指数函数和函数单调性练习题
高三数学指数与指数函数试题
高三数学指数与指数函数试题1.若则的值为 ____ .【答案】2.【解析】因为,所以,故答案为:2.【考点】分段函数值的求法.2.已知,,则________.【答案】【解析】由得,所以,解得,故答案为.【考点】指数方程;对数方程.3.已知函数f(x)=2|2x-m|(m为常数),若f(x)在区间[2,+∞)上是增函数,则m的取值范围是________.【答案】(-∞,4]【解析】令t=|2x-m|,则t=|2x-m|在区间[,+∞)上单调递增,在区间(-∞,]上单调递减.而y=2t为R上的增函数,所以要使函数f(x)=2|2x-m|在[2,+∞)上单调递增,则有≤2,即m≤4,所以m的取值范围是(-∞,4].故填(-∞,4].4.已知,则下列关系中正确的是()A.a>b>c B.b>a>c C.a>c>b D.c>a>b【答案】A【解析】由已知得,,,,故a>b>c.【考点】指数函数的图象和性质.5.已知函数,若,且,则的最小值为(). A.B.C.2D.4【答案】B【解析】因为,所以,整理得,又,所以,解得,即,因此.故正确答案为B.【考点】1.指数函数;2.基本不等式.6.若为正实数,则.【答案】1【解析】设所以因此【考点】指对数运算7.若为正实数,则.【答案】1【解析】设所以因此【考点】指对数运算8.已知函数,且函数有且只有一个零点,则实数的取值范围是( )A. B.. D.【答案】B【解析】如图,在同一坐标系中分别作出与的图象,其中a表示直线在y轴上截距,由图可知,当时,直线与只有一个交点.故选B.【考点】分段函数图像数形结合9.函数y=a x-3+3恒过定点________.【答案】(3,4)【解析】当x=3时,f(3)=a3-3+3=4,∴f(x)必过定点(3,4).10.已知函数f(x)=则f(2+log23)=________.【答案】【解析】由3<2+log23<4,得3+log23>4,所以f(2+log23)=f(3+log23)=11.若函数f(x)=a|2x-4|(a>0,a≠1)满足f(1)=,则f(x)的单调递减区间是()A.(-∞,2]B.[2,+∞)C.[-2,+∞)D.(-∞,-2]【答案】B【解析】由f(1)=得a2=,∴a=或a=-(舍),即f(x)=(.由于y=|2x-4|在(-∞,2]上单调递减,在[2,+∞)上单调递增,所以f(x)在(-∞,2]上单调递增,在[2,+∞)上单调递减,故选B.12.设,,,则的大小关系是 .【答案】【解析】由题意可知:,,,,,∴,∴.【考点】1.指数函数、对数函数的性质;2.比较大小.13.已知函数,则 .【答案】.【解析】.【考点】1.分段函数;2.指数与对数运算.14.已知函数则()A.B.C.D.【答案】C【解析】.【考点】函数与指数运算.15.函数的零点个数为A.1B.2C.3D.4【答案】B.【解析】令f(x)=0得.画出两个函数. 图像即可得交点的个数为两个.所以原函数的零点有两个. 故选B.本题关键是的图像的画法是将函数在负y半轴的图像沿x轴翻折.【考点】1.函数的零点问题.2.对数函数图像,指数函数图像的画法.3.函数绝对值的图像的画法.16.设,则的大小关系为()A.B.C.D.【答案】A【解析】由分数指数幂与根式的关系知:,从而易知,故选A.【考点】1.分数指数幂与根式的互换;2.比较大小.17.函数的定义域为,若且时总有,则称为单函数.例如,函数是单函数.下列命题:①函数是单函数;②函数是单函数;③若为单函数,且,则;④函数在定义域内某个区间上具有单调性,则一定是单函数.其中的真命题是_________.(写出所有真命题的编号)【答案】③【解析】根据单函数的定义可知如果函数为单函数,则函数在其定义域上一定是单调递增或单调递减函数,即该函数为一一对应关系,据此分析可知①不是,因为该二次函数先减后增;②不是,因为该函数是先减后增;显然④的说话也不对,故真命题是③.【考点】新定义、函数的单调性,考查学生的分析、理解能力.18.设,则这四个数的大小关系是()A.B.C.D.【答案】D.【解析】是上的减函数,,又.【考点】指数函数、对数函数及幂函数单调性的应用.19.二次函数y=ax2+b x与指数函数y=()x的图象只可能是()A. B. C. D.【答案】A【解析】解:根据指数函数y=()x可知a,b同号且不相等,二次函数y=ax2+bx的对称轴-<0可排除B与D,,C,a-b>0,a<0,∴>1,则指数函数单调递增,故C 不正确,选:A【考点】指数函数图象与二次函数图象点评:本题考查了同一坐标系中指数函数图象与二次函数图象的关系,根据指数函数图象确定出a、b的正负情况是求解的关键.20.计算:_____________【答案】4【解析】因为21. .若,,,则()A.a>b>c B.b>a>c C.c>a>b D.b>c>a【答案】A【解析】因为,,,因此选A22. .计算(1)(2)【答案】(1)2;(2) 0【解析】本试题主要是考查了指数幂的运算性质和对数式的运算法则的运用。
高一数学指数与指数函数试题答案及解析
高一数学指数与指数函数试题答案及解析1.设函数(x)=,则满足的的取值范围是().A.[-1,2]B.[0,2]C.[1,+∞)D.[0,+∞)【答案】D.【解析】当时,,,解得,因此,当时,,解得,因此,综上【考点】分段函数的应用.2.设函数则使得成立的的取值范围是()A.B.C.D.【答案】C【解析】当时,由,可得,即;当时,由,可得,即,综上.故选C【考点】函数的求值.3.已知定义在R上的函数满足,当时,,且.(1)求的值;(2)当时,关于的方程有解,求的取值范围.【答案】(1),(2)【解析】(1)由可知,代入表达式可求得的值.又,可求出的值;(2)由(1)可知方程为,对x进行讨论去绝对值符号,可得,据结合指数函数,二次函数的性质可求得的取值范围.试题解析:解:(1)由已知,可得又由可知 . 5分(2)方程即为在有解.当时,,令,则在单增,当时,,令,则,,综上: . 14分【考点】本题主要考查指数函数,二次函数求值域和分类讨论的数学思想方法.4.函数的图象必经过定点___________.【答案】【解析】∵指数函数过定点,∴函数过定点.【考点】函数图象.5.已知,,且,则与的大小关系_______.【答案】【解析】由,又由,所以,所以由可得,所以,,所以即.【考点】1.分数指数幂的运算;2.对数的运算;3.指数函数的单调性.6.函数在上的最大值比最小值大,则 .【答案】【解析】因为,根据指数函数的性质可知在单调递增,所以最大值为,最小值为,依题意有即,而,所以.【考点】指数函数的图像与性质.7.设,则的大小关系是()A.B.C.D.【答案】B【解析】把看成函数当时的函数值,因为,所以;把看成函数当时的函数值,因为,所以;把看成函数当时的函数值,因为 ,所以 .综上, ,故选B【考点】1、指数函数的性质;2、对数函数的性质.8.若,则__________.【答案】【解析】【考点】指数函数的运算法则9.已知,则的大小关系是.【答案】【解析】因为指数函数在R上单调递减,所以。
高中数学《指数函数》针对练习及答案
第二章函数2.4.2 指数函数(针对练习)针对练习针对练习一指数与指数幂的运算1.用分数指数幂的形式表示下列各式(a>0,b>0).(1)a222.计算或化简下列各式:(1)(a-2)·(-4a-1)÷(12a-4)(a>0);(2)213-233+0.0028-⎛⎫- ⎪⎝⎭-2)-1+0. 3.计算:(1)1111242 114310.7562)164300---⎫⎛⎫⎛⎫⨯⨯+-++⎪ ⎪⎝⎭⎝⎭⎝⎭111133420,0)a ba b a b->>⎛⎫⎪⎝⎭4.计算:(1)10132114(2)924---⎛⎫⎛⎫-⨯-+-⎪ ⎪⎝⎭⎝⎭;(2)2932)-⨯5.(1)()2163278()[2]8---;(2)()())1213321()0040.1a b a b --->,>.针对练习二 指数函数的概念6.在①4x y =;①4y x =;①4x y =-;①()4xy =-;①()121,12xy a a a ⎛⎫=->≠ ⎪⎝⎭中,y 是关于x 的指数函数的个数是( ) A .1 B .2 C .3 D .47.下列函数是指数函数的是( )A .y =()2x πB .y =(-9)xC .y =2x -1D .y =2×5x8.下列函数中为指数函数的是( ) A .23x y =⋅ B .3x y =-C .3x y -=D .1x y =9.函数()244xy a a a =-+是指数函数,则有( )A .a =1或a =3B .a =1C .a =3D .a >0且a ≠110.若函数()x f x a =(a >0,且a ≠1)的图象经过(12,)3,则(1)f -=( ) A.1 B .2C D .3针对练习三 指数函数的图像11.函数2x y -=的图象大致是( )A .B .C .D .12.函数①x y a =;①x y b =;①x y c =;①x y d =的图象如图所示,a ,b ,c ,d 分别是下列四个数:5413,12中的一个,则a ,b ,c ,d 的值分别是( )A .5413,12 B 54,12,13C .12,1354D .13,12,5413.若0a >且1a ≠,则函数()11x f x a -=+的图象一定过点( )A .()0,2B .()0,1-C .()1,2D .()1,1-14.已知函数f (x )= ax +1的图象恒过定点P ,则P 点的坐标为( ) A .(0,1) B .(0,2) C .(1,2)D .()1,1a +15.对任意实数01a <<,函数()11x f x a -=+的图象必过定点( )A .()0,2B .()1,2C .()0,1D .()1,1针对练习四 指数函数的定义域16.函数y ) A .(,3]-∞ B .[3,)+∞ C .(,2]-∞ D .[2,)+∞17.函数()22f x x -的定义域为( ) A .[0,2) B .(2,)+∞C .()(),22,-∞+∞D .[0,2)(2,)⋃+∞18.设函数f (x ),则函数f (x 4)的定义域为( ) A .(],4∞- B .1,4∞⎛⎤- ⎥⎝⎦C .(]0,4D .10,4⎛⎤⎥⎝⎦19.已知函数()y f x =的定义域为()0,1,则函数()()21xF x f =-的定义域为( )A .(),1-∞B .()(),00,1-∞⋃C .()0,∞+D .[)0,120.函数y (-∞,0],则a 的取值范围为( ) A .a >0 B .a <1 C .0<a <1 D .a ≠1针对练习五 指数函数的值域21.函数2212x xy -⎛⎫= ⎪⎝⎭的值域为( ) A .1,2⎡⎫+∞⎪⎢⎣⎭B .1,2⎛⎤-∞ ⎥⎝⎦C .10,2⎛⎤⎥⎝⎦D .(]0,222.若23x ,则函数1()421x x f x +=-+的最小值为( ) A .4 B .0 C .5 D .923.函数2121x x y -=+的值域是( )A .()(),11,-∞--+∞B .(),1-∞-C .()1,1-D .()(),11,-∞+∞24.已知函数()()1123,12,1x a x a x f x x -⎧-+<=⎨≥⎩的值域为R ,则实数a 的取值范围是( )A .10,2⎡⎫⎪⎢⎣⎭B .1,2⎛⎫-∞ ⎪⎝⎭C .(),0-∞D .[)0,225.函数2x y a =-(0a >且1a ≠,11x -≤≤)的值域是5,13⎡⎤-⎢⎥⎣⎦,则实数=a ( )A .3B .13C .3或13D .23或32针对练习六 指数函数的单调性26.函数2435x x y -+-=的单调递减区间是( ) A .[2,)+∞ B .(,2]-∞ C .(,1]-∞ D .[1,)+∞27.函数223112x x y -+⎛⎫= ⎪⎝⎭的单调递减区间为( ) A .(1,)+∞ B .3,4⎛⎤-∞ ⎥⎝C .(),1-∞D .3,4⎡⎫+∞⎪⎢⎣⎭28.若函数()215x axf x +⎛⎫= ⎪⎝⎭在[]1,2单调递减,则a 的取值范围( )A .4a ≤-B .2a ≤-C .2a ≥-D .4a ≥-29.若函数()(),1,513,13x a x f x a x x ⎧≥⎪=⎨-+<⎪⎩在R 上单调递减,则实数a 的取值范围是( ) A .12,33⎛⎤⎥⎝⎦B .1,2C .11,32⎡⎫⎪⎢⎣⎭D .20,3⎛⎫⎪⎝⎭30.已知函数()()4211xa x x f x a x ⎧-≤=⎨>⎩,,是R 上的单调函数,那么实数a 的取值范围为( )A .()01,B .()13,C .423⎡⎫⎪⎢⎣⎭,D .312⎛⎤ ⎥⎝⎦,针对练习七 比较大小与解不等式31.已知412a ⎛⎫= ⎪⎝⎭,124b =,122c =,则a ,b ,c 的大小关系是( ) A .a b c << B .c b a << C .a c b << D .b a c <<32.已知1313422,3,4a b c ===,则a ,b ,c 的大小关系为( ) A .a <b <c B .c <a <b C .a <c <b D .c <b <a33.若2141122a a+-⎛⎫⎛⎫> ⎪⎪⎝⎭⎝⎭,则实数a 的取值范围是( ) A .(,1)-∞ B .(1,)+∞C .(3,)+∞D .(3),-∞34.若x 满足不等式221139x x -+⎛⎫ ⎪⎝⎭,则函数2x y =的值域是( )A .1,28⎡⎫⎪⎢⎣⎭B .1,28⎡⎤⎢⎥⎣⎦C .1,8⎛⎤-∞ ⎥⎝⎦D .[2,)+∞35.若1133ab⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,则下列正确的是( )A .33a b <B .ac bc >C .11a b<D .b c a c -<-针对练习八 指数函数的应用36.专家对某地区新型流感爆发趋势进行研究发现,从确诊第一名患者开始累计时间t (单位:天)与病情爆发系数()f t 之间,满足函数模型:0.22(340)1()1t f t e --=+,当()0.1f t =时,标志着疫情将要局部爆发,则此时t 约为(参考数据: 1.13e ≈)( )A .10B .20C .30D .4037.基本再生数0R 与世代间隔T 是流行病学基本参数,基本再生数是指一个感染者传染的平均人数,世代间隔指两代间传染所需的平均时间,在α型病毒疫情初始阶段,可以用指数函数模型(e )rt I t =描述累计感染病例数()I t 随时间t (单位:天)的变化规律,指数增长率r 与0R 、T 近似满足01R rT =+,有学者基于已有数据估计出0 3.22R =,10T =.据此,在α型病毒疫情初始阶段,累计感染病例数增加至(0)I 的4倍,至少需要( )(参考数据:ln 20.69≈) A .6天 B .7天 C .8天 D .9天38.某灭活疫苗的有效保存时间T (单位:小时h )与储藏的温度t (单位:①)满足的函数关系为e ht b T +=(k ,b 为常数,其中e 2.71828=⋅⋅⋅,是一个和π类似的无理数,叫自然对数的底数),超过有效保存时间,疫苗将不能使用.若在0①时的有效保存时间是1080h ,在10①时的有效保存时间是120h ,则该疫苗在15①时的有效保存时间为( ) A .15h B .30h C .40h D .60h39.某食品的保鲜时间y (单位:小时)与储藏温度x (单位:C ︒)满足函数关系e kx b y +=(e 2.718=为自然对数的底数,,k b 为常数).若该食品在0C ︒的保鲜时间是192小时,在33C ︒的保鲜时间是24小时,则该食品在22C ︒的保鲜时间是( ) A .20 小时 B .24小时 C .36小时 D .48小时40.牛顿曾经提出了常温环境下的温度冷却模型:()100e ktθθθθ-=-+,其中为时间(单位:min ),0θ为环境温度,1θ为物体初始温度,θ为冷却后温度),假设在室内温度为20C 的情况下,一桶咖啡由100C 降低到60C 需要20min .则k 的值为( ) A .ln 220B .ln 320C .ln 210-D .ln 310-第二章 函数2.4.2 指数函数(针对练习)针对练习针对练习一 指数与指数幂的运算1.用分数指数幂的形式表示下列各式(a >0,b >0).(1)a2 2.【答案】(1)52a ; (2)136a ; (3)7362a b ; (4)76a . 【解析】 【分析】由根式与有理数指数幂的关系,结合指数幂的运算性质化简求值即可. (1)原式=11522222a a a a +⋅==. (2)原式=22313333262a a a a +⋅==. (3)原式=1221711333233332622222()()a ab a a b a b a b +⋅===.(4)原式=55722666a a a a --⋅==. 2.计算或化简下列各式: (1)(a -2)·(-4a -1)÷(12a -4)(a >0);(2)213-233+0.0028-⎛⎫- ⎪⎝⎭-2)-1+0.【答案】(1)-13a ;(2)-1679.【解析】 【分析】直接根据指数幂的运算性质计算即可. 【详解】(1)原式21434114(12)33a a a a ----+=-÷=-=-(2)原式213227118500--⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭213323()5002)12-⎡⎤=-+-+⎢⎥⎣⎦=49+20+1=- 1679. 3.计算:(1)1111242114310.7562)164300---⎫⎛⎫⎛⎫⨯⨯+++ ⎪ ⎪⎝⎭⎝⎭⎝⎭111133420,0)a b a b a b ->>⎛⎫ ⎪⎝⎭【答案】(1)-16 (2)(0,0)a a b b>> 【解析】 【分析】(1)根据分数指数幂的运算规则化简计算即可; (2)根据分数指数幂的运算规则化简得出结果. (1)原式=111222411010233-⎫⎫⎛⎫⨯⨯++⨯+ ⎪⎝⎭⎝⎭⎝⎭(12410223⎫=⨯-⨯+⎝⎭220216=-+=-(2)原式543311233(0,0)a baa b bab a b-==>> 4.计算:(1)1132114(2)924---⎛⎫⎛⎫-⨯-+- ⎪ ⎪⎝⎭⎝⎭;(2)2932)-⨯【答案】(1)196(2)【解析】 【分析】(1)利用指数幂的运算性质即可求解.(2)利用根式与分数指数幂的互化以及指数幂的运算性质即可求解. (1)原式1111924()1218236=-⨯-+=++-=. (2)原式24119555636333222221[(8)](10)10(2)1010102---=⨯÷=⨯÷=⨯721102=⨯=== 5.(1)()21603278()[2]8---;(2)()())1213321()0040.1a b a b --->,>.【答案】(1)8π+;(2)85. 【解析】 【分析】(1)(2)均根据指数幂的运算性质即可计算; 【详解】(1)原式233(2)=-1+|3﹣π|162(2)+=4﹣1+π﹣3+23=π+8.(2)原式3332223322248510a b a b--⋅==.针对练习二 指数函数的概念6.在①4x y =;①4y x =;①4x y =-;①()4xy =-;①()121,12xy a a a ⎛⎫=->≠ ⎪⎝⎭中,y 是关于x 的指数函数的个数是( ) A .1 B .2 C .3 D .4【答案】B 【解析】 【分析】直接根据指数函数的定义依次判断即可. 【详解】根据指数函数的定义,知①①中的函数是指数函数, ①中底数不是常数,指数不是自变量,所以不是指数函数; ①中4x 的系数是1-,所以不是指数函数; ①中底数40-<,所以不是指数函数. 故选:B .7.下列函数是指数函数的是( )A .y =()2x πB .y =(-9)xC .y =2x -1D .y =2×5x【答案】A 【解析】 【分析】根据指数函数定义判断. 【详解】B 中底数90-<,C 中指数是1x -,不是x ,D 中5x 前面系数不是1,根据指数函数定义,只有A 中函数是指数函数, 故选:A.8.下列函数中为指数函数的是( )A .23x y =⋅B .3x y =-C .3x y -=D .1x y =【答案】C 【解析】 【分析】根据指数函数的定义,逐项判定,即可求解. 【详解】根据指数函数的定义知,()0,1xy a a a =>≠,可得函数23x y =⋅不是指数函数;函数3x y =-不是指数函数;函数3x y -=是指数函数;函数1x y =不是指数函数. 故选:C.9.函数()244xy a a a =-+是指数函数,则有( )A .a =1或a =3B .a =1C .a =3D .a >0且a ≠1【答案】C 【解析】 【分析】根据已知条件列不等式,由此求得正确选项. 【详解】由已知得244101a a a a ⎧-+=⎪>⎨⎪≠⎩,即2301a a a a ⎧+=⎪⎨⎪≠⎩,解得3a =.故选:C10.若函数()x f x a =(a >0,且a ≠1)的图象经过(12,)3,则(1)f -=( ) A .1 B .2 CD .3【答案】C 【解析】 【分析】由指数函数所过的点求解析式,进而求(1)f -的值. 【详解】由题意,21(2)3f a ==,又a >0,则a =①()x f x =,故1(1)f --== 故选:C针对练习三 指数函数的图像11.函数2x y -=的图象大致是( )A .B .C .D .【答案】D 【解析】 【分析】根据函数的解析式可得函数2x y -=是以12为底数的指数函数,再根据指数函数的图像即可得出答案. 【详解】解:由122xxy -⎛⎫== ⎪⎝⎭,得函数2x y -=是以12为底数的指数函数,且函数为减函数,故D 选项符合题意. 故选:D.12.函数①x y a =;①x y b =;①x y c =;①x y d =的图象如图所示,a ,b ,c ,d 分别是下列四个数:5413,12中的一个,则a ,b ,c ,d 的值分别是( )A .5413,12 B 54,12,13C .12,1354D .13,12,54【答案】C 【解析】 【分析】由直线1x =与函数图象的交点的纵坐标从上到下依次为c ,d ,a ,b 即可求解. 【详解】解:直线1x =与函数图象的交点的纵坐标从上到下依次为c ,d ,a ,b ,511423>>, 所以a ,b ,c ,d 的值分别是12,1354, 故选:C.13.若0a >且1a ≠,则函数()11x f x a -=+的图象一定过点( )A .()0,2B .()0,1-C .()1,2D .()1,1-【答案】C 【解析】 【分析】令10x -=求出定点的横坐标,即得解. 【详解】解:令10,1-=∴=x x .当1x =时,()1111=2f a -=+,所以函数()f x 的图象过点()1,2. 故选:C.14.已知函数f (x )= ax +1的图象恒过定点P ,则P 点的坐标为( ) A .(0,1) B .(0,2) C .(1,2)D .()1,1a +【答案】B 【解析】 【分析】由指数函数过定点的性质进行求解. 【详解】()x f x a =的图象恒过定点()0,1,所以()1x f x a =+的图象恒过定点()0,2故选:B15.对任意实数01a <<,函数()11x f x a -=+的图象必过定点( )A .()0,2B .()1,2C .()0,1D .()1,1【答案】B 【解析】 【分析】根据指数函数的知识确定正确选项. 【详解】当10x -=,即1x =时,()12f =, 所以()f x 过定点()1,2. 故选:B针对练习四 指数函数的定义域16.函数y ) A .(,3]-∞ B .[3,)+∞C .(,2]-∞D .[2,)+∞【答案】D 【解析】 【分析】根据函数的定义域定义求解即可. 【详解】要使得函数y 则390x -≥,39x ≥,233x ≥,解得2x ≥.故函数y [2,)+∞. 故选:D.17.函数()22f x x -的定义域为( ) A .[0,2) B .(2,)+∞C .()(),22,-∞+∞D .[0,2)(2,)⋃+∞【答案】D 【解析】求出使函数式有意义的自变量的范围即得、 【详解】由21020x x ⎧-≥⎨-≠⎩得02x x ≥⎧⎨≠⎩,即[0,2)(2,)x ∈⋃+∞.故选:D.18.设函数f (x ),则函数f (x 4)的定义域为( ) A .(],4∞- B .1,4∞⎛⎤- ⎥⎝⎦C .(]0,4D .10,4⎛⎤⎥⎝⎦【答案】A 【解析】 【分析】求得4x f ⎛⎫= ⎪⎝⎭0,结合指数函数的性质求解即可. 【详解】因为()f x =所以4x f ⎛⎫= ⎪⎝⎭因为44440,44,1,44x x x x -≥≤≤≤,所以4xf ⎛⎫⎪⎝⎭的定义域为(],4-∞,故选A .【点睛】本题主要考查函数的定义域以及指数函数的单调性的应用,是基础题.定义域的三种类型及求法:(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解;(2) 对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解;(3) 若已知函数()f x 的定义域为[],a b ,则函数()()f g x 的定义域由不等式()a g x b ≤≤求出.19.已知函数()y f x =的定义域为()0,1,则函数()()21xF x f =-的定义域为( )A .(),1-∞B .()(),00,1-∞⋃C .()0,∞+D .[)0,1【答案】B 【解析】 【分析】抽象函数的定义域求解,要注意两点,一是定义域是x 的取值范围;二是同一对应法则下,取值范围一致. 【详解】()y f x =的定义域为()0,1,1021x-∴<<,即121121x x ⎧-<-<⎨≠⎩,10x x <⎧∴⎨≠⎩,解得:1x <且0x ≠, ()()21x F x f ∴=-的定义域为()(),00,1-∞⋃.故选:B .20.函数y (-∞,0],则a 的取值范围为( ) A .a >0 B .a <1 C .0<a <1 D .a ≠1【答案】C 【解析】 【分析】由题意可得10x a -≥,对a 讨论,分1,01a a ><<,运用指数函数的单调性,列不等式即可得到a 的范围. 【详解】要使函数0y a >且1)a ≠有意义, 则10x a -≥, 即01x a a ≥=, 当1a >时,0x ≥;当01a <<时,0x ≤,因为y =的定义域为(],0-∞ 所以可得01a <<符合题意,a ∴的取值范围为01a <<,故选C.【点睛】本题考查函数的定义域以及指数函数的单调性,注意运用偶次根式被开方式非负,意在考查分类讨论思想与运算能力,属于中档题.针对练习五 指数函数的值域21.函数2212x xy -⎛⎫= ⎪⎝⎭的值域为( ) A .1,2⎡⎫+∞⎪⎢⎣⎭B .1,2⎛⎤-∞ ⎥⎝⎦C .10,2⎛⎤⎥⎝⎦D .(]0,2【答案】D 【解析】 【分析】令22t x x =-,则12ty ⎛⎫= ⎪⎝⎭,转求二次函数与指数函数的值域即可.【详解】令22t x x =-,则12ty ⎛⎫= ⎪⎝⎭,①()222111t x x x =-=--≥-,①(],2120ty ⎛⎫⎪⎭∈= ⎝,①函数2212x xy -⎛⎫= ⎪⎝⎭的值域为(]0,2,故选:D22.若23x ,则函数1()421x x f x +=-+的最小值为( ) A .4 B .0C .5D .9【答案】A 【解析】 【分析】设23x t =,则2()21=-+f t t t 利用函数()f t 单调性可得答案. 【详解】设23x t =,则()22()211=-+=-f t t t t (3t ), 对称轴为1t =,所以()f t 在[)3,+∞上单调递增,所以2min ()(3)32314f t f ==-⨯+=.故选:A.23.函数2121x x y -=+的值域是( )A .()(),11,-∞--+∞B .(),1-∞-C .()1,1-D .()(),11,-∞+∞【答案】C 【解析】 【分析】将函数化为121xyy+=-,利用20x >列出关于y 的不等式,解出不等式即可. 【详解】设2121x x y -=+,由原式得121xy y +=-,20x >, 101yy+∴>-, ①11y -<<,即函数()f x 的值域为(1,1)-. 故选:C24.已知函数()()1123,12,1x a x a x f x x -⎧-+<=⎨≥⎩的值域为R ,则实数a 的取值范围是( ) A .10,2⎡⎫⎪⎢⎣⎭B .1,2⎛⎫-∞ ⎪⎝⎭C .(),0-∞D .[)0,2【答案】A 【解析】 【分析】先求出12x y -=在[)1,+∞上的取值范围,再利用分段函数的值域进行求解.【详解】因为12x y -=在[)1,+∞上单调递增, 所以当1≥x 时,1022=1x y -=≥, 若函数()f x 的值域为R ,则1201231a a a ->⎧⎨-+≥⎩, 解得102a ≤<. 故选:A.25.函数2x y a =-(0a >且1a ≠,11x -≤≤)的值域是5,13⎡⎤-⎢⎥⎣⎦,则实数=a ( )A .3B .13C .3或13D .23或32【答案】C 【解析】当0a >且1a ≠时,函数为指数型函数,需要分情况进行讨论解决.当1a >时,函数2x y a =-是增函数;当01a <<时,函数2x y a =-是减函数,由此结合条件建立关于a的方程组,解之即可求得答案. 【详解】当1a >时,2xy a =-在[]1,1-上为增函数, 211523a a-=⎧⎪∴⎨-=-⎪⎩,解得3a =;当01a <<时,2xy a =-在[]1,1-上为减函数,523121a a⎧-=-⎪⎪∴⎨⎪-=⎪⎩,解得13a =.综上可知:3a =或13. 故选:C 【点睛】关键点点睛:本题主要考查了指数函数的单调性和值域,解题的关键是利用函数的单调性求解函数值域,但含有参数时往往需要讨论.针对练习六 指数函数的单调性26.函数2435x x y -+-=的单调递减区间是( ) A .[2,)+∞ B .(,2]-∞ C .(,1]-∞ D .[1,)+∞【答案】A 【解析】 【分析】利用复合函数的单调性“同增异减”来解题. 【详解】设243x x μ=-+-,在(,2]-∞单调递增,在[2,)+∞单调递减,5y μ=在(,)-∞+∞单调递增,根据“同增异减”可得,函数2435x x y -+-=的单调递减区间是[2,)+∞. 故选:A.27.函数223112x x y -+⎛⎫= ⎪⎝⎭的单调递减区间为( ) A .(1,)+∞ B .3,4⎛⎤-∞ ⎥⎝⎦C .(),1-∞D .3,4⎡⎫+∞⎪⎢⎣⎭【答案】D 【解析】 【分析】根据复合函数单调性法则“同增异减”求解即可. 【详解】解:因为函数2231y x x =-+在区间3,4⎛⎫-∞ ⎪⎝⎭上单调递减,在3,4⎡⎫+∞⎪⎢⎣⎭上单调递增,函数12xy ⎛⎫= ⎪⎝⎭在定义域内是单调递减函数,所以,根据复合函数单调性法则“同增异减”得223112x x y -+⎛⎫= ⎪⎝⎭的单调递减区间为3,4⎡⎫+∞⎪⎢⎣⎭. 故选:D28.若函数()215x axf x +⎛⎫= ⎪⎝⎭在[]1,2单调递减,则a 的取值范围( )A .4a ≤-B .2a ≤-C .2a ≥-D .4a ≥-【答案】C 【解析】 【分析】根据复合函数单调性来求得a 的取值范围. 【详解】依题意函数()215x axf x +⎛⎫= ⎪⎝⎭在[]1,2单调递减,15xy =在R 上递减, 2y x ax =+的开口向上,对称轴为2ax =-,根据复合函数单调性同增异减可知,122a a -≤⇒≥-. 故选:C29.若函数()(),1,513,13x a x f x a x x ⎧≥⎪=⎨-+<⎪⎩在R 上单调递减,则实数a 的取值范围是( ) A .12,33⎛⎤⎥⎝⎦B .1,2C .11,32⎡⎫⎪⎢⎣⎭D .20,3⎛⎫⎪⎝⎭【答案】A 【解析】 【分析】根据分段函数的性质,以及函数()f x 在R 上单调递减,结合指数函数的性质,可知011305133a a a a⎧⎪<<⎪-<⎨⎪⎪-+≥⎩,求解不等式,即可得到结果. 【详解】①函数()f x 在R 上单调递减,①011305133a a a a⎧⎪<<⎪-<⎨⎪⎪-+≥⎩,解得1233a <≤,实数a 的取值范围是12,33⎛⎤⎥⎝⎦. 故选:A.30.已知函数()()4211xa x x f x a x ⎧-≤=⎨>⎩,,是R 上的单调函数,那么实数a 的取值范围为( )A .()01,B .()13,C .423⎡⎫⎪⎢⎣⎭,D .312⎛⎤ ⎥⎝⎦,【答案】C 【解析】 【分析】根据()f x 的单调性列不等式组,由此求得a 的取值范围. 【详解】 函数()()4211xa x x f x a x ⎧-≤=⎨>⎩,,,若()f x 在R 上为单调递增函数,则()14201421a a a a ⎧->⎪>⎨⎪-⨯≤⎩,解得423a ≤<;若()f x 在R 上为单调递减函数,则()142001421a a a a ⎧-<⎪<<⎨⎪-⨯≥⎩,无解. 综上所述,实数a 的取值范围为423⎡⎫⎪⎢⎣⎭,. 故选:C针对练习七 比较大小与解不等式31.已知412a ⎛⎫= ⎪⎝⎭,124b =,122c =,则a ,b ,c 的大小关系是( ) A .a b c << B .c b a << C .a c b << D .b a c <<【答案】C 【解析】 【分析】根据指数函数的单调性判断指数式的大小关系. 【详解】由题设,42a -=,2b =,122c =,又2x y =在定义域上递增, ①a c b <<. 故选:C.32.已知1313422,3,4a b c ===,则a ,b ,c 的大小关系为( ) A .a <b <c B .c <a <b C .a <c <b D .c <b <a【答案】B 【解析】 【分析】结合指数函数、幂函数的单调性确定正确选项. 【详解】4x y =在R 上递增,14y x =在()0,∞+上递增.123111334442422893c a b ==<==<==.故选:B33.若2141122a a+-⎛⎫⎛⎫> ⎪⎪⎝⎭⎝⎭,则实数a 的取值范围是( ) A .(,1)-∞ B .(1,)+∞C .(3,)+∞D .(3),-∞【答案】A 【解析】 【分析】根据指数函数的单调性,将函数不等式转化为自变量的不等式,解得即可; 【详解】解:因为12xy ⎛⎫= ⎪⎝⎭在定义域上单调递减,所以2141122a a+-⎛⎫⎛⎫> ⎪⎪⎝⎭⎝⎭等价于214a a +<-,解得1a <,即原不等式的解集为(,1)-∞ 故选:A34.若x 满足不等式221139x x -+⎛⎫ ⎪⎝⎭,则函数2x y =的值域是( )A .1,28⎡⎫⎪⎢⎣⎭B .1,28⎡⎤⎢⎥⎣⎦C .1,8⎛⎤-∞ ⎥⎝⎦D .[2,)+∞【答案】B 【解析】【分析】利用指数函数的单调性得到自变量的范围,进而得到指数函数的值域. 【详解】 由221139x x -+⎛⎫ ⎪⎝⎭可得2212(2)1339x x x -+--⎛⎫= ⎪⎝⎭,因为3x y =在R 上单调递增, 所以2124x x +-+即x 2+2x -3≤0, 解得:31x -≤≤ , 所以31222x y -=,即函数2x y =的值域是1,28⎡⎤⎢⎥⎣⎦,故选:B .35.若1133ab⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,则下列正确的是( )A .33a b <B .ac bc >C .11a b<D .b c a c -<-【答案】D 【解析】 【分析】先根据题干条件和函数13xy ⎛⎫= ⎪⎝⎭的单调性得到a b >,A 选项可以利用函数的单调性进行判断,BC 选项可以举出反例,D 选项用不等式的基本性质进行判断. 【详解】因为13xy ⎛⎫= ⎪⎝⎭在R 上单调递减,若1133a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,则a b >,对于选项A :若a b >,因为()3f x x =单调递增,所以33a b >,故A 错误;对于选项B :当a b >时,若0c ,则ac bc =,故B 错误;对于选项C :由a b >,不妨令1a =,2b =-,则此时11ab>,故C 错误; 对于选项D :由不等式性质,可知D 正确. 故选:D.针对练习八 指数函数的应用36.专家对某地区新型流感爆发趋势进行研究发现,从确诊第一名患者开始累计时间t (单位:天)与病情爆发系数()f t 之间,满足函数模型:0.22(340)1()1t f t e--=+,当()0.1f t =时,标志着疫情将要局部爆发,则此时t 约为(参考数据: 1.13e ≈)( )A .10B .20C .30D .40【答案】A 【解析】 【分析】根据()0.1f t =列式,并根据给出参考数据,结合指数函数的性质解相应的指数方程,即可得答案. 【详解】解:因为()0.1f t =,0.22(340)1()1t f t e--=+,所以0.22(340)10.11t e--=+,即0.22(340)011t e --=+,所以0.22(340)9t e --=,由于 1.13e ≈,故()21.12.29e e =≈, 所以0.22(23).240t e e --≈,所以()0.22340 2.2t --≈,解得10t ≈. 故选:A.37.基本再生数0R 与世代间隔T 是流行病学基本参数,基本再生数是指一个感染者传染的平均人数,世代间隔指两代间传染所需的平均时间,在α型病毒疫情初始阶段,可以用指数函数模型(e )rt I t =描述累计感染病例数()I t 随时间t (单位:天)的变化规律,指数增长率r 与0R 、T 近似满足01R rT =+,有学者基于已有数据估计出0 3.22R =,10T =.据此,在α型病毒疫情初始阶段,累计感染病例数增加至(0)I 的4倍,至少需要( )(参考数据:ln 20.69≈) A .6天 B .7天 C .8天 D .9天【答案】B 【解析】 【分析】根据题意将给出的数据代入公式即可计算出结果 【详解】因为0 3.22R =,10T =,01R rT =+,所以可以得到01 3.2210.22210R r T --===0.2220(0)1I e ⨯==,由题意可知0.2224t e >,ln 42ln 220.696.20.2220.2220.222t ⨯>=≈≈ 所以至少需要7天,累计感染病例数增加至(0)I 的4倍 故选:B38.某灭活疫苗的有效保存时间T (单位:小时h )与储藏的温度t (单位:①)满足的函数关系为e ht b T +=(k ,b 为常数,其中e 2.71828=⋅⋅⋅,是一个和π类似的无理数,叫自然对数的底数),超过有效保存时间,疫苗将不能使用.若在0①时的有效保存时间是1080h ,在10①时的有效保存时间是120h ,则该疫苗在15①时的有效保存时间为( ) A .15h B .30h C .40h D .60h【答案】C 【解析】 【分析】根据已知的函数模型以及已知数据,待定系数即可求得结果. 【详解】由题意知1080e b =,1010120e e e k b k b +==⋅,所以()21051201ee 10809kk===, 所以51e 3k =,所以151e 27k =,所以15151ee e 10804027k bk b +=⋅=⨯=. 故选:C .39.某食品的保鲜时间y (单位:小时)与储藏温度x (单位:C ︒)满足函数关系e kx b y +=(e 2.718=为自然对数的底数,,k b 为常数).若该食品在0C ︒的保鲜时间是192小时,在33C ︒的保鲜时间是24小时,则该食品在22C ︒的保鲜时间是( ) A .20 小时 B .24小时 C .36小时 D .48小时【答案】D 【解析】 【分析】根据题意建立方程组,进而解出11e ,e b k ,然后将22代入即可求得答案. 【详解】由题意,331133e 1922411e e 19282e24b k k k b+⎧=⇒==⇒=⎨=⎩,所以该食品在22C ︒的保鲜时间是2222e e e 1192484k b k b +=⋅=⨯=.故选:D.40.牛顿曾经提出了常温环境下的温度冷却模型:()100e ktθθθθ-=-+,其中为时间(单位:min ),0θ为环境温度,1θ为物体初始温度,θ为冷却后温度),假设在室内温度为20C 的情况下,一桶咖啡由100C 降低到60C 需要20min .则k 的值为( ) A .ln 220B .ln 320C .ln 210-D .ln 310-【答案】A 【解析】 【分析】把020θ=,1100θ=,60θ=,20t =代入()100e ktθθθθ-=-+可求得实数k 的值.【详解】由题意,把020θ=,1100θ=,60θ=,20t =代入()100e ktθθθθ-=-+中得2080e 2060k -+=,可得201e2k-=, 所以,20ln 2k -=-,因此,ln 220k =. 故选:A.。
指数和对数的复合函数的单调性、奇偶性、最值问题
(2) y log 1 x 6 log 1 x 2. 3 3
1 1 ( 2) 递 增 区 间 为 , , 递 减 区 间 为 0, 。 + 27 27
答 案 : (1) 递 增 区 间 为 - , , 递 减 区 间 为 3, ; -1 +
例 .已 知1 x 10, 且 xy =100, 求
2 2 2
(lgx) +(lgy) 的 最 大 值 和 最 小 值 , 并求其取最大值和最小值时相应 的 x和 y的 值 。
例 : 设 f(x)=2( log 2 x) 2 a log 2
2
1 x
b,
且x
1 2
时 , f(x)有 最 小 值 8,
x
a 0且a 1;
; 函数的定义域为.
(2)y log 2
1
3 x 2 (1)当a 1时,函数的定义域为 log 2, ; 1 当0 a 1时,函数的定义域为 , log 2 ; (3) y log 2 ; x 1 3 2 (2) , ; (3) , 0 ; (4) 2 , .;
x x 2 x 1
( 2 )9 6 2
x x
指数、对数的单调性,奇偶性
, 2
例 : 函 数 y log 1 6 x +12 的 递 增 区 间 是 _______.
2
例 : 求 f (x) log 1 ( 3 2 x x )的 单 调 区 间 .
变 题 1: 已 知 函 数 f (x) ( (1)求 函 数 f (x)的 定 义 域 。 ( 2) 讨 论 f (x)的 奇 偶 性 ( 3) 求 证 f (x) 0
指数函数的性质及常考题型(含解析)
【变式 1-2】下列函数:① = 3 ;② = 6 ;③ = 6 ⋅ 2 ;④ = 8 + 1;⑤ = −6 .
其中一定为指数函数的有(
A.0 个
)
B.1 个
C.2 个
D.3 个
【解题思路】根据指数函数的定义判断即可;
【解答过程】解:形如 =
( > 0且 ≠ 1)为指数函数,其解析式需满足①底数为大于
数
函
数
︶
如图是指数函数(1)y=ax,
(2)y=bx,
(3)y=cx,(4)y=dx 的图象,底数 a,b,c,
d 与 1 之间的大小关系为 c>d>1>a>b.
由此我们可得到以下规律:在 y 轴右(左)侧图象越高(低),其底数越大.
3.比较指数幂的大小的方法
比较指数幂的大小的方法(分三种情况)
:
(1)底数相同,指数不同:利用指数函数的单调性来判断;
培
优
篇
高
【变式 5-2】已知函数() = ⋅ 的图像经过点(1,2),(2,4).
中
(1)求()的解析式;
数
(2)解不等式( + 3) > (4).
学
︵
指
数
函
数
︶
【变式 5-3】已知函数() = + (0 < < 1)的图象经过点(0, −1).
(1)求实数 b;
B.0 < < 1,0 < < 1
指
C.0 < < 1, > 1
D. > 1,0 < < 1
数
函
【变式 6-2】如图中,①②③④中不属于函数 = 3 , = 2 , =
函数的单调性的判断与证明练习题含答案
函数的单调性的判断与证明练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 下列函数中,在其定义域上为增函数的是( ) A.y =x 4B.y =2−xC.y =x +cos xD.y =−x 122. 下列函数中,既是奇函数,又在定义域内是增函数的是( ) A.y =x 3+1 B.y =x +1xC.y =−1xD.y =x|x|3. 下列函数在(0,+∞)上是增函数的是( ) A.f (x )=−2x +1 B.f (x )=1x C.f (x )=lg (x −1) D.f (x )=x 24. 已知函数f(x)=3x −(13)x ,则f(x)( )A.是偶函数,且在R 上是增函数B.是奇函数,且在R 上是增函数C.是偶函数,且在R 上是减函数D.是奇函数,且在R 上是减函数5. 下列函数中,既是奇函数又在定义域上是增函数的为( ) A.y =2x B.y =−2x 2C.y =1xD.y =x6. 已知函数f(x)=3x −(13)x,则f(x)( ) A.是奇函数,且在R 上是增函数 B.是偶函数,且在R 上是增函数 C.是奇函数,且在R 上是减函数 D.是偶函数,且在R 上是减函数7. 已知函数f (x )={x 2−ax,x ≥2,a x−1−2,x <2满足对于任意实数x 1≠x 2,都有f (x 1)−f (x 2)x 1−x 2>0成立,那么a 的取值范围是( )A.(1,4]B.(1,+∞)C.(1,2]D.[2,4]8. 给定下列函数,其中在区间(0,1)上单调递增的函数是( ) A.y =−12x 2B.y =|x 2−2x|C.y =(12)x+1D.y =x +1x9. 函数f (x )=e x +e −xe x −e −x 的部分图象大致是( )A. B.C. D.10. 已知函数f (x )={−x 2−4x,x ≥0,x 2−4x,x <0,若f (2−t )>f (t ),则实数t 的取值范围是( )A.(−∞,1)∪(2,+∞)B.(1,2)C.(−∞,1)D.(1,+∞)11. 已知定义在(−∞,0)∪(0,+∞)上的函数f (x ),且f (1)=1,函数f (x +1)的图象关于点(−1,0)中心对称,对于任意x 1,x 2∈(0,+∞),x 1≠x 2,都有x 12019 f (x 1)−x 22019 f (x 2)x 1−x 2>0成立.则f(x)≤1x 2019的解集为( )A.[−1,1]B.(−∞,−1]∪[1,+∞)C.(−∞,−1]∪(0,1]D.(−2019,2019)12. 定义在(0,+∞)上的函数f (x )满足:①对于任意的x ,y ∈(0,+∞),都有f (x ⋅y )=f (x )+f (y );②当x >1时,f (x )>0;③f(√6)=1,则关于x 的不等式f (x )−f (15−x )≥2的解集是( ) A.[2,3]B.[−√2,−1]∪[0,√2]C.[√2,+∞)D.(0,2]13. 函数f(x)=|x−3|的单调递增区间是________.14. 若f(x)=是定义在R上的减函数,则a的取值范围是________.15. 已知f(x)=x2+(b−2)x是定义在R上的偶函数,则实数b=________,此函数f(x)的单调增区间为________.16. 已知函数g(x)=x3+5x,若g(2a−1)+g(a+4)<0,则实数a的取值范围为________.17. 符号[x]表示不超过x的最大整数,如[π]=3,[−1.08]=−2,定义函数{x}=x−[x].给出下列四个命题:①函数{x}的定义域为R,值域是[0,1];有无数个解;②方程{x}=12③函数{x}是奇函数;④函数{x}是增函数.正确命题的序号是________.18. 若函数f(x)=kx2+(k−1)x+2是偶函数,则f(x)的递减区间是________.19. 已知函数,若对任意,有恒成立,则实数的取值范围是________.20. 已知f(x)=2x.x2+1(1)判断f(x)在[−1, 1]的单调性,并用定义加以证明;(2)求函f(x)在[−1, 1]的最值.21. 已知函数f(x)=−2x+1是定义在R上的奇函数.2x+a(1)求实数a的值;(2)判断函数f(x)的单调性,并利用定义证明.22. 已知f(x)=x,x∈(−2,2).x2+4(1)用定义证明函数f(x)在(−2,2)上为增函数;(3)若f(a+2)>f(2a−1),求实数a的取值范围.+m(m∈R)是奇函数.23. 已知函数f(x)=12x+1(1)求实数m的值;(2)判断f(x)的单调性(不用证明);(3)求不等式f(x2−x)+f(−2)<0的解集.24. 已知a>0,函数f(x)=1.1+a⋅3x(1)判断函数f(x)在R上的单调性,并证明;(2)设g(x)=f(x)f(−x),若对任意x∈[−1,1],g(x)≥f(2)恒成立,求a的取值范围.参考答案与试题解析函数的单调性的判断与证明练习题含答案一、 选择题 (本题共计 12 小题 ,每题 3 分 ,共计36分 ) 1.【答案】 C【考点】函数单调性的判断与证明 利用导数研究函数的单调性【解析】利用常见的幂函数,指数函数分析选项ABD 中函数的单调性,利用导数研究C 中函数的单调性即可得到答案. 【解答】解:A ,函数y =x 4在(0,+∞)上单调递增,在(−∞,0)上单调递减,不满足题意; B ,y =2−x=(12)x在定义域内单调递减,不满足题意;C ,∵ 函数y =x +cos x 的定义域为R ,且y ′=1−sin x ≥0, ∴ 函数y =x +cos x 在其定义域上单调递增,满足题意;D ,y =−x 12在定义域内单调递减,不符合题意. 故选C . 2. 【答案】 D【考点】函数单调性的判断与证明 函数奇偶性的判断【解析】利用函数奇偶性,单调性,逐项判定得解. 【解答】解:对于A ,设f (x )=x 3+1,f(−x)=−x 3+1≠−f (x ),不是奇函数,故不符合题意;对于B ,由题设知函数为奇函数,在(−1,0),(0,1)单调递减,在(−∞,−1),(1,+∞)单调递增,故不符合题意;对于C ,函数为奇函数,在(−∞,0),(0,+∞)分别单调递增,故不符合题意; 对于D ,y =x |x |={x 2,x ≥0,−x 2,x <0,可得函数为奇函数,且在定义域单调递增,故符合题意. 故选D . 3.【答案】 D【考点】函数单调性的判断与证明【解析】对于A:f (x )=−2x +1在定义域上单调递减,不符合题意; 对于B:f (x )=1x 函数在(−∞,0),(0,+∞)上单调递减,不符合题意;对于C:f (x )=lg (x −1),定义域为(1,+∞),不符合题意;对于D:f (x )=x 2,函数在(−∞,0)上单调递减,在(0,+∞)上单调递增,满足条件. 故选:D . 【解答】解:对于A ,f (x )=−2x +1在定义域上单调递减,不符合题意; 对于B ,f (x )=1x 函数在(−∞,0),(0,+∞)上单调递减,不符合题意;对于C ,f (x )=lg (x −1),定义域为(1,+∞),不符合题意;对于D ,f (x )=x 2,函数在(−∞,0)上单调递减,在(0,+∞)上单调递增,满足条件. 故选D . 4.【答案】 B【考点】函数单调性的判断与证明 函数奇偶性的判断【解析】本题主要考查函数的奇偶性和单调性. 【解答】解:易知函数f(x)的定义域为R , f(−x)=(13)x−3x =−f(x),所以为奇函数.因为y =(13)x 在R 上是减函数, 所以y =−(13)x 在R 上是增函数,又y =3x 在R 上是增函数,所以函数f(x)=3x−(13)x在R 上是增函数. 故选B . 5.【答案】 D【考点】函数奇偶性的判断函数单调性的判断与证明【解析】根据奇偶性及单调性,首先判断奇偶性,再判断单调性即可. 【解答】解:对于A ,函数y =2x 为非奇非偶函数,故A 不满足题意; 对于B ,函数y =−2x 2为偶函数,故B 不满足题意;对于C ,函数y =1x 为奇函数,在(−∞,0),(0,+∞)上为减函数,故C 不满足题意;对于D ,函数y =x 为奇函数,且在R 上是增函数,故D 满足题意. 故选D . 6. 【答案】 A【考点】函数奇偶性的判断函数单调性的判断与证明 【解析】 此题暂无解析 【解答】解:因为f(x)=3x−(13)x,且定义域为R ,所以f(−x)=3−x −(13)−x =(13)x −3x =−[3x −(13)x]=−f(x),即函数f(x)是奇函数.又y =3x 在R 上是增函数,y =(13)x在R 上是减函数,所以f(x)=3x−(13)x在R 上是增函数.故选A . 7. 【答案】 C【考点】函数单调性的判断与证明 分段函数的应用 【解析】由已知可得函数f (x )是定义在R 上的增函数,则{a2≤2,a >1,4−2a ≥a −2,解得a 的取值范围.【解答】解:∵ 对于任意实数x 1≠x 2,都有f (x 1)−f (x 2)x 1−x 2>0成立,故函数f (x )是定义在R 上的增函数, 则{a 2≤2,a >1,4−2a ≥a −2,解得a ∈(1,2].故选C . 8.【答案】 B【考点】函数单调性的判断与证明 【解析】此题暂无解析 【解答】解:对于A ,y =−12x 2为二次函数,其图像的开口向下,对称轴是直线x =0, 所以y =−12x 2在区间(0,1)上单调递减;对于B ,当x ∈(0,1)时,y =|x 2−2x|=−x 2+2x ,因为抛物线y =−x 2+2x 的对称轴是直线x =1,且开口向下,所以函数y =|x 2−2x|在区间(0,1)上单调递增; 对于C ,y =(12)x+1=12⋅(12)x,因为0<12<1,所以函数y =(12)x+1在区间(0,1)上单调递减;对于D ,y =x +1x ≥2,当且仅当x =1时等号成立,所以由对勾函数的性质知函数y =x +1x 在区间(0,1)上单调递减. 故选B . 9.【答案】 A【考点】函数奇偶性的判断 函数图象的作法 函数单调性的判断与证明【解析】 此题暂无解析 【解答】解:由已知函数的定义域为{x|x ≠0},定义域关于原点对称, 由于f (x )+f (−x )=e x +e −xe x −e −x +e −x +e xe −x −e x =e x +e −x −e −x −e −xe x −e −x=0,即f (−x )=−f (x ),所以y =e x +e −xe x −e −x 是奇函数,排除选项B ; 因为y =e x +e −x e x −e −x=1+2(e x )2−1=1+2(e 2)x −1在(0,+∞)上为减函数,排除选项D ;当x =1时,f (1)=1+2e 2−1>0,排除选项C .故选A .10.【答案】 D【考点】函数单调性的判断与证明 函数单调性的性质【解析】 【解答】解:根据题意知,函数f (x )={−x 2−4x,x ≥0,x 2−4x,x <0,当x ≥0时,f (x )=−x 2−4x =−(x +2)2+4,则函数f (x )在[0,+∞)上单调递减,有f (x )≤f (0)=0. 当x <0时,f (x )=x 2−4x =(x −2)2−4,则函数f (x )在(−∞,0)上单调递减,有f (x )>f (0)=0. 综上可得函数f (x )在R 上为减函数. 若f (2−t )>f (t ),则2−t <t ,解得t >1,即实数t 的取值范围为(1,+∞). 故选D . 11.【答案】 C【考点】函数单调性的性质 函数奇偶性的判断 函数奇偶性的性质 函数单调性的判断与证明【解析】首先确定函数f (x )的奇偶性,再构造新函数g(x)=x 2019f(x),并确定奇偶性及单调性,即可解出不等式. 【解答】解:由于f(x +1)的图象关于点(−1,0)中心对称, 则f (x )的图象关于点(0,0)中心对称, 即函数f (x )在定义域上为奇函数, 令g (x )=x 2019f (x ),则g (−x )=(−x )2019f (−x )=x 2019f (x )=g (x ), 所以g (x )为偶函数,又x 1,x 2∈(0,+∞),x 1≠x 2, 都有x 12019f (x 1)−x 22019f (x 2)x 1−x 2>0,即可得函数g (x )在(0,+∞)为增函数, 由奇偶性与单调性的关系可得: 函数g (x )在(−∞,0)为增函数, 又g (1)=12019×f (1)=1,g (−1)=(−1)2019×f (−1)=−1×[−f (1)]=1 由f(x)≤1x 2019,当x >0时,x 2019f(x)≤1=g (1), 所以0<x ≤1;当x <0时,x 2019f(x)≥1=g (−1), 所以x ≤−1.综上可得:x∈(−∞,−1]∪(0,1].故选C.12.【答案】A【考点】函数新定义问题抽象函数及其应用函数单调性的判断与证明【解析】证明函数单调递增,f(6)=f(√6)+f(√6)=2,变换不等式为f(x)≥f(65−x),利用函数单调性解得答案.【解答】解:设0<x1<x2,则f(x2)−f(x1)=f(x2x1⋅x1)−f(x1)=f(x2x1)>0,即函数在(0,+∞)上单调递增.∵ f(√6)=1,∴ f(6)=f(√6)+f(√6)=2.∵ f(x)−f(15−x)≥2,∴ f(x)≥f(15−x )+f(6)=f(65−x),故满足{x>0,65−x>0,x≥65−x,解得x∈[2,3].故选A.二、填空题(本题共计 7 小题,每题 3 分,共计21分)13.【答案】[3,+∞)【考点】函数单调性的判断与证明函数的单调性及单调区间【解析】讨论去绝对值,即可得到函数,从而确定单调性.【解答】解:当x≥3时,f(x)=x−3,此时f(x)为增函数;当x<3时,f(x)=−(x−3)=−x+3,此时f(x)为减函数,所以f(x)的单调增区间为[3,+∞).故答案为:[3,+∞).14.【答案】[18,13) 【考点】函数单调性的性质函数单调性的判断与证明 对数函数的单调性与特殊点 【解析】根据分段函数的单调性可得{3a −1<03a −1)×1+4a ≥−a a >0×1+4a ≥−a ,解不等式组即可求解. 【解答】由题意知,{3a −1<03a −1)×1+4a ≥−a a >0×1+4a ≥−a解得{a <13a ≥8a >0,所以a ∈[18,13)故答案为:[18,13)15.【答案】 2,(0, +∞) 【考点】 偶函数函数单调性的判断与证明【解析】f(x)=x 2+(b −2)x 是定义在R 上的偶函数,对称轴为y 轴,进而求解. 【解答】解:f(x)=x 2+(b −2)x 是定义在R 上的偶函数, 对称轴为y 轴,则b =2,于是f(x)=x 2,单调增区间为(0, +∞). 故答案为:2;(0, +∞). 16.【答案】 a <−1 【考点】函数奇偶性的性质 函数奇偶性的判断 函数单调性的判断与证明 函数的单调性及单调区间 【解析】 此题暂无解析 【解答】解:∵g(−x)=−x3−5x=−g(x),∴函数g(x)是奇函数,且函数在R上单调递增,∴原不等式可化为g(a+4)<−g(2a−1)=g(1−2a),∴a+4<1−2a,解得a<−1.故答案为:a<−1.17.【答案】②【考点】函数的值域及其求法函数奇偶性的判断函数单调性的判断与证明【解析】根据函数的定义域、值域、奇偶性、单调性等知识逐一对四个命题进行正误判断. 【解答】解:①函数{x}的定义域是R,但是0≤x−[x]<1,故函数{x}的值域为[0,1),故①错误;,②∵{x}=x−[x]=12∴x=[x]+1,2∴x=1.5,2.5,3.5,⋯,应为无数多个,故②正确;③∵函数{x}的定义域是R,而{−x}=−x−[−x]≠−{x},{−x}=−x−[−x]≠{x},∴函数{x}是非奇非偶函数,故③错误;④函数{x}在每一个单调区间上是增函数,但在整个定义域上不是增函数,故④错误.综上所述,②正确.故答案为:②.18.【答案】(−∞, 0]【考点】函数奇偶性的性质函数单调性的判断与证明【解析】根据偶函数的性质求出k值,再根据二次函数的图象即可求出其单调减区间.【解答】解:因为f(x)为偶函数,所以f(−x)=f(x).即kx2−(k−1)x+2=kx2+(k−1)x+2,所以2(k−1)x=0,所以k=1.则f(x)=x2+2,其递减区间为(−∞, 0].故答案为:(−∞, 0].19.【答案】加加加(−∞,−1]【考点】函数单调性的判断与证明函数单调性的性质函数的图象【解析】可先将f(x+m)+mf(x)<0采用代入法转化为常规表达式,采用分类讨论去绝对值的方式,来进一步探讨不等式是否成立,进一步确定参数m的范围【解答】f(x+m)+mf(x)<0可等价转化为(x+m)|x+m|+m|x|<0对任意x≥1恒成立,当m≥0时,不等式转化为(x+m)2+mx2<0对任意x≥1恒成立,显然无解;当me(−1,0)时,不等式转化为(x+n)2+mx2<0,即(m+1)x2−2mx+m2<0,显然当x→+y时不成立;当m=−1时,(x+m)|x+m|+mx||x|<0⇔(x−1)2−x2<0,即1−2x<0对任意x≥1恒成立,经检验,恒成立;当m<−1时,(x+m)||+m||+mx||x|<0⇔(x+m)|(−m)|+mx2对任意x≥1恒成立尚需进一步讨论,当1<x<−m时,不等式等价于−(x−m)2+nx2<0即(m−1)x2−2mx−m2<0Δ=4m2+4m2(m−1)=4m3<0,令y=(m−1)x2−2mx−m2,函数开口向下,则(m−1)x2−2mx−m2<0恒成立;当x>−m时,(x+m)|x+m|+m|x|<0⇔(xxm)2mx0,即(m+1)2−2mx+m2< 0此时对应的对称轴为x=−mm+1<1,又−mn+1<−m,则y=(m+1)x2−2mx+m2在区间[−m,+∞]为减区间,即y=(m−1)x2−2mx+m2≤y(−n)=m3<0恒成立;综上所述,当m∈(−∞,−1]时,对任意x≥1,有f(x+m)+nf(x)<0恒成立故答案为:(−∞,−1]三、解答题(本题共计 5 小题,每题 10 分,共计50分)20.【答案】解:(1)函数f(x)在[−1.1]上单调递增;证明如下:设任意−1<x1<x2<1,则f(x1)−f(x2)=2x1x12+1−2x2x22+1=2x1x22+2x1−2x2x12−2x2(x12+1)(x22+1)=2(x1−x2)(1−x1x2)(x12+1)(x22+1)<0,故函数f(x)在[−1.1]上单调递增;(2)由(1)的结论,f(x)在区间[−1,1]上单调递增,则f(x)的最大值f(1)=1,最小值f(−1)=−1.【考点】函数单调性的判断与证明函数单调性的性质【解析】(1)利用定义法证明函数的单调性,按照设元、作差、变形、判断符号、下结论的步骤完成即可;(2)由(1)根据函数的单调性即可解答.【解答】解:(1)函数f(x)在[−1.1]上单调递增;证明如下: 设任意−1<x 1<x 2<1,则f(x 1)−f(x 2)=2x 1x 12+1−2x2x 22+1=2x 1x 22+2x 1−2x 2x 12−2x 2(x 12+1)(x 22+1)=2(x 1−x 2)(1−x 1x 2)(x 12+1)(x 22+1)<0,故函数f(x)在[−1.1]上单调递增;(2)由(1)的结论, f (x )在区间[−1,1]上单调递增,则f (x )的最大值f(1)=1,最小值f (−1)=−1. 21. 【答案】 解:(1)f (−x )=−2−x +12−x +a=2x −1a⋅2x +1,由f (−x )=−f (x )得: 2x −1a⋅2x +1=−−2x +12x +a⇒2x +a =a ⋅2x +1,解得a =1.验证,当a =1时,f (x )=−2x +12x +1,f (−x )=−2−x +12−x +1=2x −12x +1=−f (x )满足题意,∴ a =1.(2)f (x )为减函数. 证明:由(1)知f (x )=−2x +12x +1=22x +1−1,在R 上任取两个不相等的实数x 1,x 2,且x 1<x 2, f(x 1)−f(x 2)=22x 1+1−22x 2+1=2×2x 2−2x 1(2x 1+1)⋅(2x 2+1).由y =2x 为R 上的增函数,x 1<x 2,2x 2>2x 1, ∴ 2x 2−2x 1>0,(2x 1+1)⋅(2x 2+1)>0, 则f (x 1)−f (x 2)>0,∴ f (x 1)>f (x 2), ∴ 函数f (x )为减函数. 【考点】函数奇偶性的性质函数单调性的判断与证明 【解析】 无 无 【解答】 解:(1)f (−x )=−2−x +12−x +a=2x −1a⋅2x +1,由f (−x )=−f (x )得: 2x −1a⋅2x +1=−−2x +12x +a⇒2x +a =a ⋅2x +1,解得a =1.验证,当a =1时,f (x )=−2x +12x +1,f (−x )=−2−x +12−x +1=2x −12x +1=−f (x )满足题意,∴ a =1.(2)f (x )为减函数. 证明:由(1)知f (x )=−2x +12x +1=22x +1−1,在R 上任取两个不相等的实数x 1,x 2,且x 1<x 2, f(x 1)−f(x 2)=22x 1+1−22x 2+1=2×2x 2−2x 1(2x 1+1)⋅(2x 2+1).由y =2x 为R 上的增函数,x 1<x 2,2x 2>2x 1, ∴ 2x 2−2x 1>0,(2x 1+1)⋅(2x 2+1)>0, 则f (x 1)−f (x 2)>0,∴ f (x 1)>f (x 2), ∴ 函数f (x )为减函数. 22.【答案】(1)证明:任取x 1,x 2∈(−2,2),且x 1<x 2,所以f(x 1)−f(x 2)=x 1x 12+4−x2x 22+4=(x 2−x 1)(x 1x 2−4)(x 12+4)(x 22+4).因为−2<x 1<x 2<2,所以x 2−x 1>0,x 1x 2−4<0,则f(x 1)−f(x 2)<0,即f(x 1)<f(x 2), 所以函数f(x)在(−2,2)上为增函数.(2)解:由(1)知,f(x)在(−2,2)上单调递增,又f(a +2)>f(2a −1),所以{−2<a +2<2,−2<2a −1<2,a +2>2a −1,解得{−4<a <0,−12<a <32,a <3,即−12<a <0,所以a 的取值范围是(−12,0). 【考点】函数单调性的判断与证明 函数单调性的性质【解析】(2)根据函数的单调性的定义,采用作差法判断−2<x 1<x 2<2时f(x 1)−f(x 2)的符号,即可证明.(3)根据(2)中的结论得到关于a 的不等式组,求解即可. 【解答】(1)证明:任取x 1,x 2∈(−2,2),且x 1<x 2,所以f(x 1)−f(x 2)=x 1x 12+4−x2x 22+4=(x 2−x 1)(x 1x 2−4)(x 12+4)(x 22+4).因为−2<x 1<x 2<2,所以x 2−x 1>0,x 1x 2−4<0,则f(x 1)−f(x 2)<0,即f(x 1)<f(x 2), 所以函数f(x)在(−2,2)上为增函数.(2)解:由(1)知,f(x)在(−2,2)上单调递增,又f(a +2)>f(2a −1),所以{−2<a +2<2,−2<2a −1<2,a +2>2a −1,解得{−4<a <0,−12<a <32,a <3,即−12<a <0,所以a 的取值范围是(−12,0).23. 【答案】 解:(1)由f (x )=12x +1+m 的定义域为R ,可得f (0)=12+m =0,可得m =−12. 经验证,m =−12符合题意. ∴ m =−12,f (x )=12x +1−12.(2)∵ y =2x 为增函数,∴ y =2x +1为增函数,且2x +1>1, 所以y =12x +1为减函数,可得f (x )=12x +1−12在R 上为减函数. (3)由f(x 2−x)+f(−2)<0,可得f(x 2−x)<−f(−2), 即f(x 2−x)<f(2),由f (x )=12x +1−12在R 上为减函数,所以x 2−x >2,即x 2−x −2>0,所以x <−1或x >2, 故解集为(−∞, −1)∪(2, +∞). 【考点】函数奇偶性的性质函数单调性的判断与证明 函数单调性的性质【解析】(1)根据函数奇偶性的性质,利用f(0)=0进行求解即可. (2)根据函数单调的性质进行判断即可.(3)根据函数奇偶性和单调性的性质进行转化求解即可. 【解答】解:(1)由f (x )=12x +1+m 的定义域为R ,可得f (0)=12+m =0,可得m =−12. 经验证,m =−12符合题意.∴ m =−12,f (x )=12x +1−12.(2)∵ y =2x 为增函数,∴ y =2x +1为增函数,且2x +1>1, 所以y =12x +1为减函数,可得f (x )=12x +1−12在R 上为减函数.(3)由f(x 2−x)+f(−2)<0,可得f(x 2−x)<−f(−2), 即f(x 2−x)<f(2),由f (x )=12x +1−12在R 上为减函数,所以x 2−x >2,即x 2−x −2>0,所以x <−1或x >2, 故解集为(−∞, −1)∪(2, +∞). 24.【答案】(1)证明:当a >0时,f(x)在R 上单调递减. 任取x 1<x 2,f(x 1)−f(x 2)=a(3x 2−3x 1)(1+a⋅3x 1)(1+a⋅3x 2),由于x 1<x 2,所以3x 2−3x 1>0,所以f(x 1)−f(x 2)>0,故f(x)在R 上单调递减. (2)解:依题意,g(x)=11+a⋅3x ⋅11+a⋅3−x =1a(3x +13x )+a 2+1(x ∈[−1,1]).令t =3x ,t ∈[13,3],所以y =t +1t 在[13,1]上单调递减,在[1,3]上单调递增, 且当t =13和t =3时,y =103,而当t =1时,y =2,所以y =t +1t∈[2,103].因为a >0,所以a(3x +13x )+a 2+1≤103a +a 2+1,故g(x)=1a(3x +13x )+a 2+1≥1103a+a 2+1.因为对任意x ∈[−1,1],g(x)≥f(2)=19a+1恒成立, 所以1103a+a 2+1≥19a+1,即103a +a 2+1≤9a +1, 化简得a 2−173a ≤0,解得0<a ≤173,故a 的取值范围是(0,173].【考点】函数单调性的判断与证明 函数恒成立问题 【解析】【解答】(1)证明:当a >0时,f(x)在R 上单调递减. 任取x 1<x 2,f(x 1)−f(x 2)=a(3x 2−3x 1)(1+a⋅3x 1)(1+a⋅3x 2), 由于x 1<x 2,所以3x 2−3x 1>0,所以f(x 1)−f(x 2)>0,故f(x)在R 上单调递减. (2)解:依题意,g(x)=11+a⋅3x ⋅11+a⋅3−x =1a(3x +13x )+a 2+1(x ∈[−1,1]).令t =3x ,t ∈[13,3],所以y =t +1t 在[13,1]上单调递减,在[1,3]上单调递增, 且当t =13和t =3时,y =103,而当t =1时,y =2,所以y =t +1t ∈[2,103]. 因为a >0, 所以a(3x +13x )+a 2+1≤103a +a 2+1,故g(x)=1a(3x +13x )+a 2+1≥1103a+a 2+1.因为对任意x ∈[−1,1],g(x)≥f(2)=19a+1恒成立, 所以1103a+a 2+1≥19a+1,即103a +a 2+1≤9a +1, 化简得a 2−173a ≤0,解得0<a ≤173,故a 的取值范围是(0,173].。
指数函数习题(经典 含答案 及详细解析)
指数函数习题一、选择题1.定义运算,则函数的图象大致为( )2.函数f(x)=x2-bx+c满足f(1+x)=f(1-x)且f(0)=3,则f(b x)与f(c x)的大小关系是( )A.f(b x)≤f(c x)B.f(b x)≥f(c x)C.f(b x)>f(c x)D.大小关系随x的不同而不同3.函数y=|2x-1|在区间(k-1,k+1)内不单调,则k的取值范围是( )A.(-1,+∞) B.(-∞,1)C.(-1,1) D.(0,2)4.设函数f(x)=ln[(x-1)(2-x)]的定义域是A,函数g(x)=lg(-1)的定义域是B,若A⊆B,则正数a的取值范围( )A.a>3 B.a≥3C.a> D.a≥5.已知函数,若数列{a n}满足a n=f(n)(n∈N*),且{a n}是递增数列,则实数a的取值范围是( )A.[,3) B.(,3)C.(2,3) D.(1,3)6.已知a>0且a≠1,f(x)=x2-a x,当x∈(-1,1)时,均有f(x)<,则实数a 的取值范围是( )A.(0,]∪[2,+∞) B.[,1)∪(1,4]C.[,1)∪(1,2] D.(0,)∪[4,+∞)二、填空题7.函数y=a x(a>0,且a≠1)在[1,2]上的最大值比最小值大,则a的值是________.8.若曲线|y|=2x+1与直线y=b没有公共点,则b的取值范围是________.9.(2011·滨州模拟)定义:区间[x1,x2](x1<x2)的长度为x2-x1.已知函数y =2|x|的定义域为[a,b],值域为[1,2],则区间[a,b]的长度的最大值与最小值的差为________.三、解答题10.求函数y=的定义域、值域和单调区间.11.(2011·银川模拟)若函数y=a2x+2a x-1(a>0且a≠1)在x∈[-1,1]上的最大值为14,求a的值.12.已知函数f(x)=3x,f(a+2)=18,g(x)=λ·3ax-4x的定义域为[0,1].(1)求a的值;(2)若函数g(x)在区间[0,1]上是单调递减函数,求实数λ的取值范围.指数函数答案1.解析:由a⊗b=得f(x)=1⊗2x=答案:A2. 解析:∵f(1+x)=f(1-x),∴f(x)的对称轴为直线x=1,由此得b =2.又f(0)=3,∴c=3.∴f(x)在(-∞,1)上递减,在(1,+∞)上递增.若x≥0,则3x≥2x≥1,∴f(3x)≥f(2x).若x<0,则3x<2x<1,∴f(3x)>f(2x).∴f(3x)≥f(2x).答案:A3.解析:由于函数y=|2x-1|在(-∞,0)内单调递减,在(0,+∞)内单调递增,而函数在区间(k-1,k+1)内不单调,所以有k-1<0<k+1,解得-1<k<1.答案:C4. 解析:由题意得:A=(1,2),a x-2x>1且a>2,由A⊆B知a x-2x>1在(1,2)上恒成立,即a x-2x-1>0在(1,2)上恒成立,令u(x)=a x-2x-1,则u′(x)=a x lna-2x ln2>0,所以函数u(x)在(1,2)上单调递增,则u(x)>u(1)=a-3,即a≥3.答案:B5. 解析:数列{a n}满足a n=f(n)(n∈N*),则函数f(n)为增函数,注意a8-6>(3-a)×7-3,所以,解得2<a<3.答案:C6. 解析:f(x)<⇔x2-a x<⇔x2-<a x,考查函数y=a x与y=x2-的图象,当a>1时,必有a-1≥,即1<a≤2,当0<a<1时,必有a≥,即≤a<1,综上,≤a<1或1<a≤2.答案:C7. 解析:当a>1时,y=a x在[1,2]上单调递增,故a2-a=,得a=.当0<a<1时,y=a x在[1,2]上单调递减,故a-a2=,得a=.故a=或.答案:或8. 解析:分别作出两个函数的图象,通过图象的交点个数来判断参数的取值范围.曲线|y|=2x+1与直线y=b的图象如图所示,由图象可得:如果|y|=2x+1与直线y=b没有公共点,则b应满足的条件是b∈[-1,1].答案:[-1,1]9. 解析:如图满足条件的区间[a,b],当a=-1,b=0或a=0,b=1时区间长度最小,最小值为1,当a=-1,b=1时区间长度最大,最大值为2,故其差为1.答案:110. 解:要使函数有意义,则只需-x2-3x+4≥0,即x2+3x-4≤0,解得-4≤x≤1.∴函数的定义域为{x|-4≤x≤1}.令t=-x2-3x+4,则t=-x2-3x+4=-(x+)2+,∴当-4≤x≤1时,t max=,此时x=-,t min=0,此时x=-4或x=1.∴0≤t≤.∴0≤≤.∴函数y=的值域为[,1].由t=-x2-3x+4=-(x+)2+(-4≤x≤1)可知,当-4≤x≤-时,t是增函数,当-≤x≤1时,t是减函数.根据复合函数的单调性知:y=在[-4,-]上是减函数,在[-,1]上是增函数.∴函数的单调增区间是[-,1],单调减区间是[-4,-].11. 解:令a x=t,∴t>0,则y=t2+2t-1=(t+1)2-2,其对称轴为t =-1.该二次函数在[-1,+∞)上是增函数.①若a>1,∵x∈[-1,1],∴t=a x∈[,a],故当t=a,即x=1时,y max =a2+2a-1=14,解得a=3(a=-5舍去).②若0<a<1,∵x∈[-1,1],∴t=a x∈[a,],故当t=,即x=-1时,y max=(+1)2-2=14.∴a=或-(舍去).综上可得a=3或.12. 解:法一:(1)由已知得3a+2=18⇒3a=2⇒a=log32.(2)此时g(x)=λ·2x-4x,设0≤x1<x2≤1,因为g(x)在区间[0,1]上是单调减函数,所以g(x1)-g(x2)=(2x1-2x2)(λ-2x2-2x1)>0恒成立,即λ<2x2+2x1恒成立.由于2x2+2x1>20+20=2,所以实数λ的取值范围是λ≤2.法二:(1)同法一.(2)此时g(x)=λ·2x-4x,因为g(x)在区间[0,1]上是单调减函数,所以有g′(x)=λln2·2x-ln4·4x=ln2[-2·(2x)2+λ·2x]≤0成立.设2x=u∈[1,2],上式成立等价于-2u2+λu≤0恒成立.因为u∈[1,2],只需λ≤2u恒成立,所以实数λ的取值范围是λ≤2.。
高中数学必修一练习题(4)函数(含详细答案)
• 高中数学必修一复习练习(四)函数班 号 姓名 指数函数及其性质1.下列函数中指数函数的个数为( )①y =(12)x -1; ②y =2·3x ; ③y =a x (a >0且a ≠1,x ≥0); ④y =1x ; ⑤y =(12)2x -1.A .1个B .2个C .4个D .5个2.函数y =3x 与y =3-x 的图象关于下列哪条直线对称( )A .x 轴B .y 轴C .直线y =xD .直线y =-x3.若集合M ={y |y =2x ,x ∈R },N ={y |y =x 2,x ∈R },则集合M ,N 的关系为( ) A .M NB . M ⊆NC .N MD .M =N4.已知1>n >m >0,则指数函数①y =m x ,②y =n x 的图象为( )5.若函数y =(2a -1)x 为指数函数,则实数a 的取值范围是________. 6.函数y =a x +1(a >0且a ≠1)的图象必经过点________(填点的坐标). 7.已知函数f (x )=a x -1(x ≥0)的图象经过点(2,12),其中a >0且a ≠1.(1)求a 的值; (2)求函数y =f (x )(x ≥0)的值域.8.已知指数函数f (x )=a x 在区间[1,2]上的最大值比最小值大a2,求a 的值.1.若2x +1<1,则x 的取值范围是( )A .(-1,1)B .(-1,+∞)C .(0,1)∪(1,+∞)D .(-∞,-1)2.函数y =⎝⎛⎭⎫121-x的单调递增区间为( )A .(-∞,+∞)B .(0,+∞)C .(1,+∞)D .(0,1)3.下列不等关系中,正确的是( ) A .(12)23<1<(12)13B .(12)13<(12)23<1C .1<(12)13<(12)23D .(12)23<(12)13<14.函数f (x )=2|x |,则f (x )( )A .在R 上是减函数B .在(-∞,0]上是减函数C .在[0,+∞)上是减函数D .在(-∞,+∞)上是增函数 5.方程3x -1=19的解是________.6.已知函数y =(13)x 在[-2,-1]上的最小值是m ,最大值是n ,则m +n 的值为________.7.已知2x ≤(14)x -3,求函数y =(12)x 的值域.8.已知函数f (x )=a 2-3x(a >0,且a ≠1).(1)求该函数的图象恒过的定点坐标; (2)指出该函数的单调性.1.使式子log (x -1)(x 2-1)有意义的x 的值是( ) A .x <-1或x >1 B .x >1且x ≠2 C .x >1D .x ≠22.方程2log 3x =14的解是( )A.33B.3C.19D .93.化简:2lg (lg a 100)2+lg (lg a )的结果是( )A.12B .1C .2D .44.已知2x =3,log 483=y ,则x +2y 的值为( )A .3B .8C .4D .log 485.若log a x =2,log b x =3,log c x =6,则log abc x 的值为________.6.已知x ,y ∈(0,1),若lg x +lg y =lg(x +y ),则lg(1-x )+lg(1-y )=________. 7.计算下列各式的值:(1)lg12.5-lg 58+lg 12; (2)12lg25+lg2+lg 10+lg(0.01)-1; (3)log 2(log 264).8.方程lg 2x +(lg2+lg3)lg x +lg2lg3=0的两根之积为x 1x 2,求x 1x 2的值.1.下列函数中,定义域相同的一组是( ) A .y =a x 与y =log a x (a >0,a ≠1) B .y =x 与y =x C .y =lg x 与y =lg xD .y =x 2与y =lg x 22.函数y =2+log 2x (x ≥1)的值域为( )A .(2,+∞)B .(-∞,2)C .[2,+∞)D .[3,+∞) 3.函数y =log 12(3x -2)的定义域是( )A .[1,∞)B .(23,+∞)C .[23,1]D .(23,1]4.函数y =lg(x +1)的图象大致是( )5.函数y =log x (2-x )的定义域是________.6.若a >0且a ≠1,则函数y =log a (x -1)+1的图象恒过定点________. 7.求下列函数的定义域:(1)y =log 2(4x -3); (2)y =log 5-x (2x -2).8.已知f (x )=log 3x .(1)作出这个函数的图象;(2)当0<a <2时,有f (a )>f (2),利用图象求a 的取值范围.参考答案指数函数及其性质1.选A 由指数函数的定义可判定,只有③正确. 2.B3.选A x ∈R ,y =2x >0,y =x 2≥0,即M ={y |y >0},N ={y |y ≥0},所以M N. 4.选C 由0<m <n <1可知①②应为两条递减曲线,故只可能是选项C 或D , 进而再判断①②与n 和m 的对应关系,判断方法很多,不妨选择特殊点,令x =1, 则①②对应的函数值分别为m 和n ,由m <n 知选C.5.解析:函数y =(2a -1)x 为指数函数,则2a -1>0且2a -1≠1,∴a >12且a ≠1. 答案:a >12且a ≠16.∵指数函数y =a x 恒过定点(0,1).∴y =a x +1的图象必过点(0,2).答案:(0,2) 7.解:(1)函数图象过点(2,12),所以a 2-1=12,则a =12.(2)f (x )=(12)x -1(x ≥0),由x ≥0得,x -1≥-1,于是0<(12)x -1≤(12)-1=2.所以函数的值域为(0,2]. 8.解:由指数函数的概念知a >0,a ≠1.当a >1时,函数f (x )=a x 在区间[1,2]上是增函数,所以当x =2时,f (x )取最大值a 2,当x =1时,f (x )取最小值a , 由题意得a 2=a +a 2,即a 2=32a ,因为a >1,所以a =32;当0<a <1时,函数f (x )=a x 在区间[1,2]上是减函数,同理可以求得a =12.综上可知,a 的值为32或12✠✠指数函数及其性质的应用1.选D 不等式2x +1<1=20,∵y =2x 是增函数,∴x +1<0,即x <-1.2.选A 定义域为R.设u =1-x ,y =⎝⎛⎭⎫12u,∵u =1-x 在R 上为减函数,又∵y =⎝⎛⎭⎫12u在(-∞,+∞)上为减函数,∴y =⎝⎛⎭⎫121-x在(-∞,+∞)上是增函数.3.选D ∵函数y =(12)x 在R 上是减函数,而0<13<23,∴(12)23<(12)13<(12)0,即(12)23<(12)13<1.4.选B ∵y =2x 在R 上递增,而|x |在(-∞,0]上递减,在[0,+∞)是递增,∴f (x )=2|x |在(-∞,0]上递减,在[0,+∞)上递增.5.解析:∵3x -1=19,∴3x -1=3-2,∴x -1=-2,∴x =-1. 答案:-16.解析:函数y =(13)x 在定义域内单调递减,∴m =(13)-1=3,n =(13)-2=9, ∴m +n =12. 答案:127.解:∵2x ≤(14)x -3,即2x ≤26-2x ,∴x ≤6-2x ,∴x ≤2,∴y = (12)x ≥ (12)2=14,∴函数值域是[14,+∞).8.解:(1)当2-3x =0,即x =23时,a 2-3x =a 0=1. 所以,该函数的图象恒过定点(23,1)(2)∵u =2-3x 是减函数,∴当0<a <1时,f (x )在R 上是增函数;当a >1时,f (x )在R 上是减函数.❑❑对数与对数运算1.选B 由⎩⎪⎨⎪⎧x -1>0,x 2-1>0,x -1≠1,解得x >1且x ≠2.2.选C 由已知得log 3x =-2 ,∴ x =3-2=19.3.选C 由对数运算可知:lg(lg a 100)=lg(100lg a )=2+lg(lg a ),∴原式=2. 4.选A 由2x =3得:x =log 23.∴x +2y =log 23+2log 483=log 23+2log 283log 24=log 23+(3log 22-log 23)=3.5.解析:log a x =1log x a =2,∴log x a =12. 同理log x b =13,log x c =16.log abc x =1log x abc =1log x a +log x b +log x c =1. 答案:16.解析:lg(x +y )=lg x +lg y =lg(xy )⇒x +y =xy ,lg(1-x )+lg(1-y )=lg[(1-x )(1-y )]=lg(1-x -y +xy )=lg1=0. 答案:0 7.解:(1)原式=lg(252×85×12)=lg10=1.(2)原式=lg[2512×2×1012×(10-2)-1]=lg(5×2×1012×102)=lg1072=72.(3)原式=log 2(log 226)=log 26=1+log 23.8.解:因为lg2x +(lg2+lg3)lg x +lg2lg3=(lg x +lg2)(lg x +lg3),所以lg x =-lg2=lg2-1或lg x =-lg3=lg3-1,即x 1=12,x 2=13,所以x 1x 2=16.对数函数及其性质1.C2.选C 当x ≥1时,log 2x ≥0,所以y =2+log 2x ≥2.3.选D 由函数的解析式得log 12(3x -2)≥0=log 121.∴0<3x -2≤1,解得:23<x ≤1.4.选C 当x =0时y =0,而且函数为增函数,可见只有C 符合.5.解析:由对数函数的意义可得⎩⎪⎨⎪⎧2-x >0x >0x ≠1⇒⎩⎪⎨⎪⎧x <2x >0且x ≠1⇒0<x <2且x≠1. 答案:(0,1)∪(1,2)6.解析:当x =2时y =1. 答案:(2,1)7.解:(1)要使函数有意义,须满足:log 2(4x -3)≥0=log 21,⇒1≤ 4x -3⇒x ≥1,∴函数的定义域为[1,+∞).(2)要使函数有意义,须满足⎩⎪⎨⎪⎧2x -2>05-x >05-x ≠1⇒1<x <5且x ≠4. ∴函数的定义域为(1,4)∪(4,5).8.解:(1)作出函数y =log 3x 的图象如图所示.(2)令f (x )=f (2),即log 3x =log 32,解得x =2. 由如图所示的图象知:当0<a <2时,恒有f (a )<f (2). 故当0<a <2时,不存在满足f (a )>f (2)的a 的值.。
高一数学指数函数练习题
高一数学 指数函数练习题考点1:指数函数的图象1. 已知f (x )=2x ,利用图象变换作出下列函数的图象:① f (x −1); ②f (x +1)+1; ③−f (|x |); ④f (−x ); ⑤−f (x ).【练习1】(2013北京理5)函数f (x )的图象向右平移1个单位长度,所得图象与曲线y =e x 关于y 轴对称,则f (x )=( )A .e x+1B .e x−1C .e −x+1D .e −x−1【练习2】要得到函数y =21−2x 的图象,只要将函数y =(14)x的图象( )A .向左平移1个单位B .向右平移1个单位C .向左平移12个单位D .向右平移12个单位2.在下图中,二次函数y =ax 2+bx 与指数函数y =(b a )x的图象只能是( )【练习3】函数f(x)=a x −1a(a >0,a ≠1)的图象可能是( )3. ((2019·金版创新)已知实数a ,b 满足等式2018a =2019b ,下列五个关系式:①0<b <a ;②a <b <0;③0<a <b ;④b <a <0;⑤a =b .其中不可能成立的关系式有( )A .1个B .2个C .3个D .4个4. 若曲线|y|=2x +1与直线y =b 没有公共点,则b 的取值范围是________【练习4】若直线y =2a 与函数y =|a x -1|(a >0且a ≠1)的图象有两个公共点,则a 的取值范围是________.5. (2019·广东佛山模拟)已知函数f(x)=|2x -1|,a <b <c ,且f(a)>f(c)>f(b),则下列结论中,一定成立的是( )A . a <0,b <0,c <0B .a <0,b ≥0,c >0C .2−a <2cD .2a +2c <2考点2:指数函数的单调性 ⚫ 比大小1.试比较下列各数的大小:(23)−13,(35)12,323,(25)12,(32)23,(56)0,(53)−25.【练习1】设 1.8112y −⎛⎫= ⎪⎝⎭,0.62y =,332y −⎛⎫= ⎪ ⎪⎝⎭,则( )A .y 3>y 1>y 2B .y 2>y 1>y 3C .y 1>y 2>y 3D .y 1>y 3>y 2【练习2】比较下列各组数的大小.① a 1.2,a 1.1(a >0且a ≠1);② 4222,3333; ③ 0.8−2,(43)−13.④(12)13,(13)12⚫ 单调区间2.函数f (x )={(13)x ,x ≤0(2a −1)x +1−a,x >0在(−∞,+∞)上是减函数,则a 的取值范围是( )A .(0,12)B .[0,12)C .(−∞ ,12]D .(12,+∞)【练习】(2019·西安)若函数f(x)=a |2x−4|(a >0,且a ≠1),满足f(1)=19,则f(x)的单调递减区间是( )A .(−∞,−2)B .[2,+∞)C .[−2,+∞)D .(−∞,−2]3. 已知函数y =9x +m ·3x −3在区间[-2,2]上单调递减,则m 的取值范围为________.⚫ 解函数不等式4. 设函数f(x)是偶函数,当x ≥0时,f(x)=3x -9,则f(x -3)>0的解集是( )A .{x|x <−2或x >2}B .{x|x <-2或x >4}C .{x|x <0或x >6}D .{x|x <1或x >5} 【练习3】(a 2-a +2018)−x−1<(a 2-a +2018)2x+5的解集为( )A .(−∞,−4)B .(−4,+∞)C .(−∞,−2)D .(−2,+∞)【练习4】(2019·宜昌调研)设函数f (x )={(12)x −7,x <0√x,x ≥0,若f(a)<1,则实数a 的取值范围是( )A .(−∞,−3)B .(1,+∞)C .(−3,1)D .(−∞,−3)∪(1,+∞)5. ((2018·湖北咸宁11月联考)设函数f (x )=(2k −1)a x −a −x (a >0且a ≠1)是定义域为R 的奇函数 (1)求k 的值;(2)若f(1)=-56,不等式f(3x -t)+f(-2x +1)≥0对x ∈[-1,1]恒成立,求实数t 的最小值.考点3:与指数函数相关的基本性质1.求下列函数的定义域和值域:①y=31x−2;②y=5−√x−1; ③y=2 2x−12.已知函数f(x)={−(12)x,a≤x<0−x2+2x,0≤x≤4的值域是[−8,1],则实数a的取值范围是( )A.(−∞,−3]B.[−3,0)C.[−3,−1]D.{−3}3.函数y=a2x−4+3(0a 且a≠1)必过定点___________.4.(目标班专用)已知函数f(x)=(12)x−1(12)x+2.⑴ 求f(x)的定义域,值域;⑵ 讨论f(x)的奇偶性;⑶ 讨论f(x)的单调性.5.设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),则f(−1)=()A.3 B.1 C.−1D.−36.已知函数f(x)=9x9x+3,则f(0)+f(1)=,若g(k)=f(1k)+f(2k)+f(3k)+⋯+f(k−1k)(k≥2 , k∈Z),则g(k)=(用含有k的代数式表示).【练习】(2018·湖南益阳4月调研)已知函数f(x)=2x1+a·2x 的图象关于点(0,12)对称,则a=________.7.已知函数f(x)满足对一切x∈R,f(x+2)=-1f(x)都成立,且当x∈(1,3]时,f(x)=2−x,则f(7)=( )A.14B. 18C.116D132考点4:指数函数与二次函数的复合1.已知函数f(x)=(13)ax2−4x+3.(1)若a=−1,求f(x)的单调区间;(2)若f(x)有最大值3,求a的值;(3)若f(x)的值域是(0,+∞),求a的值.【练习1】(2018·桂林模拟)已知函数y=2−x2+ax+1在区间(-∞,3)内单调递增,则a的取值范围为________.2.(目标班专用)求函数f(x)=(14)x−(12)x+1(x∈[−3,2])的单调区间及其值域.【练习2】如果函数y=a2x+2a x−1(a>0,a≠1)在区间[−1,1]上的最大值是14,求a的值.3.定义:若对定义域内任意x,都有f(x+a)>f(x)(a为正常数),则称函数f(x)为“a距”增函数.(1)若f(x)=2x−x,x∈(0,+∞),试判断f(x)是否为“1距”增函数,并说明理由;(2)若f(x)=x3−14x+4,x∈R是“a距”增函数,求a的取值范围;(3)若f(x)=2x2+k|x|,x∈(−1,+∞),其中k∈R,且为“2距”增函数,求f(x)的最小值.。
(完整版)指数和指数函数练习题及答案(可编辑修改word版)
2 62 指数和指数函数一、选择题 1.(3 6 a 9)4( 6 3 a 9)4 等于( )(A )a 16(B )a 8(C )a 4(D )a 22. 若 a>1,b<0,且 a b+a -b=2,则 a b -a -b 的值等于( )(A ) (B ) ± 2(C )-2(D )23. 函数 f (x )=(a 2-1)x在 R 上是减函数,则 a 的取值范围是()(A ) a > 1 (B ) a < 2 (C )a< (D )1< a < 14. 下列函数式中,满足 f(x+1)= f(x)的是() 21 1 (A)(x+1)(B)x+(C)2x(D)2-x245.下列 f(x)=(1+a x )2⋅ a-x 是( )(A )奇函数 (B )偶函数(C )非奇非偶函数(D )既奇且偶函数1 1 11 1 16.已知 a>b,ab ≠ 0 下列不等式(1)a 2>b 2,(2)2a>2b,(3) < ,(4)a 3 >b 3 ,(5)( )a <( )ba b 3 3中恒成立的有( ) (A )1 个(B )2 个 (C )3 个 (D )4 个2 x - 17. 函数 y=是( )2 x+ 1 (A )奇函数(B )偶函数(C )既奇又偶函数(D )非奇非偶函数18. 函数 y=的值域是( )2 x- 1(A )(- ∞,1)(B )(- ∞, 0) ⋃ (0,+ ∞ )(C )(-1,+ ∞ ) (D )(- ∞ ,-1) ⋃ (0,+ ∞ )9. 下列函数中,值域为 R +的是( )1(A )y=5 2-xe x - e - x1(B )y=( )1-x(C )y= 3(D )y= 10. 函数 y= 的反函数是()2(A )奇函数且在 R +上是减函数(B )偶函数且在 R +上是减函数(C )奇函数且在 R +上是增函数 (D )偶函数且在 R +上是增函数11.下列关系中正确的是( )1 2 1 2 1 11 1 12 1 2(A )( ) 3 <( ) 3 <( ) 3(B )( ) 3 <( ) 3 <( ) 32 5 21 2 1 1 1 22 2 51 2 1 2 1 1(C )( ) 3 <( ) 3 <( )3 (D )( ) 3 <( ) 3 <( ) 3 5 2 25 2 22 ( 1 ) x - 1 21 -2 xx 12. 若函数 y=3+2x-1的反函数的图像经过 P 点,则 P 点坐标是()(A )(2,5) (B )(1,3) (C )(5,2) (D )(3,1)13. 函数 f(x)=3x +5,则 f -1(x)的定义域是( ) (A )(0,+ ∞ ) (B )(5,+ ∞ ) (C )(6,+ ∞ ) (D )(- ∞ ,+ ∞ )14. 若方程 a x-x-a=0 有两个根,则 a 的取值范围是( ) (A )(1,+ ∞ ) (B )(0,1) (C )(0,+ ∞ ) (D )15. 已知函数 f(x)=a x+k,它的图像经过点(1,7),又知其反函数的图像经过点(4,0),则函数 f(x)的表达式是( )(A)f(x)=2x +5 (B)f(x)=5x +3 (C)f(x)=3x+4(D)f(x)=4x+316. 已知三个实数 a,b=a a,c=a aa,其中 0.9<a<1,则这三个数之间的大小关系是()(A )a<c<b (B )a<b<c (C )b<a<c (D )c<a<b17.已知 0<a<1,b<-1,则函数 y=a x+b 的图像必定不经过( ) (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限 二、填空题31.若 a2 <a 2 ,则 a 的取值范围是 。
(完整版)指数函数及其性质习题(含答案)
指数函数及其性质习题(含答案)一、单选题的图象可能是( ) 1.在同一坐标系内,函数y=x a(a≠0)和y=ax+1aA.B.C.D.−1,若f(a)=1,则f(−a)=()2.已知函数f(x)=(e x+e−x)ln1−x1+xA.1B.−1C.3D.−33.已知函数f(x)=(x−a)(x−b)(其中a>b)的图象如图所示,则函数g(x)=a x +b的图象大致是( )A.B..C.D.4.已知a=log40.7,b=log23,c=0.20.6,则a,b,c的大小关系是( )A.c<b<a B.a<c<b C.b<a<c D.a<b<c5.函数y=a x+1−3(a>0,且a≠1)的图象一定经过的点是( )A.(0,−2)B.(−1,−3)C.(0,−3)D.(−1,−2)6.在同一坐标系中,函数y=2−x与y=−log2x的图象都正确的是()A.B.C.D .7.设a =20.5,b =0.52,c =log 20.5,则a,b,c 的大小关系为A . c >a >bB . c >b >aC . a >b >cD . b >a >c8.若01a b <<<,则b a , a b , log b a ,)A .B .C .D .9.若a ,b ,c 满足2a =3,b =log 25,3c =2,则( )A . c <a <bB . b <c <aC . a <b <cD . c <b <a二、填空题10.已知: 12a a -+=,则22a a -+=__________.11.函数()2x f x =在[]1,3-上的最小值是__________. 12.函数y=a x+2-1(a>0且a≠1)的图象恒过定点________.13.求值:2log 323−log 3427−31+log 32=__________.14.函数f(x)=(12)−x2+2x+1的单调减区间为________. 15,.16.计算:. 17.若函数()()23x f x a =-在R 上是减函数,则实数a 的取值范围是________18.已知函数()x f x a b =+ ()0,1a a >≠的定义域和值域都是[]1,0-,则b a =__________.三、解答题19.(1)计算:(−3)−(1−0.5−2)÷(338)13;(2)已知a =log 32,3b =5用a,b 表示log 3√30.20.(1)(2)已知15a a-+=,求22a a -+和.21.计算: (1))213013210.027163217---⎛⎫--+-+⋅ ⎪⎝⎭. (222.化简求值 (1) (827)23+(0.008)−23×225(2) 12523+(12)−2−(127)−13+10012+lg3+14lg9−lg √3lg81−lg2723.已知定义在R 上的函数f(x)=b−2x2x +a 是奇函数.⑴求a , b 的值,并判断函数f(x)在定义域中的单调性(不用证明);⑵若对任意的t ∈R ,不等式f(t 2−2t)+f(2t 2−k)<0恒成立,求实数k 的取值范围.24.若函数f(x)=a x −1(a >0,且a ≠1)的定义域和值域都是[0,2],求实数a 的值.25.(本小题满分10分)已知函数f(x)=log 4(4x +1)+kx(k ∈R)是偶函数.(1)求实数k 的值;(2)设g(x)=log 4(a ⋅2x +a),若f(x)= g(x)有且只有一个实数解,求实数a 的取值范围.26.计算:(1) (−338)−23+0.002−12−10(√5−2)−1+(√2−√3)0; (2)lg 5(lg 8+lg 1 000)+3lg 22+lg 16+lg 0.06. 27.已知f(x)=4x−1−2x +5,x ∈[−2,2].(1)求f(x)的值域.(2)若f(x)>3m 2+am +2对任意a ∈[−1,1]和x ∈[−2,2]都成立,求m 的取值范围.28.计算下列各式的值;(1)(2)参考答案1.B【解析】【分析】分两种情况讨论,利用函数的单调性,筛选排除即可得结果【详解】若a>0,y=x a在(0,+∞)递增,排除A,B选项,y=ax+1a递增,排除D;纵轴上截距为正数,排除C,即a>0时,不合题意;若a<0,y=x a在(0,+∞)递减,可排除C,D选项,由y=ax+1a递减可排除A,故选B.【点睛】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及x→0+,x→0−,x→+∞,x→−∞时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.2.D【解析】分析:先化简f(a)=1得到(e a+e−a)ln1+a1−a=−2,再求f(−a)的值.详解:由题得(e a+e−a)ln1−a1+a −1=1,∴(e a+e−a)ln1−a1+a=2,∴−(e a+e−a)ln1+a1−a=2,∴(e a+e−a)ln1+a1−a=−2.所以f(−a)=(e−a+e a)ln1+a1−a−1=−2−1=−3.故答案为:D点睛:(1)本题主要考查函数求值和指数对数运算,意在考查学生对这些基础知识的掌握能力和运算能力.(2)解答本题的关键是整体代入求值.3.D【解析】【分析】根据二次函数的图象得到−1<b<0,a>1,继而得到g(x)=a x+b的图象经过一二三象限,问题得以解决.【详解】因为a,b 是二次函数的零点,由二次函数f (x )=(x −a )(x −b )(其中a >b )的图象可知−1<b <0,a >1, 所以g (x )=a x +b 的图象经过一二三象限,只有选项D 符合题意,故选D.【点睛】函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象4.B【解析】【分析】利用指数与对数的单调性与中间量0,1可求得三个数大小。
高一数学指数与指数函数试题答案及解析
高一数学指数与指数函数试题答案及解析1.设,则的大小关系是().A.B.C.D.【解析】,,,因此.【考点】指数函数和对数函数的性质.2.若点在函数的图象上,则的值为.【答案】【解析】由点在函数的图象上得,所以,故应填入.【考点】指数函数及特殊角的三角函数.3.设,则下列不等式成立的是()A.若,则B.若,则C.若,则D.若,则【答案】A【解析】对于A,B考查函数f(x)=2x+2x,g(x)=2x+3x的单调性与图象:可知函数f(x)、g(x)在R上都单调递增,若2a+2a=2b+3b,则a>b,因此A正确;对于C,D分别考查函数u(x)=2x-2x,v(x)=2x-3x单调性与图象:当时,u′(x)<0,函数u(x)单调递减;当时,u′(x)>0,函数u(x)单调递增.故在x=取得最小值.当0<x<时,v′(x)<0,函数v(x)单调递减;当x>时,v′(x)>0,函数v (x)单调递增.故在x=取得最小值,据以上可画出图象.据图象可知:当2a-2a=2b-3b,a>0,b>0时,可能a>b或a<b.因此C,D不正确.综上可知:只有A正确.故答案为A.【考点】用导数研究函数的单调性和图象;命题的真假判断与应用.4.若,则()A.B.C.D.【答案】D【解析】由得,所以.【考点】指对数式的互化,指数运算法则.5.若函数的图像与轴有公共点,则的取值范围是()A.B.C.D.【答案】B【解析】函数与轴有公共点,即设函数,,有交点,函数如图: ,即,故选B.【考点】函数图像6.三个数的大小关系为()A.B.C.D.【答案】D【解析】;;。
所以,故D正确。
【考点】指数对数函数的单调性。
7.已知幂函数的图象过点,则.【答案】4【解析】因为为幂函数,所以设因为过点,所以本题易错点在将幂函数的定义写成指数函数的形式,即【考点】幂函数定义,指数的运算8.如图,在平面直角坐标系中,过原点O的直线与函数的图象交于A,B两点,过B作y轴的垂线交函数的图象于点C,若AC平行于y轴,则点A的坐标是.【答案】【解析】设,则,因为AC平行于y轴,所以,因此.又三点三点共线,所以由得,因此.【考点】指数函数运算,向量共线.9.已知指数函数(且)的图像过点,则实数___________.【答案】【解析】因为指数函数(且)的图像过点,则,得.【考点】指数函数的定义.10.我国大西北某地区荒漠化土地面积每年平均比上一年增长,专家预测经过年可能增长到原来的倍,则函数的图像大致为()【答案】D【解析】设初始年份的荒漠化土地面积为,则1年后荒漠化土地面积为,2年后荒漠化土地面积为,3年后荒漠化土地面积为,所以年后荒漠化土地面积为,依题意有即,,由指数函数的图像可知,选D.【考点】1.指数函数的图像与性质;2.函数模型及其应用.11.若,则下列结论正确的是()A.B.C.D.【答案】C【解析】指数函数、对数函数的底数大于1 时,函数为增函数,反之,为减函数,对于幂函数而言,当时,在上递增,当时,在上递减,而,所以,故选C.【考点】1.指数函数;2.对数函数;3.幂函数的性质.12.设函数,如果,求的取值范围.【答案】【解析】对分段函数需分情况讨论,再解指数及对数不等式时,需将实数转化为同底的指数或对数,然后根据指数、对数的单调性解不等式。
指数函数基础训练题(含详解)
因为 ,所以 ,所以函数 是奇函数,
因为 ,且 与 均为增函数,
所以 在 上是增函数,
故选:A.
【点睛】
本题考查函数的奇偶性的判断,指数函数的单调性的应用,属于基础题.
4.A
【解析】
【分析】
找中间量0或1进行比较大小,可得结果
【详解】
,所以 ,
故选:A.
【点睛】
此题考查利用对数函数、指数函数的单调性比较大小,属于基础题
故答案为 .
【点睛】
对于形如 , 且 的指数型函数,其恒过的定点的求解方法:
先令 ,计算出 的值即为定点的横坐标,再根据 的值计算出 的值即为纵坐标,所以恒过的定点为 .
12.
【解析】
【分析】
利用指数函数 的单调性可得出 与 的大小关系.
【详解】
,所以,函数 为 上的增函数,
, .
故答案为: .
【点睛】
本题考查指数函数单调性的应用,属于基础题.
13.
【解析】
【分析】
由指数函数的单调性,将不等式化为 ,求解即可.
【详解】
,化为 ,
解得 ,
所以不等式的解集是 .
故答案为: .
【点睛】
本题考查指数不等式的解法,指数函数的单调性应用是解题的关键,属于基础题.
14.(1) (2) (3)
【解析】
【分析】
(1)化为同底数的幂的形式后,根据指数函数的单调性可得结果;
10.
【解析】
【分析】
令指数为0时,可得定点.
【详解】
当 时, ,
函数 的图象必经过 .
故答案为: .
【点睛】
本题考查指数型函数的定点问题,属于基础题.
高中 指数与指数函数知识点+例题+练习 含答案
教学过程④负分数指数幂:a n m-=a n m1=1na m(a>0,m,n∈N,且n>1);⑤0的正分数指数幂等于0,0的负分数指数幂无意义.(2)有理数指数幂的性质①a r a s=a r+s(a>0,r,s∈Q);②(a r)s=a rs(a>0,r,s∈Q);③(ab)r=a r b r(a>0,b>0,r∈Q).3.指数函数的图象与性质y=a x a>10<a<1图象定义域R值域(0,+∞)性质过定点(0,1)当x>0时,y>1;x<0时,0<y<1当x>0时,0<y<1;x<0时,y>1在(-∞,+∞)上是增函数在(-∞,+∞)上是减函数辨析感悟1.指数幂的应用辨析(1)(4-2)4=-2.( )(2)(教材探究改编)(na n)=a.( )2.对指数函数的理解(3)函数y=3·2x是指数函数.( )(4)y=⎝⎛⎭⎪⎫1ax是R上的减函数.( )教学效果分析教学过程(5)指数函数在同一直角坐标系中的图象的相对位置与底数的大小关系如图,无论在y轴的左侧还是右侧图象从上到下相应的底数由大变小.( )(6)(2013·金华调研)已知函数f(x)=4+a x-1(a>0且a≠1)的图象恒过定点P,则点P的坐标是(1,5).( )[感悟·提升]1.“na n”与“⎝⎛⎭⎫na n”的区别当n为奇数时,或当n为偶数且a≥0时,na n=a,当n为偶数,且a<0时,na n=-a,而(na)n=a恒成立.如(1)中4-2不成立,(2)中6-22=32≠3-2. 2.两点注意一是指数函数的单调性是底数a的大小决定的,因此解题时通常对底数a按0<a<1和a>1进行分类讨论,如(4);二是指数函数在同一直角坐标系中的图象与底数的大小关系,在y轴右侧,图象从上到下相应的底数由大变小,在y轴左侧,图象从上到下相应的底数由小变大.如(5).考点一指数幂的运算【例1】(1)计算:+(-2)2;(2)若=3,求的值.规律方法进行指数幂运算时,一般化负指数为正指数,化根式为分数指数幂,化小数为分数,同时兼顾运算的顺序.需注意下列问题:(1)对于含有字母的化简求值的结果,一般用分数指数幂的形式表示;(2)应用平方差、完全平方公式及a p a-p=1(a≠0)简化运算.(2)教学效果分析教学过程考点二指数函数的图象及其应用【例2】(1)(2014·泰安一模)函数f(x)=a x-b的图象如图,其中a,b为常数,则下列结论正确的是________.①a>1,b<0;②a>1,b>0;③0<a<1,b>0;④0<a<1,b<0.(2)比较下列各式大小.①1.72.5______1.73;②0.6-1______0.62;③0.8-0.1______1.250.2;④1.70.3______0.93.1.规律方法(1)对指数型函数的图象与性质(单调性、最值、大小比较、零点等)的求解往往利用相应指数函数的图象,通过平移、对称变换得到其图象,然后数形结合使问题得解.(2)一些指数方程、不等式问题的求解,往往利用相应指数型函数图象数形结合求解.【训练2】已知实数a,b满足等式2 011a=2 012b,下列五个关系式:①0<b<a;②a<b<0;③0<a<b;④b<a<0;⑤a=b.其中不可能成立的关系式有________.教学效果分析教学过程1.判断指数函数图象的底数大小的问题,可以先通过令x=1得到底数的值再进行比较.2.对和复合函数有关的问题,要弄清复合函数由哪些基本初等函数复合而成.3.画指数函数y=a x(a>0,且a≠1)的图象,应抓住三个关键点:(1,a),(0,1),⎝⎛⎭⎪⎫-1,1a.4.熟记指数函数y=10x,y=2x,y=⎝⎛⎭⎪⎫110x,y=⎝⎛⎭⎪⎫12x在同一坐标系中图象的相对位置,由此掌握指数函数图象的位置与底数大小的关系.易错辨析2——忽略讨论及验证致误【典例】(2012·山东卷)若函数f(x)=a x(a>0,a≠1)在[-1,2]上的最大值为4,最小值为m,且函数g(x)=(1-4m)x在[0,+∞)上是增函数,则a=________.[防范错施] (1)指数函数的底数不确定时,单调性不明确,从而无法确定其最值,故应分a>1和0<a<1两种情况讨论.(2)根据函数的单调性求最值是求函数最值的常用方法之一,熟练掌握基本初等函数的单调性及复合函数的单调性是求解的基础.【自主体验】当x∈[-2,2]时,a x<2(a>0,且a≠1),则实数a的范围是________.教学效果分析课堂巩固一、填空题1.(2014·郑州模拟)在函数①f (x )=1x ;②f (x )=x 2-4x +4;③f (x )=2x ;④f (x )=中,满足“对任意的x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)<f (x 2)”的是________.2.函数y =a x -1a (a >0,a ≠1)的图象可能是________.3.a 3a ·5a 4(a >0)的值是________.4.设2a =5b =m ,且1a +1b =2,则m 等于________.5.函数y =a x -b (a >0且a ≠1)的图象经过第二、三、四象限,则a b 的取值范围为________.6.(2014·济南一模)若a =30.6,b =log 30.2,c =0.63,则a 、b 、c 的大小关系为________.7.(2014·盐城模拟)已知函数f (x )=a -x (a >0,且a ≠1),且f (-2)>f (-3),则a 的取值范围是________.8.函数f (x )=a x (a >0,a ≠1)在[1,2]中的最大值比最小值大a2,则a 的值为________.9.函数f (x )=a x -3+m (a >1)恒过点(3,10),则m =________. 10.(2014·杭州质检)已知函数f (x )=⎩⎨⎧(1-3a )x +10a ,x ≤7,a x -7,x >7是定义域上的递减函数,则实数a 的取值范围是________. 11.(2014·惠州质检)设f (x )=|3x -1|,c <b <a 且f (c )>f (a )>f (b ),则关系式3c +3a ________2(比较大小).二、解答题12.设a >0且a ≠1,函数y =a 2x +2a x -1在[-1,1]上的最大值是14,求a 的值.。
高中试卷-专题4.2 指数函数(含答案)
专题4.2 指数函数1、指数函数的概念:一般地,函数x y a = 叫做指数函数,其中x 是自变量,函数的定义域为R .注意:指数函数的底数的取值范围,底数不能是负数、零和1.即 a>0且a ≠12、指数函数的图象和性质0<a<1a>1图像定义域R , 值域(0,+∞)(1)过定点(0,1),即x=0时,y=1(2)在R 上是减函数(2)在R 上是增函数性质(3)当x>0时,0<y<1;当x<0时,y>1(3)当x>0时,y>1;当x<0时,0<y<1图象特征函数性质向x 轴正负方向无限延伸函数的定义域为R 函数图象都在x 轴上方函数的值域为R +图象关于原点和y 轴不对称非奇非偶函数共性函数图象都过定点(0,1)过定点(0,1)自左向右看,图象逐渐下降减函数在第一象限内的图象纵坐标都小于1当x>0时,0<y<1;在第二象限内的图象纵坐标都大于1当x<0时,y>10<a<1图象上升趋势是越来越缓函数值开始减小极快,到了某一值后减小速度较慢;自左向右看,图象逐渐上升增函数在第一象限内的图象纵坐标都大于1当x>0时,y>1;在第二象限内的图象纵坐标都小于1当x<0时,0<y<1a>1图象上升趋势是越来越陡函数值开始增长较慢,到了某一值后增长速度极快;注意: 指数增长模型:y=N(1+p)x 指数型函数: y=ka x 3 考点:(1)a b =N, 当b>0时,a,N 在1的同侧;当b<0时,a,N 在1的 异侧。
(2)指数函数的单调性由底数决定的,底数不明确的时候要进行讨论。
掌握利用单调性比较幂的大小,同底找对应的指数函数,底数不同指数也不同插进1(=a 0)进行传递或者利用(1)的知识。
(3)求指数型函数的定义域可将底数去掉只看指数的式子,值域求法用单调性。
高中数学必修一第四章指数函数与对数函数典型例题(带答案)
高中数学必修一第四章指数函数与对数函数典型例题单选题1、如图所示,函数y =|2x −2|的图像是( )A .B .C .D .答案:B分析:将原函数变形为分段函数,根据x =1及x ≠1时的函数值即可得解. ∵y =|2x −2|={2x −2,x ≥12−2x ,x <1,∴x =1时,y =0,x ≠1时,y >0. 故选:B.2、函数f(x)=2x −1x 的零点所在的区间可能是( ) A .(1,+∞)B .(12,1)C .(13,12)D .(14,13)答案:B分析:结合函数的单调性,利用零点存在定理求解.因为f(1)=2−11=1>0,f(12)=√2−2<0,f(13)=√23−3<0f(14)=√24−4<0, 所以f(12)⋅f(1)<0,又函数f(x)图象连续且在(0,+∞)单调递增, 所以函数f(x)的零点所在的区间是(12,1), 故选:B .小提示:本题主要考查函数的零点即零点存在定理的应用,属于基础题.3、已知函数f (x )={−2x,x <0−x 2+2x,x ≥0 若关于x 的方程f (x )=12x +m 恰有三个不相等的实数解,则m 的取值范围是( ) A .[0,34]B .(0,34) C .[0,916]D .(0,916) 答案:D分析:根据题意,作出函数f (x )={−2x, x <0,−x 2+2x,x ≥0 与y =12x +m 的图像,然后通过数形结合求出答案.函数f (x )={−2x, x <0,−x 2+2x,x ≥0的图像如下图所示:若关于x 的方程f (x )=12x +m 恰有三个不相等的实数解, 则函数f (x )的图像与直线y =12x +m 有三个交点,若直线y =12x +m 经过原点时,m =0,若直线y =12x +m 与函数f (x )=12x +m 的图像相切,令−x 2+2x =12x +m ⇒x 2−32x +m =0,令Δ=94−4m =0⇒m =916. 故m ∈(0,916). 故选:D .4、函数y =2x −2−x ( )A .是R 上的减函数B .是R 上的增函数C .在(−∞,0)上是减函数,在(0,+∞)上是增函数D .无法判断其单调性 答案:B分析:利用指数函数的单调性结合单调性的性质可得出结论.因为指数函数f (x )=2x 为R 上的增函数,指数函数g (x )=2−x =(12)x为R 上的减函数, 故函数y =2x −2−x 是R 上的增函数. 故选:B.5、若y =log 3a 2−1x 在(0,+∞)内为增函数,且y =a −x 也为增函数,则a 的取值范围是( ) A .(√33,1)B .(0,12)C .(√33,√63)D .(√63,1) 答案:D分析:根据函数单调性,列出不等式组{3a 2−1>10<a <1求解,即可得出结果. 若y =log 3a 2−1x 在(0,+∞)内为增函数,则3a 2−1>1,由y =a −x 为增函数得0<a <1.解不等式组{3a 2−1>10<a <1,得a 的取值范围是(√63,1).故选:D.小提示:本题主要考查由对数函数与指数函数的单调性求参数,涉及不等式的解法,属于基础题型. 6、将进货价为每个80元的商品按90元一个出售时,能卖出400个,每涨价1元,销售量就减少20个,为了使商家利润有所增加,则售价a (元/个)的取值范围应是( ) A .90<a <100B .90<a <110C .100<a <110D .80<a <100 答案:A分析:首先设每个涨价x 元,涨价后的利润与原利润之差为y 元,结合条件列式,根据y >0,求x 的取值范围,即可得到a 的取值范围.设每个涨价x 元,涨价后的利润与原利润之差为y 元,则a =x +90,y =(10+x)⋅(400−20x)−10×400=−20x 2+200x .要使商家利润有所增加,则必须使y >0,即x 2−10x <0,得0<x <10,∴90<x +90<100,所以a 的取值为90<a <100. 故选:A7、已知a =lg2,10b =3,则log 56=( ) A .a+b 1+aB .a+b 1−aC .a−b 1+aD .a−b 1−a答案:B分析:指数式化为对数式求b ,再利用换底公式及对数运算性质变形. ∵a =lg2, 10b =3, ∴b =lg3, ∴log 56=lg6lg5=lg2×3lg 102=lg2+lg31−lg2=a+b 1−a.故选:B .8、已知2a =5,log 83=b ,则4a−3b =( ) A .25B .5C .259D .53 答案:C分析:根据指数式与对数式的互化,幂的运算性质以及对数的运算性质即可解出. 因为2a =5,b =log 83=13log 23,即23b =3,所以4a−3b =4a 43b=(2a )2(23b )2=5232=259.故选:C. 多选题9、已知函数f (x )={e x −1,x ≥a,−(x +1)2,x <a (a ∈R ) ,则( ) A .任意a ∈R ,函数f (x )的值域为R B .任意a ∈R ,函数f (x )都有零点C .任意a ∈R ,存在函数g (x )满足g (−|x |)=f (x )D .当a ∈(−∞,−4]时,任意x 1≠x 2,(x 1−x 2)(f (x 1)−f (x 2))>0答案:BD分析:画出分段函数图像,根据图像逐项分析即可得到结果设函数y=e x−1和y=−(x+1)2的左右两交点坐标为(x1,y1),(x2,y2)对于选项A,由图像可知,当a<x1时,f(x)的值域不为R,故A错误对于选项B,由图像可知,无论a取何值,函数f(x)都有零点,故B正确对于选项C,当x>0时g(−|x|)=g(−x),g(−|−x|)=g(−x)由图像可知f(−x)≠f(x)所以不存在函数g(x)满足g(−|x|)=f(x)对于选项D,若x1<a,x2<a,因为y=−(x+1)2为增函数,所以对于任意x1≠x2,(x1−x2)(f(x1)−f(x2))>0成立若x1>a,x2>a因为y=e x−1为增函数,所以对于任意x1≠x2,(x1−x2)(f(x1)−f(x2))>0成立当x1,x2不在同一区间时,因为a∈(−∞,−4],所以y=e x−1(x>a)的图像在y=−(x+1)2(x<a)的图像的上方,所以也满足对于任意x1≠x2,(x1−x2)(f(x1)−f(x2))>0成立故D正确故选:BD10、已知实数a,b满足等式2a=3b,下列五个关系式:①0<b<a;②a<b<0;③0<a<b;④b<a<0;⑤a=b=0其中有可能成立的关系式有()A.①B.②⑤C.②③D.④答案:AB分析:画出指数函数y=2x,y=3x的图象,利用单调生即可得出答案.如图所示,数y=2x,y=3x的图象,由图象可知:( 1 ) 当时x>0,若2a=3b,则a>b;( 2 ) 当x=0时,若2a=3b,则a=b=0;( 3 ) 当x<0时,若2a=3b,则a<b.综上可知,有可能成立的关系式是①②⑤ .故选:AB11、某杂志以每册2元的价格发行时,发行量为10万册.经过调查,若单册价格每提高0.2元,则发行量就减少5000册.要该杂志销售收入不少于22.4万元,每册杂志可以定价为()A.2.5元B.3元C.3.2元D.3.5元答案:BC分析:设每册杂志定价为x(x>2)元,根据题意由(10−x−2×0.5)x≥22.4,解得x的范围,可得答案.0.2依题意可知,要使该杂志销售收入不少于22.4万元,只能提高销售价,×0.5万册,设每册杂志定价为x(x>2)元,则发行量为10−x−20.2则该杂志销售收入为(10−x−2×0.5)x万元,0.2所以(10−x−2×0.5)x≥22.4,化简得x2−6x+8.96≤0,解得2.8≤x≤3.2,0.2故选:BC小提示:关键点点睛:理解题意并求出每册杂志定价为x (x >2)元时的发行量是解题关键. 填空题 12、化简:(1+1232)(1+1216)(1+128)(1+124)(1+122)(1+12)=________.答案:2−1263分析:分析式子可以发现,若在结尾乘以一个(1−12),则可以从后到前逐步使用平方差公式进行计算,为保证恒等计算,在原式末尾乘以(1−12)×2即可﹒ 原式=(1+1232)(1+1216)(1+128)(1+124)(1+122)(1+12)×(1−12)×2=(1+1232)(1+1216)(1+128)(1+124)(1+122)×(1−122)×2 =(1+1232)(1+1216)(1+128)(1+124)×(1−124)×2 =(1+1232)(1+1216)(1+128)×(1−128)×2 =(1+1232)(1+1216)×(1−1216)×2 =(1+1232)×(1−1232)×2 =(1−1264)×2 =2−1263所以答案是:2−1263﹒13、√a ⋅√a ⋅√a 3的分数指数幂表示为____________答案:a 34分析:本题可通过根式与分数指数幂的互化得出结果.√a ⋅√a ⋅√a 3=√a ⋅√a ⋅a 123=√a ⋅√a 323=√a ⋅a 12=√a 32=a 34, 所以答案是:a 34.14、写出一个同时具有下列性质①②③的函数f(x)=________.①定义域为R;②值域为(−∞,1);③对任意x1,x2∈(0,+∞)且x1≠x2,均有f(x1)−f(x2)x1−x2>0.答案:f(x)=1−12x(答案不唯一)分析:直接按要求写出一个函数即可.f(x)=1−12x ,定义域为R;12x>0,f(x)=1−12x<1,值域为(−∞,1);是增函数,满足对任意x1,x2∈(0,+∞)且x1≠x2,均有f(x1)−f(x2)x1−x2>0.所以答案是:f(x)=1−12x(答案不唯一).解答题15、已知函数f(x)=1−2a|x|+1(a>0,a≠1).(1)判断f(x)的奇偶性并证明;(2)若f(x)在[−1,1]上的最大值为13,求a的值.答案:(1)偶函数;证明见解析;(2)a=2.解析:(1)利用奇偶函数的定义证明;(2)讨论去绝对值,并分a>1和0<a<1两种情况讨论函数的单调性,求函数的最大值,建立方程,求a的值.解:(1)f(x)的定义域为R,又f(−x)=1−2a|−x|+1=1−2a|x|+1=f(x)⇒f(−x)=f(x),所以f(x)为偶函数;(2)因为f(x)为偶函数,当0≤x≤1时,f(x)=1−2a|x|+1=1−2a x+1,若a∈(0,1),f(x)=1−2a x+1,函数单调递减,f(x)max=f(0)=0,若a∈(1,+∞),f(x)=1−2a x+1,函数单调递增,f(x)max=f(1)=1−2a+1=13⇒a=2,当−1≤x<0,f(x)=1−2a|x|+1=1−2a−x+1,若a∈(0,1),f(x)=1−2a−x+1,函数单调递增,f(x)max=f(0)=0,若a∈(1,+∞),f(x)=1−2a−x+1,函数单调递减,f(x)max=f(−1)=1−2a+1=13⇒a=2,综上,a=2.小提示:关键点点睛:本题考查指数型复合函数证明奇偶性以及根据函数的最值,求参数的取值范围,本题的关键是求函数的单调性,关键是利用函数是偶函数,先去绝对值,再利用复合函数的单调性求函数的单调性,从而确定函数的最值.。
(完整word版)指数函数复习专题(含详细解析)
第讲指数函数时间:年月日刘老师学生签名:一、兴趣导入二、学前测试1.在区间上为增函数的是( B )A . B. C. D.2.函数是单调函数时,的取值范围( A )A. B . C . D.3.如果偶函数在具有最大值,那么该函数在有( A )A.最大值 B .最小值 C .没有最大值 D.没有最小值4.函数,是( B )A.偶函数 B .奇函数 C.不具有奇偶函数 D .与有关5.函数在和都是增函数,若,且那么( D )A. B. C. D .无法确定6.函数在区间是增函数,则的递增区间是( B )A. B. C. D.12三、方法培养☆专题1:指数函数的定义一般地,函数x y a =(a >0且a ≠1)叫做指数函数,其中x 是自变量,函数的定义域为R 。
例1指出下列函数那些是指数函数:(1)4x y =(2)x y 4=(3)4xy -= (4))4(-=xy (5)π=y x(6)x y 24=(7)xxy =(8))1,21(()12≠>=-a a y a x解析:利用指数函数的定义解决这类问题。
解:(1),(5),(8)为指数函数变式练习11函数2(33)x y a a a =-+⋅是指数函数,则有()A.a=1或a=2 B.a=1 C.a=2 D.a>0且1≠a 答案:C 2. 计算:105432)(0625.0833416--+++π; 解:(1)105432)(0625.0833416--+++π =(425)21+(827)31+(0。
062 5)41+1-21=(25)2×21+(23)313⨯+(0。
5)414⨯+21=25+23+0。
5+21 =5;☆专题2:指数函数的图像与性质一般地,指数函数y=a x在底数a >1及0<a <1这两种情况下的图象和性质如下表所示:a >1 0<a <1 图象3性质 ①定义域:R ②值域:(0,+∞)③过点(0,1),即x=0时y=1④在R 上是增函数,当x <0时,0<y <1;当x >0时,y >1 ④在R 上是减函数,当x <0时,y>1;当x >0时,0<y <1在同一坐标系中作出y=2x和y=(21)x 两个函数的图象,如图2—1-2-3。
考向05函数的单调性及最值(重点)-备战2023年高考数学一轮复习考点微专题(全国通用)(解析版)
考向05 函数的单调性与最值1. (2022年浙江卷第7题)已知825,log 3ab ==,则34a b -=( )A. 25 B. 5 C.259D.53【答案】C【解析】因为25a =,821log 3log 33b ==,即323b =,所以()()22323232452544392a aa b b b -====.故选:C.2. (2022年 新高考1卷第7题)设0.110.1e ,ln 0.99a b c ===-,,则( )A.a b c << B. c b a<< C. c a b<< D. a c b<<【答案】C【解析】设()ln(1)(1)f x x x x =+->-,因为1()111x f x x x'=-=-++,当(1,0)x ∈-时,()0f x '>,当,()0∈+∞时()0f x '<,所以函数()ln(1)f x x x =+-在(0,)+∞单调递减,在(1,0)-上单调递增,所以1((0)09f f <=,所以101ln099-<,故110ln ln 0.999>=-,即b c >,所以1()(0)010f f -<=,所以91ln+01010<,故1109e 10-<,所以11011e 109<,故a b <,设()e ln(1)(01)xg x x x x =+-<<,则()()21e 11()+1e 11xx x g x x x x -+'=+=--,令2()e (1)+1x h x x =-,2()e (21)x h x x x '=+-,当01x <<时,()0h x '<,函数2()e (1)+1x h xx =-单调递减,11x <<时,()0h x '>,函数2()e (1)+1x h x x =-单调递增,又(0)0h =,所以当01x <<-时,()0h x <,所以当01x <<-时,()0g x '>,函数()e ln(1)xg x x x =+-单调递增,所以(0.1)(0)0g g >=,即0.10.1e ln 0.9>-,所以a c >故选:C.3. (2022年北京卷第14题)设函数()()21,,2,.ax x a f x x x a -+<⎧⎪=⎨-≥⎪⎩若()f x 存在最小值,则a 的一个取值为________;a 的最大值为___________.【答案】①. 0(答案不唯一)②. 1【解析】若0a =时,21,0(){(2),0x f x x x <=-≥,∴min ()0f x =;若0a <时,当x a <时,()1f x ax =-+单调递增,当x →-∞时,()f x →-∞,故()f x 没有最小值,不符合题目要求;若0a >时,当x a <时,()1f x ax =-+单调递减,2()()1f x f a a >=-+,当x a >时,min 20(02)(){(2)(2)a f x a a <<=-≥∴210a -+≥或2212a a -+≥-(),解得01a <≤,综上可得01a ≤≤;故答案为:0(答案不唯一),1【易错点1】求函数的单调区间,应先确定函数的定义域,忽略定义域研究函数的单调性是常见的错误.【易错点2】有多个单调区间应分开写,不能用符号“∪”联结,也不能用“或”联结,只能用“逗号”或“和”联结.1.下列函数中,定义域是R 且为增函数的是A .xy e -= B .3y x =C .ln y x =D .y x=【答案】B【解析】四个函数的图象如下显然B 成立.【名师点睛】本题考查函数的定义域以及单调性的判定,涉及指数、对数、幂函数的性质,属于基础题.根据题意,依次分析选项中函数的定义域以及单调性,即可得答案.2.函数()22312x x f x --⎛⎫=⎪⎝⎭的单调递减区间是A .(),-∞+∞ B .(),1-∞C .()3,+∞D .()1,+∞【答案】D【解析】设t =x 2﹣2x ﹣3,则函数在(﹣∞,1]上单调递减,在[1,+∞)上单调递增.因为函数12xy ⎛⎫= ⎪⎝⎭在定义域上为减函数,所以由复合函数的单调性性质可知,此函数的单调递减区间是(1,+∞).故选D .【名师点睛】本题主要考查了复合函数的单调性以及单调区间的求法.复合函数的单调性,一要先确定函数的定义域,二要利用复合函数与内层函数和外层函数单调性之间的关系进行判断,判断的依据是“同增异减”.解答本题时,利用复合函数的单调性确定函数f (x )的单调递减区间.3.已知函数1()x f x e=,()0.52a f =,()0.20.3b f =,()0.3log 2c f =,则a ,b ,c 的大小关系为( )A .c b a << B .a b c << C .b c a << D .c a b<<【答案】B【解析】函数1()xf x e=,()0.52a f =,()0.20.3b f =,()0.3log 2c f =根据指数函数和对数函数的单调性可得:0.50221>=,0.2000.30.31<<=,0.30.3log 2log 01<<,因为函数1()xf x e=在R 上单调递减,且0.50.20.3log 20.23<<,所以0.20.053.(log 2)(0.23)()f f f >>,即a b c <<.故选:B 【点睛】对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确.4.已知函数()22cos()(1)sin(),()233x f x x a x a g x x ππ=+-+=-,若()[]0f g x ≤对[]0,1x ∈恒成立,则实数a 的取值范围是( )A .(1]-∞-B .(,0]-∞C .1]-D .(,1-∞-【答案】A【解析】在同一坐标系内画出2231,2,2x y x y y x =+==+的图象,由图象可知,在[]0,1上,223122xx x +≤<+恒成立,即23122x x ≤-<,当且仅当0x =或1x =时等号成立,()312g x ∴≤<,设()g x t =,则()(31,02t f g x ⎤≤<≤⎦等价于()0f t ≤,即()2cos1sin 033t a t a ππ+-+≤,31,,2332t t πππ⎡⎫≤<∴∈⎪⎢⎣⎭Q ,再设sin 13tm m π=≤<,原不等式可化为()212sin 1sin 033t a t a ππ-+-+≤,即()22211210,211m m m a m n a m m +--+-+≤≤=-+,1211m -≤-<,1a ∴≤-,故选:A.【点睛】关键点点睛:本题考查恒成立问题,考查三角函数的图象和性质,解决本题的关键点是设()g x t =,则原不等式等价于()0f t ≤,再设sin3tm π=,并参变分离求出最值解出实数a 的取值范围,考查了数形结合的解题思想方法,考查学生计算能力,属于中档题.5.设函数()f x 的定义域为R ,满足(1)2()f x f x +=,且当(]0,1x ∈时,()(1)f x x x =-.若对任意(],x m ∈-∞,都有8()9f x -≥,则m 的取值范围是( )A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦【答案】B【解析】∵(0,1]x ∈时,,,∴()2(1)f x f x =-,即右移1个单位,图像变为原来的2倍.如图所示:当23x <≤时,,令,整理得:,∴()()37380x x --=(舍),∴173x =,283x =,∴(,]x m ∈-∞时,()=(1)f x x x -(+1)= ()f x 2f x ()f x ()=4(2)=4(2)(3)f x f x x x ---84(2)(3)9x x --=-2945560x x -+=8()9f x -≥成立,即73m ≤,∴7,3m ⎛⎤∈-∞ ⎥⎝⎦,故选B .一、单选题1.(2022·青海·海东市第一中学模拟预测(文))下列函数中是减函数的为( )A .2()log f x x =B .()13x f x =-C .()f x =D .2()1f x x =-+【答案】B【解析】选项A :由21>,可得2()log f x x =为增函数.判断错误;选项B :由31>,可得3x y =为增函数,则()13x f x =-是减函数.判断正确;选项C :由102-<,可得12y x -=是减函数,则()f x =为增函数.判断错误;选项D :2()1f x x =-+在(),0∞-上单调递增. 判断错误.故选:B2.(2023·河南·洛宁县第一高级中学一模(理))已知函数33,0()e 1,0xx x f x x --+<⎧=⎨+≥⎩,则不等式()(31)<-f a f a 的解集为( )A .10,2⎛⎫⎪⎝⎭B .1,02⎛⎫- ⎪⎝⎭C .1,2⎛⎫-∞ ⎪⎝⎭D .1,2⎛⎫-∞- ⎪⎝⎭【答案】C【解析】因为33,0()e 1,0xx x f x x --+<⎧=⎨+≥⎩,当0x <时()33f x x =-+函数单调递减,且()3033f x >-⨯+=,当0x ≥时()e 1x f x -=+函数单调递减,且()00e 123f =+=<,所以函数()f x 在(,)-∞+∞上是单调递减,所以不等式()(31)<-f a f a 等价于31a a >-,解得12a <.即不等式的解集为1,2⎛⎫-∞ ⎪⎝⎭;故选:C3.(2022·辽宁·大连二十四中模拟预测)已知函数()y f x =,若()0f x >且()()0f x xf x '+>,则有( )A .()f x 可能是奇函数,也可能是偶函数B .()()11f f ->C .42x ππ<<时,cos22s (os )(in c )x f ef x x <D .(0)(1)f <【答案】D【解析】若()f x 是奇函数,则()()f x f x -=-,又因为()0f x >,与()()f x f x -=-矛盾,所有函数()y f x =不可能时奇函数,故A 错误;令()()22e x g xf x =,则()()()()()()222222eeex x x g x x f x f x xf x f x '''=+=+,因为22e0x >,()()0f x xf x '+>,所以()0g x '>,所以函数()g x 为增函数,所以()()11g g -<,即()()1122e 1e 1f f -<,所以()()11f f -<,故B 错误;因为42x ππ<<,所以0cos x <<sin 1x <<,所以sin cos x x >,故()()sin cos g x g x >,即()()22sin cos 22e sin ecos xx f x f x >,所以()()()22cos sin cos222sin ecos ecos x xx f x f x f x ->=,故C 错误;有()()01g g <,即()()01f <,故D 正确.故选:D.4.(2022·江苏无锡·模拟预测)已知13e ,(93ln 3)e a b c --===-,则a ,b ,c 的大小为( )A .a b c <<B .a c b<<C .c a b<<D .b c a<<【答案】C【解析】令函数ln ()(e)x f x x x=≥,当e x >时,求导得:()21ln 0xf x x '-=<,则函数()f x 在[e,)+∞上单调递减,又ln 3(3)3a f ==,ln e (e)eb f ==,3333e ln3(3ln 3)e 3()e e 33c f -===,显然3e e 33<<,则有3e ()(3)(e)3f f f <<,所以c a b <<.故选:C5.(2022·青海·模拟预测(理))若01a b <<<,则( )A .e e ln ln b a b a -<-B .e e ln ln b a b a -≥-C .e e a b b a ≤D .e e a bb a >【答案】D【解析】对于A,B,令()e ln x f x x =- ,则1()e xf x x '=-,当01x <<时,1()e xf x x'=-单调递增,且2132123(e 20,(e 0232f f ''=-<=-=>>故存在012(,)23x ∈ ,使得0()0f x '=,则当0(0,)x x ∈时,()e ln x f x x =-递减,当0(,1)x x ∈时,()e ln x f x x =-递增,由于01a b <<<,此时()e ln ,()e ln a b f a a f b b =-=-大小关系不确定,故A,B 均不正确;对于C,D,设e g()=x x x ,则e (1)g ()=x x x x -',当01x <<时,()0g x '<,故e g()=xx x 单调递减,所以当01a b <<<时,()()g a g b > ,即e e a ba b > ,即e e a b b a >,故C 错误,D 正确,故选:D6.(2022·全国·高三专题练习)已知定义在R 上的函数()f x 满足()11f =,对于1x ∀,2R x ∈,当12x x <时,都有()()()12122f x f x x x -<-,则不等式()222log 1log f x x +<的解集为( )A .(),2-∞B .()0,2C .()1,2D .()2,+∞【答案】B【解析】由题设12x x <时1122()2()2f x x f x x -<-,即()()2h x f x x =-在R 上递增,又(1)(1)21h f =-=-,而()222log 1log f x x +<等价于()22log 2log 1f x x -<-,所以2(log )(1)h x h <,即2log 1x <,可得02x <<.故不等式解集为()0,2.故选:B 二、多选题7.(2022·江苏无锡·模拟预测)定义:在区间I 上,若函数()y f x =是减函数,且()y xf x =是增函数,则称()y f x =在区间I 上是“弱减函数”.根据定义可得( )A .()1f x x=在()0,∞+上是“弱减函数”B .()e xxf x =在()1,2上是“弱减函数”C .若()ln xf x x=在(),m +∞上是“弱减函数”,则e m ≥D .若()2cos f x x kx =+在0,2π⎛⎫ ⎪⎝⎭上是“弱减函数”,则213k ππ≤≤【答案】BCD【解析】对于A ,1y x=在()0,+∞上单调递减,()1y xf x ==不单调,故A 错误;对于B ,()e x xf x =,()1ex x f x -'=在()1,2上()0f x ¢<,函数()f x 单调递减,()2e x x y xf x ==,220e x x x y -'==>,∴y 在()1,2单调递增,故B 正确;对于C ,若()ln xf x x =在(),m +∞单调递减,由()21ln 0x f x x -'==,得e x =,∴e m ≥,()ln y xf x x ==在()0,+∞单调递增,故C 正确;对于D ,()2cos f x x kx =+在0,2π⎛⎫ ⎪⎝⎭上单调递减,()sin 20f x x kx '=-+≤在0,2x π⎛⎫∈ ⎪⎝⎭上恒成立min sin 2x k x ⎛⎫⇒≤ ⎪⎝⎭,令()sin xh x x =,()2cos sin x x x h x x -'=,令()cos sin x x x x ϕ=-,()cos sin cos sin 0x x x x x x x ϕ'=--=-<,∴()ϕx 在0,2π⎛⎫⎪⎝⎭上单调递减,()()00x ϕϕ<=,∴()0h x '<,∴()h x 在0,2π⎛⎫ ⎪⎝⎭上单调递减,()22h x h ππ⎛⎫>= ⎪⎝⎭,∴212k k ππ≤⇒≤,()()3cos g x xf x x x kx ==+在0,2π⎛⎫⎪⎝⎭上单调递增,()2cos sin 30g x x x x kx =+'-≥在0,2x π⎛⎫∈ ⎪⎝⎭上恒成立,∴2maxsin cos 3x x x k x -⎛⎫≥ ⎪⎝⎭,令()2sin cos x x x F x x -=,()23cos 2cos 0x x xF x x +'=>,∴()F x 在0,2π⎛⎫ ⎪⎝⎭上单调递增,()22F x F ππ⎛⎫<= ⎪⎝⎭,∴2233k k ππ≥⇒≥,综上:213k ππ≤≤,故D 正确.故选:BCD.8.(2022·江苏省木渎高级中学模拟预测)当121x x <<时,不等式1221e e 0x xx x -<成立.若e e a b >>,则( )A .e 1e e b b -> B .e e e aa b b +< C .e ln b a b a < D .e ln a ab b>【答案】AD【解析】当121x x <<时,不等式12122112e e e e 0x x x x x x x x -<⇔<,令e (),1xf x x x=>,则()f x 在(1,)+∞上单调递增,因e>1b >,则ee 1e e ()(e)e e e b bf b f b b->⇔>⇔>,A 正确;因e a b >>1,则e e e e ()(e )e e eaa b aa b a f b f b b +>⇔>⇔>,B 不正确;由e e a>知,1a >,有()()e 1e 1e aa f a f a a>⇔>>⇔>,则ln ln 1a a a a >⇔<,由选项A 知,e 1b b>,即e ln e ln b b aa b a b a >⇔>,C 不正确;由e e ab >>得,ln 1b a >>,则ln e e (ln )()e ln ln b aa fb f a ab b b a>⇔>⇔>,D 正确.故选:AD 三、填空题9.(2022·上海长宁·二模)已知函数()f x 满足:()(),01,0xx f x x f x x ⎧≥⎪=+⎨⎪--<⎩,则不等式()102f x +≥的解集为____.【答案】[)1,-+∞【解析】根据题意可得(),01,01xx x f x x x x ⎧≥⎪⎪+=⎨⎪<⎪-⎩,且()f x 为奇函数当0x ≥时,()11011xf x x x ==-≥++,则()f x 在[)0,∞+上单调递增∴()f x 在R 上单调递增则()12f x =-,即112x x =--,解得1x =-∴()102f x +≥即()12f x ≥-的解集为1x ≥-故答案为:[)1,-+∞.10.(2022·河南·新乡县高中模拟预测(理))在人工智能领域的神经网络中,常用到在定义域I 内单调递增且有界的函数()f x ,即0M ∃>,x I ∀∈,()f x M ≤.则下列函数中,所有符合上述条件的序号是______.①()f x =②()21x f x x =+;③()e e e e x xx x f x ---=+;④()11e x f x -=+.【答案】③④【解析】对于①,()f x =对于②,()2111x f x x x x==++不单调,不符合题意;对于③,()22222e e e 1e 1221e e e 1e 11e x x x x x x x x x f x ----+-===-++++=单调递增,且()()1,1f x ∈-,则()1f x <,符合题意;对于④,()11e xf x -=+单调递增,且()()0,1f x ∈,则()1f x <,符合题意.故答案为:③④1.(2021年全国高考甲卷数学(文)试题)下列函数中是增函数的为( )A .()f x x =-B .()23xf x ⎛⎫= ⎪⎝⎭C .()2f x x=D .()f x =【答案】D【解析】对于A ,()f x x =-为R 上的减函数,不合题意,舍.对于B ,()23xf x ⎛⎫= ⎪⎝⎭为R 上的减函数,不合题意,舍.对于C ,()2f x x =在(),0-∞为减函数,不合题意,舍.对于D ,()f x =为R 上的增函数,符合题意,故选:D.2.(2018·陕西高考真题(理))下列函数中,满足“()()()f x y f x f y +=”的单调递增函数是A .()12f x x = B .()3f x x = C .()12xf x ⎛⎫= ⎪⎝⎭D .()3xf x =【答案】D 【解析】试题分析:由于x r x r a a a +⋅=,所以指数函数()x f x a =满足()()()f x y f x f y +=+,且当1a >时单调递增,01x <<时单调递减,所以()3xf x =满足题意,故选D .考点:幂函数、指数函数的单调性.3.(2019·陕西高考真题(理))下列函数中,既是奇函数又是增函数的为A .1y x =+B .2y x =-C .1y x=D .y x x=【答案】D【解析】A 是增函数,不是奇函数;B 和C 都不是定义域内的增函数,排除,只有D 正确,因此选D.4.(2017·浙江高考真题)若函数()2f x =x ax b ++在区间[0,1]上的最大值是M,最小值是m,则M m -的值A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关【答案】B【解析】因为最值在2(0),(1)1,()24a a fb f a b f b ==++-=-中取,所以最值之差一定与b 无关,选B .【名师点睛】对于二次函数的最值或值域问题,通常先判断函数图象对称轴与所给自变量闭区间的关系,结合图象,当函数图象开口向上时,若对称轴在区间的左边,则函数在所给区间内单调递增;若对称轴在区间的右边,则函数在所给区间内单调递减;若对称轴在区间内,则函数图象顶点的纵坐标为最小值,区间端点距离对称轴较远的一端取得函数的最大值.5.(2020年高考数学课标Ⅱ卷理科)设函数()ln |21|ln |21|f x x x =+--,则f (x )( )A .是偶函数,且在1(,)2+∞单调递增B .是奇函数,且在11(,22-单调递减C .是偶函数,且在1(,2-∞-单调递增D .是奇函数,且在1(,)2-∞-单调递减【答案】D【解析】由()ln 21ln 21f x x x =+--得()f x 定义域为12x x ⎧⎫≠±⎨⎬⎩⎭,关于坐标原点对称,又()()ln 12ln 21ln 21ln 21f x x x x x f x -=----=--+=-,()f x ∴为定义域上的奇函数,可排除AC ;当11,22x ⎛⎫∈-⎪⎝⎭时,()()()ln 21ln 12f x x x =+--,()ln 21y x =+Q 在11,22⎛⎫- ⎪⎝⎭上单调递增,()ln 12y x =-在11,22⎛⎫- ⎪⎝⎭上单调递减,()f x ∴在11,22⎛⎫- ⎪⎝⎭上单调递增,排除B ;当1,2x ⎛⎫∈-∞-⎪⎝⎭时,()()()212ln 21ln 12ln ln 12121x f x x x x x +⎛⎫=----==+ ⎪--⎝⎭,2121x μ=+- 在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,()ln f μμ=在定义域内单调递增,根据复合函数单调性可知:()f x 在1,2⎛⎫-∞-⎪⎝⎭上单调递减,D 正确.【名师点睛】本题考查函数奇偶性和单调性的判断;判断奇偶性的方法是在定义域关于原点对称的前提下,根据()f x -与()f x 的关系得到结论;判断单调性的关键是能够根据自变量的范围化简函数,根据单调性的性质和复合函数“同增异减”性得到结论.6.(2021·浙江高考真题)已知函数21(),()sin 4f x xg x x =+=,则图象为如图的函数可能是( )A .1()()4y f x g x =+-B .1()()4y f x g x =--C .()()y f x g x =D .()()g x y f x =【答案】D【解析】对于A ,()()21sin 4y f x g x x x =+-=+,该函数为非奇非偶函数,与函数图象不符,排除A ;对于B ,()()21sin 4y f x g x x x =--=-,该函数为非奇非偶函数,与函数图象不符,排除B ;对于C ,()()21sin 4y f x g x x x ⎛⎫==+⎪⎝⎭,则212sin cos 4y x x x x ⎛⎫'=++ ⎪⎝⎭,当4x π=时,2102164y ππ⎛⎫'=+> ⎪⎝⎭,与图象不符,排除C.故选:D.7.(2018北京卷)能说明“若()(0)f x f >对任意的(0,2]x ∈都成立,则()f x 在[0,2]上是增函数”为假命题的一个函数是__________.【答案】sin y x =(不答案不唯一)【解析】这是一道开放性试题,答案不唯一,只要满足()(0)f x f >对任意的(0,2]x ∈都成立,且函数()f x 在[0,2]上不是增函数即可,如,()sin f x x =,答案不唯一.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
指数函数和函数单调性以及集合的练习题
选择题:
1.(2010届·广东高三六校联考(理))1.已知集合,,则集合
( ) A . B . C . D .
2.在下列对应关系中,哪些能构成A 到B 的映射?,
3.若A ={1,3,x },B ={x 2,1},且B A ,则这样的x 的值有( )
A .1个
B .2个
C .3个
D .4个
4.函数y =1x +1
的定义域是 …………………………………( ) [-1,+∞ [-1,0) -1,+∞ -1,0)
5.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,
则f (1)等于 ( )
A .-7
B .1
C .17
D .25
6.设f (x )=|x -1|-|x |,则f [f ()]=
( )
A . -
B .0
C .
D .1
7..已知f(x)=1x 2-1
,g(x)=x +1,则f(g(x))的表达式是…………………… ( ) 1x 2+2x x 2
x 2-1 x 2x 2+2x 1x 2-1
8.函数)2()(||)(x x x g x x f -==和的递增区间依次是
( )A .]1,(],0,(-∞-∞
B .),1[],0,(+∞-∞
C .]1,(),,0[-∞+∞
D ),1[),,0[+∞+∞ 9.(2005福建理5)函数b x a
x f -=)(的图象如图,其中a 、b 为常数,则下列结论正确的是
( )
A .0,1<>b a
B .0,1>>b a
C .0,10><<b a
D .0,10<<<b a 10.函数f (x )=ax 2+2(a -1)x +2在区间(-∞,4)上为减函数,则a 的取值范围为 ( )
A . 0<a ≤51
B .0≤a ≤51
C .0<a ≤51
D .a >5
1 11.函数()2()1x
f x a =-在R 上是减函数,则a 的取值范围是( ) A 、1>a B 、2<a C
、a <
、1a <<12.(2010届·山东诸城高三12月质检)3.如图所示的韦恩图中,,A B 是非空集合,定义集合#A B 为阴影部分表示的集合.
若{{}
,,|,|3,0x x y R A x y B y y x ∈====>,则#A B 为( ). A.
{}|02x x << B.{}|12x x <≤ C.{}|012x x x ≤≤≥或 D.{}|012x x x ≤≤>或
填空题:
13.对于集合A ={2,4,6},若a ∈A ,则6-a ∈A ,那么a 的值是______.
14.已知函数f(x)的图象如图所示,则此函数的定义域是 ,值域是
.
15.函数f (x ) = ax 2+4(a +1)x -3在[2,+∞]上递减,则a 的取值范围是__ .
16.函数)10()(≠>=a a a x f x 且在区间]2,1[上的最大值比最小值大2
a ,则a =__________
解答题:
17.已知集合A={x| x 2+2x-8=0}, B={x| x 2-5x+6=0}, C={x| x 2-mx+m 2-19=0}, 若B ∩C ≠Φ,
A ∩C=Φ,求m 的值.
19.求下列函数的值域(用区间表示):
(1)y =x 2-3x +4; (2)()f x =
(3)y =
53
x -+; (4)2()3x f x x -=+.
20.(1)已知x x x f 2)1(+=+,求函数)(x f 的解析式;
(2)已知)1(2)(2)(3+=-+x x f x f ,求)(x f ;
21.已知函数f(x)=⎩⎨⎧ x +2 (x≤-1),
x 2 (-1<x<2),
2x (x≥2).
(1)求f[f(3)]的值; (2)若f(a)=3,求a 的值.
(3)求函数f(x)值域。
22..函数f (x )=-x 3+1在R 上是否具有单调性?如果具有单调性,它在R 上是增函数还是
减函数?试证明你的结论.
23.已知函数22513x x y ++⎛⎫= ⎪⎝⎭
,求其单调区间及值域。