.即A'C 与平面BCD 所成角的正切是21313.··················································5分(2)在(1)图中,A'C 2=A'H 2+HC 2=4+13=17,在△A'DC 中,cos ∠A'DC =A'D 2+DC 2-A'C 22·A'D ·DC =(25)2+(5)2-172·25·5=25.所以sin ∠A'DC =1-(25)2=215,△A'DC 的面积S =12·A'D ·DC ·sin ∠A'DC =12·25·5·215=21.因为A'H ⊥平面BCD ,所以三棱锥A'-BCD 的体积V =13·S △BCD ·A'H =13·12·25·5·2=103.···················8分所以B 到平面A'CD 的距离的距离d =V 13S =10313·21=102121.···························10分(3)①矩形ABCD 中找到A'H 的对应线段AH ,并设AH 的延长线交BC 于G .在Rt △BHG 中,BH =1,tan ∠DBC =12,所以HG =12,BG =52.在三棱锥A'-BCD 中,由A'H ⊥BD ,GH ⊥BD ,所以∠A'HG 为二面角A'-BD -C 的平面角,·············································12分即cos ∠A'HG =13.在△A'HG 中,A'G 2=AH 2+HG 2-2·AH ·HG ·cos ∠A'HG=22+(12)2-2·2·12·13=4312.在△A'BG 中,cos ∠A'BG =A'B 2+BG 2-A'G 22·A'B ·BG =(5)2+(52)2-43122·5·52=815.·············15分②cos θ=cos γ-cos α·cos βsin α·sin β.···································································17分ABCDH G。

福建省福州2023-2024学年高一下学期7月期末考试 数学含答案

福建省福州2023-2024学年高一下学期7月期末考试 数学含答案

福州2023—2024学年第二学期期末考试高一年级数学(答案在最后)(全卷共4页,四大题,19小题;满分:150分;时间:120分钟)班级__________座号__________姓名__________注意事项:1.答题前,考生务必在试题卷、答题卡规定的地方填涂自己的准考证号、姓名.考生要认真核对答题卡上的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号,非选择题用0.5毫米黑色签字笔在答题卡上规定的范围内书写作答,请不要错位、越界答题!在试题卷上作答的答案无效.3.考试结束,考生必须将答题卡交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知样本数据10,11,9,13,10,9,12,则这组样本数据的上四分位数为()A.9B.10C.11D.122.已知复数12z i =-,则zz=()A.12B.1C.2D.43.设l ,m 是两条直线,α,β是两个平面,则()A.若//αβ,//l α,//m β,则//l mB.若//αβ,//l m ,m β⊥,则l α⊥C .若αβ⊥,//l α,//m β,则l m⊥D.若αβ⊥,//l α,//m β,则//l m4.已知向量,a b 满足||||a b == =0a b ⋅,若()()a b a b λμ+⊥+ ,则下列各式一定成立的是()A.0λμ+= B.1λμ+=- C.0λμ= D.1λμ=-5.如图,某人为测量塔高AB ,在河对岸相距s 的C ,D 处分别测得BCD α∠=,BCA ∠=β,BDC γ∠=(其中C ,D 与塔底B 在同一水平面内),则塔高AB =()A.()sin tan sin s γβαγ⋅+B.()sin sin tan s γαγβ⋅+C.()sin sin tan s αγγβ⋅+D.()sin sin sin s αγγβ⋅+6.如图,圆锥底面半径为23,母线2PA =,点B 为PA 的中点,一只蚂蚁从A 点出发,沿圆锥侧面绕行一周,到达B 点,其最短路线长度和其中下坡路段长分别为()A.277,3B.77,3C.77,3D.77,77.依次抛掷一枚质地均匀的骰子两次,1A 表示事件“第一次抛掷骰子的点数为2”,2A 表示事件“第一次抛掷骰子的点数为奇数”,3A 表示事件“两次抛掷骰子的点数之和为6”,4A 表示事件“两次抛掷骰子的点数之和为7”,则()A.3A 与4A 为对立事件B.1A 与3A 为相互独立事件C.2A 与4A 为相互独立事件D.2A 与4A 为互斥事件8.已知三棱锥P ABC -的四个顶点在球O 的球面上,PA PB PC ===BPA CPA CPB ∠=∠=∠,E ,F 分别是PA ,AB 的中点,90CEF ∠=︒,则球O 的体积为()A. B. C. D.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若a =,222sin a b c ab C +-=,cos sin a B b A c +=,则下列结论正确的是()A.tan 2C = B.π4A =C.b =D.△ABC 的面积为610.如图所示,下列频率分布直方图显示了三种不同的分布形态.图(1)形成对称形态,图(2)形成“右拖尾”形态,图(3)形成“左拖尾”形态,根据所给图作出以下判断,正确的是()A.图(1)的平均数=中位数=众数B.图(2)的平均数<众数<中位数C.图(2)的众数<中位数<平均数D.图(3)的平均数<中位数<众数11.在直四棱柱1111ABCD A B C D -中,所有棱长均2,60BAD ∠=︒,P 为1CC 的中点,点Q 在四边形11DCC D 内(包括边界)运动,下列结论中正确的是()A.当点Q 在线段1CD 上运动时,四面体1A BPQ 的体积为定值B.若AQ//平面1A BP ,则AQC.若1A BQ △的外心为M ,则11AB A M ⋅为定值2D.若1AQ =,则点Q 的轨迹长度为23π三、填空题:本题共3小题,每小题5分,共15分.12.在ABC 中,120,2,ACB AC AB ACB ∠∠===的角平分线交AB 于D ,则CD =__________.13.某同学用“随机模拟方法”计算曲线ln y x =与直线,0x e y ==所围成的曲边三角形的面积时,用计算机分别产生了10个在区间[]1,e 上的均匀随机数i x 和10个在区间[]0,1上的均匀随机数i y (*,110i N i ∈≤≤),其数据如下表的前两行.x 2.50 1.01 1.90 1.22 2.52 2.17 1.89 1.96 1.36 2.22y 0.840.250.980.150.010.600.590.880.840.10lnx0.900.010.640.200.920.770.640.670.310.80由此可得这个曲边三角形面积的一个近似值为_________.14.若正四面体ABCD 的顶点都在一个表面积为6π的球面上,过点C 且与BD 平行的平面α分别与棱,AB AD 交于点,E F ,则空间四边形BCFE 的四条边长之和的最小值为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.成都石室中学生物基地里种植了一种观赏花卉,这种观赏花卉的高度(单位:cm )介于[]15,25之间,现对生物基地里部分该种观赏花卉的高度进行测量,所得数据统计如下图所示.(1)求a 的值;(2)若从高度在[)15,17和[)17,19中分层抽样抽取5株,再在这5株中随机抽取2株,求抽取的2株高度均在[)17,19内的概率.16.在平面四边形ABCD 中,90ABC ∠=︒,135C ∠=︒,BD =CD =.(1)求cos CBD ∠;(2)若ABD △为锐角三角形,求ABD △的面积的取值范围.17.年级教师元旦晚会时,“玲儿姐”、“关关姐”和“页楼哥”参加一项趣味问答活动.该活动共有两个问题,如果参加者两个问题都回答正确,则可得到一枝“黑玫瑰”奖品.已知在第一个问题中“玲儿姐”回答正确的概率为23,“玲儿姐”和“关关姐”两人都回答错误的概率为215,“关关姐”和“页楼哥”两人都回答正确的概率为310;在第二个问题中“玲儿姐”、“关关姐”和“页楼哥”回答正确的概率依次为324,,435.且所有的问答中回答正确与否相互之间没有任何影响.(1)在第一个问题中,分别求出“关关姐”和“页楼哥”回答正确的概率;(2)分别求出“玲儿姐”、“关关姐”和“页楼哥”获得一枝“黑玫瑰”奖品的概率,并求三人最终一共获得2枝“黑玫瑰”奖品的概率.18.如图,在直三棱柱111ABC A B C -中,M 为棱AC 的中点,AB BC =,2AC =,1AA =.(1)求证:1//B C 平面1A BM ;(2)求证:1AC ⊥平面1A BM ;(3)在棱1BB 上是否存在点N ,使得平面1AC N ⊥平面11AA C C ?如果存在,求此时1BN BB 的值;如果不存在,请说明理由.19.为了监控某种零件的一条生产线的生产过程,检验员每隔30min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm ).下面是检验员在一天内依次抽取的16个零件的尺寸:抽取次序12345678零件尺寸9.9510.129.969.9610.019.929.9810.04抽取次序910111213141516零件尺寸10.269.9110.1310.029.2210.0410.059.95经计算得16119.9716i i x x ===∑,0.212s ==,18.439≈,()()1618.5 2.78ii x x i =--=-∑其中ix 为抽取的第i 个零件的尺寸,1,2,...,16i =.(1)求()(),1,2,...,16i x i i =的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小);(2)一天内抽检零件中,如果出现了尺寸在()3,3x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(i )从这一天抽检的结果看,是否需对当天的生产过程进行检查?(ii )请利用已经学过的方差公式:()2211n i i s x x n ==-∑来证明方差第二公式22211n i i s x n x ==-∑.(iii )在()3,3x s x s -+之外的数据称为离群值,试剔除离群值,并利用(ii )中公式估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本()(),1,2,...,i i x y i n =的相关系数ˆniix ynxyr-=∑0.09≈.福州2023—2024学年第二学期期末考试高一年级数学(全卷共4页,四大题,19小题;满分:150分;时间:120分钟)班级__________座号__________姓名__________注意事项:1.答题前,考生务必在试题卷、答题卡规定的地方填涂自己的准考证号、姓名.考生要认真核对答题卡上的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号,非选择题用0.5毫米黑色签字笔在答题卡上规定的范围内书写作答,请不要错位、越界答题!在试题卷上作答的答案无效.3.考试结束,考生必须将答题卡交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知样本数据10,11,9,13,10,9,12,则这组样本数据的上四分位数为()A.9B.10C.11D.12【答案】D【解析】【分析】利用百分位的定义求解即可.【详解】将样本数据按从小到大的顺序排列为:9,9,10,10,11,12,13.上四分位数即75%分位数,775% 5.25⨯=,所以该组数据的上四分位数为从小到大排列的第6个数,即12,故选:D.2.已知复数12z i=-,则zz=()A.12B.1C.2D.4【答案】B【解析】【分析】根据条件,利用共轭复数的定义及复数的运算法则,得到34i55zz=--,再利用复数模的定义,即可求出结果.【详解】因为12z i =-,所以12i 14i 434i 12i 555z z ---===--+,得到1z z=,故选:B.3.设l ,m 是两条直线,α,β是两个平面,则()A.若//αβ,//l α,//m β,则//l mB.若//αβ,//l m ,m β⊥,则l α⊥C.若αβ⊥,//l α,//m β,则l m ⊥D.若αβ⊥,//l α,//m β,则//l m 【答案】B 【解析】【分析】根据线面平行或垂直的判定及性质定理逐个判断即可.【详解】对于A ,若//αβ,//l α,//m β,则l 与m 可能平行,也可能相交,还可能异面,故A 错误;对于B ,若//l m ,m β⊥,则l β⊥,又//αβ,所以l α⊥,故B 正确;对于C ,D ,αβ⊥,//l α,//m β,则l 与m 可能平行,也可能异面或相交,故C ,D 错误;故选:B .4.已知向量,a b 满足||||a b == =0a b ⋅,若()()a b a b λμ+⊥+ ,则下列各式一定成立的是()A.0λμ+=B.1λμ+=- C.0λμ= D.1λμ=-【答案】A 【解析】【分析】由向量垂直得到数量积为0,再由向量的数量积运算化简可得λ和μ的关系.【详解】因为向量,a b 满足||||a b == ,=0a b ⋅,若()()a b a b λμ+⊥+ ,所以22()()(1)()3()0a b a b a a b b λμμλμλλμ+⋅+=++⋅+=+=,所以0λμ+=.故选:A .5.如图,某人为测量塔高AB ,在河对岸相距s 的C ,D 处分别测得BCD α∠=,BCA ∠=β,BDC γ∠=(其中C ,D 与塔底B 在同一水平面内),则塔高AB =()A.()sin tan sin s γβαγ⋅+B.()sin sin tan s γαγβ⋅+C.()sin sin tan s αγγβ⋅+D.()sin sin sin s αγγβ⋅+【答案】A 【解析】【分析】根据给定条件,在BCD △中,利用正弦定理求出BC ,再利用直角三角形边角关系求解即得.【详解】在BCD △中,由正弦定理得sin sin BC CDBDC CBD =∠∠,sin sin(π)BC s γαγ=--,则sin sin()s BC γαγ=+,在Rt ABC △中,sin sin tan tan tan sin()sin()s s AB BC ACB γγββαγαγ=∠=⋅=++.故选:A6.如图,圆锥底面半径为23,母线2PA =,点B 为PA 的中点,一只蚂蚁从A 点出发,沿圆锥侧面绕行一周,到达B 点,其最短路线长度和其中下坡路段长分别为()A.277,3B.77,3C.277,3D.277,7【答案】D 【解析】【分析】将圆锥侧面沿母线PA 剪开并展开成扇形,最短路线即为扇形中的直线段AB ,利用余弦定理即可求解,过P 作AB 的垂线,垂足为M ,由题意得到AM 为上坡路段,MB 为下坡路段,计算即可.【详解】如图,将圆锥侧面沿母线PA 剪开并展开成扇形,由题可得该扇形半径2PA =,弧长为24π2π33⨯=,故圆心角4π2π323APB ∠==,最短路线即为扇形中的直线段AB ,由余弦定理可得:222cos 7AB PA PB PA PB APB =+-⋅∠=;2227cos 27PB AB PA PBA PB BA +-∠==⋅,过P 作AB 的垂线,垂足为M ,当蚂蚁从A 点爬行到点M 过程中,它与点P 的距离越来越小,故AM 为上坡路段,当蚂蚁从点M 爬行到点B 的过程中,它与点P 的距离越来越大,故MB 为下坡路段,下坡路段长27cos 7MB PB PBA =⋅∠=,故选:D7.依次抛掷一枚质地均匀的骰子两次,1A 表示事件“第一次抛掷骰子的点数为2”,2A 表示事件“第一次抛掷骰子的点数为奇数”,3A 表示事件“两次抛掷骰子的点数之和为6”,4A 表示事件“两次抛掷骰子的点数之和为7”,则()A.3A 与4A 为对立事件B.1A 与3A 为相互独立事件C.2A 与4A 为相互独立事件D.2A 与4A 为互斥事件【答案】C 【解析】【分析】利用列举法与古典概型的概率公式求得各事件的概率,由3434,A A A A =∅≠Ω 即可判断A ;由1313()()()P A P A P A A ≠即可判断B ;由2424()()()P A P A P A A =即可判断C ,由24A A ≠∅ 即可判断D.【详解】依次抛掷两枚质地均匀的骰子,两次的结果用有序数对表示,其中第一次在前,第二次在后,样本空间Ω如下:()()()()()(){1,1,1,2,1,3,1,4,1,5,1,6,(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),()()()()()()6,1,6,2,6,3,6,4,6,5,6,6},共36个样本点.则事件1A 包括(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),共6个,11()6P A =,事件2A 包括(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),,共18个,21()2P A =,事件3A 包括(1,5),(2,4),(3,3),(4,2),(5,1),共5个,35()36P A =,事件4A 包括(1,6),(2,5),(3,4),(4,3),(5,2),(6,1),共6个,461()366P A ==.对于A ,3434,A A A A =∅≠Ω ,所以3A 与4A 不为对立事件,故A 错误;对于B ,事件13A A 包括(2,4),则131()36P A A =,又11()6P A =,35()36P A =,所以131315()()()636P A P A P A A =⨯≠,即1A 与3A 不相互独立,故B 错误;对于C ,事件24A A 包括(1,6),(3,4),(5,2),则241()12P A A =,又21()2P A =,41()6P A =,所以2424111()()()2612P A P A P A A =⨯==,即2A 与4A 相互独立,故C 正确;对于D ,事件24A A 包括(1,6),(3,4),(5,2),则24A A ≠∅ ,即2A 与4A 不为互斥事件,故D 错误.故选:C.【点睛】关键点点睛:利用列举法和古典概型的概率公式求得各事件的概率是解决本题的关键.8.已知三棱锥P ABC -的四个顶点在球O 的球面上,PA PB PC ===BPA CPA CPB ∠=∠=∠,E ,F 分别是PA ,AB 的中点,90CEF ∠=︒,则球O 的体积为()A. B. C. D.【答案】D 【解析】【分析】先证得PB ⊥平面PAC ,再求得2AB BC AC ===,从而得-P ABC 为正方体一部分,进而知正方体的体对角线即为球直径,从而得解.【详解】PA PB PC == ,BPA CPA CPB ∠=∠=∠,所以AB BC AC ==,故ABC 为等边三角形,P ABC ∴-为正三棱锥,取AC 的中点O ,连接,PO BO ,则,AC BO AC PO ⊥⊥,又,,BO PO O BO PO =⊂ 面PBO ,所以AC ⊥面PBO ,又BP ⊂面PBO ,所以AC PB ⊥,又E ,F 分别为PA 、AB 中点,//EF PB ∴,EF AC ∴⊥,又EF CE ⊥,,CE AC C EF =∴⊥ 平面PAC ,∴PB ⊥平面PAC ,又,PA PC ⊂面PAC ,所以,PA PB PC PB ⊥⊥,PA PB PC === ,2AB BC AC ∴===,在APC △中由勾股定理得PA PC ⊥,P ABC ∴-为正方体一部分,2R ==2R =,344π338V R ∴=π=⨯=,故选:D .【点睛】思路点睛:补体法解决外接球问题,可通过线面垂直定理,得到三棱两两互相垂直关系,快速得到侧棱长,进而补体成正方体解决.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若a =,222sin a b c ab C +-=,cos sin a B b A c +=,则下列结论正确的是()A.tan 2C = B.π4A =C.b =D.△ABC 的面积为6【答案】ABD 【解析】【分析】A 选项,由余弦定理得sin cos 2CC =,求出sin tan 2cos C C C==;B 选项,由正弦定理和sin sin cos cos sin C A B A B =+化简得到sin cos A A =,求出π4A =;C 选项,在A 选项基础上求出sin 5C =,cos 5C =,从而得到sin 10B =,由正弦定理得到b =D 选项,由三角形面积公式求出答案.【详解】A 选项,由余弦定理得222sin sin cos 222a b c ab C CC ab ab +-===,故sin tan 2cos CC C==,A 正确;B 选项,cos sin a B b A c +=,由正弦定理得sin cos sin sin sin A B B A C +=,因为()sin sin sin cos cos sin C A B A B A B =+=+,所以sin cos sin sin sin cos cos sin A B B A A B A B +=+,即sin sin cos sin B A A B =,因为()0,πB ∈,所以sin 0B ≠,故sin cos A A =,又()0,πA ∈,故π4A =,B 正确;C 选项,由A 选项可知,sin cos 2C C =,又22sin cos 1C C +=,故25sin 14C =,因为()0,πC ∈,所以sin 0C >,解得sin 5C =,故5si cos n 2C C ==,()sin sin sin cos cos sin 252510=+=+=⨯+⨯=B AC A C A C ,由正弦定理得sin sin a bA B=12=b =C 错误;D 选项,△ABC的面积为11sin 6225ab C ==.故选:ABD10.如图所示,下列频率分布直方图显示了三种不同的分布形态.图(1)形成对称形态,图(2)形成“右拖尾”形态,图(3)形成“左拖尾”形态,根据所给图作出以下判断,正确的是()A.图(1)的平均数=中位数=众数B.图(2)的平均数<众数<中位数C.图(2)的众数<中位数<平均数D.图(3)的平均数<中位数<众数【答案】ACD 【解析】【详解】根据平均数,中位数,众数的概念结合图形分析判断.【分析】图(1)的分布直方图是对称的,所以平均数=中位数=众数,故A 正确;图(2)众数最小,右拖尾平均数大于中位数,故B 错误,C 正确;图(3)左拖尾众数最大,平均数小于中位数,故D 正确.故选:ACD.11.在直四棱柱1111ABCD A B C D -中,所有棱长均2,60BAD ∠=︒,P 为1CC 的中点,点Q 在四边形11DCC D 内(包括边界)运动,下列结论中正确的是()A.当点Q 在线段1CD 上运动时,四面体1A BPQ 的体积为定值B.若AQ//平面1A BP ,则AQ 5C.若1A BQ △的外心为M ,则11A B A M ⋅为定值2D.若17AQ =,则点Q 的轨迹长度为23π【答案】ABD 【解析】【分析】由题易证得1//D C 面1A BP ,所以直线1CD 到平面1A BP 的距离相等,又1A BP 的面积为定值,可判断A ;取1,DD DC 的中点分别为,M N ,连接,,AM MN AN ,由面面平行的判定定理可得平面1//A BP 面AMN ,因为AQ ⊂面AMN ,所以AQ//平面1A BP ,当AQ MN ⊥时,AQ 有最小值可判断B ;由三角形外心的性质和向量数量积的性质可判断C ;在111,DD D C 上取点32,A A ,使得13123=1D A D A =,,易知点Q 的轨迹为圆弧23A A 可判断D.【详解】对于A ,因为11//A B D C ,又因为1A B ⊂面1A BP ,1D C ⊄面1A BP ,所以1//D C 面1A BP ,所以直线1CD 到平面1A BP 的距离相等,又1A BP 的面积为定值,故A 正确;对于B ,取1,DD DC 的中点分别为,M N ,连接,,AM MN AN ,则易证明://AM PC ,AM ⊄面1A BP ,PC ⊄面1A BP ,所以//AM 面1A BP ,又因为1//A B MN ,,MN ⊄面1A BP ,1A B ⊄面1A BP ,所以//MN 面1A BP ,MN AM M ⋂=,所以平面1//A BP 面AMN ,AQ ⊂面AMN ,所以AQ//平面1A BP当AQ MN ⊥时,AQ 有最小值,则易求出5,2,AM MN ==2212cos1204122172AN AD DN AD DN ⎛⎫=+-⋅︒=+-⨯⨯⨯-= ⎪⎝⎭,Q M 重合,所以则AQ 的最小值为5AM =,故B 正确;对于C ,若1A BQ △的外心为M ,,过M 作1MH A B ⊥于点H ,2212+2=22A B 则21111==42A B A M A B ⋅ .故C 错误;对于D ,过1A 作111A O C D ⊥于点O ,易知1A O ⊥平面11C D D ,111cos 13OD A D π==在111,DD D C 上取点32,A A ,使得13123=1D A D A =,,则13127A A A A ==,32732OA OA ==-=所以若17AQ =,则Q 在以O 为圆心,2为半径的圆弧23A A 上运动,又因为1131,3,D O D A ==所以323A OA π∠=,则圆弧23A A 等于23π,故D 正确.故选:ABD.三、填空题:本题共3小题,每小题5分,共15分.12.在ABC 中,120,2,7,ACB AC AB ACB ∠∠=== 的角平分线交AB 于D ,则CD =__________.【答案】23【解析】【分析】在ABC 中,由余弦定理可得:1BC =,由正弦定理可得21sin 7B =,根据角平分线的性质可得:2723DA BD ==,在BCD △中,由正弦定理可得:sin sin CD BD B DCB =∠即可求解.【详解】因为在ABC 中,120,2,7ACB AC AB ∠===由余弦定理可得:2222cos AB AC BC AB BC ACB =+-⋅⋅∠,解得1BC =由正弦定理可得:sin sin AC AB B ACB =∠,即27sin 3B =,解得:21sin 7B =,因为ACB ∠的角平分线交AB 于D ,所以60BCD ︒∠=,由角平分线性质可得:BD BCDA AC=,所以2723DA BD ==,在BCD △中,由正弦定理可得:sin sin CD BDB DCB =∠7321372=23CD =故答案为:2313.某同学用“随机模拟方法”计算曲线ln y x =与直线,0x e y ==所围成的曲边三角形的面积时,用计算机分别产生了10个在区间[]1,e 上的均匀随机数i x 和10个在区间[]0,1上的均匀随机数i y (*,110i N i ∈≤≤),其数据如下表的前两行.x 2.50 1.01 1.90 1.22 2.52 2.17 1.89 1.96 1.36 2.22y 0.840.250.980.150.010.600.590.880.840.10lnx0.900.010.640.200.920.770.640.670.310.80由此可得这个曲边三角形面积的一个近似值为_________.【答案】()315e -【解析】【分析】先根据题意以及题中数据,可得:向矩形区域101x ey ≤≤⎧⎨≤≤⎩内随机抛掷10个点,有6个点在曲边三角形内,由此即可估计出曲边三角形的面积.【详解】由题意以及表中数据可得,向矩形区域101x ey ≤≤⎧⎨≤≤⎩内随机抛掷10个点,有6个点在曲边三角形内,所以其频率为63105=,因为矩形区域面积为()111e e -⨯=-,所以这个曲边三角形面积的一个近似值为()315e -.故答案为()315e -【点睛】本题主要考查几何概型,以及定积分在求面积中的应用,属于常考题型.14.若正四面体ABCD 的顶点都在一个表面积为6π的球面上,过点C 且与BD 平行的平面α分别与棱,AB AD 交于点,E F ,则空间四边形BCFE 的四条边长之和的最小值为__________.【答案】4+4【解析】【分析】根据条件求出正四面体ABCD 的棱长为2,设(01)AF AD λλ=<<,利用几何关系得到空间四边形BCFE 的四条边长之和4L =+,即可求出结果.【详解】如图,将正四面体放置到正方体中,易知正四面体外接球即正方体的外接球,设正四面体ABCD ,所以正方体的边长为a ,易知正方体的外接球直径为体对角线DH 的长,又DH =,所以正四面体的半径22DH R ==,依题有224π3π6πR a ==,得到a =,即正四面体ABCD 的棱长为2,因为//BD 面CEF ,面ABD ⋂面CEF EF =,BD ⊂面ABD ,所以//EF BD ,设(01)AF AD λλ=<<因为2AB AD BD ===,则2AF AE λ==,22BE DF λ==-,在EAF △中,因为π3EAF ∠=,所以2EF λ=,在FDC △中,π3FDC ∠=,2DC =,则FC =,所以空间四边形BCFE 的四条边长之和2222442L λλ=+-++++,又01λ<<,当12λ=时,min 4L =+,故答案为:4+.【点睛】关键点点晴:本题的关键在于设出(01)AF AD λλ=<<后,利用几何关系得出FC =2EF λ=,22BE λ=-,从而得出空间四边形BCFE 的四条边长之和4L =+,转化成求L 的最小值来解决问题.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.成都石室中学生物基地里种植了一种观赏花卉,这种观赏花卉的高度(单位:cm )介于[]15,25之间,现对生物基地里部分该种观赏花卉的高度进行测量,所得数据统计如下图所示.(1)求a 的值;(2)若从高度在[)15,17和[)17,19中分层抽样抽取5株,再在这5株中随机抽取2株,求抽取的2株高度均在[)17,19内的概率.【答案】(1)0.125;(2)310【解析】【分析】(1)由频率分布直方图各小矩形的面积和等于1,可求得a 的值;(2)再由[)15,17和[)17,19的频率比0.120.153=,确定这5株分别在[)15,17和[)17,19的株数,最后由古典概型的计算公式求得结果即可.【小问1详解】依题意可得()0.050.0750.150.121a ++++⨯=,解得0.125a =;【小问2详解】由(1)可得高度在[)15,17的频率为:20.0500.1⨯=;高度在[)17,19的频率为:20.0750.15⨯=;且0.120.153=,所以分层抽取的5株中,高度在[)15,17和[)17,19的株数分别为2和3,因此记高度在[)15,17植株为,m n ,记高度在[)17,19植株为,,A B C ,则所有选取的结果为(m ,n )、(m ,A )、(m ,B )、(m ,C )、(n ,A )、(n ,B )、(n ,C )、(A ,B )、(A ,C )、(B ,C )共10种情况,令抽取的2株高度均在[)15,17内为事件M ,事件M 的所有情况为(A ,B )、(A ,C )、(B ,C )共3种情况,由古典概型的计算公式得:()310P M =.16.在平面四边形ABCD 中,90ABC ∠=︒,135C ∠=︒,BD =CD =.(1)求cos CBD ∠;(2)若ABD △为锐角三角形,求ABD △的面积的取值范围.【答案】(1(2)()1,5【解析】【分析】(1)在BCD △中,由正弦定理可得sin CBD ∠,从而求得cos CBD ∠.(2)解法一:由(1)求得sin ADB ∠sin cos 55A A =∠+∠,AB 21tan A =+∠,从而ABD S = 21tan A +∠,再利用ππ22ABD A -∠<∠<,即可求得ABD △面积的取值范围;解法二:作1A D AB ⊥于1A ,作2A D BD ⊥于D ,交BA 于2A ,求得1A D ,1A B ,2A D ,分别求出1A BD S ,2A BD S ,利用12A BD ABD A BD S S S <<△△△即可求得范围.【小问1详解】在BCD △中,由正弦定理可得sin sin BD CDBCD CBD ∠∠=,所以22sin 5CBD ∠==,又π0,4CBD ⎛⎫∠∈ ⎪⎝⎭,所以cos 5CBD ∠==.【小问2详解】解法一:由(1)可知,πsin sin cos 25ABD CBD CBD ⎛⎫∠=-∠=∠= ⎪⎝⎭,因为ABD ∠为锐角,所以5cos 5ABD ∠=,所以()sin sin ADB A ABD ∠=∠+∠sin cos cos sin A ABD A ABD =∠∠+∠∠sin cos 55A A =∠+∠,在ABD △中,由正弦定理得sin sin AB BDADB A=∠∠,所以sin 2cos sin sin ADB A AAB A A∠∠+∠==∠∠21tan A =+∠,1sin 2ABD S AB BD ABD=⋅⋅∠122112tan 5tan A A⎛⎫=⨯+⨯=+ ⎪∠∠⎝⎭,因为()πADB ABD A ∠=-∠+∠,且ABD △为锐角三角形,所以()π0π2π02ABD A A ⎧<-∠+∠<⎪⎪⎨⎪<∠<⎪⎩,所以ππ22ABD A -∠<∠<,所以πtan tan 2A ABD ⎛⎫∠>-∠⎪⎝⎭πsin cos 12πsin 2cos 2ABD ABD ABD ABD ⎛⎫-∠ ⎪∠⎝⎭===∠⎛⎫-∠ ⎪⎝⎭,所以102tan A<<∠,所以2115tan A<+<∠,即15ABD S <<△,所以ABD △的面积的取值范围为()1,5.解法二:由(1)可知,sin sin cos 25πABD CBD CBD ∠∠∠⎛⎫=-== ⎪⎝⎭,因为ABD ∠为锐角,所以5cos 5ABD ∠=,tan 2ABD ∠=,如图,作1A D AB ⊥于1A ,作2A D BD ⊥于D ,交BA 于2A ,所以15sin 525A D BD ABD ∠=⋅==,15cos 515A B BD ABD ∠=⋅==,所以112112A BD S =⨯⨯=△,又2tan 5225A D BD ABD ∠=⋅==,所以215552A BD S =⨯=△.由图可知,仅当A 在线段12A A 上(不含端点)时,ABD △为锐角三角形,所以12A BD ABD A BD S S S <<△△△,即15ABD S <<△.所以ABD △面积的取值范围为()1,5.17.年级教师元旦晚会时,“玲儿姐”、“关关姐”和“页楼哥”参加一项趣味问答活动.该活动共有两个问题,如果参加者两个问题都回答正确,则可得到一枝“黑玫瑰”奖品.已知在第一个问题中“玲儿姐”回答正确的概率为23,“玲儿姐”和“关关姐”两人都回答错误的概率为215,“关关姐”和“页楼哥”两人都回答正确的概率为310;在第二个问题中“玲儿姐”、“关关姐”和“页楼哥”回答正确的概率依次为324,,435.且所有的问答中回答正确与否相互之间没有任何影响.(1)在第一个问题中,分别求出“关关姐”和“页楼哥”回答正确的概率;(2)分别求出“玲儿姐”、“关关姐”和“页楼哥”获得一枝“黑玫瑰”奖品的概率,并求三人最终一共获得2枝“黑玫瑰”奖品的概率.【答案】(1)“关关姐”和“页楼哥”回答正确的概率分别为31;52;(2)“玲儿姐”、“关关姐”和“页楼哥”获得一枝“黑玫瑰”奖品的概率分别为122,,;255三人最终一共获得2枝“黑玫瑰”奖品的概率825【解析】【分析】(1)根据独立事件的乘法公式分别求解即可;(2)综合应用独立事件的乘法公式和互斥事件的概率加法公式分别求解即可.【小问1详解】记=i A “玲儿姐回答正确第i 个问题”,i B =“关关姐回答正确第i 个问题”,i C =“页楼哥回答正确第i 个问题”,1,2i =.根据题意得111111122()()()(1())(1())(1)(1())315P A B P A P B P A P B P B ==--=--=,所以13()5P B =;1111133()()()()510P B C P B P C P C ===,所以11()2P C =;故在第一个问题中,“关关姐”和“页楼哥”回答正确的概率分别为35和12.【小问2详解】由题意知222324(),(),()435P A P B P C ===,“玲儿姐”获得一枝“黑玫瑰”奖品的概率为11212231()()()342P P A A P A P A ====;“关关姐”获得一枝“黑玫瑰”奖品的概率为21212322()()()535P P B B P B P B ====;“页楼哥”获得一枝“黑玫瑰”奖品的概率为31212142()()()255P P C C P C P C ===⨯=;三人最终一共获得2枝“黑玫瑰”奖品的概率为123123123(1)(1)(1)P P P P P P P PP P =-+-+-122132123825525525525=⨯⨯+⨯⨯+⨯=.所以“玲儿姐”、“关关姐”和“页楼哥”获得一枝“黑玫瑰”奖品的概率分别为122255,,;三人最终一共获得2枝“黑玫瑰”奖品的概率为825.18.如图,在直三棱柱111ABC A B C -中,M 为棱AC 的中点,AB BC =,2AC =,1AA =.(1)求证:1//B C 平面1A BM ;(2)求证:1AC ⊥平面1A BM ;(3)在棱1BB 上是否存在点N ,使得平面1AC N ⊥平面11AA C C ?如果存在,求此时1BNBB 的值;如果不存在,请说明理由.【答案】(1)证明见解析;(2)证明见解析;(3)存在,112BN BB =.【解析】【分析】(1)连接1AB 与1A B ,两线交于点O ,连接OM ,利用三角形中位线性质得到1//OM B C ,再利用线面平行的判定即可证.(2)应用线面垂直的性质、判定可得BM ⊥平面11ACC A ,从而得到1BM AC ⊥,根据11AC C A MA∠=∠和111190AC C C AC A MA C AC ∠+∠=∠+∠=得到11A M AC ⊥,再利用线面垂直的判定即可证.(3)当点N 为1BB 的中点,设1AC 的中点为D ,连接DM ,DN ,易证四边形BNDM 为平行四边形,从而得到//BM DN ,进而有DN ⊥平面11ACC A ,再利用面面垂直的判定即可证.【小问1详解】连接1AB 与1A B ,两线交于点O ,连接OM,在1B AC △中M ,O 分别为AC ,1AB 的中点,所以1//OM B C ,又OM ⊂平面1A BM ,1B C ⊄平面1A BM ,所以1//B C 平面1A BM .【小问2详解】因为1AA ⊥底面ABC ,BM ⊂平面ABC ,所以1AA BM ⊥.又M 为棱AC 的中点,AB BC =,所以BM AC ⊥.因为1AA AC A = ,1AA ,AC ⊂平面11ACC A ,所以BM ⊥平面11ACC A ,1AC ⊂平面11ACC A ,所以1BM AC ⊥.因为2AC =,所以1AM =.又1AA =,在1Rt ACC V 和1Rt A AM中,11tan tan AC C A MA ∠=∠=,所以11AC C A MA ∠=∠,即111190AC C C AC A MA C AC ∠+∠=∠+∠=,所以11A M AC ⊥,又1BM A M M = ,BM ,1A M ⊂平面1A BM ,所以1AC ⊥平面1A BM .【小问3详解】当点N 为1BB 的中点,即112BN BB =时,平面1AC N ⊥平面11AA C C .证明如下:设1AC 的中点为D ,连接DM ,DN,因为D ,M 分别为1AC ,AC 的中点,所以1//DM CC 且112DM CC =,又N 为1BB 的中点,所以//DM BN 且DM BN =,所以四边形BNDM 为平行四边形,故//BM DN ,由(2)知:BM ⊥平面11ACC A ,所以DN⊥平面11ACC A ,又DN ⊂平面1AC N ,所以平面1AC N ⊥平面11ACC A .19.为了监控某种零件的一条生产线的生产过程,检验员每隔30min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm ).下面是检验员在一天内依次抽取的16个零件的尺寸:抽取次序12345678零件尺寸9.9510.129.969.9610.019.929.9810.04抽取次序910111213141516零件尺寸10.269.9110.1310.029.2210.0410.059.95经计算得16119.9716i i x x ===∑,0.212s ==,18.439≈,()()1618.5 2.78ii x x i =--=-∑其中ix 为抽取的第i 个零件的尺寸,1,2,...,16i =.(1)求()(),1,2,...,16i x i i =的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小);(2)一天内抽检零件中,如果出现了尺寸在()3,3x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(i )从这一天抽检的结果看,是否需对当天的生产过程进行检查?(ii )请利用已经学过的方差公式:()2211n i i s x x n ==-∑来证明方差第二公式22211n i i s x n x ==-∑.(iii )在()3,3x s x s -+之外的数据称为离群值,试剔除离群值,并利用(ii )中公式估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本()(),1,2,...,i i x y i n =的相关系数ˆniix ynxyr-=∑0.09≈.【答案】(1)0.178-;可以认为零件的尺寸不随生产过程的进行而系统地变大或变小(2)(i )从这一天抽检的结果看,需对当天的生产过程进行检查;(ii )证明见解析;(iii )均值10.02;标准差0.09【解析】【分析】(1)根据数据和公式即可计算r 的值,根据0.25r <的规则进行判断即可;(2)(i )计算()3,3x s x s -+的值,根据13个零件的尺寸与区间的关系进行判断;(ii )根据已学公式进行变形即可证明;(iii )代入公式计算即可.【小问1详解】由题可得()()16118.5 2.78n i iii i x y nxy x x i ==-=--=-∑∑,40.848s===,18.439=≈所以 2.780.180.84818.439ˆniix ynxyr--=≈-⨯∑,则0.180.25r =<,所以可以认为零件的尺寸不随生产过程的进行而系统地变大或变小【小问2详解】(i )由题可得39.9730.2129.334x s -=-⨯=,39.9730.21210.606x s +=+⨯=,因为第13个零件的尺寸为9.22,9.229.334<,所以从这一天抽检的结果看,需对当天的生产过程进行检查;。

福建省漳州市2023-2024学年高一下学期7月期末考试 数学含答案

福建省漳州市2023-2024学年高一下学期7月期末考试 数学含答案

漳州市2023-2024学年(下)期末高中教学质量检测高一数学试题(答案在最后)(考试时间:120分钟满分:150分)考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束,考生必须将答题卡交回.一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z 满足()1i 2i z +=,其中i 为虚数单位,则z =()A.1C.2D.2.设x ∈R ,向量()(),1,2,4a x b ==- ,且a b ⊥ ,则a b += ()A.3B.5C.9D.253.某校在五四青年节举行了班班有歌声比赛.现从该校随机抽取20个班级的比赛成绩,得到以下数据,由此可得这20个比赛成绩的第80百分位数是()比赛成绩678910班级数35444A.8.5B.9C.9.5D.104.设,m n 是两条不同的直线,,αβ是两个不同的平面,则下列命题中正确的是()A.若,m αβ⊥∥α,则m β⊥B.若m ∥,n αα⊥,则m n ⊥C.若,m n n α⊥⊥,则m ∥αD.若α∥,,m m βα⊂∥n ,则n ∥β5.某校高一、高二、高三的学生志愿者人数分别为100,100,50.按学生所在年级进行分层,用分层随机抽样的方法从中抽取5名学生去敬老院献爱心.从这5人中随机抽取2人作为负责人,则2名负责人来自不同年级的概率为()A.15B.25C.35D.456.如图,在ABC 中,3AB AD =,点E 是CD 的中点.设,AB a AC b ==,则AE =()A.1162a b +B.1132a b +C.1162a b-+ D.1162a b - 7.如图,A O B ''' 是由斜二测画法得到的AOB 水平放置的直观图,其中2O A O B '=''=',点C '为线段A B ''的中点,C '对应原图中的点C ,则在原图中下列说法正确的是()A.0OC AB ⋅=B.AOB 的面积为2C.OC 在OB 上的投影向量为2OBD.与AB 同向的单位向量为10AB8.威镇阁坐落于漳州市区战备大桥引桥左侧,是漳州市的标志性建筑之一.某同学为测量威镇阁的高度MN ,在威镇阁的正北方向找到一座建筑物AB ,高约为26m ,在地面上点C 处(,,B C N 三点共线)测得建筑物顶部A ,威镇阁顶部M 的仰角分别为30 和45 ,在A 处测得威镇阁顶部M 的仰角为15 ,威镇阁的高度约为()A.65mB.60mC.52mD.45m二、多选题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知甲、乙两位同学在高一年六次考试中的数学成绩的统计如图所示,下列说法正确的是()A.若甲、乙两组数据的平均数分别为12,x x ,则12x x >B.若甲、乙两组数据的方差分别为2212,s s ,则2212s s >C.甲成绩的中位数大于乙成绩的中位数D.甲成绩的极差小于乙成绩的极差10.在复平面内,下列说法正确的是()A.复数12i z =-,则z 在复平面内对应的点位于第四象限B.232024i i i i 0++++= C.若复数12,z z 满足1212z z z z +=-,则120z z =D.若1z =,则1i z ++1+11.已知正方体1111ABCD A B C D -的棱长为1,,E F 分别为1,BB BC 的中点,下列说法正确的是()A.直线1A D 与平面1D EF 平行B.直线EF 与平面ABCD 所成的角为60C.异面直线1AC 与BD 所成角的余弦值为2D.若点G 是该正方体表面及其内部的一个动点,且AG ∥平面1BDC ,则线段CG 的长的取值范围是3⎡⎢⎣三、填空题:本题共3小题,每小题5分,共15分.12.,上、下底面半径分别为2,3,则该圆台的体积为__________.13.复数1+是方程()20,x px q p q ++=∈R 的一个根,则p q +=__________.14.二面角l αβ--为π,,,3A l D B C β∈∈、为线段AD 的三等分点,且AD =D 到l 的距离为3.若P 为平面α内一动点,则BPC ∠最大时,cos BPC ∠的值为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知复数()12121i ,12i,z b b z z z =+∈=+R 为纯虚数.(1)求b 的值;(2)在复平面内,若12,z z 对应的向量分别为,OA OB,其中O 为原点,求cos ,OA OB .16.(15分)漳州古城有着上千年的建城史,是国家级闽南文化生态保护区的重要组成部分,并人选首批“中国历史文化街区”.五一假期来漳州古城旅游的人数创新高,单日客流峰值达20万人次.为了解游客的旅游体验满意度,某研究性学习小组用问卷调查的方式随机调查了100名游客,该兴趣小组将收集到的游客满意度分值数据(满分100分)分成六段:[)[)[]40,50,50,60,,90,100⋯得到如图所示的频率分布直方图.(1)求频率分布直方图中a 的值,并估计100名游客满意度分值的众数和中位数(结果保留整数);(2)已知满意度分值落在[)70,80的平均数175z =,方差219s =,在[)80,90的平均数为285z =,方差224s =,试求满意度分值在[)70,90的平均数z 和方差2s .17.(15分)如图1,在直角三角形P BC '中,90,,P CB A D ∠=' 分别为,P B P C ''的中点,将P AD ' 沿AD 折起,形成四棱锥P ABCD -,如图2.点,,E F M 分别为,,PB BC PD 的中点,设平面PAB 与平面PCD 的交线为l .(1)求证:l ∥平面AEF ;(2)求证:l BC ⊥;(3)过点,,A E M 的平面交PC 于点N ,求PNNC的值.18.(17分)孟德尔在观察踠豆杂交时发现了以下规律:㱧豆的各种性状是由其遗传因子决定的.以子叶颜色为例,踠豆的子叶分黄、绿两种颜色,其中黄色为显性性状,绿色为隐性性状.我们用DD 表示子叶为黄色的踠豆的遗传因子对,用dd 表示子叶为绿色的踠豆的遗传因子对.当这两种踠豆杂交时,父本的其中一个遗传因子与母本的其中一个遗传因子等概率随机组合,子一代的遗传因子对全部为Dd ,如下图所示,其中D 为显性遗传因子,d 为隐性遗传因子.当生物的遗传因子对中含有显性遗传因子时呈现显性性状,否则呈现隐性性状.例如:DD,Dd 均指示黄色子叶,dd 指示绿色子叶.我们称以上定律为孟德尔定律.已知人的单、双眼皮性状服从孟德尔定律,其中双眼皮是显性性状,记其遗传因子对为AA 或Aa ;单眼皮是隐性性状,记其遗传因子对为aa .若仅考虑眼皮性状,已知甲的母亲、父亲、伯父、姑父、姑母的遗传因子对均为Aa ,伯母为单眼皮.(1)求甲和堂弟都是单眼皮的概率;(2)求甲和堂弟、表妹三人中至少两人为单眼皮的概率.19.(17分)我国南宋著名数学家秦九韶在他的著作《数书九章》卷五“田域类”有一个题目:“问沙田一段,有三斜,其小斜一十三里,中斜一十四里,大斜一十五里,里法三百步.欲知为田几何?”其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上.以小斜幂乘大斜幂减上,余四约之,为实;一为从隅,开平方得积.”这就是秦九韶推出的“三斜求积”公式.若ABC 的内角,,A B C 的对应边分别为,,a b c ,面积为S ,则“三斜求积”公式为S =(1)用“三斜求积”公式证明1sin 2S ac B =;(2)若2b =cos B C c ⋅+=,求ABC 面积的最大值;(3)定义:四面体中,若异面棱长相等的四面体为等腰四面体.设等腰四面体E FGH -的外接球表面积为1,S FGH 的外接圆面积为2S .已知,FG a FH b ==,且()()()()()222222222222222222222,xy z y zz x x y y z zx xy x y z x y b ++++=+++++=,222y z a +=,试用,,x y z 表示21S S ,并求21S S 的取值范围.漳州市2023-2024学年(下)期末高中教学质量检测高一数学参芳答案评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制定相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数4.只给整数分数.选择题和填空题不给中间分.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)12345678BBCBDADC二、多选题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.91011ACDBDAD三、填空题:本题共3小题,每小题5分,共15分.12.19π313.114.2四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.解:(1)因为121i,12i z b z =+=+,所以()()()()2121i 12i 12i i 2i 122i z z b b b b b =++=+++=-++,因为12z z 为纯虚数,所以120,20,b b -=⎧⎨+≠⎩解得12b =.(2)由(1)得111i 2z =+,又212i z =+,所以12,z z 在复平面内对应点的坐标分别为11,2A ⎛⎫⎪⎝⎭和()1,2B ,所以()11,,1,22OA OB ⎛⎫== ⎪⎝⎭cos ,||||OA OBOA OB OA OB ⋅=4.5=16.解:(1)由频率分布直方图可得,()0.0050.0120.020.025101a +⨯+++⨯=,解得0.03a =,由频率分布直方图可估计众数为85.满意度分值在[)40,80的频率为()0.0050.0120.02100.450.5+⨯+⨯=<,在[)40,90的频率为()0.0050.0120.020.03100.750.5+⨯++⨯=>,所以中位数落在区间[)80,90内,所以中位数为0.50.452458010820.33-+⨯=≈.(2)由频率分布直方图得,满意度分值在[)70,80的频率为0.02100.2⨯=,人数为20;在[)80,90的频率为0.03100.3⨯=,人数为30,把满意度分值在[)70,80记为1220,,,x x x ,其平均数175z =,方差219s =,在[)80,90记为1230,,,y y y ,其平均数285z =,方差224s =,所以满意度分值在[)70,90的平均数12203020753085815050z z z +⨯+⨯===,根据方差的定义,满意度分值在[)70,90的方差为()()203022211150i j i j s x z y z==⎡⎤=-+-⎢⎥⎣⎦∑∑()()203022112211150i j i j x z z z y z z z ==⎡⎤=-+-+-+-⎢⎥⎣⎦∑∑由()20201111200iii i x z x z==-=-=∑∑,可得()()()()2020111111220ii i i x z zz z z x z ==--=--=∑∑,同理可得()()3022120jj yz z z =--=∑,因此,()()()()202030302222211221111150i j i i j j s x z z z y z z z====⎡⎤=-+-+-+-⎢⎥⎣⎦∑∑∑∑()()2222112220305050s z z s z z ⎡⎤⎡⎤=+-++-⎣⎦⎣⎦2220309(7581)4(8581)305050⎡⎤⎡⎤=+-++-=⎣⎦⎣⎦17.解法一:(1)取PC 中点G ,连接,DG EG,如图所示,因为E 是PB 中点,所以EG 为PBC 的中位线,所以EG ∥1,2BC EG BC =,因为AD ∥1,2BC AD BC =,所以AD ∥,EG AD EG =,所以四边形ADGE 是平行四边形,所以AE ∥DG ,因为DG ⊂平面,PCD AE ⊄平面PCD ,所以AE ∥平面PCD ,又AE ⊂平面PAB ,平面PAB ⋂平面PCD l =,所以AE ∥l ,因为AE ⊂平面,AEF l ⊄平面AEF ,所以l ∥平面AEF .(2)在P BC ' 中,,A D 分别为,P B P C ''的中点,所以AD 为P BC ' 的中位线,所以AD ∥BC ,因为90P CB ∠=' ,即P C BC '⊥,所以AD P C ⊥',所以翻折后,,AD PD AD CD ⊥⊥,因为,PD CD D PD ⋂=⊂平面PCD ,CD ⊂平面PCD ,所以AD ⊥平面PCD ,所以BC ⊥平面PCD ,因为平面PAB ⋂平面PCD l =,所以l ⊂平面PCD ,所以l BC ⊥.(3)由(1)知,AE ∥平面PCD ,因为平面AENM ⋂平面PCD MN =,AE ⊂平面AENM ,所以AE ∥MN ,所以MN ∥DG ,因为M 是PD 中点,所以N 是PG 中点,所以13PN NC =.解法二:(1)如图,延长,CD BA 交于点Q ,连接PQ ,则直线PQ 即为交线l .(理由如下:因为CD AB Q ⋂=,所以,Q CD Q AB ∈∈,因为CD ⊂平面,PCD AB ⊂平面PAB ,所以Q ∈平面PCD ,Q ∈平面PAB ,又P ∈平面,PCD P ∈平面PAB ,所以平面PAB ⋂平面PCD PQ =.)在P BC ' 中,,A D 分别为,P B P C ''的中点,所以AD 为P BC ' 的中位线,所以AD ∥BC ,且12AD BC =,所以A 为BQ 中点.因为E 为PB 中点,所以AE 为PBQ 的中位线,所以AE ∥,PQ 因为AE ⊂平面,AEF PQ ⊄平面AEF ,所以PQ ∥平面AEF ,即l ∥平面AEF .(2)同解法一.(3)取PC 中点G ,连接,DG EG ,因为E 是PB 中点,所以EG ∥1,2BC EG BC =,因为AD ∥1,2BC AD BC =,所以,AD EG AD =∥EG ,所以四边形ADGE 是平行四边形,所以AE ∥DG ,因为DG ⊂平面,PCD AE ⊄平面PCD ,所以AE ∥平面PCD ,因为平面AENM ⋂平面,PCD MN AE =⊂平面AENM ,所以AE ∥MN ,所以MN ∥DG ,因为M 是PD 中点,所以N 是PG 中点,所以13PN NC =.18.解:(1)设事件A =“甲为单眼皮”,事件B =“堂弟为单眼皮”,事件,A B 为相互独立事件,事件AB =“甲和堂弟都是单眼皮”,因为甲的母亲、父亲的遗传因子对均为Aa ,所以甲的遗传因子有三种类型:AA,Aa ,aa ,其中AA ,aa 出现的概率都是14,Aa 出现的概率为12,甲为单眼皮时,遗传因子为aa ,所以()14P A =,因为伯父遗传因子对为Aa ,伯母遗传因子对为aa ,所以堂弟的遗传因子有两种类型:Aa ,aa .其中Aa ,aa 出现的概率均为12,所以堂弟为单眼皮的概率()12P B =,故甲和堂弟都是单眼皮的概率()()()111428P AB P A P B ==⨯=.(2)设事件C =“表妹为单眼皮”,则,,,,,A B C A B C 相互独立,事件ABC =“甲和堂弟单眼皮,表妹双眼皮”,事件ABC =“甲和表妹单眼皮,堂弟双眼皮”,事件ABC =“表妹和堂弟单眼皮,甲双眼皮”,事件ABC =“甲和堂弟、表妹都是单眼皮”,则事件,,,ABC ABC ABC ABC 两两互斥,因为1331(),(),(,()4442P C P C P A P B ====,所以1133(()()()42432P ABC P A P B P C ==⨯⨯=,1111()()()()42432P ABC P A P B P C ==⨯⨯=,3113(()()(),42432P ABC P A P B P C ==⨯⨯=,1111()()()(),42432P ABC P A P B P C ==⨯⨯=,所以甲和堂弟表妹三人中至少两人为单眼皮的概率为()()()()()P ABC ABC ABC ABC P ABC P ABC P ABC P ABC +++=+++31311.323232324=+++=19.解法一:(1)证明:由余弦定理得222cos 2a c b B ac+-=,所以2222cos a c b ac B +-=,所以S ===1sin 2ac B ==所以1sin 2S ac B =得证.(2cos B C c ⋅+=,由余弦定理得,22222222a c b a b c c ac ab+-+-⋅+=因为2b =,代入上式化简得22ac =,所以c =,所以S ====所以当2a =时,ABC (3)由题意,等腰四面体可补形成与其共外接球的长方体,设GH c =,则222z x c +=,设等腰四面体的外接球半径为R ,所以R =所以()222214ππS R x y z ==++,在FGH 中,由余弦定理得222cos 2a b c F ab+-=,222222sin 1cos 12a b c F F ab ⎛⎫+-=-=- ⎪⎝⎭()()()()4222222222222221y x y x z y z y z x y y z x y ++=-=++++所以sin F =设FGH 的外接圆半径为r,由正弦定理得2sin c r F =,所以2sin c r F==,所以()()()()22222222222222ππ4y z z x x y S r y z z x x y +++==++,所以()()()()()222222222222222214y z z x x y S S y z z x x y x y z +++=++++,因为()()()()()222222222222222222x y z y z z x x y y z z x x y x y z ++++=++++,所以()()()()()()2222222222222222144y z z x x y S S y z z x x y x y z +++=++++,所以()()()()()()2222222221222222244y z z x x y x y z S S y z z x x y ++++=+++()()()22222222244x y z yz z x x y =++++因为2222222,2,2x y xy y z yz z x xz +++ ,所以()()()2222222228y z z x x y x y z +++ ,所以()()()222222222412x y z y z z x x y +++ ,所以()()()2222222224942x y z yz z x x y ++++ ,当且仅当x y z ==时,等号成立,又因为()()()22222222240x y z y z z x x y >+++,所以()()()222222222444x y z y z z x x y +>+++,所以()()()22222222249442x y z y z z x x y <++++ ,即12942S S < ,所以212194S S < ,所以21S S 的取值范围为21,94⎡⎫⎪⎢⎣⎭.解法二:(1)同解法一.(2)因为2sin sin sin a b c R A B C===,所以2sin ,2sin c R C b R B ==,因为cos b B C c =⋅+=,cos cos B C c ⋅=,2sin cos 2sin cos 2sin R C B R B C R C +=,()sin C B C +=sin A C =,所以22c R R=,所以c =,所以S ===所以当2a =时,ABC(3)由题意,等腰四面体可补形成与其共外接球的长方体,设GH c =,则222z x c +=,设等腰四面体的外接球半径为R ,所以R =所以()222214ππS R x y z ==++,又因为FGH S ===设FGH 的外接圆半径为r ,由正弦定理得2sin c r F =,因为1sin 2FGH S ab F = ,所以2sin FGH S F ab = ,代入,22FGHabcr S ==所以()()()()22222222222222ππ4y z z x x y Sr y z z x x y +++==++,下同解法一.。

2023-2024学年吉林省长春市东北师范大学附属中学高一下学期期末数学试题+答案解析

2023-2024学年吉林省长春市东北师范大学附属中学高一下学期期末数学试题+答案解析

2023-2024学年吉林省长春市东北师范大学附属中学高一下学期期末数学试题❖一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知i为虚数单位,复数,则()A. B. C. D.2.已知两条不同的直线m,n和两个不同的平面,,下列四个命题中正确的为()A.若,,则B.若,,则C.若,,则D.若,,则3.高一年级某位同学在五次考试中的数学成绩分别为105,90,104,106,95,这位同学五次数学成绩的方差为()A. B.C.50D.4.在直三棱柱中,,且,则异面直线与所成角的余弦值是()A. B. C. D.5.数据1,2,5,4,8,10,6的第60百分位数是()A. B.C.6D.86.已知圆台的上、下底面圆的半径分别为1和3,高为1,则圆台的表面积为()A. B.C. D.7.某学校高一年级学生有900人,其中男生500人,女生400人,为了获得该校高一全体学生的身高信息,现采用样本量按比例分配的分层随机抽样方法抽取了容量为180的样本,经计算得男生样本的均值为170,女生样本的均值为161,则抽取的样本的均值为是()A. B.166C. D.1688.棱长为2的正方体内有一个棱长为a的正四面体,且该正四面体可以在正方体内任意转动,则a的最大值为()A.1B.C.D.2二、多选题:本题共3小题,共15分。

在每小题给出的选项中,有多项符合题目要求。

全部选对的得5分,部分选对的得2分,有选错的得0分。

9.某单位为了解员工参与一项志愿服务活动的情况,从800位员工中抽取了100名员工进行调查,根据这100人的服务时长单位:小时,得到如图所示的频率分布直方图.则()A.a的值为B.估计员工平均服务时长为45小时C.估计员工服务时长的中位数为小时D.估计本单位员工中服务时长超过50小时的有45人10.正六边形ABCDEF的边长为2,G为正六边形边上的动点,则的值可能为()A. B. C.12 D.1611.如图,正三棱锥和正三棱锥的侧棱长均为,若将正三棱锥绕BD旋转,使得点A,C分别旋转至点M,N处,且M,B,D,E四点共面,点M,E分别位于BD两侧,则()A. B.C.MC的长度为D.点C与点A旋转运动的轨迹长度之比为三、填空题:本题共3小题,每小题5分,共15分。

高一数学下册期末试卷及答案

高一数学下册期末试卷及答案

高一数学下册期末试卷及答案心无旁骛,全力以赴,争分夺秒,顽强拼搏脚踏实地,不骄不躁,长风破浪,直济沧海,我们,注定成功!下面给大家分享一些关于高一数学下册期末试卷及答案,希望对大家有所帮助。

一.选择题1.若函数f(x)是奇函数,且有三个零点x1、x2、x3,则x1+x2+x3的值为( )A.-1B.0C.3D.不确定[答案] B[解析] 因为f(x)是奇函数,其图象关于原点对称,它有三个零点,即f(x)的图象与x轴有三个交点,故必有一个为原点另两个横坐标互为相反数.∴x1+x2+x3=0.2.已知f(x)=-x-x3,x∈[a,b],且f(a)?f(b)<0,则f(x)=0在[a,b]内( )A.至少有一实数根B.至多有一实数根C.没有实数根D.有惟一实数根[答案] D[解析] ∵f(x)为单调减函数,x∈[a,b]且f(a)?f(b)<0,∴f(x)在[a,b]内有惟一实根x=0.3.(09?天津理)设函数f(x)=13x-lnx(x>0)则y=f(x)( )A.在区间1e,1,(1,e)内均有零点B.在区间1e,1,(1,e)内均无零点C.在区间1e,1内有零点;在区间(1,e)内无零点D.在区间1e,1内无零点,在区间(1,e)内有零点[答案] D[解析] ∵f(x)=13x-lnx(x>0),∴f(e)=13e-1<0,f(1)=13>0,f(1e)=13e+1>0,∴f(x)在(1,e)内有零点,在(1e,1)内无零点.故选D.4.(2010?天津文,4)函数f(x)=ex+x-2的零点所在的一个区间是( )A.(-2,-1)B.(-1,0)C.(0,1)D.(1,2)[答案] C[解析] ∵f(0)=-1<0,f(1)=e-1>0,即f(0)f(1)<0,∴由零点定理知,该函数零点在区间(0,1)内.5.若方程x2-3x+mx+m=0的两根均在(0,+∞)内,则m的取值范围是( )A.m≤1B.0C.m>1D.0[答案] B[解析] 设方程x2+(m-3)x+m=0的两根为x1,x2,则有Δ=(m-3)2-4m≥0,且x1+x2=3-m>0,x1?x2=m>0,解得06.函数f(x)=(x-1)ln(x-2)x-3的零点有( )A.0个B.1个C.2个D.3个[答案] A[解析] 令f(x)=0得,(x-1)ln(x-2)x-3=0,∴x-1=0或ln(x-2)=0,∴x=1或x=3,∵x=1时,ln(x-2)无意义,x=3时,分母为零,∴1和3都不是f(x)的零点,∴f(x)无零点,故选A.7.函数y=3x-1x2的一个零点是( )A.-1B.1C.(-1,0)D.(1,0)[答案] B[点评] 要准确掌握概念,“零点”是一个数,不是一个点.8.函数f(x)=ax2+bx+c,若f(1)>0,f(2)<0,则f(x)在(1,2)上零点的个数为( )A.至多有一个B.有一个或两个C.有且仅有一个D.一个也没有[答案] C[解析] 若a=0,则b≠0,此时f(x)=bx+c为单调函数,∵f(1)>0,f(2)<0,∴f(x)在(1,2)上有且仅有一个零点;若a≠0,则f(x)为开口向上或向下的抛物线,若在(1,2)上有两个零点或无零点,则必有f(1)?f(2)>0,∵f(1)>0,f(2)<0,∴在(1,2)上有且仅有一个零点,故选C.9.(哈师大附中2009~2010高一期末)函数f(x)=2x-log12x的零点所在的区间为( )A.0,14B.14,12C.12,1D.(1,2)[答案] B[解析] ∵f14=214-log1214=42-2<0,f12=2-1>0,f(x)在x>0时连续,∴选B.10.根据表格中的数据,可以判定方程ex-x-2=0的一个根所在的区间为( )x -1 0 1 2 3ex 0.37 1 2.72 7.39 20.09A.(-1,0)B.(0,1)C.(1,2)D.(2,3)[答案] C[解析] 令f(x)=ex-x-2,则f(1)?f(2)=(e-3)(e2-4)<0,故选C.二、填空题11.方程2x=x3精确到0.1的一个近似解是________.[答案] 1.412.方程ex-x-2=0在实数范围内的解有________个.[答案] 2三、解答题13.借助计算器或计算机,用二分法求方程2x-x2=0在区间(-1,0)内的实数解(精确到0.01).[解析] 令f(x)=2x-x2,∵f(-1)=2-1-(-1)2=-12<0,f(0)=1>0,说明方程f(x)=0在区间(-1,0)内有一个零点.取区间(-1,0)的中点x1=-0.5,用计算器可算得f(-0.5)≈0.46>0.因为f(-1)?f(-0.5)<0,所以x0∈(-1,-0.5).再取(-1,-0.5)的中点x2=-0.75,用计算器可算得f(-0.75)≈-0.03>0.因为f(-1)?f(-0.75)<0,所以x0∈(-1,-0.75).同理,可得x0∈(-0.875,-0.75),x0∈(-0.8125,-0.75),x0∈(-0.78125,-0.75),x0∈(-0.78125,-0.765625),x0∈(-0.7734375,-0.765625).由于|(-0.765625)-(0.7734375)|<0.01,此时区间(-0.7734375,-0.765625)的两个端点精确到0.01的近似值都是-0.77,所以方程2x-x2=0精确到0.01的近似解约为-0.77.14.证明方程(x-2)(x-5)=1有两个相异实根,且一个大于5,一个小于2.[解析] 令f(x)=(x-2)(x-5)-1∵f(2)=f(5)=-1<0,且f(0)=9>0.f(6)=3>0.∴f(x)在(0,2)和(5,6)内都有零点,又f(x)为二次函数,故f(x)有两个相异实根,且一个大于5、一个小于2.15.求函数y=x3-2x2-x+2的零点,并画出它的简图.[解析] 因为x3-2x2-x+2=x2(x-2)-(x-2)=(x-2)(x2-1)=(x-2)(x-1)(x+1),所以函数的零点为-1,1,2.3个零点把x轴分成4个区间:(-∞,-1],[-1,1],[1,2],[2,+∞].在这4个区间内,取x的一些值(包括零点),列出这个函数的对应值(取精确到0.01的近似值)表:x … -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 …y … -4.38 0 1.88 2 1.13 0 -0.63 0 2.63 …在直角坐标系内描点连线,这个函数的图象如图所示.16.借助计算器或计算机用二分法求方程(x+1)(x-2)(x-3)=1在区间(-1,0)内的近似解.(精确到0.1)[解析] 原方程为x3-4x2+x+5=0,令f(x)=x3-4x2+x+5.∵f(-1)=-1,f(0)=5,f(-1)?f(0)<0,∴函数f(x)在(-1,0)内有零点x0.取(-1,0)作为计算的初始区间用二分法逐步计算,列表如下端点或中点横坐标端点或中点的函数值定区间a0=-1,b0=0 f(-1)=-1,f(0)=5 [-1,0]x0=-1+02=-0.5f(x0)=3.375>0 [-1,-0.5]x1=-1+(-0.5)2=-0.75 f(x1)≈1.578>0 [-1,-0.75]x2=-1+(-0.75)2=-0.875 f(x2)≈0.393>0 [-1,-0.875]x3=-1-0.8752=-0.9375 f(x3)≈-0.277<0 [-0.9375,-0.875]∵|-0.875-(-0.9375)|=0.0625<0.1,∴原方程在(-1,0)内精确到0.1的近似解为-0.9.17.若函数f(x)=log3(ax2-x+a)有零点,求a的取值范围.[解析] ∵f(x)=log3(ax2-x+a)有零点,∴log3(ax2-x+a)=0有解.∴ax2-x+a=1有解.当a=0时,x=-1.当a≠0时,若ax2-x+a-1=0有解,则Δ=1-4a(a-1)≥0,即4a2-4a-1≤0,解得1-22≤a≤1+22且a≠0.综上所述,1-22≤a≤1+22.18.判断方程x3-x-1=0在区间[1,1.5]内有无实数解;如果有,求出一个近似解(精确到0.1).[解析] 设函数f(x)=x3-x-1,因为f(1)=-1<0,f(1.5)=0.875>0,且函数f(x)=x3-x-1的图象是连续的曲线,所以方程x3-x-1=0在区间[1,1.5]内有实数解.取区间(1,1.5)的中点x1=1.25,用计算器可算得f(1.25)=-0.30<0.因为f(1.25)?f(1.5)<0,所以x0∈(1.25,1.5).再取(1.25,1.5)的中点x2=1.375,用计算器可算得f(1.375)≈0.22>0.因为f(1.25)?f(1.375)<0,所以x0∈(1.25,1.375).同理,可得x0∈(1.3125,1.375),x0∈(1.3125,1.34375).由于|1.34375-1.3125|<0.1,此时区间(1.3125,1.34375)的两个端点精确到0.1的近似值是1.3,所以方程x3-x-1=0在区间[1,1.5]精确到0.1的近似解约为1.3.。

河南省郑州市2023-2024学年高一下学期7月期末考试 数学含答案

河南省郑州市2023-2024学年高一下学期7月期末考试 数学含答案

2024学年郑州市高一年级(下)期末考试数学(答案在最后)注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚.2.每道选择题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效.4.考试结束后,请将本试卷和答题卡一并交回.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题p :0x ∃>,0y >,使得不等式(5x y λ+>++成立,则命题p 成立的一个充分不必要条件可以是()A.52λλ⎧⎪≥⎨⎪⎪⎩⎭B.53λλ⎧⎪≥⎨⎪⎪⎩⎭C.54λλ⎧⎪>⎨⎪⎪⎩⎭D.55λλ⎧⎪>⎨⎪⎪⎩⎭2.已知 1.30.920.9, 1.3,log 3a b c ===,则()A.a c b <<B.c a b <<C .a b c<< D.c b a<<3.将函数()πcos 23f x x ⎛⎫=+⎪⎝⎭的图象向右平移π6个单位长度,得到函数()g x 的图象,则函数()()242h x g x x x =-+-的零点个数为()A.1B.2C.3D.44.甲、乙、丙三人参加“社会主义核心价值观”演讲比赛,若甲、乙、丙三人能荣获一等奖的概率分别为123,,234且三人是否获得一等奖相互独立,则这三人中至少有两人获得一等奖的概率为()A.14B.724C.1124D.17245.华罗庚是享誉世界的数学大师,国际上以华氏命名的数学科研成果有“华氏定理”“华氏不等式”“华氏算子”“华—王方法”等,其斐然成绩早为世人所推崇.他曾说:“数缺形时少直观,形缺数时难入微”,告知我们把“数”与“形”,“式”与“图”结合起来是解决数学问题的有效途径.在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来分析函数图象的特征.已知函数()y f x =的图象如图所示,则()f x 的解析式可能是()A.sin ()2xf x = B.cos ()2xf x = C.()sin 12xf x ⎛⎫= ⎪⎝⎭D.()cos 12xf x ⎛⎫= ⎪⎝⎭6.在ABC 中,D 为BC 上一点,且3BD DC =,ABC CAD ∠=∠,2π3BAD ∠=,则tan ABC ∠=()A.3913B.133C.33D.357.已知π02α<<,()2ππ1sin 2sin 2cos cos 2714αα+=,则α=()A.3π14B.5π28C.π7D.π148.已知z 是复数,z 是其共轭复数,则下列命题中正确的是()A.22z z= B.若1z =,则1i z --1+C.若()212i z =-,则复平面内z 对应的点位于第一象限D.若13i -是关于x 的方程20(R)x px q p q ++=∈,的一个根,则8q =-二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,若只有2个正确选项,每选对1个得3分;若只有3个正确选项,每选对1个得2分.9.已知函数()()()sin 0,0,π2πf x A x A ωϕωϕ=+>><<的部分图象如图所示,其图象上最高点的纵坐标为2,且图象经过点()π0,1,,13⎛⎫-⎪⎝⎭,则()A.11π6ϕ=B.3ω=C.()f x 在π2π,23⎡⎤⎢⎥⎣⎦上单调递减D.方程()()21f x a a =-<<-在0,π][内恰有4个互不相等的实根10.已知a ,b ,c是平面上三个非零向量,下列说法正确的是()A.一定存在实数x ,y 使得a xb yc =+成立B.若a b a c ⋅=⋅,那么一定有()a b c⊥- C.若()()a c b c -⊥-,那么2a b a b c-=+- D .若()()a b c a b c ⋅⋅=⋅⋅ ,那么a ,b ,c 一定相互平行11.已知函数2()2sin cos 23cos f x x x x =-,则下列结论中正确的有()A.函数()f x 的最小正周期为πB.()f x 的对称轴为ππ32k x =+,k ∈Z C.()f x 的对称中心为ππ(0)3,2k +,k ∈ZD.()f x 的单调递增区间为π5π[π,π]1212k k -++,k ∈Z 三、填空题:本大题共3个小题,每小题5分,共15分.12.已知142x y >->-,,且21x y +=,则19214x y +++的最小值为_________.13.球面被平面所截得的一部分叫做球冠,截得的圆叫做球冠的底,垂直于截面的直径被截得的一段叫做球冠的高.球被平面截下的一部分叫做球缺,截面叫做球缺的底面,垂直于截面的直径被截下的线段长叫做球缺的高,球缺是旋转体,可以看做是球冠和其底所在的圆面所围成的几何体.如图1,一个球面的半径为R ,球冠的高是h ,球冠的表面积公式是2πS Rh =,如图2,已知,C D 是以AB 为直径的圆上的两点,π,6π3COD AOC BOD S ∠=∠==扇形,则扇形COD 绕直线AB 旋转一周形成的几何体的表面积为__________.14.已知点O 是ABC 的外心,60BAC ∠=︒,设AO mAB nAC =+,且实数m ,n 满足42m n +=,则mn 的值是___________.四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知,a b R ∈且0a >,函数4()4x xbf x a+=-是奇函数.(1)求a ,b 的值;(2)对任意(0,)x ∈+∞,不等式()02x mf x f ⎛⎫-> ⎪⎝⎭恒成立,求实数m 的取值范围.16.本学期初,某校对全校高二学生进行数学测试(满分100),并从中随机抽取了100名学生的成绩,以此为样本,分成[50,60),[60,70),[70,80),[80,90),[90,100],得到如图所示频率分布直方图.(1)估计该校高二学生数学成绩的平均数和85%分位数;(2)为进一步了解学困生的学习情况,从数学成绩低于70分的学生中,分层抽样6人,再从6人中任取2人,求此2人分数都在[)60,70的概率.17.已知ABC 的面积为9,点D 在BC 边上,2CD DB =.(1)若4cos 5BAC ∠=,AD DC =,①证明:sin 2sin ABD BAD ∠=∠;②求AC ;(2)若AB BC =,求AD 的最小值.18.如图,在四棱柱1111ABCD A B C D -中,已知侧面11CDD C 为矩形,60BAD ABC ∠=∠=︒,3AB =,2AD =,1BC =,1AA =,12AE EA =uu u r uuu r,2AFFB =.(1)求证:平面DEF 平面1A BC ;(2)求证:平面11ADD A ⊥平面ABCD ;(3)若三棱锥1E A BC -的体积为33,求平面1A BC 与平面ABCD 的夹角的余弦值.19.已知),cos2a x x =,()2cos ,1b x =- ,记()()R f x a b x =⋅∈(1)求函数()y f x =的值域;(2)求函数()y f x =,[]0,πx ∈的单调减区间;(3)若()π24F x f x m ⎛⎫=+- ⎪⎝⎭,π0,3x ⎛⎤∈ ⎥⎝⎦恰有2个零点12,x x ,求实数m 的取值范围和12x x +的值.2024学年郑州市高一年级(下)期末考试数学注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚.2.每道选择题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

高一数学下学期期末考试试卷(含解析)-人教版高一全册数学试题

高一数学下学期期末考试试卷(含解析)-人教版高一全册数学试题

某某省某某市长安区第一中学2015-2016学年高一下学期期末考试数学一、选择题:共12题1.不等式的解集为A. B.C. D.【答案】C【解析】本题考查一元二次不等式的解法.,即,解得.即不等式的解集为.选C.2.数列,,,,,,,则是这个数列的A.第10项B.第11项C.第12项D.第21项【答案】B【解析】本题考查数列的通项.由题意得,令,解得.选B.3.在数列中,,,则的值为A.52B.51C.50D.49【答案】A【解析】本题考查等差数列的性质.由得,所以为等差数列,所以==,所以.选A.4.=A. B. C. D.【答案】A【解析】本题考查同角三角函数的诱导公式及两角和的正弦公式.====.选A.【备注】.5.已知角的终边经过点,则的值等于A. B. C. D.【答案】D【解析】本题考查三角函数的定义.由题意得所以=,=,所以=.选D.6.若数列是等差数列,且,则A. B. C. D.【答案】B【解析】本题考查等差数列的性质,诱导公式.因为是等差数列,所以=,又所以,,所以===.选B.【备注】若,等差数列中.7.设,若是与的等比中项,则的最小值为A.8B.4C.1D.【答案】B【解析】本题考查等比数列性质,基本不等式.因为是与的等比中项,所以,即.所以===4(当且仅当时等号成立),即的最小值为4.选B.【备注】若,等比数列中.8.已知是等比数列,,则=A.16()B.16()C.)D.)【答案】C【解析】本题考查等比数列的通项与求和.由题意得的公比=,所以=,所以,令,则是以8为首项,为公比的等比数列,所以的前n项和=).选C.【备注】等比数列中,.9.在△中,已知,,若点在斜边上,,则的值为A.48 B.24 C.12 D.6【答案】B【解析】本题考查平面向量的线性运算和数量积.因为,,所以==,所以==+0=24.选B.【备注】.10.函数,,的部分图象如图所示,则A. B.C. D.【答案】D【解析】本题考查三角函数的性质和图象,解析式的求解.由图可得,,,即,即,所以,又过点,所以=2,由可得=.所以.选D.【备注】知图求式.11.已知向量,,且∥,则= A. B. C. D.【答案】C【解析】本题考查向量的坐标运算与线性运算,二倍角公式.因为∥,所以,即,即=-3,所以=====.选C.【备注】二倍角公式:,.12.设函数,若存在使得取得最值,且满足,则m的取值X围是A. B.C. D.【答案】C【解析】本题考查三角函数的性质与最值,一元二次不等式.由题意得,且=,解得,(),所以转化为,而,所以,即,解得或.选C.二、填空题:共6题13.不等式的解集是 .【答案】【解析】本题考查分式不等式,一元二次不等式.由题意得且,所以或.所以不等式的解集是.【备注】一元高次不等式的解法:穿针引线法.14.已知,,则的值为_______.【答案】3【解析】本题考查两角和与差的正切角公式.由题意得=== 3.【备注】=是解题的关键.15.已知向量a=,b=, 若m a+n b=(),则的值为______. 【答案】-3【解析】本题考查平面向量的坐标运算.由题意得===,即,解得,,所以.16.江岸边有一炮台高30m,江中有两条船,船与炮台底部在同一水面上,由炮台顶部测得两船的俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距 m.【答案】【解析】本题考查解三角形的应用.画出图形,为炮台,为两船的位置;由题意得m,,,;在△中,=m.在Rt△中,,所以m;在△中,由余弦定理得=300.即,两条船相距m.【备注】余弦定理:.17.若将函数f(x)=sin(2x+)的图象向右平移φ个单位,所得图象关于y轴对称,则φ的最小正值是.【答案】【解析】本题主要考查三角函数图象平移、函数奇偶性及三角运算.解法一f(x)=sin(2x+)的图象向右平移φ个单位得函数y=sin(2x+-2φ)的图象,由函数y=sin(2x+-2φ)的图象关于y轴对称可知sin(-2φ)=±1,即sin(2φ-)=±1,故2φ-=kπ+,k∈Z,即φ=+,k∈Z,又φ>0,所以φmin=.解法二由f(x)=sin(2x+)=cos(2x-)的图象向右平移φ个单位所得图象关于y轴对称可知2φ+=kπ,k∈Z,故φ=-,又φ>0,故φmin=.【备注】解题关键:解决三角函数的性质问题,一般化为标准型后结合三角函数的图象求解,注意正余弦函数的对称轴过曲线的最低点或最高点是解题的关键所在.18.已知分别为△的三个内角的对边,,且,则△面积的最大值为 . 【答案】【解析】本题考查正、余弦定理,三角形的面积公式.由正弦定理得=,又所以,即,所以=,所以.而,所以;所以≤=(当且仅当时等号成立).即△面积的最大值为.【备注】余弦定理:.三、解答题:共5题19.在△中,已知,,.(1)求的长;(2)求的值.【答案】(1)由余弦定理知,==,所以.(2)由正弦定理知,所以,因为,所以为锐角,则,因此【解析】本题考查二倍角公式,正、余弦定理.(1)由余弦定理知.(2)由正弦定理知,,因此.20.设是公比为正数的等比数列,,.(1)求的通项公式;(2)设是首项为1,公差为2的等差数列,求数列的前n项和.【答案】(1)设q为等比数列{a n}的公比,则由a1=2,a3=a2+4得2q2=2q+4,即q2-q-2=0,解得q=2或q=-1(舍去),因此q=2.所以{a n}的通项为a n=2·2n-1=2n(n∈N*)(2)S n=+n×1+×2=2n+1+n2-2.【解析】本题考查等差、等比数列的通项与求和.(1)求得q=2,所以a n=2n(n∈N*);(2)分组求和得S n=2n+1+n2-2.21.已知向量,,函数,且的图象过点.(1)求的值;(2)将的图象向左平移个单位后得到函数的图象,若图象上各最高点到点的距离的最小值为,求的单调递增区间.【答案】(1)已知,过点,解得(2)由(1)知,左移个单位后得到,设的图象上符合题意的最高点为,,解得,,解得,,由得,的单调增区间为【解析】本题考查平面向量的数量积,三角函数的图像与性质,三角恒等变换.(1)由向量的数量积求得,过点,解得;(2),求得,,其单调增区间为.22.某种汽车的购车费用是10万元,每年使用的保险费、养路费、汽油费约为0.9万元,年维修费用第一年是0.2万元,第二年是0.4万元,第三年是0.6万元,……,以后逐年递增0.2万元. 汽车的购车费用、每年使用的保险费、养路费、汽油费、维修费用的总和平均摊到每一年的费用叫做年平均费用.设这种汽车使用x(x∈N*)年的维修总费用为g(x),年平均费用为f(x).(1)求出函数g(x),f(x)的解析式;(2)这种汽车使用多少年时,它的年平均费用最小?最小值是多少?【答案】(1)由题意,知使用x年的维修总费用为g(x)==0.1x+0.1x2,依题意,得f(x)=[10+0.9x+(0.1x+0.1x2)]=(10+x+0.1x2).(2)f(x)=++1≥2+1=3,当且仅当,即x=10时取等号.所以x=10时,y取得最小值3.所以这种汽车使用10年时,它的年平均费用最小,最小值是3万元.【解析】无23.把正奇数数列中的数按上小下大、左小右大的原则排成如下三角形数表:设是位于这个三角形数表中从上往下数第行、从左往右数第个数.(1)若,求,的值;(2)已知函数,若记三角形数表中从上往下数第行各数的和为,求数列的前项和.【答案】(1)三角形数表中前m行共有个数,所以第m行最后一个数应当是所给奇数列中的第项.故第m行最后一个数是.因此,使得的m是不等式的最小正整数解.由得,, 于是,第45行第一个数是,(2)第n行最后一个数是,且有n个数,若将看成第n行第一个数,则第n行各数成公差为的等差数列,故..故.因为,两式相减得..【解析】本题考查数列的概念,数列的通项与求和.(1)找规律得第m行最后一个数是.可得,求出第45行第一个数是,(2)..错位相减可得.。

2023-2024学年四川省成都市成华区高一下学期7月期末考试数学试题(含答案)

2023-2024学年四川省成都市成华区高一下学期7月期末考试数学试题(含答案)

2023-2024学年四川省成都市成华区高一下学期7月期末考试数学试题一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.若z =(2−ai)(1+2i)为纯虚数,则实数a =( )A. −2B. 2C. −1D. 12.已知向量a =(2,−1),b =(k,2),且(a +b )//a ,则实数k 等于( )A. −4B. 4C. 0D. −323.已知m ,n 是两条不同直线,α,β,γ是三个不同平面,则下列命题中正确的是( )A. 若m//α,n//α,则m//n B. 若α⊥β,γ⊥β,则α⊥γC. 若m ⊥α,n ⊥α,则m//nD. 若m//α,m//β,则α//β4.如图,在正方体ABCD−A 1B 1C 1D 1中,点M ,N 分别为线段AC 和线段A 1B 的中点,求直线MN 与平面A 1B 1BA 所成角为是( )A. 60∘B. 45∘C. 30∘D. 75∘5.已知cos 2α=23,则cos(π4−α)cos(π4+α)的值为( )A. 13B. 23C.23 D.2 296.设a ,b 为单位向量,a 在b 方向上的投影向量为−12b ,则|a−b |=( )A. 1B. 2C.2D.37.筒车亦称“水转筒车”,一种以水流作动力,取水灌田的工具,如图是某公园的筒车,假设在水流稳定的情况下,筒车上的每一个盛水筒都做逆时针方向匀速圆周运动.现有一半径为2米的筒车,在匀速转动过程中,筒车上一盛水筒M 距离水面的高度H(单位:米,记水筒M 在水面上方时高度为正值,在水面下方时高度为负值)与转动时间t(单位:秒)满足函数关系式H =2sin(π30t +φ)+54,φ∈(0,π2),且t =0时,盛水筒M 位于水面上方2.25米处,当筒车转动到第80秒时,盛水筒M 距离水面的高度为( )米.A. 3.25B. 2.25C. 1.25D. 0.258.已知角α,β满足cos α=13,cos (α+β)cos β=14,则cos (α+2β)的值为( )A. 112B. 18C. 16D. 14二、多选题:本题共3小题,共15分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一下数学期末试卷
一、选择题
3?3?226?26?2075sin的值等于()((1)A))D(B))(C(4444
000002sin80220cos80sincos220440sin1?))(2()(B)D(C化简为()(A)
xy)cos?cos(x?sin(x?y)sinx(3)化简)等于(y)sinsin(2x?ycos(2x?y)ycos(A)(D(C(B)))?)的奇函数的为((4)下列函数中是周期为
?x2?tan?)?3sin(2x?yy x1?2siny?)x?2sin(2y?(DC))(B))(A(
23??11????x?Ry?3siny?3sinx?x?的图象,)为了得到函数(5的图象,只需把函数????
5522??????22个单位长度(B)(A)向左平行移动)向右平行移动个单位长度上所有点(55??44(C)向左平行移动个单位长度(D)向右平行移动个单位长度55??????2tan?3?tan等于(,、)都是锐角,则,且)已知(6+??????5333(B)(C)或(D(A))或444444(7)已知a=(2,3),b=(x,-6),若a∥b,则x等于()
(A)9 (B)4 (C)-4 (D)-9
(8)已知a、b是两个单位向量,下列四个命题中正确的是()
22 ab=b=1 (D)Ca与b平行,那么a与b相等()a·a(A)与b相等(B)如果AC ABcosB 的值为(),=(349)在△ABC中,已知),则=(3,0),(34(C)(D)1 )(A)0 (B 55
(10)已知|a|=3,|b|=4(且a与b不共线),若(ak+b)⊥(ak-b),则k的值为()
3334(B)(C)±(D(A)-)±4443(11)已知|a|=3,b=(1,2),且a∥b,则a的坐标为()
556553563563)(,-)((AC)(,-))(-)(,B
5555551 / 5
53563565 D,-)(),)或(-(55551??3,=2),b(x的取值范围为()12)已知向量a =(1,-,若a·b≥0,则实数??x??2222)??[(0,)(0,],??)[,,0],0)(??(??∪∪)((A)C((B)D)3333二、填空题?2,则=A3=,bABC中,已知a、、c是角A、B、C的对边,且a=6,b(13)在三角形4. 角B的大小为?3??xsin2?cosx?. 的值为(14)已知,则??54???bb)a,1?(2)若将向量,得到向量15,则向量绕原点按逆时针方向旋转的坐标是(4?. 5b的夹角大小为3b与a+,则向量2a与,(16)已知|a|=2|b|=1,ab的夹角为-
3
三、解答题)y
??123????22??????cos??tan,.
??????sinAxy?Rx?>,0,(其中A)已知,,求的值)已知(17????1342????
函数(18>6
2 O x
0,??)||. <的部分图象如图所示,求这个函数的解读式2,速度为)如图,飞机的航线和山顶在同一个铅直平面内,已知飞机的高度为海拔25000M(190,此时看到山顶30B,经过8分钟后到达点3000M/分钟,飞行员先在点A看到山顶C的俯角为0M.
C的俯角为60,则山顶的海拔高度为多少263. ,2.449=1.732),(参考数据:==1.414 5b与a=,|=3|b|2,且3+a)已知(20|. a垂直求与b的夹角b-4a3
2 / 5
?xx3x3xsincossincosx?[0,]. ),且,,-21()已知向量a=(),b=(22222(Ⅰ)用cosx表示a·b及|a+b|;(Ⅱ)求函数f(x)=a·b+2|a+b|的最小值.
(22)已知向量a、b、c两两所成的角相等,并且|a|=1,|b|=2,|c|=3.
(Ⅰ)求向量a+b+c的长度;
. 的夹角与+(Ⅱ)求ab+ca
参考答案3 / 5
一、选择题
题号12 11
10
3 4 5 6 7 8 9 1 2
D D
答案C
A
B
D
D
B
C
D
A
二、填空题??7223)(,))(14)(15)(16(13252622
三、解答题?5123???????sin???cos,?,且,∴(17)解:∵,??
13132??51???17tan?5??12???tan?tan.
==,则∴=-??5?17?12tan14??1?12T22,,所以T=且16=6-2(18)解:(Ⅰ)根据题意,可知A==4,4???2??
???22?y?22sinx,得)代入,于是=将点(2??8T8??????????
????||??2??2222sinsin.
=又,即<,所以=1,????4248????????R?x?y?22sinx从而所求的函数解读式为:,??48??,的垂线,垂足为D解:如图,过C作AB(19),=24000M
=3000·8依题意,AB
00,,∠DBC=由∠BAC=3060024000M,,∴BC=则∠BCA=30 CBD中,在直角三角形060sin BC·CD=,0.866=20784M =24000·=20784故山顶的海拔高度为25000-4216M.
垂直,34a-ba(20)解:∵3+5b与22=0,15||即12|aa+11·b-b| 0b-4b+3 ∴(a5)·(a3)=,48·,∴=b,=a由于||3||2ab,=-114 / 5
8b?a8????,bcos?a?arccos.
的夹角为与=-则b,故a??11|b||a|?11??3xx3xx2sinsincoscosx2cos x-1
=(21)解:(Ⅰ)a·b,==2cos -2222
22x3x3xx????
cosx sinsin?cos??cos x2cos22?|,===2||a+b| ????2222?????cosxcosx]?[0,x.
2b|=|∵≥0,∴a+,∴222xxcoscos-3,+=2(1) +2|a+b|=2cos4x-1+a(Ⅱ)f(x)
=·b?cosxcosx][0,x?=0时,f当(x)取得最小值-,∴0≤1.
≤1,∵∴2?2???,=,则=0或(22)解:(Ⅰ)设向量a、b、c两两所成的角均为
3又|a|=1,|b|=2,|c|=3.
?=0则当时,
?cos=2,·|b| ba·=|a|?cos=6,·|c| b·c=|b|?cos=3,|a| c·a=|c|·2222+2a·b+2b·c+2c·a =14+22=36,∴|a+b+c||此时|a+b+c==a6+b+c;
?2?时,当=3?cos=-1|,|a|·|b=a·b?cos=-3,b|·|c|cb·=|3?cos,=-|·|a|·ca =|c222223. =b+c|-11=3,∴|a+c+cb+2a·+2b·c+2·a=ca此时|+b+|a=14+b?=0,即|a+b+c|=6时,(Ⅱ)当a+b+c与a的夹角显然为0;
?32?cos33aa|,=<|+=-ca时,∵(+b+)·a|,且a+bc|·cba=当,即|+
+|=23?53.
的夹角为与++,∴acb++,>=-abca62
5 / 5。

相关文档
最新文档