小波分析简述第五章

合集下载

第五章 函数的小波分解及应用

第五章 函数的小波分解及应用
+∞ −∞
ψ (t)eitz dt.
ˆ (z )在区域{z : |Imz | < a}内解析。 显然,ψ 由定理3和(2),得
+∞ −∞
tl ψ (t) dt = 0, ∀l ∈ Z+ ,
ˆ(l) (0) = 0, ∀l ∈ Z+ . 所 以 解 析 函 ˆ(l) (ω ) = (iω )l +∞ ψ (t)tl dt, ω ∈ R, 得ψ 故 由ψ −∞ ˆ (z )在z = 0的 某 邻 域 内 为 零 , 从 而 恒 为 零 。 这 推 出ψ (t) = 0。 这 与{ψj,k } 生 数ψ j,k 成L2 (R)矛盾。 对于给定的滤波函数m0 (ω )以及尺度函数ϕ(t),我们构造了小波ψ (t),它们的联系是 ˆ(ω ) = e−iω/2 m0 (ω/2 + π )ϕ ψ ˆ(ω/2), ϕ ˆ(0) = 1. 由于m0 (π ) = 0, m0 (ω )在ω = π 处有零点。当要求ψ 有更高的光滑性时有
(8)
Lecture Notes on Wavelets, Chapter 5, by D.Q. Dai, 2003
7
定 理 4:对L ∈ Z . 若m0 ∈ C (R),且 ˆ ∈ C L , ψ (l) (t) 有界, ∀l ∈ L. ψ 和对某 > 0, |ψ (t)| ≤ C (1 + |t|)−L−1− 则m0 (ω )在ω = π 有L + 1重零点。 证 :由定理3,
f (l) (2j0 k0 ) l!
+∞ −∞
˜ (t)dt + J 2(l+1)j tl f
f (l) (2j0 t0 ) l! 故有 f (l) (2j0 t0 ) l!

(完整word版)小波分析-经典

(完整word版)小波分析-经典

时间序列—小波分析时间序列(Time Series )是地学研究中经常遇到的问题。

在时间序列研究中,时域和频域是常用的两种基本形式。

其中,时域分析具有时间定位能力,但无法得到关于时间序列变化的更多信息;频域分析(如Fourier 变换)虽具有准确的频率定位功能,但仅适合平稳时间序列分析.然而,地学中许多现象(如河川径流、地震波、暴雨、洪水等)随时间的变化往往受到多种因素的综合影响,大都属于非平稳序列,它们不但具有趋势性、周期性等特征,还存在随机性、突变性以及“多时间尺度"结构,具有多层次演变规律.对于这类非平稳时间序列的研究,通常需要某一频段对应的时间信息,或某一时段的频域信息.显然,时域分析和频域分析对此均无能为力。

20世纪80年代初,由Morlet 提出的一种具有时—频多分辨功能的小波分析(Wavelet Analysis )为更好的研究时间序列问题提供了可能,它能清晰的揭示出隐藏在时间序列中的多种变化周期,充分反映系统在不同时间尺度中的变化趋势,并能对系统未来发展趋势进行定性估计.目前,小波分析理论已在信号处理、图像压缩、模式识别、数值分析和大气科学等众多的非线性科学领域内得到了广泛的应。

在时间序列研究中,小波分析主要用于时间序列的消噪和滤波,信息量系数和分形维数的计算,突变点的监测和周期成分的识别以及多时间尺度的分析等。

一、小波分析基本原理1. 小波函数小波分析的基本思想是用一簇小波函数系来表示或逼近某一信号或函数。

因此,小波函数是小波分析的关键,它是指具有震荡性、能够迅速衰减到零的一类函数,即小波函数)R (L )t (2∈ψ且满足:⎰+∞∞-=0dt )t (ψ (1)式中,)t (ψ为基小波函数,它可通过尺度的伸缩和时间轴上的平移构成一簇函数系:)abt (a)t (2/1b ,a -=-ψψ 其中,0a R,b a,≠∈ (2) 式中,)t (b ,a ψ为子小波;a 为尺度因子,反映小波的周期长度;b 为平移因子,反应时间上的平移。

《小波分析》课件

《小波分析》课件

小波变换与其他数学方法的结合
小波变换与傅里叶分析的结合
小波变换作为傅里叶分析的扩展,能够提供更灵活的时频分析能力,适用于非平稳信号 的处理。
小波变换与数值分析的结合
小波变换在数值分析中可用于函数逼近、数值积分、微分方程求解等领域,提高计算效 率和精度。
小波变换在大数据分析中的应用
特征提取
小波变换能够提取大数据中隐藏的时间或频 率特征,用于分类、聚类和预测等任务。
正则性
小波基的正则性是指其在时频域的连续性和光滑 性,影响信号重构的精度和稳定性。
01
小波变换在信号处 理中的应用
信号的降噪处理
总结词
通过小波变换,可以将信号中的噪声成 分与有用信号分离,从而实现降噪处理 。
VS
详细描述
小波变换具有多尺度分析的特点,能够将 信号在不同尺度上进行分解,从而将噪声 与有用信号分离。在降噪处理中,可以选 择合适的小波基和阈值处理方法,对噪声 进行抑制,保留有用信号。
THANKS
THE FIRST LESSON OF THE SCHOOL YEAR
图像的压缩编码
01
通用性强
02
小波变换的通用性强,可以广泛 应用于各种类型的图像压缩,包 括灰度图像、彩色图像、静态图 像和动态图像等。
图像的边缘检测
精确检测
小波变换具有多尺度分析的特性,能 够检测到图像在不同尺度下的边缘信 息,实现更精确的边缘检测。
图像的边缘检测
抗噪能力强
小波变换能够有效地抑制噪声对边缘 检测的影响,提高边缘检测的准确性 和稳定性。
信号的压缩编码
总结词
小波变换可以将信号进行压缩编码,减小存储和传输所需的带宽和空间。
详细描述

小波分析

小波分析

一、小波分析基础知识
一、小波分析基础知识
以下是对一个含有噪声信号进行小波 分析的结果:
一、小波分析基础知识
小波变换在分析信号时,其分析窗口大 小固定不变但窗口形状可以变化,是时间窗 和频率窗都可以改变的时频局部化分析方法。
一、小波分析基础知识
小波分析在低频部分具有较高的频率分 辨率和较低的时间分辨率;在高频部分具有 较高的时间分辨率和较低的频率分辨率,这 正符合低频信号变化缓慢而高频信号变化迅 速的特点,所以被誉为是信号分析的数字显 速的特点,所以被誉为是信号分析的数字显 微镜。 微镜。
小波分析 在脉诊研究中的应用
王明三
基础医学院中医诊断教研室
主要内容
一、小波分析基础知识 二、脉象信号的特征 三、运用小波分析研究中医脉象
一、小波分析基础知识
小波分析( 小波分析(Wavelet Analysis )又称小波变 换(Wavelet transform ),是1950年代开始应用, ,是1950年代开始应用, 1980年代发展形成理论体系,1990年代在我 1980年代发展形成理论体系,1990年代在我 国得以广泛研究与应用。所以小波分析是目 前国际前沿领域。
三、运用小波分析研究中医脉象
利用小波分析对紧脉的信号特征进行分 析和提取,并与其相类脉——弦脉的时频特 析和提取,并与其相类脉——弦脉的时频特 征进行了比对,经统计学处理,在精确分类 及与弦弦鉴别方面,结果满意。
三、运用小波分析研究中医脉象
设信号S的最低频率为0,最高频率为1,则提取的8个频率 成份所代表的频率范围如表所示。
一、小波分析基础知识
进行小波分析时,根据信号的特征和要 提取的信息,选择不同的小波函数和相应的 提取的信息,选择不同的小波函数和相应的 分析尺度,把原始信号变换成不同时频下的 分解信号,进行识别和分析,然后作出精确 的结论。

小波分析全章节讲解

小波分析全章节讲解

虽然时变信号的频率特性 随着时间而改变,但是这种改 变是渐变的而非突变的,也就 是说,在一个特定的足够小的 区间(窗)内,可以认为信号 的特性是不变的,信号是局部 稳定的或准平稳的。
(二)加窗时频分析 1.时窗处理 将信号在时域内进行分段,等效于用位置不 同的窗函数 g ( t ) 与原信号 f ( t ) 相乘的结果,如下 图所示。在时域内,时间函数一般选取具有能量 局部化的函数。先选定一个基本窗函数 g ( t ) , 然后将 g ( t ) 沿时间轴平移得到一组窗函数,
en , em 0, m n (m n) 1, m n
对应的傅里叶展开式为
f


f , en en
n 1
规范正交性存在于原基底与对偶基底之间, 展开式也相应的由原基底和对偶基底构成, 这种基称为双正交基,与互为对偶基底。
(6)框架 { 设H为Hilbert空间, k } 为H中的一个函数 序列,若 f H ,都存在实数A,B使得
小波分析的应用领域十分广泛,它包括: 数学领域的许多学科;信号分析、图象处理;量子 力学、理论物理;军事电子对抗与武器的智能化;计算 机分类与识别;音乐与语言的人工合成;医学成像与诊 断;地震勘探数据处理;大型机械的故障诊断等方面; 例如: 在数学方面,它已用于数值分析、构造快速数值方法、 曲线曲面构造、微分方程求解、控制论等。 在信号分析方面的滤波、去噪声、压缩、传递等。 在图象处理方面的图象压缩、分类、 识别与诊断,去污等。 在医学成像方面的减少B超、CT、 核磁共振成像的时间,提高分辨率等。


f (t ) e
j t
d t f ( t ), e
j t

小波分析简述(第五章)PPT课件

小波分析简述(第五章)PPT课件

六、多分辨率分析(Multi-resolution Analysis ,MRA),又称为多尺度分析
若我们把尺度理解为照相机的镜头的话,当尺 度由大到小变化时,就相当于将照相机镜头由 远及近地接近目标。在大尺度空间里,对应远 镜头下观察到的目标,只能看到目标大致的概 貌。在小尺度空间里,对应近镜头下观察目标, 可观测到目标的细微部分。因此,随着尺度由 大到小的变化,在各尺度上可以由粗及精地观 察目标,这就是多尺度(即多分辨率)的思想。
小波变换(Wavelet Transform)
1
整体概况
概况一
点击此处输入 相关文本内容
01
概况二
点击此处输入 相关文本内容
02
概况三
点击此处输入 相关文本内容
03
2
主要内容
一、小波的发展历史 二、小波定义 三、连续小波变换 四、小波变换的特点 五、离散小波变换 六、多分辨率分析 七、Mallat算法 八、小波的应用 九、小波的进展
傅立叶分析是把一个信号分解成各种不同频率的正弦波, 因此正弦波是傅立叶变换的基函数。同样,小波分析是 把一个信号分解成由原始小波经过移位和缩放后的一系 列小波,因此小波是小波变换的基函数,即小波可用作 表示一些函数的基函数。
8
• 小波变换的反演公式
xtc1 0 a d2a W xa T ,a,td
26
小波基函数和滤波系数(db 2--正交,不对称 )
db小波
“近似”基函 数
“细节”基 函数
“正变换” 低频 和
高频 “滤波系数 “ ”反变换” 低频 和
• 小波基必须满足的条件—允许条件
ˆ2
c d
ˆ00
tdt0
9
四、小波变换的特点

《小波分析》PPT课件

《小波分析》PPT课件
(Orthonormal Wavelet and Multiresolution Analysis)
3.1. 多分辨分析
(Multiresolution Analysis)
➢ 在(a,b)-W(a,b)给出的二维小波谱空间 ,二进离散小波谱点的分布规律可以用 Appendix C Fig.3. 加以说明。
Appendix C Fig.3.
正交小波的点谱吸收特性
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
01234567
0
1
2
3
0
1
0
§3. 正交小波和多分辨分析
级数的系数k, j 正好是信号f(x)的
小波变W f换a, b
在二进离散点:
2k , 2k j
(37)
上的取值。这说明:对于正交小波来说,任 何信号在二进离散点上的小波变换包含了它 的小波变换的全部信息,所以
正交小波具有优美的谱吸收特点。
小波变换与Fourier变换
Fourier变换:
➢ 对于任何信号f(x),只有当它是时间有 限时,它的谱F()(Fourier变换)才是频 率吸收的;
信号f(x)的另一种等价描述(因为Fourier变
换是信号的等价描述)
局限
遗憾的是,Gabor变换存在如下局限:
Gabor变换没有“好”的(即可以
构成标架或者正交基)离散形式;
Gabor变换没有快速算法:比如没 有 类 似 于 离 散 Fourier 变 换 之 FFT
的快速数值算法;
Appendix A Fig.1. Gabor变换的固定时-频窗口
注释
注释:如果小波母函数 x

《小波分析方法》课件

《小波分析方法》课件

论文和研究报告
介绍一些发表在期刊和会议上 的相关论文和研究报告
小波分析工具和库
提供一些开放源代码的小波分 析工具和库的信息
Matlab工具箱
介绍基于Matlab的小波分析工具箱,讲 解如何使用该工具箱进行小波分析
小结和展望
1 小波分析方法的优点和局限性
总结小波分析方法相较于其他方法的优点并讨论其局限性
2 未来的研究和应用方向
展望小波分析方法在未来可能的研究方向和应用领域
参考资料
相关领域的经典书籍 和教材
推荐一些与小波分析相关的经 典书籍和教材
信号去噪和压缩
学习如何使用小波分析方法对信号进行去噪和压缩 处理
图像处理
探索小波分析在图像处理中的广泛应用
音频处理
了解如何利用小波分析进行音频特征提取和音频效 果处理
视频处理
发现小波分析在视频编解码和视频特征提取中的应用
小波分析算法实现
1
Python和其他编程语言
2
探讨使用Python和其他编程语言实现小 波分析的库和方法
《小波分析方法》PPT课 件
本课程将介绍小波分析方法的基本概念和应用场景,帮助您掌握信号分析的 强大工具。让我们一起开启这个精彩的学习之旅吧!
课程介绍
内容和目标
了解本课程将涵盖的内容和学习目标
小波分析方法
掌握小波分析方法的基本概念和它在实际应用 中的价值
信号分析基础
1 信号的分类
了解不同类型的信号及其 特点
2 傅里叶分析方法
介绍傅里叶分析方法的原 理和局限性
3 小波分析方法
探讨小波分析方法相较于 傅里叶分析的优点和适用 性
小波分析的数学基础
滤波器组和小波变换

小波分析理论ppt课件

小波分析理论ppt课件

S(w,t ) f (t)g*(w t ) eiwt d t R
(1.12)
25
其中,“*”表示复共轭;g(t)为有紧支集的函数;f(t)为被 分析的信号。在这个变换中,ejwt起着频限的作用,g(t)起 着时限的作用。随着时间t的变化,g(t)所确定的“时间窗” 在t轴上移动,使f(t)“逐渐”进行分析。因此g(t)往往被称为
(1.4)
为序列{X(k)}的离散傅里叶逆变换(IDFT)。 在式(1.4)中,n相当于对时间域的离散化,k相当于频
率域的离散化,且它们都是以N点为周期的。离散傅里叶 变换序列{X(k)}是以2p为周期的,且具有共轭对称性。
9
若f(t)是实轴上以2p为周期的函数,即f(t)∈L2(0,2p) ,则f(t)可以表示成傅里叶级数的形式,即
(1.1)
F(w)的傅里叶逆变换定义为
f (t) 1 eiwt F (w)dw 2 π -
(1.2)
6
为了计算傅里叶变换,需要用数值积分,即取f(t)在R 上的离散点上的值来计算这个积分。在实际应用中,我们 希望在计算机上实现信号的频谱分析及其他方面的处理工 作,对信号的要求是:在时域和频域应是离散的,且都应 是有限长的。下面给出离散傅里叶变换(Discrete Fourier Transform,DFT)的定义。
。将母函数y(t)经伸缩和平移后,就可以得到一个小波序
列。
对于连续的情况,小波序列为
y a,b (t)
2
其中,短时傅里叶变换和小波变换也是因传统的傅里叶变 换不能够满足信号处理的要求而产生的。短时傅里叶变换 分析的基本思想是:假定非平稳信号在分析窗函数g(t)的 一个短时间间隔内是平稳(伪平稳)的,并移动分析窗函数,

小波图像压缩技术教学

小波图像压缩技术教学
(3)精细扫描
对于LSP中的每个表项
,若
(2)中新添加的,
不是在刚刚进行过的扫描过程
则输出
的第n个最重要的位,其中
过程中设定的阈值。
是扫描
例子(续): 由于排序扫描1进行之前,LIS= { },故没有符号位输出。
(4)进行下一次排序扫描和精细扫描
SPIHT编码的主要步骤
例5.6第一次SPIHT编码后输出的信息
/将(0,0)从LIP中删除,添加到LSP的尾部/ LSP={(0,0)} LIP={(0,1),(1,0),(1,1)}
SPIHT编码的主要步骤
Is (0,1) significant?yes: 1 0(符号位) LSP={(0,0),(0,1)} LIP={(1,0) ,(1,1)} Is (1,0) significant?no: 0 Is (1,1) significant?no: 0
、排序扫描的输出位流 用于下次扫描的信息,包括域值 的当前状态信息. 、三个有序表LIP,LSP,LIS
第一次编码过程完成后,编码器输出两类信息:
1) 给解码器的信息,包括域值
01
精细扫描位流及三个有序表的初始化信息,即LIP ,LIS和LSP LIP={(0,0), (0,1), (1,0), (1,1)} LIS={(0,1)D, (1,0)D, (1,1)D} LSP={ }
1)最初坐标集由

组成;
2) 若
是重要的,则
分成
及4个单节点
3) 若
是重要的,则
分成
4个集

有序表
LIP——不重要系数表;
LSP——重要系数表;

小波分析系列讲座5

小波分析系列讲座5

小波分析系列讲座5以图像来说明建立空间特征基和小波变换的关系设有一幅图像,从不同分辨率考察。

若我们离很远来看,可能会把每64个点看作一个点,若记此时构成的描述空间为V0.若走进一些,把16个点看作一个点,记此时构成的描述空间为V1若再走进一些,把4个点看作一个点,记此时构成的描述空间为V2若再走进一些,把1个点看作一个点,记此时构成的描述空间为V3则可知凡是Vi空间内可以描述的图像,Vi+1空间内皆可描述,并且描述的更细致故Vi包含于Vi+1空间记Vi+1=Vi+Wi ,即Vi和Wi构成Vi+1空间。

(若Vi⊥Wi ,则Wi为Vi的正交补空间,实际应用中不要求一定正交。

)( ⊥ 正交) 则Vi+1=Vi+Wi=Vi-1+Wi-1+Wi=……记Pi为图像在Vi空间的描述则Di= Pi+1 - Pi 就表示了图像在这两个描述空间的细节差异,因为Vi+1=Vi+Wi,故Di为图像在Wi空间上的描述。

即Wi空间表述了细节差异。

如果Wi⊥Wj, 并且在Wj空间中能找到一组正交标准基,其基本函数必是高(带)通的,就称其为小波函数。

Wi⊥Wj正交,即为不同分辨率下的细节差异不相关,从而消除冗余。

那么例子中V3=W2+W1+W0+V0相应得到 P3=D2+D1+d0+P0即最清晰分辨率下的图像可以有不同分辨率下的细节差异和最高分辨率下的图像合成而得由概率特性知细节差异在大范围内是一个较小的值。

如果用上节所引入的频域概念来看,低频信息就是P0,高频为Di,这里的低频和高频就和傅里叶有稍微不同。

而从分析中,我们自然而然的知道随着频率的不同,其数值对应的空间窗口大小也不同了。

正好满足上节所说。

呵呵,剩下的分析任务就是如何构造Wi。

【小波与傅里叶分析基础课件】名师名校讲义-第五章

【小波与傅里叶分析基础课件】名师名校讲义-第五章

Y| ¢¢Å'¨E (Daubechies, Mallat, Choen, Lawton)
Home Page Title Page
Y| ¢ºÝ¼ê φ → k h → Y| ¢¢Å ψ
¯K: h = {h0, h1, · · · , hL} ÷vo^, VºÝ§
L
φ(t) = hkφ(2t − k),
=
(q0
+
q1
+
q2)2

4(q0q1
+
4q0q2
+
q1q2)
sin2
ω 2
+
16q0q2
sin4
ω 2
.
Home Page Title Page
Page 20 of 47 Go Back
Full Screen Close Quit
=
U
(
1 2

y),
R(−y) = −R(y),
R
.
Home Page Title Page
Page 11 of 47 Go Back
Full Screen Close Quit
½n GX '¢Xênõª÷v H(ω)
=
( 1+e−iω
2
)N QN (e−iω)
|H(ω)|2 + |H(ω + π)|2 = 1
Full Screen Close Quit
¢Å'¨E Daubechies
¯K ¨E¢Xêõª QN(z), ¦&
÷v (1) H(ω) =
1+e−iω 2
N
QN (e−iω)
|H(ω)|2 + |H(ω + π)|2 = 1;

小波分析及其应用研究

小波分析及其应用研究

小波分析及其应用研究引言小波分析是一种近年来逐渐被广泛应用的数学工具,它在信号处理、图像处理等领域具有广泛的应用价值。

小波分析能够将一个信号或图像分解成多个小波系数,从而方便地对信号或图像进行频域和时域的分析。

本文旨在探讨小波分析的基本原理及其在信号处理和图像处理领域的应用研究,以期读者能够更好地理解小波分析的应用价值。

小波分析基本原理小波分析的基本原理主要包括小波基函数的选取、小波分解的过程以及小波重构的过程。

小波基函数具有尺度性和移位性,通过这些性质,可以将一个信号或图像从小波基函数展开,得到一系列的小波系数。

小波分解是将信号或图像分解成多个小波系数的过程,从而方便对信号或图像进行频域和时域的分析。

小波重构则是从小波系数出发,恢复原信号或图像的过程。

小波分析在信号处理中的应用小波分析在信号处理领域具有广泛的应用,主要包括信号压缩、去噪以及分类等方面。

小波分析能够将信号分解成多个小波系数,对于那些幅值较小的系数,可以将其置零或近似为零,从而实现信号压缩。

同时,小波分析在信号去噪方面也有着重要的应用,通过将信号分解成多个小波系数,可以有效地去除噪声,提高信号的信噪比。

此外,小波分析还可以应用于信号分类,例如基于小波包的分类方法可以有效地对信号进行分类。

小波分析在图像处理中的应用小波分析在图像处理领域同样具有广泛的应用,主要包括图像压缩、去噪以及分类等方面。

在图像压缩方面,小波分析可以通过将图像分解成多个小波系数,实现图像的压缩,从而减少存储空间的需求。

同时,小波分析在图像去噪方面也有着重要的应用,能够有效地去除图像中的噪声。

此外,小波分析还可以应用于图像分类,例如基于小波包的分类方法可以有效地对图像进行分类。

小波分析作为一种数学工具,在信号处理和图像处理领域具有广泛的应用价值。

通过将信号或图像分解成多个小波系数,可以方便地对信号或图像进行频域和时域的分析。

本文介绍了小波分析的基本原理及其在信号处理和图像处理领域的应用研究,希望读者能够更好地理解小波分析的应用价值。

小波神经网络在金融时间序列预测中的应用

小波神经网络在金融时间序列预测中的应用

小波神经网络在金融时间序列预测中的应用第一章介绍随着金融市场的发展和信息技术的进步,金融时间序列预测成为越来越重要的研究领域。

为了准确预测金融市场的未来走势,学者们提出了许多有效的预测模型。

其中,小波神经网络成为了近年来备受关注的技术之一。

本章将对小波神经网络和金融时间序列预测的背景进行介绍。

第二章小波分析小波分析是一种在时间和频域上分析信号的有效技术。

小波变换具有多尺度分析的特点,能够捕捉到信号的局部特征。

小波分析在金融时间序列预测中的应用,可以帮助我们更好地理解和描述金融市场的波动特征。

第三章神经网络神经网络是一种模拟人脑神经元网络的数学模型。

它通过学习和训练,能够从输入数据中提取非线性关系,并用于预测和分类等任务。

神经网络在金融时间序列预测方面有着广泛的应用,可以利用其强大的非线性拟合能力,解决金融市场中的复杂问题。

第四章小波神经网络小波神经网络是将小波分析和神经网络相结合的一种模型。

它可以通过对输入数据进行小波变换,将原始时间序列转换为不同尺度的小波系数。

然后使用神经网络对小波系数进行建模和预测。

小波神经网络的主要优势在于能够捕捉到不同尺度的时间序列特征,并结合神经网络的非线性拟合能力进行预测。

第五章小波神经网络在金融时间序列预测中的应用小波神经网络在金融时间序列预测中的应用已经得到了广泛的研究和应用。

研究表明,小波神经网络可以有效预测股票市场、外汇市场和期货市场等金融市场的走势。

其优势主要体现在以下几个方面:首先,小波神经网络能够捕捉到不同尺度的市场波动,提高了预测的准确性。

其次,小波神经网络具备良好的非线性拟合能力,能够处理金融市场中复杂的非线性关系。

再次,小波神经网络能够处理非平稳时间序列,适用于金融市场中波动性较大的数据。

最后,小波神经网络还可以结合其他技术指标和因子进行预测,提高了预测的综合能力。

第六章实证研究本章将通过一个实证研究,来验证小波神经网络在金融时间序列预测中的应用效果。

小波分析入门PPT课件

小波分析入门PPT课件
随着机器学习的发展,小波分析有望在特征提取、数据压缩等领域与机器学习相结合, 提高机器学习的性能和效率。
THANKS
感谢观看
应用
在音频处理、图像处理、信号处理等领域有广泛应用 。
复数小波变换
定义
复数小波变换是指小波基函数为复数的小波变换,其变换结果也 为复数。
特点
复数小波变换具有更强的灵活性和表达能力,能够更好地描述信 号的复杂性和细节。
应用
在雷达信号处理、通信信号处理、图像处理等领域有广泛应用。
04
CATALOGUE
小波变换的基本原理
小波变换的定义
小波变换是一种信号的时间-频率分析方法,通过将信号分解 成不同频率和时间的小波分量,实现对信号的时频分析和去 噪。
小波变换的原理
小波变换通过将信号与一组小波基函数进行内积运算,得到 信号在不同频率和时间上的投影,从而实现对信号的时频分 析和去噪。
小波变换的应用领域
小波变换的基本理论
一维小波变换
定义
实例
一维小波变换是一种将一维函数分解 为不同频率和时间尺度的过程,通过 小波基函数的平移和伸缩实现。
一维小波变换在图像压缩中广泛应用 ,如JPEG2000标准就采用了小波变 换技术。
作用
一维小波变换用于信号处理、图像处 理等领域,能够有效地提取信号中的 特征信息,实现信号的时频分析和去 噪等。
数值计算中的应用
数值求解偏微分方程
小波分析可以用于求解偏微分方程的数值解,通过小波变 换可以将方程转化为离散形式,便于计算。
数值积分与微分
小波分析可以用于数值积分与微分的计算,通过小波基函 数展开被积函数或被微分函数,可以快速计算积分或微分 值。
数值优化
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“细节”基 函数
可编辑ppt
“正变换” 低频 和
高频 “滤波系数 “ ”反变换” 低频 和
高频 “滤波系24 数
5、小波基与滤波器系数
有的小波基是正交的,有的是非正交的。有的 小波基是对称的,有的是非对称的。 小波基(尺度函数和小波函数)可以通过给定 滤波系数生成。 小波的近似系数和细节系数可以通过滤波系数 直接导出,而不需要确切知道小波基函数,这 是 I. Daubechies 等的重要发现,使计算简 化,是快速小波分解和重建的基础。
的。小波变换既看到了森林(信号概貌),又看 到了树木(信号细节),能精确地在时间-频率 (时间-尺度)平面内刻画非平稳信号的特征,被 誉为“数学显微镜”。小波变换是迄今为止最优 秀的非平稳信号处理方法。
小波基的形状、紧支性、衰减性、对称性、光滑
性及正交性的不同决定了小波的千差万别,在小
波变换时,基函数的选择非常关键,在信号分解时,
可编辑ppt
11
CWT & DWT
CWT
1. Scale
At any scale
2. Translation At any point
3. Wavelet
Any wavelet that satisfies minimum criteria
4. Computation Large
5. Detection
第三阶段:全面应用时期。
从1992年开始,小波分析方法进入全面应用阶段。 MATLAB中,特意把小波分析作为其“ToolBox” 的单独一个工具箱。
可编辑ppt
4
二、小波定义
可编辑ppt
5
因为小波 (t)只有在原点附近才会存在明显的起伏,在
远离原点的地方函数值将迅速“衰减”为零,所以我 们 (t)称 为“小波”
第一阶段:孤立应用时期
1807年 Fourier 提出傅里叶分析 1822年 发表 “热传导解析理论”论文 1910年 Haar 提出最简单的小波
第二阶段:国际性研究热潮和统一构造时期
1980年 Morlet 首先提出平移伸缩的小波公式, 用于地质勘探。
1985年 Meyer 和稍后的Daubeichies提出“正 交小波基”,此后形成小波研究的高潮。
可编辑ppt
6
三、连续小波变换 (Continue Wavelet Transform,简记CWT)
傅立叶分析是把一个信号分解成各种不同频率的正弦波, 因此正弦波是傅立叶变换的基函数。同样,小波分析是 把一个信号分解成由原始小波经过移位和缩放后的一系 列小波,因此小波是小波变换的基函数,即小波可用作 表示一些函数的基函数。
若采用了不适宜的小波基函数,则会由于特征信
息被冲淡,反而给故障信号特征的检测和识别造
成困难
可编辑ppt
10
五、离散小波变换(Discret Wavelet Transform,简称DWT)
离散小波变换就是在尺度与位移均做离 散化。最通常的离散方法就是将尺度按 幂级数进行离散化(一般取2),从而得 到二进小波。再将位移按二进整数倍的 方式离散化,得到正交小波。
可编辑ppt
13
1、多分辨率分析定义
可编辑ppt
14
可编辑ppt
15
可编辑ppt
16
2、尺度函数和小波函数
可编辑ppt
17
尺度函数和小波函数
可编辑ppt
18
3、尺度方程与小波方程
可编辑ppt
19
可编辑ppt
20
可编辑ppt
21
4、滤波器系数性质
可编辑ppt
22
可编辑ppt
23
小波基函数和滤波系数(Haar--正交,对称)
可编辑ppt
7
• 小波变换的反演公式
xtc1 0 a d2a W xa T ,a,td
• 小波基必须满足的条件—允许条件
ˆ2
c d
ˆ00
tdt0
可编辑ppt
8
四、小波变换的特点
W xa ,T 1 a x t t a d tx t, a ,t a0
(2.1)
伸缩
xt
Small Cannot detect minute object if not finely tuned Compression De-noising Transmission Characterization 12
六、多分辨率分析(Multi-resolution
Analysis ,MRA),又称为多尺度分析
Easily detects direction, orientation
6. Application
Pattern Recognition Feature extraction Detection
可编辑ppt
DWT Dyadic scales Integer point Orthogonal, biorthogonal, …
若我们把尺度理解为照相机的镜头的话,当尺 度由大到小变化时,就相当于将照相机镜头由 远及近地接近目标。在大尺度空间里,对应远 镜头下观察到的目标,只能看到目标大致的概 貌。在小尺度空间里,对应近镜头下观察目标, 可观测到目标的细微部分。因此,随着尺度由 大到小的变化,在各尺度上可以由粗及精地观 察目标,这就是多尺度(即多分辨率)的思想。
小波变换(Wavelet Transform)
西安交通大学 机械工程及自动化研究所
可编辑ppt
1
主要内容
一、小波的发展历史 二、小波定义 三、连续小波变换 四、小波变换的特点 五、离散小波变换 六、多分辨率分析 七、Mallat算法 八、小波的应用 九、小波的进展
可编辑ppt
2
一、小波的发展历史
可编辑ppt
3
小波的发展历史
1987年 法国信号处理专家Mallet巧妙地将计算机 视觉领域内的多尺度分析的思想引入到小波分析中, 并给出了想应的算法——现今称之为Mallat算法, 并应用于图像分解和重构。Mallet算法在小波分析 中 的 地 位 就 相 当 于 快 速 Fourier(FFT) 变 换 在 经 典Fourier中的地位。
镜头 推进 方向
t
以较高频 率作分析
平移方向
以较低频 率作分析
小波多分辨分析原理
可编辑ppt
平移
时频分析对比
9
苏轼名句“横看成岭侧成峰,远近高低各不同” 蕴涵了信号处理的本质。只有观测位置得当,才 能看到信号的庐山真面目。适当的观测位置是由 及函数决定的。
小波基的伸缩和平移,决定了小波变换是多分辨
相关文档
最新文档