高职专升本高等数学试题及答案

合集下载

专升本高等数学(含答案)

专升本高等数学(含答案)

高等数学一、选择题1、设的值是则a x ax x ,3)sin(lim 0=→( )A.31B.1C.2D.32、设函数(==⎩⎨⎧≥+=k ,x ,)x x )(x<ke x f x则常数处连续在00cos 10)(2 。

A. 1B.2C.0D.3 3、)(,41)()2(lim)(00000x f x f h x f h ,x x f y h '→=--=则且处可导在点已知函数等于A .-4 B. -2 C. 2 D.4 4、⎰dt t f a b,b a x f )(],[)(则上连续在闭区间设函数( )A.小于零B.等于零C.大于零D.不确定 5、若A 与B 的交是不可能事件,则A 与B 一定是( )A.对立事件B.相互独立事件C.互不相容事件D.相等事件6、甲、乙二人参加知识竞赛,共有6个选择题,8个判断题,甲、乙二人依次各抽一题,则甲抽到选择题,乙抽到判断题的概率为 A.918 B.916 C.9124 D.91147、等于应补充处连续在要使)0(0)21(1)(3f ,x x n x f x=-=( ) A.e -6 B. -6 C. -23D.0 8、等于则且处可导在已知)(,41)()2(lim)(00000x f x f h x f h ,x x f h '=--→( )A. -4B. -2C.2D.4 9、等于则设)2)((,1)()(≥=n x fnx x x f n ( )A.()()11-1--n nx !n B.nn x n !)1(-C.()()2221--=-n n x !n D.12)2()1(----n n x!n 10、则必有处取得极小值在点函数,x x x f y 0)(==( )A.0)(0<x f '' B.0)(0='x f C.0)(0)(00>x f x f ''='且 D.不存在或)(0)(00x f x f '=' 11、则下列结论不正确的是上连续在设函数,b a x f ],[)(( )A .⎰的一个原函数是)()(x f dx x f abB.⎰的一个原函数是)()(x f dt t f a x(a <x <b )C. ⎰-的一个原函数是)()(x f dt t f xb(a <x <b )D.上是可积的在].[)(b a x f12、=-+∞→43121x x imx ( )A. -41B.0C.32D.113、=-+='=→hf h f im f ,x x f h )1()1(1,3)1(1)(0则且处可导在已知( )A. 0B.1C.3D.6 14、='=y nx y 则设函数,1 ( ) A. x 1 B. —x1 C. 1n x D.e x15、x <,x x f 当处连续在设函数0)(=0时,则时当,>x f ,x >,<x f 0)(00)(''( )A.是极小值)0(fB. 是极大值)0(fC. 不是极值)0(fD. 既是极大值又是极小值)0(f 16.设函数=-=dy x y 则),1sin(2( ) A.dx x )1cos(2- B,dx x )1cos(2-- C.2dx x x )1cos(2- D.dx x x )1cos(22-- 17、=')(,)(3x f x x f 则的一个原函数为设 ( )A.23x B.441x C. 44x D.6x 18、设函数=∂∂=xzxy z 则,tan ( )A.xy y 2cos B. xy x 2cos C.xy x 2sin - D. xyy2sin - 19、设函数=∂∂∂+=yx z y x z 23,)(则 ( )A.3(x +y )B.2)3y x +(C. 6(x +y ) B.2)6y x +( 20、五人排成一行,甲乙两人必须排在一起的概率P=( ) A.51 B. 52 c. 53 D. 54二、填空题 1、=-→xx xx 2sin ·2cos 1lim0 。

专升本高数试题及答案

专升本高数试题及答案

专升本高数试题及答案一、选择题1.已知函数f(x)=log₁₀(2x-1),则f(2)的值为多少?A) 0B) 1C) log₁₀3D) log₁₀2答案:D2.若f(x)在点x=a处可导,且f'(a)=3,则f(x)在点x=a处的切线斜率为多少?A) 3B) aC) f(a)D) 0答案:A3.已知集合A={1,2,3,4},集合B={3,4,5,6},则A∪B的结果为:A) {1,2,3,4,5,6}B) {1,2,3,4}C) {1,2,5,6}D) {3,4,5,6}答案:A二、计算题1.计算limₓ→∞(3x³+2x²-5x+1)的值。

答案:无穷大2.已知函数f(x)=x²+2x+1,求f'(x)的值。

答案:f'(x)=2x+23.已知三个数的平均值为85,其中两个数为60和90,求第三个数的值。

答案:第三个数的值为95三、证明题证明:对于任意实数x,若x²=x,则x=0或x=1。

证明:假设x²=x,则将方程两边移项得到x²-x=0,再因式分解得到x(x-1)=0,根据零乘法,得到x=0或x-1=0,即x=0或x=1。

由此可证明对于任意实数x,若x²=x,则x=0或x=1。

四、应用题某公司员工工资调整规则如下:每个员工的基本工资为3000元,年龄每增加1岁,工资增加50元;工龄每增加1年,工资增加100元。

现有一名员工,年龄为30岁,工龄为5年,请计算该员工的总工资。

答案:年龄增加的工资 = (30-20) * 50 = 500元工龄增加的工资 = 5 * 100 = 500元总工资 = 基本工资 + 年龄增加的工资 + 工龄增加的工资 = 3000 + 500 + 500 = 4000元总结:本文提供了专升本高数的试题及答案,包括选择题、计算题、证明题和应用题。

通过对这些题目的解答,读者可以巩固和提升自己在高等数学方面的知识和技能。

2024年专升本高数试题

2024年专升本高数试题

2024年专升本高数试题一、下列关于函数极限的说法,正确的是:A. 若函数在某点的左右极限相等,则该点处函数极限存在B. 无穷大是函数极限的一种,表示函数值可以无限增大或减小C. 有界函数的极限一定存在D. 函数在某点极限存在,则该函数在该点一定连续(答案:B)二、设函数f(x) = x2 - 3x + 2,则f(x)在区间[1,3]上的最小值为:A. -1B. 0C. 2D. 5(答案:B)三、下列关于导数的说法,错误的是:A. 导数描述了函数值随自变量变化的速率B. 常数的导数为0C. 函数的导数在其定义域内一定连续D. 直线斜率的数学表达就是导数(答案:C)四、设f(x) = ex,则f'(x) =A. exB. xexC. e(x+1)D. 1(答案:A)五、下列关于定积分的说法,正确的是:A. 定积分是函数在某一区间上所有函数值的和B. 定积分的值与积分变量的选取无关C. 定积分可以看作是由无穷多个小矩形面积的和逼近得到的D. 定积分只能用于计算面积(答案:C)六、设函数f(x) = x3 - x2,则f(x)在x=1处的切线斜率为:A. 1B. 2C. 3D. 0(答案:B)七、下列关于微分方程的说法,错误的是:A. 微分方程是含有未知函数及其导数的方程B. 微分方程的解是满足方程的函数C. 微分方程的阶数指的是方程中最高阶导数的阶数D. 所有微分方程都有唯一解(答案:D)八、设函数f(x) = sin(x) + cos(x),则f'(x) =A. sin(x) - cos(x)B. cos(x) - sin(x)C. -sin(x) + cos(x)D. sin(x) + cos(x)(答案:B)。

高数专升本试题(卷)与答案解析

高数专升本试题(卷)与答案解析

高数专升本试题(卷)与答案解析普通专科教育考试《数学(二)》一、单项选择题(本大题共10小题,每小题2分,共20题。

在每小题给出的四个备选项中,选出一个正确的答案,并将所选项前面的字母填写在答题纸的相应位置上,填写在其他位置上无效。

)1.极限=+--+→232lim 221x x x x x ( ) A.—3 B. —2 C.1 D.22.若函数()>=<+=?0,1sin 0,00,sin 1x x x x x a x x x 在0=x 处连续,则=a ()A.2B.0C.1D.—13.函数()x f 在()+∞∞-,上有定义,则下列函数中为奇函数的是( )A.()x f B.()x f C.()()x f x f -+ D.()()x f x f --4.设函数()x f 在闭区间[]b a , 上连续,在开区间()b a ,内可导,且()()b f a f =,则曲线()x f y =在()b a ,内平行于x 轴的切线()A.不存在B.只有一条C.至少有一条D.有两条以上5.已知某产品的总成本函数 C 与产量x 的函数关系为C (),2000102.02++=x x x C 则当产量10=x ,其边际成本是() A.—14 B.14 C.—20 D.20 6.设二元函数,xyy e x z +=则=??xz() A. xy y e yx+-1B.xy y ye yx +-1C.xy y e x x +lnD.xy y ye x x +ln7.微分方程y x e dxdy-=2的通解为() A.C e ey x=-2 B.C e e y x =-212 C.C e e y x =-221D.C e e y x =+28.下列级数中收敛发散的是()A.∑∞=1!1n n B.∑∞=123n n n C.∑∞=+11n n nD.∑∞=13sin n n π9.设函数()x f 连续,且()()dx x f x x f ?+=122,则()x f =()A.2xB.322-x C.322+x D.22+x 10.设A,B,C 均为n 阶方阵,则下列叙述正确的是()A.()()BC A C AB =B.若,AC AB =则C B =C.若AB=0,则0=A 或0=BD.若,2A A =则E A =或0=A二、填空题(本大题共4小题,每小题4分,共16分,将答案填写在答题纸的相应位置上,填写在其他位置上无效) 11.微分方程x e x y dxdysin cos -=+的通解为 12.?-=++112231sin dx x x x 13.设参数方程==tt y t x cos 2,则=dx dy14.已知三及行列式022321111=a,则=a三、计算题(本大题共6小题,每小题7分,共42分,将答题过程、步骤和答案填写在答题纸的相应位置上,填写在其他位置上无效)15.求极限()3cos 1lim x dt t xx ?-→16.设二元函数()y x z z ,=由方程()xyz z y x sin =++所确定,求xz。

《高等数学》(专升本)试题及参考答案

《高等数学》(专升本)试题及参考答案

《高等数学》(专升本)习题答案一、单选题1、若无穷级数收敛,而发散,则称称无穷级数(C)A发散 B收敛 C条件收敛 D绝对收敛2、点x=0是函数y=x^4的(D)A驻点但非极值点 B拐点 C驻点且是拐点 D驻点且是极值点3、极限(B)A B C1 D04、函数f(x)在点x0极限存在是函数在该点连续的(A)A必要条件 B充分条件 C充要条件 D无关条件5、(C)A B C0 D16、曲线y=1/∣x∣的渐近线情况是(C)A只有水平渐近线 B只有垂直渐近线C既有水平渐近线又有垂直渐近线 D既无水平渐近线又无垂直渐近线7、函数的定义域为(D)A B C D8、y=x/(x^2-1)的垂直渐近线有(B)条A1 B2 C3 D49、向量、垂直,则条件:向量、的数量积是(B)A充分非必要条件B充分且必要条件 C必要非充分条件D既非充分又非必要条件10、当x→0时,下列函数不是无穷小量的是(D)Ay=x By=0 Cy=ln(x+1) Dy=e^x11、,则(D)A BC D12、设f(x)=2^x-1,则当x→0时,f(x)是x的(D)A高阶无穷小 B低阶无穷小 C等价无穷小 D同阶但不等价无穷13、(A)A0 B C D14、若f(x)在x=x0处可导,则∣f(x)∣在处(C)A可导 B不可导 C连续但未必可导 D不连续15、直线上的一个方向向量,直线上的一个方向向量,若与平行,则(B)A BC D16、设函数y=f(x)在点x0处可导,且f′(x)>0, 曲线y=f(x)则在点(x0,f(x0))处的切线的倾斜角为{C}A0 B∏/2 C锐角 D钝角17、设,则(A)A B C D18、函数y=x^2*e^(-x)及图象在(1,2)内是(B)A单调减少且是凸的 B单调增加且是凸的C单调减少且是凹的 D单调增加且是凹的19、和在点连续是在点可微分的(A)A充分条件 B必要条件 C充要条件 D无关条件20、以下结论正确的是(C )A 若x0为函数y=f(x)的驻点,则x0必为函数y=f(x)的极值点.B函数y=f(x)导数不存在的点,一定不是函数y=f(x)的极值点.C若函数y=f(x)在x0处取得极值,且f′(x)存在,则必有f′(x)=0.D若函数y=f(x)在x0处连续,则y=f′(x0)一定存在.21、无穷大量减去无穷小量是(D)A无穷小量 B零 C常量 D未定式22、下列各微分式正确的是(C)Axdx=d(x^2) Bcos2x=d(sin2x) Cdx=-d(5-x) Dd(x^2)=(dx^2)23、已知向量两两相互垂直,且,求(C)A1 B2 C4 D824、函数y=ln(1+x^2)在区间[-1,-2]上的最大值为(D)A4 B0 C1 Dln525、在面上求一个垂直于向量,且与等长的向量(D)A B C D26、曲线y=xlnx的平行于直线x-y+1=0的切线方程是(C)Ay=x By=(lnx-1)(x-1) Cy=x-1 Dy=-(x-1)27、向量与向量平行,则条件:其向量积是(B)A充分非必要条件B充分且必要条件 C必要非充分条件 D既非充分又非必要条件28、曲线y=e^x-e^-x的凹区间是(B)A(-∞,0) B(0,+∞) C(-∞,1) D(-∞,+∞)29函数在区间上极小值是(D)A-1 B1 C2 D030函数y=3x^2-x^3在区间[1,3]上的最大值为(A)A4 B0 C1 D331、若,则(A)A4 B0 C2 D32、已知y=xsin3x ,则dy=(B)A(-cos3x+3sin3x)dx B(3xcos3x+sin3x)dxC(cos3x+3sin3x)dx D(xcos3x+sin3x)dx33、二重极限(D)A等于0 B等于1 C等于 D不存在34、曲线 y=x^3+x-2 在点(1,0)处的切线方程是(B)Ay=2(x-1) By=4(x-1) Cy=4x-1 Dy=3(x-1)35、设,则(C)A BC D36、曲线y=2+lnx在点x=1处的切线方程是(B)Ay=x-1 By=x+1 Cy=x Dy=-x37、向量与轴与轴构成等角,与轴夹角是前者的2倍,下面哪一个代表的是的方向(C)A BC D38、半径R为的金属圆片,加热后伸长了R,则面积S的微分dS是(B)A∏RdR B2∏RdR C∏dR D2∏dR39、设在处间断,则有(D)A在处一定没有意义;B;(即);C不存在,或;D若在处有定义,则时,不是无穷小40、曲线y=x/(x+2)的渐进线为(D)Ax=-2 By=1 Cx=0 Dx=-2,y=141、若无穷级数收敛,且收敛,则称称无穷级数(D)A发散 B收敛 C条件收敛 D绝对收敛42、函数y=(x^2-1)^3的驻点个数为(B)A4 B3 C1 D243、曲线在点处的切线斜率是(A)A B C2 D44、M1(2,3,1)到点M2(2,7,4)的距离∣M1M2∣=(C)A3 B4 C5 D645、利用变量替换,一定可以把方程化为新的方程表达式(A)A B C D46、两个向量a与b垂直的充要条件是(A)Aab=0 Ba*b=0 Ca-b=0 Da+b=047、已知向量,求向量在轴上的投影及在轴上的分量(A)A27,51 B25,27 C25,51 D27,25 48、求抛物线 y=x^2与y=2-x^2 所围成的平面图形的面积(B)A1 B8/3 C3 D249、若,为无穷间断点,为可去间断点,则(C)A B C D50、要用铁板做一个体积为2m^3的有盖长方体水箱,问长、宽、高各取怎样的尺寸时,才能使用料最省?(A)A均为³√2m时,用料最省. B均为³√3m时,用料最省.C均为√3m时,用料最省. D均为√2m时,用料最省.二、判断题1、设,则(错)2、已知曲线y=f(x)在x=2处的切线的倾斜角为5/6∏,则f′(2)=-1(错)3、对于无穷积分,有(对)4、定义函数极限的前提是该函数需要在定义处的邻域内有意义(对)5、函数的定义域是(对)6、函数就是映射,映射就是函数(错)7、设,且满足,则(错)8、函数有界,则界是唯一的(错)9、设是曲线与所围成,则,是否正确(错)10、极限存在,则一定唯一(对)11、在处二阶可导,且,若,则为极小值点(对)12、1/x的极限为0(错)13、设,其中,则,是否正确(对)14、1/n-1的极限为0(错)15、,是否正确(对)16、对于函数f(x),若f′(x0)=0,则x0是极值点(错)17、,是否正确(对)18、无界函数与其定义域没有关系(错)19、齐次型微分方程,设,则(对)20、若函数f(x)在x0处连续,则f(x)在x0处极限存在(对)21、函数可微可导,且(对)22、函数f(x)在[a,b]在内连续,且f(a)和f(b)异号,则f(x)=0在(a,b)内至少有一个实数根(对)23、微分方程的通解为,是否正确(对)24、y=e^(-x^2) 在区间(-∞,0)(1,∞)内分别是单调增加,单调增加(错)25、设是由所确定,函数在上连续,那么(对)26、有限个无穷小的和仍然是无穷小(对)27、是齐次线性方程的线性无关的特解,则是方程的通解(对)28、函数在一点的导数就是在一点的微分(错)29、设表示域:,则(错)30、方程x=cos在(0,∏/2)内至少有一实根(错)31、设,则,是否正确(对)32、f〞(x)=0对应的点不一定是曲线的拐点(对)33、设,其中,则(错)34、y=ln(1-x)/(1+x)是奇函数(对)35、设由所确定,则(对)36、方程x=cos在(0,∏/2)内至少有一实根(错)37、设在区间上连续,是的内点,如果曲线经过点时,曲线的凹凸性改变了,则称点为曲线的拐点(对)38、无穷间断点就是函数在该点的极限是无穷(对)39、设是圆周围成的区域,是否正确(对)40、定积分在几何上就是用来计算曲边梯形的面积(对)41、,是否正确(对)42、数列要么收敛,要么发散(对)43、函数在点可导(对)44、函数在一点处极限存在的充要条件是函数在该点的左极限等于右极限(对)45、在的邻域内可导,且,若:当时,;当时,则为极小值点(错)46、定积分在几何上就是用来计算曲边梯形的面积(对)47、二元函数的最小值点是(对)48、任何函数都可以求出定积分(错)49、设为,与为顶点三角形区域,则积分方程(对)50、若被积函数连续,则原函数不一定存在(错)。

(完整版)专升本高等数学习题集与答案

(完整版)专升本高等数学习题集与答案

·第一章 函数一、选择题1.以下函数中,【 C 】不是奇函数A.y tan x xB. y xC. y ( x 1) ( x 1)D. y2 sin 2 x2.f (x) 与 g( x) 同样的是【x以下各组中,函数 】A.f ( x) x, g( x)3x 3B.f ( x) 1, g( x) sec 2 xtan 2 xC. f ( x) x 1, g(x) x21D. f ( x) 2 ln x, g( x)ln x 23.x1以下函数中,在定义域内是单一增添、有界的函数是【】A. y x+arctan xB. y cosxC. yarcsin xD. y x sin x4. 以下函数中,定义域是 [,+ ] , 且是单一递加的是【】A. y arcsin xB. y arccosxC. y arctan xD. y arccot x5. 函数 yarctan x 的定义域是 【】A. (0, )B. (2 , )2C.[, 2 ]D. (,+ )26. 以下函数中,定义域为 [ 1,1] ,且是单一减少的函数是【】A. y arcsin xB. y arccosxC. y arctan xD. y arccot x7. 已知函数 yarcsin( x 1) ,则函数的定义域是 【】A. ( , )B. [ 1,1]C. (, )D. [ 2,0]8. 已知函数 yarcsin( x 1) ,则函数的定义域是 【】A. ( , )B. [ 1,1]C. (, )D. [ 2,0]9.以下各组函数中, 【 A 】 是同样的函数A. f ( x) ln x 2和 gx 2ln x B. f (x)x 和 g xx 2C. f ( x) x 和 g x ( x )2D. f ( x) sin x 和 g(x) arcsin x10. 设以下函数在其定义域内是增函数的是【】A. f ( x) cos xB. f ( x) arccos xC. f (x)tan xD. f (x)arctan x11. 反正切函数 y arctan x 的定义域是【】A. (, ) B. (0, )2 2C. ( , )D. [1,1]12. 以下函数是奇函数的是【】··A. y x arcsin xB.y x arccosxC.y xarccot xD. yx 2 arctan x13. 函数 y5ln sin 3x 的复合过程为 【 A 】A. y 5u ,u ln v, v w 3 , w sin xB. y 5u 3, u ln sin xC. y5ln u 3 ,u sin x D. y5u , u ln v 3,v sin x二、填空题1.函数 yarcsin xarctan x的定义域是 ___________.5 5 2.f ( x)x 2arcsin x的定义域为 ___________.33.函数 f ( x) x 2 arcsinx 1的定义域为 ___________。

高等数学试题及答案专升本

高等数学试题及答案专升本

高等数学试题及答案专升本高等数学试题及答案(专升本)一、选择题(每题4分,共40分)1. 极限lim(x→0) (sin x)/x 的值是()。

A. 0B. 1C. -1D. 2答案:B2. 函数f(x) = x^2 + 3x - 4的导数是()。

A. 2x + 3B. 2x - 3C. x^2 + 3D. x^2 - 3答案:A3. 曲线y = x^3 - 3x + 2在点(1, 0)处的切线斜率是()。

A. 1B. -1C. 3D. -3答案:B4. 不定积分∫(3x^2 - 2x + 1)dx 的结果是()。

A. x^3 - x^2 + x + CB. x^3 + x^2 - x + CC. x^3 - x^2 + x + CD. x^3 + x^2 - x + C答案:C5. 函数y = e^x 的原函数是()。

A. e^x + CB. e^(-x) + CC. e^x - CD. e^(-x) - C答案:A6. 已知函数f(x) = 2x + 1,g(x) = 3x - 2,则f[g(x)]的表达式是()。

A. 6x - 3B. 6x + 1C. 9x - 5D. 9x + 1答案:C7. 函数y = ln(x) 的反函数是()。

A. e^yC. x^yD. y^x答案:A8. 函数y = x^2 在区间[-2, 2]上的最大值是()。

A. 0B. 4C. -4D. 2答案:B9. 函数y = x^3 - 3x^2 + 2x 的极值点是()。

A. x = 0B. x = 1C. x = 2答案:B10. 曲线y = x^2 + 2x + 1与直线y = 3x + 2的交点个数是()。

A. 0B. 1C. 2D. 3答案:C二、填空题(每题4分,共20分)11. 极限lim(x→∞) (x^2 - 3x + 2)/(x^2 + 2x - 3) 的值是 _______。

答案:112. 函数f(x) = x^3 - 6x^2 + 11x - 6的二阶导数是 _______。

高职专升本高等数学试题及答案

高职专升本高等数学试题及答案

《高等数学》试卷2 (闭卷)合用班级:选修班(专升本)班级: 学号: 姓名: 得分: ﹒ ﹒一、选择题(将答案代号填入括号内,每题3分,共30分).1.下列各组函数中,是相似旳函数旳是( )(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x=和 ()g x =1 2.函数()00x f x a x ≠=⎨⎪=⎩在0x =处持续,则a =( ).(A )0 (B )14(C )1 (D )2 3.曲线ln y x x =旳平行于直线10x y -+=旳切线方程为( ).(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ).(A )持续且可导 (B )持续且可微 (C )持续不可导 (D )不持续不可微 5.点0x =是函数4y x =旳( ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点 6.曲线1||y x =旳渐近线状况是( ). (A )只有水平渐近线 (B )只有垂直渐近线(C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线7.211f dx x x⎛⎫'⎪⎝⎭⎰旳成果是( ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭(C )1f C x ⎛⎫+⎪⎝⎭ (D )1f C x ⎛⎫-+ ⎪⎝⎭8.x x dxe e -+⎰旳成果是( ).(A )arctan xe C + (B )arctan xe C -+(C )xxe eC --+ (D )ln()x x e e C -++9.下列定积分为零旳是( ).(A )424arctan 1xdx x ππ-+⎰ (B )44arcsin x x dx ππ-⎰ (C )112x xe e dx --+⎰ (D )()121sin x x x dx -+⎰ 10.设()f x 为持续函数,则()12f x dx '⎰等于( ).(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦ (C )()()1202f f -⎡⎤⎣⎦ (D )()()10f f -二、填空题(每题3分,共15分)1.设函数()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩在0x =处持续,则a =.2.已知曲线()y f x =在2x =处旳切线旳倾斜角为56π,则()2f '=.3.21xy x =-旳垂直渐近线有 条.4.()21ln dxx x =+⎰.5.()422sin cos xx x dx ππ-+=⎰.三、计算题(共55分)1.求极限①21lim xx x x →∞+⎛⎫ ⎪⎝⎭ (3分) ②()20sin 1lim x x x x x e →-- (3分)2. 已知222lim 22x x ax bx x →++=-- 求a 与b (4分)3. 设22()cos sin ()f x x x f x '=+求(3分)4.求方程()ln y x y =+所确定旳隐函数旳导数x y '.(4分)5. .确定曲线x y xe -=旳凹凸区间及拐点(4分)6.求不定积分(1)()()13dx x x ++⎰ (2) 21e ⎰(3) 1x dx e+⎰ (4) 计算定积分⎰-11d ||x e x x7. 计算由曲线x y x y -==2,2所围平面图形旳面积.(4分)8.求由曲线1,0,2===x y x y 所围图形绕x 轴旋转而成旳旋转体旳体积(4分)9. 设有底为等边三角形旳直柱体,体积为V ,要使其表面积最小,问底旳边长为何?(6分)参照答案: 一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题1.2- 2.3- 3. 2 4.arctanln x c + 5.2 三.计算题1①2e ②16 2. 3. 4.11x y x y '=+- 5.6. (1)11ln ||23x C x +++ (2) (3) (4) 22e- 7. 8. 9.。

高职专升本高等数学试题及答案(2).docx

高职专升本高等数学试题及答案(2).docx

《高等数学》试卷 2 (闭卷 )适用班级:选修班 (专升本 )班级:学号:姓名:得分:﹒﹒一、选择题(将答案代号填入括号内,每题 3 分,共 30 分) .1.下列各组函数中,是相同的函数的是()(A )f x ln x2和 g x2ln x(B)f x| x | 和 g x x2(C)f x x2(D)f x| x |和 g x和 g x x1xsin x42x02.函数f x ln 1x在 x 0 处连续,则a().a x0(A )0(B)1(C) 1(D)2 43.曲线y x ln x 的平行于直线 x y 1 0 的切线方程为().(A )y x 1(B)y( x 1)(C)y ln x 1 x 1(D)y x 4.设函数f x| x |,则函数在点 x0 处().(A )连续且可导(B)连续且可微(C)连续不可导(D)不连续不可微5.点x0是函数 y x4的().(A )驻点但非极值点(B)拐点(C)驻点且是拐点(D)驻点且是极值点6.曲线y1的渐近线情况是(). | x |(A )只有水平渐近线(B)只有垂直渐近线(C)既有水平渐近线又有垂直渐近线(D)既无水平渐近线又无垂直渐近线7.f112 dx 的结果是().x x(A )f 1C(B)f1C x x(C)f 1C1C x( D)fxdx的结果是().8.e x e x(A )arctan e x C(B)arctan e x C (C)e x e x C(D)ln( e x e x ) C 9.下列定积分为零的是().(A )arctanx(B)4x arcsinx dx 41x2 dx44(C)1e x e x1x2x sin x dx12dx(D)110.设f x1为连续函数,则 f 2x dx 等于() .(A )f 2 f 0(B)1f 11 f 0 2( C)1f 2 f 0(D)f 1 f 0 2二、填空题(每题 3 分,共 15 分)1.设函数f x e 2 x 1x00 处连续,则 a.x在 xa x02.已知曲线y f x 在 x 2 处的切线的倾斜角为5.,则 f 263.y x的垂直渐近线有条.2x14.dx.ln2 xx 15.2x4 sin x cosx dx.2三、计算题(共55 分)1.求极限1 x2 xx sin x (3分)①lim(3 分)②limx x e x2x x 012. 已知lim x2ax b 2 求a与b(4分)x 2 x2x23. 设f ( x)cos2 x sin x2求 f ( x) (3分)4.求方程y ln x y 所确定的隐函数的导数y x.(4分)5. . 确定曲线y xe x的凹凸区间及拐点(4分)6.求不定积分dx e2dx(2)(1)x 1 x 31x 1 ln xdx x 1(3)(4) 计算定积分| x | e x dx1e17. 计算由曲线y x2, y 2 x所围平面图形的面积.(4分)8.求由曲线y2x, y 0, x 1 所围图形绕x轴旋转而成的旋转体的体积(4 分)9. 设有底为等边三角形的直柱体,体积为 V ,要使其表面积最小,问底的边长为何?( 6 分)参考答案:一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题1.22.33. 24.arctanln x c5.2 3三.计算题1① e2②1 2. 3. 4. y x1 5.6x y16. (1)1ln |x1| C(2) (3)(4) 22 2x3e7.8.9.。

2024专升本高数试卷

2024专升本高数试卷

2024专升本高数试卷一、选择题(每题3分,共30分)1. 函数y = (1)/(√(x - 1))的定义域是()A. (1,+∞)B. [1,+∞)C. (-∞,1)D. (-∞,1]2. 设f(x)=sin x,则f^′(x)=()A. cos xB. -cos xC. sin xD. -sin x3. ∫ x^2dx=()A. (1)/(3)x^3+CB. x^3+CC. (1)/(2)x^2+CD. 2x + C4. 下列函数中为奇函数的是()A. y = x^2B. y=sin xC. y = e^xD. y=ln x(x>0)5. 极限lim_x→ 0(sin x)/(x)=()A. 0.B. 1.C. ∞D. 不存在。

6. 方程y^′′-y = 0的通解是()A. y = C_1e^x+C_2e^-xB. y = C_1cos x+C_2sin xC. y=(C_1+C_2x)e^xD. y = C_1x + C_27. 已知向量→a=(1,2, - 1),→b=(2, - 1,3),则→a·→b=()A. - 1.B. 1.C. 3.D. - 3.8. 函数y = 3x^4-4x^3的极值点为()A. x = 0和x = 1B. x = 0C. x = 1D. x=-19. 定积分∫_0^1e^xdx=()A. e - 1B. 1 - eC. eD. -e10. 曲线y=(1)/(x)在点(1,1)处的切线方程为()A. y=-x + 2B. y = xC. y=-xD. y = x+2二、填空题(每题3分,共15分)1. 函数y = ln(x + √(x^2)+1)是____函数(填“奇”或“偶”)。

2. lim_x→∞(1+(1)/(x))^x=_text{e}。

3. 设y = sin(2x + 1),则y^′=_2cos(2x + 1)。

4. 由曲线y = x^2与y = x所围成的图形的面积为_(1)/(6)。

高职升本《高等数学》试卷及参考答案

高职升本《高等数学》试卷及参考答案

高等院校“高职升本科”高等数学试卷2及参考答案本试卷分第I 卷(选择题)和第Ⅱ卷两部分。

共150分。

考试时间120分钟。

第I 卷(选择题 共40分)注意事项:1. 答第I 卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上,并将本人考试用条形码贴在答题卡的贴条形码处。

2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

答在试卷上的无效。

3. 考试结束,监考人将本试卷和答题卡一并收回。

一、单项选择题:本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.下列极限正确的是A. B. 1sin 1lim=∞→x xx 11tanlim =∞→xx x C. D. 04lim =-∞→xx ∞=∞→x x e lim 2. 当时,与等价的无穷小是0→x 112-+x A .B. C. 2 D.x 2x 2x 221x 3. 设函数在()内可导且,又<,则当()()x g x f ,+∞∞-,()0≠x g ()()x g x f '()()x g x f ' <<(其中为常数)时,有a x b b a , A. <B. <()()x g x f ()()a g a f ()()x g x f ()()b g b f C .< D.<()()x g x f ()()a g a f ()()x g x f ()()b g b f 4. 函数在区间上满足拉格朗日中值定理的()1ln +=x y []1,0=ξ A .B. C. D.212ln 12ln 212ln 11-5. 设向量与向量共线,且满足,则=x {}2,1,2-=a 18=⋅x ax A. B. {}3,6,3-{}4,2,4- C . D. {}4,2,4--{}6,3,6-6. 不定积分⎰=dx x x2cos A. B. C x x x ++cos ln tan C x x +-cos ln tan C.D. C x x x +-sin ln tan Cx x x +-cos ln tan 7. 广义积分⎰=-e dx xx 12ln 11 A.B. C.D. 2ππ108. 当>时,下列不等式成立的是x 1 A .> B. < ()x +1ln x xe x C. < D. >()x +1ln x x sin x9. 设周期函数在内可导,周期为4,且,则曲线()x f ()+∞∞-,()()1211lim-=--→xx f f x 在点处的切线斜率为()x f y =()()5,5f A. 1B. 2C. -2D. -110.下列微分方程中,通解是的方程为()x C x C e y x2sin 2cos 21+= A. B. 032=-'-''y y y 052=+'-''y y y C.D. 02=-'+''y y y 0136=+'+''y y y高等院校“高职升本科”招生统一考试高等数学试卷第II 卷(非选择题 共110分)注意事项:1.答第II 卷前,考生须将密封线内的项目填写清楚.2. 考生须用蓝,黑色钢笔或圆珠笔直接答在试卷上.二三四题号161718192021222324252627总分得分二、填空题:本大题共6小题,每小题4分,共24分,把答案填在题中横线上.11. 求极限: =⎪⎭⎫⎝⎛-∞→241cos1lim x x x 12. 已知点是曲线的拐点,则常数的值分别为 ()3,123bx ax y +=b a ,13. 设 则的值为 ()⎩⎨⎧<≥=0,sin ,0,2x x x x f x ()dx x f ⎰-20114. 曲线绕Y 轴旋转一周所形成的旋转曲面的方程为 ⎪⎩⎪⎨⎧==+0,1222x z y 15. 函数的驻点为()()y yx e y x f x2,22++=16. 交换积分次序:()=⎰⎰--dx y x f dy y1201,三、解答题:本大题共8小题,共86分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分).得分评卷人得分评卷人设为常数且函数 在点处连续,求的值.k ()⎪⎩⎪⎨⎧≥<<=+-1,10,12x ex x x f k x x 1=x k 18.(本小题满分10分)求曲线 ,在相对应的点处的切线方程.()⎩⎨⎧=++=-+0101y te t t x y 0=t 19.(本小题满分10分)设,并且.()⎰+='C edx xx f x()01=f (1)求的表达式; (2) 求不定积分.()x f ()⎰dx x xf 得分评卷人得分评卷人20.(本小题满分10分)已知点和直线,直线. ()3,2,1-A 958273:1-=+=-z y x L 654:2zy x L ==(1)求过点且垂直于直线的平面的方程;A 1L π(2)求过点和直线垂直且平行于平面的直线方程.A 2L π21.(本小题满分10分)设区域,计算二重积分.x y x x y D 2,0:22≤+≤≤⎰⎰+Ddxdy y x 22得分评卷人得分评卷人22.(本小题满分12分)设二元函数,求全微分和二阶偏导数.()yxy z +=1dz 22xz ∂∂23.(本小题满分12分)已知函数在区间上连续,且>0,设函数()x f []b a ,()x f , .()()()⎰⎰+=x ax bdt tf dt t f x F 1[]b a x ,∈(1)证明;()2≥'x F (2)证明方程在区间内有且仅有一个根.()0=x F ()b a ,得分评卷人得分评卷人24.(本小题满分12分)求微分方程的一个解,使得由曲线与直线()02=-+dx y x xdy ()x y y =()x y y =及轴所围成的平面图形绕轴旋转一周所围成的旋转体体积最小.2,1==x x x x2008年天津市高等院校“高职升本科”招生统一考试高等数学参考答案一、选择题1.B2. D3. C4. D5. B6. A7. A8. C9. C 10. B 二、填空题11.12. 13. 2129,23-2ln 111cos +-14. 15. 16. 12222=++z x y ⎪⎭⎫ ⎝⎛-1,21()⎰⎰--2101,x dyy x f dx 三、解答题17.解: 因为在点处连续,所以()x f 1=x ()()1lim 1f x f x =-→ 因为 ,()()[]2121121111lim lim lim e x x x f x x x x x =-+==-→-→→--- 又因为 ,所以 ,因此 ()ke f +=11kee +=121=k 18. 解: 因为,所以dt dx 01=--+t t t dtdx21+-= 因为 所以 0=++dt dy dt dy te e yyyyte e dt dy +-=1得分评卷人因此()()y yte t e dtdx dt dy dx dy +-==121 当时,所求的切线方程的斜率为0=t 1,0-==y x 1-=e k 故所求的切线方程为x e y 11-=+ 19.解:(1)由已知,得 ()⎰+='C e x d x f x2 所以因此 ()C e x f x +=2()C ex f x2121+= 于是 ()C e x f x 21212+=因为 ,所以()01=f e C -= 于是 ()e e x f x 21212-=(2)()()⎰⎰⎰⎰-=-=xdx e dx e dx ex xe dx x xf x x 214121222 ()Cex e x +-=224120. 解:(1) 直线的方向向量为1L {}9,8,7=→s 于是所求平面的方程为π()()()0392817=-+-++z y x 即 36987=++z y x (2)所求直线的方向向量为k j i kj i m363987654-+-==→故所求直线的方程为132211-=--=+z y x 21.解:在极坐标下,区域D 为,θγπθcos 20,40≤≤≤≤ 所以⎰⎰⎰⎰⎰==+Dd d d dxdy y x 4403cos 20222cos 38ππθθθγγθ ()92101222238sin sin 138402=⎪⎪⎭⎫ ⎝⎛-=-=⎰θθπd22. 解:(1)因为 ()xy y ez +=1ln 所以=∂∂xz ()()y xy y xy xy y y xy y e ++=⋅+⋅⋅+111121ln=∂∂y z()()⎥⎦⎤⎢⎣⎡⋅+⋅+++x xy y xy e xy y 111ln 1ln ()()y xy xy xy xy +⎥⎦⎤⎢⎣⎡+++=111ln 于是 dy yzdx x z dz ∂∂+∂∂=()()⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡++++++=dy xy xy xy dx xyy xy y11ln 112(2) ()()yy xy xxy y xy y x xy x z +∂∂⋅++⎪⎪⎭⎫ ⎝⎛+∂∂+=∂∂11112222 ()()()y yxy xy y xy y xy xy yy ++⋅++++⋅-=111112222()()23411xy yy xy y +-+=23.证明:(1)因为 >0,()x f 所以 ()()()()()2121=⋅≥+='x f x f x f x f x F (2) 因为 <0()()()()⎰⎰⎰-=+=a aa bb a dt tf dt t f dt t f a F 11>0 ,()()⎰=badt t f b F 且在区间上连续.()x F []b a , 所以由零点定理知=0在区间内至少有一个根.()x F ()b a , 由(1)知 >0, 所以在上单调增加,从而方程=0()2≥'x F ()x F []b a ,()x F 在区间内至多有一个根.()b a , 故方程=0在区间内有且仅有一个根.()x F ()b a ,24.由 ,得 ,其通解为()02=-+dx y x xdy 12-=-'y xy x Cx dx x C x dx e C e y dx x dx x +=⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛⎰-+⎰=⎰⎰-222221 由及轴所围成的平面图形绕轴旋转一周所得的旋转2,1,2==+=x x x Cx y x x 体体积为 于是 ()()⎰⎪⎭⎫⎝⎛++=+=2122237215531C C dx Cx x C V ππ⎪⎭⎫ ⎝⎛+=215562C dC dV π 令,得驻点 ,由>0. 知是0=dC dV 12475-=C π56212475=⎪⎭⎫ ⎝⎛-''V 12475-=C 惟一极小值点,因此也是最小值点,故所求曲线为 .x x y +-=212475。

江苏专升本高等数学真题(附答案)

江苏专升本高等数学真题(附答案)

江苏专转本高数考纲及重点总结一、函数、极限和连续(一)函数(1)理解函数的概念:函数的定义,函数的表示法,分段函数。

(2)理解和把握函数的简单性质:单调性,奇偶性,有界性,周期性。

(3)了解反函数:反函数的定义,反函数的图象。

(4)把握函数的四则运算与复合运算。

(5)理解和把握基本初等函数:幂函数,指数函数,对数函数,三角函数,反三角函数。

(6)了解初等函数的概念。

重点:函数的单调性、周期性、奇偶性,分段函数和隐函数(二)极限(1)理解数列极限的概念:数列,数列极限的定义,能根据极限概念分析函数的变化趋势。

会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。

(2)了解数列极限的性质:唯一性,有界性,四则运算定理,夹逼定理,单调有界数列,极限存在定理,把握极限的四则运算法则。

(3)理解函数极限的概念:函数在一点处极限的定义,左、右极限及其与极限的关系,x趋于无穷(x→∞,x→+∞,x→-∞)时函数的极限。

(4)把握函数极限的定理:唯一性定理,夹逼定理,四则运算定理。

(5)理解无穷小量和无穷大量:无穷小量与无穷大量的定义,无穷小量与无穷大量的关系,无穷小量与无穷大量的性质,两个无穷小量阶的比较。

(6)熟练把握用两个重要极限求极限的方法。

重点:会用左、右极限求解分段函数的极限,把握极限的四则运算法则、利用两个重要极限求极限以及利用等价无穷小求解极限。

(三)连续(1)理解函数连续的概念:函数在一点连续的定义,左连续和右连续,函数在一点连续的充分必要条件,函数的中断点及其分类。

(2)把握函数在一点处连续的性质:连续函数的四则运算,复合函数的连续性,反函数的连续性,会求函数的中断点及确定其类型。

(3)把握闭区间上连续函数的性质:有界性定理,最大值和最小值定理,介值定理(包括零点定理),会运用介值定理推证一些简单命题。

(4)理解初等函数在其定义区间上连续,并会利用连续性求极限。

重点:理解函数(左、右连续)性的概念,会判别函数的中断点。

2024年安徽普通专升本高等数学真题试卷及参考答案

2024年安徽普通专升本高等数学真题试卷及参考答案

2024年安徽省普通高校专升本招生考试试题高等数学考试真题还原(以下真题来自学生考试后的回忆,或有部分不准确)一、单项选择题(本大题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、当x →0+时,比sin x 更低阶的无穷小是()A、1-cos xB、3xD、In(1+x )参考答案:C 2、若函数sin ,0()2,=0ln(12),0x x ax f x x x x bx ⎧⎪⎪=⎨⎪+⎪⎩<>,在x =0处连续,其中a ,b 为常数,则()A、22a b ==,B、112a b ==,C、21a b ==,D、122a b ==,参考答案:B 3、已知21sin ()x xf x x x +=+,则()A、0()x f x =是的可去间断点,1()x f x =-是的无穷间断点B、0()x f x =是的可去间断点,1()x f x =-是的跳跃间断点C、0()x f x =是的跳跃间断点,1()x f x =-是的无穷间断点D、0()x f x =是的无穷间断点,1()x f x =-是的可去间断点参考答案:B4、设函数()f x 在[,b]a 上连续,在(,b)a 上可导,且()()f a f b >,则在(,b)a 内至少存在一点ξ,使得()A、'()f ξ<0B、'()f ξ>0C、'()=f ξ0D、'()f ξ不存在参考答案:A5、已知函数()x f x xe -=,则()A、()f x 在(1),-∞内单调减少B、()f x 在(1)+,∞内单调增加C、()f x 在1x =处取得极大值D、()f x 在1x =处取得极小值参考答案:C6、若函数4cos y x =,则dy =()A、3424sin x x dxB、3424sin x x dx -C、2422sin x x dx D、2422sin x x dx -参考答案:D7、已知2x 是()f x 的一个原函数,则2(1)fxf x dx -=()A、22x C -+B、-22x C-+C、222x C -+D、222x C--+参考答案;B8、下列广义积分收敛的是()A、143dx e xin x+⎰∞B、1dxe xinx +⎰∞C、123e xin x+⎰∞D、inx dxe x +⎰∞参考答案:A9、函数2ln z x y x =+在点(1,1)处的全微分(1,1)dz =()A、3dx dy +B、3dx dy+C、2dx dy +D、2dx dy+参考答案:A10、设n 阶方阵A 满足2,A A A E =且≠,其中E 为n 阶单位矩阵,则()A、A 是零矩阵B、齐次线性方程组0AX =只有零解C、A 是可逆矩阵D、A 的秩小于n参考答案:D 11、设随机事件A 与B 互不相容,则()A、(AB)0P =B、(A B)0P =C、(AUB)1P =D、(AB)1P =参考答案:D 12、设随机变量X 的概率密度函数2(1)4()x f x +-=其中()x -∞<<+∞,且{}{}P X c P X c ≥=≤,则常数C=()A、-2B、2C、-1D、1参考答案:C 二、填空题(本大题共6小题,每小题4分,共24分)13、函数323y x x =-在拐点处的切线方程为_____________参考答案:31y x =-+14、由曲线y e x =,直线1,0,0x x y =-==,所围成的封闭图形绕x 轴旋转所形成的旋转体体积参考答案:212)e --π(15、已知(,)z f x y =由方程221x t z Inz y e dt ++=⎰确定,则z x∂∂=_____________参考答案:21xze z +16、已知113122023x-=,则x =_____________参考答案:-117、同时投两个质地均匀的骰子,则两个骰子点数和为7的概率为_____________参考答案:1618、已知13X ~B(3,),则{x }p <D(X)=_____________参考答案:827三、计算题(本大题共7小题,共78分,计算应写出必要的计算步骤)19、2x →参考答案:120、求解不定积分2ln(1)d x x x +⎰参考答案:332111ln |1|c 33111ln()963x x x x x x ++++-+-21、求解:D xd σ⎰⎰,其中积分区域D 由曲线2y x =,直线2y x =-,和0y =所围成的封闭图形参考答案:111222、已知123,,a a a 线性无关,112321233123===a a a a a a a a a βββ+--+--,,,证明:向量组123βββ,,线性无关参考答案:存在一组常数123,,k k k ,使得1122330k k k βββ++=,证明:123,,k k k 全为零即可23、某工地拟建造截面为矩形加半圆的通风口,已知截面面积为2平方米时,则底长x 为多少米时,截面的周长最短。

专升本试题及答案高数

专升本试题及答案高数

专升本试题及答案高数一、选择题(每题2分,共20分)1. 函数f(x)=x^2-2x+3在区间[0,3]上的最大值是()。

A. 2B. 3C. 4D. 5答案:C2. 设函数f(x)=x^3-3x^2+2x+1,求f'(x)的值。

A. 3x^2-6x+2B. x^2-6x+1C. 3x^2-9x+2D. x^3-9x^2+2答案:C3. 曲线y=x^2与直线x=2所围成的图形的面积是()。

A. 2B. 4C. 8D. 16答案:C4. 已知等差数列{an}的前n项和为S_n=n^2,求a_1的值。

A. 0B. 1C. 2D. 3答案:A5. 极限lim (n→∞) (1+1/n)^n 的值是()。

A. eB. 1C. 2D. 3答案:A6. 函数y=sin(x)的周期是()。

A. πB. 2πC. π/2D. 4π答案:B7. 微分方程dy/dx + y = x的通解是()。

A. y = e^x - x/eB. y = e^x + xC. y = e^(-x) - x/eD. y =e^(-x) + x答案:D8. 曲线y=x^3-6x^2+11x-6在点(1,4)处的切线斜率是()。

A. -2B. 0C. 2D. 4答案:C9. 函数f(x)=x^3-3x^2+2x+1在x=1处的导数值是()。

A. -2B. 0C. 2D. 4答案:A10. 已知函数f(x)=x^2+2x+1,求f''(x)的值。

A. 2x+2B. 2x+4C. 4x+2D. 4x+4答案:B二、填空题(每题2分,共10分)1. 函数f(x)=x^2+1在x=-1处的导数值是____。

答案:22. 函数f(x)=ln(x)的原函数是____。

答案:xln(x)-x+C3. 曲线y=x^2与直线y=4x-5平行的切点坐标是____。

答案:(5,25)4. 函数y=x^3-6x^2+11x-6的极小值点是____。

(word完整版)专升本高等数学习题集及答案

(word完整版)专升本高等数学习题集及答案

第一章 函数一、选择题1. 下列函数中,【 C 】不是奇函数A. x x y +=tanB. y x =C. )1()1(-⋅+=x x yD. x xy 2sin 2⋅=2. 下列各组中,函数)(x f 与)(x g 一样的是【 】A. 33)(,)(x x g x x f == B.x x x g x f 22tan sec )(,1)(-== C. 11)(,1)(2+-=-=x x x g x x f D. 2ln )(,ln 2)(x x g x x f ==3. 下列函数中,在定义域内是单调增加、有界的函数是【 】A. +arctan y x x =B. cos y x =C. arcsin y x =D. sin y x x =⋅4. 下列函数中,定义域是[,+]-∞∞,且是单调递增的是【 】A. arcsin y x =B. arccos y x =C. arctan y x =D. arccot y x = 5. 函数arctan y x =的定义域是【 】A. (0,)πB. (,)22ππ-C. [,]22ππ-D. (,+)-∞∞6. 下列函数中,定义域为[1,1]-,且是单调减少的函数是【 】A. arcsin y x =B. arccos y x =C. arctan y x =D. arccot y x = 7. 已知函数arcsin(1)y x =+,则函数的定义域是【 】A. (,)-∞+∞B. [1,1]-C. (,)ππ-D. [2,0]- 8. 已知函数arcsin(1)y x =+,则函数的定义域是【 】A. (,)-∞+∞B. [1,1]-C. (,)ππ-D. [2,0]-9. 下列各组函数中,【 A 】是相同的函数A. 2()ln f x x =和 ()2ln g x x =B. ()f x x =和()g x =C. ()f x x =和()2g x = D. ()sin f x x =和()arcsin g x x = 10. 设下列函数在其定义域内是增函数的是【 】A. ()cos f x x =B. ()arccos f x x =C. ()tan f x x =D. ()arctan f x x = 11. 反正切函数arctan y x =的定义域是【 】A. (,)22ππ-B. (0,)πC. (,)-∞+∞D. [1,1]-12. 下列函数是奇函数的是【 】A. arcsin y x x =B. arccos y x x =C. arccot y x x =D. 2arctan y x x = 13. 函数53sin ln x y =的复合过程为【 A 】A.x w w v v u u y sin ,,ln ,35==== B.x u u y sin ln ,53== C.x u u y sin ,ln 53== D.x v v u u y sin ,ln ,35===二、填空题1. 函数5arctan 5arcsin x x y +=的定义域是___________.2.()arcsin3xf x =的定义域为 ___________.3. 函数1()arcsin3x f x +=的定义域为 ___________。

专升本高数考试题及答案

专升本高数考试题及答案

专升本高数考试题及答案一、单项选择题(每题2分,共10分)1. 函数f(x)=x^2-4x+3的零点个数是()。

A. 0个B. 1个C. 2个D. 3个答案:C2. 极限lim(x→0) (sin x)/x等于()。

A. 0B. 1C. πD. 2答案:B3. 以下哪个函数是奇函数?()A. y=x^2B. y=x^3C. y=x^4D. y=x答案:B4. 曲线y=2x-x^2在点(1,1)处的切线斜率是()。

A. 1B. -1C. 0D. 2答案:A5. 以下哪个级数是收敛的?()A. 1+1/2+1/3+...B. 1-1/2+1/3-1/4+...C. 1+1/4+1/9+...D. 1/2+1/4+1/8+...答案:C二、填空题(每题3分,共15分)6. 微分方程dy/dx=2x的通解是y=_________。

答案:x^2+C7. 函数f(x)=x^3-3x在x=1处的导数是_________。

答案:08. 定积分∫_0^1 x dx的值是_________。

答案:1/29. 曲线y=x^2与直线y=4x相切的切点坐标是_________。

答案:(4,16)10. 函数f(x)=e^x的原函数是_________。

答案:e^x+C三、计算题(每题10分,共20分)11. 计算定积分∫_0^π/2 sin x dx。

答案:112. 求函数f(x)=x^2-6x+8在区间[2,4]上的定积分。

答案:-4四、证明题(每题15分,共30分)13. 证明:函数f(x)=x^3在R上是增函数。

答案:略14. 证明:对于任意正实数a和b,有a^2+b^2≥2ab。

答案:略结束语:以上为本次专升本高数考试的试题及答案,希望同学们通过本次考试能够检验自己的学习成果,查漏补缺,为未来的学习打下坚实的基础。

江苏专转本高等数学真题 (附答案)

江苏专转本高等数学真题 (附答案)

2001年江苏省普通高校“专转本”统一考试 ___________________________________________ 12002年江苏省普通高校“专转本”统一考试 ___________________________________________ 62003年江苏省普通高校“专转本”统一考试 __________________________________________ 10 2004年江苏省普通高校“专转本”统一考试 __________________________________________ 14 2005年江苏省普通高校“专转本”统一考试 __________________________________________ 182006年江苏省普通高校“专转本”统一考试 __________________________________________ 212007年江苏省普通高校“专转本”统一考试 __________________________________________ 24 2008年江苏省普通高校“专转本”统一考试 __________________________________________ 28 2009年江苏省普通高校“专转本”统一考试 __________________________________________ 31 2010年江苏省普通高校“专转本”统一考试 __________________________________________ 342001年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 37 2002年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 38 2003年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 40 2004年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 41 2005年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 432006年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 45 2007年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 47 2008年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 49 2009年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 51 2010年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 532001年江苏省普通高校“专转本”统一考试高等数学一、选择题(本大题共5小题,每小题3分,共15分)1、下列各极限正确的是 ( )A 、e xxx =+→)11(lim 0B 、e xx x =+∞→1)11(limC 、11sinlim =∞→x x x D 、11sin lim 0=→xx x2、不定积分=-⎰dx x211 ( )A 、211x-B 、c x+-211 C 、x arcsin D 、c x +arcsin3、若)()(x f x f -=,且在[)+∞,0内0)('>x f 、0)(''>x f ,则在)0,(-∞内必有 ( )A 、0)('<x f ,0)(''<x f B 、0)('<x f ,0)(''>x f C 、0)('>x f ,0)(''<x f D 、0)('>x f ,0)(''>x f4、=-⎰dx x 21 ( )A 、0B 、2C 、-1D 、15、方程x y x 422=+在空间直角坐标系中表示 ( ) A 、圆柱面B 、点C 、圆D 、旋转抛物面二、填空题(本大题共5小题,每小题3分,共15分)6、设⎩⎨⎧+==22tt y te x t ,则==0t dx dy7、0136'''=+-y y y 的通解为 8、交换积分次序=⎰⎰dy y x f dx xx22),(9、函数yx z =的全微分=dz 10、设)(x f 为连续函数,则+-+⎰-dx x x x f x f 311])()([三、计算题(本大题共10小题,每小题4分,共40分) 11、已知5cos )21ln(arctan π+++=xx y ,求dy .12、计算xx dte x xt x sin lim 22⎰-→.13、求)1(sin )1()(2--=x x xx x f 的间断点,并说明其类型.14、已知x y x y ln 2+=,求1,1==y x dxdy.15、计算dx ee xx⎰+12.16、已知⎰∞-=+02211dx x k ,求k 的值.17、求x x y y sec tan '=-满足00==x y 的特解.18、计算⎰⎰Ddxdy y 2sin ,D 是1=x 、2=y 、1-=x y 围成的区域.19、已知)(x f y =过坐标原点,并且在原点处的切线平行于直线032=-+y x ,若b ax x f +=2'3)(,且)(x f 在1=x 处取得极值,试确定a 、b 的值,并求出)(x f y =的表达式.20、设),(2y x x f z =,其中f 具有二阶连续偏导数,求x z ∂∂、yx z∂∂∂2.四、综合题(本大题共4小题,第21小题10分,第22小题8分,第23、24小题各6分,共30分) 21、过)0,1(P 作抛物线2-=x y 的切线,求(1)切线方程;(2)由2-=x y ,切线及x 轴围成的平面图形面积;(3)该平面图形分别绕x 轴、y 轴旋转一周的体积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高职专升本高等数学试题及答案
《高等数学》试卷2 (闭卷)
适用班级:选修班(专升本)
班级: 学号: 姓名: 得分: ﹒ ﹒
一、选择题(将答案代号填入括号内,每题3分,共30分).
1.下列各组函数中,是相同的函数的是
( )
(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和
()2
g x x = (C )()f x x = 和
()()2g x x = (D )()||x f x x = 和 ()g x =1
2.函数()()sin 420ln 10x x f x x a x ⎧+-≠⎪=+⎨⎪=⎩ 在0x =处连续,
则a =( ).
(A )0 (B )14
(C )1 (D )2
3.曲线ln y x x =的平行于直线10x y -+=的切线方程
为( ).
(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =--
(D )y x =
4.设函数()||f x x =,则函数在点0x =处( ).
(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微
5.点0x =是函数4
y x =的( ).
(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点 6.曲线1||
y x =的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线
(C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线
7.2
11f dx x x ⎛⎫' ⎪⎝⎭⎰的结果是( ). (A )1f C x ⎛⎫-+ ⎪⎝⎭ (B )1f C x ⎛⎫--+ ⎪⎝⎭
(C )1f C x ⎛⎫+ ⎪⎝⎭ (D )1f C x ⎛⎫-+ ⎪⎝⎭
8.x x dx e
e -+⎰的结果是( ). (A )arctan x e C + (B )
arctan x e C -+
(C )x x e e C --+ (D )ln()x x e e C -++
9.下列定积分为零的是( ). (A )424arctan 1x dx x ππ-+⎰ (B )
4
4arcsin x x dx π
π-⎰ (C )
112x x e e dx --+⎰ (D )
()121sin x x x dx -+⎰
10.设()f x 为连续函数,则()102f x dx '⎰
等于( ). (A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦
(C )()()1202
f f -⎡⎤⎣⎦ (D )()()10f f -
二、填空题(每题3分,共15分)
1.设函数
()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩ 在0x =处连续,则a =.
2.已知曲线()y f x =在2x =处的切线的倾斜角为56
π,则()2f '=.
3.21x y x =-的垂直渐近线有 条.
4.()21ln dx x x =+⎰
. 5.()422sin cos x x x dx ππ
-+=⎰.
三、计算题(共55分)
1.求极限 ①21lim x
x x x →∞+⎛⎫ ⎪⎝⎭ (3分) ②()2
0sin 1lim x x x x x e →-- (3分)
2. 已知222lim 22x x ax b x x →++=-- 求a 与b (4分)
3. 设22()cos
sin ()f x x x f x '=+求(3分)。

相关文档
最新文档