数学必修五数列练习题(含答案)
(完整版)数学必修五数列练习题(含答案)
)
A. S5 S6 B. S5 S6 C. S5 S7 D. S6 S7
17.各项都是正数的等比数列
{
an}
中,
3a1 ,
1 2
a3 ,
2a2
成等差数列,
则 a2012 a2014
(
)
a2013 a2011
A. 1 B. 3 C. 6 D. 9
18.等差数列 { an} , { bn} 的前 n 项和分别为 Sn , Tn ,若 Sn
线
A. 18
B
. 24
C
. 60 D . 90
…
…
4.已知等比数列 { an} 的公比为正数,且 a3 · a9 =2 a52 , a2 =1,则 a1=( )
…
…
A. 1
B
2
.
C . 2 D .2
2
2
○
…
5.已知等差数列 { an} 的前 n 项和为 Sn ,且 a4 18 a5 ,则 S8 =(
(Ⅰ)求 a 2, a 3, a4 ;
…
…
…
…
…
…
○
…
…
…
…
线
…
… …
28.已知数列 { a n} 的前 n 项和 Sn 2 n ,数列 { bn} 满足 b1 1,bn 1 bn (2n 1) n 1 ,2 ,3 ,L .
…
( 1)求数列 { a n } 的通项 a n ;
○
…
( 2)求数列 { bn } 的通项 bn ;
…
…
…
订
…
数列
26.若三个数 5 2 6, m,5 2 6 成等差数列,则 m=________.
高一数学必修5数列同步训练共7份含答案 试题
必修5?数列?同步训练〔一共7份〕含答案2.1 数列的概念与简单表示法一、选择题:1.以下解析式中不.是数列1,-1,1,-1,1,-1…,的通项公式的是 〔 〕 A. (1)n n a =- B. 1(1)n n a +=- C. 1(1)n n a -=- D. {11n n a n =-,为奇数,为偶数2,的一个通项公式是 〔 〕A. n aB. n a =C. n a =D. n a 3.数列{}n a ,1()(2)n a n N n n +=∈+,那么1120是这个数列的第 〔 〕项.A. 9B. 10C. 11D. 124.数列{}n a ,()n a f n =是一个函数,那么它的定义域为 〔 〕 A. 非负整数集 B. 正整数集C. 正整数集或者其子集D. 正整数集或者{}1,2,3,4,,n5.数列{}n a ,22103n a n n =-+,它的最小项是 〔 〕A. 第一项B. 第二项C. 第三项D. 第二项或者第三项 6.数列{}n a ,13a =,26a =,且21n n n a a a ++=-,那么数列的第五项为〔 〕 A. 6 B. 3- C. 12- D. 6- 二.填空题:7、观察下面数列的特点,用适当的数填空 〔1〕 ,14 ,19 ,116, ;〔2〕32 ,54 , ,1716 ,3332, 。
{}n a ,85,11n a kn a =-=且,那么17a = .9. 根据以下数列的前几项的值,写出它的一个通项公式。
〔1〕数列0.7,0.77,0.777,0.7777,…的一个通项公式为 . 〔2〕数列4,0,4,0,4,0,…的一个通项公式为 . 〔3〕数列1524354863,,,,,,25101726的一个通项公式为 .{}n a 满足12a =-,1221n n na aa +=+-,那么4a = .{}n a 中,13a =,1021a =,通项n a 是项数n 的一次函数,①求{}n a 的通项公式,并求2005a ; ②假设{}n b 是由2468,,,,,a a a a 组成,试归纳{}n b 的一个通项公式.12.{}n a 满足13a =,121n n a a +=+,试写出该数列的前5项,并用观察法写出这个数列的一个通项公式.等差数列一.选择题:1、等差数列{a n }中,a 1=60,a n+1=a n+3那么a 10为………………………………〔 〕A 、-600B 、-120C 、60D 、-602、假设等差数列中,a 1=4,a 3=3,那么此数列的第一个负数项是……………………〔 〕 A 、a 9B 、a 10C 、a 11D 、a 12{}n a 的通项公式为25n a n =+,那么此数列是 〔 〕A.公差为2的等差数列B. 公差为5的等差数列C.首项为5的等差数列D. 公差为n 的等差数列4. {a n }是等差数列,a 7+a 13=20,那么a 9+a 10+a 11=……………………〔 〕A 、36B 、30C 、24D 、183,7,11,,---的一个通项公式为 〔 〕A. 47n -B. 47n --C. 41n +D. 41n -+6.假设{}n a 是等差数列,那么123a a a ++,456a a a ++,789a a a ++,,32313n n na a a --++,是〔 〕A.一定不是等差数列B. 一定是递增数列C.一定是等差数列D. 一定是递减数列 二.填空题:7.等差数列{}n a 中,350a =,530a =,那么7a = . 8.等差数列{}n a 中,3524a a +=,23a =,那么6a = .9.等差数列{}n a 中,26a a 与的等差中项为5,37a a 与的等差中项为7,那么n a = .10. 假设{a n }是等差数列,a 3,a 10是方程x 2-3x-5=0的两根,那么a 5+a 8= .11.判断数52,27()k k N ++∈是否是等差数列{}n a :5,3,1,1,,---中的项,假设是,是第几项?12. 等差数列{a n }中,a 1=23,公差d 为整数,假设a 6>0,a 7<0.〔1〕求公差d 的值; 〔2〕求通项a n .13、假设三个数a-4,a+2,26-2a,适当排列后构成递增等差数列,求a的值和相应的数列.等差数列的前n项和一.选择题:1.等差数列{}n a 中,10120S =,那么110a a += 〔 〕 A. 12 B. 24 C. 36 D. 482.从前180个正偶数的和中减去前180个正奇数的和,其差为 〔 〕 A. 0 B. 90 C. 180 D. 3603.等差数列{}n a ,219n a n =-,那么这个数列的前n 项和n s 〔 〕 A.有最小值且是整数 B. 有最小值且是分数 C. 有最大值且是整数 D. 有最大值且是分数4.等差数列{}n a 的前m 项的和为30,前2m 项的和为100,那么它的前3m 项的和为( ) A. 130 B. 170 C. 210 D. 2605.在等差数列{}n a 和{}n b 中,125a =,175b =,100100100a b +=,那么数列{}n n a b +的前100项和为 〔 〕 A. 0 B. 100 C. 1000 D. 100006.假设关于x 的方程20x x a -+=和20x x b -+=()a b ≠的四个根组成首项为14的等差数列,那么a b +=〔 〕 A.38 B. 1124 C. 1324 D. 3172二.填空题:本大题一一共4小题,每一小题 4分,一共16分,把正确答案写在题中横线上. 7.等差数列{}n a 中,假设638a a a =+,那么9s = .8.等差数列{}n a 中,假设232n S n n =+,那么公差d = .9. 有一个 凸n 边形,各内角的度数成等差数列,公差是100,最小角为1000,那么边数n= .{}n a 和{}n b 的前n 项和分别为n S 和n T ,且满足733n n S n T n +=+,那么88a b = .11.在等差数列{}n a 中,40.8a =,11 2.2a =,求515280a a a +++.12. 等差数列{a n }的项数为奇数,且奇数项的和为44,偶数项的和为33,求此数列的中间项及项数。
高中数学必修五数列测试题及答案
高中数学必修5数列测试题含答案一、选择题1、三个正数a 、b 、c 成等比数列,则lga 、 lgb 、 lgc 是 ( )A 、等比数列B 、既是等差又是等比数列C 、等差数列D 、既不是等差又不是等比数列2、前100个自然数中,除以7余数为2的所有数的和是( )A 、765B 、653C 、658D 、6603、如果a,x 1,x 2,b 成等差数列,a,y 1,y 2,b 成等比数列,那么(x 1+x 2)/y 1y 2等于 ( )A 、(a+b)/(a-b)B 、(b-a)/abC 、ab/(a+b)D 、(a+b)/ab4、在等比数列{a n }中,S n 表示前n 项和,若a 3=2S 2+1,a 4=2S 3+1,则公比q= ( )A 、1B 、-1C 、-3D 、35、在等比数列{a n }中,a 1+a n =66,a 2a n -1=128,S n =126,则n 的值为( )A 、5B 、6C 、7D 、86、若{ a n }为等比数列,S n 为前n 项的和,S 3=3a 3,则公比q 为( )A 、1或-1/2B 、-1 或1/2C 、-1/2D 、1/2或-1/27、一个项数为偶数的等差数列,其奇数项和为24,偶数项和为30,最后一项比第一项大21/2,则最后一项为 ( )A 、12B 、10C 、8D 、以上都不对8、在等比数列{a n }中,a n >0,a 2a 4+a 3a 5+a 4a 6=25,那么a 3+a 5的值是( )A 、20B 、15C 、10D 、59、等比数列前n 项和为S n 有人算得S 1=8,S 2=20,S 3=36,S 4=65,后来发现有一个数算错了,错误的是 ( )A 、S 1B 、S 2C 、S 3D 、S 410、数列{a n }是公差不为0的等差数列,且a 7,a 10,a 15是一等比数列{b n }的连续三项,若该等比数列的首项b 1=3则b n 等于( )A 、3·(5/3)n-1B 、3·(3/5)n-1C 、3·(5/8)n-1D 、3·(2/3)n-1二、填空题11、公差不为0的等差数列的第2,3,6项依次构成一等比数列,该等比数列的公比q =12、各项都是正数的等比数列{a n },公比q ≠1,a 5,a 7,a 8成等差数列,则公比q=13、已知a,b,a+b 成等差数列,a,b,ab 成等比数列,且0<log m ab<1,则实数m 的取值范是14、已知a n =a n -2+a n -1(n ≥3), a 1=1,a 2=2, b n =1+n n a a ,则数列{b n }的前四项依次是 ______________. 15、已知整数对的序列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),……,则第60个数对为三、解答题16、有四个数,前三个数成等比数列,其和为19,后三个数为等差数列,其和为12,求此四个数。
最新数学必修五数列练习题(含答案)
25.如果数列 的前 项和 ,那么这个数列是数列
26.若三个数 成等差数列,则m=________.
27.已知等比数列 中, 为前 项和且 , ,
(1)求数列 的通项公式。
(2)设 ,求 的前 项和 的值。
28.已知数列 的前 项和 ,数列 满足 .
(1)求数列 的通项 ;
A. B. C. D.பைடு நூலகம்
9.公比为 的等比数列 的各项都是正数,且 ,则 =( )
(A) (B) (C) (D)
10.数列 为等差数列, 为等比数列, ,则 ( )
A. B. C. D.
11.已知等比数列 中, , ,则公比 ( )
(A) (B)
(C) (D)
12.观察下列数的特点,1,1,2,3,5,8,x,21,34,55,…中,其中x是( )
A. B. C. D.2
5.已知等差数列 的前n项和为 ,且 =( )
A.18 B.36 C.54 D.72
6.等比数列 中, ,则 ( )
A.4 B.8 C.16 D.32
7.数列 中, ,则此数列前30项的绝对值的和为 ( )
A.720 B.765 C.600 D.630
8.已知等比数列前 项和为 ,若 , ,则 ( )
在上海,随着轨道交通的发展,地铁商铺应运而生,并且在重要的商业圈已经形成一定的气候,投资经营地铁商铺逐渐成为一大热门。在人民广场地下“的美”购物中心,有一家DIY自制饰品店---“碧芝自制饰品店”。
1、DIY手工艺市场状况分析
营销环境信息收集索引
体现市民生活质量状况的指标---恩格尔系数,上海也从1995年的53.4%下降到了2003年的37.2%,虽然与恩格尔系数多在20%以下的发达国家相比仍有差距,但按照联合国粮农组织的划分,表明上海消费已开始进入富裕状态(联合国粮农组织曾依据恩格尔系数,将恩格尔系数在40%-50%定为小康水平的消费,20%-40%定为富裕状态的消费)。
高中数学必修5数列习题与答案
第二章 数列一、选择题1.设S n 是等差数列{a n }的前n 项和,若63S S =13,则126S S =( ).A .310B .13C .18D .192.数列{a n }是各项均为正数的等比数列,{b n }是等差数列,且a 6=b 7,则有( ). A .a 3+a 9<b 4+b 10B .a 3+a 9≥b 4+b 10C .a 3+a 9≠b 4+b 10D .a 3+a 9与b 4+b 10的大小不确定3.在等差数列{a n }中,若a 1 003+a 1 004+a 1 005+a 1 006=18,则该数列的前2 008项的和为( ).A .18 072B .3 012C .9 036D .120484.△ABC 中,a ,b ,c 分别为∠A ,∠B ,∠C 的对边,如果a ,b ,c 成等差数列, ∠B =30°,△ABC 的面积为23,那么b =( ). A .231+ B .1+3C .232+ D .2+35.过圆x 2+y 2=10x 内一点(5,3)有k 条弦的长度组成等差数列,且最小弦长为数列的首项a 1,最大弦长为数列的末项a k ,若公差d ∈⎥⎦⎤⎢⎣⎡2131 ,,则k 的取值不可能是( ). A .4B .5C .6D .76.已知等差数列{a n }中,a 7+a 9=16,a 4=1,则a 12的值是( ). A .15B .30C .31D .647.在等差数列{a n }中,3(a 2+a 6)+2(a 5+a 10+a 15)=24,则此数列前13项之和为( ).A .26B .13C .52D .1568.等差数列{a n }中,a 1+a 2+a 3=-24,a 18+a 19+a 20=78,则此数列前20项和等于( ).A .160B .180C .200D .2209.在等比数列{a n }中,a 1=2,前n 项和为S n ,若数列{a n +1}也是等比数列,则S n等于( ).A .2n +1-2B .3nC .2nD .3n -110.已知{a n }是等比数列,a 2=2,a 5=41,则a 1a 2+a 2a 3+…+a n a n +1=( ). A .16(1-4-n ) B .16(1-2-n ) C .332(1-4-n )D .332(1-2-n ) 二、填空题11.设等比数列{a n }的公比为q ,前n 项和为S n ,若S n +1,S n ,S n +2成等差数列,则q 的值为 .12.设{a n }是公比为q 的等比数列,S n 是它的前n 项和,若{S n }是等差数列,则q =_____.13.已知数列{a n }中,a n = 1221-n n 则a 9= (用数字作答),设数列{a n }的前n 项和为S n ,则S 9= (用数字作答).14.已知等比数列{a n }的前10项和为32,前20项和为56,则它的前30项和为 . 15.在等比数列{a n }中,若a 1+a 2+a 3=8,a 4+a 5+a 6=-4,则a 13+a 14+a 15= ,该数列的前15项的和S 15= .16.等比数列{a n }的公比q >0,已知a 2=1,a n +2+a n +1=6a n ,则{a n }的前4项和S 4= .三、解答题17.设数列{a n }是公差不为零的等差数列,S n 是数列{a n }的前n 项和,且21S =9S 2,S 4=4S 2,求数列{a n }的通项公式.(n 为正奇数) (n 为正偶数)18.设{a n }是一个公差为d (d ≠0)的等差数列,它的前10项和S 10=110且a 1,a 2,a 4成等比数列.(1)证明a 1=d ;(2)求公差d 的值和数列{a n }的通项公式.19.在等差数列{a n }中,公差d ≠0,a 1,a 2,a 4成等比数列.已知数列a 1,a 3,1k a ,2k a ,…,n a k ,…也成等比数列,求数列{k n }的通项k n .20.在数列{a n }中,S n +1=4a n +2,a 1=1. (1)设b n =a n +1-2a n ,求证数列{b n }是等比数列; (2)设c n =n na 2,求证数列{c n }是等差数列; (3)求数列{a n }的通项公式及前n 项和的公式.参考答案一、选择题 1.A解析:由等差数列的求和公式可得63S S =d a da 1563311++=31,可得a 1=2d 且d ≠0所以126S S =d a da 661215611++=d d 9027=103. 2.B解析:解法1:设等比数列{a n }的公比为q ,等差数列{b n }的公差为d ,由a 6=b 7,即a 1q 5=b 7. ∵ b 4+b 10=2b 7,∴ (a 3+a 9)-(b 4+b 10)=(a 1q 2+a 1q 8)-2b 7 =(a 1q 2+a 1q 8)-2a 1q 5 =a 1q 2(q 6-2q 3+1) =a 1q 2(q 3-1)2≥0. ∴ a 3+a 9≥b 4+b 10. 解法2:∵ a 3·a 9=a 26,b 4+b 10=2b 7,∴ a 3+a 9-(b 4+b 10)=a 3+a 9-2b 7.又a 3+a 9-293a a ⋅=(3a -9a )2≥0, ∴ a 3+a 9≥293 a a ·.∵ a 3+a 9-2b 7≥293a a ⋅-2b 7=2a 6-2a 6=0, ∴ a 3+a 9≥b 4+b 10. 3.C解析:∵ a 1+a 2 008=a 1 003+a 1 006=a 1 004+a 1 005, 而a 1 003+a 1 004+a 1 005+a 1 006=18,a 1+a 2 008=9, ∴ S 2 008=21(a 1+a 2 008)×2 008=9 036,故选C . 4.B解析:∵ a ,b ,c 成等差数列,∴ 2b =a +c , 又S △ABC =21ac sin 30°=23,∴ ac =6, ∴ 4b 2=a 2+c 2+12,a 2+c 2=4b 2-12, 又b 2=a 2+c 2-2ac cos 30°=4b 2-12-63, ∴ 3b 2=12+63,b 2=4+23=(1+3)2. ∴ b =3+1.5.A解析:题中所给圆是以(5,0)为圆心,5为半径的圆,则可求过(5,3)的最小弦长为8,最大弦长为10,∴ a k -a 1=2,即(k -1)d =2,k =d2+1∈[5,7], ∴ k ≠4. 6.A解析:∵ a 7+a 9=a 4+a 12=16,a 4=1,∴ a 12=15. 7.A解析:∵ a 2+a 6=2a 4,a 5+a 10+a 15=3a 10, ∴ 6a 4+6a 10=24,即a 4+a 10=4, ∴ S 13=2+13131)(a a =2+13104)(a a =26. 8.B解析:∵ ⎩⎨⎧78=++24=-++209118321a a a a a a∴ (a 1+a 20)+(a 2+a 19)+(a 3+a 18)=54, 即3(a 1+a 20)=54, ∴ a 1+a 20=18, ∴ S 20=2+20201)(a a =180. 9.C解析: 因数列{a n }为等比数列,则a n =2q n -1.因数列{a n +1}也是等比数列, 则(a n +1+1)2=(a n +1)(a n +2+1)⇒21+n a +2a n +1=a n a n +2+a n +a n +2⇒a n +a n +2=2a n +1⇒a n (1+q 2-2q )=0⇒(q -1)2=0⇒q =1.由a 1=2得a n =2,所以S n =2n . 10.C解析:依题意a 2=a 1q =2,a 5=a 1q 4=41,两式相除可求得q =21,a 1=4,又因为数列{a n }是等比数列,所以{a n ·a n +1}是以a 1a 2为首项,q 2为公比的等比数列,根据等比数列前n 项和公式可得222111qq a a n-)-(=332(1-4-n ).二、填空题 11.-2.解析:当q =1时,S n +1+S n +2=(2n +3)a 1≠2na 1=2S n ,∴ q ≠1. 由题意2S n =S n +1+S n +2⇒S n +2-S n =S n -S n +1, 即-a n +1=a n +2+a n +1,a n +2=-2a n +1,故q =-2. 12.1.解析:方法一 ∵ S n -S n -1=a n ,又S n 为等差数列,∴ a n 为定值. ∴ {a n }为常数列,q =1-n n a a =1.方法二:a n 为等比数列,设a n =a 1q n -1,且S n 为等差数列,∴ 2S 2=S 1+S 3,2a 1q +2a 1=2a 1+a 1+a 1q +a 1q 2,q 2-q =0,q =0(舍)q =1. 所以答案为1. 13.256,377. 解析:a 9=28=256,S 9=(a 1+a 3+a 5+a 7+a 9)+(a 2+a 4+a 6+a 8)=(1+22+24+26+28)+(3+7+11+15) =341+36 =377. 14.74.解析:由{a n }是等比数列,S 10=a 1+a 2+…+a 10,S 20-S 10=a 11+a 12+…+a 20=q 10S 10,S 30-S 20=a 21+a 22+…+a 30=q 20S 10,即S 10,S 20-S 10,S 30-S 20也成等比数列,得(S 20-S 10)2=S 10(S 30-S 20),得(56-32)2=32(S 30-56),∴ S 30=3232-562)(+56=74.15.21,211.解析:将a 1+a 2+a 3=8, ① a 4+a 5+a 6=-4.②两式相除得q 3=-21,∴ a 13+a 14+a 15=(a 1+a 2+a 3) q 12=8·421-⎪⎭⎫ ⎝⎛=21,S 15=21+121--185⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛=211. 16.152.解析:由a n +2+a n +1=6a n 得q n +1+q n =6q n -1,即q 2+q -6=0,q >0,解得q =2,又a 2=1,所以a 1=21,S 4=2121214-)-(=152.三、解答题17.解析:设等差数列{a n }的公差为d ,由前n 项和的概念及已知条件得a 21=9(2a 1+d ),① 4a 1+6d =4(2a 1+d ).②由②得d =2a 1,代入①有21a =36a 1,解得a 1=0或a 1=36. 将a 1=0舍去. 因此a 1=36,d =72,故数列{a n }的通项公式a n =36+(n -1)·72=72n -36=36(2n -1).18.解析:(1)证明:因a 1,a 2,a 4成等比数列,故22a =a 1a 4,而{a n }是等差数列,有a 2=a 1+d ,a 4=a 1+3d ,于是(a 1+d )2=a 1(a 1+3d ), 即21a +2a 1d +d 2=21a +3a 1d .d ≠0,化简得a 1=d .(2)由条件S 10=110和S 10=10a 1+d 2910⨯,得到10a 1+45d =110, 由(1),a 1=d ,代入上式得55d =110,故d =2,a n =a 1+(n -1)d =2n . 因此,数列{a n }的通项公式为a n =2n (n =1,2,3,…).19.解析;由题意得22a =a 1a 4,即(a 1+d )2=a 1(a 1+3d ),d (d -a 1)=0, 又d ≠0,∴ a 1=d .又a 1,a 3,1k a ,2k a ,…,n a k ,…,成等比数列, ∴ 该数列的公比为q =13a a =dd3=3, ∴ n a k =a 1·3n +1.又n a k =a 1+(k n -1)d =k n a 1, ∴ k n =3n +1为数列{k n }的通项公式. 20.解析:(1)由a 1=1,及S n +1=4a n +2,有a 1+a 2=4a 1+2,a 2=3a 1+2=5,∴ b 1=a 2-2a 1=3. 由S n +1=4a n +2 ①,则当n ≥2时,有S n =4a n -1+2. ② ②-①得a n +1=4a n -4a n -1,∴ a n +1-2a n =2(a n -2a n -1).又∵ b n =a n +1-2a n ,∴ b n =2b n -1.∴ {b n }是首项b 1=3,公比为2的等比数列. ∴ b n =3×2 n -1.(2)∵ c n =n na 2,∴ c n +1-c n =112++n n a -n n a 2=1122++-n n n a a =12+n nb =11223+-⨯n n =43,c 1=21a =21,∴ {c n }是以21为首项,43为公差的等差数列.(3)由(2)可知数列⎭⎬⎫⎩⎨⎧n n a 2是首项为21,公差为43的等差数列. ∴nn a 2=21+(n -1)43=43n -41,a n =(3n -1)·2n -2是数列{a n }的通项公式. 设S n =(3-1)·2-1+(3×2-1)·20+…+(3n -1)·2n -2.S n =2S n -S n=-(3-1)·2-1-3(20+21+…+2n -2)+(3n -1)·2n -1=-1-3×12121---n +(3n -1)·2n -1=-1+3+(3n -4)·2n -1 =2+(3n -4)·2n -1.∴ 数列{a n }的前n 项和公式为S n =2+(3n -4)·2n -1.。
人教版高中数学必修5《数列》练习题(有答案)
必修5 数列2.等差数列{}n a 中,()46810129111120,3a a a a a a a ++++=-则的值为A .14B .15C .16D .173.等差数列{}n a 中,12910S S a =>,,则前 项的和最大.解:0912129=-=S S S S , 10111211111030,00a a a a a a ∴++=∴=∴=>,,又4.已知等差数列{}n a 的前10项和为100,前100项和为10,则前110项和为 .解:∵ ,,,,,1001102030102010S S S S S S S ---成等差数列,公差为D 其首项为10010=S ,6.设等差数列{}n a 的前n 项和为n S ,已知001213123<>=S S a ,,.①求出公差d 的范围;②指出1221S S S ,,, 中哪一个值最大,并说明理由. 解:①)(6)(610312112a aa a S +=+=36(27)0a d =+>②12671377666()013000S a a S a a a S =+>=<∴<>∴, 最大。
1. 已知等差数列{}n a 中,12497116a a a a ,则,===+等于( ) A .15 B .30 C .31 D .64794121215a a a a a +=+∴= A2. 设n S 为等差数列{}n a 的前n 项和,971043014S S S S ,则,=-== .543. 已知等差数列{}n a 的前n 项和为n S ,若=+++=118521221a a a a S ,则 . 4. 等差数列{}n a 的前n 项和记为n S ,已知50302010==a a ,. ①求通项n a ;②若n S =242,求n . 解:d n a a n )1(1-+=111020193012305021019502n a d a a a a n a d d +==⎧⎧==∴∴=+⎨⎨+==⎩⎩,解方程组5.甲、乙两物体分别从相距70m 的两处同时相向运动,甲第一分钟走2m ,以后每分钟比前一分钟多走1m ,乙每分钟走5m ,①甲、乙开始运动后几分钟相遇? ②如果甲乙到对方起点后立即折返,甲继续每分钟比前一分钟多走1m ,乙继续每分钟走5m ,那么,开始运动几分钟后第二次相遇?故第一次相遇是在开始运动后7分钟. 故第二次相遇是在开始运动后15分钟 10.已知数列{}n a 中,,31=a 前n 和1)1)(1(21-++=n n a n S . ①求证:数列{}n a 是等差数列; ②求数列{}n a 的通项公式; ③设数列⎭⎬⎫⎩⎨⎧+11n n a a 的前n 项和为n T ,是否存在实数M ,使得M T n ≤对一切正整数n 都成立? 若存在,求M 的最小值,若不存在,试说明理由.12122(1)(1)()2n n n n n n n a n a a a a a ++++∴+=++∴=+ ∴数列{}n a 为等差数列.②1)1(311-+==+n n a n na a ,{}212121522n a a a a a ∴=-=∴-=即等差数列的公差为1(1)3(1)221n a a n d n n ∴=+-=+-⋅=+121n +++,要使得T n n 都成立,三、等比数列 知识要点1. 定义:如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,记为()0q q ≠,.2. 递推关系与通项公式mn m n n n n n q a a q a a qa a --+⋅=⋅==推广:通项公式:递推关系:111 3. 等比中项:若三个数c b a ,,成等比数列,则称b 为a 与c 的等比中项,且ac b ac b =±=2,注:是成等比数列的必要而不充分条件. 4. 前n 项和公式)1(11)1()1(111≠⎪⎩⎪⎨⎧--=--==q q qa a q q a q na S n n n5. 等比数列的基本性质,),,,(*∈N q p n m 其中①q p n m a a a a q p n m ⋅=⋅+=+,则若,反之不成立! ②)(2*+--∈⋅==N n a a a a a qm n m n n mn mn , ③{}n a 为等比数列,则下标成等差数列的对应项成等比数列.④若项数为()*2n n N ∈,则S q S =偶奇.⑤nn m n m S S q S +=+⋅.⑥ ,,,时,n n n n n S S S S S q 2321---≠仍成等比数列. 6. 等比数列与等比数列的转化 ①{}n a 是等差数列⇔{})10(≠>c c cna ,是等比数列;②{}n a 是正项等比数列⇔{})10(log ≠>c c a n c ,是等差数列;③{}n a 既是等差数列又是等比数列⇔{}n a 是各项不为零的常数列. 7. 等比数列的判定法 ①定义法:⇒=+(常数)q a a nn 1{}n a 为等比数列; ②中项法:⇒≠⋅=++)0(221n n n n a a a a {}n a 为等比数列;③通项公式法:⇒⋅=为常数)q k q k a nn ,({}n a 为等比数列; ④前n 项和法:⇒-=为常数)(q k q k S nn ,)1({}n a 为等比数列. 性质运用1.103107422222)(++++++=n n f 设()()()n N f n *∈,则等于1342222(81)(81)(81)(81)7777n n n n A B C D +++----....D2.已知数列{}n a 是等比数列,且===m m m S S S 323010,则, .3.⑴在等比数列{}n a 中,143613233+>==+n n a a a a a a ,,. ①求n a ,②若n n n T a a a T 求,lg lg lg 21+++= .⑵在等比数列{}n a 中,若015=a ,则有等式n n a a a a a a -+++=+++292121)29(*∈<N n n ,成立,类比上述性质,相应的在等比数列{}n b 中,若119=b ,则有等式成立.解:⑴①由等比数列的性质可知:16341616163233321a a a a a a a a a a ⋅=⋅=+=>==又,解得,②由等比数列的性质可知,{}n a lg 是等差数列,因为⑵由题设可知,如果0=m a 在等差数列中有n m n a a a a a a --+++=+++122121)12(*∈-<N n m n ,成立,我们知道,如果q p n m a a a a q p n m +=++=+,则若,而对于等比数列{}n b ,则有q p n m a a a a q p n m ⋅=⋅+=+,则若所以可以得出结论,若n m n m b b b b b b b --==1221211 ,则有)12(*∈-<N n m n ,成立,在本题中 n n b b b b b b -=372121 则有)37(*∈<N n n ,1.{a n }是等比数列,下面四个命题中真命题的个数为 ( ) ①{a n 2}也是等比数列;②{ca n }(c ≠0)也是等比数列;③{na 1}也是等比数列;④{ln a n }也是等比数列. A .4 B .3C .2D .12.等比数列{a n }中,已知a 9 =-2,则此数列前17项之积为 ( ) A .216 B .-216 C .217 D .-2173.等比数列{a n }中,a 3=7,前3项之和S 3=21, 则公比q 的值为 ( )A .1B .-21 C .1或-1 D .-1或214.在等比数列{a n }中,如果a 6=6,a 9=9,那么a 3等于 ( )A .4B .23 C .916 D .25.若两数的等差中项为6,等比中项为5,则以这两数为两根的一元二次方程为 ( )A .x 2-6x +25=0B .x 2+12x +25=0C .x 2+6x -25=0D .x 2-12x +25=06.某工厂去年总产a ,计划今后5年内每一年比上一年增长10%,这5年的最后一年该厂的总产值是 ( )A .1.1 4 aB .1.1 5 aC .1.1 6 aD .(1+1.1 5)a7.等比数列{a n }中,a 9+a 10=a (a ≠0),a 19+a 20=b ,则a 99+a 100等于 ( ) A .89abB .(ab )9C .910abD .(ab )108.已知各项为正的等比数列的前5项之和为3,前15项之和为39,则该数列的前10项之和为( )A .32B .313C .12D .159.某厂2001年12月份产值计划为当年1月份产值的n 倍,则该厂2001年度产值的月平均增长率为 ( ) A .11n B .11n C .112-n D .111-n10.已知等比数列{}n a 中,公比2q =,且30123302a a a a ⋅⋅⋅⋅=,那么36930a a a a ⋅⋅⋅⋅等于 ( )A .102 B .202 C .162 D .15211.等比数列的前n 项和S n =k ·3n +1,则k 的值为 ( )A .全体实数B .-1C .1D .312.某地每年消耗木材约20万3m ,每3m 价240元,为了减少木材消耗,决定按%t 征收木材税,这样每年的木材消耗量减少t 25万3m ,为了既减少木材消耗又保证税金收入每年不少于90万元,则t 的范围是 ( )A .[1,3]B .[2,4]C .[3,5]D .[4,6]一、选择题: BDCAD BACDB BC13.在等比数列{a n }中,已知a 1=23,a 4=12,则q =_____ ____,a n =____ ____.14.在等比数列{a n }中,a n >0,且a n +2=a n +a n +1,则该数列的公比q =___ ___.15.在等比数列{a n }中,已知a 4a 7=-512,a 3+a 8=124,且公比为整数,求a 10= .16.数列{n a }中,31=a 且n a a n n (21=+是正整数),则数列的通项公式=n a .二、填空题:13.2, 3·2n -2. 14.251+.15.512 .16.123-n . 17.已知数列满足a 1=1,a n +1=2a n +1 (n ∈N *).(1)求证数列{a n +1}是等比数列;(2)求{a n }的通项公式. (1)证明由a n +1=2a n +1得a n +1+1=2(a n +1)又a n +1≠0 ∴111+++n n a a =2即{a n +1}为等比数列.(2)解析: 由(1)知a n +1=(a 1+1)q n-1即a n =(a 1+1)q n -1-1=2·2n -1-1=2n -118.在等比数列{a n }中,已知对n ∈N *,a 1+a 2+…+a n =2n -1,求a 12+a 22+…+a n 2.解析: 由a 1+a 2+…+a n =2n -1 ① n ∈N *,知a 1=1且a 1+a 2+…+a n -1=2n -1-1 ②由①-②得a n =2n -1,n ≥2 又a 1=1,∴a n =2n -1,n ∈N *212221)2()2(-+=n n nn a a =4 即{a n 2}为公比为4的等比数列 ∴a 12+a 22+…+a n 2=)14(3141)41(21-=--nn a 19.在等比数列{a n }中,已知S n =48,S 2n =60,求S 3n .解析一: ∵S 2n ≠2S n ,∴q ≠1 根据已知条件121(1)481(1)601n na q qa q q ⎧-=⎪-⎪⎨-=⎪⎪-⎩①②②÷①得:1+q n =45即q n =41 ③ ③代入①得q a -11=64 ④解析二:∵{a n}为等比数列∴(S2n-S n)2=S n(S3n-S2n)20.求和:S n=1+3x+5x2+7x3+…+(2n-1)x n-1 (x≠0).解析:当x=1时,S n=1+3+5+…+(2n-1)=n2当x≠1时,∵S n=1+3x+5x2+7x3+…+(2n-1)x n-1,①等式两边同乘以x得:xS n=x+3x2+5x3+7x4+…+(2n-1)x n.②21.在等比数列{a n}中,a1+a n=66,a2·a n-1=128,且前n项和S n=126,求n及公比q.解析:∵a1a n=a2a n-1=128,又a1+a n=66,∴a1、a n是方程x2-66x+128=0的两根,解方程得x1=2,x2=64,∴a1=2,a n=64或a1=64,a n=2,显然q≠1.22.某城市1990年底人口为50万,人均住房面积为16 m2,如果该市每年人口平均增长率为1%,每年平均新增住房面积为30万m2,求2000年底该市人均住房的面积数.(已知1.015≈1.05,精确到0.01 m2)解析:依题意,每年年底的人口数组成一个等比数列{a n}:a1=50,q=1+1%=1.01,n=11 则a11=50×1.0110=50×(1.015)2≈55.125(万),又每年年底的住房面积数组成一个等差数列{b n}:b1=16×50=800,d=30,n=11∴b11=800+10×30=1100(万米2)因此2000年底人均住房面积为:1100÷55.125≈19.95(m2)。
人教版高中数学必修5《数列》练习题(有答案).doc
必修5報列2.等并数列{。
“}中,+。
10 +。
12 = 120,则色―3。
11 的值为()■丿A. 14B. 15C. 16D. 171 12 2 2 120偽―3勺严兔一3(兔+2〃)=3(為—⑴乙兔=3, 5 =16 c3.等差数列仏}中,⑷〉0, 59 = 512,贝愉______________ 项的和最大.解:T S9 = S[2, S]? — S9 = 0 /.a10+比[+d[2 = °八・3角1 = 0, ?. a n = 0,又q > 0・•・&”}为递减等差数列A 510 =S H为最大.10或114.已知等差数列{心}的前10项和为100,前100项和为10,则前110项和为________ .解:V510, S20-S10, S30-S20,---, S110-S100,…成等差数列,公差为D 其首项为510 =100,10x9前10 项的和为5100 = 10 ・・・ 100x10 + - xD = 10,D = -22 XS ll0-5100 = 510 + 10D25110 =100 + 10 + 10-(-22) = -110 _1106.设等差数列{%}的前〃项和为S”,已知山=12,S】2>0, 513 < 0 .①求出公差d的范围;②指出S|, S2,…,5I2'P哪一个值最人,并说明理由.解:①= 6(Q] +Qi2)= 6(。
3 +。
1(>) = 6(2^3 +7d) > 0・•・24 + 7d >0 .\d>-24又§3」3⑷ + %)= 13a + j = 13仪禺 + 8d) v07 2 2 224.・.24 + 8dv0 .・.dv-3 从而一<d <—37②S|? = 6(%+吗)> 0 S13 = 13tz7 < 0 /. a7 < 0, a6>056最大。
高一数学《必修五》数列测试题(含答案)
7 n 2 , 则 a5 =___________ . n 3 b5
14、数列 a n 的前 n项的和 Sn 3n n 1 ,则此数列的通项公式 a n=_
.
15、数列 a n 中, a1 1, an
1 1 ,则 a4
.
an 1
16、设 Sn 是等差数列 an 的前 n 项和,且 S5 S6 S7 S8 ,则下列结论一定正确的有
3、已知 a
1 ,b
32
1 , 则 a,b 的等差中项为(
32
A)
A. 3
B. 2
1
C.
3
1
D.
2
4、已知等差数列 { a n} 的前 n 项和为 Sn,若 a4 18 a5 ,则 S8 等于( D )
A . 18
B. 36
C. 54
D . 72
5、设 a1,a 2 , a3, a 4成等比数列,其公比为 2,则 2a1 a 2 的值为( A ) 2 a3 a 4
(Ⅱ )若列数{ bn}满足
b1=1, bn+1=bn+ 2an ,求证:
bn
·bn+2
<
b
2 n+1
.
解析:(Ⅰ)由已知得 an+1=an+1
即 an+1-an=1 又 a1=1,所以数列{ an}是以 1 为首项,公差为 故 an=1+( n-1) ×1=n. (Ⅱ ) 由(Ⅰ)知: an=n 从而 bn+1-bn=2n. bn=(bn-bn-1)+( bn-1-bn-2)+ ···+( b2-b1)+b1
,
且
a1
a n , 解得 a1
(好题)高中数学必修五第一章《数列》测试卷(包含答案解析)
一、选择题1.已知数列{}n a 的前n 项和为n S ,11a =,23a =,且()11222n n nn S S S n +-+=+≥,若()()72n n S a n λλλ-++≥-对任意*n ∈N 都成立,则实数λ的最小值为( ) A .52-B .116C .332D .12.设首项为1的数列{}n a 的前n 项和为n S ,且113,2,23,21,n n n a n k k N a a n k k N *-*-⎧+=∈=⎨+=+∈⎩,若4042m S >,则正整数m 的最小值为( )A .14B .15C .16D .173.数列{}n a 中,11a =,113,3,3n n n n a N a n a N *+*-⎧+∉⎪⎪=⎨⎪∈⎪⎩,使2021n a <对任意的()n k k *≤∈N 恒成立的最大k 值为( ) A .1008B .2016C .2018D .20204.2020年12月17日凌晨1时59分,嫦娥五号返回器携带月球样品成功着陆,这是我国首次实现了地外天体采样返回,标志着中国航天向前又迈出了一大步.月球距离地球约38万千米,有人说:在理想状态下,若将一张厚度约为0.1毫米的纸对折n 次其厚度就可以超过到达月球的距离,那么至少对折的次数n 是( )(lg 20.3≈,lg3.80.6≈) A .40B .41C .42D .435.已知数列{}n a 中,13n n a S +=,则下列关于{}n a 的说法正确的是( ) A .一定为等差数列 B .一定为等比数列C .可能为等差数列,但不会为等比数列D .可能为等比数列,但不会为等差数列6.记n S 为等比数列{}n a 的前n 项和.若2342S S S =+,12a =,则2a =( ) A .2B .-4C .2或-4D .47.在等差数列{}n a 中,0n a ≠,()21102n n n a a a n -+-+=≥,若2138n S -=,则n =( ).A .38B .20C .10D .98.记数列{}n a 前n 项和为n S ,若1,n a ,n S 成等差数列,且数列()()11211n n n a a a +++⎧⎫⎪⎪⎨⎬--⎪⎪⎩⎭的前n 项和n T 对任意的*n N ∈都有210n T λ-+≥恒成立,则λ的取值范围为( )A .1,6⎛⎤-∞ ⎥⎝⎦B .1,2⎛⎤-∞ ⎥⎝⎦C .5,6D .(],1-∞9.已知数列{}n a 的前n 项的和为n S ,且()23n n S a n n N *=-∈,则( ) A .{}n a 为等比数列 B .{}n a 为摆动数列 C .1329n n a +=⨯-D .6236n n S n =⨯--10.若{}n a 是等比数列,其公比是q ,且546,,a a a -成等差数列,则q 等于( ) A .-1或2B .1或-2C .1或2D .-1或-211.若n S 是等比数列{}n a 的前项和,3S ,9S ,6S 成等差数列,且82a =,则25a a +=( ) A .12-B .4-C .4D .1212.等差数列{}n a 的前n 项和为n S ,已知32110S a a =+,534a =,则1a =( ) A .2B .3C .4D .5二、填空题13.数列{}n a 中,1111,,21n n n a a a a --==+则n a =_____________.14.设数列{}2()n n n a +是等比数列,且116a =,2154a =,则数列{3}n n a 的前15项和为__________.15.在数列{}n a 中,已知11a =,()()122122n n n a a a a a n --=++++≥,则n a =____________.16.在数列{a n }中,已知a 1=1,1(1)sin 2n n n a a π++-=,记S n 为数列{a n }的前n 项和,则S 2019=______17.等比数列{}n a 的各项均为正数,且2414a a =,则2122232425log log log log log a a a a a ++++=___________.18.设,n n S T 分别是等差数列{}{},n n a b 的前n 项和,已知()*2142n n S n n N T n +=∈-,则10317a b b =+_________.19.已知数列{}n a 的首项1a a =,其前n 项和为n S ,且满足()2*12,n n S S n n n N -+=≥∈,若对任意*n N ∈,1n n a a +<恒成立,则a 的取值范围是___________.20.设无穷数列{a n }的前n 项和为S n ,下列有三个条件: ①m n m n a a a +⋅=;②S n =a n +1+1,a 1≠0;③S n =2a n +1p(p 是与n 无关的参数).从中选出两个条件,能使数列{a n }为唯一确定的等比数列的条件是______.三、解答题21.已知数列{}n a 满足:*111,21,n n a a a n n N +=-=-∈(1)证明{}n a n +是等比数列,并求出数列{}n a 的通项公式; (2)设21,n n n n b S a n+=+为数列{}n b 的前n 项和,求n S 22.在数列{}n a 中,11a =,()*21221,,k k k a a a k N -+∈成等比数列,公比为0k q >.(Ⅰ)若2k q =,求13521k a a a a -+++⋅⋅⋅+; (Ⅱ)若()*22122,,k k k a a a k N ++∈成等差数列,公差为k d ,设11k k b q =-. ①求证:{}n b 为等差数列;②若12d =,求数列{}k d 的前k 项和k D . 23.在①数列{}n a 为递增的等比数列,且2312a a +=,②数列{}n a 满足122n n S S +-=,③数列{}n a 满足1121222n n n n a a a na -++++=这三个条件中任选一个,补充在下面问题中,再完成解答.问题:设数列{}n a 的前n 项和为n S ,12a =,__________. (1)求数列{}n a 的通项公式; (2)设2221log log n n n b a a +=⋅,求数列{}n b 的前n 项和n T .24.在①246a a +=,945S =②222n n n S =+③()121n n a n n a n -=≥-,11a =这三个条件中任选一个补充在下面的问题中,并加以解答.设等差数列{}n a 的前n 项和为n S ,________,数列{}n b 为等比数列,112b a =,222a b =,求数列{}n n a b 的前n 项和n T .25.从①()*123(1)2n n n b b b b n +++++=∈N ,②{}n b 为等差数列且215227b b b =+=,,这两个条件中选择一个条件补充到问题中,并完成解答.问题:已知数列{}{},n n a b 满足2n bn a =,且___________. (1)证明:数列{}n a 为等比数列;(2)若m c 表示数列{}n b 在区间()0,m a 内的项数,求数列{}m c 前m 项的和m T . 26.已知数列{}n a 的前n 项和()2*N n S nn =∈,{}n b 是递增等比数列,且11b a =,35b a =.(1)求数列{}n a 和{}n b 的通项公式;(2)若()*N n n n c a b n =⋅∈,求数列{}n c 的前n 项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由n S 与n a 的关系得21nn a =-,则272n maxn λ-⎛⎫≥⎪⎝⎭,设272n nn c -=,利用数列的单调性即可求解. 【详解】解:数列{}n a 的前n 项和为n S ,11a =,23a =,且()11222n n nn S S S n +-+=+≥, 所以112nn n n n S S S S +--=+-,故()122nn n a a n +-=≥,因为1212a a -=,所以()121nn n a a n +-=≥,所以112n n n a a ---=,2122n n n a a ----=,⋯,1212a a -=, 则1211222n n a a --=++⋯+,故11211222121n n n n a --=++⋯+==--, 所以()123122122222221n n n nS n n n +-=+++⋯+-=-=---,所以21nn n S a n -=--,因为()()72n n S a n λλλ-++≥-对任意*n N ∈都成立, 所以272nmaxn λ-⎛⎫≥ ⎪⎝⎭. 设272n n n c -=,则111252792222n n n nn n n nc c +++----=-=,当4n ≤时,1n n c c +>,当5n ≥时,1n n c c +<, 因此1234567c c c c c c c <<⋯<><> 即5332c λ≥=,故λ的最小值为332. 故选:C 【点睛】本题解答的关键利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩求出数列n a 的递推公式,再利用累加法求出na 的通项;2.C解析:C 【分析】根据已知递推关系求出数列{}n a 的奇数项加9成等比数列,偶数项加6成等比数列,然后求出2n S 后,检验141615,,S S S 可得. 【详解】当n 为奇数时,122232(3)329n n n n a a a a ---=+=++=+,所以292(9)n n a a -+=+,又1910a +=,所以1359,9,9,a a a +++成等比数列,公比为2,1219102n n a --+=⨯,即1211029n n a --=⨯-,当n 为偶数时,122323326n n n n a a a a ---=+=++=+,所以262(6)n n a a -+=+,又2134a a =+=,所以2469,9,9,a a a +++成等比数列,公比为2,126102n n a -+=⨯,即121026n n a -=⨯-,所以210(12)10(12)9620220151212n n n n S n n n --=-+-=⨯----,714202201572435S =⨯--⨯=,816202201584980S =⨯--⨯=, 7151415243510293706S S a =+=+⨯-=,所以满足4042m S >的正整数m 的最小值为16. 故选:C . 【点睛】关键点点睛:本题考查由数列的递推关系求数列的和.解题关键是分类讨论,确定数列的奇数项与偶数项分别满足的性质,然后结合起来求得数列的偶数项的和2n S ,再检验n 取具体数值的结论.3.C解析:C 【分析】根据数列的通项公式,列出各项,找数列的规律,判断到哪一项是大于2021,即可得答案. 【详解】由已知可得,数列{}n a :1,4,7,4,7,10,7,10,13,,可得规律为1,4,7,4,7,10,7,10,13……此时将原数列分为三个等差数列:1,4,7,n a n =,{}31,n n n m m N ∈=+∈;4,7,10,2n a n =+,{}32,n n n m m N ∈=+∈;7,10,13,4n a n =+,{}33,n n n m m N ∈=+∈,当673m =时,312020n m =+=,即2020202120222020,2023,2026a a a ===. 而672m =时,312017n m =+=,即2017201820192017,2020,2023a a a ===, 所以满足2021n a <对任意的()n k k *≤∈N 恒成立的最大k 值为2018.故选:C. 【点睛】关于数列的项的判断,一般有两种题目类型,一种是具有周期的数列,可以通过列出前几项找出数列的周期,利用周期判断;另一种是数列的项与项之间存在规律,需要通过推理判断项与项之间的规律从而得数列的通项.4.C解析:C 【分析】设对折n 次时,纸的厚度为n a ,则{}n a 是以10.12a =⨯为首项,公比为2的等比数列,求出{}n a 的通项,解不等式460.12381010n n a =⨯≥⨯⨯即可求解【详解】设对折n 次时,纸的厚度为n a ,每次对折厚度变为原来的2倍, 由题意知{}n a 是以10.12a =⨯为首项,公比为2的等比数列,所以10.1220.12n nn a -=⨯⨯=⨯,令460.12381010n n a =⨯≥⨯⨯,即122 3.810n ≥⨯,所以lg 2lg 3.812n≥+,即lg 20.612n ≥+,解得:12.6420.3n ≥=, 所以至少对折的次数n 是42,故选:C 【点睛】关键点点睛:本题解题的关键是根据题意抽象出等比数列的模型,求出数列的通项,转化为解不等式即可.5.C解析:C【分析】根据13n n a S +=得14n n S S +=,分类讨论当10S =和10S ≠两种情况分析得数列{}n a 可能为等差数列,但不会为等比数列. 【详解】解:13n n a S +=,13n n n S S S +∴=-, 14n n S S +∴=,若10S =,则数列{}n a 为等差数列;若10S ≠,则数列{}n S 为首项为1S ,公比为4的等比数列,114n n S S -∴=⋅,此时21134n n n n a S S S -==-⋅﹣(2n ≥),即数列从第二项起,后面的项组成等比数列.综上,数列{}n a 可能为等差数列,但不会为等比数列. 故选:C. 【点睛】本题考查等差数列、等比数列的判断,考查学生分析解决问题的能力,正确分类讨论是关键.6.B解析:B 【分析】利用等比数列的前n 项和公式求出公比,由此能求出结果. 【详解】∵n S 为等比数列{}n a 的前n 项和,2342S S S =+,12a =,∴()()()34212122211q q q qq--+=+--,解得2q =-,∴214a a q ==-,故选B . 【点睛】本题主要考查等比数列的性质以及其的前n 项和等基础知识,考查运算求解能力,是基础题.7.C解析:C 【分析】由2110n n n a a a -+-+=,可得2112n n n n a a a a -++==,得到2n a =,再根据等差数列的求和公式,得到2138(21)n n n S a --==,代入即可求解,得到答案. 【详解】由题意,等差数列{}n a 中,()21102n n n a a a n -+-+=≥,可得2112n n n n a a a a -++==,又0,n a ≠解得2n a =, 又由12121(21)()(2)3812n n n n a a n a S ---+==-=,即(21)823n -⨯=,解得10n =,故选C . 【点睛】本题主要考查了等差数列的性质,以及等差数列的求和公式的应用,其中解答中熟记等差数列的性质,求得2n a =和2138(21)n n n S a --==是解答本题的关键,着重考查了推理与运算能力,属于基础题.8.C解析:C 【分析】直接利用递推关系式的应用求出数列的通项公式,进一步利用裂项相消法的应用和分离参数法及函数的恒成立问题的应用求出参数的取值范围. 【详解】数列{}n a 前n 项和为n S ,若1,n a ,n S 成等差数列, 所以21n n a S =+①, 当1n =时,11a =.当2n ≥时,1121n n a S --=+②, ①﹣②得122n n n a a a --=,整理得12nn a a -=(常数), 所以数列{}n a 是以1为首项,2为公比的等比数列. 所以12n na .所以()()()()111122111121212121n n n n n n n n a a a +++++==-------,则1111111111337212121n n n n T ++=-+-++-=----. 由于对任意的*n N ∈都有210n T λ-+≥恒成立, 所以12n T λ+≥恒成立. 即()min 12n T λ+≥,当1n =时,()1min 5113n T T +=+=, 所以523λ≥,解得56λ≥, 所以5,6λ⎛⎤∈-∞ ⎥⎝⎦.故选:C 【点睛】本题主要考查了由递推关系式求数列的通项公式,考查了裂项求和以及恒成立问题,属于中档题.9.D解析:D 【分析】利用已知条件求出数列{}n a 的通项公式,再求出{}n a 的前n 项的和为n S ,即可判断四个选项的正误. 【详解】因为23n n S a n =-①,当1n =时,1123a a =-,解得:13a =, 当2n ≥时,()11231n n S a n --=--②,①-②得:1223n n n a a a -=--,即123n n a a -=+,所以()1323n n a a -+=+,所以{}3n a +是以6为首项,2为首项的等比数列,所以1362n n a -+=⨯,所以1623n n a -=⨯-,所以{}n a 不是等比数列,{}n a 为递增数列,故A B 、不正确,()11263623612n n n S n n ⨯-=⨯-=⨯---,故选项C 不正确,选项D 正确.故选:D 【点睛】本题主要考查了利用数列的递推公式求通项公式,考查了构造法,考查了分组求和,属于中档题.10.A解析:A 【解析】分析:由546,,a a a -成等差数列可得5642a a a -+=,化简可得()()120q q +-=,解方程求得q 的值. 详解:546,,a a a -成等差数列,所以5642a a a -+=,24442a q a q a ∴-+=,220q q ∴--=,()()120q q ∴+-=,1q ∴=-或2,故选A.点睛:本题考查等差数列的性质,等比数列的通项公式基本量运算,属于简单题. 等比数列基本量的运算是等比数列的一类基本题型,数列中的五个基本量1,,,,,n n a q n a S ,一般可以“知二求三”,通过列方程组所求问题可以迎刃而解,解决此类问题的关键是熟练掌握等比数列的有关性质和公式,并灵活应用.11.C解析:C 【分析】当公比q=1时,易推断不符合题意,故q 1≠,然后利用等比数列的前n 项和的公式和等差数列的性质得方程,再利用等比数列的性质求解. 【详解】设数列{}n a 的公比为q ,当1q =时,2n a =,则36S =,612S =,918S =,此时396,,S S S 不成等差数列,不符合题意,舍去;当1q ≠时,∵396,,S S S 成等差数列,∴3692S S S +=, 即()()()3691111112?111a q a q a q qq q---+=---,即96320q q q --=,解得312q =-或31q =(舍去)或30q =(舍去), ∴8268a a q ==,8534a a q==-,∴254a a +=,故选C. 【点睛】本题综合考查了等比数列与等差数列;在应用等比数列的前n 项和公式时,公比不能为1,故在解题过程中,应注意公比为1的这种特殊的等比数列,以防造成漏解.12.A解析:A 【解析】设等差数列{a n }的公差为d ,∵S 3=a 2+10a 1,a 5=34, ∴3a 1+3d =11a 1+d ,a 1+4d =34, 则a 1=2. 本题选择A 选项.二、填空题13.【分析】对两边取到数可得从而可得数列是等差数列求出数列的通项公式即可求出【详解】因为所以即又所以数列是以为首项2为公差的等差数列所以所以故答案为:【点睛】本题主要考查取到数构造新数列同时考查等差数列 解析:121n -【分析】 对1121n n n a a a --=+两边取到数可得1112n n a a --=,从而可得数列1{}n a 是等差数列,求出数列1{}na 的通项公式,即可求出n a . 【详解】 因为1121n n n a a a --=+,所以11121112n n n n a a a a ---+==+,即1112n n a a --=,又111a ,所以数列1{}na 是以1为首项,2为公差的等差数列, 所以11(1)221n n n a =+-⨯=-,所以121n a n =-. 故答案为:121n - 【点睛】本题主要考查取到数构造新数列,同时考查等差数列的概念及通项公式,属于中档题.14.【解析】等比数列首项为第二项为故是首项为公比为的等比数列所以所以其前项和为时为【点睛】本小题主要考查等比数列通项公式的求法考查利用裂项求和法求数列的前项和题目给定一个数列为等比数列并且给出和也就是要 解析:1516【解析】等比数列首项为1123a =,第二项为2169a =,故是首项为13,公比为13的等比数列.所以()21111333n n n nn a -+=⋅=,所以211131n n a n n n n ==-++,其前n 项和为111n -+,15n =时,为11511616-=. 【点睛】本小题主要考查等比数列通项公式的求法,考查利用裂项求和法求数列的前n 项和.题目给定一个数列()2n n n a +为等比数列,并且给出1a 和2a ,也就是要用这两项求得给定数列的第一和第二项,根据前两项求得等比数列的通项公式,由此得到211131n n a n n n n ==-++,利用裂项求和法求得数列的前n 项和. 15.【分析】(1)直接根据已知条件得到即进而求出数列的通项公式;再根据前项和与通项之间的关系即可求出数列的通项公式;【详解】∵∴数列是以为首项以3为公比的等比数列当时不适合上式数列的通项公式为故答案为:解析:21(1)23(2).n n n -=⎧⎨⋅⎩【分析】(1)直接根据已知条件得到112n n n S S S ---=,即13nn S S -=,进而求出数列{}n S 的通项公式;再根据前n 项和与通项之间的关系即可求出数列{}n a 的通项公式; 【详解】∵()()122122n n n a a a a a n --=++++≥,∴112n n n S S S ---=,∴13nn S S -=, ∴数列{}n S 是以111S a ==为首项,以3为公比的等比数列,13n n S -∴=.当2n 时,12213323n n n n n n a S S ----=-=-=⋅.11a =不适合上式,∴数列的通项公式为21(1)23(2).n n n a n -=⎧=⎨⋅⎩ 故答案为:21(1)23(2).n n n -=⎧⎨⋅⎩ 【点睛】本题考查递推公式求数列的通项公式,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意将数列写成分段的形式.16.1010【分析】推导出从而得到数列是一个以4为周期的数列由此能求出的值【详解】数列中;可以判断所以数列是一个以4为周期的数列故答案为:1010【点睛】本题考查数列的求和考查数列的周期性三角函数性质等解析:1010 【分析】 推导出1(1)sin2n n n a a π++=+,从而得到4n n a a +=,数列{}n a 是一个以4为周期的数列,由此能求出2019S 的值. 【详解】数列{}n a 中,11a =,1(1)sin2n n n a a π++-=, 1(1)sin2n n n a a π++∴=+, 21sin 1a a π∴=+=,323sin1102a a π=+=-=,43sin 20a a π=+=,545sin0112a a π=+=+=, 511a a ∴==;可以判断4n n a a +=,所以数列{}n a 是一个以4为周期的数列.201945043=⨯+,20191234122504()504(1100)1101010S a a a a a a a ∴=⨯++++++=⨯++++++=,故答案为:1010. 【点睛】本题考查数列的求和,考查数列的周期性、三角函数性质等基础知识,意在考查学生对这些知识的理解掌握水平.17.【分析】由题意利用等比数列的性质求得的值再利用对数的运算性质求得结果【详解】解:等比数列{an}的各项均为正数且∴则故答案为:【点睛】本题考查等比中项的性质考查运算求解能力求解时注意对数运算法则的运用 解析:5-【分析】由题意利用等比数列的性质求得3a 的值,再利用对数的运算性质,求得结果. 【详解】解:等比数列{a n }的各项均为正数, 且224314a a a ==,∴312a =, 则2122232425log log log log log a a a a a ++++523231og 5log 5(1)5a a ===⋅-=-,故答案为:5-. 【点睛】本题考查等比中项的性质,考查运算求解能力,求解时注意对数运算法则的运用.18.【分析】利用等差数列的性质得到再根据求解【详解】因为所以故答案为:【点睛】本题主要考查等差数列的性质以及前n 项和公式的应用还考查了运算求解的能力属于中档题 解析:39148【分析】利用等差数列的性质得到1013171191912a a a b b b b =⨯+++191912S T =⨯,再根据2142n n S n T n +=-求解.【详解】因为()*2142n n S n n N T n +=∈-, 所以()()110113171119191991921912221a a a b b b a b b b a =⨯=⨯+++++, 191911219139224192148S T ⨯+=⨯=⨯=⨯-, 故答案为:39148【点睛】本题主要考查等差数列的性质以及前n 项和公式的应用,还考查了运算求解的能力,属于中档题.19.【分析】由化简可得从而可得由知则从而解得【详解】解:即即故由知;若对任意恒成立只需使即解得故故答案为:【点睛】本题考查了数列的性质的判断与应用同时考查了整体思想的应用及转化思想应用解析:24,33⎛⎫⎪⎝⎭【分析】由21n n S S n -+=化简可得1121n n S S n +--=+,从而可得22n n a a +-=,由1a a =知242a a =-,32a a =+,442a a =-,则1234a a a a <<<从而解得.【详解】解:21n n S S n -+=,21(1)n n S S n ++=+, 1121n n S S n +-∴-=+,即121n n a a n ++=+, 即2123n n a a n +++=+, 故22n n a a +-=, 由1a a =知2124a a +=, 214242a a a ∴=-=-,32a a =+, 462a a =-;若对任意n ∈+N ,1n n a a +<恒成立, 只需使1234a a a a <<<, 即42262a a a a <-<+<-, 解得2433a <<,故24,33a ⎛⎫∈ ⎪⎝⎭故答案为:24,33⎛⎫ ⎪⎝⎭. 【点睛】本题考查了数列的性质的判断与应用,同时考查了整体思想的应用及转化思想应用.20.①③【分析】选①②在①中令在②中令联立方程由方程无解推出矛盾;选①③在③中由通项与前项和之间的关系求出公比在①中令在③中用表示出联立方程求出确定数列;选②③由通项与前项和之间的关系即可作出判断【详解解析:①③ 【分析】选①②,在①中令1m n ==,在②中令1n =联立方程,由方程无解推出矛盾;选①③,在③中由通项与前n 项和之间的关系求出公比,在①中令1m n ==,在③中用12,a a 表示出12,S S 联立方程,求出1,a p 确定数列{}n a ;选②③,由通项与前n 项和之间的关系即可作出判断. 【详解】在①中,令1m n ==,得221a a =;在②中,11n n S a +=+,当2n ≥时, 11n n S a -=+,两式相减,得1n n n a a a +=-,即12n n a a +=;在③中,11112,2n n n n S a S a p p++=+=+,两式相减,得 1122n n n a a a ++=-,即 12n n a a +=,若选①②,则22112,1a a a a ⎧=⎨=+⎩即 2211111,10a a a a =--+=, 2(1)41130∆=--⨯⨯=-<,方程无解,故不能选①②作为条件;若选①③,则由12n n a a +=知,数列{}n a 的公比为2,由 221111221212a a a a p a a a p ⎧⎪=⎪⎪=+⎨⎪⎪+=+⎪⎩得 1212a p =⎧⎪⎨=-⎪⎩,所以数列 {}n a 是首项为2,公比为2的等比数列; 若选②③作为条件,则无法确定首项,数列{}n a 不唯一,故不能选②③作为条件. 综上所述,能使数列{}n a 为唯一确定的等比数列的条件是①③.故答案为:①③ 【点睛】思路点睛:本题考查利用递推关系求数列中的项,涉及等比数列的判定和通项公式,遇到和与项的递推关系时,一般有两种方法:(1)消去和,得到项的递推关系;(2)消去项,得到和的递推关系.三、解答题21.(1)证明见解析,2nn a n =-;(2)()12552n S n ⎛⎫=-+⋅+⎪⎝⎭. 【分析】 (1)根据条件可得112112n n n n a n a n n a n a n++++-++==++,从而可证,所以数列{}n a n +是首项为2,公比为2的等比数列,得出答案. (2)由题意可得21212n n n n n b a n ++==+,由错位相减法可得答案. 【详解】(1)数列{}n a 满足111,21n n a a a n +==+-112112n n n n a n a n n a n a n++++-++∴==++即公比12,12q a =+=∴数列{}n a n +是首项为2,公比为2的等比数列;2n n a n ∴+=(2)由题意,21212n n n n n b a n ++==+ 所以123123357212222n n nn S b b b b +=+++⋅⋅⋅+=+++⋅⋅⋅+.........① 234113572121 (222222)n n n n n S +--=+++++………② 由①-②,得123234113572135721212222222222n n n n n n n S ++-+⎡⎤⎡⎤=+++⋅⋅⋅+-+++⋅⋅⋅++⎢⎥⎢⎥⎣⎦⎣⎦234131111212?··222222n n n ++⎛⎫=+++++- ⎪⎝⎭()1111122121512251222212nn n n n ++⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭+⎢⎥⎛⎫⎣⎦=+⨯-=-+⋅ ⎪⎝⎭- 从而()12552n S n ⎛⎫=-+⋅+ ⎪⎝⎭【点睛】关键点睛:本题考查由递推公式求数列的通项公式和利用错位相减法求和,解答本题的关键是根据21212n n n n n b a n ++==+得出求和的方法,利用错位相减法求和时计算要仔细,考查运算能力,属于中档题.22.(Ⅰ)413-k ;(Ⅱ)①证明见解析;②(3)2+=k k k D . 【分析】(Ⅰ)根据题中条件,得到221214k k k a q a +-==,求出21k a -的通项,利用等比数列的求和公式,即可求出结果;(Ⅱ)①先由条件,得到212222k k k a a a ++=+,推出112k kq q +=+,得出11k k b b +-=,即可证明数列是等差数列;②根据12d =,由①的结论,根据等差数列的通项公式,求出k b ,推出11k q k=+,得到221211k k a k a k +-+⎛⎫= ⎪⎝⎭,根据212k k k d a a +=-,求出{}k d 的通项,判断其是等差数列,由等差数列的求和公式,即可得出结果. 【详解】 (Ⅰ)由已知,221214k k k a q a +-==,所以1214k k a --=, 又11a =,所以数列{}21k a -是以1为首项,以4为公比的等比数列,所以()132111414413k k k a a a -⨯-=-++⋅⋅⋅+=-; (Ⅱ)①对任意的*k N ∈,2k a ,21k a +,22k a +成等差数列, 所以212222k k k a a a ++=+,即22221212k k k k a a a a +++=+,即112k kq q +=+, 所以111111111k k kq q q +==+---,即11k k b b +-=,所以{}n b 成等差数列,其公差为1.②若12d =,则21a q =,231a q =,322a a -=,所以21120q q --=,又0k q >,所以12q =,从而111111k k k q q =+-=--,即11k q k=+. 所以221211k k a k a k +-+⎛⎫= ⎪⎝⎭,可得235212111323k k k a a a a a k a a a ---=⨯⨯⨯⋅⋅⋅⨯=, 则221(1)k k k a a q k k -==+,所以2212(1)(1)1k k k d a a k k k k +=-=+-+=+,即{}k d 为等差数列,所以()1(3)22k k k d d k k D ++==. 【点睛】思路点睛:求解等差数列与等比数列的综合问题时,一般需要根据等差数列与等比数列的通项公式,以及求和公式,进行求解.(有时需要根据递推公式,先证明数列是等差数列或等比数列,再进一步求解)23.(1)选①②③均有2nn a =,*n N ∈;(2)32342(1)(2)n n T n n +=-++. 【分析】(1)选①,运用等比数列的通项公式解方程可得公比,可得所求通项公式;选②,运用构造等比数列,以及数列的递推式,可得所求通项公式;选③,将n 换为1n -,两式相减,结合等比数列的定义和通项公式,可得所求通项公式; (2)求得22211111()(2)22n n n b log a log a n n n n +===-⋅++,由数列的裂项相消求和,化简整理可得所求和. 【详解】(1)选①数列{}n a 为递增的等比数列,且2312a a +=,设等比数列{}n a 的公比为q ,(0)q >,则1(1)2(1)12a q q q q +=+=,解得2(3q =-舍去),所以2nn a =;选②数列{}n a 满足122n n S S +-=,可得122(2)n n S S ++=+,数列{2}n S +是首项为124S +=,公比为2的等比数列,则122n n S ++=,即为122n n S +=-,当2n 时,1122222n n n n n n a S S +-=-=--+=,12a =也满足上式,所以2nn a =,*n N ∈;选③1121222n n n n a a a na -+++⋯+=(1),当2n 时,12121222(1)n n n n a a a n a ---++⋯+=-(2),由(2)2⨯-(1)可得122(1)n n n a na n a +=--,即12n n a a +=, 又因为12a =,2124a a ==,也满足上式,故数列{}n a 为首项为2,公比为2的等比数列,所以2nn a =,*n N ∈;(2)由(Ⅰ)可得2nn a =,22211111()(2)22n n n b log a log a n n n n +===-⋅++,所以1111111111(1)232435112n T n n n n =-+-+-++-+--++ 1111323(1)221242(1)(2)n n n n n +=+--=-++++. 【点睛】方法点睛:本题考查等比数列的定义、通项公式和求和公式的运用,考查数列的求和,数列求和的方法总结如下:1.公式法,利用等差数列和等比数列的求和公式进行计算即可;2.裂项相消法,通过把数列的通项公式拆成两项之差,在求和时中间的一些项可以相互抵消,从而求出数列的和;3.错位相减法,当数列的通项公式由一个等差数列与一个等比数列的乘积构成时使用此方法;4.倒序相加法,如果一个数列满足首末两项等距离的两项之和相等,可以使用此方法求和.24.选①或②或③,()1122n n T n +=-⨯+.【分析】选①,设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q ,根据已知条件建立有关1a 、d 的方程组,求出这两个量,并求出q 的值,可得出数列{}n a 、{}n b 的通项公式,进而利用错位相减法可求得n T ;选②,设等比数列{}n b 的公比为q ,利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩求出数列{}n a 的通项公式,并求出q ,可求得数列{}n b 的通项公式,再利用错位相减法可求得n T ;选③,设等比数列{}n b 的公比为q ,利用累乘法可求出数列{}n a 的通项公式,并求出q ,可求得数列{}n b 的通项公式,再利用错位相减法可求得n T . 【详解】选①,设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q ,由已知条件可得2419124693645a a a d S a d +=+=⎧⎨=+=⎩,解得11a d ==,()11n a a n d n ∴=+-=,22122222a q a ∴===,111222n n n nb b q --∴==⨯=,2n n n a b n ∴=⋅,1231222322n n T n =⨯+⨯+⨯++⨯,()23121222122n n n T n n +=⨯+⨯++-⨯+⨯,上式-下式可得()()2311121222222212212n n n n n n T n n n +++--=++++-⨯=-⨯=-⨯--,因此,()1122n n T n +=-⨯+;选②,当1n =时,111a S ==;当2n ≥时,()()2211122n n n n n n n a S S n --+-+=-=-=. 11a =也满足n a n =,所以,对任意的n *∈N ,n a n =.22122222a q a ∴===,111222n n n nb b q --∴==⨯=,2n n n a b n ∴=⋅,1231222322n n T n =⨯+⨯+⨯++⨯,()23121222122n n n T n n +=⨯+⨯++-⨯+⨯,上式-下式可得()()2311121222222212212n n n n n n T n n n +++--=++++-⨯=-⨯=-⨯--,因此,()1122n n T n +=-⨯+;选③,()121n n a nn a n -=≥-,且11a =, 由累乘法可得321121231121n n n a a a na a n a a a n -=⋅⋅⋅⋅=⨯⨯⨯⨯=-. 22122222a q a ∴===,111222n n n nb b q --∴==⨯=,2n n n a b n ∴=⋅,1231222322n n T n =⨯+⨯+⨯++⨯,()23121222122n n n T n n +=⨯+⨯++-⨯+⨯,上式-下式可得()()2311121222222212212n n n n n n T n n n +++--=++++-⨯=-⨯=-⨯--, 因此,()1122n n T n +=-⨯+.【点睛】 方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.25.条件选择见解析;(1)证明见解析;(2)122m m T m +=--. 【分析】(1)选择①,可得(1)(1),22n n n n n b n +-=-=从而可得2,nn a =进而利用等比数列的定义可得结论;选择②,列出首项与公差的方程可得n b n =,从而可得2n n a =,进而利用等比数列的定义可得结论;(2)若选择①,则2n n a =,可得21m m c =-,利用分组求和法,结合等比数列的求和公式可得答案;选择②,则2n n a =,利用分组求和法,结合等比数列的求和公式可得答案;【详解】(1)选择①,因为()*123(1)2n n n b b b b n N +++++=∈, 当1n =时,11b =,当2n ≥时,(1)(1),122n n n n n b n n +-=-==时也成立,故n b n =. 所以1122,22n n n n n n a a a ++===, 所以数列{}n a 是以2为首项,2为公比的等比数列.若选择②,设数列{}n b 公差为d ,由题意1112247b d b b d +=⎧⎨++=⎩,,得111b d =⎧⎨=⎩,,得n b n =,即2log n a n =,得2nn a =,所以11222n n n n a a ++==. 所以数列{}n a 是以2为首项,2为公比的等比数列.(2)若选择条件①,则2n n a =,所以1c 对应的区间为(0,2),则121c c =;对应的区间为(0,4),则23c =;3c 对应的区间为(0,8),则37c =;m c 对应的区间为()0,2m ,则21m m c =-; 所以()1212122121212212m m m m T m m +-=-+-+-=-=---.若选择条件②,则2n n a =,所以1c 对应的区间为(0,2),则121c c =;对应的区间为(0,4),则23c =;3c 对应的区间为(0,8),则37c =;m c 对应的区间为()0,2m ,则21m m c =-; 所以()1212122121212212m m m mT m m +-=-+-+-=-=---. 【点睛】方法点睛:数列求和的常见方法:1、公式法;2、错位相减法;3、裂项相消法;4、分组求和法;5、倒序相加法.26.(1)()*21n a n n N=-∈,()1*3n n b n N -=∈;(2)()*(1)31n n T n n N =-⨯+∈. 【分析】(1)首先根据n S 与n a 的关系求数列{}n a 的通项公式,再根据条件求等比数列{}n b 的基本量,求数列{}n b 的通项公式;(2)()1*(21)3n n n n c a b n n N -=⋅=-⋅∈,利用错位相减法求和.【详解】(1)当1n =时,111a S ==;当1n >时,221(1)21n n n a S S n n n -=-=--=-; 当n=1时符合上式,∴()*21n a n n N =-∈;∴111b a ==,359==b a ,∴数列{}n b 的公比3q =,∴()1*3n n b n N -=∈; (2)由(1)可得()1*(21)3n n n n c a b n n N -=⋅=-⋅∈, ∴2211231113353(23)3(21)3n n n n n T c c c c c n n ---=+++++=⨯+⨯+⨯+⋅⋅⋅+-⨯+-⨯,①2313133353(23)3(21)3n n n T n n -=⨯+⨯+⨯+⋅⋅⋅+-⨯+-⨯,②①-②,整理得()*(1)31n n T n n N=-⨯+∈.【点睛】本题考查已知数列n S 与n a 的关系式,求通项公式,和错位相减法求和,一般数列求和包含1.公式法,利用等差和等比数列的前n 项和公式求解;2.错位相减法求和,适用于等差数列乘以等比数列的数列求和;3.裂项相消法求和,适用于能变形为()()1n a f n f n =+-, 4.分组转化法求和,适用于n n n c a b =+;5.倒序相加法求和.。
(好题)高中数学必修五第一章《数列》测试题(包含答案解析)
一、选择题1.已知数列{}n a 中,12a =,()*,N n m n m a a a n m +=⋅∈,若1234480k k k k a a a a +++++++=,则k =( )A .3B .4C .5D .62.已知等比数列{}n a 的前n 项和为n S ,则下列命题一定正确的是( ) A .若20200S >,则10a > B .若20210S >,则10a > C .若20200S >,则20a >D .若20210S >,则20a >3.已知数列{}n a 中,其前n 项和为n S ,且满足2n n S a =-,数列{}2n a 的前n 项和为n T ,若20n n S T λ+>对*n N ∈恒成立,则实数λ的取值范围是( )A .(3,)+∞B .(1,3)-C .93,5⎛⎫⎪⎝⎭D .(1,)-+∞4.“杨辉三角”是中国古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年.如图是由“杨辉三角”拓展而成的三角形数阵,记n a 为图中虚线上的数1,3,6,10,构成的数列{}n a 的第n 项,则100a 的值为( )A .5049B .5050C .5051D .51015.对于数列{}n a ,定义11222n nn a a a Y n-++⋅⋅⋅+=为数列{}n a 的“美值”,现在已知某数列{}n a 的“美值”12n n Y +=,记数列{}n a tn -的前n 项和为n S ,若6n S S ≤对任意的*n N ∈恒成立,则实数t 的取值范围是( )A .712,35⎡⎤⎢⎥⎣⎦B .712,35⎛⎫ ⎪⎝⎭C .167,73⎡⎤⎢⎥⎣⎦D .167,73⎛⎫ ⎪⎝⎭6.已知数列{}n a 满足11a =,+121nn n a a a =+,则数列{}1n n a a +的前n 项和n T =( ) A .21nn - B .21nn + C .221nn + D .42nn + 7.两个公比均不为1的等比数列{}{},n n a b ,其前.n 项的乘积....分别为,n n A B ,若552a b =,则99A B =( ) A .512B .32C .8D .28.已知等差数列{}n a 满足3434a a =,则该数列中一定为零的项为( )A .6aB .7aC .8aD .9a9.数列{}n a 满足122,1a a ==,并且()111212n n n n a a a -+=-≥,则1011a a +=( ) A .192B .212 C .2155D .236610.记n S 为等比数列{}n a 的前n 项和,若数列{}12n S a -也为等比数列,则43a a =( ). A .2B .1C .32D .1211.已知{}n a 是等比数列,且2222212345123451060a a a a a a a a a a ++++=++++=,,则24a a +=( )A .2B .3C .4D .512.已知{}n a 为等比数列,13527a a a =,246278a a a =,以n T 表示{}n a 的前n 项积,则使得n T 达到最大值的n 是( ) A .4B .5C .6D .7二、填空题13.已知数列{}n a 的前n 项和为n S ,若11a =,22a =,0n a ≠,()111122n n n n n a n S a S nS +++--=-,其中2n ≥,且*n ∈N .设21n n b a -=,数列{}n b 的前n 项和为n T ,则100T =______.14.设数列{}n a 是等比数列,公比2q,n S 为{}n a 的前n 项和,记219n nn n S S T a +-=(*n N ∈),则数列{}n T 最大项的值为__________.15.已知数列{}n a 的前n 项和为n S ,若121(2)n n S S n -=+≥且23S =,则55S a =_________. 16.已知等差数列{}n a 的前n 项和为n S ,若12020OB a OA a OC =+(向量OA 、OC 不平行),A 、C 、B 共线,则2020S =_________.17.在等比数列{}n a 中,2514,2==a a ,则公比q =__________. 18.已知函数()f x 在()1,∞-+上单调,且函数()2y f x =-的图象关于1x =对称,若数列{}n a 是公差不为0的等差数列,且()()5051f a f a =,则1100a a +等于________. 19.已知数列{}n a 与{}nb 满足11222n n a a a ++++=-,1(1)(1)nn n n a b a a +=--,数列{}n b 的前n 项的和为n S ,若n S M ≤恒成立,则M 的最小值为_________.20.著名的斐波那契数列:1,1,2,3,5,…,的特点是从三个数起,每一个数等于它前面两个数的和,则222212320482048a a a a a ++++是数列中的第______项.三、解答题21.给出以下三个条件:①11a =,22121n n a a n +-=+,*n N ∈;②22n n S a n =+,*n N ∈;③数列2211n n a ⎧⎫+⎨⎬+⎩⎭的前n 项和为n .请从这三个条件中任选一个,将下面题目补充完整,并求解.设数列{}n a 的前n 项和为n S ,0n a >,________. (1)求数列{}n a 的通项公式;(2)若12n a nn nS b a +=,*n N ∈,求数列{}n b 的前n 项和n T .注:如果选择多个条件分别解答,按第一个解答计分.22.已知各项为正数的等比数列{}n a ,前n 项和为n S ,若2125,2,log a log a 成等差数列,37S =,数列{}n b 满足,11b =,数列11n n n b b a ++⎧⎫-⎨⎬⎩⎭的前n 项和为232n n+ (1)求{}n a 的公比q 的值; (2)求{}n b 的通项公式.23.已知数列{}n a 满足11a =,13(1)n n na n a +=+. (1)设nn a b n=,求证:数列{}n b 是等比数列; (2)求数列{}n a 的前n 项和n S .24.已知等差数列{}n a 的公差为()0d d ≠,前n 项和为n S ,且满足___________(从①()101051S a =+﹔②1a ,2a ,6a 成等比数列;③535S =,这三个条件中任选两个补充到题干中的横线位置,并根据你的选择解决问题). (1)求n a ﹔(2)设11n n n b a a +=,数列{}n b 的前n 项和为n T ,求证:13n T <. 25.已知数列{}n a 的前n 项和为n S ,且n nS a 和2n a 的等差中项为1. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设41log n n b a +=,求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T . 26.已知等比数列{}n a 满足26a =,13630a a +=. (Ⅰ)求{}n a 的通项公式; (Ⅱ)若12a >,设23n n b n a =⋅(*N n ∈),记数列{}n b 的前n 项和为n S ,求n S .【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由已知,取1m =,则112n n n a a a a +=⋅=,得出数列{}n a 是以2为首项,2为公差的等比数列,根据等比数列的通项公式建立方程得可求得解. 【详解】因为数列{}n a 中,12a =,()*,N n m n m a a a n m +=⋅∈,所以取1m =,则112n n n a a a a +=⋅=,所以数列{}n a 是以2为首项,2为公差的等比数列,所以2nn a =,又1234480k k k k a a a a +++++++=,即12344220282k k k k +++++++=,即040238k ⨯=,解得4k =, 故选:B . 【点睛】关键点点睛:解决本题的问题的关键在于令1m =,得出数列{}n a 是以2为首项,2为公差的等比数列,利用等比数列的通项公式建立方程得解.2.B解析:B 【分析】根据等比数列的前n 项和公式分别讨论20200S >和20210S >即可得答案. 【详解】当1q =时,2020120200S a =>,故10a >,20a >, 当1q ≠时,()202012020101a q S q-=>-,分以下几种情况,当1q <-时,10a <,此时210a a q =>; 当10q -<<时,10a >,此时120a a q =<, 当01q <<时,10a >,此时210a a q =>; 当1q >时,10a >,此时210a a q =>; 故当20200S >时,1a 与2a 可正可负,故排除A 、C . 当1q =时, 2021120210S a =>,故10a >, 20a >; 当1q ≠时,()202112021101a q S q-=>-,由于20211q-与1q -同号,故10a >,所以21a a q =符号随q 正负变化,故D 不正确,B 正确; 故选:B 【点睛】关键点点睛:本题解决时根据等比数列的求和公式,分类讨论公比的情形是解决问题的关键,分析出首项及公比的情况即可确定第二项的符号,属于中档题.3.D解析:D 【分析】由2n n S a =-利用1112n n n S n a S S n -=⎧=⎨-≥⎩ ,得到数列{}n a 是以1为首项,12为公比的等比数列,进而得到{}2n a 是以1为首项,14为公比的等比数列,利用等比数列前n 项和公式得到n S ,n T ,将20n n S T λ+>恒成立,转化为6321nλ-<-+,从而得出答案. 【详解】当1n =时,112S a =-,得 11a =;当2n ≥时,由2n n S a =-,得112n n S a --=-,两式相减得112n n a a -=, 所以数列{}n a 是以1为首项,12为公比的等比数列. 因为112n n a a -=,所以22114n n a a -=.又211a =,所以{}2n a 是以1为首项,14为公比的等比数列,所以1112211212n n n S ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-,11414113414nn n T ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-, 由20n n S T λ+>,得()()321210nnλ-++>,所以()()321321663212121n nn n n λ-+--<==-+++, 所以6332121λ-<-=-=+, 所以1λ>-.综上,实数λ的取值范围是(1,)-+∞. 故选: D 【点睛】方法点睛:数列与不等式知识相结合的考查方式主要有三种: 一是判断数列问题中的一些不等关系; 二是以数列为载体,考查不等式的恒成立问题;三是考查与数列问题有关的不等式的证明.在解决这些问题时,往往转化为函数的最值问题.4.B解析:B 【分析】观察数列的前4项,可得(1)2n n n a +=,将100n =代入即可得解. 【详解】由题意得11a =,2312a ==+,36123a ==++,4101234a ==+++⋅⋅⋅ 观察规律可得(1)1232n n n a n +=+++⋅⋅⋅+=, 所以10010010150502a ⨯==. 故选:B. 【点睛】关键点点睛:本题考查了观察法求数列的通项公式,关键是将各项拆成正整数的和的形式发现规律.5.C解析:C 【分析】由1112222n n n n a a a Y n-+++⋅⋅⋅+==,可得1112222n n n n a a a -+=⋅+⨯++⋅⋅进而求得22n a n =+,所以()22n a tn t n -=-+可得{}n a tn -是等差数列,由6n S S ≤可得660a t -≥,770a t -≤,即可求解【详解】由1112222n n n n a a a Y n-+++⋅⋅⋅+==可得1112222n n n n a a a -+=⋅+⨯++⋅⋅,当2n ≥时()21212221n n n a a a n --+⋅=⋅-+⋅+,又因为1112222n n n a a n a -+=++⋅⋅⋅+,两式相减可得:()()11122221n n n n n n n n a -+=--=+,所以22n a n =+, 所以()22n a tn t n -=-+, 可得数列{}n a tn -是等差数列, 由6n S S ≤对任意的*n N ∈恒成立, 可得:660a t -≥,770a t -≤, 即()2620t -⨯+≥且()2720t -⨯+≤, 解得:16773t ≤≤,所以实数t 的取值范围是167,73⎡⎤⎢⎥⎣⎦, 故选:C 【点睛】关键点点睛:本题解题的关键点是由已知条件得出1112222n n n n a a a -+=⋅+⨯++⋅⋅再写一式可求得n a ,等差数列前n 项和最大等价于0n a ≥,10n a +≤,6.B解析:B 【分析】利用倒数法求出数列{}n a 的通项公式,进而利用裂项相消法可求得n T . 【详解】已知数列{}n a 满足11a =,+121nn n a a a =+, 在等式+121n n n a a a =+两边同时取倒数得112112n n n n a a a a ++==+,1112n n a a +∴-=, 所以,数列1n a ⎧⎫⎨⎬⎩⎭是等差数列,且首项为111a ,公差为2,则()112121n n n a =+-=-,121n a n ∴=-,()()11111212122121n n a a n n n n +⎛⎫∴==- ⎪-+-+⎝⎭,因此,1111111111111112323525722121221n T n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-=- ⎪ ⎪ ⎪ ⎪ ⎪-++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭21n n =+. 故选:B. 【点睛】使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.7.A解析:A 【分析】直接利用等比数列的性质化简99A B ,再代入552a b =即得解. 【详解】由题得99912919285599129192855()()()2512()()()A a a a a a a a a aB b b b b b b b b b ⋅⋅⋅=====⋅⋅⋅. 故答案为A. 【点睛】(1)本题主要考查等比数列的性质,意在考查学生对该知识的掌握水平和分析推理能力.(2) 等比数列{}n a 中,如果m n p q +=+,则m n p q a a a a =,特殊地,2m p q =+时,则2·m p q a a a =,m a 是p q a a 、的等比中项. 8.B解析:B 【分析】由条件可得34a d =-,进而得n a (7)n d =-,从而得解. 【详解】33a 44a =,33a ∴()33444a d a d =+=+, 34d a ∴=-n a ∴3(3)a n d =+-⋅4(3)d n d =-+- (7)n d =- 70a ∴=,故选:B 【点睛】本题主要考查了等差数列的通项公式,等差数列的性质,属于基础题.9.C解析:C 【解析】依题意有11111121,2n n n n n n n n a a a a a a a a -++--=-=-,由此计算得323a =,424a =,…… 101110112221,,101155a a a a ==+=. 10.D解析:D 【分析】分公比是否为1进行讨论,再利用等比数列的前n 项和公式及定义求解即可. 【详解】解:设等比数列{}n a 的公比为q ,当1q =时,()1111222n S a na a n a -=-=-, 则{}12n S a -不为等比数列,舍去, 当1q ≠时,()1111111222111n n n a q a aS a a q a qq q--=-=+----, 为了符合题意,需11201a a q -=-,得12q =,故4312a q a ==. 故选D . 【点睛】本题考查等比数列的前n 项和公式,定义,考查逻辑推理能力以及运算求解能力,属于中档题.11.A解析:A 【分析】首先根据题意,利用等比数列求和公式,得到5112345(1)101a q a a a a a q-++++==-,222222101521234(1)601a q q a a a a a -=-++=++,两式相除得到51(1)61a q q+=+,即5112345(1)61a q a a a a a q+-+-+==+,与1234510a a a a a ++++=联立求得结果.【详解】设数列{}n a 的公比为q ,且1q ≠,则5112345(1)101a q a a a a a q -++++==-, 222222101521234(1)601a q qa a a a a -=-++=++, 两式相除得210551112(1)(1)(1)6111a q a q a q q q q --+÷==--+, 所以5112345(1)61a q a a a a a q+-+-+==+, 又123123452445)()2()104(6a a a a a a a a a a a a --+-+=+=++-+=+, 所以242a a +=, 故选:A. 【点睛】该题考查的是有关数列的问题,涉及到的知识点有等比数列的求和公式,这题思维的应用,属于中档题目.12.A解析:A 【分析】先求出首项和公比,得出{}n a 是一个减数列,前4项都大于1,从第五项开始小于1,从而得出结论. 【详解】{}n a 为等比数列,3135327a a a a ==,32464278a a a a ==, 33a ∴=,432a =,4312a q a ∴==,112a =,543·14a a q ==<. 故{}n a 是一个减数列,前4项都大于1,从第五项开始小于1, 以n T 表示{}n a 的前n 项积,则使得n T 达到最大值的n 是4, 故选:A . 【点评】本题主要考查等比数列的性质,属于基础题.二、填空题13.【分析】根据已知条件推导出数列从第三项开始奇数项成等差数列且公差为然后利用等差数列的求和公式可求得的值【详解】当且时由可得即可得①所以②②①得所以则则所以数列从第三项开始奇数项成等差数列且公差为故答 解析:9901【分析】根据已知条件推导出数列{}n a 从第三项开始,奇数项成等差数列,且公差为2,然后利用等差数列的求和公式可求得100T 的值. 【详解】当2n ≥且*n ∈N 时,0n a ≠, 由()111122n n n n n a n S a S nS +++--=-,可得()()11112n n n n n a S S n S S ++-+-=-,即()1112n n n n a a a na ++++=, 可得12n n a a n ++=,①,所以,()2121n n a a n +++=+,②, ②-①得22n n a a +-=,所以,32224a a +=⨯=,则32a =,则3112a a -=≠, 所以,数列{}n a 从第三项开始,奇数项成等差数列,且公差为2,21n n b a -=,10099982199299012T ⨯⨯=+⨯+=. 故答案为:9901. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法; (4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.14.【解析】数列是等比数列公比为的前项和当且仅当时取等号又或时取最大值数列最大项的值为故答案为 解析:3【解析】数列{}n a 是等比数列,公比q 2=,n S 为{}n a 的前n 项和,219()n n n n S S T n N a *+-=∈ ,2111(12)(12)9812129222n nn n n na a T a --⋅---∴==--⋅822n n +≥=, 当且仅当822nn =时取等号,又,1n N n *∈=或2 时,n T 取最大值19243T =--= .∴ 数列{}n T 最大项的值为3 .故答案为3 .15.【分析】先计算出数列的前两项分别为和由题意可知可得再结合得数列是首项为公比为的等比数列然后利用等比数列的相关公式计算【详解】由①得则所以得:②②-①得:即又成立所以数列是首项为公比为的等比数列则故故解析:3116.【分析】先计算出数列{}n a 的前两项分别为1和2,由题意可知()1121212n n nn S S S S n +-=+⎧⎨=+≥⎩可得()122n na n a +=≥,再结合212aa =得数列{}n a 是首项为1,公比为2的等比数列,然后利用等比数列的相关公式计算55S a . 【详解】由121(2)n n S S n -=+≥ ①得12121213S S a =+=+=,则11a =,所以2212a S a =-=,得:121n n S S +=+②, ②-①得:()122n n a a n +=≥,即()122n na n a +=≥ 又212a a =成立,所以数列{}n a 是首项为1,公比为2的等比数列, 则4451216a a q =⋅==,()()55151********a q S q-⨯-===--,故553116Sa =. 故答案为:3116【点睛】本题考查利用递推关系式求解数列的通项公式,考查等比数列的通项公式、求和公式的应用,较简单.16.【分析】先证明当共线且则根据题意可求得的值然后利用等差数列求和公式可求得的值【详解】当共线时则共线可设所以又则由于(向量不平行)共线则由等差数列的求和公式可得故答案为:【点睛】本题考查等差数列求和同 解析:1010【分析】先证明当A 、C 、B 共线且OB mOA nOC =+,则1m n +=,根据题意可求得12020a a +的值,然后利用等差数列求和公式可求得2020S 的值. 【详解】当A 、C 、B 共线时,则AB 、AC 共线,可设AB AC λ=, 所以,()OB OA OC OA λ-=-,()1OB OA OC λλ∴=-+, 又OB mOA nOC =+,则()11m n λλ+=-+=,由于12020OB a OA a OC =+(向量OA 、OC 不平行),A 、C 、B 共线,则120201a a +=,由等差数列的求和公式可得()120202020202020201101022a a S +⨯===.故答案为:1010. 【点睛】本题考查等差数列求和,同时也考查了三点共线结论的应用,考查计算能力,属于中等题.17.【分析】本题先用表示再建立方程组解题即可【详解】解:∵是等比数列∴∵∴解得:故答案为:【点睛】本题考查等比数列的基本量法是基础题 解析:12【分析】本题先用1a ,q 表示2a ,5a ,再建立方程组21451412a a q a a q ==⎧⎪⎨==⎪⎩解题即可. 【详解】解:∵ {}n a 是等比数列,∴ 21a a q =,451a a q∵24a =,512a =,∴ 21451412a a q a a q ==⎧⎪⎨==⎪⎩,解得:1812a q =⎧⎪⎨=⎪⎩, 故答案为:12. 【点睛】本题考查等比数列的基本量法,是基础题.18.【分析】根据的图象的对称性利用平移变换的知识得到的图象的对称性结合函数的单调性根据得到的值最后利用等差数列的性质求得所求答案【详解】由函数的图象关于对称则函数的图象关于对称又在上单调且所以因为数列是 解析:2-【分析】根据()2y f x =-的图象的对称性,利用平移变换的知识得到()f x 的图象的对称性,结合函数的单调性,根据()()5051f a f a =得到5051a a +的值,最后利用等差数列的性质求得所求答案. 【详解】由函数()2y f x =-的图象关于1x =对称,则函数()f x 的图象关于1x =-对称, 又()f x 在()1,∞-+上单调,且()()5051f a f a =,所以5051a a 2+=-,因为数列{}n a 是公差不为0的等差数列,所以11005051a a 2a a +=+=-, 故答案为:2-. 【点睛】本题考查函数的对称性和单调性,等差数列的性质,涉及函数的图象的平移变换,属中档题,小综合题,难度一般.19.【分析】由已知式写出为的式子相减求得检验是否相符求得用裂项相消法求得和由表达式得的范围从而得最小值【详解】∵所以时两式相减得又所以有从而显然所以的最小值为1故答案为:1【点睛】方法点睛:本题主要考查 解析:1【分析】由已知式写出n 为1n -的式子,相减求得n a ,检验1a 是否相符,求得n b ,用裂项相消法求得和n S ,由n S 表达式得M 的范围,从而得最小值. 【详解】 ∵11222n n a a a ++++=-,所以2n ≥时,12122n n a a a -+++=-,两式相减得1222n n nn a +=-=,又21222a =-=,所以*n N ∈,有2nn a =,从而11211(21)(21)2121n n n n n n b ++==-----,122231111111212121212121n n n n S b b b +⎛⎫⎛⎫⎛⎫=+++=-+-++- ⎪ ⎪ ⎪------⎝⎭⎝⎭⎝⎭11121n +=--,显然1n S <,所以1M ≥,M 的最小值为1.故答案为:1. 【点睛】方法点睛:本题主要考查求数列的通项公式,考查裂项相消法求和,数列求和的常用方法有:(1)公式法,(2)错位相减法,(3)裂项相消法,(4)分组(并项)求和法,(5)倒序相加法.20.【分析】由题意可得进而可得然后再利用累加法即可求出结果【详解】由题意可知所以即所以……所以又所以∴所以是数列中的第项故答案为:【点睛】本题考查了数列的递推公式和累加法的应用考查学生的计算能力属于中档题 解析:2049【分析】由题意可得21n n n a a a ++=+,进而可得21211n n n n n a a a a a ++++⋅=+⋅,然后再利用累加法,即可求出结果. 【详解】由题意可知21n n n a a a ++=+,所以()1211n n n n n a a a a a ++++⋅=⋅+,即21211n n n n n a a a a a ++++⋅=+⋅所以220482049204820482047a a a a a ⋅=+⋅,220472048204720472046a a a a a ⋅=+⋅,……223221·a a a a a ⋅=+,所以2222048204920482047221·a a a a a a a ⋅=++⋯++, 又21a a =所以2222204820492048204721a a a a a a ⋅=++⋯++∴2222123204820492048a a a a a a ++++=.所以222212320482048a a a a a ++++是数列中的第2049项.故答案为:2049 . 【点睛】本题考查了数列的递推公式和累加法的应用,考查学生的计算能力,属于中档题.三、解答题21.(1)条件性选择见解析,n a n =;(2)12n n T n +=⋅.【分析】(1)选择①,由累加法求得2n a ,从而得n a ;选择②,由当2n ≥时1n n n a S S -=-得出数列{}n a 的递推关系,利用0n a >排除一个,由另一个得出通项公式n a ;选择③,类似选择②求出通项2211n n a ++,从而得n a .(2)由(1)可得n b ,然后用错位相减法求和n T . 【详解】 (1)选择①,因为22121n n a a n +-=+,*n ∈N ,所以2n ≥时,2221211a a -=⨯+, 2232221a a -=⨯+,()221211n n a a n --=-+,2n ≥,所以当2n ≥时,()()221212311n a a n n -=++++-+-⎡⎤⎣⎦,因为11a =,所以当2n ≥时,22n a n =,当1n =时,也满足上式. 因为0n a >,所以n a n =. 选择②,因为22n n S a n =+,所以当2n ≥时,21121n n S a n --=+-,两式相减,得22121n n n a a a -=-+,即()2211n n a a --=,所以11n n a a --=或11n n a a --=,因为21121a a =+,所以11a =,因为0n a >,所以11n n a a --=舍去, 所以11n n a a --=,即11n n a a --=,2n ≥, 所以n a n =. 选择③,因为数列2211n n a ⎧⎫+⎨⎬+⎩⎭的前n 项和为n ,所以当2n ≥时,()221111n n n n a +=--=+,即22n a n =, 当1n =时,211111a +=+,即211a =,也满足上式, 所以22n a n =,因为0n a >,所以n a n =. (2)()()11122212n n a n nn nn n S b n a n+++⨯===+⋅, 所以()1212223212n n n T b b b n =+++=⋅+⋅+++⋅,()23122232212n n n T n n +=⋅+⋅++⋅++⋅,所以()()231422212n n n T n +-=++++++⋅()()1141241212n n n -+-=+-+⋅-12n n +=-⋅,所以12n n T n +=⋅.【点睛】方法点睛:本题考查累加法求通项公式,错位相减法求和.数列求和的常用方法: 设数列{}n a 是等差数列,{}n b 是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和; (2)错位相减法:数列{}n n a b 的前n 项和应用错位相减法; (3)裂项相消法;数列1{}n n ka a +(k 为常数,0n a ≠)的前n 项和用裂项相消法; (4)分组(并项)求和法:数列{}n n pa qb +用分组求和法,如果数列中的项出现正负相间等特征时可能用并项求和法;(5)倒序相加法:满足m n m a a A -+=(A 为常数)的数列,需用倒序相加法求和. 22.(1)2q ;(2)()121n n b n =-⋅+.【分析】(1)对正项的等比数列{}n a ,利用基本量代换,列方程组,解出公比q ; (2)设11n nn n b b d a ++-=,由题意分析、计算得 1n d n =+,从而得到()112n n n b b n +-=+⋅,用累加法和错位相减法求出 n b .【详解】(1)∵2125log ,2,log a a 成等差数列,∴ ()225215log log log 4a a a a +==,即132516a a a ==,又0,n a >34a ∴=,又37,S =21211147a q a a q a q ⎧=∴⎨++=⎩ 解得2q或23q =-(舍).()2记11n n n n b b d a ++-=,当2n ≥时,()()221313122n n n n n d n -+-+=-=+又12d =也符合上式,1n d n ∴=+.而31322n n n a a --=⋅=,()112n n n b b n +∴-=+⋅,()()()21121321122322,)2(n n n n b b b b b b b b n n --∴=+-+-+⋯+-=+⋅+⋅+⋯+⋅≥,()231222232122n n n b n n -∴=+⋅+⋅+⋅⋅⋅+-⋅+⋅两式相减得()2112222121n n n n b n n --=+++⋯+-⋅=-⋅-,()2)2(11,n n b n n ∴=-⋅+≥.而11b =也符合上式, 故()121nn b n =-⋅+.【点睛】(1) 等差(比)数列问题解决的基本方法:基本量代换; (2)数列求和常用方法:①公式法;②倒序相加法;③裂项相消法;④错位相减法.23.(1)证明见解析;(2)(21)3144n n n S -=+.【分析】(1)将13(1)n n na n a +=+变形为131n na a n n+=+,得到{}n b 为等比数列, (2)由(1)得到{}n a 的通项公式,用错位相减法求得n S 【详解】(1)由11a =,13(1)n n na n a +=+,可得131n na a n n+=+, 因为nn a b n=则13n n b b +=,11b =,可得{}n b 是首项为1,公比为3的等比数列, (2)由(1)13n n b -=,由13n na n-=,可得13n n a n -=⋅, 01211323333n n S n -=⋅+⋅+⋅++⋅, 12331323333n n S n =⋅+⋅+⋅++⋅,上面两式相减可得:0121233333n n n S n --=++++-⋅13313n n n -=-⋅-, 则(21)3144n n n S -=+.【点睛】数列求和的方法技巧:(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和. (2)错位相减:用于等差数列与等比数列的积数列的求和. (3)分组求和:用于若干个等差或等比数列的和或差数列的求和.(4) 裂项相消法:用于通项能变成两个式子相减,求和时能前后相消的数列求和. 24.条件选择见解析;(1)32n a n =-;(2)证明见解析. 【分析】(1)由①可得11a =,由②可得13d a =,由③可得3127a a d =+=,选择①②、①③、②③条件组合,均得11a =,3d =,即得解析式;(2)可得11133231n b n n ⎛⎫=- ⎪-+⎝⎭,由裂项相消法求出n T 即可证明.【详解】(1)①由()101051S a =+,得()11109105912a d a d ⨯+=++,即11a =; ②由1a ,2a ,6a 成等比数列,得2216a a a =,222111125a a d d a a d ++=+,即13d a =;③由535S =,得()15355352a a a +==,即3127a a d =+=; 选择①②、①③、②③条件组合,均得11a =,3d =, 故()13132n a n n =+-=-. (2)()()111111323133231n n nb a a n n n n +⎛⎫===- ⎪-+-+⎝⎭∴123n n T b b b b =++++11111111134477103231n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦111331n ⎛⎫=- ⎪+⎝⎭, ∵n *∈N ,∴1031n >+,∴13n T <.【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法可直接求解;(2)对于{}n n a b 结构,其中{}n a 是等差数列,{}n b 是等比数列,用错位相减法求和; (3)对于{}+n n a b 结构,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎬⎩⎭结构,其中{}n a 是等差数列,公差为d ,则111111n n n n a a d a a ++⎛⎫=- ⎪⎝⎭,利用裂项相消法求和. 25.(Ⅰ)2nn a =;(Ⅱ)22n nT n =+. 【分析】(Ⅰ)利用等差中项的定义得出n S 与n a 的关系,然后由1(2)n n n a S S n -=-≥得出数列{}n a 的递推关系,求出1a 其为等比数列,从而得通项公式;(Ⅱ)用裂项相消法求和n T . 【详解】解:(Ⅰ)因为n n S a 和2n a 的等差中项为1,所以22n n nS a a +=,即22n n S a =-, 当2n 时,1122n n S a --=-.两式相减得1122n n n n S S a a ---=-,整理得12n n a a -=. 在22n n S a =-中,令1n =得12a =,所以,数列{}n a 是以2为首项,2为公比的等比数列,因此1222n nn a -=⨯=.(Ⅱ)411log 2n n n b a ++==. 则114114(1)(2)12+⎛⎫==- ⎪++++⎝⎭n n b b n n n n . 所以11111111244233412222n n T n n n n ⎛⎫⎛⎫=⨯-+-++-=⨯-= ⎪ ⎪++++⎝⎭⎝⎭. 【点睛】方法点睛:本题考查求等比数列的通项公式,裂项相消法求和.数列求和的常用方法: 设数列{}n a 是等差数列,{}n b 是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和; (2)错位相减法:数列{}n n a b 的前n 项和应用错位相减法; (3)裂项相消法;数列1{}n n ka a +(k 为常数,0n a ≠)的前n 项和用裂项相消法; (4)分组(并项)求和法:数列{}n n pa qb +用分组求和法,如果数列中的项出现正负相间等特征时可能用并项求和法;(5)倒序相加法:满足m n m a a A -+=(A 为常数)的数列,需用倒序相加法求和.26.(Ⅰ)123n n a -=⨯或132n n a -=⨯;(Ⅱ)1(1)22n n S n +=-⨯+.【分析】(Ⅰ)设等比数列{}n a 的公比为q ,由已知建立方程组,求得数列的首项和公比,从而求得数列的通项;(Ⅱ)由(Ⅰ)及已知可得132n n a -=⨯和223n n n b n a n =⋅=⋅(*n ∈N ),运用错位相减法可求得数列的和.【详解】解:(Ⅰ)设等比数列{}n a 的公比为q ,由26a =,可得16a q =,记为①. 又因为13630a a +=,可得12630a a q +=,即15a q +=记为②,由①②可得123a q =⎧⎨=⎩或132a q =⎧⎨=⎩, 故{}n a 的通项公式为123n n a -=⨯或132n n a -=⨯.(Ⅱ)由(Ⅰ)及12a >可知132n n a -=⨯,所以223n n n b n a n =⋅=⋅(*n ∈N ), 所以1212222n n S n =⨯+⨯++⨯ ③231212222n n S n +=⨯+⨯++⨯ ④ ③-④得1212222n n n S n +-=+++-⨯111222(1)22n n n n n +++=--⨯=-⨯-,所以1(1)22n n S n +=-⨯+.【点睛】 方法点睛:数列求和的常用方法:(1)公式法:即直接用等差、等比数列的求和公式求和.(2)错位相减法:若{}n a 是等差数列,{}n b 是等比数列,求1122n n a b a b a b ++⋅⋅⋅. (3)裂项相消法:把数列的通项拆成两项之差,相消剩下首尾的若干项.常见的裂顶有()11111n n n n =-++,()1111222n n n n ⎛⎫=- ⎪++⎝⎭,()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭等. (4)分组求和法:把数列的每一项分成若干项,使其转化为等差或等比数列,再求和. (5)倒序相加法.。
(完整版)数学必修五数列练习题(答案)
1.等差数列99637419,27,39,}{S a a a a a a a n 项和则前已知中=++=++的值为( ) A .66 B .99 C .144 D .297 2.已知数列{}n a 是公比为2的等比数列,若416a =,则1a = ( ) A .1 B .2 C .3 D .43.公差不为零的等差数列{}n a 的前n 项和为n S .若4a 是37a a 与的等比中项, 832S =,则10S 等于( ) A .18 B . 24 C .60 D . 904.已知等比数列}{n a 的公比为正数,且3a ·9a =225a ,2a =1,则1a =( ) A .21B .22C .2D .25.已知等差数列}{n a 的前n 项和为n S ,且854,18S a a 则-==( ) A .18 B .36 C .54 D .72 6.等比数列{}n a 中,44=a ,则=⋅62a a ( ) A .4 B .8 C .16 D .32 7.数列{}n a 中,1160,3n n a a a +=-=+,则此数列前30项的绝对值的和为 ( )A.720B.765C.600D.6308.已知等比数列前n 项和为n S ,若42=S ,164=S ,则=8S ( ) A.160 B.64 C.64- D.160-9.公比为2的等比数列{}n a 的各项都是正数,且311=16a a ⋅,则6a = ( ) (A )1 (B )2 (C )4 (D )8 10.数列{}n a 为等差数列,123,,a a a 为等比数列,51a =,则10a =( ) A .5 B .1- C .0 D .111.已知等比数列{}n a 中,121a a +=, 458a a +=-,则公比q =( )(A )2- (B )2 (C )12-(D )1212.观察下列数的特点,1,1,2,3,5,8,x,21,34,55,…中,其中x 是( )A .12B .13C .14D .1513.若n n n a a a a a -===++1221,6,3,则33a = ( )A. -3B. 3C. -6D. 6 14.已知数列{a n }满足,那么的值是( )A .20112B .2012×2011C . 2009×2010D .2010×2011 15. 数列K ,431,321,211⨯⨯⨯的一个通项公式是A .)1(1-n n B .)1(1+n n C .)2)(1(1++n n D .以上都不对16.数列{}n a 是等差数列,494,4,a a =-= n S 是{}n a 的前n 项和,则( ) A. 56S S < B. 56S S = C. 57S S = D. 67S S =17.各项都是正数的等比数列{}n a 中,13a ,,22a 成等差数列,)A.1B.3C.6D.918.等差数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,若)A19.已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则公差为 20.在等差数列{}n a 中,S 10=120,则a 1+a 10等于 ( ) A .12 B.24 C.36 D.4821.数列{}n a 为等差数列,123,,a a a 为等比数列,51a =,则10a =( ) A .5 B .1- C .0 D .122.已知数列{}n a 中,11a =,*13,(2,)n n a a n n N -=+≥∈,则n a =___________.23.若数列}中的最大项是第k 项,则k= . 24.设n S 为数列{}n a 的前n 项和,若*2(N )nnS n S ∈是非零常数,则称该数列{}n a 为 “和等比数列”.若数列{}n b 是首项为3,公差为(0)d d ≠的等差数列, 且数列{}n b 是“和等比数列”,则d = .25.如果数列}{n a 的前n 项和n n S n 322-=,那么这个数列是 数列26m=________. 27.已知等比数列{}n a 中,n S 为前n 项和且135a a +=,415S =, (1)求数列{}n a 的通项公式。
(完整版)数学必修五数列练习题(含答案)
2
S4 S2
2
2
S2 S6 S4
S6 S4
S4 S2
16 4
36
,
同
理
可
得
S2
4
S8 S6
2
S6 S4 S4 S2
362 108 , 12
因此 S8 S8 S6 S6 S4 S4 S2 S2 108 36 12 4 160 ,故选 A.
考点:等比数列的性质 9.( B) 【解析】
试题分析:由等比数列
…
…
…
…
…
…
…
…
○
○
…
…
…
…
…
…
…
…
线
线
…
…
…
…
…
…
…
…
○
○
※
…※ …
…题 ※…ຫໍສະໝຸດ …※ … 答…※ …
订
※ 内
订
…※ …
…
※ 线
…
…※ … ※
…订 …
○
※ ※
○
…装 … ※
…※ …
…
在 ※
…
…※ …
装
要 ※
装
…
※ 不
…
…※ …
…
※ 请
…
…※ …
※
○
○
…
…
…
…
…
…
…
…
内
外
…
…
…
…
…
…
…
…
○
○
…
…
…
…
…
…
B.
15. B
【解析】解:因为数列
(典型题)高中数学必修五第一章《数列》检测(含答案解析)
一、选择题1.设等比数列{}n a 的前n 项和为n S ,且4331S S S =-,若11a >,则( ) A .13a a <,24a a < B .13a a >,24a a < C .13a a <,24a a >D .13a a >,24a a >2.设n S 是等差数列{}n a 的前n 项和,若735S =,则4a =( ) A .5B .6C .7D .83.在等比数列{n a }中,13a =,424a =,则345a a a ++的值为( ) A .33B .72C .84D .1894.在等差数列{a n }中,1233,a a a ++=282930165a a a ++=,则此数列前30项和等于( ) A .810B .840C .870D .9005.已知等差数列{}n a 的前n 项和为n S ,55a =,836S =,则数列11{}n n a a +的前n 项和为( ) A .11n + B .1n n + C .1n n- D .11n n -+ 6.数列{}n a 的前n 项和为()21n S n n =-(*n ∈N ),若173a a ka +=,则实数k 等于( ) A .2B .3C .269D .2597.已知数列{}n a 的前n 项和为n S ,且21n n S a =-,则66S a =( ) A .6332B .3116C .12364D .1271288.设n S 是数列{}n a 的前n 项和,且()*2n n S a n n N =+∈,则{}na 的通项公式为na=( ) A .23n -B .23n -C .12n -D .12n -9.等差数列{}n a 中,10a >,310S S =,则当n S 取最大值时,n 的值为 ( ) A .6B .7C .6或7D .不存在10.设{}n a 为等比数列,给出四个数列:①{}2n a ,②{}2n a ,③{}2na ,④{}2log ||n a .其中一定为等比数列的是( ) A .①③B .②④C .②③D .①②11.已知{}n a 为等比数列,13527a a a =,246278a a a =,以n T 表示{}n a 的前n 项积,则使得n T 达到最大值的n 是( ) A .4B .5C .6D .712.在1和19之间插入个n 数,使这2n +个数成等差数列,若这n 个数中第一个为a ,第n 个为b ,当116a b+取最小值时,n 的值是( ) A .4B .5C .6D .7二、填空题13.在各项均为正数的等比数列{}n a 中,公比()0,1q ∈,若355a a +=,264a a =,2log n n b a =,数列{}n b 的前n 项和为n S ,则数列n S n ⎧⎫⎨⎬⎩⎭的前n 项的和n T 为______.14.已知等比数列{}n a 中,21a =,58a =-,则{}n a 的前6项和为__________. 15.数列1,-2,2,-3,3,-3,4,-4,4,-4,5,-5,5,-5,5,…,的项正负交替,且项的绝对值为1的有1个,2的有2个,…,n 的有n 个,则该数列第2020项是__________.16.设,n n S T 分别是等差数列{}{},n n a b 的前n 项和,已知()*2142n n S n n N T n +=∈-,则10317a b b =+_________.17.已知数列{}n a 的首项1a a =,其前n 项和为n S ,且满足()2*12,n n S S n n n N -+=≥∈,若对任意*n N ∈,1n n a a +<恒成立,则a 的取值范围是___________.18.数列{}n a 满足:112a =,212n n a a a n a ++⋯+=⋅,则数列{}n a 的通项公式n a =___________.19.已知数列{}n a 的通项公式为()12n n a n =+⋅,若不等式()2235n n n a λ--<-对任意*n N ∈恒成立,则整数λ的最大值为_____.20.对于数列{}n a ,存在x ∈R ,使得不等式()2*144n na x x n N a +≤≤-∈成立,则下列说法正确的有______.(请写出所有正确说法的序号). ①数列{}n a 为等差数列; ②数列{}n a 为等比数列; ③若12a =,则212n na -=;④若12a =,则数列{}n a 的前n 项和21223n n S +-=.三、解答题21.设数列{}n a 满足()*122222nn a a a n n +++=∈N . (1)求数列{}n a 的通项公式; (2)求数列21n n a ⎧⎫-⎨⎬⎩⎭的前n 项和n T . 22.已知数列{}n a 的前n 项和为n S ,首项11a =,121n n S S +=+. (1)求数列{}n a 的通项公式;(2)设n n b na =,记数列{}n b 的前n 项和为n T ,是否存在正整数n ,使得2021n T =?若存在,求出n 的值;若不存在,说明理由.23.已知等差数列{}n a 和等比数列{}n b 的首项均为1,{}n b 的前n 项和为n S ,且22a S =,43a S =.(1)求数列{}n a ,{}n b 的通项公式;(2)设n n n c a b =⋅,*n N ∈,求数列{}n c 的前n 项和n T .24.已知正项等比数列{}n a ,24a =, 1232a a a +=;数列{}n b 的前n 项和n S 满足n n S na =.(Ⅰ)求n a ,n b ; (Ⅱ)证明:312412233412n n n b b b b a a a a a a a a ++++++<. 25.在①420S =,②332S a =,③3423a a b -=这三个条件中任选一个,补充在下面问题中,并作答.问题:已知等差数列{}n a 的前n 项和为n S ,{}n b 是各项均为正数的等比数列,14a b =,______,2138,34b b b =-=,是否存在正整数k ,使得数列1n S ⎧⎫⎨⎬⎩⎭的前k 项和34kT >?若存在,求k 的最小值;若不存在,说明理由, 注:如果选择多个条件分别解答,按第一个解答计分.26.已知{}n a 是由正整数组成的无穷数列,该数列前n 项的最大值记为n A ,最小值记为n B ,令nn nA bB =. (1)若2(1,2,3,)n a n n ==,写出1b ,2b ,3b 的值.(2)证明:1(1,2,3,)n n b b n +≥=.(3)若{}n b 是等比数列,证明:存在正整数0n ,当0n n 时,n a ,1n a +,2n a +是等比数列.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】首先根据题中所给的条件4331S S S =-,11a >利用等比数列求和公式求出0q <,分情况讨论求得10q -<<,从而可以得到项之间的大小关系. 【详解】设等比数列{}n a 的公比为q , 由4331S S S =-可得431a S =-, 若1q =,则1113a a =-显然不成立,所以1q ≠, 所以()312111q a a q q -++=,即()232111q q a q +=-+, 因为22131024q q q ⎛⎫++=++> ⎪⎝⎭,210a >,所以30q <,所以0q <,当1q ≤-时,31q ≤-,211q q ++≥,因为11a >,则()232111q q a q +=-+不可能成立,所以10q -<<,()213110a a a q -=->,()224110a a a q q -=-<,所以13a a >,24a a <, 故选:B. 【点睛】关键点点睛:本题解题的关键是利用等比数列求和公式将已知条件化简得到()232111q q a q +=-+,结合11a >求出q 的范围.2.A解析:A 【分析】由等差数列的前n 和公式,求得1710a a +=,再结合等差数列的性质,即可求解. 【详解】由题意,根据等差数列的前n 和公式,可得1777()352a a S +==,解得1710a a +=, 又由等差数列的性质,可得17452a a a +==. 故选:A. 【点睛】熟记等差数列的性质,以及合理应用等差数列的前n 和公式求解是解答的关键3.C解析:C 【分析】根据341a a q =,可求出q ,再根据等比数列通项公式求出35,a a 即可.【详解】因为341a a q =,即3243q =,所以2q,所以22313212a a q ==⨯=,44513248a a q ==⨯=,所以34512244884a a a ++=++=. 故选:C 【点睛】本题主要考查等比数列的通项公式的应用,属于基础题.4.B解析:B 【解析】数列前30项和可看作每三项一组,共十组的和,显然这十组依次成等差数列,因此和为10(3165)8402+= ,选B. 5.B解析:B 【解析】设等差数列{}n a 的首项为1a ,公差为d . ∵55a =,836S = ∴114582836a d a d +=⎧⎨+=⎩∴111a d =⎧⎨=⎩∴n a n =,则11111(1)1+==-++n n a a n n n n ∴数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为1111111111122334111nn n n n -+-+-+⋅⋅⋅+-=-=+++ 故选B.点睛:裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1)()1111n n k k n n k ⎛⎫=- ⎪++⎝⎭;(2)1k=; (3)()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭;(4)()()11122n n n =++ ()()()11112n n n n ⎡⎤-⎢⎥+++⎢⎥⎣⎦;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.6.C解析:C 【分析】由已知结合递推公式可求n a ,然后结合等差数列的通项公式即可求解. 【详解】因为()21n S n n =-, 所以111a S ==,当2n ≥时,()()()12112343n n n a S S n n n n n -=-=----=-,111a S ==适合上式,故43n a n =-,因为173a a ka +=, ∴1259k +=, 解可得269k = 故选:C. 【点睛】本题主要考查了由数列前n 项和求数列的通项公式,考查来了运算能力,属于中档题.7.A解析:A 【解析】由题意得,111121,1,n n n a a a a S S -=-==- ,则21nn S =- ,即666332S a = ,故选A.8.C解析:C 【分析】由()*2n n S a n n N =+∈结合11,1,2n nn S n a S S n -=⎧=⎨-≥⎩即可求出1a 和121n n a a -=-,通过构造法即可求出通项公式. 【详解】当1n =时,11121a S a ==+,解得1 1a =-;当2n ≥时,122(1)n n n a a n a n -=+---.∴121n n a a -=-,∴()1121n n a a --=-.∵112a -=-,∴12nn a -=-, ∴12nn a =-.故选:C . 【点睛】本题考查了数列通项公式的求解,考查了,n n a S 的递推关系求通项公式,考查了等比数列的通项公式,考查了构造法求数列的通项公式,属于中档题.9.C解析:C 【解析】设等差数列{}n a 的公差为d ∵310S S = ∴()()113319913922a d a d ⨯-⨯-+=+∴160a d += ∴70a = ∵10a >∴当n S 取最大值时,n 的值为6或7 故选C10.D解析:D 【分析】设11n n a a q -=,再利用等比数列的定义和性质逐一分析判断每一个选项得解.【详解】设11n n a a q -=,①,112=2n n a a q-,所以数列{}2n a 是等比数列;②,222222111=()n n n a a qa q --=,所以数列{}2n a 是等比数列; ③,11112111211222=2,222n nn n n n n n a a q a a q a q a q a a q-------==不是一个常数,所以数列{}2n a 不是等比数列; ④,122122121log ||log |q |log ||log |q |n n n n a a a a ---=不是一个常数,所以数列{}2log ||n a 不是等比数列.故选D 【点睛】本题主要考查等比数列的判定,意在考查学生对该知识的理解掌握水平和分析推理能力.11.A解析:A 【分析】先求出首项和公比,得出{}n a 是一个减数列,前4项都大于1,从第五项开始小于1,从而得出结论. 【详解】{}n a 为等比数列,3135327a a a a ==,32464278a a a a ==, 33a ∴=,432a =,4312a q a ∴==,112a =,543·14a a q ==<. 故{}n a 是一个减数列,前4项都大于1,从第五项开始小于1, 以n T 表示{}n a 的前n 项积,则使得n T 达到最大值的n 是4, 故选:A . 【点评】本题主要考查等比数列的性质,属于基础题.12.B解析:B 【分析】设等差数列公差为d ,可得20a b +=,再利用基本不等式求最值,从而求出答案. 【详解】设等差数列公差为d ,则119a d b d =+=-,,从而20a b +=, 此时0d >,故0,0a b >>,所以11616()()1161725b a a b a b a b ++=+++≥+=, 即116255204a b +=,当且仅当16b aa b =,即4b a =时取“=”, 又1,19a d b d =+=-,解得3d =,所以191(1)3n =++⨯,所以5n =,故选:B . 【点睛】本题主要考查数列和不等式的综合运用,需要学生对所学知识融会贯通,灵活运用.二、填空题13.【分析】首先利用方程组求出数列的通项公式进一步求出数列的通项公式进一步利用分类讨论思想的应用求出数列的和【详解】解:各项均为正数的等比数列中若所以由于公比解得所以解得所以由于所以则当时当时所以故答案解析:()()2217941714494n n n n T n n n ⎧-≤⎪⎪=⎨-+⎪>⎪⎩【分析】首先利用方程组求出数列{}n a 的通项公式,进一步求出数列{}n b 的通项公式,进一步利用分类讨论思想的应用求出数列的和. 【详解】解:各项均为正数的等比数列{}n a 中,若355a a +=,264a a =,所以35352654a a a a a a +=⎧⎨==⎩,由于公比()0,1q ∈,解得3541a a =⎧⎨=⎩,所以253a a q =,解得12q =. 所以55512n n n a a q --⎛⎫=⋅= ⎪⎝⎭.由于5221log log 52n n n b a n -⎛⎫===- ⎪⎝⎭.所以()()45922n n n n n S +--==, 则()9292n n n n S n c nn--===, 当9n ≤时,()212171744n n n n n n T c c c --=+++==.当9n >时,()()212910*********24n n n n n T c c c c c c c c c c -+=+++---=++-+++=. 所以()()2217941714494n n n n T n n n ⎧-≤⎪⎪=⎨-+⎪>⎪⎩. 故答案为:()()2217941714494n n n n T n n n ⎧-≤⎪⎪=⎨-+⎪>⎪⎩【点睛】本题考查等比数列的通项公式,等差数列的前n 项和公式,考查分类讨论思想和数学运算能力,是中档题.14.【解析】因为已知等比数列中所以则故答案为【方法点睛】本题主要考查等比数列的通项公式属于中档题等比数列基本量的运算是等比数列的一类基本题型数列中的五个基本量一般可以知二求三通过列方程组所求问题可以迎刃 解析:212【解析】因为已知等比数列{}n a 中,所以21a =,58a =-,3528,2a q q a ==-=-,则()()()66121611211212,21122a q a a S q q⎡⎤----⎣⎦==-===---,故答案为212. 【方法点睛】本题主要考查等比数列的通项公式,属于中档题. 等比数列基本量的运算是等比数列的一类基本题型,数列中的五个基本量1,,,,,n n a q n a S ,一般可以“知二求三”,通过列方程组所求问题可以迎刃而解,解决此类问题的关键是熟练掌握等比数列的有关性质和公式,并灵活应用,在运算过程中,还应善于运用整体代换思想简化运算过程.15.【分析】将绝对值相同的数字分为一组则每组数字个数构成等差数列然后计算原第2020项在这个数列的第几项再根据题意可得【详解】将绝对值相同的数字分为一组则每组数字个数构成等差数列因为则2020项前共包含 解析:64-【分析】将绝对值相同的数字分为一组,则每组数字个数构成等差数列n a n =,然后计算原第2020项在这个数列的第几项,再根据题意可得. 【详解】将绝对值相同的数字分为一组,则每组数字个数构成等差数列n a n =, 因为(1)6364202063201622n n n +⨯⇒⇒=, 则2020项前共包含63个完整组,且第63组最后一个数字为第2016项,且第2016项的符号为负,故2020项为第64组第4个数字,由奇偶交替规则,其为64-. 故答案为:64-. 【点睛】本题考查数列创新问题,解题关键是把绝对值相同的数字归为一组,通过组数来讨论原数列中的项,这借助于等差数列就可完成,本题考查了转化思想,属于中档题.16.【分析】利用等差数列的性质得到再根据求解【详解】因为所以故答案为:【点睛】本题主要考查等差数列的性质以及前n 项和公式的应用还考查了运算求解的能力属于中档题 解析:39148【分析】利用等差数列的性质得到1013171191912a a a b b b b =⨯+++191912S T =⨯,再根据2142n n S n T n +=-求解.【详解】 因为()*2142n n S n n N T n +=∈-, 所以()()110113171119191991921912221a a a b b b a b b b a =⨯=⨯+++++, 191911219139224192148S T ⨯+=⨯=⨯=⨯-, 故答案为:39148【点睛】本题主要考查等差数列的性质以及前n 项和公式的应用,还考查了运算求解的能力,属于中档题.17.【分析】由化简可得从而可得由知则从而解得【详解】解:即即故由知;若对任意恒成立只需使即解得故故答案为:【点睛】本题考查了数列的性质的判断与应用同时考查了整体思想的应用及转化思想应用解析:24,33⎛⎫⎪⎝⎭【分析】由21n n S S n -+=化简可得1121n n S S n +--=+,从而可得22n n a a +-=,由1a a =知242a a =-,32a a =+,442a a =-,则1234a a a a <<<从而解得.【详解】解:21n n S S n -+=,21(1)n n S S n ++=+, 1121n n S S n +-∴-=+,即121n n a a n ++=+, 即2123n n a a n +++=+, 故22n n a a +-=, 由1a a =知2124a a +=, 214242a a a ∴=-=-, 32a a =+, 462a a =-;若对任意n ∈+N ,1n n a a +<恒成立, 只需使1234a a a a <<<, 即42262a a a a <-<+<-, 解得2433a <<,故24,33a ⎛⎫∈ ⎪⎝⎭故答案为:24,33⎛⎫⎪⎝⎭. 【点睛】本题考查了数列的性质的判断与应用,同时考查了整体思想的应用及转化思想应用.18.【分析】当时作差即可得到再利用累乘法求出数列的通项公式即可;【详解】解:因为①;当时②;①减②得即所以所以所以所以……所以所以又所以当时也成立所以故答案为:【点睛】对于递推公式为一般利用累乘法求出数 解析:21n n+ 【分析】当2n ≥时,()212111n n a a a n a --++⋯+=-⋅,作差即可得到111n n a n a n --=+,再利用累乘法求出数列的通项公式即可; 【详解】解:因为212n n a a a n a ++⋯+=⋅①;当2n ≥时,()212111n n a a a n a --++⋯+=-⋅②;①减②得()2211n n n a n a n a -=⋅-⋅-,即()()22111n n n a n a -⋅-⋅-=,所以()()()21111n n n n a n a --+=⋅-⋅,所以()()111n n n a n a -⋅-⋅+=,所以111n n a n a n --=+ 所以2113a a =,3224a a =,4335a a =,……,111n n a n a n --=+,所以324211312313451n n a a a a n a a a a n --⋅⋅⋅⨯⨯⨯=⨯+,所以()121n a a n n =+,又112a =,所以()11n a n n =+,当1n =时()11n a n n =+也成立,所以()11n a n n =+故答案为:()11n n +【点睛】对于递推公式为()1nn a f n a -=,一般利用累乘法求出数列的通项公式,对于递推公式为()1n n a a f n --=,一般利用累加法求出数列的通项公式;19.4【分析】根据题意等价变形得对任意恒成立再求数列的最大值即可得答案【详解】解:∵∴不等式等价于记∴时即时数列单调递减又∵∴∴即∴整数的最大值为4故答案为:4【点睛】本题考查根据数列不等式恒成立求参数解析:4 【分析】根据题意等价变形得2352nn λ-->对任意*n N ∈恒成立,再求数列232n n n b -=的最大值即可得答案. 【详解】解:∵()102nn a n =+⋅>,∴不等式()2235n n n a λ--<-等价于2352nn λ-->, 记232n nn b -=,112121223462n n n nn b n n b n ++--==--, ∴3n ≥时,11n nb b +<,即3n ≥时数列单调递减, 又∵ 1211,24b b =-=, ∴ ()3max 38n b b ==,∴358λ->,即337588λ<-=,∴整数λ的最大值为4. 故答案为:4. 【点睛】本题考查根据数列不等式恒成立求参数,考查化归转化思想,是中档题.20.②③④【分析】由题意可得存在使求得值可得再由等比数列的定义通项公式及前项和逐一核对四个命题得答案【详解】解:由存在使得不等式成立得即则则数列为等比数列故①错误②正确;若则故③正确;若则数列的前项和故解析:②③④ 【分析】由题意可得,存在x ∈R ,使244x x -,求得x 值,可得14n na a +=,再由等比数列的定义、通项公式及前n 项和逐一核对四个命题得答案. 【详解】解:由存在x ∈R ,使得不等式2*144()n na xx n N a +-∈成立, 得244x x -,即2440x x -+,则2(2)0x -,2x ∴=.∴14n na a +=. 则数列{}n a 为等比数列,故①错误,②正确; 若12a =,则121242n n n a --==,故③正确;若12a =,则数列{}n a 的前n 项和212(14)22143n n n S +⨯--==-,故④正确. 故答案为:②③④. 【点睛】本题考查命题的真假判断与应用,考查等比数列的判定,训练了等比数列通项公式与前n 项和的求法,属于中档题.三、解答题21.(1)2nn a =;(2)2332n nn T +=-. 【分析】 (1)当2n ≥时,112211222n n a a a n --+++=-与已知条件两式相减可得2n n a =,再令1n =,计算1a 即可求解;(2)由(1)得2nn a =,所以22211n n n n a --=,再利用乘公比错位相见即可求和. 【详解】(1)数列{}n a 满足122222n n a a a n +++= 当2n ≥时,112211222n n a a a n --+++=- 两式作差有12n na =,所以2nna = 当1n =时,12a =,上式也成立所以2nn a =(2)22211n n n n a --= 则211113(21)222nn T n ⎛⎫⎛⎫=⨯+⨯++-⨯ ⎪ ⎪⎝⎭⎝⎭,231111113(21)2222n n T n +⎛⎫⎛⎫⎛⎫=⨯+⨯++-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()()()2311111111111111131421221221231222222222212n n n n n n T n n n ++-+⎛⎫- ⎪⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎝⎭=⨯+++⋯+--⨯=+⨯--=-+⨯⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦-所以2332n nn T +=-. 【点睛】方法点睛:数列求和的方法(1)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和;(4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如()()1nn a f n =-类型,可采用两项合并求解.22.(1)12n n a ;(2)不存在,理由见解析.【分析】(1)根据11n n n a S S ++=-以及等比数列的通项公式可求得结果;(2)利用错位相减法求出n T ,分别对1,2n n ==和3n ≥讨论等式是否成立可得答案. 【详解】(1)由121n n S S +=+①,知2n ≥时,121n n S S -=+②, ①-②得()122n n a a n +=≥,在①式中令12121212n a a a a =⇒+=+⇒=,212a a =, ∴对任意*n ∈N ,均有12n na a +=,∴{}n a 为等比数列,11122n n n a --=⨯=, (2)由(1)得12n n b n -=⋅,所以()01221122232122n n n T n n --=⋅+⋅+⋅++-⋅+⋅,所以()()12212122222122n n n n T n n n --=⋅+⋅++-⋅+-⋅+⋅,所以()12111212222221212nn n nn n nT n n n -⋅--=++++-⋅=-⋅=--⋅-,所以(1)21nn T n =-⋅+,令()()1212021122020nnn n -⋅+=⇒-⋅=,当1n =和2n =时,等式显然不成立;当3n ≥时,方程化为()212505n n --⋅=,左边为偶数,右边等于505为奇数,等式也不成立,故不存在正整数n ,使得2021n T =成立. 【点睛】关键点点睛:利用11n n n a S S ++=-求出通项公式,根据错位相减法求出n T 是解题关键. 23.(1)()1121n a a n d n =+-=-,1112nn n b b q ;(2)()3232n n T n =+-⋅.【分析】(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q ,由22a S =,43a S =,求得2,2d q ==,然后利用等差数列和等比数列通项公式求解.(2)由(1)得到()1212n n c n -=-⋅,然后错位相减法求解.【详解】(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q , 因为22a S =,43a S =,所以11d q +=+,2131d q q +=++,解得2,2d q ==所以()1121n a a n d n =+-=-,1112nn n b b q ;(2)由(1)知:()1212n n c n -=-⋅,所以()0121123252...212n n T n -=⋅+⋅+⋅++-⋅, 则()1232123252...212nn T n =⋅+⋅+⋅++-⋅, 两式相减得:()23122...2212n nn T n -=++++--⋅,()()1412121212n n n --=+--⋅-,()3322n n =-+-⋅,所以()3232nn T n =+-⋅.【点睛】方法点睛:求数列的前n 项和的方法 (1)公式法:①等差数列的前n 项和公式,()()11122n n n a a n n S na d +-==+②等比数列的前n 项和公式()11,11,11nn na q S a q q q=⎧⎪=-⎨≠⎪-⎩;(2)分组转化法:把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.(3)裂项相消法:把数列的通项拆成两项之差求和,正负相消剩下首尾若干项.(4)倒序相加法:把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广.(5)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列对应项之积构成的,则这个数列的前n 项和用错位相减法求解.(6)并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解.24.(Ⅰ)2nn a =;()112n n b n -=+⋅;(Ⅱ)证明见解析.【分析】(1)由题设求出数列{}n a 的基本量,即可确定n a ;再由1n n n b S S -=-确定n b ; (2)用错位相减法整理不等式左侧即可证明. 【详解】(1)设正项等比数列{}n a 的公比为q ,由1232a a a +=,得22q q +=解得2q 或1q =-(舍)又242nn a a =⇒=由n n S na =,得12b =2n ≥时,()()11121212n n n n n n b S S n n n ---=-=⋅--⋅=+⋅则()112n n b n -=+⋅(2)()()11112212222n n n n n n n n b n a a +++++⎛⎫==+ ⎪⋅⎝⎭设31241223341n n n n b b b bT a a a a a a a a ++=++++则()2341111134522222n n T n +⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()()341211111341222222n n n T n n ++⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+++++ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭两式相减得()2341211111131112222222n n n T n ++⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯++⨯-+ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭得()2111422n n T n +⎛⎫=-+⋅ ⎪⎝⎭得()112422n n T n +⎛⎫=-+⋅< ⎪⎝⎭【点睛】关键点睛:当数列{}n c 满足n n n c a b =,{}n a 为等差数列,{}n b 为等比数列时,数列{}n c 的前n 项求和可用错位相减法.25.选①k 的最小值为4;选②k 的最小值为4;选③k 的最小值为3; 【分析】先由条件求出11162n n b -⎛⎫=⨯ ⎪⎝⎭,得出142a b ==,若选①可得2d =,则2n a n =,从而1111n S n n =-+,由裂项相消法求出k T ,可得答案;若选②可得12a d ==,所以2n a n =,一下同选①;若选③可得43d =,从而131142n S n n ⎛⎫=⨯- ⎪+⎝⎭,由裂项相消法求出k T ,可得答案. 【详解】设等比数列{}n b 的公比为q ,由2138,34b b b =-= 所以18b q =,则8384q q -⨯=,解得12q =或23q =-(舍) 则1816b q ==,所以11162n n b -⎛⎫=⨯ ⎪⎝⎭则142a b ==若选① 由4143486202S a d d ⨯=+=+=,则2d = 所以2n a n =, 则212nn a a S n n n +=⨯=+ 所以()111111n S n n n n ==-++ 则1211111111122311n n n T S S S n n n ⎛⎫⎛⎫⎛⎫=+++=-+-++-= ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭由314k k T k =>+,则3k >,由k 为正整数,则k 的最小值为4. 若选② 由332S a =,即()11323222a d a d ⨯+=+ ,可得12a d == 所以2n a n =,一下同选①.若选③ 由3423a a b -=,可得()()113238a d a d +-+=,即43d = 所以()()14222233n n n S n n n -=+⨯=+ ()1313112242n S n n n n ⎛⎫=⨯=⨯- ⎪++⎝⎭ 12111311111311111432424212n n T S S S n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++=⨯-+-++-=+-- ⎪ ⎪ ⎪ ⎪⎢⎥+++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦所以93118412n T n n ⎛⎫=-+ ⎪++⎝⎭所以9311124438k k k T ⎛⎫-+ ⎪++⎭>⎝=,即111122k k +<++,也即240k k --> 解得k >23<<,又k 为正整数,则k 的最小值为3. 【点睛】关键点睛:本题考查等差、等比数列求通项公式和等差数列的前n 项和以及用裂项相消法求和,解答本题的关键是将所要求和的数列的通项公式裂成两项的差,即1111n S n n =-+,131142n S n n ⎛⎫=⨯- ⎪+⎝⎭,注意裂项和的系数和求和时相抵消的项以及最后余下的项,属于中档题.26.(1)11b =,22b =,33b =;(2)证明见解析;(3)证明见解析 【分析】(1)由{}n a 是单调递增数列可得1nn a b a =即可求出;(2)设1n a k +=,讨论n k B ≤,n n B k A <<和n k A ≥可证明;(3)设{}n b 的公比为q ,且1q ≥,显然1q =时满足;1q >时,由{}n A 是递增数列,{}n B 是递减数列,且{}n B 不能无限减少可得.【详解】 (1)2n a n =,可得{}n a 是单调递增数列,1,n n n a B A a ∴==,1111a b a ∴==,2212ab a ==,3313a b a ==, (2)设1n a k +=,nn nA bB =, 若n k B ≤,则+1nn n n nk A A b b B =≥=, 若n n B k A <<,则+1nn nn A b b B ==, 若n k A ≥,则+1n n n nn A kb b B B =≥=, 综上,1(1,2,3,)n n b b n +≥=;(3)设等比数列{}n b 的公比为q ,1111a b a ==,则1n n nn A b q B -==, 由(2)可得1n n b b +≥,则1q ≥, 当1q =时,1nnA B =,即n n A B =,此时{}n a 为常数列,则存在01n =,当0n n ≥时,n a ,1n a +,2n a +是等比数列;当1q >时,{}n A 是递增数列,{}n B 是递减数列,{}n a 是由正整数组成的无穷数列,则数列{}n a 必存在最小值,即存在正整数0n ,0n a 是数列{}n a 的最小值,则当0n n ≥时,0n n B a =,此时01n n nn n n A a b q B a -===,即01n n n a a q -=,故当0n n ≥时,n a ,1n a +,2n a +是等比数列;综上,存在正整数0n ,当0n n ≥时,n a ,1n a +,2n a +是等比数列.【点睛】本题考查数列单调性的有关判断,解题的关键是正确理解数列的变化情况,清楚{}n b 的变化特点.。
高一数学《数列》同步训练(共7份)含答案必修5
必修5《数列》同步训练(共7份)含答案2.1 数列的概念与简单表示法一、选择题:1.下列解析式中不.是数列1,-1,1,-1,1,-1…,的通项公式的是 ( ) A.(1)n n a =- B.1(1)n n a +=- C.1(1)n n a -=- D.{11n n a n =-,为奇数,为偶数2,的一个通项公式是 ( )A. n aB. n a =C. n a =D.n a =3.已知数列{}n a ,1()(2)n a n N n n +=∈+,那么1120是这个数列的第 ( )项. A. 9 B. 10 C. 11 D. 124.数列{}n a ,()n a f n =是一个函数,则它的定义域为 ( )A. 非负整数集B. 正整数集C. 正整数集或其子集D. 正整数集或{}1,2,3,4,,n5.已知数列{}n a ,22103n a n n =-+,它的最小项是 ( )A. 第一项B. 第二项C. 第三项D. 第二项或第三项6.已知数列{}n a ,13a =,26a =,且21n n n a a a ++=-,则数列的第五项为( )A. 6B. 3-C. 12-D. 6-二.填空题:7、观察下面数列的特点,用适当的数填空(1),14,19,116,; (2)32,54,,1716,3332,。
8.已知数列{}n a ,85,11n a kn a =-=且,则17a =.9.根据下列数列的前几项的值,写出它的一个通项公式。
(1)数列0.7,0.77,0.777,0.7777,…的一个通项公式为.(2)数列4,0,4,0,4,0,…的一个通项公式为.(3)数列1524354863,,,,,,25101726的一个通项公式为.10.已知数列{}n a 满足12a =-,1221n n na a a +=+-,则4a =.三.解答题11.已知数列{}n a 中,13a =,1021a =,通项n a 是项数n 的一次函数,①求{}n a 的通项公式,并求2005a ;②若{}n b 是由2468,,,,,a a a a 组成,试归纳{}n b 的一个通项公式.12.已知{}n a 满足13a =,121n n a a +=+,试写出该数列的前5项,并用观察法写出这个数列的一个通项公式.2.2等差数列一.选择题:1、等差数列{a n }中,a 1=60,a n+1=a n+3则a 10为………………………………( ) A 、-600 B 、-120 C 、60 D 、-602、若等差数列中,a 1=4,a 3=3,则此数列的第一个负数项是……………………( )A 、a 9B 、a 10C 、a 11D 、a 12 3.若数列{}n a 的通项公式为25n a n =+,则此数列是 ( )A.公差为2的等差数列B. 公差为5的等差数列C.首项为5的等差数列D. 公差为n 的等差数列4.已知{a n }是等差数列,a 7+a 13=20,则a 9+a 10+a 11=……………………( ) A 、36 B 、30 C 、24 D 、185.等差数列3,7,11,,---的一个通项公式为 ( )A.47n -B.47n --C.41n +D.41n -+6.若{}n a 是等差数列,则123a a a ++,456a a a ++,789a a a ++,,32313n n n a a a --++,是 ( )A.一定不是等差数列B.一定是递增数列C.一定是等差数列D.一定是递减数列二.填空题:7.等差数列{}n a 中,350a =,530a =,则7a =.8.等差数列{}n a 中,3524a a +=,23a =,则6a =.9.已知等差数列{}n a 中,26a a 与的等差中项为5,37a a 与的等差中项为7,则n a =.10.若{a n }是等差数列,a 3,a 10是方程x 2-3x-5=0的两根,则a 5+a 8=.三.解答题11.判断数52,27()k k N ++∈是否是等差数列{}n a :5,3,1,1,,---中的项,若是,是第几项?12.等差数列{a n}中,a1=23,公差d为整数,若a6>0,a7<0.(1)求公差d的值;(2)求通项a n.13、若三个数a-4,a+2,26-2a,适当排列后构成递增等差数列,求a的值和相应的数列.2.3等差数列的前n 项和一.选择题:1.等差数列{}n a 中,10120S =,那么110a a += ( )A.12B.24C.36D.482.从前180个正偶数的和中减去前180个正奇数的和,其差为 ( )A.0B.90C.180D.3603.已知等差数列{}n a ,219n a n =-,那么这个数列的前n 项和n s ( )A.有最小值且是整数B.有最小值且是分数C.有最大值且是整数D.有最大值且是分数4.等差数列{}n a 的前m 项的和为30,前2m 项的和为100,则它的前3m 项的和为( )A.130B.170C.210D.2605.在等差数列{}n a 和{}n b 中,125a =,175b =,100100100a b +=,则数列{}n n a b +的前100项和为 ( )A.0B.100C.1000D.100006.若关于x 的方程20x x a -+=和20x x b -+=()a b ≠的四个根组成首项为14的等差数列,则a b += ( ) A.38B.1124C.1324D.3172二.填空题:本大题共4小题,每小题 4分,共16分,把正确答案写在题中横线上.7.等差数列{}n a 中,若638a a a =+,则9s =.8.等差数列{}n a 中,若232n S n n =+,则公差d =.9.有一个 凸n 边形,各内角的度数成等差数列,公差是100,最小角为1000,则边数n=.10.若两个等差数列{}n a 和{}n b 的前n 项和分别为n S 和n T ,且满足733n n S n T n +=+,则88a b =. 三.解答题11.在等差数列{}n a 中,40.8a =,11 2.2a =,求515280a a a +++.12.已知等差数列{a n}的项数为奇数,且奇数项的和为44,偶数项的和为33,求此数列的中间项及项数。
(好题)高中数学必修五第一章《数列》测试(含答案解析)
一、选择题1.已知数列{}n a 的前n 项和为n S ,11a =,23a =,且()11222n n nn S S S n +-+=+≥,若()()72n n S a n λλλ-++≥-对任意*n ∈N 都成立,则实数λ的最小值为( ) A .52-B .116C .332D .12.设等差数列{}n a 前n 项和为n S ,等差数列{}n b 前n 项和为n T ,若11n n S n T n -=+.则55a b =( ) A .23B .45C .32D .54 3.已知数列{}n a 为等比数列,若2312a a a ⋅=,且4a 与72a 的等差中项为54,则123n a a a a ⋅⋅⋅⋅⋅的最大值为( ) A .5B .512C .1024D .20484.已知数列{}n a 的通项公式350n a n =-,则前n 项和n S 的最小值为( ) A .-784B .-368C .-389D .-3925.在等差数列{}n a 中,0n a ≠,()21102n n n a a a n -+-+=≥,若2138n S -=,则n =( ).A .38B .20C .10D .96.已知函数()()f x x R ∈满足()()42f x f x -++=,若函数2xy x =-与()y f x =图象的交点为()()()1122,,,,,,n n x y x y x y ⋯,则()1nii i xy =+=∑( )A .0B .nC .2nD .3n7.对于数列{}n a ,定义11233n nn a a a T n-+++=为{}n a 的“最优值”,现已知数列{}n a 的“最优值”3n n T =,记数列{}n a 的前n 项和为n S ,则20202020S=( ) A .2019B .2020C .2021D .20228.公元1202年意大利数学家列昂纳多·斐波那契以兔子繁殖为例,引入“兔子数列”:1,1,2,3,5,8,13,21,34,55,…,即121a a ==,12n n n a a a --=+(*3,n n ≥∈N ).此数列在现代物理、准晶体结构、化学等领域都有着广泛的应用.若记212n n n n b a a a ++=-(*n ∈N ),数列{}n b 的前n 项和为n S ,则2020S =( ) A .0B .1C .2019D .20209.已知等比数列{}n a 中,若1324,,2a a a 成等差数列,则公比q =( ) A .1B .1-或2C .3D .1-10.若n S 是等比数列{}n a 的前项和,3S ,9S ,6S 成等差数列,且82a =,则25a a +=( ) A .12-B .4-C .4D .1211.已知数列{}n a 的通项公式为211n aa n n n=-+,5a 是数列{}n a 的最小项,则实数a 的取值范围是( ) A .[40,25]--B .[40,0]-C .[25,0]-D .[25,0]-12.记等差数列{}n a 的前n 项和为n S .若64a =,19114S =,则15S =( ) A .45B .75C .90D .95二、填空题13.数列{}n a 满足()()1232312n a a a na n n n ++++=++,则n a = __________.14.已知等差数列{}n a 的首项是19-,公差是2,则数列{}n a 的前n 项和n S 的最小值是_______.15.数列{}n a 满足11a =,22a =,且2221sin 2cos 22n nn n a a ππ+⎛⎫=+⋅+ ⎪⎝⎭(*n N ∈),则2020a =__.16.等比数列{}n a 的各项均为正数,且2414a a =,则2122232425log log log log log a a a a a ++++=___________.17.数列{}n a 中,若31()n na a n *+=∈N ,13a =,则{}n a 的通项公式为________. 18.已知等差数列{}n a 的前n 项和为()*n S n N∈,公差0d ≠,690S=,7a 是3a 与9a 的等比中项,当0n S >时,n 的最大值为______.19.已知数列{}n a 与{}n b 前n 项和分别为n S ,n T ,且0n a >,22n n n S a a =+,1121(2)(2)n n n n n n b a a +++=++,对任意的*n N ∈,n k T >,恒成立,则k 的最小值是__________.20.已知数列{}n a 的通项公式为3217n n a n -=-,前n 项和为n S ,则n S 取得最小值时n 的值为_________.三、解答题21.在①119n n a a +-=-,②113n n a a +=-③18n n a a n +=+-这三个条件中任选一个,补充在下面的问题中,并解答.设n S 是数列{}n a 的前n 项和,且19a =,__________,求{}n a 的通项公式,并判断n S 是否存在最大值,若存在,求出最大值:若不存在,说明理由. 注:如果选择多个条件分别解答,按第一个解答计分22.在数列{}n a ,{}n b 和{}n c 中,{}n a 为等差数列,设{}n a 前n 项的和为n S ,{}n c 的前n 项和为n T ,11a =,410S a =,12b =,n n n c a b =⋅,22n n T c =-. (1)求数列{}n a ,{}n b 的通项公式; (2)求证:()()()()()()12122311111111nn n c c c c c c c c c ++++<------.23.已知正项数列{}n a 、{}n b ,记数列{}n a 的前n 项和为n S ,若1143a b +=,21n n S a +=,2211(1)0n n n n nb b b n b ----+=(1)求数列{}n a 、{}n b 的通项公式; (2)求数列{}2n n a b 的前n 项和n T .24.从①1a 、2a 、5a 成等比数列,②525S =,③222n nS S n n+-=+,这三个条件中任选一个,补充在下面问题中并作答.已知等差数列{}n a 的前n 项和为n S ,47a =, ,122na n nb a +=+,求数列{}n b 的前n 项和为n T .25.已知数列{}n a 是等差数列,n S 是数列{}n a 的前n 项和,35a =,749=S . (1)求数列{}n a 的通项公式及前n 项和n S ;(2)若数列{}n b 满足2n b =,求数列{}n b 的前n 项和n T .26.已知{}n a 是由正整数组成的无穷数列,该数列前n 项的最大值记为n A ,最小值记为n B ,令nn nA bB =. (1)若2(1,2,3,)n a n n ==,写出1b ,2b ,3b 的值.(2)证明:1(1,2,3,)n n b b n +≥=.(3)若{}n b 是等比数列,证明:存在正整数0n ,当0n n 时,n a ,1n a +,2n a +是等比数列.【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【分析】由n S 与n a 的关系得21nn a =-,则272n maxn λ-⎛⎫≥ ⎪⎝⎭,设272n n n c -=,利用数列的单调性即可求解. 【详解】解:数列{}n a 的前n 项和为n S ,11a =,23a =,且()11222n n nn S S S n +-+=+≥, 所以112nn n n n S S S S +--=+-,故()122nn n a a n +-=≥,因为1212a a -=,所以()121nn n a a n +-=≥,所以112n n n a a ---=,2122n n n a a ----=,⋯,1212a a -=, 则1211222n n a a --=++⋯+,故11211222121n n n n a --=++⋯+==--, 所以()123122122222221n n n nS n n n +-=+++⋯+-=-=---,所以21nn n S a n -=--,因为()()72n n S a n λλλ-++≥-对任意*n N ∈都成立, 所以272nmaxn λ-⎛⎫≥ ⎪⎝⎭. 设272n nn c -=,则111252792222n nn n n n n nc c +++----=-=, 当4n ≤时,1n n c c +>,当5n ≥时,1n n c c +<, 因此1234567c c c c c c c <<⋯<><> 即5332c λ≥=,故λ的最小值为332. 故选:C 【点睛】本题解答的关键利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩求出数列n a 的递推公式,再利用累加法求出na 的通项;2.B解析:B本题首先可令9n =,得出9945S T =,然后通过等差数列的性质得出959S a =以及959T b =,代入9945S T =中,即可得出结果. 【详解】 因为11n n S n T n -=+,所以99914915S T -==+, 因为n S 是等差数列{}n a 前n 项和,n T 是等差数列{}n b 前n 项和, 所以()1995992a a S a +==,()1995992b b T b +==, 则95959459S a T b ==,5545a b =, 故选:B. 【点睛】关键点点睛:本题考查等差数列的相关性质的应用,主要考查等差数列前n 项和公式以及等差中项的应用,若等差数列{}n a 前n 项和为n S ,则()12n n n a a S +=,当2m n k +=时,2m n k a a a +=,考查化归与转化思想,是中档题.3.C解析:C 【分析】用1a 和q 表示出2a 和3a 代入2312a a a ⋅=求得4a ,再根据3474422a a a a q +=+,求得q ,进而求得1a 到6a 的值,即得解. 【详解】2231112a a a q a q a ⋅=⋅=42a ∴=3474452224a a a a q +=+=⨯12q ∴=,41316a a q ==故1415116()2222n n n n a ---=⨯=⨯=,所以123456116,8,4,2,1,12a a a a a a ======<, 所以数列的前4或5项的积最大,且最大值为16842=1024⨯⨯⨯. 故选:C结论点睛:等比数列{}n a 中,如果11,01a q ><<,求123n a a a a ⋅⋅⋅⋅⋅的最大值,一般利用“1交界”法求解,即找到大于等于1的项,找到小于1的项,即得解.4.D解析:D 【解析】令3500n -≥,求得16n >,即数列从第17项开始为正数,前16项为负数,故数列的前16项的和最小,1612,47a a =-=-,()16472163922S --⨯∴==-,故选D.【方法点睛】求等差数列前n 项和的最大值的方法通常有两种:①将前n 项和表示成关于n 的二次函数,n S 2An Bn =+,当2B n A =-时有最大值(若2B n A=-不是整数,n 等于离它较近的一个或两个整数时n S 最大);②可根据0n a ≥且10n a +≤确定n S 最大时的n 值.5.C解析:C 【分析】由2110n n n a a a -+-+=,可得2112n n n n a a a a -++==,得到2n a =,再根据等差数列的求和公式,得到2138(21)n n n S a --==,代入即可求解,得到答案. 【详解】由题意,等差数列{}n a 中,()21102n n n a a a n -+-+=≥,可得2112n n n n a a a a -++==,又0,n a ≠解得2n a =, 又由12121(21)()(2)3812n n n n a a n a S ---+==-=,即(21)823n -⨯=,解得10n =,故选C . 【点睛】本题主要考查了等差数列的性质,以及等差数列的求和公式的应用,其中解答中熟记等差数列的性质,求得2n a =和2138(21)n n n S a --==是解答本题的关键,着重考查了推理与运算能力,属于基础题.6.D解析:D 【分析】由题意可得()()f x x R ∈的图像关于点()2,1对称,函数2xy x =-的图像也关于()2,1对称,然后利用对称性以及倒序相加法即可得出答案. 【详解】函数()()f x x R ∈满足()()42f x f x -++=,∴()f x 的图像关于点()2,1对称,而函数2xy x =-的图像也关于()2,1对称, 设123n x x x x >>>>121224n n x x x x -∴+=+==⨯= 121212n n y y y y -+=+==⨯=令121nin i xx x x ==++∑,则111ni n n i x x x x -==++∑,()()()1211124n i n n n i x x x x x x x n -==++++∴+=∑,12ni i x n =∴=∑令121nin i y y yy ==++∑,则111ni n n i y y y y -==++∑,()()()1211122n i n n n i y y y n y y y y -=∴=+++++=∑,1ni i n y =∴=∑()13ni i i x y n =+=∴∑,故选:D 【点睛】本题考查了函数的对称性应用,考查了倒序相加法求和,解题的关键是找出中心对称点,属于中档题.7.D解析:D 【分析】 根据11233n nn a a a T n-+++=,且3nn T =,得到112333n n n a a a n -+++=⋅,然后利用数列通项与前n 项和的关系求得21n a n =+,再利用等差数列求和公式求解. 【详解】 ∵11233n nn a a a T n-+++=,且3nn T =,∴112333n n n a a a n -+++=⋅,当2n ≥时,有()211213313n n n a a a n ---+++⋅=-⋅,两式相减可得:()()1113313213n n n n n a n n n ---⋅=⋅--⋅=+⋅.∴21n a n =+(2n ≥). 当1n =时,13a =适合上式. ∴21n a n =+.则数列{}n a 是以3为首项,以2为公差的等差数列. ∴()202032202012020S 202220202+⨯+⨯==⨯.∴202020222020S =. 故选:D . 【点睛】本题主要考查数列通项与前n 项和的关系以及等差数列的定义和求和公式的应用,属于中档题.8.A解析:A 【分析】由1n nb b +用递推式可得到值为-1,{}n b 是等比数列,再求前2020项和. 【详解】 由题意可知()2221121213221212n n n n n n n n n n n n n n n a a a a b a a a b a a a a a a ++++++++++++-+-===--()222211212212121n n n n n n n n n n n n n a a a a a a a a a a a a a ++++++++++---==---, 又212131b a a a =-=-,因此()1nn b =-,故()()()20201111110S =-++-+++-+=,故选:A. 【点睛】本题考查了通过递推数列揭示数列存在的规律即等比数列,还考查了数列求和,属于中档题.9.B解析:B 【分析】用等比数列的通项公式和等差中项公式求解. 【详解】因为1324,,2a a a 成等差数列,所以312242a a a =+,即2111242a q a a q =+,化简得220q q --=,解得1q =-或2q .故选B. 【点睛】本题考查等比数列与等差数列的综合运用.10.C解析:C 【分析】当公比q=1时,易推断不符合题意,故q 1≠,然后利用等比数列的前n 项和的公式和等差数列的性质得方程,再利用等比数列的性质求解. 【详解】设数列{}n a 的公比为q ,当1q =时,2n a =,则36S =,612S =,918S =,此时396,,S S S 不成等差数列,不符合题意,舍去;当1q ≠时,∵396,,S S S 成等差数列,∴3692S S S +=, 即()()()3691111112?111a q a q a q qq q---+=---,即96320q q q --=,解得312q =-或31q =(舍去)或30q =(舍去), ∴8268a a q ==,8534a a q ==-,∴254a a +=,故选C. 【点睛】本题综合考查了等比数列与等差数列;在应用等比数列的前n 项和公式时,公比不能为1,故在解题过程中,应注意公比为1的这种特殊的等比数列,以防造成漏解.11.D解析:D 【分析】由题设得到5n a a ≥恒成立,参变分离后可得实数a 的取值范围. 【详解】由题设有5n a a ≥恒成立, 故21125555a an n n -+≥-+恒成立即()()()5565a n n n n---≥, 当6n ≥时,有()56a n n ≤-恒成立,故0a ≤, 当14n ≤≤时,有()56a n n ≥-恒成立,故25a ≥-, 当5n =时,a R ∈, 故250a -≤≤. 故选:D. 【点睛】本题考查数列的函数性质:最值问题,此类问题可利用函数的单调性来研究,也可以利用恒成立来研究,本题属于较难题.12.B解析:B 【分析】结合题意根据等差数列的通项公式和前n 项和公式列方程115419199114a d a d +=⎧⎨+⨯=⎩,解得11232d a ⎧=⎪⎪⎨⎪=⎪⎩,再利用前n 项和公式即可求得答案. 【详解】解:根据题意64a =,19114S =,结合等差数列的通项公式和前n 项和公式得:115419199114a d a d +=⎧⎨+⨯=⎩,即:115496a d a d +=⎧⎨+=⎩,解得11232d a ⎧=⎪⎪⎨⎪=⎪⎩, 所以()1511515131451051515157752222S a d -+=+=⨯+⨯⨯==. 故选:B. 【点睛】本题考查利用等差数列的通项公式和前n 项和公式求等差数列的基本量,考查数学运算能力,是基础题.二、填空题13.【分析】对递推关系多递推一次再相减可得再验证是否满足;【详解】∵①时②①-②得时满足上式故答案为:【点睛】数列中碰到递推关系问题经常利用多递推一次再相减的思想方法求解 解析:31n【分析】对递推关系多递推一次,再相减,可得31n a n ,再验证1n =是否满足;【详解】 ∵()()1232312n a a a na n n n ++++=++①2n ∴≥时,()()()123123111n a a a n a n n n -++++-=-+② ①-②得31,31n nna n n a n ,1n =时,1123=6,a 满足上式,31na n .故答案为:31n . 【点睛】数列中碰到递推关系问题,经常利用多递推一次再相减的思想方法求解.14.【分析】本题先求等差数列前n 项和再由此求出数列的前n 项和的最小值【详解】解:∵等差数列的首项是公差是2∴∴时数列的前n 项和的最小值是故答案为:【点睛】本题考查等差数列前n 项和的最小值的求法考查等差数解析:100-. 【分析】本题先求等差数列前n 项和()()22119220101002n n n S n n n n -=-+⨯=-=--,再由此求出数列{}n a 的前n 项和n S 的最小值. 【详解】解:∵等差数列{}n a 的首项是19-,公差是2, ∴()()22119220101002n n n S n n n n -=-+⨯=-=--, ∴10n =时,数列{}n a 的前n 项和n S 的最小值是100-. 故答案为:100-. 【点睛】本题考查等差数列前n 项和的最小值的求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.15.2020【分析】当n 为偶数时可得出故偶数项是以2为首项公差为2的等差数列求出通项公式代值计算即可得解【详解】当n 为偶数时即故数列的偶数项是以2为首项公差为2的等差数列所以所以故答案为:2020【点睛解析:2020 【分析】当n 为偶数时,可得出22n n a a +=+,故偶数项是以2为首项,公差为2的等差数列,求出通项公式,代值计算即可得解. 【详解】 当n 为偶数时,2223cos 1sin 2cos 1cos 2222n n n n n n n a a a n a ππππ+-⎛⎫=+⋅+=⋅++=+ ⎪⎝⎭, 即22n n a a +=+,故数列{}n a 的偶数项是以2为首项,公差为2的等差数列,所以2122n n a n ⎛⎫=+-⨯= ⎪⎝⎭,所以20202020a =. 故答案为:2020.【点睛】本题考查数列的递推式,解题关键是得出当n 为偶数时,可得出2n a +与n a 的关系式,进而求出{}n a 的通项公式,考查逻辑思维能力和计算能力,属于常考题.16.【分析】由题意利用等比数列的性质求得的值再利用对数的运算性质求得结果【详解】解:等比数列{an}的各项均为正数且∴则故答案为:【点睛】本题考查等比中项的性质考查运算求解能力求解时注意对数运算法则的运用 解析:5-【分析】由题意利用等比数列的性质求得3a 的值,再利用对数的运算性质,求得结果. 【详解】解:等比数列{a n }的各项均为正数, 且224314a a a ==,∴312a =, 则2122232425log log log log log a a a a a ++++523231og 5log 5(1)5a a ===⋅-=-,故答案为:5-. 【点睛】本题考查等比中项的性质,考查运算求解能力,求解时注意对数运算法则的运用.17.【分析】两边取对数化简整理得得到数列是以为首项公比为3的等比数列结合等比数列的通项公式即可求解【详解】由两边取对数可得即又由则所以数列是以为首项公比为3等比数列则所以故答案为:【点睛】本题主要考查了 解析:133()n n a n -*=∈N【分析】两边取对数,化简整理得313log 3log n na a +=,得到数列3{log }n a 是以1为首项,公比为3的等比数列,结合等比数列的通项公式,即可求解. 【详解】由31()n na a n *+=∈N ,两边取对数,可得313log 3log n n a a +=,即313log 3log n na a +=, 又由13a =,则31log 1a =,所以数列3{log }n a 是以31log 1a =为首项,公比为3等比数列,则113log 133n n n a --=⋅=,所以133()n n a n -*=∈N . 故答案为:133()n n a n -*=∈N 【点睛】本题主要考查了对数的运算性质,以及等比数列的通项公式的求解,其中解答中合理利用对数的运算性质,结合等比数列的通项公式求解是解答的关键,着重考查推理与运算能力.18.【分析】根据是与的等比中项求出和再根据等差数列的求和公式求出解不等式即可得解【详解】因为是与的等比中项所以所以化简得因为所以因为所以即将代入得解得所以所以由得即解得所以正整数的最大值为故答案为:20解析:【分析】根据690S =,7a 是3a 与9a 的等比中项求出1a 和d ,再根据等差数列的求和公式求出n S ,解不等式0n S >即可得解.【详解】因为7a 是3a 与9a 的等比中项,所以2739a a a =⋅,所以()()()2111628a d a d a d +=++,化简得21100a d d +=,因为0d ≠,所以110a d =-, 因为690S =,所以1656902a d ⨯+=,即15152a d +=, 将110a d =-代入得510152d d -+=,解得2d =-,所以120a =, 所以2(1)20(2)212n n n S n n n -=+⨯-=-+, 由0n S >得2210n n -+>,即2210n n -<,解得021n <<, 所以正整数n 的最大值为20. 故答案为:20 【点睛】关键点点睛:熟练掌握等差数列的通项公式和求和公式以及等比中项的应用是解题关键.19.【分析】首先利用与的关系式求数列的通项公式再利用裂项相消法求再利用的最值求的最小值【详解】当时解得或当两式相减后可得整理后得:所以数列是公差为1的等差数列即数列单调递增当时对任意的恒成立即的最小值是解析:13【分析】首先利用n S 与n a 的关系式,求数列{}n a 的通项公式,再利用裂项相消法求n T ,再利用n T 的最值求k 的最小值. 【详解】当1n =时,2111122S a a a =+=,解得10a =或11a =,0n a >,11a ∴=,当2n ≥,2211122n n nn n n S a a S a a ---⎧=+⎨=+⎩,两式相减后可得()()()221112n n n n n n S S a a a a ----=-+-,整理后得:()()1110n n n n a a a a --+--=,所以11n n a a --=,∴数列{}n a 是公差为1的等差数列,即n a n =,()()112111221221n n n n n n b n n n n +++==-++++++, 2231111111...21222223221n n n T n n +⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪+++++++⎝⎭⎝⎭⎝⎭1112121n n +=-+++ 111321n n +=-++, 数列{}n T 单调递增,当n →+∞时,13n T → 对任意的*n N ∈,n k T >,恒成立,()max n k T ∴>,即13k ≥,k 的最小值是13.故答案为:13【点睛】易错点睛:本题主要考查函数与数列的综合问题,属于难题.解决该问题应该注意的事项: (1)数列是一类特殊的函数,它的图象是一群孤立的点;(2)转化以函数为背景的条件时,应该注意题中的限制条件,如函数的定义域,这往往是很容易被忽视的问题;(3)利用函数的方法研究数列中的相关问题时,应准确构造相应的函数,注意数列中相关限制条件的转化.20.8【分析】求出数列在n 的不同取值范围的正负判断出的单调性可求出【详解】令解得或当时单调递增当时单调递减当时单调递增所以取得最小值时的值为8故答案为:8【点睛】本题考查数列前n 项和的最值的求法解题的关解析:8 【分析】求出数列在n 的不同取值范围的正负判断出n S 的单调性可求出. 【详解】 令30217n n a n -=≥-,解得3n ≤或172n ≥,∴当3n ≤时,0n a ≥,n S 单调递增,当47n ≤≤时,0n a <,n S 单调递减, 当8n ≥时,0n a >,n S 单调递增, 所以n S 取得最小值时n 的值为8. 故答案为:8.【点睛】本题考查数列前n 项和的最值的求法,解题的关键是根据数列的正负判断n S 的单调性.三、解答题21.答案见解析 【分析】选①:由等差数列通项公式得出通项n a 后,解0n a ≥,满足此不等式的最大的n 使得n S 最大,注意若n a 0=,则有两个值使得n S 最大,选②:由等比数列前n 项和公式得出n S ,由于公比是负数,因此按n 的奇偶性分类讨论求得n S 的最大值;选③:由累加法求得n a ,利用n a 的表达式是n 的二次函数形式,当15n ≥时,0n a >,确定n S 不存在最大值. 【详解】 选①因为119n n a a +-=-,19a =,所以{}n a 是首项为9,公差为19-的等差数列.所以()118291999n a n n ⎛⎫=+-⋅-=-+ ⎪⎝⎭. 由182099n -+≥,得82n ≤,即820a ≥ 所以n S 存在最大值,且最大值为81S 或82S , 因为818180181936929S ⨯⎛⎫=⨯+⨯-= ⎪⎝⎭,所以n S 的最大值为369. 选② 因为113n n a a +=-,19a =,所以{}n a 是首项为9,公比为13-的等比数列. 所以1311933n n n a --⎛⎫⎛⎫=⨯-=- ⎪⎪⎝⎭⎝⎭.1︒当n 为奇数时,1913271114313n n n S ⎡⎤⎛⎫⨯--⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦==+ ⎪⎝⎭+, 因为271143n ⎛⎫+ ⎪⎝⎭随着n 的增大而减小,所以此时n S 的最大值为19S =;2︒当n 为偶数的,1913271114313n n n S ⎡⎤⎛⎫⨯--⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦==- ⎪⎝⎭+, 且2712719434n n S ⎛⎫=-<< ⎪⎝⎭, 综上,n S 存在最大值,且最大值为9. 选③因为18n n a a n +=+-,所以18n n a a n +-=-,所以217a a -=-,326a a -=-,…,19n n a a n --=-, 以上1n -个等式相加得()()21791171622n n n n n a a -+---+-==, 因为19a =,所以()2173422n n n a n -+=≥,又19a =也满足上式,所以217342n n n a -+=. 当15n ≥时,0n a >,故n S 不存在最大值. 【点睛】关键点点睛:本题考查数列前n 项和的最大值问题,一种方法是求出n S 的表达式,由函数的性质确定n S 的最大值,一种是利用数列项的性质,如数列是递减的数列,10a >,则满足0n a ≥的最大的n 使得n S 最大.22.(1)n a n =,2nn b n=;(2)证明见解析;【分析】(1)设{}n a 的公差为d ,由410S a =,即可得到1d a =,从而求出{}n a 的通项公式,再由1122n n n n n c T T c c --=-=-,可得{}n c 是首项为2,公比为2的等比数列,即可求出{}n c 的通项,最后由n n n c a b =⋅,求出{}n b 的通项公式;(2)依题意可得()()1111112121n n n n n c c c ++=-----,利用裂项相消法求和即可得证;【详解】解:(1)因为{}n a 为等差数列,且{}n a 前n 项的和为n S ,设其公差为d , 因为410S a =,11a =,所以()11441492a d a d ⨯-+=+,所以11d a ==,所以n a n =,因为11a =,12b =,n n n c a b =⋅,所以1112c a b =⋅=,因为{}n c 的前n 项和为n T 且22n n T c =-,当2n ≥时,()()111222222n n n n n n n c T T c c c c ---=-=---=-,所以()122n n c c n -=≥,所以{}n c 是首项为2,公比为2的等比数列,所以2n n c =,因为n n n c a b =⋅,所以2nn n n c b a n==(2)因为()()()()1112111121212121n n n n n n n n c c c +++==-------所以()()()()()()1212231111111nn n c c c c c c c c c ++++------122311111111111111212121212121212121n n n n +++=-+-++-=-=-<--------- 【点睛】数列求和的方法技巧 (1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和. (2)错位相减:用于等差数列与等比数列的积数列的求和. (3)分组求和:用于若干个等差或等比数列的和或差数列的求和. 23.(1)13n n a =,12n n b +=;(2)151144323nn nn T -+=--⋅⋅ 【分析】(1)由1n =求得1a ,再風1b ,然后由11n n n a S S ++=-得到数列{}n a 的递推关系,知其为等比数列,从而得通项公式,由n b 的递推关系得1(1)n n nb n b -=+,用累乘的方法求得n b ;(2)用错位相减法求和n T . 【详解】(1)由题意知:1111221S a a a +=+=,113a =,∴11413b a =-=, ∵1121,21n n n n S a S a +++=+= ∴111333n n n n a a q a +=⇒=⇒= 又∵()[]11(1)0,0n n n n n b b nb n b b --+⋅-+=> ∴121121131(1)122n n n n n n n b b b n n n nb n b b b b b n n ----++=+⇒⋅=⋅⋅⇒=-(1b 也适合), (2)∵123n n nn a b +=∴2323413333n n n T +=++++ 231123133333n n n n T ++=++++ ∴12311111221111219313333333313n n n n n n n T -++⎛⎫- ⎪++⎝⎭=++++-=+-- 11211113633n n n -++⎛⎫=+-- ⎪⎝⎭ ∴151144323n n n n T -+=--⋅⋅. 【点睛】本题考查求等比数列的通项公式,累乘法求通项公式,错位相减法求和.数列求和的常用方法:设数列{}n a 是等差数列,{}n b 是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和; (2)错位相减法:数列{}n n a b 的前n 项和应用错位相减法; (3)裂项相消法;数列1{}n n ka a +(k 为常数,0n a ≠)的前n 项和用裂项相消法; (4)分组(并项)求和法:数列{}n n pa qb +用分组求和法,如果数列中的项出现正负相间等特征时可能用并项求和法;(5)倒序相加法:满足m n m a a A -+=(A 为常数)的数列,需用倒序相加法求和. 24.答案见解析. 【分析】选①,设等差数列{}n a 的公差为d ,根据已知条件可得出关于1a 、d 的方程组,解出这两个量的值,可求得数列{}n a 的通项公式,可求得n b ,进而可求得n T ;选②,设等差数列{}n a 的公差为d ,根据已知条件可得出关于1a 、d 的方程组,解出这两个量的值,可求得数列{}n a 的通项公式,可求得n b ,进而利用分组求和法可求得n T ; 选③,设等差数列{}n a 的公差为d ,利用等差数列的求和公式求出d 的值,可求得1a 的值,求出数列{}n a 的通项公式,可求得n b ,进而利用分组求和法可求得n T . 【详解】解:选①,设数列{}n a 的公差为d ,则由47a =可得137a d +=,由1a 、2a 、5a 成等比数列得()()21114a a d a d +=+,可得212d a d =,所以,121372a d d a d +=⎧⎨=⎩,解得170a d =⎧⎨=⎩或112a d =⎧⎨=⎩,若17a =,0d =,则7n a =,23n b =,23n T n =;若11a =,2d =,则()1121n a a n d n =+-=-,212nn b n =-+,()()()()23123252212nn T n ⎡⎤∴=+++++++-+⎣⎦()()23135212222n n =++++-+++++⎡⎤⎣⎦()()1221212122212nn n n n +-+-=+=+--;选②,设数列{}n a 的公差为d ,则由47a =可得137a d +=, 由525S =得1545252a d ⨯+=,即125a d +=, 联立以上两式可得11a =,2d =,所以,()1121n a a n d n =+-=-,212nn b n =-+,()()()()23123252212nn T n ⎡⎤∴=+++++++-+⎣⎦()()23135212222n n =++++-+++++⎡⎤⎣⎦()()1221212122212nn n n n +-+-=+=+--;选③,设数列{}n a 的公差为d ,则由47a =可得137a d +=,()112n n n d S na -=+,()112n n d Sa n -∴=+,()21122n n d S a n ++∴=++, 由222n nS S n n+-=+得2d =,则11a =, 所以,()1121n a a n d n =+-=-,212nn b n =-+,()()()()23123252212n n T n ⎡⎤∴=+++++++-+⎣⎦()()23135212222n n =++++-+++++⎡⎤⎣⎦()()1221212122212nn n n n +-+-=+=+--.【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法; (4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.25.(1)21n a n =-,2n s n =;(2)21n nT n =+. 【分析】(1)根据条件列出式子求出数列{}n a 的首项和公差,即可求出通项公式和前n 项和; (2)可得112+1n b n n ⎛⎫=- ⎪⎝⎭,利用裂项相消法即可求出. 【详解】(1)设等差数列{}n a 的公差为d ,则3171+25767+492a a d S a d ==⎧⎪⎨⨯==⎪⎩,解得1a 1,d 2, ()1+1221n a n n ∴=-⨯=-,()21+212n n n S n -==; (2)()2112+1+1n b n n n n ⎛⎫===- ⎪⎝⎭, 1111122122311n nT n n n ⎛⎫∴=-+-++-=⎪++⎝⎭. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法可直接求解;(2)对于{}n n a b 结构,其中{}n a 是等差数列,{}n b 是等比数列,用错位相减法求和; (3)对于{}+n n a b 结构,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎬⎩⎭结构,其中{}n a 是等差数列,公差为d ,则111111n n n n a a d a a ++⎛⎫=- ⎪⎝⎭,利用裂项相消法求和. 26.(1)11b =,22b =,33b =;(2)证明见解析;(3)证明见解析 【分析】(1)由{}n a 是单调递增数列可得1nn a b a =即可求出;(2)设1n a k +=,讨论n k B ≤,n n B k A <<和n k A ≥可证明;(3)设{}n b 的公比为q ,且1q ≥,显然1q =时满足;1q >时,由{}n A 是递增数列,{}n B 是递减数列,且{}n B 不能无限减少可得.【详解】(1)2n a n =,可得{}n a 是单调递增数列,1,n n n a B A a ∴==,1111a b a ∴==,2212a b a ==,3313a b a ==, (2)设1n a k +=,n n n A b B =, 若n k B ≤,则+1n n n n nk A A b b B =≥=, 若n n B k A <<,则+1n n n n A b b B ==, 若n k A ≥,则+1n n n nn A k b b B B =≥=, 综上,1(1,2,3,)n n b b n +≥=; (3)设等比数列{}n b 的公比为q ,1111a b a ==,则1n n n n A b q B -==, 由(2)可得1n n b b +≥,则1q ≥,当1q =时,1n nA B =,即n n A B =,此时{}n a 为常数列,则存在01n =,当0n n ≥时,n a ,1n a +,2n a +是等比数列; 当1q >时,{}n A 是递增数列,{}n B 是递减数列,{}n a 是由正整数组成的无穷数列,则数列{}n a 必存在最小值,即存在正整数0n ,0n a 是数列{}n a 的最小值,则当0n n ≥时,0n n B a =, 此时01n n n n n n A a b q B a -===,即01n n n a a q -=, 故当0n n ≥时,n a ,1n a +,2n a +是等比数列;综上,存在正整数0n ,当0n n ≥时,n a ,1n a +,2n a +是等比数列. 【点睛】本题考查数列单调性的有关判断,解题的关键是正确理解数列的变化情况,清楚{}n b 的变化特点.。
(好题)高中数学必修五第一章《数列》测试(包含答案解析)
一、选择题1.记无穷数列{}n a 的前n 项12,,,n a a a …的最大项为n A ,第n 项之后的各项12,n n a a ++,···的最小项为n B ,令n n n b A B =-,若数列{}n a 的通项公式为2276n a n n =-+,则数列{}n b 的前10项和为( )A .169-B .134-C .103-D .78-2.若等差数列{}n a 的前n 项和为n S ,首项10a >,202020210a a +>,202020210a a ⋅<,则满足0n S >成立的最大正整数n 是( ) A .4039B .4040C .4041D .40423.已知数列{}n a 是等比数列,满足51184a a a =,数列{}n b 是等差数列,且88b a =,则79b b +等于( )A .24B .16C .8D .44.已知数列{}n a 中,12a =,()*,N n m n m a a a n m +=⋅∈,若1234480k k k k a a a a +++++++=,则k =( )A .3B .4C .5D .65.在正项等比数列{}n a 中,若3788a a a =,2105a a +=,则公比q =( ) A .122B .122或1212⎛⎫ ⎪⎝⎭C .142D .142或1412⎛⎫ ⎪⎝⎭6.已知数列{}n a 满足()1341n n a a n ++=≥,且19a =,其前n 项之和为n S ,则满足不等式16125n S n --<的最小整数n 是( ) A .5B .6C .7D .87.数列{}n a 的前n 项和为()21n S n n =-(*n ∈N ),若173a a ka +=,则实数k 等于( ) A .2B .3C .269D .2598.已知等差数列{}n a 中, 23a =,59a =,则数列{}n a 的前6项之和等于( ) A .11 B .12 C .24D .369.已知{}n a 是等比数列,且2222212345123451060a a a a a a a a a a ++++=++++=,,则24a a +=( )A .2B .3C .4D .510.已知等比数列{}n a 中,若1324,,2a a a 成等差数列,则公比q =( )A .1B .1-或2C .3D .1-11.等差数列{}n a 的前n 项和为n S ,已知32110S a a =+,534a =,则1a =( ) A .2B .3C .4D .512.已知数列{}n a 中,11a =,又()1,1n a a +=,()21,1n b a =+,若//a b ,则4a =( ) A .7B .9C .15D .17二、填空题13.设S n 是数列{}n a 的前n 项和,且*1111,20,3n n n a a S S n N ++=+=∈,则1223910S S S S S S ++⋅⋅⋅⋅⋅+=___________.14.设数列{}n a 中12a =,若等比数列{}n b 满足1n n n a a b +=,且10101b =,则2020a =__. 15.已知等差数列{}n a 中,268,0a a ==,等比数列{}n b 中, 122123,b a b a a a ==++,那么数列{}n b 的前4项和4S =________16.数列{}n a 满足11a =,22a =,且2221sin 2cos 22n nn n a a ππ+⎛⎫=+⋅+ ⎪⎝⎭(*n N ∈),则2020a =__.17.已知数列{a n }的前n 项和为S n ,若S n ﹣1是a n 和S n 的等比中项,设1(1)(21)n n n b n a +=-⋅+,则数列{b n }的前100项和为_____.18.已知等差数列{a n }的前n 项和为S n ,且a 2=4,S 5=30,则数列{1nS }的前n 项和为_____.19.等比数列{}n a 前n 项和为n S ,若634S S =,则96S S =______. 20.对于数列{}n a ,存在x ∈R ,使得不等式()2*144n na x x n N a +≤≤-∈成立,则下列说法正确的有______.(请写出所有正确说法的序号). ①数列{}n a 为等差数列; ②数列{}n a 为等比数列; ③若12a =,则212n na -=;④若12a =,则数列{}n a 的前n 项和21223n n S +-=.三、解答题21.已知数列{}n a 满足:*111,21,n n a a a n n N +=-=-∈(1)证明{}n a n +是等比数列,并求出数列{}n a 的通项公式;(2)设21,n n n n b S a n+=+为数列{}n b 的前n 项和,求n S 22.已知等差数列{}n a 的前n 项和为n S ,满足332S a =,8522a a =-. (1)求数列{}n a 的通项公式; (2)记121n n n n b a a a ++=⋅⋅,求数列{}n b 的前n 项和n T .23.已知等比数列{}n a 的公比不为1,且11a =,32a 是23a 与4a 的等差中项. (Ⅰ)求{}n a 的通项公式; (Ⅱ)若数列{}n b 满足()()1211nn n n a b a a +=++,求数列{}n b的前n 项和n T .24.已知正项等比数列{}n a ,首项13a =,且13213,,22a a a 成等差数列. (1)求数列{}n a 的通项公式; (2)若数列{}nb 满足3321log log n n n b a a +=⋅,求数列{}n b 的前n 项和n S .25.在数列{}n a 中,已知12a =,且12(1)(1)n n na n a n n +=+-+,*n ∈N . (1)设1nn a b n=-,求数列{}n b 的通项公式; (2)求数列{}n a 的前n 项和n T .26.已知{}n a 是由正整数组成的无穷数列,该数列前n 项的最大值记为n A ,最小值记为n B ,令nn nA bB =. (1)若2(1,2,3,)n a n n ==,写出1b ,2b ,3b 的值.(2)证明:1(1,2,3,)n n b b n +≥=.(3)若{}n b 是等比数列,证明:存在正整数0n ,当0n n 时,n a ,1n a +,2n a +是等比数列.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】先利用单调性依次写出前几项,再根据规律求和即可. 【详解】数列{}n a 的通项公式为2276n a n n =-+,故从2a 起单调递增,且1231,0,3a a a ===, 所以11112101b A B a a =-=-=-=,22213b A B a a =-=-,33334b A B a a =-=-,44445b A B a a =-=-,…,1010101011b A B a a =-=-,又2112117116171a =⨯-⨯+=,所以数列{}n b 的前10项和为()()()()12101334451011...1...b b b a a a a a a a a +++=+-+-+-++-111111171169a a =+-=+-=-.故选:A. 【点睛】 关键点点睛:本题的解题关键在于发现数列从2a 起单调递增,才能依次确定{}n b 的项,找到规律,突破难点.2.B解析:B 【分析】由等差数列的10a >,及202020210a a ⋅<得数列是递减的数列,因此可确定202020210,0a a ><,然后利用等差数列的性质求前n 项和,确定和n S 的正负.【详解】∵202020210a a ⋅<,∴2020a 和2021a 异号,又数列{}n a 是等差数列,首项10a >,∴{}n a 是递减的数列,202020210,0a a ><, 由202020210a a +>,所以140404040202020214040()2020()02a a S a a +==+>,14041404120214041()404102a a S a +==<,∴满足0n S >的最大自然数n 为4040. 故选:B . 【点睛】关键点睛:本题求满足0n S >的最大正整数n 的值,关键就是求出100n n S S +><,,时成立的n 的值,解题时应充分利用等差数列下标和的性质求解,属于中档题.3.C解析:C 【分析】利用等比数列和等差数列的性质计算. 【详解】∵数列{}n a 是等比数列,∴2511884a a a a ==,又80a ,∴84a =,又{}n b 是等差数列,∴7988228b b b a +===. 故选:C . 【点睛】关键点点睛:本题考查等差数列与等比数列的性质,掌握等差数列与等比数列的性质是解题关键.对正整数,,,m n p l ,若m n p l +=+,{}n a 是等差数列,则m n p l a a a a +=+,若{}n a 是等比数列,则m n p l a a a a =,特别地若2m n p +=,{}n a 是等差数列,则2m n p a a a +=,若{}n a 是等比数列,则2m n p a a a =.4.B解析:B 【分析】由已知,取1m =,则112n n n a a a a +=⋅=,得出数列{}n a 是以2为首项,2为公差的等比数列,根据等比数列的通项公式建立方程得可求得解. 【详解】因为数列{}n a 中,12a =,()*,N n m n m a a a n m +=⋅∈,所以取1m =,则112n n n a a a a +=⋅=,所以数列{}n a 是以2为首项,2为公差的等比数列,所以2nn a =,又1234480k k k k a a a a +++++++=,即12344220282k k k k +++++++=,即040238k ⨯=,解得4k =, 故选:B . 【点睛】关键点点睛:解决本题的问题的关键在于令1m =,得出数列{}n a 是以2为首项,2为公差的等比数列,利用等比数列的通项公式建立方程得解.5.D解析:D 【分析】由等比数列的性质可得出关于2a 、10a 的方程组,进而可求得等比数列{}n a 的公比. 【详解】由3788a a a =得()326753111168a q a q a q a qa ⋅⋅===,即62a =.22106()4a a a ∴==,又2105a a +=,解得21014a a =⎧⎨=⎩或21041a a =⎧⎨=⎩,0q >,11181084242a q a ⎛⎫∴=== ⎪⎝⎭或1111884104211242a q a -⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:D. 【点睛】关键点点睛:本题的解题关键就是利用等比数列下标和的性质建立有关2a 、10a 的方程组,通过求出2a 、10a 的值,结合等比数列的基本量来进行求解.6.C解析:C 【分析】首先分析题目已知3a n+1+a n =4(n ∈N*)且a 1=9,其前n 项和为S n ,求满足不等式|S n ﹣n ﹣6|<1125的最小整数n .故可以考虑把等式3a n+1+a n =4变形得到111-13n n a a +-=-,然后根据数列b n =a n ﹣1为等比数列,求出S n 代入绝对值不等式求解即可得到答案. 【详解】对3a n+1+a n =4 变形得:3(a n+1﹣1)=﹣(a n ﹣1)即:111-13n n a a +-=- 故可以分析得到数列b n =a n ﹣1为首项为8公比为13-的等比数列.所以b n =a n ﹣1=8×11-3n -⎛⎫ ⎪⎝⎭a n =8×11-3n -⎛⎫ ⎪⎝⎭+1所以181********n nn S n n ⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦=+=-⨯-+ ⎪⎛⎫⎝⎭-- ⎪⎝⎭|S n ﹣n ﹣6|=n11-6-3125⎛⎫⨯< ⎪⎝⎭解得最小的正整数n=7 故选C . 【点睛】此题主要考查不等式的求解问题,其中涉及到可化为等比数列的数列的求和问题,属于不等式与数列的综合性问题,判断出数列a n ﹣1为等比数列是题目的关键,有一定的技巧性属于中档题目.7.C解析:C 【分析】由已知结合递推公式可求n a ,然后结合等差数列的通项公式即可求解. 【详解】因为()21n S n n =-, 所以111a S ==,当2n ≥时,()()()12112343n n n a S S n n n n n -=-=----=-,111a S ==适合上式,故43n a n =-,因为173a a ka +=, ∴1259k +=, 解可得269k = 故选:C. 【点睛】本题主要考查了由数列前n 项和求数列的通项公式,考查来了运算能力,属于中档题.8.D解析:D 【分析】根据等差数列的性质得162512a a a a +=+=,再根据等差数列前n 项和公式计算即可得答案. 【详解】解:因为等差数列{}n a 中, 23a =,59a =, 所以根据等差数列的性质得162512a a a a +=+=, 所以根据等差数列前n 项和公式()12n n n a a S +=得()16666123622a a S +⨯===. 故数列{}n a 的前6项之和等于36. 故选:D. 【点睛】本题考查等差数列的性质,前n 项和公式,考查运算能力,是中档题.9.A解析:A 【分析】首先根据题意,利用等比数列求和公式,得到5112345(1)101a q a a a a a q -++++==-,222222101521234(1)601a q q a a a a a -=-++=++,两式相除得到51(1)61a q q+=+,即5112345(1)61a q a a a a a q+-+-+==+,与1234510a a a a a ++++=联立求得结果.【详解】设数列{}n a 的公比为q ,且1q ≠,则5112345(1)101a q a a a a a q -++++==-, 222222101521234(1)601a q q a a a a a -=-++=++,两式相除得210551112(1)(1)(1)6111a q a q a q q q q--+÷==--+, 所以5112345(1)61a q a a a a a q+-+-+==+, 又123123452445)()2()104(6a a a a a a a a a a a a --+-+=+=++-+=+, 所以242a a +=, 故选:A. 【点睛】该题考查的是有关数列的问题,涉及到的知识点有等比数列的求和公式,这题思维的应用,属于中档题目.10.B解析:B 【分析】用等比数列的通项公式和等差中项公式求解. 【详解】因为1324,,2a a a 成等差数列,所以312242a a a =+,即2111242a q a a q =+,化简得220q q --=,解得1q =-或2q .故选B. 【点睛】本题考查等比数列与等差数列的综合运用.11.A解析:A 【解析】设等差数列{a n }的公差为d ,∵S 3=a 2+10a 1,a 5=34, ∴3a 1+3d =11a 1+d ,a 1+4d =34, 则a 1=2. 本题选择A 选项.12.C解析:C 【分析】利用向量平行的坐标运算公式得出121n n a a +=+,可得出1121n n a a ++=+,所以数列{}1n a +是以2为首项,公比为2的等比数列,然后求解4a . 【详解】因为//a b ,所以121n na a +=+,则()112221n n n a a a ++=+=+,即1121n n a a ++=+, 又11a =,所以112a +=,所以数列{}1n a +是以2为首项,公比为2的等比数列, 所以441216a +==,得415a =. 故选:C. 【点睛】本题考查向量的平行,考查数列的通项公式求解及应用,难度一般. 一般地,若{}n a 满足()10,1,0n n a pa q p p q +=+≠≠≠,则只需构造()1n n a x p a x ++=+,其中1q x p =-,然后转化为等比数列求通项.二、填空题13.【分析】由代入化简求得再结合求和方法计算可得结果【详解】因为所以所以所以又所以数列是以为首项为公差的等差数列所以所以所以所以故答案为:【点晴】由代入化简求得数列是等差数列是解题的关键解析:17【分析】由11n n n a S S ++=-代入化简求得n S ,再结合求和方法计算可得结果. 【详解】因为1120n n n a S S +++= 所以1120n n n n S S S S ++-+= 所以112n n n n S S S S ++-= 所以1112n nS S +-= 又11113S a ==所以数列1n S ⎧⎫⎨⎬⎩⎭是以3为首项,2为公差的等差数列, 所以()131221nn n S =+-⨯=+ 所以121n S n =+ 所以111111212322123n n S S n n n n +⎛⎫=⋅=- ⎪++++⎝⎭所以12239101111111111123557192123217S S S S S S ⎛⎫⎛⎫++⋅⋅⋅⋅⋅⋅+=-+-+⋅⋅⋅+-=-=⎪ ⎪⎝⎭⎝⎭ 故答案为:17【点晴】由11n n n a S S ++=-代入化简求得数列1n S ⎧⎫⎨⎬⎩⎭是等差数列是解题的关键. 14.【分析】由变形可得进而由累乘法可得结合等比数列的性质即可得解【详解】根据题意数列满足即则有而数列为等比数列则则又由则故答案为:2【点睛】本题考查了等比数列的性质以及应用考查了累乘法求数列通项的应用及解析:【分析】 由1n n n a a b +=变形可得1n n n a b a +=,进而由累乘法可得202020192018201711ab b b b a =⋅⋅⋅⋅⋅,结合等比数列的性质即可得解. 【详解】根据题意,数列{}n b 满足1n n n a a b +=,即1n n na b a +=, 则有20202020201920182201920182017112019201820171a a a a ab b b b a a a a a ⎛⎫⎛⎫⎛⎫=⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 而数列{}n b 为等比数列,则()2019201920182017110101b b b b b ⋅⋅⋅⋅⋅==,则202011a a =, 又由12a =,则20202a =. 故答案为:2. 【点睛】本题考查了等比数列的性质以及应用,考查了累乘法求数列通项的应用及运算求解能力,属于中档题.15.320【分析】先求出等差数列的通项公式即可求出即可得通项再利用等比数列前项和公式求【详解】设等差数列的公差为则解得所以所以数列的公比为所以故答案为:320【点睛】本题主要考查了等比数列求和涉及等差数解析:320 【分析】先求出等差数列{}n a 的通项公式,即可求出1b ,2b ,即可得{}n b 通项,再利用等比数列前n 项和公式求4S【详解】设等差数列{}n a 的公差为d ,则2161850a a d a a d =+=⎧⎨=+=⎩,解得1102a d =⎧⎨=-⎩ , 1(1)10(1)(2)212n a a n d n n =+-=+-⨯-=-+ ,所以128b a ==,2123108624b a a a =+=++=+, 所以数列{}n b 的公比q 为213b b = , 所以448(13)32013S ⨯-==-.故答案为:320 【点睛】本题主要考查了等比数列求和,涉及等差数列通项公式,等比数列通项公式,属于基础题.16.2020【分析】当n 为偶数时可得出故偶数项是以2为首项公差为2的等差数列求出通项公式代值计算即可得解【详解】当n 为偶数时即故数列的偶数项是以2为首项公差为2的等差数列所以所以故答案为:2020【点睛解析:2020 【分析】当n 为偶数时,可得出22n n a a +=+,故偶数项是以2为首项,公差为2的等差数列,求出通项公式,代值计算即可得解. 【详解】 当n 为偶数时,2223cos 1sin 2cos 1cos 2222n n n n n n n a a a n a ππππ+-⎛⎫=+⋅+=⋅++=+ ⎪⎝⎭, 即22n n a a +=+,故数列{}n a 的偶数项是以2为首项,公差为2的等差数列, 所以2122n n a n ⎛⎫=+-⨯=⎪⎝⎭, 所以20202020a =. 故答案为:2020. 【点睛】本题考查数列的递推式,解题关键是得出当n 为偶数时,可得出2n a +与n a 的关系式,进而求出{}n a 的通项公式,考查逻辑思维能力和计算能力,属于常考题.17.【分析】利用等比中项列方程然后求得再利用裂项求和法求得数列的前项和【详解】依题意当时解得当时解得当时解得以此类推猜想下用数学归纳法证明:当时成立假设当时当时所以假设成立所以对任意(证毕)所以所以数列 解析:100101【分析】利用等比中项列方程,然后求得n a ,再利用裂项求和法求得数列{}n b 的前100项和. 【详解】依题意()21n n n S a S -=⋅,当1n =时,()22111a a -=,解得111212a ==⨯, 当2n =时,()()2122121a a a a a +-=⋅+,解得211623a ==⨯, 当3n =时,()()212331231a a a a a a a ++-=⋅++,解得3111234a ==⨯, 以此类推,猜想()11111n a n n n n ==-++,1111111223111n n S n n n n 1=-+-++-=-=+++. 下用数学归纳法证明: 当1n =时,1112S a ==成立. 假设当n k =时,1k k S k =+ 当1n k =+时,()21111k k k S a S +++-=⋅,()()21111k k k k S S S S +++-=-⋅,22111121k k k k k S S S S S ++++-+=-⋅,1121k k k S S S ++-+=-⋅,()121k k S S +⋅-=-,1122111k k k k S S k k ++--⎛⎫⋅-=⋅=- ⎪++⎝⎭,()111211k k k S k k +++==+++,所以假设成立.所以对任意*N n ∈,()11111n a n n n n ==-++,1n n S n =+.(证毕) 所以()11111(1)(21)(1)(21)(1)111n n n n n b n a n n n n n +++⎛⎫=-⋅+⋅-⋅+⎪==+⋅-⋅+ +⎝⎭,所以数列{}n b 的前100项和为111111111001122334100101101101⎛⎫⎛⎫⎛⎫⎛⎫+-+++--+=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 故答案为:100101【点睛】本小题主要考查等比中项的性质,考查裂项求和法,属于中档题.18.【分析】依据等差数列通项及前n 项和公式求得等差数列{an}的基本量应用等差数列前n 项和公式表示出进而得到数列{}的通项并利用裂项法求前n 项和即可【详解】根据等差数列通项及前n 项和公式知解得∴由等差数 解析:1n n + 【分析】依据等差数列通项及前n 项和公式求得等差数列{a n }的基本量122a d =⎧⎨=⎩,应用等差数列前n项和公式表示出n S ,进而得到数列{1nS }的通项,并利用裂项法求前n 项和即可 【详解】根据等差数列通项及前n 项和公式,知2151451030a a d S a d =+=⎧⎨=+=⎩解得122a d =⎧⎨=⎩ ∴由等差数列前n 项和公式:22(1)n S n n n n n =+-=+,()n N +∈对于数列{1n S }有211111n S n n n n ==-++∴数列{1n S }的前n 项和1111111...1223111n n T nn n n故答案为:1nn + 【点睛】本题考查了等差数列,根据已知量,结合等差数列的通项公式和前n 项和公式列方程求基本量,进而得到其前n 项和公式,根据新数列与等差数列前n 项和的关系求得数列通项公式,结合裂项法得到新数列的前n 项和公式19.【分析】根据等比数列的性质得到成等比从而列出关系式又接着用表示代入到关系式中可求出的值【详解】因为等比数列的前n 项和为则成等比且所以又因为即所以整理得故答案为:【点睛】本题考查学生灵活运用等比数列的 解析:134【分析】根据等比数列的性质得到232,,n n n n n S S S S S --成等比,从而列出关系式,又634S S =,接着用6S 表示3S ,代入到关系式中,可求出96S S 的值. 【详解】因为等比数列{}n a 的前n 项和为n S ,则232,,n n n n n S S S S S --成等比,且0n S ≠,所以6396363--=-S S S S S S S ,又因为634S S =,即3614=S S ,所以6696666141144--=-S S S S S S S ,整理得96134=S S . 故答案为:134. 【点睛】本题考查学生灵活运用等比数列的性质化简求值,是一道基础题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.等差数列99637419,27,39,}{S a a a a a a a n 项和则前已知中=++=++的值为( )A.66 B.99 C .144 D .2972.已知数列{}n a 是公比为2的等比数列,若416a =,错误!未定义书签。
则1a = ( )A .1 B.2 C .3 D.4 3.公差不为零的等差数列{}n a 的前n 项和为n S .若4a 是37a a 与的等比中项, 832S =,则10S 等于( )A.18B. 24C.60D. 904.已知等比数列}{n a 的公比为正数,且3a ·9a =225a ,2a =1,则1a =( )A5.已知等差数列}{n a 的前n 项和为n S ,且854,18S a a 则-==( )A .18 B.36 C.54 D .726.等比数列{}n a 中,44=a ,则=⋅62a a ( )A.4 B .8 C.16 D.327.数列{}n a 中,1160,3n n a a a +=-=+,则此数列前30项的绝对值的和为 ( )A.720B.765C.600D.6308.已知等比数列前n 项和为n S ,若42=S ,164=S ,则=8S ( )A.160 B.64 C.64- D.160-9.公比为2的等比数列{}n a 的各项都是正数,且311=16a a ⋅,则6a = ( )(A )1 (B )2 (C )4 (D)8 10.数列{}n a 为等差数列,123,,a a a 为等比数列,51a =,则10a =( ) A.5 B.1- C .0 D.111.已知等比数列{}n a 中,121a a +=,458a a +=-,则公比q =( ) (A )2- (B)2(C )12- (D )1212.观察下列数的特点,1,1,2,3,5,8,x ,21,34,55,…中,其中x 是( )A.12 B.13 C .14 D .15 13.若n n n a a a a a -===++1221,6,3,则33a = ( )A. -3 B . 3 C. -6 D. 614.已知数列{a n}满足,那么的值是( )A.20112 B.2012×2011 C . 2009×2010 D.2010×2011 15. 数列 ,431,321,211⨯⨯⨯的一个通项公式是 A.)1(1-n n B.)1(1+n n C.)2)(1(1++n n D.以上都不对 16.数列{}n a 是等差数列,494,4,a a =-= n S 是{}n a 的前n 项和,则( )A. 56S S < B. 56S S = C . 57S S = D. 67S S =17.各项都是正数的等比数列{}n a 中,13a ,312a ,22a 成等差数列, 则2012201420132011a a a a +=+ ( ) A .1 B.3 C.6 D.918.等差数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,若231n n S n T n =+,则n na b =( ) A .23 B.2131n n ++ C.2131n n -- D.2134n n -+ 19.已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则公差为20.在等差数列{}n a 中,S 10=120,则a 1+a10等于 ( )A.12B.24 C.36 D.4821.数列{}n a 为等差数列,123,,a a a 为等比数列,51a =,则10a =( ) A.5 B.1- C.0 D .122.已知数列{}n a 中,11a =,*13,(2,)n n a a n n N -=+≥∈,则n a =___________.23.若数列{n(n+4)}中的最大项是第k 项,则k= . 24.设n S 为数列{}n a 的前n 项和,若*2(N )n n S n S ∈是非零常数,则称该数列{}n a 为 “和等比数列”.若数列{}n b 是首项为3,公差为(0)d d ≠的等差数列,且数列{}n b 是“和等比数列”,则d = .25.如果数列}{n a 的前n 项和n n S n 322-=,那么这个数列是 数列26=________.27.已知等比数列{}n a 中,n S 为前n 项和且135a a +=,415S =,(1)求数列{}n a 的通项公式。
(2,求n b 的前n 项和n T 的值。
28.已知数列}{n a 的前n 项和nn S 2=,数列}{n b 满足)12(,111-+=-=+n b b b n n ()1,2,3,n =.(1)求数列}{n a 的通项n a ;(2)求数列}{n b 的通项n b ;29.观察下列三角形数表,假设第n 行的第二个数为a n(n≥2,n ∈N *).(1)依次写出第六行的所有6个数;(2)归纳出a n +1与a n 的关系式并求出{a n}的通项公式.30.已知数列{n a }中,1a =2,123n n a a +=+.(Ⅰ)求432,,a a a ; (Ⅱ)求证数列{n a +3}为等比数列;31.(本小题满分12分)已知数列{}n a 的前n 项和为,2n n S n += (Ⅰ)求数列{}n a 的通项公式;(,求数列{}n b 的前n 项和n T .32.设等差数列{}n a 满足29a =,且15,a a 是方程216600x x -+=的两根。
(1)求{}n a 的通项公式;(2)求数列{||}n a 的前n项和n T 。
33.设,4,221==a a 数列}{n b 满足:,1n n n a a b -=+ 122n n b b +=+.(1)求证:数列}2{+n b 是等比数列(要指出首项与公比);(2)求数列}{n a 的通项公式.参考答案1.B 【解析】由已知及等差数列的性质得,46339,327,a a ==所以 B. 考点:等差数列及其性质,等差数列的求和公式.2.B【解析】试题分析:由等比数列的通项公式11-=n n q a a 得314q a a =, 考点:等比数列的通项公式3.C【解析】试题分析:设公差为()0d d ≠.因为4a 是37a a 与的等比中项,所以2437a a a =.则. 考点:1等比数列的通项公式;2等比中项;3等比数列的前n 项和.4.B【解析】试题分析:设公比为q ()0q >.()227339522222a a a a q a q a q ⋅=⇒⋅=,因为21a =,所以()2732q q q ⋅=,即862q q =, 考点:等比数列的通项公式.5.D【解析】 试题分析:45451818a a a a =-⇒+=,因为{}n a 为等差数列,所以184518a a a a +=+=.D 正确. 考点:1等差数列的前n 项和;2等差数列的性质.6.C【解析】 试题分析:设公比为q ,则()222426442416a a a a q a q⋅=⋅===。
故C 正确。
考点:等比数列的通项公式。
7.B【解析】试题分析:因为13n n a a +=+,所以13n n a a +-=。
所以数列{}n a 是首项为160a =-公差为3的等差数列。
则()6031363n a n n =-+-=-,令3630n a n =-≥得21n ≥。
所以数列前20项为负第21项为0从弟22项起为正。
数列{}n a 前n 项和为。
则20212130a a a a ++++++()12202130a a a a a =-++++++B 正确。
考点:1等差数列的定义;2等差数列的通项公式、前n 项和公式。
8.A【解析】试题分析:由等比数列的性质可知2S 、42S S -、64S S -、86S S -成等比数列,因此()242S S -=,同理可得 因此()()()8866442210836124160S S S S S S S S =-+-+-+=+++=,故选A. 考点:等比数列的性质9.(B)【解析】试题分析:由等比数列{}n a 的各项都是正数,且311=16a a ⋅.所以277=16,4a a ∴=.又公比为2即6624,2a a ⨯=∴=.故选(B)考点:1.等比数列的性质.2.等比数列的通项公式.10.D【解析】试题分析:设公差为d ,由已知,21111()(2)41a d a a d a d ⎧+=+⎨+=⎩,解得110a d =⎧⎨=⎩, 所以,10a =1,故选D .考点:等差数列、等比数列. 11.A【解析】试题分析:由题意,因为334512()8a a a a q q +=+⋅==-,所以2q =-,故选A.考点:1.等比数列的通项公式.12.B【解析】试题分析:观察下列数的特点,1,1,2,3,5,8,x ,21,34,55,…,可知:1+1=2,1+2=3,2+3=5,∴5+8=x .得到x=13.故选:B.考点:数列的概念及简单表示法.13.B 【解析】解:因为n n n a a a a a -===++1221,6,3,按照递推关系可知数列的项为3,6,3,-3,-6,-3, 3,….可知形成了周期为6的循环,因此33a =3,选B14.B 【解析】解:因为1102+=-=n n a a a n利用累加法的思想可以得到数列的通项公式,然后可以得到所求的值为选项B . 15.B【解析】解:因为数列 ,431,321,211⨯⨯⨯的每一项为分子为1,分母是项数与项数加一的积,因此通项公式即为)1(1+n n 16.C【解析】因为757649440S S a a a a -=+=+=-+=,故57S S =,故选C17.B【解析】试题分析:由题意得31232a a a =+,即211132a q a a q =+,解得31q q ==-或(舍去);而考点:数列的性质、等差等比数列的简单综合.18.C【解析】选C.考点:1.等差数列的性质;2.等差数列的前n项和公式.19.3【解析】试题分析:因为30-15=(a2-a1)+(a4-a3)+…+(a10-a9)=5d,所以d=3,故答案为:3 .考点:等差数列的前n项和.20.B【解析】.考点:等差数列前n项和.21.D【解析】试题分析:设公差为d,由已知,21111()(2)41a d a a da d⎧+=+⎨+=⎩,解得11ad=⎧⎨=⎩,所以,10a=1,故选D.考点:等差数列、等比数列.22.32n - 【解析】试题分析:这是一个等差数列,已知条件中有其公差13n n d a a -=-=,首项为11a =,通项公式为1(1)332n a n n =+-⋅=-. 考点:等差数列的通项公式. 23.4【解析】法一 设数列为{an },则an+1-a n=(n+1)(n +5) -n (n+4!未定义书签。