图-连通的概念

合集下载

离散数学图的连通性判定方法介绍

离散数学图的连通性判定方法介绍

离散数学图的连通性判定方法介绍离散数学是一门研究离散结构以及这些结构中的对象、性质和关系的学科。

其中,图论是离散数学中的一个重要分支,主要研究图的性质和关系。

图是由节点和边组成的结构,可以用于表示各种实际问题以及计算机科学中的数据结构。

在图的研究中,连通性是一个重要的概念,它描述了图中节点之间是否存在路径相连。

在实际应用中,判断图的连通性是一个常见的问题。

下面将介绍几种常用的图的连通性判定方法。

1. 深度优先搜索(DFS)深度优先搜索是一种常用的图遍历算法,它通过栈来实现。

该算法从图的某个节点开始,首先访问该节点并将其标记为已访问,然后递归地访问它的邻居节点,直到所有可达的节点都被访问过。

如果在搜索过程中访问了图中的所有节点,则图是连通的。

否则,图是不连通的。

2. 广度优先搜索(BFS)广度优先搜索也是一种常用的图遍历算法,它通过队列来实现。

与深度优先搜索不同的是,广度优先搜索首先访问图中的某个节点,并将其标记为已访问。

然后访问该节点的所有邻居节点,并将未访问的邻居节点加入队列。

接下来,依次从队列中取出节点并访问其邻居节点,直到队列为空。

如果在搜索过程中访问了图中的所有节点,则图是连通的。

否则,图是不连通的。

3. 并查集并查集是一种数据结构,用于管理元素之间的动态连通性。

在图的连通性判定中,可以使用并查集来判断图中的节点是否连通。

首先,将每个节点都初始化为一个独立的集合。

然后,遍历图中的所有边,如果两个节点之间存在边,则将它们所在的集合合并为一个集合。

最后,判断图中是否只存在一个集合,如果是,则图是连通的。

否则,图是不连通的。

4. 最小生成树最小生成树是一种保留了图连通性的树结构。

在连通性判定中,可以通过构建最小生成树来判断图的连通性。

首先,选择一个节点作为起始节点。

然后,从所有与当前树相连的边中选择权值最小的边,并将连接的节点加入树中。

重复该过程,直到树中包含了图中的所有节点。

如果最后构建的树包含图中的所有节点,则图是连通的。

第7章图_数据结构

第7章图_数据结构

v4
11
2013-8-7
图的概念(3)
子图——如果图G(V,E)和图G’(V’,E’),满足:V’V,E’E 则称G’为G的子图
2 1 4 3 5 6 3 5 6 1 2
v1 v2 v4 v3 v2
v1 v3 v4
v3
2013-8-7
12
图的概念(4)
路径——是顶点的序列V={Vp,Vi1,……Vin,Vq},满足(Vp,Vi1),
2013-8-7 5
本章目录
7.1 图的定义和术语 7.2 图的存储结构

7.2.1 数组表示法 7.2.2 邻接表 ( *7.2.3 十字链表 7.3.1 深度优先搜索 7.3.2 广度优先搜索 7.4.1 图的连通分量和生成树 7.4.2 最小生成树
*7.2.4 邻接多重表 )
7.3 图的遍历
连通树或无根树
无回路的图称为树或自由树 或无根树
2013-8-7
18
图的概念(8)
有向树:只有一个顶点的入度为0,其余 顶点的入度为1的有向图。
V1 V2
有向树是弱 连通的
V3
V4
2013-8-7
19
自测题
7. 下列关于无向连通图特性的叙述中,正确的是
2013-8-7
29
图的存贮结构:邻接矩阵
若顶点只是编号信息,边上信息只是有无(边),则 数组表示法可以简化为如下的邻接矩阵表示法: typedef int AdjMatrix[MAXNODE][MAXNODE];
*有n个顶点的图G=(V,{R})的邻接矩阵为n阶方阵A,其定 义如下:
1 A[i ][ j ] 0
【北方交通大学 2001 一.24 (2分)】

图论什么的最讨厌了喵

图论什么的最讨厌了喵

找到所有的点 w!! 1、因为u是v的祖先,所以u->v u、v属亍同一个强连通分量 两个条件: 2、若某点w也属亍该强连通分量,那么 1、w必可达v • 显然有u->w (因为u是w的祖先) 2、w必在u的 • w->v (所以w必可达v) 子树内!
13
Let's turn back to DFS
8
9
优越的算法?
• 如果我们对一个图迚行dfs,我们会得到一 个森林(Many Trees) • for (int i=0;i<n;i++) if (!vis[i]) dfs(i); • 我们的算法基亍以下事实: • 每一个强连通分量一定是其中一棵dfs树的 子树
10
A Proof
• 如果丌属亍一棵子树,那么设存在n棵子树 • 子树和子树间丌连通(否则DFS一定可达) • 都丌连通了哪儿还有强连通分量啊!!!
• 强连通分量(Strongly Connected
Components,SSC)
• 强连通分量内部的点是彼此可达的,因而 可以将其视为一个整体(缩点的过程)
• 最终形成DAG(Directed Acyclic Graph) • 有向无环图
7
An Example
A E C D F
B
G
H
I
四个强连通分量: {A, B, C, G} {D, E, F} {H} {I}
31
Pseudo Code (I)
void dfs(int u) { disnum[u]=t_stamp++; visited[v]=true; for (each v that u->v) { if (!visited(v)) { dfs(v); low[u]=min(low[u],low[v]); } else low[u]=min(low[u],disnum[v]) }

图论基础知识

图论基础知识
常州市第一中学 林厚从
图论算法与实现
一、图论基础知识
4、图的遍历: 对下面两个图分别进行深度优先遍历,写出遍历结果。 注意:分别从a和V1出发。
左图从顶点a出发,进行深度优先遍历的结果为:a,b,c,d,e,g,f 右图从V1出发进行深度优先遍历的结果为:V1,V2,V4,V8,V5,V3,V6,V7
邻接矩阵
边集数组
邻接表
优点O(1)
存储稀疏图时,空 间效率比较好,也 比较直观
便于查找任一顶点的关联边及 关联点,查找运算的时间复杂 性平均为O(e/n)
存储稀疏图,会造 成很大的空间浪费
不适合对顶点的运 算和对任意一条边 的运算
要查找一个顶点的前驱顶点和以此顶点 为终点的边、以及该顶点的入度就不方 便了,需要扫描整个表,时间复杂度为O (n+e)。可以用十字邻接表改进
被访问一次,这种运算操作被称为图的遍历。为了避免重复访问某个 顶点,可以设一个标志数组visited[i],未访问时值为false,访问一次 后就改为true。
图的遍历分为深度优先遍历和广度(宽度)优先遍历两种方法。 图的深度优先遍历:类似于树的先序遍历。从图中某个顶点Vi出发, 访问此顶点并作已访问标记,然后从Vi的一个未被访问过的邻接点Vj出 发再进行深度优先遍历,当Vi的所有邻接点都被访问过时,则退回到上 一个顶点Vk,再从Vk的另一个未被访问过的邻接点出发进行深度优先遍 历,直至图中所有顶点都被访问到为止。
常州市第一中学 林厚从
图论算法与实现
一、图论基础知识
4、图的遍历: 对于一个连通图,深度优先遍历的递归过程如下:
Procedure dfs(i:integer); {图用邻接矩阵存储} Begin
访问顶点i; Visited[i]:=True; For j:=1 to n do {按深度优先搜索的顺序遍历与i相关联的所有顶点}

图-连通的概念

图-连通的概念

三、连通性3.1 连通性和Whitmey定理定义V’真包含于V(G),G[V(G)-V’]不连通,而G是连通图,则称V’是G的顶剖分集。

最小顶剖分集中顶的个数,记成κ(G),叫做G的连通度;规定κ(Kv)=υ-1;κ(不连通图)= κ(平凡图)=0。

由一个顶组成的顶剖分集叫割顶。

没有割顶的图叫做块,G中的成块的极大子图叫做G的块。

定义E’包含于E(G),G为连通图,而G-E’(从G中删除E’中的边)不连通,则称E’为G的边剖分集,若G中已无边剖分集E″,使得|E″|<|E’|,则称|E’|为G的边连通度,记成κ’(G)。

|E’|=1时,E’中的边叫做桥。

规定κ’(不连通图)=0,κ’(Kv)= υ-1。

定义κ(G)>=k时,G叫做k连通图;κ’(G)>=k时,G称为k边连通图。

k连通图,当k>1时,也是k-1连通图。

k边连通图,当k>1时,也是k-1边连通图。

上面就是顶连通与边连通的概念,好象不指明的就是指顶连通了。

定理1 κ(G)=<κ’(G)=<δ(可以复习一下第一章的1.2:δ=min{d(v i)})证:设d(v)=δ,则删除与v边关联的δ条边后,G变不连通图,所以这δ条边形成一个边剖分集,故最小边剖分集边数不超过δ,即κ’(G)=<δ。

下证κ=<κ’。

分情形讨论之。

若G中无桥,则有κ’>=2条边,移去它们之后,G变成不连通图。

于是删除这κ’条中的κ’-1条后,G变成有桥的图。

设此桥为e=uv,我们对于上述κ’-1条删去的每条边上,选取一个端点,删除这些(不超过κ’-1个)端点,若G变得不边能,则κ=<κ’-1;若仍连通,则再删去u或v,即可使G变得不连通,于是κ=<κ’。

证毕。

这个定理很好理解,图论中的一些定理常以这种“友好”的面目出现。

下面就是Whitmey定理定理2(Whitney,1932) υ>=3的图是2连通图的充要条件是任二顶共圈(在一个圈上)。

图像连通域的概念

图像连通域的概念

图像连通域的概念图像连通域是指图像中一组相邻的像素点,它们具有相同的属性或特征,且通过相邻像素之间的连接关系形成一个连通区域。

每个像素点可以看作是一个图像中一个最小的连通域,而多个连通域的集合则构成了整个图像。

图像连通域的概念对于图像处理和分析非常重要,可以用于目标检测、图像分割、特征提取等领域。

在实际应用中,常常需要识别和提取图像中的不同连通域,以便进一步进行后续处理。

在图像中,连通域可以是任意形状的区域,这取决于图像中像素点之间的连接关系。

而像素点之间的连接关系通常是通过像素点的空间位置和像素值的相似度来定义的。

在图像处理中,常常使用的连接关系有4邻接和8邻接。

4邻接表示一个像素点的上、下、左、右四个邻域像素,而8邻接则表示上、下、左、右以及对角线的八个邻域像素。

这两种邻接方式可根据具体应用需求选择。

连通域分析的基本原理是通过扫描整个图像,从每一个像素点开始,查找满足连接条件的相邻像素点,并将它们组成一个连通域。

常使用的算法有基于种子点的扫描算法和基于区域增长算法。

基于种子点的扫描算法从图像中选择一个种子点开始,通过不断扩展种子点的相邻像素,并标记已访问过的像素点,以便于后续处理。

该算法适用于具有清晰边界和简单连通域形状的图像。

基于区域增长的算法则通过像素值的相似性来判断像素点是否属于同一个连通域。

该算法从一个种子点开始,逐步增长满足相似性条件的像素点,直到达到预设的停止条件。

该算法适用于具有复杂连通域形状和灰度值变化较大的图像。

除了基本的连通域分析算法,还有一些改进和扩展的算法可以应用于特定的图像处理任务。

例如,基于区域的分割算法、基于轮廓的形状分析算法等。

这些算法利用图像连通域的特性进行目标检测、分类和识别等任务。

总的来说,图像连通域是指图像中一组相邻的像素点,通过连接关系形成的连通区域。

连通域分析是图像处理和分析中常用的技术,可用于目标检测、图像分割、特征提取等领域。

不同的连通域分析算法可以根据具体应用需求选择,以实现对图像中连通域的识别和提取。

图论+第3章+图的连通性

图论+第3章+图的连通性

直观上看,右边的比左边的图连通“程度”
要好。
(点)连通度
图的(点)连通度我们常常省略“点”字称连
通度。 树是具有最小连通度的图。 若κ (G ) ≥ k ,则称G是k-连通的。 若G是平凡图或非连通图,则κ (G ) = 0 。 所有非平凡连通图都是1连通的。
边连通度
边连通度λ (G )=min{ S | S是G的边割集} 完全图的边连通度定义为 λ ( K v ) = v − 1。 空图的边连通度定义为0。 边连通度λ (G ) 有时又记作 κ ′(G ) 。
2-连通图的性质
定理 3.2.4:若G是 p ≥ 3的2-连通图,则G的
任意两条边都在同一个圈上。
证明:(板书)
2-连通图的性质
对于一个无环且无孤立点的图G,下面的条
件是等价的:
(1)图是不可分的; (2)图是2-连通的; (3)过任意两个顶点总有一个圈; (4)过任意两条边总有一个圈。
不可分图
没有割点的非平凡的连通图称为不可分图 (non separable graph)。
定理3.1.5 不可分图的任一边至少在一个圈中。 证明:设e是不可分图G的任意边,e=(x,y),x和y都 不是割点,所以图G-e是连通的,故G-e必有一条(x,y) 道路P。于是P+e就是构成G中的一个圈。
e相连接。于是u和v在G-e中成为连通的。故矛盾。
(2)假设e=(x,y)不是割边,那么G-e和G的分支数
相同。由于G中存在一条(x,y)道路,所以x和y均 在G的同一分支。于是x和y在G-e的同一分支中, 故在G-e中存在一条(x,y)道路P,这样边e就在G的 圈P+e中。
割点定理(1)
定理3.1.2 当且仅当在G中存在与顶点v 不同

运筹学-图论

运筹学-图论
初等链:链中所含的点均不相同, 也称通路;
圈:若 v0 ≠ vn 则称该链为开链,否则称为闭链或 回路或圈;
简单圈:如果在一个圈中所含的边均不相同 初等圈:除起点和终点外链中所含的点均不相
同的圈;
初等链: (v1 , v2 , v3 , v6 , v7 , v5 )
v1
初等圈: (v1 , v2 , v3 , v5 , v4 , v1 )
图的基本概念
图论中的图是由点、点与点之间的线所组成的。通常, 我们把点与点之间不带箭头的线叫做边,带箭头的线叫 做弧。
如果一个图是由点和边所构成的,那么称为无向图,
记作G=(V,E),其中V表示图G 的点集合,E表示图G的
边集合。连接点vi , vj V 的边记作[vi , vj],或者[vj , vi]。 如果一个图是由点和弧所构成的,那么称为它为有向
v2 (3) v3 (3)
(2)
v5
(4)
v1
v4(6)
多重图
以点v为端点的边的个数称为点v的度(次),记 作 d(v), 如 图 5.4 中 d(v1)=3 , d(v2 )=4 , d(v3 )=4 , d(v4 )=3。
度为零的点称为弧立点,度为1的点称为悬挂点。 悬挂点的边称为悬挂边。度为奇数的点称为奇点, 度为偶数的点称为偶点。
郑州
济南 徐州
青岛 连云港
重庆
武汉 南京
上海
图5.3
例5.2 有六支球队进行足球比赛,我们分别用
点v1 ,…,v6表示这六支球队,它们之间的比赛情 况,也可以用图反映出来,已知v1队战胜v2 队,v2 队战胜v3 队,v3 队战胜v5队,如此等等。这个胜负
情况,可以用图5.3所示的有向图反映出来

第8章图论方法

第8章图论方法

Page 12
【例题·计算题】某城市东到西的交通道路如下图所示,线 上标注的数字为两点间距离(单位:千米)。某公司现需从市 东紧急运送一批货物到市西。假设各条线路的交通状况相同, 请为该公司寻求一条最佳路线。
2 东3
4
3 1
7
2
5
7
3
3
4
4
7 5
6
4 6
7 3
7
西
8
【答案】
1-4-7-西 10 3
9
2
3
5
7
3.5
4
6
10
1
6
4
3
8
2
5
【答案】
2 5
4
6
1
3
5
3 3.5 4
2
Page 8
【解析】按照克鲁斯喀尔的算法很轻松得出答案。
1.(11年7月)已知连接5个城镇的公路交通图如图。为了沿公路架设5个城镇的
光缆线,并要求光缆线架设的总长度为最小,试以最小枝杈树方法求出Pa最ge优9 方 案并计算光缆线的总长度。
8.2 树和树的逐步生成法
Page 4
1、树:连通且不含圈(回路)的图称为树。 2、树的边数=结点数-1。
【选择题】以下叙述中,正确的是( ) A.树的点数为线数加1 B.图的点数小于线数 C.图的点数大于线数 D.树可能含有圈 【答案】A 【解析】树的点数和边数差1,普通图的点数和边数谁多谁少不 确定。 【知识点】图和树的基本概念
Page 22
5.(09年7月)某网络如图,线上标注的数字是单位时间通过两节点的流量。
Page 23
试求单位时间由网络始点到网络终点的最大流量(单位:吨)。

CH7 图的基本概念 2 3 通路、回路、图的连通性

CH7 图的基本概念  2  3 通路、回路、图的连通性
{e6},{e5},{e2,e3},{e1,e2},{e3 ,e4},{e1,e4},{e1,e3},{e2,e4} 都是割集, e6,e5是桥。
有向图的连通性
定义 设D=<V,E>为一个有向图。vi,vj∈V,若从 vi到vj存在通路,则称vi可达vj,记作vi→vj, 规定vi总是可达自身的,即vi→vi。 若vi→vj且vj→vi,则称vi与vj是相互可达的,记 作vi vj。 规定vivi。
设无向图G=<V,E>,V={v1,v2,· ,vn},E={e1,e2,· ,em}, · · · ·
令mij为顶点vi与边ej的关联次数,则称(mij)n×m为G的 关联矩阵,记为M(G)。
性质:P163
2.有向图的关联矩阵
设简单有向图
G=<V,E>,V={v1,v2,·· n},E={e1,e2,·· m}, 则称 ·,v ·,e (mij)n×m为G的关联矩阵,记为M(G)。其中,
性质:P164
3. 图的邻接矩阵
设图
G=<V,E>,V={v1,v2,·· n},E={e1,e2,·· m}, ·,v ·,e 则称(aij)n×m为G的邻接矩阵,记为A(G)。 其中, aij为vi邻接(到)vj的边的条数.
0 2 2 0 1 1 0 0
1 1 0 0
0 0 0 0
1 0 0 0
7.3 图的矩阵表示
图的表示:
数学定义 图形表示 矩阵表示 便于用代数知识来研究图的性质 便于用计算机处理 矩阵的行列有固定的顺序,因此在用矩阵表示图之 前,必须将图的顶点和边(如果需要)编号。 本节学习: • 图的关联矩阵 • 图的邻接矩阵 • 有向图的可达矩阵

图论课件第三章 图的连通性

图论课件第三章 图的连通性

(Gv)(G)
证明:“必要性” 设v是G的割点。则E(G)可划分为两个非空边子集E1与 E2,使G[E1],G[E2]恰好以v为公共点。由于G没有环,所
17
第17页,本讲稿共29页
以,G[E1],G[E2]分别至少包含异于v的G的点,这样,Gv的分支数比G的分支数至少多1,所以:
(Gv)(G)
“充分性” 由割点定义结论显然。 定理7 v是树T的顶点,则v是割点,当且仅当v是树的 分支点。
定理1 边 e 是图G的割边当且仅当 e 不在G的任何圈中。
证明:可以假设G连通。 “必要性” 若不然。设 e 在图G的某圈 C 中,且令e = u v.
考虑P = C- e,则P是一条u v路。下面证明G-e连通。
对任意 x, y V(G-e) 由于G连通,所以存在x ---y路
Q.若Q不含e,则x与y在G-e里连通;若Q含有e,则可选 择路:x ---u P v --- y,说明x与y在G-e里也连通。所以,若 边e在G的某圈中,则G-e连通。
定义6 设G是连通图,T是G的一棵生成树。如果G的 一个割集S恰好包含T的一条树枝,称S是G的对于T的一 个基本割集。
14
第14页,本讲稿共29页
例如:在图G中
f a
bc
e
d
图G
G的相对于T的基本割集为: {a , e}, {f , c}, {f, b , e}, {d}.
关于基本割集,有如下重要结论:
证明:(必要性)设G是块。因G没有割点,所以,它 不能有环。对任意u, v ∈V(G),下面证明u, v位于某一圈上 。
对d (u, v) 作数学归纳法证明。 当d (u, v) =1时,由于G是至少3个点的块,所以,边 uv不能为割边,否则,u或v为割点,矛盾。由割边性质 ,uv必然在某圈中。 设当d (u, v) <k时结论成立。

图的基本概念(连通性)汇总共63页文档

图的基本概念(连通性)汇总共63页文档
Thank you

29、在一切能够接受法律支配的人类 的状态 中,哪 里没有 法律, 那里就 没有自 由。— —洛克

30、风俗可以造就法律,也可以废除 法律。 ——塞·约翰逊
6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
图的基本概念(连通性)汇总

26、我们像鹰一样,生来就是自由的 ,但是 为了生 存,我 们不得 不为自 己编织 一个笼 子,然 后把自 己关在 里面。 ——博时 间再长 ,也还 是没有 制约力 的。— —爱·科 克

28、好法律是由坏风俗创造出来的。 ——马 克罗维 乌斯

第15章电路方程的矩阵形式

第15章电路方程的矩阵形式

矩阵形式的KCL:[ Q ][i ]=0
it Ql il
[1
Ql
] iilt
0
回路矩阵表示时 BTt il it
Ql BtT





1
割集支 4
C1 1
Q= C2 0
C3 0
56123
0 0 -1 -1 0
1 0 1 1 -1
0 1 0 -1 1
Qt
Ql
回支 4 5 6 1 2 3
1 1 -1 0 1 0 0 B = 2 1 -1 1 0 1 0 = [ Bt 1 ]
6
2 13
1
3
基本回路数=连支数=b-(n-1)
3.割集Q (Cut set )
Q是连通图G中支路的集合,具有下述性质: (1)把Q中全部支路移去,图分成二个分离部分。 (2)任意放回Q 中一条支路,仍构成连通图。
6
12
5
4
3
{2,4,5,6} 12
3
{2,3,6}
1 5•
4
{1,3,5,6}是否割集?

Idk gkj Uej gkj (U j Usj )






Ik Yk (Uk Usk ) gkj (U j Usj ) Isk

(2) I dk 为 CCCS


设 I dk kj I ej



I ej
Yj
(U
j
Usj
)






Ik Yk (Uk Usk ) kjYj (U j Usj ) Isk

西交《运筹学》重要知识点解析和例题分析第六部分

西交《运筹学》重要知识点解析和例题分析第六部分

《运筹学》重要知识点解析和例题分析第六部分一.图的基本概念 定义一个图G 是指一个二元组(V(G),E(G)).即图是由点及点之间的联线所组成。

其中: 1)图中的点称为图的顶点(vertex).记为:v2)图中的连线称为图的边(edge).记为:,i j e v v ⎡⎤=⎣⎦.,i j v v 是边 e 的端点。

3)图中带箭头的连线称为图的弧(arc).记为:(),i j a v v =.,i j v v 是弧 a 的端点。

—— 要研究某些对象间的二元关系时.就可以借助于图进行研究 分类▪ 无向图:点集V 和边集E 构成的图称为无向图(undirected graph).记为: G(V.E)—— 若这种二元关系是对称的.则可以用无向图进行研究▪ 有向图:点集V 和弧集A 构成的图称为有向图(directed graph) .记为:D(V.A)—— 若这种二元关系是非对称的.则可以用有向图进行研究▪ 有限图: 若一个图的顶点集和边集都是有限集.则称为有限图.只有一个顶点的图称为平凡图.其他的所有图都称为非平凡图.图的特点:1 图反映对象之间关系的一种工具.与几何图形不同。

2 图中任何两条边只可能在顶点交叉.在别的地方是立体交叉.不是图的顶点。

3 图的连线不用按比例画.线段不代表真正的长度.点和线的位置有任意性。

4 图的表示不唯一。

如:以下两个图都可以描述“七桥问题”。

点(vertex)的概念1 端点:若e =[u.v] ∈E.则称u.v 是 e 的端点。

2 点的次:以点 v 为端点的边的个数称为点 v 的次.记为:()d v 。

在无向图G 中.与顶点v 关联的边的数目(环算两次),称为顶点v 的度或次数.记为()d v 或 dG(v).在有向图中.从顶点v 引出的边的数目称为顶点v 的出度.记为d+(v).从顶点v 引入的边的数目称为v 的入度.记为d -(v). 称()d v = d+(v)+d -(v)为顶点v 的度或次数. 3 奇点:次为奇数的点。

运筹第5章

运筹第5章

解决实际问题的例子
有甲乙丙丁戊己6名运动员参加ABCDEF6个项目的比 赛,报名情况如下表所示。试安排六个项目的比赛顺序, 做到每名运动员不连续参加两项比赛。
A 甲 B C D √ E F √ √ √ √ √

丙 丁 戊








§2 连通图与子图
连通图

链 图G中,一个点和边的交替序列:
图G的一棵部分树
§3 树

注意: 一个图的部分树是连接这个图全部顶点的 最少边数的子图。
§3 树
寻求部分树的方法: →破圈法 →避圈法 图G的一棵 部分树
v2
e1 e4
e8
e2
e7
v1
v4
e3
e6
v5
e5
v3
§3 树
→避圈法
e1
v2
e4
e8
e2
e7
v1
v4
e3
e6
v5
e5
v3
v2
图G的一棵 部分树
图论
图论是运筹学一个重要分支 规划论是以线性模型为研究工具,解决实际
问题的优化问题。
图论是以图及其理论为研究工具,解决实际
问题的优化问题。是一种全新的研究方法。
从本章开始,我们将学习图论的概念、理论、
方法与应用。
图论完整 的知识体系
第五章
图的基本概念
本章教学内容
图的基本概念 连通图与子图 树
v1
e2
e8 e5
v4
e6
v5
v3
§3 树
[例2] 在下面图示的稻田中,至少挖开几条堤埂, 便可浇到所有稻田?

《离散数学》第七章_图论-第2节-预习

《离散数学》第七章_图论-第2节-预习

定理7-2.1推论
推论1: 在n阶图G中,若从不同结点vj到vk有 路,则从vj到vk有长度小于等于n-1的通路。 证明: 若路不是通路, 则路上有重复结点, 删除所有重复结点之间的回路, 得到的是通 路, 其长度小于等于n-1。 推论2:在一个具有n个结点的图中,如果存在 经过结点vi回路(圈),则存在一条经过vi 的长度不大于n的回路(圈)。
Whitney定理
(最小点割集<=最小边割集<=最小点度数)
Whitney定理的证明
证明:设G中有n个结点m条边。 (2)若G连通 1)证明λ(G)≤δ(G)
若G是平凡图,则λ(G)=0≤δ(G); 若G是非平凡图,由于每一结点上关联的所有 边显然包含一个边割集,因而删除最小度数 δ(G)对应结点所关联的边,则使G不连通,即 存在一个边割集的元素个数小于等于δ(G) , 即λ(G)≤δ(G)。
e6,e5都是割边
边连通度(edgeconnectivity)
为了破坏连通性,至少需要删除多少条边? 边连通度: G是无向连通图, (G) = min{ |E’| | E’是G的边割集 } 即产生一个不连通图需删去的边的最小数 目。 规定: G非连通: (G)=0 (Kn) = n-1
0
ei (vi 1 , vi ), (ei v i 1 , v i )
v
v1 v 2 0 e e 1 2
v i 1 v i ei
vn en
结点数=边数+1
路长度 :边的数目。
回路(closed walk)
回路: … v e v e v
0 1 1 2
当v 0 v n时
i 1
圈(cycles)
C1 C2 C3 C4 C5

图论 第1章 图的基本概念

图论 第1章 图的基本概念

G
G[{e1 , e4 , e5 , e6 }]
G − {e5 , e7 }
G + {e8 }
图G1,G2的关系
设 G1 ⊆ G, G2 ⊆ G. 若 V (G1 ) V (G2 ) = φ x-disjoint) 若 E (G1 ) E (G2 ) = φ ,则称G1和G2是边不交的 (edge-disjoint) G1和G2的并, G1 G2 其中 V (G1 G2 ) = V (G1 ) V (G2 )
连通性
设 u, v 是图G的两个顶点,若G中存在一条 (u, v)
≡ v表示顶点 u 和v是连通的。 如果图G中每对不同的顶点 u , v都有一条 (u , v)
以 u
道路,则称顶点 u和 v是连通的(connected)。
道路,则称图G是连通的。
连通图
连通图
图G的每个连通子图称为G的连通分支,简
证明:G中含奇数个 1 (n − 1) 度点。 2 | Vo | 为 证明 V (G ) = Vo Ve 由推论1.3.2知, 偶数。因为 n ≡ 1(mod 4) ,所以n为奇数个。 因此,| Ve | 为奇数个。 n ≡ 1(mod 4) , 1 2 ( n − 1) 为偶数。 1 1 d ( x ) = n − 1 − d ( x ) ≠ (n − 1) 设 x ∈Ve。若 d ( x) ≠ 2 (n − 1),则 且 2 为偶数。由 G ≅ G c ,存在y,使得 d ( y) = d ( x) 为偶数。即 y ∈Ve 且 d ( y) ≠ 1 (n − 1) 。Ve 中度不为 2 1 (n − 1) 的点是成对的出现的。 2
G
G[{v1 , v2 , v3 }]

运筹学图与网络分析

运筹学图与网络分析
v6
07
含有奇点的连通图中不含欧拉圈,此时,最优的邮递路线是什么呢?
08
求解中国邮路问题的奇偶点图上作业法
奇偶点表上作业法
奇偶点表上作业法 (1)找出奇点(一定为偶数个),在每两个奇点之间找一条链,在这些链经过的所有边上增加一条边,这样所有的奇点变为偶点,一定存在欧拉圈,但是不一定是路线最短的,所以需要检验和调整。 (2)检验增加的边的权值是否是最小的。 定理3 假设M是使得图G中不含奇点的所有增加边,则M是权值总和为最小的增加边的充分必要条件是: 1)图G中每条边上最多增加一条边; 2)在图G的每个圈上,增加的边的总权值不超过该圈总权值的一半。 如果上述两个条件都满足则已经找到权值最小的欧拉圈 否则转入3) 3)调整增加边。如果1)不满足,则从该条边的增加边中去掉偶数条; 如果2)不满足,则将这个圈上的增加边去掉,将该圈的其余边上添加增 加边,转入(2)
v1
v2
v3
v4
v5
v1
v2
v3
v4
v5
图2
图3
如果在比赛中: A胜E, B胜C, A胜D, C胜A, E胜D, A胜B,
v1
v2
v3
v4
v5
注:本章所研究的图与平面几何中的图不 同,这里我们只关心图有几个点,点与点 之间有无连线,两条线有无公共顶点,点 与线是否有关联,至于连线的方式是直线 还是曲线,点与点的相对位置如何都是无 关紧要的。
求从v1到v8的最短路
(0)
(1,1)
(1,3)
(3,5)
(2,6)
(5,10)
(5,9)
(5,12)
注:在给顶点编号时,如果在多个为标号点均取得最小值Llk则对这多个点同时标号,这些点的第二个标号相同,但是第一个标号不一定相同。

数据结构期末复习重点知识点总结

数据结构期末复习重点知识点总结

第一章绪论一、数据结构包括:逻辑结构、存储结构、运算(操作)三方面内容。

二、线性结构特点是一对一。

树特点是一对多图特点是多对多三、数据结构的四种存储结构:顺序存储、链式存储、索引存储、散列存储顺序存储结构和链式存储结构的区别?线性结构的顺序存储结构是一种随机存取的存储结构。

线性结构的链式存储是一种顺序存取的存储结构。

逻辑结构分类:集合线性树图,各自的特点。

或者分为线性结构和非线性结构。

四、算法的特征P13五、时间复杂度(1) i=1; k=0;while(i<n){ k=k+10*i;i++;}分析:i=1; //1k=0; //1while(i<n) //n{ k=k+10*i; //n-1i++; //n-1}由以上列出的各语句的频度,可得该程序段的时间消耗:T(n)=1+1+n+(n-1)+(n-1)=3n可表示为T(n)=O(n)六、数据项和数据元素的概念。

第二章线性表一、线性表有两种存储结构:顺序存储和链式存储,各自的优、缺点。

二、线性表的特点。

三、顺序表的插入、思想、时间复杂度o(n)、理解算法中每条语句的含义。

(1)插入的条件:不管是静态实现还是动态实现,插入的过程都是从最后一个元素往后挪动,腾位置。

静态是利用数组实现,动态是利用指针实现。

不管静态还是动态,在表中第i个位置插入,移动次数都是n-i+1。

四、顺序表的删除、思想、时间复杂度o(n)、理解算法中每条语句的含义。

(1)删除的条件:不管是静态实现还是动态实现,删除的过程都是从被删元素的下一位置向前挪动。

静态是利用数组实现,动态是利用指针实现。

不管静态还是动态,删除表中第i个元素,移动次数都是n-i。

五、顺序表的优缺点?为什么要引入链表?答:顺序表的优点是可以随机存取,缺点是前提必须开辟连续的存储空间且在第一位置做插入和删除操作时,数据的移动量特别大。

如果有一个作业是100k,但是内存最大的连续存储空间是99K,那么这个作业就不能采用顺序存储方式,必须采用链式存储方式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三、连通性3.1 连通性和Whitmey定理定义V’真包含于V(G),G[V(G)-V’]不连通,而G是连通图,则称V’是G的顶剖分集。

最小顶剖分集中顶的个数,记成κ(G),叫做G的连通度;规定κ(Kv)=υ-1;κ(不连通图)= κ(平凡图)=0。

由一个顶组成的顶剖分集叫割顶。

没有割顶的图叫做块,G中的成块的极大子图叫做G的块。

定义E’包含于E(G),G为连通图,而G-E’(从G中删除E’中的边)不连通,则称E’为G的边剖分集,若G中已无边剖分集E″,使得|E″|<|E’|,则称|E’|为G的边连通度,记成κ’(G)。

|E’|=1时,E’中的边叫做桥。

规定κ’(不连通图)=0,κ’(Kv)= υ-1。

定义κ(G)>=k时,G叫做k连通图;κ’(G)>=k时,G称为k边连通图。

k连通图,当k>1时,也是k-1连通图。

k边连通图,当k>1时,也是k-1边连通图。

上面就是顶连通与边连通的概念,好象不指明的就是指顶连通了。

定理1 κ(G)=<κ’(G)=<δ(可以复习一下第一章的1.2:δ=min{d(v i)})证:设d(v)=δ,则删除与v边关联的δ条边后,G变不连通图,所以这δ条边形成一个边剖分集,故最小边剖分集边数不超过δ,即κ’(G)=<δ。

下证κ=<κ’。

分情形讨论之。

若G中无桥,则有κ’>=2条边,移去它们之后,G变成不连通图。

于是删除这κ’条中的κ’-1条后,G变成有桥的图。

设此桥为e=uv,我们对于上述κ’-1条删去的每条边上,选取一个端点,删除这些(不超过κ’-1个)端点,若G变得不边能,则κ=<κ’-1;若仍连通,则再删去u或v,即可使G变得不连通,于是κ=<κ’。

证毕。

这个定理很好理解,图论中的一些定理常以这种“友好”的面目出现。

下面就是Whitmey定理定理2(Whitney,1932) υ>=3的图是2连通图的充要条件是任二顶共圈(在一个圈上)。

证:若任二顶共圈,任删除一个顶w后,得图G-w。

任取两顶u,v∈V(G-w),u,v在G中共存于圈C上,若w不在C上,则G-w中仍有圈C,即u与v在G-w 中仍连通;若w在G中时在C上,在G-w中u与v在轨C-w上,故u与v仍连通。

由u与v之任意性,G-w是连通图,故κ(G)>=2,即G是2连通图。

反之,若G是2连通图,υ>=3,任取u,v∈V(G),用对d(u,v)的归纳法证明u 与v之间有两条无公共内顶的轨当d(u,v)=1是时,因κ=<κ’=<δ,故κ’>=2,uv边不是桥,G-uv仍连通,于是G-uv中存在从u到v的轨P1(u,v),这样从u到v有两条无公共内顶的轨P1(u,v)与边uv。

假设d(u,v)<k时(k>=2),结论已成立,考虑d(u,v)=k的情形。

令P0(u,v)之长为k,w是P0(u,v)上与v相邻的顶,则d(u,w)=k-1,由归纳法假设,在u,w之间有两条无公共内顶P与Q,因G是2连通较长,故G-w仍连通。

在G-w中存在轨P’(u,v)<>P0(u,v),令x是P∪Q上P’的最后一个顶。

因u∈P∪Q,故x存在(可能x=u)。

不妨设x∈V(P),则G有两个u,v之间无公共内顶的轨:一个是P上从u到x段并在P’上从x到v段;一个是Q+wv。

证毕。

图论的定理证明,没有其他数学的那么多推导,那么多的公式,符号也是有限的几个,看多了就明白了。

概念清晰还是很重要,很多东西是概念性的。

还有就是构造了,照题能构造出的相应的图有时就迎而解了。

就是打字时中英文切换麻烦。

3.2 割顶、桥、块割顶、桥、块都是一个图的关键部位了。

本节给出三个定理来阐述这三个概念,好象少了点,不过这本书的东西有些地方很语焉不详的,而且有些东西到处穿插,并且有很强的理论性,很少涉及实践中的问题。

看起来比较的累人。

定理3 v是连通图的一个顶点,则下可述命题等价:(1)v 是割顶(2)存在与v不同的两个顶u,w,使得v在每一条由u到w的轨上(3)存在V-{v}的一个划分V-{v}=U∪W,U∩W=φ,使得对任意的u∈U,w∈W,v在每一条由u到w的轨上。

定理4 x是G的一边,G是连通图,则下述命题等价:(1)x是G的桥。

(2)x不在G的任一圈上。

(3)存在顶u,v∈V(G),使得x在每一个从u到v的轨上。

(4)存在V(G)的划分U与W,使得任二顶u,w, u∈U,w∈W时,x在每条从u到v的轨上。

上面的都没什么可证的,就是轨、连通片、割顶、桥等概念翻来覆去的用就是了。

定理5 G连通,υ>=3,则下列命题等价:(1)G是块。

(2)G的任二顶共圈。

(3)G的任一顶与任一边共圈(4)G的任二边共圈(5)任给G的二顶及一边,存在连接此二顶含此边之轨(6)对G的三个不同的顶,存在一轨,连接其中两个顶,含第三个顶(7)对G的三个不同的顶,存在一轨,连接其中两个顶,不含第三个顶。

(本也没什么可证的了,但就这样结束了也太快了,这个证一下)证:(1)>>(2),(2)>>(1)见定理2(2)>>(3) 只考虑u为G的任给一个顶,vu是G中任给定的一条边,且u<>v,u<>w的情形。

设C是含u与v的圈,若w在C上,则C上含u的轨P(v,w)与边vw形成一个圈,它含u及边vw。

若w不在C上,因v不是割顶,由定理3,存在不含v的轨P(w,u)。

令u’是P(w,u)与C从w沿P(w,u)看来的第一个公共顶,则由边vw,P(w,u)上w到u’段,以及C上含u的轨P’(u’,v)并成一个圈,此圈满足(3)的要求。

(3)>>(4)与(2)>>(3)类似证明。

(4)>>(5) 已知任二边共圈,设u,v是G上任给定的两个顶,x是任给定的一条边,只考虑x与u,v皆不相关联的情形。

由任二边共圈显然有任二顶共圈,于是由于(2)>>(3)知u与x共圈,设此圈C1;同理v与x共圈,设此圈是C2;若v∈C1或u∈C2,则(5)成立;若u不属于C2,且v不属于C1,则如下构作含x之轨P(u,v):从u出发沿C1到达C1与C2上第一个公共顶w,再从w出发沿C2含x的部分到达v。

(5)>>(6) 设u,v,w是G的三个顶,且与w相关联的一条边是x,由(5)存在轨P(u,v),x在P(u,v)上,于是w在P(u,v)上。

(6)>>(7) u,v,w∈V(G),由(6),存在轨P(u,w),P(u,w)含顶v,则P(u,w)的从u 到v的一段不含w。

(7)>>(1) 由(7),对任给定的二顶u与v,不存在这样的顶,它在从u到v的每一轨上,由定理3,G无割顶,故G是块。

证毕。

讲了这么多,下节才涉及到实践中的问题。

下节讲可靠通讯网的构作。

不过下节又是本章的最后一节了。

3.3 可靠通讯网的构作我们要构作一个有线通讯网,使得敌人炸坏我几通讯站后,其余的通讯站仍然可彼此通话。

显然,有两个要求是必要的:一是不怕被敌人炸坏站的数目要多,一是整个造价要小。

这个实际问题的数学艺术模型如下:G是加权连通图,k是给定的自然数,求G的有最小权的k连通生成子图。

当k=1时,它就是用Kruskal算法求得的生成树;当k>1时,是尚未解决的难解问题之一。

哦,原来k>1时是没解决的难题,自己以前也想过这方面的东西,只是想了半天也想不出个所以然,原来是个大难题呀。

当G=Kυ,每边权皆为1时,Harary于1962年解决了这一问题。

下面介绍Harary的工作。

令f(m,n)表示n个顶的m连通图当中边数的最小值,m<n。

由Σd(v)=2e,κ=<κ’=<δ,f(m,n)>={mn/2}Harary实际上构作出一个n顶的m连通图,它的边数恰为{mn/2}条,且f(m,n)={mn/2}。

此图记成H(m,n) 。

(1)m是偶数,m=2r。

H(2r,n)以{0,1,2,…,n-1}为顶集合。

当i-r=<j=<i+r时,在顶点i与j之间连一边,这里的加法在mod n意义下进行。

(2)m是奇数,m=2r+1,n是奇数。

先构作H(2r,n),然后对1=<i=<n/2的i,在i与i+n/2间加上一条边得H(2r+1,n)。

(3)m是奇数,m=2r+1,n是奇数。

先构作H(2r,n),然后在顶点0与(n-1)/2,0与(n+1)/2之间加上边,在顶i与i+(n+1)/2间加上边,其中1=<i=<(n-1)/2,则得到H(2r+1,n)。

无法把图画上来,H(6,8)、H(5,8)、H(5,9)看一下图就明白这个构作的方法了。

下面证上面的构作出来的东西是符合要求的。

定理6 H(m,n)是m连通图,且边数最少证:m=2r时,我们来证明H(2r,n),设有少于2r个顶组成的顶剖分集。

若V'是一个顶剖分集,且|V'|<2r,又设i与j两个顶分别属于H(2r,n)-V'的不同连通片,令S={i,i+1,...,j-1,j},T={j,j+1,...,i-1,i},其中加法在mod n下执行。

因为|V'|<2r,不失一般性,设|V'∩S|<r,则显然存在S-V'中的序列,从i如至j终,使得序列中连续二顶之差的绝对值最大是γ。

但这样的序列中相邻顶之间由(1)知存在边,即在H(2r,n)-V'中有轨P(i,j),与i,j分居于H(2r,n)-V'的两年连通片中相矛盾,故H(2r,n)是2r连通的。

相似地可以证明m=2r+1时,H(2r+1,n)是2r+1连通的。

由于f(m,n)>={mn/2}, ε(H(m,n))={mn/2},而H(m,n)是n顶m连通图,故有f(m,n)=<{mn/2},从而得ε(H(m,n))=f(m,n)={mn/2}。

证毕。

由于κ=<κ',故H(m,n)也是m连通图,若用g(m,n)表示n个顶m边连通图中最少边数,则对1<m<n,g(m,n)={mn/2}。

就这样第三章也结束了,理论讲了一大堆一、通论1.1 图论的内容与历史回顾一上来总要先回顾一下历史,让人了解一下这个学科的来龙去脉,见怪不怪了。

柯尼斯堡七桥问题这个实在是太有名了,图论从这开始的,从很久以前就知道了。

欧拉这个人真的是厉害,在数学的各个领域都留有他的足迹。

噢,从欧拉之后停滞了好长一段时间(再次可见欧拉的水平,对他是佩服得五体投地呀,不服不行),直到二百年后,1936年匈牙利的Konig(书上的名字打不上来呀,字母怪怪的,随便用其他字母替了)发表了《有限图与无限图理论》这第一本图论的专著,图论才获得了长足的发展,成长了数学中的一门独立的学科。

相关文档
最新文档