五年级上册奥数题启蒙(含答案)

合集下载

五年级上册数学34道奥数题,有答案

五年级上册数学34道奥数题,有答案

1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?2.3箱苹果重45千克。

一箱梨比一箱苹果多5千克,3箱梨重多少千克?3.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。

甲比乙速度快,甲每小时比乙快多少千米?4.李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。

每支铅笔多少钱?5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。

由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。

甲车每小时行40千米,乙车每小时行45千米,两地相距多少千米?(交换乘客的时间略去不计)6.学校组织两个课外兴趣小组去郊外活动。

第一小组每小时走4.5千米,第二小组每小时行3.5千米。

两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。

多长时间能追上第二小组?7.有甲乙两个仓库,每个仓库平均储存粮食32.5吨。

甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?8.甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。

甲、乙两队每天共修多少米?9.学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?10.一列火车和一列慢车,同时分别从甲乙两地相对开出。

快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?11.某玻璃厂托运玻璃250箱,合同规定每箱运费20元,如果损坏一箱,不但不付运费还要赔偿100元。

运后结算时,共付运费4400元。

托运中损坏了多少箱玻璃?12.五年级一中队和二中队要到距学校20千米的地方去春游。

第一中队步行每小时行4千米,第二中队骑自行车,每小时行12千米。

小学五年级奥数题100道及答案(完整版)

小学五年级奥数题100道及答案(完整版)

小学五年级奥数题100道及答案(完整版)1. 一个数除以5 余3,除以6 余4,除以7 余5,这个数最小是()A. 208B. 203C. 200D. 198答案:A解析:这个数加上 2 就能被5、6、7 整除,5、6、7 的最小公倍数是210,所以这个数是210 - 2 = 208。

2. 有一个自然数,被10 除余7,被7 除余4,被4 除余1。

这个自然数最小是()A. 137B. 107C. 131D. 101答案:C解析:这个数加上 3 就能被10、7、4 整除,10、7、4 的最小公倍数是140,所以这个数是140 - 3 = 137。

3. 一筐苹果,2 个一拿,3 个一拿,4 个一拿,5 个一拿都正好拿完而没有余数,这筐苹果最少应有()A. 120 个B. 90 个C. 60 个D. 30 个答案:C解析:苹果数量是2、3、4、5 的公倍数,最小公倍数是60。

4. 把66 分解质因数是()A. 66 = 1×2×3×11B. 66 = 6×11C. 66 = 2×3×11D. 2×3×11 = 66答案:C解析:分解质因数是把一个合数写成几个质数相乘的形式。

5. 两个质数的积一定是()A. 质数B. 奇数C. 偶数D. 合数答案:D解析:两个质数相乘的积,除了1 和它本身以外还有这两个质数作为因数,所以是合数。

6. 一个合数至少有()个因数。

A. 1B. 2C. 3D. 4答案:C解析:合数是指除了能被1 和本身整除外,还能被其他数(0 除外)整除的自然数。

所以一个合数至少有3 个因数。

7. 10 以内既是奇数又是合数的数是()A. 7B. 8C. 9D. 5答案:C解析:9 不能被2 整除是奇数,同时除了1 和9 本身还有3 这个因数,所以是合数。

8. 下面算式中,结果最大的是()A. 300÷8÷6×5B. 300÷(8÷6)×5C. 300÷(8÷6×5)D. 300÷8÷(6×5)答案:C解析:分别计算出每个选项的结果进行比较。

小学五年级数学奥数题100道及答案(完整版)

小学五年级数学奥数题100道及答案(完整版)

小学五年级数学奥数题100道及答案(完整版)题目1:计算:1 + 2 + 3 + 4 + 5 + …+ 99 + 100答案:5050解析:这是一个等差数列求和,公式为(首项+ 末项)×项数÷ 2 ,即(1 + 100)×100 ÷2 = 5050题目2:有三个连续自然数,它们的乘积是60,求这三个数。

答案:3、4、5解析:将60 分解质因数60 = 2×2×3×5 = 3×4×5题目3:一个数除以5 余3,除以6 余4,除以7 余5,这个数最小是多少?答案:208解析:这个数加上 2 就能被5、6、7 整除,5、6、7 的最小公倍数是210,所以这个数是210 - 2 = 208题目4:甲、乙两车同时从A、B 两地相向而行,在距A 地60 千米处第一次相遇。

各自到达对方出发地后立即返回,途中又在距A 地40 千米处相遇。

A、B 两地相距多少千米?答案:110 千米解析:第一次相遇时,两车共行了一个全程,甲行了60 千米。

第二次相遇时,两车共行了三个全程,甲行了60×3 = 180 千米。

此时甲距离 A 地40 千米,所以两个全程是180 + 40 = 220 千米,全程为110 千米。

题目5:鸡兔同笼,共有头48 个,脚132 只,鸡和兔各有多少只?答案:鸡30 只,兔18 只解析:假设全是鸡,有脚48×2 = 96 只,少了132 - 96 = 36 只脚。

每把一只鸡换成一只兔,脚多4 - 2 = 2 只,所以兔有36÷2 = 18 只,鸡有48 - 18 = 30 只。

题目6:小明从一楼到三楼用了18 秒,照这样计算,他从一楼到六楼需要多少秒?答案:45 秒解析:一楼到三楼走了 2 层楼梯,每层用时18÷2 = 9 秒。

一楼到六楼走5 层楼梯,用时5×9 = 45 秒。

五年级上册奥数含真题(含答案)-五年级奥数题100道含答案

五年级上册奥数含真题(含答案)-五年级奥数题100道含答案

第一讲数的整除问题数的整除问题,内容丰富,思维技巧性强。

它是小学数学中重要课题,也是小学数学竞赛命题内容之一。

一、基本概念和知识1.整除——约数和倍数例如:15÷3=5,63÷7=9一般地,如a、b、c为整数,b≠0,且a÷b=c,即整数a除以整除b (b不等于0),除得的商c正好是整数而没有余数(或者说余数是0),我们就说,a能被b整除(或者说b能整除a)。

记作b|a.否则,称为a 不能被b整除,(或b不能整除a),记作b a。

如果整数a能被整数b整除,a就叫做b的倍数,b就叫做a的约数。

例如:在上面算式中,15是3的倍数,3是15的约数;63是7的倍数,7是63的约数。

2.数的整除性质性质1:如果a、b都能被c整除,那么它们的和与差也能被c整除。

即:如果c|a,c|b,那么c|(a±b)。

例如:如果2|10,2|6,那么2|(10+6),并且2|(10—6)。

性质2:如果b与c的积能整除a,那么b与c都能整除a.即:如果bc|a,那么b|a,c|a。

性质3:如果b、c都能整除a,且b和c互质,那么b与c的积能整除a。

即:如果b|a,c|a,且(b,c)=1,那么bc|a。

例如:如果2|28,7|28,且(2,7)=1,那么(2×7)|28。

性质4:如果c能整除b,b能整除a,那么c能整除a。

即:如果c|b,b|a,那么c|a。

例如:如果3|9,9|27,那么3|27。

3.数的整除特征①能被2整除的数的特征:个位数字是0、2、4、6、8的整数.“特征”包含两方面的意义:一方面,个位数字是偶数(包括0)的整数,必能被2整除;另一方面,能被2整除的数,其个位数字只能是偶数(包括0).下面“特征”含义相似。

②能被5整除的数的特征:个位是0或5。

③能被3(或9)整除的数的特征:各个数位数字之和能被3(或9)整除。

④能被4(或25)整除的数的特征:末两位数能被4(或25)整除。

五年级上册数学奥数题带答案图文百度文库

五年级上册数学奥数题带答案图文百度文库

五年级上册数学奥数题带答案图文百度文库一、拓展提优试题1.由120个棱长为1的正方体,拼成一个长方体,表面全部涂色,只有一面染色的小正方体,最多有块2.幼儿园给小朋友派礼物,如果有2人各派4个,其余各派3个,则还剩余11个,如果4人各派3个,其余各派6个,则剩余10个,问一共有多少件礼物?3.一个除法算式中,被除数、除数、商与余数都是自然数,并且商与余数相等.若被除数是47,则除数是,余数是.4.小松鼠储藏了一些松果过冬.小松鼠原计划每天吃6个松果,实际每天比原计划多吃2个,结果提前5天吃完了松果.小松鼠一共储藏了个松果.5.(8分)在长方形ABCD中,BE=5,EC=4,CF=4,FD=1,如图所示,那么△AEF的面积是;6.用0、1、2、3、4这五个数字可以组成个不同的三位数.7.对于自然数N,如果在1﹣9这九个自然数中至少有七个数是N的因数,则称N是一个“七星数”,则在大于2000的自然数中,最小的“七星数”是.8.如图,将一个等腰三角形ABC沿EF对折,顶点A与底边的中点D重合,若△ABC的周长是16厘米,四边形BCEF的周长是10厘米,则BC=厘米.9.解放军战士在洪水不断冲毁大坝的过程中要修好大坝,若10人需45分钟,20人需要20分钟,则14人修好大坝需分钟.10.如图,魔术师在一个转盘上的16个位置写下来了1﹣16共16个数,四名观众甲、乙、丙、丁参与魔术表演.魔术师闭上眼,然后甲从转盘中选一个数,乙、丙、丁按照顺时针方向依次选取下一个数,图示是一种可能的选取方式,魔术师睁开眼,说:“选到偶数的观众请举手.”,这时候,只有甲和丁举手,这时候魔术师就大喝一声:“我知道你们选的数了!”.你认为甲和丁选的数的乘积是.11.(8分)一个大于1的正整数加1能被2整除,加2能被3整除,加3能被4整除,加4能被5整除,这个正整数最小是.12.观察下面数表中的规律,可知x=.13.同学们去春游,带水壶的有80人,带水果的有70人,两样都没带的有6人.若既带水壶又带水果的人数是所有参加春游人数的一半,则参加春游的同学共有人.14.如图,在△ABC中,D、E分别是AB、AC的中点,且图中两个阴影部分=.(甲和乙)的面积差是5.04,则S△ABC15.若2副网球拍和7个网球一共220元,且1副网球拍比1个网球贵83元.求网球的单价.【参考答案】一、拓展提优试题1.64≥≥),容易知道只有[解答]设长方体的长、宽、高分别为,,l m n(不妨设l m nn=(否一面染色的小正方体只有每个面上可能有一些。

数学五年级上册奥数题及答案

数学五年级上册奥数题及答案

数学五年级上册奥数题与答案[篇一:小学五年级奥数题集锦与答案]xt>1、甲乙两车同时从ab两地相对开出。

甲行驶了全程的5/11,如果甲每小时行驶4.5千米,乙行了5小时。

求ab两地相距多少千米?2、一辆客车和一辆货车分别从甲乙两地同时相向开出。

货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇。

甲乙两地相距多少千米?解:客车和货车的速度之比为5:4那么相遇时的路程比=5:4相遇时货车行全程的4/9此时货车行了全程的1/4距离相遇点还有4/9-1/4=7/36那么全程=28/〔7/36〕=144千米3、甲乙两人绕城而行,甲每小时行8千米,乙每小时行6千米。

现在两人同时从同一地点相背出发,乙遇到甲后,再行4小时回到原出发点。

求乙绕城一周所需要的时间?解:甲乙速度比=8:6=4:3相遇时乙行了全程的3/7那么4小时就是行全程的4/7所以乙行一周用的时间=4/〔4/7〕=7小时4、甲乙两人同时从a地步行走向b地,当甲走了全程的1\4时,乙离b地还有640米,当甲走余下的5\6时,乙走完全程的7\10,求ab两地距离是多少米?解:甲走完1/4后余下1-1/4=3/4此时甲一共走了1/4+5/8=7/8那么甲乙的路程比=7/8:7/10=5:4那么ab距离=640/〔1-1/5〕=800米5、甲,乙两辆汽车同时从a,b两地相对开出,相向而行。

甲车每小时行75千米,乙车行完全程需7小时。

两车开出3小时后相距15千米,a,b两地相距多少千米?解:一种情况:此时甲乙还没有相遇乙车3小时行全程的3/7ab距离=〔225+15〕/〔1-3/7〕=240/〔4/7〕=420千米一种情况:甲乙已经相遇〔225-15〕/〔1-3/7〕=210/〔4/7〕=367.5千米6、甲,已两人要走完这条路,甲要走30分,已要走20分,走3分后,甲发现有东西没拿,拿东西耽误3分,甲再走几分钟跟已相遇?解:甲相当于比乙晚出发3+3+3=9分钟将全部路程看作单位1那么甲的速度=1/30乙的速度=1/20那么甲乙合走的距离1-9/20=11/20甲乙的速度和=1/20+1/30=1/12那么再有〔11/20〕/〔1/12〕=6.6分钟相遇7、甲,乙两辆汽车从a地出发,同向而行,甲每小时走36千米,乙每小时走48千米,若甲车比乙车早出发2小时,则乙车经过多少时间才追上甲车?速度差=48-36=12千米/小时乙车需要72/12=6小时追上甲8、甲乙两人分别从相距36千米的ab两地同时出发,相向而行,甲从a地出发至1千米时,发现有物品以往在a地,便立即返回,去了物品又立即从a地向b地行进,这样甲、乙两人恰好在a,b两地的终点处相遇,又知甲每小时比乙多走0.5千米,求甲、乙两人的速度? 解:那么甲比乙多走20-18=2千米那么相遇时用的时间=2/0.5=4小时所以甲的速度=20/4=5千米/小时乙的速度=5-0.5=4.5千米/小时9、两列火车同时从相距400千米两地相向而行,客车每小时行60千米,货车小时行40千米,两列火车行驶几小时后,相遇有相距100千米?解:速度和=60+40=100千米/小时分两种情况,没有相遇那么需要时间=〔400-100〕/100=3小时已经相遇那么需要时间=〔400+100〕/100=5小时10、甲每小时行驶9千米,乙每小时行驶7千米。

新人教版五年级小学数学全册奥数(含答案)

新人教版五年级小学数学全册奥数(含答案)
第2讲 平均数(二)
精讲精练
【例题1】小明前几次数学测验的平均成绩是84分,这次要考100分,才能把平均成绩提高到86分。问这是他第几次测验?
练习1:
1.老师带着几个同学在做花,老师做了21朵,同学平均每人做了5朵。如果师生合起来算,正好平均每人做了7朵。求有多少个同学在做花?
2.一位同学在期中测验中,除了数学外,其它几门功课的平均成绩是94分,如果数学算在内,平均每门95分。已知他数学得了100分,问这位同学一共考了多少门功课?
练习5:
1.下面三个正方形的面积相等,剪去阴影部分的面积也相等,求原来正方形的周长发生了什么变化?(单位:厘米)
2.下面是一个零件的平面图,图中每条短线段都是5厘米,零件长35厘米,高30厘米。这个零件的周长是多少厘米?
三、课后作业
1.有6块边长是1厘米的正方形,如例题中所说的这样重叠着,求重叠后图形的周长。
【例题5】有一个周长是72厘米的长方形,它是由三个大小相等的正方形拼成的。一
1.五个同样大小的正方形拼成一个长方形,这个长方形的周长是36厘米,求每个正方形的面积是多少平方厘米?
2.有一张长方形纸,长12厘米,宽10厘米。从这张纸上剪下一个最大的正方形后,剩下部分的周长是多少厘米?
如何灵活运用平均数的数量关系解答一些稍复杂的问题呢?
下面的数量关系必须牢记:
平均数=总数量÷总份数 总数量=平均数×总份数 总份数=总数量÷平均数
二、精讲精练
【例题1】有4箱水果,已知苹果、梨、橘子平均每箱42个,梨、橘子、桃平均每箱36个,苹果和桃平均每箱37个。一箱苹果多少个?
练习1:
1.一次考试,甲、乙、丙三人平均分91分,乙、丙、丁三人平均分89分,甲、丁二人平均分95分。问:甲、丁各得多少分?

五年级数奥数题及答案

五年级数奥数题及答案

五年级数奥数题及答案五年级的奥数题目通常涉及一些基本的数学概念和技巧,例如数列、几何、排列组合等。

以下是一些适合五年级学生的奥数题目及其答案:1. 题目:一个数列的前几项是 2, 4, 6, 8, ... 请问第20项是多少?答案:这是一个等差数列,公差为2。

第n项的公式是 a_n = a_1 + (n - 1) * d,其中a_1是首项,d是公差。

所以第20项 a_20 = 2 + (20 - 1) * 2 = 2 + 38 = 40。

2. 题目:一个长方体的长、宽、高分别是 6 厘米、4 厘米和 3 厘米,求这个长方体的表面积。

答案:长方体的表面积公式是 S = 2(ab + bc + ac),其中a、b、c分别是长、宽、高。

代入数值得到 S = 2(6*4 + 4*3 + 6*3) = 2(24 + 12 + 18) = 2 * 54 = 108 平方厘米。

3. 题目:一个班级有 40 名学生,其中 2/5 是男生,剩下的是女生。

问这个班级有多少名女生?答案:班级有 40 * (1 - 2/5) = 40 * (3/5) = 24 名女生。

4. 题目:一个水池可以以固定的速率被注满。

如果用 3 个水龙头同时注水,需要 2 小时注满水池。

如果用 4 个同样的水龙头同时注水,需要多少时间?答案:设每个水龙头每小时注水的量为 x。

3 个水龙头 2 小时注满水池,即 3 * 2 * x = 1 池。

所以每个水龙头每小时注水量 x =1/6 池。

用 4 个水龙头同时注水,所需时间为 1 / (4 * (1/6)) =3/2 = 1.5 小时。

5. 题目:一个数字,将其各位数相加得到 15,这个数字最小是多少?答案:要使数字最小,位数应该尽可能少,且最高位不能为 0。

我们可以从 1 开始尝试,1 + 4 + 9 + 1 = 15,所以最小的数字是1491。

6. 题目:一个数字,将其各位数相乘得到 48,这个数字最大是多少?答案:要使数字最大,位数应该尽可能多。

五年级上册奥数含真题(含答案)

五年级上册奥数含真题(含答案)

五年级上册奥数含真题(含答案)五年级上册奥数含真题(含答案)第一题在一个小镇里,有一家卖糖果的甜品店。

店老板有4个特别的盒子装糖果。

第1个盒子装了2个水果糖,4个摇扣糖和3个口香糖。

第2个盒子装了6个口香糖,8个巧克力糖和3个水果糖。

第3个盒子装了4个摇扣糖和8个巧克力糖。

第4个盒子装了3个口香糖,5个摇扣糖和2个水果糖。

如果一个袋子里必须有一个以上的糖果,那么能够从这4个盒子里一共取出多少种不同的袋子?(A) 96(B) 104(C) 112(D) 120答案:C第二题你需要从10个整数中选出五个,使得这5个数的平均数是13。

那么这个10个整数的平均数是多少?(A) 12(B) 13(C) 14(D) 15答案:C第三题下面的对话中,每个字母代表一个单词。

如果在对话中大约有三分之一的字母被改变,则这段对话一般情况下是什么?- 何:Hey Joe, what's up?- 乔:Not much. I have a test tomorrow.- 何:In what?- 乔:Biology. What are you up to?- 何:Just hanging out.- 乔:All right. I better get back to my studying.(A) 两个人正在聊天。

(B) 两个人正在争吵。

(C) 两个人正在讨论问题。

(D) 无法得知。

答案:D第四题下面的对话中,棕色的线代表Bob说的话,蓝色的线代表Sue 说的话,箭头表示连续引用。

Bob说了什么?Bob:Actually, I can’t this weekend. I have a big test on Monday, so I need to study all weekend.Sue:Oh, that’s too bad. Can we study together then?Bob:Sure, that would be great.(A) 我不能看电影。

新人教版五年级小学数学全册奥数(含答案)

新人教版五年级小学数学全册奥数(含答案)
二、精讲精练
【例题1】有5张同样大小的纸如下图(a)重叠着,每张纸都是边长6厘米的正方形,重叠的部分为边长的一半,求重叠后图形的周长。
练习1:
1.下图由8个边长都是2厘米的正方形组成,求这个图形的周长。
2.下图由1个正方形和2个长方形组成,求这个图形的周长。
【例题2】一块长方形木板,沿着它的长度不同的两条边各截去4厘米,截掉的面积为192平方厘米。现在这块木板的周长是多少厘米?
第2讲 平均数(二)
精讲精练
【例题1】小明前几次数学测验的平均成绩是84分,这次要考100分,才能把平均成绩提高到86分。问这是他第几次测验?
练习1:
1.老师带着几个同学在做花,老师做了21朵,同学平均每人做了5朵。如果师生合起来算,正好平均每人做了7朵。求有多少个同学在做花?
2.一位同学在期中测验中,除了数学外,其它几门功课的平均成绩是94分,如果数学算在内,平均每门95分。已知他数学得了100分,问这位同学一共考了多少门功课?
新人教版小学数学五年级全册奥数
附参考答案
第1讲 平均数(一)
一、知识要点
把几个不相等的数,在总数不变的条件下,通过移多补少,使它们完全相等,求得的相等的数就是平均数。
如何灵活运用平均数的数量关系解答一些稍复杂的问题呢?
下面的数量关系必须牢记:
平均数=总数量÷总份数 总数量=平均数×总份数 总份数=总数量÷平均数
练习5:
1.小明去爬山,上山时每小时行3千米,原路返回时每小时行5千米。求小明往返的平均速度。
2.运动员进行长跑训练,他在前一半路程中每分钟跑150米,后一半路程中每分钟跑100米。求他在整个长跑中的平均速度。
3.把一份书稿平均分给甲、乙二人去打,甲每分钟打30个字,乙每分钟打20个字。打这份书稿平均每分钟打多少个字?

五年级上册奥数题及答案

五年级上册奥数题及答案

五年级上册奥数题及答案Revised on November 25, 2020五年级上册奥数题及答案(简单的)1、分数的分子和分母同时乘以或除以一个数(0除外),分数大小不变。

()2、两个面积相等的三角形,底和高也相等。

()3、假如是一个,那么a一定大于b。

()4、一个分数的分子和分母都是,它一定是。

()5、如果A是奇数,那么1093+89+A+25的结果还是奇数。

()二、我会选择。

5分1、算一个上底是acm,下底是bcm,高是3cm的梯形面积,应该使用()公式。

A、S=abB、S=3a÷2C、S=3(a+b)÷2D、S=ab÷22、在60=12×5中,12和5是60的()。

A、倍数B、偶数C、D、因数3、分子加上12,分数的大小不变,分母应该加上( )。

A、12B、36C、27D、不能做。

4、3、如图,甲摸到得1分,乙摸到黑球得1分,在()箱中摸最公平。

5、小军从家出发去书店买书,当他走了大约一半路程时。

想起忘了带钱。

于是他回家取钱,然后再去书店,买了几本书后回家。

下面()幅图比较准确地反映了小军的行为。

A B C三、数学迷宫。

26分1、最小的自然数是(),最小的奇数是(),最小的是(),最小的是()。

2、一个三角形的面积是24cm ,与它等底等高的平行四边形的面积是()cm 。

3、的是(),有()个这样的单位,再去掉()个就是3。

4、把5米长的绳子平均分成8段,每段长(),每段占全长的(),每段是5米的()。

5、()÷8===9÷()=6、填质数:21=()+();()=()×()。

7、要把36个球装在盒子里,每个盒子装得同样多,有()种装法。

8、今年在举行的亚运会上,中国代表团共夺得316枚奖牌,其中金牌有165个,银牌有88个,其余的是。

金牌、银牌、各占奖牌总数的、、。

9、右面平行四边形的面积是40平方厘米,涂色部分三角形的面积是()平方厘米。

五年级上册数学奥数题带答案

五年级上册数学奥数题带答案

五年级上册数学奥数题带答案一、拓展提优试题1.(7分)后羿朝三个箭靶分别射了三支箭,如图:他在第一个箭靶上得了29分,第二个箭靶上得了43分.请问他在第三个箭靶上得了分.2.(7分)今年小翔和爸爸、妈妈的年龄分别是5岁、48岁、42岁.年后爸爸、妈妈的年龄和是小翔的6倍.3.商店对某饮料推出“第二杯半价”的促销办法.那么,若购买两杯这种饮料,相当于在原价的基础上打折.4.用长是5厘米、宽是4厘米、高是3厘米的长方体木块叠成一个正方体,至少需要这种长方体木块块.5.(8分)小张有200支铅笔,小李有20支钢笔.每次小张给小李6支铅笔,小李还给小张1支钢笔.经过次这样的交换后,小张手中铅笔的数量是小李手中钢笔数量的11倍.6.甲、乙两人进行射击比赛,约定每中一发得20分,脱靶一发扣12分,两人各打10分,共得208分,最后甲比乙多得64分,乙打中发.7.小明从家到学校去上课,如果每分钟走60米,可提前10分钟到校;如果每分钟走50米,要迟到4分钟到校.小明家到学校相距米.8.(8分)有四个人甲、乙、丙、丁,乙欠甲1元,丙欠乙2元,丁欠丙3元,甲欠丁4元.要想把他们之间的欠款结清,只因要甲拿出元.9.如图中,A、B、C、D为正六边形四边的中点,六边形的面积是16,阴影部分的面积是.10.三位偶数A、B、C、D、E满足A<B<C<D<E,若A+B+C+D+E=4306,则A最小.11.将100按“加15,减12,加3,加15,减12,加3,…”的顺序不断重复运算,运算26步后,得到的结果是.(1步指每“加”或“减”一个数)12.如图,在梯形ABCD中,若AB=8,DC=10,S△AMD=10,S△BCM=15,则梯形ABCD的面积是.13.两个数的最大公约数和最小公倍数分别是3和135,求这两个数的差最小是.14.李双骑车以320米分钟的速度从A地驶向B地,途中因自行车故障推车继续向前步行5分钟到距B地1800米的某地修车,15分钟后以原来骑车速度的1.5倍继续向前驶向B地,到达B地时,比预计时间多用17分钟,则李双推车步行的速度是米/分钟.15.A、B两桶水同样重,若从A桶中倒2.5千克水到B桶中,则B桶中水的重量是A桶中水的重量的6倍,那么B桶中原来有水千克.【参考答案】一、拓展提优试题1.【分析】这个箭靶共三个环,设最小的环为a分,中间环为b分,最外环为c分,得:第一个靶得分为:2b+c=29①第二个靶得分为:2a+c=43②第三个靶得分为:a+b+c③通过等量代换,解决问题.解:设最小的环为a分,中间环为b分,最外环为c分,得:第一个靶得分为:2b+c=29①第二个靶得分为:2a+c=43②第三个靶得分为:a+b+c③由①+②得:2a+2b+2c=29+43=72即a+b+c=36即第三个靶的得分为36分.答:他在第三个箭靶上得了36分故答案为:36.2.【分析】设x年后,爸爸、妈妈的年龄和是小翔的6倍,则:小翔x年后的年龄×4=小翔爸爸x年后的年龄+小翔妈妈x年后的年龄,列出方程解答即可.解:设x年后,爸爸、妈妈的年龄和是小翔的6倍,(5+x)×6=48+42+2x30+6x=90+2x4x=60x=15答:15年后,爸爸、妈妈的年龄和是小翔的6倍.故答案为:15.3.解:设这种饮料每杯10,两杯售价是20元,实际用了:10+10×,=10+5,=15(元),15÷20=0.75=75%,所以是打七五折;故答案为:七五.4.解:正方体的棱长应是5,4,3的最小公倍数,5,4,3的最小公倍数是60;所以,至少需要这种长方体木块:(60×60×60)÷(5×4×3),=216000÷60,=3600(块);答:至少需要这种长方体木3600块.故答案为:3600.5.解:依题意可知:当第一次过后,小张剩余194只铅笔,小李剩余19只钢笔.当第二次过后,小张剩余188只铅笔,小李剩余18只钢笔.当第三次过后,小张剩余182只铅笔,小李剩余17只钢笔.当第四次过后,小张剩余176只铅笔,小李剩余16只钢笔.正好是11倍.故答案为:四6.解:假设全打中,乙得了:(208﹣64)÷2=72(分),乙脱靶:(20×10﹣72)÷(20+12),=128÷32,=4(发);打中:10﹣4=6(发);答:乙打中6发.故答案为:6.7.解:(60×10+50×4)÷(60﹣50),=(600+200)÷10,=800÷10,=80(分钟),60×(80﹣10),=60×70,=4200(米).答:小明家到学校相距4200米.故答案为:4200.8.解:根据分析,从甲开始,乙欠甲1元,故甲应得1元,甲欠丁4元,故甲应还4元;清算时,甲还应拿出4﹣1=3元,此时甲的账就结清了;再看看丁的账,丁得到甲的4元后,还给丙3元,即可结清;再看看丙的账,丙得到丁的3元后,还给乙2元,丙的账也清了;再看看乙的账,乙得到丙的2元后,还给甲1元,乙的账也结清;综上,甲只须先拿出4元还给丁,后得到乙的1元,故而甲总共只须拿出3元.故答案是:3.9.解:如图:连接正方形的一条对角线,延长DA,与最上边正六边形边的延长线交与一点,这样可得两个三角形①、②三角形①和三角形②是全等三角形,它们的面积相等,进而可得出阴影部分两侧的三角形可补到六边形的角上,这样就成了一个长方形,阴影部分的面积等于空白部分的面积,所以阴影部分的面积是正六边形面积的一半16÷2=8答:阴影部分的面积是8.故答案为:8.10.解:最大的三位偶数是998,要满足A 最小且A <B <C <D <E ,则E 最大是998,D 最大是996,C 最大是994,B 最大是992,4306﹣(998+996+994+992)=4306﹣3980=326,所以此时A 最小是326.故答案为:326.11.解:每一个计算周期运算3步,增加:15﹣12+3=6,则26÷3=8…2,所以,100+6×8+15﹣12=100+48+3=151答:得到的结果是 151.故答案为:151.12.解:△ADM 、△BCM 、△ABM 都等高,所以S △ABM :(S △ADM +S △BCM )=8:10=4:5,已知S △AMD =10,S △BCM =15,所以S △ABM 的面积是:(10+15)×=20,梯形ABCD 的面积是:10+15+20=45;答:梯形ABCD 的面积是45.故答案为:45.13.解:因为135÷3=45,45分解成两个互质的数有两种情况即1和45、9与5,所以差最小的是:9和5,所以这两个数分别是:9×3=275×3=1527﹣15=12答:这两个数的差最小是12.故答案为:12.14.解:1800÷320﹣1800÷(320×1.5)=5.625﹣3.75=1.875(分钟)320×[5﹣(17﹣15+1.875)]÷5=320×[5﹣3.875]÷5=320×1.125÷5=360÷5=72(米/分钟)答:李双推车步行的速度是72米/分钟.故答案为:72.15.解:2.5×2÷(6﹣1)+2.5=5÷5+2.5=1+2.5=3.5(千克)答:B桶中原来有水3.5千克.故答案为:3.5.。

五年级上册数学奥数题带答案一

五年级上册数学奥数题带答案一

五年级上册数学奥数题带答案一一、拓展提优试题1.(15分)如图,正六边形ABCDEF的面积为1222,K、M、N分别AB,CD,EF的中点,那么三角形PQR的边长是.2.数一数,图中有多少个正方形?3.一个除法算式中,被除数、除数、商与余数都是自然数,并且商与余数相等.若被除数是47,则除数是,余数是.4.商店对某饮料推出“第二杯半价”的促销办法.那么,若购买两杯这种饮料,相当于在原价的基础上打折.5.用长是5厘米、宽是4厘米、高是3厘米的长方体木块叠成一个正方体,至少需要这种长方体木块块.6.(1)数一数图1中有个三角形.(2)数一数图2中有个正方形.7.(8分)有一种细胞,每隔1小时死亡2个细胞,余下的每个细胞分裂成2个.若经过5小时后细胞的个数记为164.最开始的时候有个细胞.8.如图中,A、B、C、D为正六边形四边的中点,六边形的面积是16,阴影部分的面积是.9.三位偶数A、B、C、D、E满足A<B<C<D<E,若A+B+C+D+E=4306,则A最小.10.如图,魔术师在一个转盘上的16个位置写下来了1﹣16共16个数,四名观众甲、乙、丙、丁参与魔术表演.魔术师闭上眼,然后甲从转盘中选一个数,乙、丙、丁按照顺时针方向依次选取下一个数,图示是一种可能的选取方式,魔术师睁开眼,说:“选到偶数的观众请举手.”,这时候,只有甲和丁举手,这时候魔术师就大喝一声:“我知道你们选的数了!”.你认为甲和丁选的数的乘积是.11.(8分)6个同学约好周六上午8:00﹣11:30去体育馆打乒乓球,他们租了两个球桌进行单打比赛每段时间都有4 个人打球,另外两人当裁判,如此轮换到最后,发现每人都打了相同的时间,请问:每人打了分钟.12.用1、2、3、5、6、7、8、9这8个数字最多可以组成个质数(每个数字只能使用一次,且必须使用).13.(8分)彤彤和林林分别有若干张卡片:如果彤彤拿6张给林林,林林变为彤彤的3倍;如果林林给彤彤2张,则林林变为彤彤的2倍.那么,林林原有张.14.(8分)一个大于1的正整数加1能被2整除,加2能被3整除,加3能被4整除,加4能被5整除,这个正整数最小是.15.松鼠A、B、C共有松果若干,松鼠A原有松果26颗,从中拿出10颗平分给B、C,然后松鼠B拿出自己的18颗松果平均分给A、C,最后松鼠C把自己现有松果的一半平分给A、B,此时3只松鼠的松果数量相同,则松鼠C原有松果颗.【参考答案】一、拓展提优试题1.解:如图延长BA和EF交于点O,并连接AE,由正六边形的性质,我们可知S ABCM=S CDEN=S EF AK=六边形面积,根据容斥原理,重叠部分三个三角形面积和等于阴影部分面积,且因为对称,△AKP,△CMQ,△ENR三个三角形是一样的,有KP=RN,AP=ER,RP=PQ,=,则=,=,由鸟头定理可知道3×KP×AP=RP×PQ,综上可得:PR=2KP=RE,那么由三角形AEK是六边形面积的,且S△APK ,=S△AKES△APK=S ABCDEF=47,所以阴影面积为47×3=141故答案为141.2.解:通过有规律的数,得出:(1)边长为1的正方形有4×3=12(个);(2)边长为2的正方形有6个;(3)边长为3的正方形有2个.(4)以小正方形的对角线为边的正方形有8个;(5)以对角线的一半为边长的正方形是17个;(6)以3个对角线的一半为边长的正方形有1个.所以图中共有正方形:12+6+2+8+17+1=46(个).答:图中有46个正方形.3.解:设除数为b,商和余数都是c,这个算式就可以表示为:47÷b=c…c,即b×c+c=47,c×(b+1 )=47,所以c一定是47的因数,47的因数只有1和47;c为47肯定不符合条件,所以c=1,即除数是46,余数是1.故答案为:46,1.4.解:设这种饮料每杯10,两杯售价是20元,实际用了:10+10×,=10+5,=15(元),15÷20=0.75=75%,所以是打七五折;故答案为:七五.5.解:正方体的棱长应是5,4,3的最小公倍数,5,4,3的最小公倍数是60;所以,至少需要这种长方体木块:(60×60×60)÷(5×4×3),=216000÷60,=3600(块);答:至少需要这种长方体木3600块.故答案为:3600.6.解:(1)三角形有:8+4+4=16(个);(2)正方形有:20+10+4+1=35(个),故答案为:16,35.7.解:第5小时开始时有:164÷2+2=84(个)第4小时开始时有:84÷2+2=44(个)第3小时开始时有:44÷2+2=24(个)第2小时开始时有:24÷2+2=14(个)第1小时开始时有:14÷2+2=9(个)答:最开始的时候有 9个细胞.故答案为:9.8.解:如图:连接正方形的一条对角线,延长DA,与最上边正六边形边的延长线交与一点,这样可得两个三角形①、②三角形①和三角形②是全等三角形,它们的面积相等,进而可得出阴影部分两侧的三角形可补到六边形的角上,这样就成了一个长方形,阴影部分的面积等于空白部分的面积,所以阴影部分的面积是正六边形面积的一半16÷2=8答:阴影部分的面积是8.故答案为:8.9.解:最大的三位偶数是998,要满足A最小且A<B<C<D<E,则E最大是998,D最大是996,C最大是994,B最大是992,4306﹣(998+996+994+992)=4306﹣3980=326,所以此时A最小是326.故答案为:326.10.解:依题意可知:2个偶数中间间隔是2个奇数.发现只有数字10,11,9,12是符合条件的数字.乘积为10×12=120.故答案为:12011.解:6÷2=3(组)11时30分﹣8是=3时30分=210分210×2÷3=420÷3=140(分钟)答:每人打了140分钟.故答案为:140.12.解:可以组成下列质数:2、3、5、7、61、89,一共有6个.答:用1、2、3、5、6、7、8、9这8个数字最多可以组成 6个质数.故答案为:6.13.解:彤彤给林林6张,林林有总数的;林林给彤彤2张,林林有总数的;所以总数:(6+2)÷(﹣)=96,林林原有:96×﹣6=66,故答案为:66.14.解:根据分析:这个数除以2,3,4,5均余1,那么这个数减去1后就能同时被2,3,4,5整除;2,3,4,5的最小公倍数是60,则这个数为60的倍数加1.又因为这个数大于1,所以这个数最小是61.故答案为:61.15.解:10÷2=5(颗)18÷2=9(颗)此时A有:26﹣10+9=25(颗)此时C有:25×4=100(颗)原来C有:100﹣9﹣5=86(颗)答:松鼠C原有松果 86颗.故答案为:86.。

(完整word)五年级上册-奥数题启蒙(含答案),推荐文档

(完整word)五年级上册-奥数题启蒙(含答案),推荐文档

五年级上册奥数题启蒙(含答案)1、有大、中、小三筐苹果,小筐装的是中筐的一半,中筐比大筐少装16千克,大筐装的是小筐的4倍,大、中、小筐共有苹果多少千克。

解:设小筐装苹果X千克。

4X=2X + 162、参加校学生运动会团体操表演的运动员排成一个正方形队列,如果要使这个正方形队列减少一行和一列,则要减少33人,参加团体操表演的运动员有多少人?解:设团体操原来每行X人。

2X —仁332X=34X=1717X17=289 (人)答:参加团体操表演的运动员有289人。

3、有两根绳子,长的比短的长1倍,现在把每根绳子都剪掉6分米, 那么长的一根就比短的一根长两倍。

问:这两根绳子原来的长各是多少?1 +仁21 + 2=3解:设原来短绳长X分米,长绳长2X分米。

(X —6) X3=2X —63X —18=2X —6X=122X=2X 12=24答:原来短绳长12分米,长绳长24分米。

4、甲乙两数的和是32 ,甲数的3倍与乙数的5倍的和是122,求甲、乙二数各是多少?解:设甲数为X,乙数为(32 —X)。

3X +( 32 —X) X5=1223X + 160 —5X=1222X=38X=1932 —X=32 —19=13答:甲数是19,乙数是13。

5、30枚硬币,由2分和5分组成,共值9角9分,两种硬币各多少枚?9角9分=99分解:设2分硬币有X枚,5分硬币有(30 —X)枚。

2X + 5X (30 —X) =992X + 150 —5X=993X=51X=1730 —X=30 —17=136、搬运100只玻璃瓶,规定搬一只得搬运费3分,但打碎一只不但不得搬运费,而且要赔5分,运完后共得运费2.60元,搬运中打碎了几只?2.60 元=260 分解:设搬运中打碎了X只。

3X (100 —X) —5X=260300 —3X —5X=2608X=40X=5答:搬运中打碎了5只。

7、弟弟有钱17元,哥哥有钱25元,哥哥给弟弟多少元后,弟弟的钱是哥哥的2倍?解:设哥哥给弟弟X元后,弟弟的钱是哥哥的2倍。

五年级上册奥数含真题(含答案)

五年级上册奥数含真题(含答案)

第一讲数的整除问题数的整除问题,内容丰富,思维技巧性强。

它是小学数学中的重要课题,也是小学数学竞赛命题的内容之一。

一、基本概念和知识1.整除——约数和倍数例如:15÷3=5,63÷7=9一般地,如a、b、c为整数,b≠0,且a÷b=c,即整数a除以整除b (b不等于0),除得的商c正好是整数而没有余数(或者说余数是0),我们就说,a能被b整除(或者说b能整除a)。

记作b|a.否则,称为a 不能被b整除,(或b不能整除a),记作b a。

如果整数a能被整数b整除,a就叫做b的倍数,b就叫做a的约数。

例如:在上面算式中,15是3的倍数,3是15的约数;63是7的倍数,7是63的约数。

2.数的整除性质性质1:如果a、b都能被c整除,那么它们的和与差也能被c整除。

即:如果c|a,c|b,那么c|(a±b)。

例如:如果2|10,2|6,那么2|(10+6),并且2|(10—6)。

性质2:如果b与c的积能整除a,那么b与c都能整除a.即:如果bc|a,那么b|a,c|a。

性质3:如果b、c都能整除a,且b和c互质,那么b与c的积能整除a。

即:如果b|a,c|a,且(b,c)=1,那么bc|a。

例如:如果2|28,7|28,且(2,7)=1,那么(2×7)|28。

性质4:如果c能整除b,b能整除a,那么c能整除a。

即:如果c|b,b|a,那么c|a。

例如:如果3|9,9|27,那么3|27。

3.数的整除特征①能被2整除的数的特征:个位数字是0、2、4、6、8的整数.“特征”包含两方面的意义:一方面,个位数字是偶数(包括0)的整数,必能被2整除;另一方面,能被2整除的数,其个位数字只能是偶数(包括0).下面“特征”含义相似。

②能被5整除的数的特征:个位是0或5。

③能被3(或9)整除的数的特征:各个数位数字之和能被3(或9)整除。

④能被4(或25)整除的数的特征:末两位数能被4(或25)整除。

五年级上册奥数题及答案

五年级上册奥数题及答案

五年级上册奥数题及答案篇一:小学五年级奥数题集锦及答案】1.甲乙两车同时从a、b两地相对开出。

甲行驶了全程的5/11,如果甲每小时行驶4.5千米,乙行了5小时。

求ab两地相距多少千米?解:甲行驶的距离为(5/11)×ab,时间为(5/11)×ab ÷4.5.乙行驶的距离为5×乙的速度,即5×(4.5/(5×4/11))=9千米。

由于甲、乙相向而行,相遇时的路程比为5:4,而货车行了全程的4/9,此时货车行了全程的1/4,距离相遇点还有4/9-1/4=7/36.那么ab两地相距为28÷(7/36)=144千米。

2.一辆客车和一辆货车分别从甲、乙两地同时相向开出。

货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇。

甲、乙两地相距多少千米?解:货车的速度是客车的五分之四,相遇时的路程比为5:4.此时货车行了全程的4/9,而行了28千米后离终点还有4/9-1/4=7/36.那么全程为28÷(7/36)=144千米,ab两地相距为全程的2/3,即96千米。

3.甲、乙两人绕城而行,甲每小时行8千米,乙每小时行6千米。

现在两人同时从同一地点相背出发,乙遇到甲后,再行4小时回到原出发点。

求乙绕城一周所需要的时间?解:甲、乙速度比为4:3.相遇时,乙行了全程的3/7,再行4小时回到原出发点,即行了全程的4/7.那么乙绕城一周所需要的时间为4÷(4/7)=7小时。

4.甲、乙两人同时从a地步行走向b地,当甲走了全程的1/4时,乙离b地还有640米,当甲走余下的5/6时,乙走完全程的7/10,求ab两地距离是多少米?解:甲走完1/4后余下的路程为1-1/4=3/4,此时甲已经走了1/4+5/8=7/8.那么甲、乙的路程比为7/8:7/10=35:28.乙离b地的距离为(28/63)×ab-640,而乙走完全程的距离为(7/10)×ab。

小学五年级上册数学奥数题带答案

小学五年级上册数学奥数题带答案

小学五年级上册数学奥数题带答案一、拓展提优试题1.如图,魔术师在一个转盘上的16个位置写下来了1﹣16共16个数,四名观众甲、乙、丙、丁参与魔术表演.魔术师闭上眼,然后甲从转盘中选一个数,乙、丙、丁按照顺时针方向依次选取下一个数,图示是一种可能的选取方式,魔术师睁开眼,说:“选到偶数的观众请举手.”,这时候,只有甲和丁举手,这时候魔术师就大喝一声:“我知道你们选的数了!”.你认为甲和丁选的数的乘积是.2.(7分)对于a、b,定义运算“@”为:a@b=(a+5)×b,若x@1.3=11.05,则x=.3.如图,魔术师在一个转盘上的16个位置写下来了1﹣16共16个数,四名观众甲、乙、丙、丁参与魔术表演.魔术师闭上眼,然后甲从转盘中选一个数,乙、丙、丁按照顺时针方向依次选取下一个数,图示是一种可能的选取方式,魔术师睁开眼,说:“选到偶数的观众请举手.”,这时候,只有甲和丁举手,这时候魔术师就大喝一声:“我知道你们选的数了!”.你认为甲和丁选的数的乘积是.4.(8分)如果两个质数的差恰好是2,称这两个质数为一对孪生质数.例如3和5是一对孪生质数,29和31也是一对孪生质数.在数论研究中,孪生质数是最热门的研究课题之一.华裔数学家张益唐在该课题的研究中取得了令人瞩目的成就,他的事迹激励着更多的青年学子投身数学研究.在不超过100的整数中,一共可以找到对孪生质数.5.(8分)图中所示的图形是迎春小学数学兴趣小组的标志,其中,ABCDEF 是正六边形,面积为360,那么四边形AGDH的面积是.6.某长方体的长、宽、高(长、宽、高均大于1)是三个彼此互质的自然数,若这个长方体的体积是665,则它的表面积是.7.从1、2、3、4、5中任取3个组成一个三位数,其中不能被3整除的三位数有个.8.观察下表中的数的规律,可知第8行中,从左向右第5个数是.9.两个数的最大公约数和最小公倍数分别是3和135,求这两个数的差最小是.10.(15分)甲、乙两船顺流每小时行8千米,逆流每小时行4千米,若甲船顺流而下,然后返回;乙船逆流而上,然后返回,两船同时出发,经过3小时同时回到各自的出发点,在这3小时中有多长时间甲、乙两船同向航行?11.某商店的同种点心有大小两种包装礼盒,大盒85.6元一盒,内有点心32块,小盒46.8元一盒,内有点心15块,若王雷用654元买了9盒点心,则他可得点心块.12.定义新运算:θa=,则(θ3)+(θ5)+(θ7)(+θ9)+(θ11)的计算结果化成最简真分数后,分子与分母的和是.13.如图六角星的6个顶点恰好是一个正六边形的6个顶点,那么阴影部分面积是空白部分面积的倍.14.(8分)小胖把这个月的工资都用来买了一支股票.第一天该股票价格上涨,第二天下跌,第三天上涨,第四天下跌,此时他的股票价值刚好5000元,那么小胖这个月的工资是元.15.观察下面数表中的规律,可知x=.16.A、B两桶水同样重,若从A桶中倒2.5千克水到B桶中,则B桶中水的重量是A桶中水的重量的6倍,那么B桶中原来有水千克.17.同学们去春游,带水壶的有80人,带水果的有70人,两样都没带的有6人.若既带水壶又带水果的人数是所有参加春游人数的一半,则参加春游的同学共有人.18.松鼠A、B、C共有松果若干,松鼠A原有松果26颗,从中拿出10颗平分给B、C,然后松鼠B拿出自己的18颗松果平均分给A、C,最后松鼠C把自己现有松果的一半平分给A、B,此时3只松鼠的松果数量相同,则松鼠C原有松果颗.19.(7分)如图,按此规律,图4中的小方块应为个.20.如果2头牛可以换42只羊,3只羊可以换26只兔,2只兔可以换3只鸡,则3头牛可以换多少只鸡?21.已知一个五位回文数等于45与一个四位回文数的乘积(即=45×),那么这个五位回文数最大的可能值是59895.22.由120个棱长为1的正方体,拼成一个长方体,表面全部涂色,只有一面染色的小正方体,最多有块23.(7分)爱尔兰作家刘易斯曾写过一篇反讽寓言,文中描述了一个名为尼亚特泊的野蛮国家.在这个国家里使用西巴巴数字.西巴巴数字的形状与通用的阿拉伯数字相同,但含义相反.如“0”表示“9”,“1”表示“8”,以次类推.他们写数字是从左到右,使用的运算符号也与我们使用的一样.例如,他们用62代表我们所写的37.按照尼亚特泊人的习惯,应怎样写837+742的和是419.【分析】“0”表示“9”,0+9=9,“1”表示“8”,1+8=9,由此可知西巴巴数字,表示的数字与正常数字的和都是9;由此找出837、742表示的数字,然后相加即可.24.(7分)将偶数按下图进行排列,问:2008排在第列.2 4681614121018 20 22 2432 30 28 26…25.数一数,图中有多少个正方形?26.一个除法算式中,被除数、除数、商与余数都是自然数,并且商与余数相等.若被除数是47,则除数是,余数是.27.如图,甲、乙两人按箭头方向从A点同时出发,沿正方形ABCD的边行走,正方形ABCD的边长是100米,甲的速度是乙的速度的1.5倍,两人在E 点第一次相遇,则三角形ADE的面积比三角形BCE的面积大1000平方米.28.小明带了30元钱去买文具,买了3个笔记本和5支笔,剩余的钱,如果再买2支笔还差0.4元,如果再买2个笔记本则还差2元,那么,笔记本每个元,笔每支元.29.解放军战士在洪水不断冲毁大坝的过程中要修好大坝,若10人需45分钟,20人需要20分钟,则14人修好大坝需分钟.30.商店对某饮料推出“第二杯半价”的促销办法.那么,若购买两杯这种饮料,相当于在原价的基础上打折.31.(15分)如图,正六边形ABCDEF的面积为1222,K、M、N分别AB,CD,EF的中点,那么三角形PQR的边长是.32.请从1、2、3、…、9、10中选出若干个数,使得1、2、3、…、19、20这20个数中的每个数都等于某个选出的数或某两个选出的数(可以相等)的和.那么,至少需要选出个数.33.某次入学考试有1000人参加,平均分是55分,录取了200人,录取者的平均分与未录取的平均分相差60分,录取分数线比录取者的平均分少4分.录取分数线是分.34.小明从家到学校去上课,如果每分钟走60米,可提前10分钟到校;如果每分钟走50米,要迟到4分钟到校.小明家到学校相距米.35.(8分)有一种细胞,每隔1小时死亡2个细胞,余下的每个细胞分裂成2个.若经过5小时后细胞的个数记为164.最开始的时候有个细胞.36.对于自然数N,如果在1﹣9这九个自然数中至少有七个数是N的因数,则称N是一个“七星数”,则在大于2000的自然数中,最小的“七星数”是.37.如图中,A、B、C、D为正六边形四边的中点,六边形的面积是16,阴影部分的面积是.38.三位偶数A、B、C、D、E满足A<B<C<D<E,若A+B+C+D+E=4306,则A最小.39.如图,若每个小正方形的边长是2,则图中阴影部分的面积是.40.鸡与兔共100只,鸡的脚比兔的脚多26只.那么,鸡有只.【参考答案】一、拓展提优试题1.解:依题意可知:2个偶数中间间隔是2个奇数.发现只有数字10,11,9,12是符合条件的数字.乘积为10×12=120.故答案为:1202.解:由定义可知:x@1.3=11.05,(x+5)1.3=11.05,x+5=8.5,x=8.5﹣5=3.5故答案为:3.53.解:依题意可知:2个偶数中间间隔是2个奇数.发现只有数字10,11,9,12是符合条件的数字.乘积为10×12=120.故答案为:1204.解:在不超过100的整数中,以下8组:3,5;5,7;11,13;17,19;29,31;41,43;59,61;71,73是孪生质数.故答案为8.5.解:根据分析,(1)△ABC面积等于六边形面积的,连接AD,四边形ABCD是正六边形面积的,故△ACD面积为正六边形面积的(2)S△ABC :S△ACD=1:2,根据风筝模型,BG:GD=1:2;(3)S△BGC:S CGD=BG:GD=1:2,故;故AGDH面积=六边形总面积﹣(S△ABC +S△CGD)×2=360﹣(+40)×2=160.故答案是:1606.解:665=19×7×5,因为长、宽、高(长、宽、高均大于1)是三个彼此互质的自然数,所以长、宽、高分别是19、7、5,(19×7+19×5+7×5)×2=(133+95+35)×2=263×2=526,答:它的表面积是526.故答案为:526.7.解:1+2+3=6,1+2+4=7,1+2+5=8,2+3+4=9,2+3+5=10,3+4+5=12,其中不能被3整除的数的和是7、8、10,即有三组(1、2、4),(1、2、5)(2、3、5),每一组可以组成3×2×1=6个,三组共可以组成6×3=18个,即不能被3整除的数共有18个.故答案为:18.8.解:由图可知,第1行的数为1,第2行的最后一个数为2×2=4,第3行的最后一个数为3×3=9,…所以第7行最后一个数为7×7=49,则第8行第1个数为49+1=50,第5个数为50+4=54,故答案为:54.9.解:因为135÷3=45,45分解成两个互质的数有两种情况即1和45、9与5,所以差最小的是:9和5,所以这两个数分别是:9×3=275×3=1527﹣15=12答:这两个数的差最小是12.故答案为:12.10.解:设3小时顺流行驶单趟用时间为x小时,则逆流行驶单趟用的时间为(3﹣x)小时,故:x:(3﹣x)=4:88x=4×(3﹣x)8x=12﹣4x12x=12x=1逆流行驶单趟用的时间:3﹣1=2(小时),两船航行方向相同的时间为:2﹣1=1(小时),答:在3个小时中,有1小时两船同向都在逆向航行.11.设大合x盒,小盒y盒,依题意有方程:85.6x+46.8(9﹣x)=654解方程得x=6,9﹣6=3.所以大合6盒,小盒3盒,共有32×6+15×3=237块.答:可得点心237块.12.解:原式=++++=++++=×(﹣+﹣+…+﹣)=×()=5+24=29故答案为:2913.解:根据分析,如图所示,将图进行分割成面积相等的三角形,阴影部分由18个小三角形组成,而空白部分有6个小三角形,故阴影部分面积是空白部分面积的18÷6=3倍.故答案是:3.14.解:5000÷(1﹣)÷(1+)÷(1﹣)÷(1+)=5000××××=5000(元)答:小胖这个月的工资是5000元.故答案为:5000.15.解:根据分析可得,81=92,所以,x=9×5=45;故答案为:45.16.解:2.5×2÷(6﹣1)+2.5=5÷5+2.5=1+2.5=3.5(千克)答:B桶中原来有水3.5千克.故答案为:3.5.17.解:设既带水壶又带水果的为x人,则参加春游的同学共有2x人,由题意可得:80+70﹣x+6=2x156﹣x=2x3x=156x=52则2x=2×52=104答:则参加春游的同学共有104人.故答案为:104.18.解:10÷2=5(颗)18÷2=9(颗)此时A有:26﹣10+9=25(颗)此时C有:25×4=100(颗)原来C有:100﹣9﹣5=86(颗)答:松鼠C原有松果 86颗.故答案为:86.19.解:因为图1中小方块的个数为1+2×3=7个,图2中小方块的个数为1+(1+2)+3×4=16个,图3中小方块的个数为1+(1+2)+(1+2+3)+4×5=30个,所以图4中小方块的个数为1+(1+2)+(1+2+3)+(1+2+3+4)+5×6=50个,故答案为:50.20.解:42÷2=21(只)21÷3×26=7×26=182(只)182÷2×3=91×3=273(只)273×3=819(只)答:3头牛可以换819只鸡.21.解:根据分析,得知,=45=5×9既能被5整除,又能被9整除,故a 的最大值为5,b =9,45被59□95整除,则□=8,五位数最大为59895故答案为:5989522.64[解答]设长方体的长、宽、高分别为,,l m n (不妨设l m n ≥≥),容易知道只有一面染色的小正方体只有每个面上可能有一些。

高斯小学奥数五年级上册含答案_整除问题初步

高斯小学奥数五年级上册含答案_整除问题初步

第一讲整除问题初步从这一讲开始,我们将会进入一个神奇而美妙的世界:数论. 什么是数论呢?人类从学会数数开始,就一直和整数打交道.人们在对整数的应用和研究中, 探索出很 多奇妙的数学规律,正是这些富有魅力的规律, 吸引了古往今来的许多数学家, 于是就出现 了数论这门学科.确切的说,数论就是一门研究整数性质的学科.我们就从最基本的性质一一整除开始,一起在数论的海洋中遨游吧.X:: 数论在数学中的地位是独特的,伟大的数学家高斯曾经说过: “数学是科学的皇后,数;论是数学的皇冠” •整除的定义「丁 M 丄[EfiAI邑九牛城帀,琴百捨 吧円样的方式冉境 OOOKH3C01B.以G 、乩出卞城布 可胯号毀離00001 'oooowjja 序谏 次脫锂A- B- C, 懵快.軒iHflt 反应境 闻瞭面丈旳埠茶逾稲 伸只记聲车壇忙¥2. 鼻、4. $、隔一亍・ 貝侔的推列浚记件yrmir =Flf 面丈谥氓功了毡 豪酊r.舌方境 出了颯珂停!* w<«帀的T /整除的一些基本性质:1. 尾数判断法3.奇偶位求差法|能被ii 整除的数的特征:“奇位和”与“偶位和”的差能被ii 整除HI 我们把一个数从右往左数的第1、3、5位,……,统称为奇数位,把一个数从右往左数的第2、4、6位, ,统称为偶数位.我们把“奇数位上的数字之和”简称为“奇位和” 把“偶数位上的数字之和”简称为“偶位和”.F 面我们来看一下如何运用这些性质.例题1.判断下面11个数的整除性:23487, 3568, 8875, 6765, 5880, 7538, 198954, 6512, 93625, 864, 407 (1) 这些数中,有哪些数能被 4整除?哪些数能被 8整除? (2) 哪些数能被25整除?哪些数能被125整除? (3) 哪些数能被3整除?哪些数能被 9整除? (4) 哪些数能被11整除?【分析】关于4、8、25、125以及3、9、11的整除特征刚才都已经介绍过了,大家不 妨根据整除特性判断一下.练习 1.在数列 3124、312、3823、45235、5289、5588、661、7314 中哪些数能被 4 整除,哪些数能被3整除,哪些数能被11整除?如果将例题1中能被3整除的数相加或相减,会发现得到的结果还能被 3整除;同样的, 如果将其中能被11整除的数相加或相减, 会发现得到的结果同样能被 11整除.从中我们可以总结出如下规律:(1) (2) (3)2.例题2. 17石是一个四位数•文老师说:“我在其中的方框内先后填入3个数字,得到3个四位数,依次能被9, 11, 8整除问:文老师在方框中先后填入的3个数字之和是多少?【分析】本题包括三个小问题,我们逐个分析.需要分别用到9、11和8的整除特性.练习2.在2S 的方框内先后填上3个数字,分别组成3个三位数,使它们依次被3、4、5整除.上面我们已经学习了如何利用“整除特征”,解决单个数的整除问题•下面我们再来看一看,涉及多个数的整除问题应该如何解决.例题3.牛叔叔给45名工人发完工资后,将总钱数记在一张纸上•但是记账的那张纸破了两个洞,上面只剩下“ 6dd ”,其中方框表示破了的洞. 牛叔叔记得每名工人的工资都一样,并且都是整数元.请问:这45名工人的总工资有可能是多少元呢?【分析】这45名员工的工资都一样,所以总工资就能被45整除•我们没有学过被45整除的数的特征.但注意到45 5 9,于是6dd应该能同时被5和9整除,那么先考虑哪一个数的整除特征比较好呢?练习3.四位数CC 能被36整除,那么这个四位数可能是多少?在例3中,我们并不知道45的整除特征,但是45 5 9,能被45整除的数,也能被5和9整除,那么只需考虑5和9的整除特征即可.请同学们注意,虽然45 3 15,但是在考虑能否被45整除时,不能只考虑被3和15 整除•你能想明白为什么吗?例题4. 一天,王经理去电信营业厅为公司安装一部电话. 服务人员告诉他,目前只有形如“ 1234 口6口8 ”的号码可以申请•也就是说,在申请号码时,方框内的两个数字可以随意选择,而其余数字不得改动. 王经理打算申请一个能同时被8和11整除的号码.请问:他申请的号码可能是多少?【分析】要被8整除,说明号码的后三位Q8是8的倍数•想一下,这样的三位数是唯一的吗?练习4.七位数22 333 能被44整除,那么这个七位数是多少?有时候满足题目条件的答案会非常多. 如果只要求找出最大的或最小的,我们只需要从极端情况考虑即可.例题5.在所有各位数字互不相同的五位数中,能被45整除的数最小是多少?最大是多少?【分析】要想让五位数最大且数字不重复,每个数位上的数字应该依次是9、&….如果想让五位数尽量小,是不是应该依次是1、2、…呢?例题6.由1、3、4、5、7、8这六个数字所组成的六位数中,能被11整除的最大的数是多少?【分析】要想能被11整除,奇位和与偶位和的差应该是11的倍数.那么奇位和与偶位和的和又是什么呢?天才未必事事都聪明牛顿小时候的一个故事告诉我们,天才有时也傻乎乎的.一次,粮仓里闹鼠灾了,大人让牛顿在粮仓的门底开一个洞让猫进出.结果他开了两个洞一一大的给老猫,小的给小猫.其实在整除性的问题当中也有类似情况. 比如要在200 □匚的方框中填入两个数字使得这个五位数同时能被4、5、8整除,实际根本不用考虑4,只要考虑5和8即可,因为能被8整除的也必然能被4整除.如果你还要再考虑4的整除性,那就多此一举了.作业1. 下面有9 个自然数:48, 75, 90, 122, 650, 594, 4305, 7836, 4100 .其中能被4 整除的有哪些?能被25整除的有哪些?2. 有如下5个自然数:12345, 189, 72457821, 333666, 54289•其中能被9整除的有哪些?3. 有如下5个自然数:3124, 3823, 45235, 5289, 5588 •其中能被11整除的有哪些?4. 是一个四位数•王老师说:“我在其中的方框内先后填入3个数字,得到3个四位数,依次能被9, 11, 8整除• ”问:王老师在方框中先后填入的3个数字之和是多少?5. 阿呆买了72支同样的钢笔,可是发票不慎落水浸湿,单价已无法辨认,总价数字也不全,只能认出:匚111.C 元(表示不明数字).请问总价应该是多少?第一讲整除问题初步例题1. 答案:(1)能被4整除的有3568、5880、6512、864;能被8整除的有3568、5880、6512、864 .(2)能被25 整除的有8875、93625 ;能被125 整除的有8875、93625 . ( 3) 能被 3 整除的有23487、6765、5880、198954、864;能被9 整除的有198954、864. (4) 能被11整除的有407、6765、6512.例题2.答案:21详解:要想让四位数能被9整除,数字和得是9的倍数,空格中要填7 •要想让四位数能被11整除,奇位和与偶位和的差得是11的倍数,空格中要填8•要想让四位数能被8整除,需要后三位即7C 是8的倍数,空格中要填6 .三个数字之和是21 .例题3. 答案:67680或67185详解:根据题意,这个数能被45整除,即能同时被5和9整除,个位只能是0或5,对应的百位是6或1 .例题 4. 答案:12345608、12341648、12348688详解:末三位被8整除,十位数字只能是0、4、8 .要满足号码能被11整除对应的千位数字只能是5、1、&例题 5. 答案:10395; 98730详解:要被45整除,五位数既得是5的倍数,也得是9的倍数.那么五位数的末尾只能是0或5 •先来看最小的数•要让前面数位上的数字尽量小,可以是1CD5 •要满足它是9的倍数且最小,应该是10395 •再来看最大,要让前面数位上的数字尽量大,可以是98口口5或9CD0 •要满足它是9的倍数且最大,应该是98730.例题6. 答案:875413详解:要想是11的倍数,奇位和与偶位和的差得是11的倍数.这六个数字的和是28 , 而最大的三个数的和是20,也就是说无论是奇位还是偶位之和都不会超过20,所以只能把28分成两个14,偶位为& 5、1,奇位为7、4、3.练习1. 答案:能被4整除的数有3124、312、5588;能被3整除的数有312、5289、7314 ; 能被11整除的数有3124、5588.练习2. 答案:本题的答案不止一种,要想被3整除,空格中可以填1、4、7.要想被 4 整除,空格中可填 2 或6.要想被 5 整除,空格中可填0或5.练习 3. 答案:3132 或3636简答:要想被36整除,这个四位数要既是4的倍数, 也是9的倍数. 要想是 4 的倍数, 个位上的空格中可填 2 或6.要想满足四位数是9的倍数,百位上的空格对应要填1或6.练习 4. 答案:2213332 或2283336简答:这个七位数既是4的倍数,也是11的倍数.要想是 4 的倍数,个位上的空格中可填2或6,剩下的空格中对应可填1或8.作业 1. 答案:48, 7836, 4100;75, 650, 4100简答: 4 和25 看末两位.作业 2. 答案:189, 72457821, 333666简答:被9 整除看数字和.作业 3. 答案:3124, 5588简答:被11 整除看奇位和与偶位和的差.作业4. 答案:11简答:填入的三个数字分别为1, 4, 6,数字和为11.作业 5. 答案:811.44 元简答:72 8 9 ,分别考虑8和9的整除特性.。

五年级上册奥数含真题(含答案)

五年级上册奥数含真题(含答案)

第一讲数的整除问题数的整除问题,内容丰富,思维技巧性强。

它是小学数学中的重要课题,也是小学数学竞赛命题的内容之一。

一、基本概念和知识1.整除——约数和倍数例如:15÷3=5,63÷7=9一般地,如a、b、c为整数,b≠0,且a÷b=c,即整数a除以整除b (b不等于0),除得的商c正好是整数而没有余数(或者说余数是0),我们就说,a能被b整除(或者说b能整除a)。

记作b|a.否则,称为a 不能被b整除,(或b不能整除a),记作b a。

如果整数a能被整数b整除,a就叫做b的倍数,b就叫做a的约数。

例如:在上面算式中,15是3的倍数,3是15的约数;63是7的倍数,7是63的约数。

2.数的整除性质性质1:如果a、b都能被c整除,那么它们的和与差也能被c整除。

即:如果c|a,c|b,那么c|(a±b)。

例如:如果2|10,2|6,那么2|(10+6),并且2|(10—6)。

性质2:如果b与c的积能整除a,那么b与c都能整除a.即:如果bc|a,那么b|a,c|a。

性质3:如果b、c都能整除a,且b和c互质,那么b与c的积能整除a。

即:如果b|a,c|a,且(b,c)=1,那么bc|a。

例如:如果2|28,7|28,且(2,7)=1,那么(2×7)|28。

性质4:如果c能整除b,b能整除a,那么c能整除a。

即:如果c|b,b|a,那么c|a。

例如:如果3|9,9|27,那么3|27。

3.数的整除特征①能被2整除的数的特征:个位数字是0、2、4、6、8的整数.“特征”包含两方面的意义:一方面,个位数字是偶数(包括0)的整数,必能被2整除;另一方面,能被2整除的数,其个位数字只能是偶数(包括0).下面“特征”含义相似。

②能被5整除的数的特征:个位是0或5。

③能被3(或9)整除的数的特征:各个数位数字之和能被3(或9)整除。

④能被4(或25)整除的数的特征:末两位数能被4(或25)整除。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五年级上册奥数题启蒙(含答案)1、有大、中、小三筐苹果,小筐装的是中筐的一半,中筐比大筐少装16千克,大筐装的是小筐的4倍,大、中、小筐共有苹果多少千克。

解:设小筐装苹果X千克。

4X=2X+162X=16X=88×2=16(千克)8×4=32(千克)答:小筐装苹果8千克,中筐装苹果16千克,大筐装苹果32千克。

2、参加校学生运动会团体操表演的运动员排成一个正方形队列,如果要使这个正方形队列减少一行和一列,则要减少33人,参加团体操表演的运动员有多少人?解:设团体操原来每行X人。

2X-1=332X=34X=1717×17=289(人)答:参加团体操表演的运动员有289人。

3、有两根绳子,长的比短的长1倍,现在把每根绳子都剪掉6分米,那么长的一根就比短的一根长两倍。

问:这两根绳子原来的长各是多少?1+1=21+2=3解:设原来短绳长X分米,长绳长2X分米。

(X-6)×3=2X-63X-18=2X-6X=122X=2×12=24答:原来短绳长12分米,长绳长24分米。

4、甲乙两数的和是32,甲数的3倍与乙数的5倍的和是122,求甲、乙二数各是多少?解:设甲数为X,乙数为(32-X)。

3X+(32-X)×5=1223X+160-5X=1222X=38X=1932-X=32-19=13答:甲数是19,乙数是13。

5、30枚硬币,由2分和5分组成,共值9角9分,两种硬币各多少枚?9角9分=99分解:设2分硬币有X枚,5分硬币有(30-X)枚。

2X+5×(30-X)=992X+150-5X=993X=51X=1730-X=30-17=136、搬运100只玻璃瓶,规定搬一只得搬运费3分,但打碎一只不但不得搬运费,而且要赔5分,运完后共得运费 2.60元,搬运中打碎了几只?2.60元=260分解:设搬运中打碎了X只。

3×(100-X)-5X=260300-3X-5X=2608X=40X=5答:搬运中打碎了5只。

7、弟弟有钱17元,哥哥有钱25元,哥哥给弟弟多少元后,弟弟的钱是哥哥的2倍?解:设哥哥给弟弟X元后,弟弟的钱是哥哥的2倍。

(25-X)×2=17+X50-2X=17+X3X=33X=11答:哥哥给弟弟11元后,弟弟的钱是哥哥的2倍。

8、京华小学五年级的学生采集标本,采集昆虫标本的有25人,采集植物标本的有19人,两种标本都采集的有8人,全班学生共有40人,没有采集标本的有多少人?解:设没有采集标本的有X人。

25+19-8+X=4036+X=40X=4答:没有采集标本的有4人。

9、一个四位数,最高位上是7,如果把这个数字调动到最后一位,其余的数字依次迁移,则这个数要减少864,求这四位数。

解:设四位数的末三位为X。

7000+X=10X+7+8649X=6129X=6817000+681=7681答:这四位数是7681。

10、一辆汽车从甲地出发到300千米外的乙地去,在一开始的120千米内平均速度为每小时40千米,要想使这辆汽车从甲地到乙地的平均速度为每小时50千米,剩下的路程应以什么速度行驶?300÷50=6(小时)120÷40=3(小时)解:设剩下的路程每小时行X千米。

120+(6-3)X=300120+3X=3003X=180X=60答:剩下的路程每小时行60千米。

11、某班有40名学生,其中有15人参加数学小组,18人参加航模小组,有10人两个小组都参加。

那么有多少人两个小组都不参加?答案:因为10人2组都参加,所以只参加数学的5人,只参加航模的8人,加上那10人就是23人,40-23=17,2个小组都不参加的17人12、某班45个学生参加期末考试,成绩公布后,数学得满分的有10人,数学及语文成绩均得满分的有3人,这两科都没有得满分的有29人。

那么语文成绩得满分的有多少人?答案:同理,数学满分10人,2科都满分的3人,于是只是数学满分的7人,45-7-29=9,这个就是语文满分的人(如果说只是语文满分的则需要减去3)13、50名同学面向老师站成一行。

老师先让大家从左至右按1,2,3,……,49,50依次报数;再让报数是4的倍数的同学向后转,接着又让报数是6的倍数的同学向后转。

问:现在面向老师的同学还有多少名?答案:50÷4取整12,50÷6取整8,但是要注意,报4倍数的同时可能是6的倍数,所以还要算出4和6的公倍数,有50÷12(4和6的最小公倍数)=4(取整),所以,应该是50-12-8+4=3414、在游艺会上,有100名同学抽到了标签分别为1至100的奖券。

按奖券标签号发放奖品的规则如下:(1)标签号为2的倍数,奖2支铅笔;(2)标签号为3的倍数,奖3支铅笔;(3)标签号既是2的倍数,又是3的倍数可重复领奖;(4)其他标签号均奖1支铅笔。

那么游艺会为该项活动准备的奖品铅笔共有多少支?答案:100÷2=50,100÷3=33(取整),还是算出2和3的公倍数100÷6=16(取整),然后找出即没不被2整除,也不被3整除的数的个数100-50-33+16=28,所以,准备铅笔为50X2+33X3+28=22715、有一根长为180厘米的绳子,从一端开始每隔3厘米作一记号,每隔4厘米也作一记号,然后将标有记号的地方剪断。

问绳子共被剪成了多少段?答案:180÷3=60,180÷4=45,但是可能2个划线划在一起,也就是要算出他们的公倍数,180÷3÷4=15,所以应该为60+45-15=90被除数与除数的和是222,如果被除数与除数都加上6,被除数是除数的8倍求原来的被除数和除数是多少?解:设原来除数是X-6。

(X-6)+(8X-6)=222X=2626-6=20 26×8=208 208-6=202答:原来的被除数是202,除数是20。

16. 买一本日记本和一本笔记本需付10.4元,买两本日记本和一本笔记本需付16元,日记本和笔记本各多少元?16-10.4=5.6(元)10.4-5.6=4.8(元)答:日记本 5.6元,笔记本 4.8元。

17. 果园里共种梨树、橘树、桃树、苹果树255棵。

橘树比桃树多种3棵,苹果树是桃树的2倍,梨树比桃树的2倍少18棵。

橘树、桃树、苹果树和梨树各有多少棵?解:设桃树有X棵?(3+X)+2X+(2X-18)+X=255X=4545+3=48(棵)45×2=90(棵)45×2-18=72(棵)答:橘树有48棵,桃树有45棵,苹果树有90棵,梨树有72棵。

18、三个连续自然数的乘积是210,求这三个数.整除问题答案:∵210=2×3×5×7∴可知这三个数是5、6和7。

19、计算:2010×2009-2009×2008+2008×2007-2007×2006+…+2×1解答:原式=2009×(2010-2008)+2007×(2008-2006)+ (3)(4-2)+2×1=(2009+2007+…+3+1)×2=1010025×2=202005020、一个大于10的数,除以5余3,除以7余1,除以9余8,问满足条件的最小自然数为____.根据总结,我们发现三个数中两个数的除数与余数的和都是5+3=7+1=8,这样我们可以把余数都处理成8,所以[5,7,9]=315,所以这个数最小为315+8=323.21、如图1,有三个正方形ABCD,BEFG和CHIJ,其中正方形ABCD 的边长是10,正方形BEFG的边长是6,那么三角形DFI的面积是_________.解:答案20连接IC,由正方形的对角线易知IC//DF;等积变换得到:三角形DFI的面积= 三角形DFC的面积=2022、(小学数学奥林匹克通讯赛决赛试题)梯形ABCD被两条对角线分成了四个三角形S1、S2、S3、S4。

已知S1=2cm2,S2=6cm2。

求梯形ABCD的面积。

解析:三角形S1和S2都是等高三角形,它们的面积比为2∶6=1∶3;则:DO∶OB=1∶3。

△ADB和△ADC是同底等高三角形,所以,S1=S3=2厘米2。

三角形S4和S3也是等高三角形,其底边之比为1∶3,所以S4∶S3=1∶3,则S4=2/3厘米2所以,梯形ABCD 的面积为32/3。

23、如图,梯形ABCD中上底为2,下底为3,三角形ADO的面积为12,那么梯形ABCD的面积为多少?三角形ADO的面积为12,则么梯形ABCD的面积为12÷6×25=5024、右图是一块长方形耕地,它由四个小长方形拼合而成,其中三个小长方形的面积分别为15、18、30公顷,问图中阴影部分的面积是多少?解:设定阴影部分面积为X,则不难由长方形面积公式看出比例关系为:X/30=15/18,则X=25。

25、一个三位小数四舍五入后是 5.70,那么原来这个三位小数最大是几?最小是几?解答:这个三位小数最大是 5.704,最小是 5.695.这是因为:根据四舍五入的原则,如果大于 5.704,四舍五入后得到的数将大于 5.70,例如5.705,四舍五入后是 5.71.如果小于 5.795,四舍五入后得到的数将小于 5.70,例如5.694,四舍五入后是 5.69.26、3÷7 的商是一个循环小数,第1995 个数字是几?解答:3÷7 = 0.428571……,观察左式这个商,是一个由六个数字组成的循环小数。

1995÷6=332……3,这说明1995 个数字中有:332 个“428571”还余3个数字,可见第1995 个数字是8.27、有6堆桃,把第一堆平均分给8 个人,还余 5 个;把第二堆平均分给8个人,还剩 4 个;把第三堆平均分给8 个人,还余 3 个;把第四堆平均分给8 个人,还余7 个;把第五堆平均分给8 个人,还余 1 个;第六堆与第二堆的个数一样多;如果把六堆桃子放在一起,平均分给8 个人,能不能正好分完?为什么?解答:第六堆与第二堆的桃子个数一样多,说明把第六堆平均分给8个人,也余 4 个。

因为一堆一堆分完后,余下的桃加起来正好是8 的倍数,即(5+4+3+7+1+4)÷8=3 所以把六堆放在一起分,正好分完。

28、为了迎接建国45 周年,某街道从东往西按照五面红旗、三面黄旗、四面绿旗、两面粉旗的规律排列,共悬挂1995 面彩旗,你能算出从西往东数第100 面彩旗是什么颜色的吗?解答:从西往东倒数第100 面彩旗,是从东往西正数第几面彩旗呢?这是正确解答本题的关键。

相关文档
最新文档