黄高预录数学试题
黄高预录数学试题
绝密★启用前湖北省黄冈中学理科实验班预录考试数学试卷一.选择题(共11小题)1.记号[x]表示不超过x的最大整数,设n是自然数,且.则()A.I>0 B.I<0 C.I=0 D.当n取不同的值时,以上三种情况都可能出现2.对于数x,符号[x]表示不大于x的最大整数.若[]=3有正整数解,则正数a的取值范围是()A.0<a<2或2<a≤3B.0<a<5或6<a≤7C.1<a≤2或3≤a<5D.0<a<2或3≤a<5个相同的球,放入四个不同的盒子里,每个盒子都不空的放法有()A.4种B.6种C.10种D.12种4.有甲、乙、丙三位同学每人拿一只桶同时到一个公用的水龙头去灌水,灌水所需的时间分别为分钟、分钟和1分钟,若只能逐个地灌水,未轮到的同学需等待,灌完的同学立即离开,那么这三位同学花费的时间(包括等待时间)的总和最少是()A.3分钟B.5分钟C.分钟D.7分钟5.已知实数x满足x2++x﹣=4,则x﹣的值是()A.﹣2B.1C.﹣1或2D.﹣2或16.如图,在等边△ABC中,D为AC边上的一点,连接BD,M为BD上一点,且∠AMD=60°,AM 交BC于E.当M为BD中点时,的值为()A.B.C.D.7.如图,等腰梯形ABCD中,AD∥BC,∠DBC=45°,翻折梯形ABCD,使点B重合于点D,折痕分别交边AB、BC于点E、F.若AD=2,BC=6,则△ADB的面积等于()A.2B.4C.6 D.88.如图,正方形ABCD中,E为CD的中点,EF⊥AE,交BC于点F,则∠1与∠2的大小关系为()A.∠1>∠2B.∠1<∠2C.∠1=∠2D.无法确定9.已知某几何体的三视图如图所示,则该几何体的体积为()A.B.3πC.D.6π10.方程x2+2x+1=的正数根的个数为()A.0B.1C.2D.311.如图,已知∠AOM=60°,在射线OM上有点B,使得AB与OB的长度都是整数,由此称B是“完美点”,若OA=8,则图中完美点B的个数为()A.1B.2C.3D.4二.填空题(共4小题)12.已知x为实数,且,则x2+x的值为.13.满足方程|x+2|+|x﹣3|=5的x的取值范围是.14.多项式6x3﹣11x2+x+4可分解为.15.设整数a使得关于x的一元二次方程5x2﹣5ax+26a﹣143=0的两个根都是整数,则a的值是.三.解答题16.如图,在△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,点P从点A出发沿AB方向向点B运动,速度为1cm/s,同时点Q从点B出发沿B→C→A方向向点A运动,速度为2cm/s,当一个运动点到达终点时,另一个运动点也随之停止运动.设点P的运动时间为x(秒).(1)设△PBQ的面积为y(cm2),当△PBQ存在时,求y与x的函数关系式,并写出自变量x的取值范围;(2)x为何值时,△PBQ的面积最大?并求出最大值;(3)当点Q在BC上运动时,线段PQ上是否存在一个点T,使得在某个时刻△ACT、△ABT、△BCT 的面积均相等(无需计算,说明理由即可).17.阅读下面材料:小伟遇到这样一个问题:如图1,在△ABC(其中∠BAC是一个可以变化的角)中,AB=2,AC=4,以BC为边在BC的下方作等边△PBC,求AP的最大值.小伟是这样思考的:利用变换和等边三角形将边的位置重新组合.他的方法是以点B为旋转中心将△ABP逆时针旋转60°得到△A′BC,连接A′A,当点A落在A′C上时,此题可解(如图2).请你回答:AP的最大值是.参考小伟同学思考问题的方法,解决下列问题:如图3,等腰Rt△ABC.边AB=4,P为△ABC内部一点,则AP+BP+CP的最小值是.(结果可以不化简)18.某水库大坝的横截面是如图所示的四边形BACD,期中AB∥CD.了望台PC正前方水面上有两艘渔船M、N,观察员在了望台顶端P处观测渔船M的俯角α=31°,观测渔船N在俯角β=45°,已知NM所在直线与PC所在直线垂直,垂足为点E,PE长为30米.(1)求两渔船M,N之间的距离(结果精确到1米);(2)已知坝高24米,坝长100米,背水坡AD的坡度i=1:.为提高大坝防洪能力,某施工队在大坝的背水坡填筑土石方加固,加固后坝定加宽3米,背水坡FH的坡度为i=1:,施工12天后,为尽快完成加固任务,施工队增加了机械设备,工作效率提高到原来的倍,结果比原计划提前20天完成加固任务,施工队原计划平均每天填筑土石方多少立方米?(参考数据:tan31°≈,sin31°≈)19.已知关于x的方程,(1)若两根x1,x2满足x1<0<x2,求m的范围;(2)若,求m的值.20.当m,n是正实数,且满足m+n=mn时,就称点P(m,)为“完美点”,已知点A(0,5)与点M都在直线y=﹣x+b上,点B,C是“完美点”,且点B在线段AM上,若MC=,AM=4,求△MBC的面积.21.设p,q都是实数,且p<q.我们规定:满足不等式p≤x≤q的实数x的所有取值的全体叫做闭区间,表示为[p,q].对于一个函数,如果它的自变量x与函数值y满足:当p≤x≤q时,有p≤y ≤q,我们就称此函数是闭区间[p,q]上的“闭函数”.(1)反比例函数y=是闭区间[1,2014]上的“闭函数”吗?请判断并说明理由;(2)若一次函数y=kx+b(k≠0)是闭区间[m,n]上的“闭函数”,求此函数的解析式;(3)若实数c,d满足c<d,且d>2,当二次函数y=x2﹣2x是闭区间[c,d]上的“闭函数”时,求c,d的值.22.我国是水资源比较贫乏的国家之一,各地采用了价格调控等手段来达到节约用水的目的,某市用水收费的方法是:水费=基本费+超额费+定额损耗费.若每月用水量不超过最低限量a立方米时,只付基本费8元和每月的定额损耗费c元;若用水量超过a立方米时,除了付同上的基本费和定额损耗费外,超过部分每立方米付b元的超额费.已知每户每月的定额费不超过5元.(1)当月用水量为x立方米时,支付费用为y元,写出y关于x的函数关系式;(2)该市一家庭今年一季度的用水量和支付费用见下表,根据表中数据求a、b、c.月份用水量(m3)水费(元)199 21519 3223323.某市将建一个制药厂,但该厂投产后预计每天要排放大约80吨工业废气,这将造成极大的环境污染.为了保护环境,市政府决定支持该厂贷款引进废气处理设备来减少废气的排放:该设备可以将废气转化为某种化工产品和符合排放要求的气体.经测算,制药厂每天利用设备处理废气的综合成本y(元)与废气处理量x(吨)之间的函数关系可近似地表示为:y=,且每处理1吨工业废气可得价值为80元的某种化工产品并将之利润全部用来补贴废气处理.(1)若该制药厂每天废气处理量计划定为20吨时,那么工厂需要每天投入的废气处理资金为多少元?(2)若该制药厂每天废气处理量计划定为x吨,且工厂不用投入废气处理资金就能完成计划的处理量,求x的取值范围;(3)若该制药厂每天废气处理量计划定为x(40≤x≤80)吨,且市政府决定为处理每吨废气至少补贴制药厂a元以确保该厂完成计划的处理量总是不用投入废气处理资金,求a的值.24.如图,菱形ABCD的边长为6且∠DAB=60°,以点A为原点、边AB所在的直线为x轴且顶点D 在第一象限建立平面直角坐标系.动点P从点D出发沿折线DCB向终点B以2单位/每秒的速度运动,同时动点Q从点A出发沿x轴负半轴以1单位/秒的速度运动,当点P到达终点时停止运动,运动时间为t,直线PQ交边AD于点E.(1)求出经过A、D、C三点的抛物线解析式;(2)是否存在时刻t使得PQ⊥DB,若存在请求出t值,若不存在,请说明理由;(3)设AE长为y,试求y与t之间的函数关系式;(4)若F、G为DC边上两点,且点DF=FG=1,试在对角线DB上找一点M、抛物线ADC对称轴上找一点N,使得四边形FMNG周长最小并求出周长最小值.参考答案与试题解析一.选择题1.∴等式成立,∴I=(n+1)2+n﹣(n+1)2=n>0,故选A.2.解:∵[]=3有正整数解,∴3≤<4,即6≤3x+a<8,6﹣a≤3x<8﹣a,∴≤x<,∵x是正整数,a为正数,∴x<,即x可取1、2;①当x取1时,∵6≤3x+a<8,6﹣3x≤a<8﹣3x,∴3≤a<5;②当x取2时,∵6≤3x+a<8,6﹣3x≤a<8﹣3x,∴0<a<2;综上可得a的范围是:0<a<2或3≤a<5.故选D.3.解:∵6个相同的球,放入四个不同的盒子里,∴若有三个盒子里放了1个,一个盒子里放了3个,这种情况下的方法有4种;若有两个盒子里放了2个,两个盒子里放了1个,这种情况下:设四个盒子编号为①②③④,可能放了两个小球的盒子的情况为:①②,①③,①④,②③,②④,③④,所以有6种情况;∴6个相同的球,放入四个不同的盒子里,每个盒子都不空的放法有:4+6=10.故选C.4. 这道题可以采用逆推法,我们可以先分析最后一位会用多长时间,很显然不管是谁最后灌水都得用3分钟,所以只需考虑前两个接水的,怎样能够更加节省时间,显然乙第一个灌水会最省时,因为只需分钟.接着是丙,丙灌水的时间加上等乙的时间,也就是分钟,最后是甲.所以只有按乙,丙,甲安排灌水才最省时.【解答】解:按乙,丙,甲安排灌水最省时,这三位同学花费的时间(包括等待时间)的总和最少是+(+1)+(+1+)=5分钟.故选B.【点评】考查了应用类问题,运用了逆推法,按照灌水所需的时间由少到多的顺序安排灌水花费的时间的总和最少.5.已知实数x满足x2++x﹣=4,则x﹣的值是()A.﹣2B.1C.﹣1或2D.﹣2或1【分析】利用完全平方公式可把原式变为(x﹣)2+x﹣﹣2=0,用十字相乘法可得x﹣的值.【解答】解:x2+﹣2+x﹣﹣2=0∴(x﹣)2+(x﹣)﹣2=0解得x﹣=﹣2或1.故选D【点评】本题的关键是把x﹣看成一个整体来计算,即换元法思想.6.如图,在等边△ABC中,D为AC边上的一点,连接BD,M为BD上一点,且∠AMD=60°,AM 交BC于E.当M为BD中点时,的值为()A.B.C.D.【分析】作DK∥BC,交AE于K.首先证明BE=DK=CD,CE=AD,设BE=CD=DK=a,AD=EC=b,由DK ∥EC,可得=,推出=,即a2+ab﹣b2=0,可得()2+()﹣1=0,求出即可解决问题.【解答】解:作DK∥BC,交AE于K.∵△ABC是等边三角形,∴AB=CB=AC,∠ABC=∠C=60°,∵∠AMD=60°=∠ABM+∠BAM,∵∠ABM+∠CBD=60°,∴∠BAE=∠CBD,在△ABE和△BCD中,,∴△ABE≌△BCD,∴BE=CD,CE=AD,∵BM=DM,∠DMK=∠BME,∠KDM=∠EBM,∴△MBE≌△MDK,∴BE=DK=CD,设BE=CD=DK=a,AD=EC=b,∵DK∥EC,∴=,∴=,∴a2+ab﹣b2=0,∴()2+()﹣1=0,∴=或(舍弃),∴==,故选B.【点评】本题考查全等三角形的判定和性质、等边三角形的性质、平行线分线段成比例定理、一元二次方程等知识,解题的关键是学会添加常用辅助线,学会用方程的思想思考问题,本题体现了数形结合的思想,属于中考选择题中的压轴题.7.如图,等腰梯形ABCD中,AD∥BC,∠DBC=45°,翻折梯形ABCD,使点B重合于点D,折痕分别交边AB、BC于点E、F.若AD=2,BC=6,则△ADB的面积等于()A.2B.4C.6D.8【分析】作AH⊥BC,根据折叠的性质得到BE=DE,∠BDE=∠DBE=45°,则∠DEB=90°,再根据等腰梯形的性质得到BH=CE,可计算出CE=2,DE=BE=4,然后根据三角形面积公式进行计算.【解答】解:作AH⊥BC,如图,∵翻折梯形ABCD,使点B重合于点D,折痕分别交边AB、BC于点E、F,∴BE=DE,∠BDE=∠DBE=45°,∴∠DEB=90°,∴DE⊥BC,∵梯形ABCD为等腰梯形,∴BH=CE,而AD=HE,AD=2,BC=6,∴CE=(6﹣2)=2,∴DE=BE=4,∴△ADB的面积=×2×4=4.故选B.【点评】本题考查了折叠的性质:折叠前后两图象全等,即对应线段相等,对应角相等.也考查了等腰梯形的性质.8.如图,正方形ABCD中,E为CD的中点,EF⊥AE,交BC于点F,则∠1与∠2的大小关系为()A.∠1>∠2B.∠1<∠2C.∠1=∠2D.无法确定【分析】易证△ADE∽△ECF,求得CF的长,可得根据勾股定理即可求得AE、EF的长,即可判定△ADE∽△AEF,即可解题.【解答】解:∵∠AED+∠CEF=90°,∠DAE+∠ADE=90°,∴∠DAE=∠CEF,∵∠ADE=∠ECF=90°,∴△ADE∽△ECF,且相似比为2,∴AE=2EF,AD=2DE,又∵∠ADE=∠AEF,∴△ADE∽△AEF,∴∠1=∠2.【点评】本题考查了相似三角形的判定,相似三角形对应边比值相等的性质,相似三角形对应角相等的性质,本题中求证△ADE∽△AEF是解题的关键.9.已知某几何体的三视图如图所示,则该几何体的体积为()A.B.3πC.D.6π【分析】通过三视图判断几何体的特征,利用三视图的数据,求出几何体的体积即可.【解答】解:由三视图可知几何体是圆柱底面半径为1高为6的圆柱,被截的一部分,如图所求几何体的体积为:×π×12×6=3π.故选B.【点评】本题考查三视图与几何体的关系,正确判断几何体的特征是解题的关键,考查计算能力.10.方程x2+2x+1=的正数根的个数为()A.0B.1C.2D.3【分析】求方程x2+2x+1=的解,可以理解为:二次函数y=x2+2x+1与反比例函数y=的图象交点的横坐标.【解答】解:二次函数y=x2+2x+1=(x+1)2的图象过点(0,1),且在第一、二象限内,反比例函数y=的图象在第一、三象限,∴这两个函数只在第一象限有一个交点.即方程x2+2x+1=的正数根的个数为1.故选B.【点评】本题利用了二次函数的图象与反比例函数图象来确定方程的交点的个数.11.如图,已知∠AOM=60°,在射线OM上有点B,使得AB与OB的长度都是整数,由此称B是“完美点”,若OA=8,则图中完美点B的个数为()A.1B.2C.3D.4【分析】首先过点B作BC⊥OA,交OA于点C,连接AB,可能有两种情况,垂足在OA上或者垂足在OA延长线上,然后设OB=y,AB=x,由勾股定理即可求得:y2﹣(y)2=x2﹣(8﹣y)2或x2﹣(y﹣8)2=y2﹣(y)2,整理可得x2﹣(y﹣4)2=48,然后将原方程转为X2﹣Y2=48,先求(X+Y)(X﹣Y)=48的正整数解,继而可求得答案.【解答】解,过点B作BC⊥OA,交OA于点C,连接AB,可能有两种情况,垂足在OA上或者垂足在OA延长线上.设OB=y,AB=x,∵∠AOM=60°,∴OC=OB?cos60°=y,∴AC=OA﹣OC=8﹣y或AC=OC﹣OA=y﹣8,∵BC2=OB2﹣OC2,BC2=AB2﹣AC2,∴y2﹣(y)2=x2﹣(8﹣y)2或x2﹣(y﹣8)2=y2﹣(y)2,∴x2﹣(y﹣4)2=48,∵x与y是正整数,且y必为正整数,x﹣4为大于等于﹣4的整数,将原方程转为X2﹣Y2=48,先求(X+Y)(X﹣Y)=48的正整数解,∵(X+Y)和(X﹣Y)同奇同偶,∴(X+Y)和(X﹣Y)同为偶数;∴X2﹣Y2=48可能有几组正整数解:,,,解得:,,,∴x的可能值有3个:x=7,x=8或x=13,当x=7时,y﹣4=±1,y=3或y=5;当x=8时,y﹣4=±4,y=8或y=0(舍去);当x=13时,y﹣4=±11,y=15或y=﹣7(舍去);∴共有4组解:或或或.故选D.【点评】此题考查了勾股定理的应用以及整数的综合应用问题.此题难度较大,注意掌握方程思想、分类讨论思想与数形结合思想的应用.二.填空题(共4小题)12.已知x为实数,且,则x2+x的值为1.【分析】本题用换元法解分式方程,由于x2+x是一个整体,可设x2+x=y,可将方程转化为简单的分式方程求y,将y代换,再判断结果能使x为实数.【解答】解:设x2+x=y,则原方程变为﹣y=2,方程两边都乘y得:3﹣y2=2y,整理得:y2+2y﹣3=0,(y﹣1)(y+3)=0,∴y=1或y=﹣3.当x2+x=1时,即x2+x﹣1=0,△=12+4×1=5>0,x存在.当x2+x=﹣3时,即x2+x+3=0,△=12﹣4×3=﹣11<0,x不存在.∴x2+x=1.【点评】当分式方程比较复杂时,通常采用换元法使分式方程简化.需注意换元后得到的根也必须验根.13.满足方程|x+2|+|x﹣3|=5的x的取值范围是﹣2≤x≤3.【分析】分别讨论①x≥3,②﹣2<x<3,③x≤﹣2,根据x的范围去掉绝对值,解出x,综合三种情况可得出x的最终范围.【解答】解:从三种情况考虑:第一种:当x≥3时,原方程就可化简为:x+2+x﹣3=5,解得:x=3;第二种:当﹣2<x<3时,原方程就可化简为:x+2﹣x+3=5,恒成立;第三种:当x≤﹣2时,原方程就可化简为:﹣x﹣2+3﹣x=5,解得:x=﹣2;所以x的取值范围是:﹣2≤x≤3.【点评】解一元一次方程,注意最后的解可以联合起来,难度很大.14.多项式6x3﹣11x2+x+4可分解为(x﹣1)(3x﹣4)(2x+1).【分析】将﹣11x2分为﹣6x2和﹣5x2两部分,原式可化为6x3﹣6x2﹣5x2+x+4,6x3﹣6x2可提公因式,分为一组,﹣5x2+x+4可用十字相乘法分解,分为一组.【解答】解:6x3﹣11x2+x+4,=6x3﹣6x2﹣5x2+x+4,=6x2(x﹣1)﹣(5x2﹣x﹣4),=6x2(x﹣1)﹣(x﹣1)(5x+4),=(x﹣1)(6x2﹣5x﹣4),=(x﹣1)(3x﹣4)(2x+1).【点评】本题考查了用分组分解法进行因式分解,要考虑分组后还能进行下一步分解,把﹣11x2分成﹣6x2和﹣5x2两部分是解题的关键,也是难点.15.设整数a使得关于x的一元二次方程5x2﹣5ax+26a﹣143=0的两个根都是整数,则a的值是18.【分析】首先将方程组5x2﹣5ax+26a﹣143=0左右乘5得25x2﹣25ax+(130a﹣262)﹣39=0,再分解因式.根据39为两个整数的乘积,令两个因式分别等于39分解的整因数.讨论求值验证即可得到结果.【解答】解:∵5x2﹣5ax+26a﹣143=0?25x2﹣25ax+(130a﹣262)﹣39=0,即(5x﹣26)(5x﹣5a+26)=39,∵x,a都是整数,故(5x﹣26)、(5x﹣5a+26)都分别为整数,而只存在39=1×39或39×1或3×13或13×3或四种情况,①当5x﹣26=1、5x﹣5a+26=39联立解得a=不符合,②当5x﹣26=39、5x﹣5a+26=1联立解得a=18,③当5x﹣26=3、5x﹣5a+26=13联立解得a=不符合,④当5x﹣26=13、5x﹣5a+26=3联立解得a=不符合,∴当a=18时,方程为5x2﹣90x+325=0两根为13、﹣5.故答案为:18.【点评】本题考查因式分解的应用、一元二次方程的整数根与有理根.解决本题的关键是巧妙利用39仅能分解为整数只存在39=1*39或39*1或3*13*13*3或四种情况,因而讨论量,并不大.三.解答题(共4小题)16.如图,在△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,点P从点A出发沿AB方向向点B运动,速度为1cm/s,同时点Q从点B出发沿B→C→A方向向点A运动,速度为2cm/s,当一个运动点到达终点时,另一个运动点也随之停止运动.设点P的运动时间为x(秒).(1)设△PBQ的面积为y(cm2),当△PBQ存在时,求y与x的函数关系式,并写出自变量x的取值范围;(2)x为何值时,△PBQ的面积最大?并求出最大值;(3)当点Q在BC上运动时,线段PQ上是否存在一个点T,使得在某个时刻△ACT、△ABT、△BCT 的面积均相等(无需计算,说明理由即可).【分析】(1)由在Rt△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,设AC=4y,BC=3y,由勾股定理即可求得AC、BC的长;分别从当点Q在边BC上运动与当点Q在边CA上运动去分析,首先过点Q 作AB的垂线,利用相似三角形的性质即可求得△PBQ的底与高,则可求得y与x的函数关系式;(2)由二次函数最值的求法得到两种情况下的△PBQ的面积最大值,进行比较即可得到答案;(3)根据三角形的面积公式得到符合条件的点应该是:到三边的距离之比为12:15:20.【解答】解:(1)设AC=4x,BC=3x,在Rt△ABC中,AC2+BC2=AB2,即:(4x)2+(3x)2=102,解得:x=2,∴AC=8cm,BC=6cm;分两种情况:①如图1,当点Q在边BC上运动时,过点Q作QH⊥AB于H.∵AP=x,∴BP=10﹣x,BQ=2x,∵△QHB∽△ACB,∴=,∴QH=x,y=BP?QH=(10﹣x)?x=﹣x2+8x(0<x≤3),②如图2,当点Q在边CA上运动时,过点Q作QH′⊥AB于H′,∵AP=x,∴BP=10﹣x,AQ=14﹣2x,∵△AQH′∽△ABC,∴=,即:=,解得:QH′=(14﹣2x),∴y=PB?QH′=(10﹣x)?(14﹣2x)=x2﹣x+42(3<x<7);(2)①当0<x≤3时,y=﹣(x﹣5)2+20.∵该抛物线的开口方向向下,对称轴是x=5,∴当x=3时,y取最大值,y最大=.当3<x<7时,y=x2﹣x+42=(x﹣)2+(3<x<7);∵该抛物线的开口方向向上,对称轴是x=,∴当x=3时,y取最大值,但是x=3不符合题意.综上所述,△PBQ的面积的最大值是.(3)存在.理由如下:设点T到AB、AC、BC的距离分别是a、b、c.∵AB=10cm,AC=8cm,BC=6cm,∴AB?a=AC?c=BC?c,即5a=4b=3c,故a:b:c=12:15:20.∴当满足条件的点T到AB、AC、BC的距离之比为12:15:20时,△ACT、△ABT、△BCT的面积均相等.【点评】本题考查了相似三角形的判定与性质,勾股定理,以及最短距离问题.此题综合性很强,难度较大,解题的关键是方程思想与数形结合思想的应用.17.阅读下面材料:小伟遇到这样一个问题:如图1,在△ABC(其中∠BAC是一个可以变化的角)中,AB=2,AC=4,以BC为边在BC的下方作等边△PBC,求AP的最大值.小伟是这样思考的:利用变换和等边三角形将边的位置重新组合.他的方法是以点B为旋转中心将△ABP逆时针旋转60°得到△A′BC,连接A′A,当点A落在A′C上时,此题可解(如图2).请你回答:AP的最大值是6.参考小伟同学思考问题的方法,解决下列问题:如图3,等腰Rt△ABC.边AB=4,P为△ABC内部一点,则AP+BP+CP的最小值是(或不化简为).(结果可以不化简)【分析】(1)根据旋转的性质知A′A=AB=BA′=2,AP=A′C,所以在△AA′C中,利用三角形三边关系来求A′C即AP的长度;(2)以B为中心,将△APB逆时针旋转60°得到△A'P'B.根据旋转的性质推知PA+PB+PC=P'A′+P'B+PC.当A'、P'、P、C四点共线时,(P'A′+P'B+PC)最短,即线段A'C最短.然后通过作辅助线构造直角三角形A′DC,在该直角三角形内利用勾股定理来求线段A′C的长度.【解答】解:(1)如图2,∵△ABP逆时针旋转60°得到△A′BC,∴∠A′BA=60°,A′B=AB,AP=A′C∴△A′BA是等边三角形,∴A′A=AB=BA′=2,在△AA′C中,A′C<AA′+AC,即AP<6,则当点A′A、C三点共线时,A′C=AA′+AC,即AP=6,即AP的最大值是:6;故答案是:6.(2)如图3,∵Rt△ABC是等腰三角形,∴AB=BC.以B为中心,将△APB逆时针旋转60°得到△A'P'B.则A'B=AB=BC=4,PA=P′A′,PB=P′B,∴PA+PB+PC=P′A′+P'B+PC.∵当A'、P'、P、C四点共线时,(P'A+P'B+PC)最短,即线段A'C最短,∴A'C=PA+PB+PC,∴A'C长度即为所求.过A'作A'D⊥CB延长线于D.∵∠A'BA=60°(由旋转可知),∴∠1=30°.∵A'B=4,∴A'D=2,BD=2,∴CD=4+2.在Rt△A'DC中A'C====2+2;∴AP+BP+CP的最小值是:2+2(或不化简为).故答案是:2+2(或不化简为).【点评】本题综合考查了旋转的性质、等腰直角三角形的性质、勾股定理以及等边三角形的判定与性质.注意:旋转前、后的图形全等.18.某水库大坝的横截面是如图所示的四边形BACD,期中AB∥CD.了望台PC正前方水面上有两艘渔船M、N,观察员在了望台顶端P处观测渔船M的俯角α=31°,观测渔船N在俯角β=45°,已知NM所在直线与PC所在直线垂直,垂足为点E,PE长为30米.(1)求两渔船M,N之间的距离(结果精确到1米);(2)已知坝高24米,坝长100米,背水坡AD的坡度i=1:.为提高大坝防洪能力,某施工队在大坝的背水坡填筑土石方加固,加固后坝定加宽3米,背水坡FH的坡度为i=1:,施工12天后,为尽快完成加固任务,施工队增加了机械设备,工作效率提高到原来的倍,结果比原计划提前20天完成加固任务,施工队原计划平均每天填筑土石方多少立方米?(参考数据:tan31°≈,sin31°≈)【分析】(1)根据已知求出EN,根据正切的概念求出EM,求差得到答案;(2)根据坡度和锐角三角函数的概念求出截面积和土石方数,根据题意列出分式方程,解方程得到答案.【解答】解:(1)在Rt△PEN中,∵∠PNE=45°,∴EN=PE=30米,在Rt△PEM中,∠PME=31°,tan∠PME=,∴ME=≈50(米),∴MN=EM﹣EN=20米,答:两渔船M,N之间的距离约为20米;(2)过点F作FK∥AD交AH于点K,过点F作FL⊥AH交直线AH于点L,则四边形DFKA为平行四边形,∴∠FKA=∠DAB,DF=AK=3,由题意得,tan∠FKA=tan∠DAB=4,tan∠H=,在Rt△FLH中,LH==36,在Rt△FLK中,KL==6,∴HK=30,AH=33,梯形DAHF的面积为:×DL×(DF+AH)=432,所以需填土石方为432×100=43200,设原计划平均每天填x立方米,由题意得,12x+(﹣12﹣20)×=43200,解得,x=600,经检验x=600是方程的解.答:原计划平均每天填筑土石方600立方米.【点评】本题考查的是解直角三角形和分式方程的应用,掌握锐角三角函数的概念和解直角三角形的一般步骤、根据题意正确列出分式方程是解题的关键,注意分式方程解出未知数后要验根.19.已知关于x的方程,(1)若两根x1,x2满足x1<0<x2,求m的范围;(2)若,求m的值.【分析】(1)由关于x的方程4x2+mx+m﹣4=0 有两根,可知此一元二次方程的判别式△>0,即可得不等式,又由x1<0<x2,可得x1?x2<0,根据根与系数的关系,可得不等式=m﹣1<0,解此不等式组即可求得答案;(2)由一元二次方程根与系数的关系即可得4x12+mx1+m﹣4=0,x1+x2=﹣,x1?x2==m ﹣1,然后将6x12+mx1+m+2x22﹣8=0变形,可得4x12+mx1+m﹣4+2[(x1+x2)2﹣2x1?x2]=4,则可得方程(﹣)2﹣2[m﹣1]=2,解此方程即可求得答案.【解答】解:(1)∵关于x的方程4x2+mx+m﹣4=0 有两根,∴△=m2﹣4×4×(m﹣4)=m2﹣8m+64=(m﹣4)2+48>0,∵两根x1,x2满足x1<0<x2,∴x1?x2==m﹣1<0,∴m<8,(2)∵x1、x2是方程的根,∴4x12+mx1+m﹣4=0,x1+x2=﹣,x1?x2==m﹣1,∵6x12+mx1+m+2x22﹣8=0,∴4x12+mx1+m﹣4+2(x12+x22)﹣4=0∴4x12+mx1+m﹣4+2[(x1+x2)2﹣2x1?x2]=4,∴(x1+x2)2﹣2x1?x2=2,即(﹣)2﹣2[m﹣1]=2,化简得:m2﹣4m=0,解得:m=0 或m=4,∴m的值为0或4.【点评】此题考查了一元二次方程判别式、根与系数的关系等知识.此题难度较大,解题的关键是注意利用根与系数的关系将原方程变形求解,注意方程思想的应用.20.【解答】解:∵m+n=mn且m,n是正实数,∴+1=m,即=m﹣1,∴P(m,m﹣1),即“完美点”B在直线y=x﹣1上,∵点A(0,5)在直线y=﹣x+b上,∴b=5,∴直线AM:y=﹣x+5,∵“完美点”B在直线AM上,∴由解得,∴B(3,2),∵一、三象限的角平分线y=x垂直于二、四象限的角平分线y=﹣x,而直线y=x﹣1与直线y=x平行,直线y=﹣x+5与直线y=﹣x平行,∴直线AM与直线y=x﹣1垂直,∵点B是直线y=x﹣1与直线AM的交点,∴垂足是点B,∵点C是“完美点”,∴点C在直线y=x﹣1上,∴△MBC是直角三角形,∵B(3,2),A(0,5),∴AB=3,∵AM=4,∴BM=,又∵CM=,∴BC=1,∴S△MBC=BM?BC=.【点评】本题考查了一次函数的性质,直角三角形的判定,勾股定理的应用以及三角形面积的计算等,判断直线垂直,借助正比例函数是本题的关键.21.解:(1)反比例函数y=是闭区间[1,2014]上的“闭函数”,理由如下:反比例函数y=在第一象限,y随x的增大而减小,当x=1时,y=2014;当x=2014时,y=1,所以,当1≤x≤2014时,有1≤y≤2014,符合闭函数的定义,故反比例函数y=是闭区间[1,2014]上的“闭函数”;(2)分两种情况:k>0或k<0.①当k>0时,一次函数y=kx+b(k≠0)的图象是y随x的增大而增大,故根据“闭函数”的定义知,,解得.∴此函数的解析式是y=x;②当k<0时,一次函数y=kx+b(k≠0)的图象是y随x的增大而减小,故根据“闭函数”的定义知,,解得.∴此函数的解析式是y=﹣x+m+n;(3)∵y=x2﹣2x=(x2﹣4x+4)﹣2=(x﹣2)2﹣2,∴该二次函数的图象开口方向向上,最小值是﹣2,且当x<2时,y随x的增大而减小;当x>2时,y随x的增大而增大.①当c<2<d时,此时二次函数y=x2﹣2x的最小值是﹣2=c,根据“闭函数”的定义知,d=c2﹣2c或d=d2﹣2d;★)当d=c2﹣2c时,由于d=×(﹣2)2﹣2×(﹣2)=6>2,符合题意;★)当d=d2﹣2d时,解得d=0或6,由于d>2,所以d=6;②当c≥2时,此二次函数y随x的增大而增大,则根据“闭函数”的定义知,,解得,,∵c<d,∴不合题意,舍去.综上所述,c,d的值分别为﹣2,6.【点评】本题综合考查了二次函数图象的对称性和增减性,一次函数图象的性质以及反比例函数图象的性质.解题的关键是弄清楚“闭函数”的定义.解题时,也要注意“分类讨论”数学思想的应用.22.【解答】解:月用水量为x立方米,支付费用为y元,则有:y=;(2)由表知第二、第三月份的水费均大于13元,故用水量15m3,22m3均大于最低限量am3,于是就有,解得b=2,从而2a=c+19,再考虑一月份的用水量是否超过最低限量am3,不妨设9>a,将x=9代入x>a的关系式,得9=8+2(9﹣a)+c,即2a=c+17,这与2a=c+19矛盾.∴9≤a.从而可知一月份的付款方式应选0≤x≤a的关系式,因此就有8+c=9,解得c=1.故a=10,b=2,c=1.23.【解答】解:(1)由题意可知,当废弃处理量x满足0<x<40时,每天利用设备处理废气的综合成本y=40x+1200,∴当该制药厂每天废气处理量计划为20吨,即x=20时,每天利用设备处理废气的综合成本为y=40×20+1200=2000元,又∵转化的某种化工产品可得利润为80×20=1600元,∴工厂每天需要投入废气处理资金为400元;(2)由题意可知,y=,①当0<x<40时,令80x﹣(40x+1200)≥0,解得30≤x<40,②当40≤x≤80时,令80x﹣(2x2﹣100x+5000)≥0,即2x2﹣180x+5000≤0,∵△=1802﹣4×2×5000<0,∴x无解.综合①②,x的取值范围为30≤x<40,故当该制药厂每天废气处理量计划为[30,40)吨时,工厂可以不用投入废气处理资金就能完成计划的处理量;(3)∵当40≤x≤80时,投入资金为80x﹣(2x2﹣100x+5000),又∵市政府为处理每吨废气补贴a元就能确保该厂每天的废气处理不需要投入资金,∴当40≤x≤80时,不等式80x+ax﹣(2x2﹣100x+5000)≥0恒成立,即2x2﹣(180+a)x+5000≤0对任意x∈[40,80]恒成立,令g(x)=2x2﹣(180+a)x+5000,则有,即,即解得,答:市政府只要为处理每吨废气补贴元就能确保该厂每天的废气处理不需要投入资金.【点评】本题主要考查函数模型的选择与应用.解决实际问题通常有四个步骤:(1)阅读理解,认真审题;(2)引进数学符号,建立数学模型;(3)利用数学的方法,得到数学结果;(4)转译成具体问题作出解答,其中关键是建立数学模型.属于中档题.24.【解答】解:(1)△DAB中,∠DAB=60°,DA=AB=6则:D到y轴的距离=AB=3、D到x轴的距离=DA?sin∠DAB=3;∴D(3,3);由于DC∥x轴,且DC=AB=6,那么将点D右移6个单位后可得点C,即C(9,3);设抛物线的解析式为:y=ax2+bx,有:,解得∴抛物线解析式为:y=﹣x2+x.(2)如图1,连接AC,∵四边形ABCD是菱形,∴AC⊥BD,若PQ⊥DB,则PQ∥AC,∵点P在BC上时,PQ与AC始终相交,和PQ∥AC矛盾,∴点P在BC上时不存在符合要求的t值,当P在DC上时,由于PC∥AQ且PQ∥AC,所以四边形PCAQ是平行四边形,则PC=AQ,有6﹣2t=t,得t=2.(3)①如图1,当点P在DC上,即0<t≤3时,有△EDP∽△EAQ,则===,那么AE=AD=2,即y=2;②如图2,当点P在CB上,即3<t≤6时,有△QEA∽△QPB,则=,即=,。
黄高预录数学模拟试题(二)
黄高预录数学模拟试题(二)一、选择题(5′×5=25′)1、若x =) A 、12 B 、1C、2D2、已知在△ABC 中,∠A >∠B >∠C ,且∠A 的度数是∠C 的度数的5倍,那么∠B 的取值范围是( )A 、180900711<B <°°B 、360900711<B <°°C 、1801080711<B <°°D 、3601080711<B <°°3、如图,直线1234l l l l ,相邻两条平行线间的距离都等于h ,若正方形ABCD 的四个顶点分别在四条直线上,则它的面积等于( ) A 、24h B 、25h C、2D、24、已知实数a 、b 分别满足424230a a --=和4230b b +-=,则代数式4444a b a +的值等于( ) A 、175 B 、55C 、13D 、75、已知A (11,3a )、B (11,4b )、C (11,5c)满足13a b c =+、 12b a c =+,则A 、B 、C 三点的位置适合( ) A 、在同一直线上 B 、组成锐角三角形 C 、组成直角三角形D 、组成钝角三角形二、填空题(5′×5=25′)6、若关于x 的的不等式组x x ⎧⎨⎩≥+2<3-2a a 有解,则函数21(3)4y a x x =---的图象与x 轴的交点个数为________________.7、如图,已知∠BAD=∠DAC= 9°,A D ⊥DE,且AB+AC=BE ,则∠B= .8、若反比例函数ky x=的图象与一次函数y ax b =+的图象交于点A (-2,m ), B (5,n ),则3a b +的值为 .9、已知△ABC 的三边长分别为AB=13,BC=5,CA=12,CT 是∠ACB 的内角平分线,△ABC 关于直线CT 的对称图形是△A 1B 1C 1,△ABC 和△A 1B 1C 1的公共部分的面积是mn,,m n 是互质的正整数,则m n += .10、不等式226x x a +-≥对于一切实数x 都成立,则实数a 的最大值为 .三、解答题(10′+15′×4=70′)11、如图,在△ABC 中,AC=7,BC=4,D 为AB 的中点,E 为AC 边上的一点,且∠AED=1902+゜∠C ,求CE 的长. (10′)ACDBEl 1 l 2l 3412、已知t 是一元二次方程210x x --=的一个根,对任意有理数a ,有理数b 、c 满足(1)()1at bt c ++=.(15′)⑴求b 和c (用含a 的代数式表示)⑵是否存在这样的有理数a ,使得b 或c 中至少有一个等于12008?若存在,求出这样的a 值;若不存在,说明理由.13、如图,△ABC 内接于⊙O ,AB=AC ,过C 作CD//AB 交⊙O 于点D ,过D 作DE ⊥AB 于E ,且CD=DE. (15′) ⑴求证:AD 2 =2AE ·AB⑵若△ABC 的面积为50,求△ACD 的面积AD14、设二次函数2(y ax bx c a =++>0,b >0 )的图象经过12(0,),(1,)y y 和3(1,)y -三点,且满足2221231y y y ===.(15′) ⑴求这个二次函数的解析式;⑵设这个二次函数的图象与x 轴的两个交点为A 1(,0)x ,B 2(,0)x ,12x x <,C 为顶点,连接AC 、BC ,动点P 从A 点出发沿折线ACB 运动,求△APB 面积的最大值. ⑶当点P 在折线ACB 上运动时,是否存在点P ,使△APB 的外接圆的圆心在x 轴上?请说明理由.15、观察按下列规律排成一列数:(15′)11,12,21,13,22,31,14,23,32,41,15,24,33,42,51,16,…(※) ⑴在(※)中,从左起第m 个数记为F (m ),当F (m )=22001时,求m 的值和这m个数的积.⑵在(※)中,未经约分且分母为2 的数记为c ,它后面的数记为d ,是否存在这样的两个数c 和d ,使c d =2001000,如果存在,求出c 和d ;如果不存在,请说明理由.。
黄高预录数学模拟试题
黄高预录数学模拟试题(七)一、选择题(5分×8=40分)1、如图,边长为1的菱形ABCD 绕点A 施转、当B 、C 两点恰好落在扇形AEF 的弧EF 上时,弧BC 的长度等于( )A 、6p B 、4p C 、3p D 、2p2、某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除10的余数大于7时再增选一名代表,那么各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数[]y x =([]x 表示不大于X 的最大整数)可以表示为( )A 、110x y 轾+犏=犏臌B 、210x y 轾+犏=犏臌C 、310x y 轾+犏=犏臌D 、410x y 轾+犏=犏臌3、正实数.x y 满足1xy =,那么44119x y+的最小值为( ) A 、23 B 、54C 、1 D4、记12n n S a a a =++L 令12,ns s s Tn n++=L 称T 为12,n a a a L 这列数的“理想数”。
已知12500,a a a L 的“理想数”为2004,那么125008,,a a a L 的“理想数”为( ) A 、2004 B 、2006 C 、2008 D 、20105、正方形ABCD 中,E 是BC 边上一点,以E 为圆心,EC 为半径的半圆与以A 为圆心,AB 为半径的圆弧外切,则sin EAB Ð的值为( )A、2B 34C 、45D 、356、给出一列数112123123,,,,,,,,,121321121kk k k --L L L 在这列数中第50个值等于1的项的序号是( )A 、4900B 、4901C 、5000D 、50017、某汽车维修公司的维修点环形分布如图,公司在年初分配给A 、B 、C 、D 的个维修点某种配件各50件, 在使用前发生需将A 、B 、C 、D 四个维修点的这批配件分别调整为40、45、54、61件,但调整只能相邻维 修点之间进行,那么要完成上述调整,最少的调动件次(N 件配件从一个维修点调整到相邻维修点的调动件次为N )为( ) A 、15 B 、16 C 、17 D 、188、如图:⊙O 1与⊙O 2外切于P, ⊙O 1,⊙O 2半径分别为2,1,O 1A为⊙O 2切线,AB 为⊙O 2的直径,O 1B 分别交⊙O 1,⊙O 2于C 、D 则CD+3PD 的值为( )A 、73 B、3 C、3 D、3二、填空题(4分×5=20分)9、如图,ΔABC 中,AB=AC,AD=AE,∠CAD=60°则∠。
黄冈高中预录考试数学训练题01(含解答)
M预录考试数学训练题(一)参考答案一、选择题(共4小题,每小题5分,共20分)1.D .解析:设高速列车和普通列车的车速分别为x 米/秒和y 米/秒,则100520(/x y m s -=÷=, 所以坐在普通列车上的旅客看见高速列车驶过窗口的时间是:80÷20=4秒 .2.D .3.C .4.C .二、填空题(共8小题,每小题5分,共40分)5.17,2.6.1或8.7.﹣5或﹣6.8.30.9.18.解析:由题意,得222255202860(552)156()a a a k k N ∆=-+=-+=∈,即22(552)156[(552)][(552)]782262k a k a k a --=⇒+-⨯--=⨯=⨯. 因为[(552)][(552)]k a k a +---和具有相同的奇偶性,且[(552)][(552)]2k a k a k +---=≥+0,故(552)=78(552)=26(552)=2(552)=6(552)=2(552)=6(552)=78(552)=26k a k a k a k a k a k a k a k a +-+-+-+-⎧⎧⎧⎧⎨⎨⎨⎨--------⎩⎩⎩⎩或或或, 解得,只有=40=18k a ,符合题意.即所求a 的值是18.10.17. 解析:如图,1//33AE AF AB CD DM AE DM FD ⇒==⇒=1336AG AE AE AE AG GC CM CD DM AE AE AC ∴====⇒=++11.112°. 解析:分别延长BD ,CE ,交点即为点A ,由三角形中位线的性质知DE ∥BC , ∴∠ADE =∠B =180°-∠C -∠A =180°-120°-26°=34°,又由轴对称的性质知∠A ′DE =∠ADE =34°,∴∠A ′DB =180°-∠ADE -∠A ′DE =180°-2×34°=112°.12.24<x <38.解析:分别求线段AB 、BC 与线段OD 的交点的横坐标.三、解答题(本大题共4小题,共60分)13.(本小题12分)(Ⅰ)35; (Ⅱ)(1)35; (2)1319151=3531036⨯+⨯+⨯. 14.(本小题16分)四个点),)、(,)、,)、,121554552(554552(51658(--. 15.(本小题14分)连接AC 和BD .∵弦CD 垂直于直径AB ,∴BC =BD ,∴∠BCD =∠BDC .∵OA =OC ,∴∠OCA =∠OAC .∵∠BDC =∠OAC ,∴∠BCD =∠OCA ,∴△BCD ∽△OCA ,∴CO CB =CA CD . ∵∠DCN =∠ACM ,∠CDN =∠CAM ,∴△CDN ∽△CAM . ∵CM CN =CA CD =CO CB =CMCB 2,∴CN =21CB ,即BN =CN . 16.(本小题18分)(1)由于派往A 地的乙型收割机x 台,则派往B 地的乙型收割机为(30-x )台,派往A ,B 地区的甲型收割机分别为(30-x )台和(x -10)台.∴y =1600x +1200(30-x )+1800(30-x )+1600(x -10)=200x +74000(10≤x ≤30).(2)由题意,得200x +74000≥79600,解得x ≥28,∵10≤x ≤30,x 是正整数,∴x =28、29、30∴有3种不同分派方案:①当x =28时,派往A 地区的甲型收割机2台,乙型收割机28台,余者全部派往B 地区; ②当x =29时,派往A 地区的甲型收割机1台,乙型收割机29台,余者全部派往B 地区; ③当x =30时,即30台乙型收割机全部派往A 地区,20台甲型收割机全部派往B 地区;(3)∵y=200x +74000中,200>0,∴y 随x 的增大而增大,∴当x =30时,y 取得最大值, 此时,y =200×30+74000=80000,建议农机租赁公司将30台乙型收割机全部派往A 地区,20台甲型收割机全部派往B 地区,这样公司每天获得租金最高,最高租金为80000元.。
全国重点高中黄冈中学自主招生(理科实验班)预录考试数学模拟试题(C卷)(附答案)
黄冈中学自主招生考试 数学模拟试题(C 卷)(满分:120分 考试时间:120分钟)一、选择题(每小题4分,共8题,在给出的四个选项中,只有一项是符合题目要求的) 1.在直角坐标系xOy 中,点P (4,)y 在第一象限内,且OP 与x 轴正半轴的夹角为60°,则y 的值为( ).A.3B.2.将二次函数2y x =的图像向右平移1个单位,再向上平移2个单位后,所得图像的函数表达式是( ).A.2(1)2y x =-+ B. 2(1)2y x =++ C. 2(1)2y x =-- D. 2(1)2y x =+- 3.x 、y 都是正数,并且成反比,若x 增加了p ﹪,设y 减少的百分数为q ﹪,则q 的值为( ). A.1001%p p + B. 100%p C. 100p p + D. 100100pp+4.在凸多边形中,四边形有两条对角线,五边形有五条对角线.观察探索凸十边形有( )条对角线.A.29B. 32C. 35D.385.已知△ABC 的三边长为a 、b 、c ,且满足方程222222()0a x c a b x b ---+=.则方程根的情况是( ).A.有两相等实根B. 有两相异实根C. 无实根D.不能判定 6.关于x的方程1x x -=的根的个数为( ).A.0B. 1C. 3D.47.如图所示,两个边长都为2的正方形ABCD 和OPQR ,如果O 点正好是正方形ABCD 的中心,而正方形OPQR 可以绕O 点旋转,那么它们重叠部分的面积是( ).A.4B. 2C. 1D.128.折叠圆心为O 、半径为10cm 的圆纸片,使圆周上的某一点A 与圆心O 重合.对圆周上的每一点都这样折叠纸片,从而都有一条折痕.那么,所有折痕所在直线第7题上点的全体为( ).A.以O 为圆心、半径为10cm 的圆周B. 以O 为圆心、半径为5cm 的圆周C. 以O 为圆心、半径为5cm 的圆内部分D. 以O 为圆心、半径为5cm 的圆周及圆外部分 二、填空题(每小题4分,共8小题)9.如图,⊙C 通过原点,并与坐标轴分别交于A 、D 两点.已知∠OBA=30°,点D 的坐标为(0,2),则点C 的坐标为 .10.如图,已知3个边长相等的正方形相邻并排.则∠EBF +∠EBG= . 11.若函数(0)y kx k =>与函数1y x=的图像相交于A 、C 两点,AB 垂直x 轴于点B ,则△ABC 的面积为 .12.设二次函数222(0)2a y x ax a =++<的图像顶点为A ,与x 轴交点为B 、C.当△ABC 为等边三角形时,a 的值为 .13.甲在汽车上发现乙正往相反的方向走去。
2020-2021学年度湖北省 黄冈市高级中学提前招生数学考试模拟试卷1(Word版,附答案)
2021年黄高预录考试数学模拟试题(一)考试时间:120分钟,满分:120分一、选择题(每小题3分,共30分)1.若2|1|816x x x ---+化简的结果为25x -,则x 的取值范围是( ) A .x 为任意实数 B .14x ≤≤C .1x ≥D .4x ≤2.边长为的正六边形的面积等于( ) A .243a B .2a C .2233a D .233a3.已知三角形的三边长分别是3,8,x ;若x 的值为偶数, 则x 的值有( )A.6个 B.5个 C.4个 D.3个4.如图,在平面直角坐标系中,过格点A ,B ,C 作一圆弧,点B 与下列格点的连线中,能够与该圆弧相切的是( )A .点(0,3)B . 点(2,3)C .点(5,1)D . 点(6,1)5.在△ABC 中,M 是边AB 的中点,N 是边AC 上的点,且AN =2NC ,CM 与BN 相交于点K ,若△BCK 的面积等于1,则△ABC 的面积等于( )A.3 B.103C.4 D.1336.⊙O 的半径为r ,其外切直角梯形ABCD 的两底AB =a ,DC =b ,则r ,a ,b 之间的关系是( )A .r a b =-B . 2212r a b =- C . 12r ab = D . 111r a b=+ 7.已知x ,y ,z 是三个非负实数,满足3x +2y +z =5,x +y -z =2,若S =2x +y -z ,则S 的最大值与最小值的和为( ) A.8 B.7 C.6 D.58.已知关于x 的不等式组230bx a x -≥⎧⎨<⎩的整数解有且仅有4个:-1,0,1,2,那么适合这个不等式组的所有可能的整数对(,)a b 的个数有 ( )A 2 对B 4对C 6对D 8对9.如图所示,在直角坐标系中,A 点坐标为(﹣3,﹣2),⊙A 的半径为1,P 为x 轴上一动点,PQ 切⊙A 于点Q ,则当PQ 最小时,P 点的坐标为( ) A .(﹣4,0) B .(﹣2,0)C .(﹣4,0)或(﹣2,0)D .(﹣3,0)10、已知关于x 的方程029|3|)2(62=-+--+-a x a x x 有两个不同的实数根,则实数a 的取值范围是( )A 、a >0或a =-2B 、a =-2C 、 a ≥0D 、a =0二、填空题(每小题3分,共18分)11.从-2,-1,2这三个数中任取两个不同的数作为点的坐标, 该点在第四象限的概率是 .12.如图,AC =BC ,AC ⊥BC 于点C ,AB =AD =BD ,CD =CE =DE ,若AB =2,则BE = 。
2020-2021学年度湖北省 黄冈市高级中学提前招生数学考试模拟试卷5(Word版,附答案)
2020-2021学年度湖北省黄冈市高级中学提前招生数学考试模拟试卷(五)分值:120分考试时间:120分钟一.选择题(共10小题,满分30分,每小题3分)1.观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187…解答下列问题:3+32+33+34+…+32014的末位数字是()A.2B.3C.7D.92.一志愿者在市中心某十字路口,对闯红灯的人次进行了统计,根据当天8:00﹣14:00中各阶段(以1小时为一时间段)闯红灯的人次制作了如图所示的条形统计图,则各时间段闯红灯人次的众数和中位数分别是()A.30,30 B.30,35C.35,40D.50,35第2题图第3题图第4题图3.如图,直线P A是一次函数y=x+n(n>0)的图象,直线PB是一次函数y=﹣2x+m(m>n)的图象.若P A与y轴交于点Q,且S四边形PQOB =,AB=2,则m,n的值分别是()A.3,2B.2,1C .D.1,4.如图,设P到等边三角形ABC两顶点A、B的距离分别为2、3,则PC所能达到的最大值为()A .B .C.5D.65.已知x是正实数,则|x﹣1|+|2x﹣1|+|3x﹣1|+|4x﹣1|+|5x﹣1|的最小值是()A.2B .C .D.06.已知线段AB=2,点A,B到直线l的距离分别为方程x2﹣6x+6=0的两根(A到l的距离>B到l的距离),符合条件的直线l有()A.1条B.2条C.3条D.4条7.如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D 是的中点,连接BD交AC于点E,连接OE,且∠OEB=45°,若OB=10,则OE的长为()A.6B .C .D .8.使方程2x2﹣5mx+2m2=5的一根为整数的整数m的值共有()A.1个B.2个C.3个D.4个9.如图,“杨辉三角”是我国古代奉献给人类伟大的数学遗产之一,从图中取一列数1,3,6,10,…,记a1=1,a2=3=1+2,a3=6=1+2+3,a4=10,…,那么a9+a11﹣a i=83,则i的值是()A.13B.10C.8D.7第7题图第9题图第10题图10.如图,以Rt△ABC各边为边分别向外作等边三角形,编号为①、②、③,将②、①如图所示依次叠在③上,已知四边形EMNC与四边形MPQN的面积分别为9与7,则斜边BC的长为()A.5B.9C.10 D.16二.填空题(共8小题,满分32分,每小题4分)11.已知a =+1,b =﹣1,则的值为.12.书架上有两套两样的教材,每套分上、下两册,在这四册教材中随机抽取两册,恰好组成一套教材的概率是.13.如图:在对角线互相垂直的四边形ABCD中,∠ACD=60°,∠ABD=45°.A到CD距离为6,D到AB距离为4,则四边形ABCD面积等于.第13题第14题第16题14.如图,已知⊙O的半径为6,点A、B在⊙O上,∠AOB=60°,动点C在⊙O上(与A、B两点不重合),连接BC,点D是BC中点,连接AD,则线段AD的最大值为.15.一笔总额为1078元的奖金,分为一等奖、二等奖和三等奖,奖金金额均为整数,每个一等奖的奖金是每个二等奖奖金的两倍,每个二等奖的奖金是每个三等奖奖金的两倍.若把这笔奖金发给6个人,评一、二、三等奖的人数分别为a,b,c,且0<a≤b≤c,那么三等奖的奖金金额是元.16.如图,点A是反比例函数y=图象在第一象限上的一点,连结AO并延长交图象的另一分支于点B,延长BA至点C,过点C作CD⊥x轴,垂足为D,交反比例函数图象于点E.若,△BDC的面积为6,则k=.17.某同学在电脑中打出如下排列的若干个圆(圆中●表实心圆,〇表空心圆):●〇●●〇●●●〇●●●●〇●●●●●〇●●●●●●〇,若将上面一组圆依此规律连续复制一系列圆,那么前2005个圆中有个空心圆.18.黑板上写有1,,,…共有100个数字,每次操作,先从黑板上的数选取2个数a,b,然后删去a,b,并在黑板上写上数a+b+ab,则经过99次操作后,黑板上剩下的数是.三.解答题(共6小题,满分58分)19.(8分)因式分解:(a+b﹣2ab)(a+b﹣2)+(1﹣ab)2.20(8分).已知关于x的一元二次方程(n+2)x2﹣4nx+4(n﹣2)=0(n>﹣2).(1)求证:该方程一定有两个不相等的实数根.(2)直接写出该方程的两根.(3)当方程的两根都是整数时,求整数n的值.(4)设方程的两个根分别为x1、x2(x1>x2),若y=•(x1﹣x2),求y的范围.21.(8分)新冠肺炎期间,各地积极抗疫,建起了方舱医院,如图,某方舱医院内一张长200cm,高50cm的病床靠墙摆放,在上方安装空调,高度CE=250cm,下沿EF与墙垂直,出风口F离墙20cm,空调开启后,挡风板FG与E夹角成136°,风沿FG方向吹出,为了病人不受空调风干扰,不能直接吹到病床上,请问空调安装的高度足够吗?为什么?(参考数据:sin46°≈0.72,cos46°≈0.69,tan46°≈1.04)22.(10分)如图,在平面直角坐标系xOy中,已知点A(0,4),点B是x轴正半轴上一点,连接AB,过点A作AC⊥AB,交x轴于点C,点D是点C关于点A的对称点,连接BD,以AD为直径作⊙Q交BD于点E,连接并延长AE交x轴于点F,连接DF.(1)求线段AE的长;(2)若AB﹣BO=2,求的值;(3)若△DEF与△AEB相似,求的值.23(12分).某水果超市经销一种进价为18元/kg的水果,根据以前的销售经验,该种水果的最佳销售期为20天,销售人员整理出这种水果的销售单价y(元/kg)与第x天(1≤x≤20)的函数图象如图所示,而第x天(1≤x≤20)的销售量m(kg)是x的一次函数,满足下表:x(天)123…m(kg)202428…(1)请分别写出销售单价y(元/kg)与x(天)之间及销售量m(kg)是x(天)的之间的函数关系式(2)求在销售的第几天时,当天的利润最大,最大利润是多少?(3)请求出试销的20天中当天的销售利润不低于1680元的天数.24(12分).如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,﹣n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点C.已知实数m、n(m<n)分别是方程x2﹣2x﹣3=0的两根.(1)求抛物线的解析式;(2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在y轴右侧),连接OD、BD.①求△BOD面积的最大值,并写出此时点D的坐标;②当△OPC为等腰三角形时,请直接写出点P的坐标.。
全国重点高中黄冈中学2019年自主招生(理科实验班)预录考试数学模拟试题(B卷)(附答案)
理科实验班预录数学模拟试题(B 卷)一、选择题(每小题 5 分,共 30 分) 1.已知a+b=3,a 3+b 3=9,则a 7+b 7=( ) A .129 B .225 C .125 D .6752.如图,⊙O 内的点P 在弦AB 上,点C 在⊙O 上,PC ⊥OP ,若BP=2,AB=6,则CP 的长等于( ) A .32B .4C .22D .233.已知215-=m ,则1122223+++-+m m m m m =( )A .253-B .453-C .235-D .435-4.如图,△ABC 中,AB=AC ,∠ABC=40°,BD 是∠ABC 的平分线,延长BD 至E ,使DE=AD ,则∠ECA=( ) A .30° B .35° C .40° D .45°5.如图,在平面直角坐标系中,四边形OBCD 是边长为4的正方形,平行于 对角线BD 的直线l 从O 出发,沿x 轴正方向以每秒1个单位长度的速度 运动,运动到直线l 与正方形没有交点为止.设直线l 扫过正方形OBCD 的面积为S ,直线l 运动的时间为t (秒),下列能反映S 与t 之间函数关 A .B .C .D .6.如图,点O 在△ABC 内,点P 、Q 、R 分别在边AB 、BC 、CA 上,且OP ∥BC ,OQ ∥CA ,OR ∥AB ,OP=OQ=OR=x ,BC=a ,CA=b ,AB=c ,则x =( )A .cb a 1111++B .3cb a ++ C .331222c b a ++D .331cabc ab ++二、填空题(每小题 5分,共30 分)7.实数a 、b 、x 、y 满足ax+by=3,ax 2+by 2=7,ax 3+by 3=16, ax 4+by 4=42, 那么ax 5+by 5= . 8.如图,在边长为26的正方形ABCD 中,E 是AB 边上一点,G 是 AD 延长线上一点,BE =DG ,连接EG ,CF ⊥EG 交EG 于点H ,交 AD 于点F ,连接CE ,BH .若BH =8,则FG = .9.已知函数|x |x y 22--=的图象与x 轴相交于A 、B 两点,另一条抛物线422+-=x ax y 也过A 、B 两点,则a= .10.如图,在梯形ADEB 中,∠D=∠E=90°,△ABC 是等边三角形,且点C 在DE 上,如果AD=7,BE=11,则S △ABC = .11.设f(a)是关于a 的多项式,f(a)除以2(a+1),余式是3;2f(a)除以3(a -2),余式 是-4. 那么3f(a)除以4(a 2-a -3),余式是 .12.如图,已知圆的内接△ABC ,AB=AC ,D 是弦AC 上的一点,连接AD 并延长,与BC 的延长线交于点E ,且AE=5,则AB 2+EB ·EC= . 三、解答题(共60分)13.(10分)解方程:.)x (x 082244=--+14.(12分)如图,已知等边△ABC ,AB =12,以AB 为直径的半圆与BC 边交于点D ,过点D 作DF ⊥AC ,垂足为F ,过点F 作FG ⊥AB ,垂足为G ,连结GD . (1)求证:DF 是⊙O 的切线; (2)求FG 的长;(3)求tan ∠FGD 的值.15.(12分)经统计分析,某市跨河大桥上的车流速度v (千米/小时)是车流密度x (辆/千米) 的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为O 千米/小时;当车流密度不超过20辆/千米时,车流速度为80千米/小时.研究表明:当20≤x ≤220时,车流速度v 是车流密度x 的一次函数.(1)求大桥上车流密度为100辆/千米时的车流速度.(2)在交通高峰时段,为使大桥上的车流速度大于40千米/小时且小于60千米/小时时,应控制大桥上的车流密度在什么范围内?(3)车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.求大桥上车流量y 的最大值.16.(13分)设).x (x x x x x )x (f 094932424>+--+-=(1)将f(x)化成b)x (g a )x (g +++221(a 、b 是不同的整数)的形式;(2)求f(x)的最大值及相应的x 值.17.(13分)如图,在直角梯形ABCD中,AB∥CD,AD⊥AB,∠B=60°,AB=10,BC=4,点P沿线段AB从点A向点B运动,设AP=x.(1)求AD的长;(2)点P在运动过程中,是否存在以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似?若存在,求出x的值;若不存在,请说明理由;(3)设△ADP与△PCB的外接圆的面积分别为S1、S2,若S=S1+S2,求S的最小值.参考答案:1.A 2.A 3.B 4.C 5.D 6.A7.20 8.25 9. -2 10. 33 11.-5a+4 12.2514.(1)证明:连结OD ,如图,∵△ABC 为等边三角形,∴∠C =∠A =∠B =60°, 而OD =OB ,∴△ODB 是等边三角形,∠ODB =60°,∴∠ODB =∠C ,∴OD ∥AC , ∵DF ⊥AC ,∴OD ⊥DF ,∴DF 是⊙O 的切线;(2)解:∵OD ∥AC ,点O 为AB 的中点,∴OD 为△ABC 的中位线,∴BD =CD =6. 在Rt △CDF 中,∠C =60°,∴∠CDF =30°,∴CF =CD =3,∴AF =AC ﹣CF =12﹣3=9,在Rt △AFG 中,∵∠A =60°,∴FG =AF ×sinA =9×=;(3)解:过D 作DH ⊥AB 于H .∵FG ⊥AB ,DH ⊥AB , ∴FG ∥DH ,∴∠FGD =∠GDH . 在Rt △BDH 中,∠B =60°,∴∠BDH =30°, ∴BH =BD =3,DH =BH =3.在Rt △AFG 中,∵∠AFG =30°,∴AG =AF =,∵GH =AB ﹣AG ﹣BH =12﹣﹣3=,∴tan ∠GDH ===,∴tan ∠FGD =tan ∠GDH =.15.(1)由题意得:当20≤x ≤220时,v 是x 的一次函数,则可设v =kx +b (k ≠O ), 由题意得:当x =20时,v =80,当x =220时,v =0所以⎩⎨⎧=+=+02208020b k b k 解得:⎪⎩⎪⎨⎧=-=8852b k ,所以当20≤x ≤220时,v =-52x +88 , 则当x =100时,y =一52×100+88=48.即当大桥上车流密度为100辆/千米时,车流速度为48千米/小时. (2)当20≤v ≤220时,v =一52x +88(0≤v ≤80), 由题意得:⎪⎪⎩⎪⎪⎨⎧+-+-608852408852x x .解得70<x <120, 所以应控制车流密度的范围是大于70辆/千米且小于120辆/千米. (3)①当0≤x ≤20时,车流量y 1=vx =80x , 因为k =80>0,,所以y 1随x 的增大面增大,故当x =20时,车流量y 1的最大值为1600. ②当20≤x ≤220时,车流量y 2=vx =(一52x +88)x =一(x -110)2+4840, 当x =110时,车流量y 2取得最大值4840,因为4840>1600,所以当车流密度是110辆/千米,车流量y 取得最大值.17.解:(1)过点C 作CE ⊥AB 于E ,在Rt △BCE 中,∵∠B =60°,BC =4,∴CE =BC •sin ∠B =4×=2,∴AD =CE =2.(2)存在.若以A 、P 、D 为顶点的三角形与以P 、C 、B 为顶点的三角形相似, 则△PCB 必有一个角是直角.①当∠PCB=90°时,在Rt△PCB中,BC=4,∠B=60°,PB=8,∴AP=AB﹣PB=2.又由(1)知AD=2,在Rt△ADP中,tan∠DP A===,∴∠DP A=60°,∴∠DP A=∠CPB,∴△ADP∽△CPB,∴存在△ADP与△CPB相似,此时x=2.②∵当∠CPB=90°时,在Rt△PCB中,∠B=60°,BC=4,∴PB=2,PC=2,∴AP=3.则≠且≠,此时△PCB与△ADP不相似.(3)如图,因为Rt△ADP外接圆的直径为斜边PD,则S1=x•()2=x•,①当2<x<10时,作BC的垂直平分线交BC于H,交AB于G;作PB的垂直平分线交PB于N,交GH于M,连结BM.则BM为△PCB外接圆的半径.在Rt△GBH中,BH=BC=2,∠MGB=30°,∴BG=4,∵BN=PB=(10﹣x)=5﹣x,∴GN=BG﹣BN=x﹣1.在Rt△GMN中,∴MN=GN•tan∠MGN=(x﹣1).在Rt△BMN中,BM2=MN2+BN2=x2﹣x+,∴S1=x•BM2=x(x2﹣x+).②∵当0<x≤2时,S2=x(x2﹣x+)也成立,∴S=S1+S2=x•+x(x2﹣x+)=x(x﹣)2+x.∴当x=时,S=S1+S2取得最小值x.。
2020年湖北省黄冈中学理科实验班提前招生(预录)数学模拟试题一及答案
4.由 1,2,3,4 这四个数字组成四位数 abcd (数字可重复使用),要求满足 a c b d .
这样的四位数共有
()
A.36 个.
B.40 个.
C.44 个.
D.48 个. .
5、已知△ ABC 为锐角三角形,⊙ O 经过点 B,C,且与边 AB,AC 分别相交于点 D,E. 若
⊙ O 的半径与△ ADE 的外接圆的半径相等,则⊙ O 一定经过△ ABC 的( ).
( ).
(A)10 (B)9 (C)7 (D)5
8、设方程组 x3-xyz=-5, y3-xyz=2, z3-xyz=21 的正实数解有(
)
A、1 组 B、2 组 C、3 组 D、4 组
二、填空题:(本题满分 28 分,每小题 7 分)
9.在△ABC 中,已知 AB=AC,∠A=40°,P 为 AB 上一点,∠ACP=20°,则 BC =
(Ⅱ)解法一 设 PC a , DQ b ,不妨设 a ≥ b >0,
由(Ⅰ)可知
∠ ABP =∠ ABQ 30 , BC = 3a , BD = 3b ,
所以 AC = 3a 2 , AD = 2 3b . 因为 PC ∥ DQ ,所以△ ACP ∽△ ADQ .
于是 PC AC ,即 a 3a 2 .所以 a b 3ab . DQ AD b 2 3b
( xP
xQ )
3. 3
同理,若 xQ
3,可得 xP
3 ,从而 2
2 k 3 (xP xQ )
3. 3
所以,直线 PQ 的函数解析式为
y 3 x 1 ,或 y 3 x 1. ……………………………………19、如图,△ABC 为等腰
福田河中学黄高预录模拟【5】
福田河中学黄高预录模拟【5】数学测试题本卷满分120分 考试时间120分钟题号 一 二 三总 分 复 核 1 2 3 4 5 得分 阅卷教师一、选择题(每小题5分,共25分。
每小题均给出了代号为A 、B 、C 、D 的四个选项,其中有且只有一个选项是正确的。
请将正确选项的代号填入题后的括号里,不填、多填或错填均得0分)1、下列图中阴影部分面积与算式2131242-⎛⎫-++ ⎪⎝⎭的结果相同的是………………【 】2、下列命题中正确的个数有……………………………………………………………【 】① 实数不是有理数就是无理数;② a <a +a ;③121的平方根是 ±11;④在实数范围内, 非负数一定是正数;⑤两个无理数之和一定是无理数A. 1 个B. 2 个C. 3 个D. 43、某家庭三口人准备在“五一”期间参加旅行团外出旅游。
甲旅行社告知:父母买全票,女儿按半价优惠;乙旅行社告知:家庭旅行可按团体票计价,即每人均按八折收费。
若这两家旅行社每人的原标价相同,那么……………………………………………………………………【 】A 、甲比乙更优惠B 、乙比甲更优惠C 、甲与乙相同D 、与原标价有关 4、如图,∠ACB =60○,半径为2的⊙O 切BC 于点C ,若将⊙O 在CB 上向右滚动,则当滚动到⊙O 与CA 也相切时,圆心O 移动的水平距离为【 】A 、2πB 、πC 、32D 、45、平面内的9条直线任两条都相交,交点数最多有m 个,最少有n 个,则m n + 等于……………………………………………………………………………【 】A 、36B 、37C 、38D 、39二、填空题(每小题5分,共40分)1、甲、乙两人骑自行车,同时从相距65千米的两地相向而行,甲、乙两人的速度和为32.5千米/时,则经过 小时,两人相遇。
2、若化简16812+---x x x 的结果为52-x ,则x 的取值范围是 。
黄高预录模拟训练题2
1、下列图中阴影部分面积与算式 −
3 ⎛ 1⎞ + ⎜ ⎟ + 2 −1 的结果相同的是………………( 4 ⎝ 2⎠
2
)
2
9、对于满足 x ≤ 2 的所有实数 x ,使不等式 p + px + 1 > 2 p + x 恒成立,则 p 的取值范围为 ( ) B. p > 1或 p < −1 C. p > 3 或 p < −1 D. p > 3 或 p < 1
A. p ≠ 1
10、如图,记二次函数 y = − x 2 + 1 的图象与 x 轴的正半轴交点为 A ,将线段 OA 分成 n 等分.设 2、如果关于 x 的方程 x 2 − ax + a 2 − 3 = 0 至少有一个正根,则实数 a 的取值范围是( A、 − 2 < a < 2 B、 3 < a ≤ 2 C、 − 3 < a ≤ 2 D、 − 3 ≤ a ≤ 2 ) 分点分别为 P1 ,P2, …, Pn-1 ,过每个分点作 x 轴的垂线,分别与该图象交于点 Q1, Q2, …,Qn -1, 再 记 直 角 三 角 形 OP 1 Q1 , P1 P2Q2 , … 的 面 积 分 别 为 S1 , S 2 , … , 这 样 就 有 S1 =
23、如图,在△ABC 中,已知 AD⊥ BC,BE⊥AC,AD 与 BE 相交于点 H,P 为边 AB 的中点, 过点 C 作 CQ ⊥PH,垂足为 Q,求证: PE = PH ⋅ PQ 。
A
2
25、 如图, 已知圆内接四边形 ABCD 的对角线 AC、 BD 交于点 N, 点 M在对角线 BD 上, 且满足∠BAM= ∠DAN,∠BCM=∠DCN. 求证: (1)M 为 BD 的中点; (2)
黄高预录模拟题七用
黄高预录模拟(二)一.单项选择题。
(3分 × 12= 36分 将答案填写在答题卡中,否则无效)1、向如图1所示的玻璃瓶内注入水,然后将插有细玻璃管的软木塞塞紧玻璃瓶,玻璃瓶壁有A 、B 两个孔,也用软木塞子塞住。
瓶内液面如图1所示,现将A 、B 处的木塞同时拔去后,则下列说法中正确的是( )(A)A 、B 两孔中均无水射出。
(B)A 、B 两孔中均有水射出。
(C)A 孔中无水射出,B 孔中有水射出。
(D)A 孔中有水射出,B 孔中无水射出。
2、如图2所示,有三只底面积均为S 、水面高度相同,但形状不同的盛水容器a 、b 、c 。
现将三只相同的实心铝球分别放入容器a 、b 、c 中,铝球受到的浮力为F 。
设水对容器底部压强的增大值分别为△P 1、△P 2和△P 3,则下列说法中正确的是( ) (A).△P 1=△P 2=△P 3=F/S 。
(B).△P 1>F/S ,△P 2=F/S ,△P 3<F/S 。
(C).△P 1=F/S ,△P 2<F/S ,△P 3>F/S 。
(D).△P 1<F/S ,△P 2>F/S ,△P 3<F/S.3、如图所示,在一个上面开口的圆柱形容器内存入一定量的水,水面距底都的高度为H 。
现在容器的底部开一个小孔,水从小孔中流出来.则正确反映水面的高度H 随时间变化的图线是图ll(b)中的 ( )4.如图4所示。
A 为电磁铁.B 为铁芯.C 为套在铁芯B 上的绝缘磁环。
现将A 、B 、c 放置在天平的左盘上.当A 中通有电流I 时,C 悬停在空中.天平保持平衡。
当增大A 中电流时.绝缘磁环B 将向上运动。
在绝缘磁环B 上升到最高点的过程中.若不考虑摩擦及空气阻力.则下列描述正确的是: ( ) A .天平仍保持平衡。
B .天平左盘先下降后上升。
C .天平左盘先上升后下降。
D .天平左盘一直下降至最低点。
5.将阻值相等的电阻R 1和R 2串联后接在一个电压恒定的电源两端。
黄高预录(三)
三河中学黄高预录训练题(三)(2009年山西省)1.如图,已知直线128:33l y x =+与直线2:216l y x =-+相交于点C l l 12,、分别交x 轴于A B 、两点.矩形DEFG 的顶点D E 、分别在直线12l l 、上,顶点F G 、都在x 轴上,且点G 与点B 重合. (1)求A B C △的面积;(2)求矩形D E F G 的边D E 与E F 的长;(3)若矩形D E F G 从原点出发,沿x 轴的反方向以每秒1个单位长度的速度平移,设移动时间为(012)t t ≤≤秒,矩形D E F G 与A B C △重叠部分的面积为S ,求S 关t 的函数关系式,并写出相应的t 的取值范围.(2009年烟台市)2. 如图,抛物线23y ax bx =+-与x 轴交于A B ,两点,与y 轴交于C 点,且经过点(23)a -,,对称轴是直线1x =,顶点是M .(1) 求抛物线对应的函数表达式;(2) 经过C ,M 两点作直线与x 轴交于点N ,在抛物线上是否存在这样的点P ,使以点P A C N ,,,为顶点的四边形为平行四边形?若存在,请求出点P 的坐标;若不存在,请说明理由;(3) 设直线3y x =-+与y 轴的交点是D ,在线段B D 上任取一点E (不与B D ,重合),经过A B E ,,三点的圆交直线B C 于点F ,试判断A E F △的形状,并说明理由;(4) 当E 是直线3y x =-+上任意一点时,(3)中的结论是否成立?(请直接写出结论).(第1题)(2009年山东临沂市)3.如图,抛物线经过(40)(10)(02)A B C -,,,,,三点.(1)求出抛物线的解析式;(2)P 是抛物线上一动点,过P 作P M x ⊥轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与O A C △相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由; (3)在直线AC 上方的抛物线上有一点D ,使得D C A △的面积最大,求出点D 的坐标.(2009年山东省济宁市)4. 在平面直角坐标中,边长为2的正方形O A B C 的两顶点A 、C 分别在y 轴、x 轴的正半轴上,点O 在原点.现将正方形O A B C 绕O 点顺时针旋转,当A 点第一次落在直线y x =上时停止旋转,旋转过程中,A B 边交直线y x =于点M ,B C 边交x 轴于点N (如图).(1)求边O A 在旋转过程中所扫过的面积;(2)旋转过程中,当M N 和A C 平行时,求正方形 O A B C 旋转的度数;(3)设MBN ∆的周长为p ,在旋转正方形O A B C 的过程中,p 值是否有变化?请证明你的结论.(第4题)x7),且顶点C的横坐标为(2009年四川遂宁市)5.如图,二次函数的图象经过点D(0,394,该图象在x 轴上截得的线段AB的长为6.⑴求二次函数的解析式;⑵在该抛物线的对称轴上找一点P,使PA+PD最小,求出点P的坐标;⑶在抛物线上是否存在点Q,使△QAB与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由.(2009年贵州安顺市)6、如图,已知抛物线与x交于A(-1,0)、E(3,0)两点,与y轴交于点B(0,3)。
全国重点高中黄冈中学自主招生(理科实验班)预录考试数学模拟试题(C卷)(附答案)
黄冈中学自主招生考试 数学模拟试题(C 卷)(满分:120分 考试时间:120分钟)一、选择题(每小题4分,共8题,在给出的四个选项中,只有一项是符合题目要求的) 1.在直角坐标系xOy 中,点P (4,)y 在第一象限内,且OP 与x 轴正半轴的夹角为60°,则y 的值为( ).A.3B.2.将二次函数2y x =的图像向右平移1个单位,再向上平移2个单位后,所得图像的函数表达式是( ).A.2(1)2y x =-+ B. 2(1)2y x =++ C. 2(1)2y x =-- D. 2(1)2y x =+- 3.x 、y 都是正数,并且成反比,若x 增加了p ﹪,设y 减少的百分数为q ﹪,则q 的值为( ). A.1001%p p + B. 100%p C. 100p p + D. 100100pp+4.在凸多边形中,四边形有两条对角线,五边形有五条对角线.观察探索凸十边形有( )条对角线.A.29B. 32C. 35D.385.已知△ABC 的三边长为a 、b 、c ,且满足方程222222()0a x c a b x b ---+=.则方程根的情况是( ).A.有两相等实根B. 有两相异实根C. 无实根D.不能判定 6.关于x的方程1x x -=的根的个数为( ).A.0B. 1C. 3D.47.如图所示,两个边长都为2的正方形ABCD 和OPQR ,如果O 点正好是正方形ABCD 的中心,而正方形OPQR 可以绕O 点旋转,那么它们重叠部分的面积是( ).A.4B. 2C. 1D.128.折叠圆心为O 、半径为10cm 的圆纸片,使圆周上的某一点A 与圆心O 重合.对圆周上的每一点都这样折叠纸片,从而都有一条折痕.那么,所有折痕所在直线第7题上点的全体为( ).A.以O 为圆心、半径为10cm 的圆周B. 以O 为圆心、半径为5cm 的圆周C. 以O 为圆心、半径为5cm 的圆内部分D. 以O 为圆心、半径为5cm 的圆周及圆外部分 二、填空题(每小题4分,共8小题)9.如图,⊙C 通过原点,并与坐标轴分别交于A 、D 两点.已知∠OBA=30°,点D 的坐标为(0,2),则点C 的坐标为 .10.如图,已知3个边长相等的正方形相邻并排.则∠EBF +∠EBG= . 11.若函数(0)y kx k =>与函数1y x=的图像相交于A 、C 两点,AB 垂直x 轴于点B ,则△ABC 的面积为 .12.设二次函数222(0)2a y x ax a =++<的图像顶点为A ,与x 轴交点为B 、C.当△ABC 为等边三角形时,a 的值为 .13.甲在汽车上发现乙正往相反的方向走去。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
黄高预录数学试题 Modified by JACK on the afternoon of December 26, 2020绝密★启用前湖北省黄冈中学理科实验班预录考试数学试卷一.选择题(共11小题)1.记号[x]表示不超过x的最大整数,设n是自然数,且.则()A.I>0 B.I<0 C.I=0 D.当n取不同的值时,以上三种情况都可能出现2.对于数x,符号[x]表示不大于x的最大整数.若[]=3有正整数解,则正数a的取值范围是()A.0<a<2或2<a≤3 B.0<a<5或6<a≤7C.1<a≤2或3≤a<5 D.0<a<2或3≤a<5个相同的球,放入四个不同的盒子里,每个盒子都不空的放法有()A.4种 B.6种 C.10种D.12种4.有甲、乙、丙三位同学每人拿一只桶同时到一个公用的水龙头去灌水,灌水所需的时间分别为分钟、分钟和1分钟,若只能逐个地灌水,未轮到的同学需等待,灌完的同学立即离开,那么这三位同学花费的时间(包括等待时间)的总和最少是()A.3分钟B.5分钟C.分钟D.7分钟5.已知实数x满足x2++x﹣=4,则x﹣的值是()A.﹣2 B.1 C.﹣1或2 D.﹣2或16.如图,在等边△ABC中,D为AC边上的一点,连接BD,M为BD上一点,且∠AMD=60°,AM交BC于E.当M为BD中点时,的值为()A.B.C.D.7.如图,等腰梯形ABCD中,AD∥BC,∠DBC=45°,翻折梯形ABCD,使点B重合于点D,折痕分别交边AB、BC于点E、F.若AD=2,BC=6,则△ADB的面积等于()A.2 B.4 C.6 D.88.如图,正方形ABCD中,E为CD的中点,EF⊥AE,交BC于点F,则∠1与∠2的大小关系为() A.∠1>∠2 B.∠1<∠2 C.∠1=∠2 D.无法确定9.已知某几何体的三视图如图所示,则该几何体的体积为()A.B.3π C.D.6π10.方程x2+2x+1=的正数根的个数为()A.0 B.1 C.2 D.311.如图,已知∠AOM=60°,在射线OM上有点B,使得AB与OB的长度都是整数,由此称B是“完美点”,若OA=8,则图中完美点B的个数为()A.1 B.2 C.3 D.4二.填空题(共4小题)12.已知x为实数,且,则x2+x的值为.13.满足方程|x+2|+|x﹣3|=5的x的取值范围是.14.多项式6x3﹣11x2+x+4可分解为.15.设整数a使得关于x的一元二次方程5x2﹣5ax+26a﹣143=0的两个根都是整数,则a的值是.三.解答题16.如图,在△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,点P从点A出发沿AB方向向点B运动,速度为1cm/s,同时点Q从点B出发沿B→C→A方向向点A运动,速度为2cm/s,当一个运动点到达终点时,另一个运动点也随之停止运动.设点P 的运动时间为x(秒).(1)设△PBQ的面积为y(cm2),当△PBQ存在时,求y与x的函数关系式,并写出自变量x的取值范围;(2)x为何值时,△PBQ的面积最大?并求出最大值;(3)当点Q在BC上运动时,线段PQ上是否存在一个点T,使得在某个时刻△ACT、△ABT、△BCT的面积均相等(无需计算,说明理由即可).17.阅读下面材料:小伟遇到这样一个问题:如图1,在△ABC(其中∠BAC是一个可以变化的角)中,AB=2,AC=4,以BC为边在BC的下方作等边△PBC,求AP的最大值.小伟是这样思考的:利用变换和等边三角形将边的位置重新组合.他的方法是以点B 为旋转中心将△ABP逆时针旋转60°得到△A′BC,连接A′A,当点A落在A′C上时,此题可解(如图2).请你回答:AP的最大值是.参考小伟同学思考问题的方法,解决下列问题:如图3,等腰Rt△ABC.边AB=4,P为△ABC内部一点,则AP+BP+CP的最小值是.(结果可以不化简)18.某水库大坝的横截面是如图所示的四边形BACD,期中AB∥CD.了望台PC正前方水面上有两艘渔船M、N,观察员在了望台顶端P处观测渔船M的俯角α=31°,观测渔船N在俯角β=45°,已知NM所在直线与PC所在直线垂直,垂足为点E,PE 长为30米.(1)求两渔船M,N之间的距离(结果精确到1米);(2)已知坝高24米,坝长100米,背水坡AD的坡度i=1:.为提高大坝防洪能力,某施工队在大坝的背水坡填筑土石方加固,加固后坝定加宽3米,背水坡FH的坡度为i=1:,施工12天后,为尽快完成加固任务,施工队增加了机械设备,工作效率提高到原来的倍,结果比原计划提前20天完成加固任务,施工队原计划平均每天填筑土石方多少立方米(参考数据:tan31°≈,sin31°≈)19.已知关于x的方程,(1)若两根x1,x2满足x1<0<x2,求m的范围;(2)若,求m的值.20.当m,n是正实数,且满足m+n=mn时,就称点P(m,)为“完美点”,已知点A(0,5)与点M都在直线y=﹣x+b上,点B,C是“完美点”,且点B在线段AM 上,若MC=,AM=4,求△MBC的面积.21.设p,q都是实数,且p<q.我们规定:满足不等式p≤x≤q的实数x的所有取值的全体叫做闭区间,表示为[p,q].对于一个函数,如果它的自变量x与函数值y满足:当p≤x≤q时,有p≤y≤q,我们就称此函数是闭区间[p,q]上的“闭函数”.(1)反比例函数y=是闭区间[1,2014]上的“闭函数”吗?请判断并说明理由;(2)若一次函数y=kx+b(k≠0)是闭区间[m,n]上的“闭函数”,求此函数的解析式;(3)若实数c,d满足c<d,且d>2,当二次函数y=x2﹣2x是闭区间[c,d]上的“闭函数”时,求c,d的值.22.我国是水资源比较贫乏的国家之一,各地采用了价格调控等手段来达到节约用水的目的,某市用水收费的方法是:水费=基本费+超额费+定额损耗费.若每月用水量不超过最低限量a立方米时,只付基本费8元和每月的定额损耗费c元;若用水量超过a 立方米时,除了付同上的基本费和定额损耗费外,超过部分每立方米付b元的超额费.已知每户每月的定额费不超过5元.(1)当月用水量为x立方米时,支付费用为y元,写出y关于x的函数关系式;(2)该市一家庭今年一季度的用水量和支付费用见下表,根据表中数据求a、b、c.月份用水量(m3)水费(元)1 9 92 15 193 22 3323.某市将建一个制药厂,但该厂投产后预计每天要排放大约80吨工业废气,这将造成极大的环境污染.为了保护环境,市政府决定支持该厂贷款引进废气处理设备来减少废气的排放:该设备可以将废气转化为某种化工产品和符合排放要求的气体.经测算,制药厂每天利用设备处理废气的综合成本y(元)与废气处理量x(吨)之间的函数关系可近似地表示为:y=,且每处理1吨工业废气可得价值为80元的某种化工产品并将之利润全部用来补贴废气处理.(1)若该制药厂每天废气处理量计划定为20吨时,那么工厂需要每天投入的废气处理资金为多少元?(2)若该制药厂每天废气处理量计划定为x吨,且工厂不用投入废气处理资金就能完成计划的处理量,求x的取值范围;(3)若该制药厂每天废气处理量计划定为x(40≤x≤80)吨,且市政府决定为处理每吨废气至少补贴制药厂a元以确保该厂完成计划的处理量总是不用投入废气处理资金,求a的值.24.如图,菱形ABCD的边长为6且∠DAB=60°,以点A为原点、边AB所在的直线为x轴且顶点D在第一象限建立平面直角坐标系.动点P从点D出发沿折线DCB向终点B以2单位/每秒的速度运动,同时动点Q从点A出发沿x轴负半轴以1单位/秒的速度运动,当点P到达终点时停止运动,运动时间为t,直线PQ交边AD于点E.(1)求出经过A、D、C三点的抛物线解析式;(2)是否存在时刻t使得PQ⊥DB,若存在请求出t值,若不存在,请说明理由;(3)设AE长为y,试求y与t之间的函数关系式;(4)若F、G为DC边上两点,且点DF=FG=1,试在对角线DB上找一点M、抛物线ADC对称轴上找一点N,使得四边形FMNG周长最小并求出周长最小值.参考答案与试题解析一.选择题1.∴等式成立,∴I=(n+1)2+n﹣(n+1)2=n>0,故选A.2.解:∵[]=3有正整数解,∴3≤<4,即6≤3x+a<8,6﹣a≤3x<8﹣a,∴≤x<,∵x是正整数,a为正数,∴x<,即x可取1、2;①当x取1时,∵6≤3x+a<8,6﹣3x≤a<8﹣3x,∴3≤a<5;②当x取2时,∵6≤3x+a<8,6﹣3x≤a<8﹣3x,∴0<a<2;综上可得a的范围是:0<a<2或3≤a<5.故选D.3.解:∵6个相同的球,放入四个不同的盒子里,∴若有三个盒子里放了1个,一个盒子里放了3个,这种情况下的方法有4种;若有两个盒子里放了2个,两个盒子里放了1个,这种情况下:设四个盒子编号为①②③④,可能放了两个小球的盒子的情况为:①②,①③,①④,②③,②④,③④,所以有6种情况;∴6个相同的球,放入四个不同的盒子里,每个盒子都不空的放法有:4+6=10.故选C.4. 这道题可以采用逆推法,我们可以先分析最后一位会用多长时间,很显然不管是谁最后灌水都得用3分钟,所以只需考虑前两个接水的,怎样能够更加节省时间,显然乙第一个灌水会最省时,因为只需分钟.接着是丙,丙灌水的时间加上等乙的时间,也就是分钟,最后是甲.所以只有按乙,丙,甲安排灌水才最省时.【解答】解:按乙,丙,甲安排灌水最省时,这三位同学花费的时间(包括等待时间)的总和最少是+(+1)+(+1+)=5分钟.故选B.【点评】考查了应用类问题,运用了逆推法,按照灌水所需的时间由少到多的顺序安排灌水花费的时间的总和最少.5.已知实数x满足x2++x﹣=4,则x﹣的值是()A.﹣2 B.1 C.﹣1或2 D.﹣2或1【分析】利用完全平方公式可把原式变为(x﹣)2+x﹣﹣2=0,用十字相乘法可得x﹣的值.【解答】解:x2+﹣2+x﹣﹣2=0∴(x﹣)2+(x﹣)﹣2=0解得x﹣=﹣2或1.故选D【点评】本题的关键是把x﹣看成一个整体来计算,即换元法思想.6.如图,在等边△ABC中,D为AC边上的一点,连接BD,M为BD上一点,且∠AMD=60°,AM交BC于E.当M为BD中点时,的值为()A.B.C.D.【分析】作DK∥BC,交AE于K.首先证明BE=DK=CD,CE=AD,设BE=CD=DK=a,AD=EC=b,由DK∥EC,可得=,推出=,即a2+ab﹣b2=0,可得()2+()﹣1=0,求出即可解决问题.【解答】解:作DK∥BC,交AE于K.∵△ABC是等边三角形,∴AB=CB=AC,∠ABC=∠C=60°,∵∠AMD=60°=∠ABM+∠BAM,∵∠ABM+∠CBD=60°,∴∠BAE=∠CBD,在△ABE和△BCD中,,∴△ABE≌△BCD,∴BE=CD,CE=AD,∵BM=DM,∠DMK=∠BME,∠KDM=∠EBM,∴△MBE≌△MDK,∴BE=DK=CD,设BE=CD=DK=a,AD=EC=b,∵DK∥EC,∴=,∴=,∴a2+ab﹣b2=0,∴()2+()﹣1=0,∴=或(舍弃),∴==,故选B.【点评】本题考查全等三角形的判定和性质、等边三角形的性质、平行线分线段成比例定理、一元二次方程等知识,解题的关键是学会添加常用辅助线,学会用方程的思想思考问题,本题体现了数形结合的思想,属于中考选择题中的压轴题.7.如图,等腰梯形ABCD中,AD∥BC,∠DBC=45°,翻折梯形ABCD,使点B重合于点D,折痕分别交边AB、BC于点E、F.若AD=2,BC=6,则△ADB的面积等于()A.2 B.4 C.6 D.8【分析】作AH⊥BC,根据折叠的性质得到BE=DE,∠BDE=∠DBE=45°,则∠DEB=90°,再根据等腰梯形的性质得到BH=CE,可计算出CE=2,DE=BE=4,然后根据三角形面积公式进行计算.【解答】解:作AH⊥BC,如图,∵翻折梯形ABCD,使点B重合于点D,折痕分别交边AB、BC于点E、F,∴BE=DE,∠BDE=∠DBE=45°,∴∠DEB=90°,∴DE⊥BC,∵梯形ABCD为等腰梯形,∴BH=CE,而AD=HE,AD=2,BC=6,∴CE=(6﹣2)=2,∴DE=BE=4,∴△ADB的面积=×2×4=4.故选B.【点评】本题考查了折叠的性质:折叠前后两图象全等,即对应线段相等,对应角相等.也考查了等腰梯形的性质.8.如图,正方形ABCD中,E为CD的中点,EF⊥AE,交BC于点F,则∠1与∠2的大小关系为()A.∠1>∠2 B.∠1<∠2 C.∠1=∠2 D.无法确定【分析】易证△ADE∽△ECF,求得CF的长,可得根据勾股定理即可求得AE、EF 的长,即可判定△ADE∽△AEF,即可解题.【解答】解:∵∠AED+∠CEF=90°,∠DAE+∠ADE=90°,∴∠DAE=∠CEF,∵∠ADE=∠ECF=90°,∴△ADE∽△ECF,且相似比为2,∴AE=2EF,AD=2DE,又∵∠ADE=∠AEF,∴△ADE∽△AEF,∴∠1=∠2.【点评】本题考查了相似三角形的判定,相似三角形对应边比值相等的性质,相似三角形对应角相等的性质,本题中求证△ADE∽△AEF是解题的关键.9.已知某几何体的三视图如图所示,则该几何体的体积为()A.B.3π C.D.6π【分析】通过三视图判断几何体的特征,利用三视图的数据,求出几何体的体积即可.【解答】解:由三视图可知几何体是圆柱底面半径为1高为6的圆柱,被截的一部分,如图所求几何体的体积为:×π×12×6=3π.故选B.【点评】本题考查三视图与几何体的关系,正确判断几何体的特征是解题的关键,考查计算能力.10.方程x2+2x+1=的正数根的个数为()A.0 B.1 C.2 D.3【分析】求方程x2+2x+1=的解,可以理解为:二次函数y=x2+2x+1与反比例函数y=的图象交点的横坐标.【解答】解:二次函数y=x2+2x+1=(x+1)2的图象过点(0,1),且在第一、二象限内,反比例函数y=的图象在第一、三象限,∴这两个函数只在第一象限有一个交点.即方程x2+2x+1=的正数根的个数为1.故选B.【点评】本题利用了二次函数的图象与反比例函数图象来确定方程的交点的个数.11.如图,已知∠AOM=60°,在射线OM上有点B,使得AB与OB的长度都是整数,由此称B是“完美点”,若OA=8,则图中完美点B的个数为()A.1 B.2 C.3 D.4【分析】首先过点B作BC⊥OA,交OA于点C,连接AB,可能有两种情况,垂足在OA上或者垂足在OA延长线上,然后设OB=y,AB=x,由勾股定理即可求得:y2﹣(y)2=x2﹣(8﹣y)2或x2﹣(y﹣8)2=y2﹣(y)2,整理可得x2﹣(y﹣4)2=48,然后将原方程转为 X2﹣Y2=48,先求(X+Y)(X﹣Y)=48的正整数解,继而可求得答案.【解答】解,过点B作BC⊥OA,交OA于点C,连接AB,可能有两种情况,垂足在OA上或者垂足在OA延长线上.设OB=y,AB=x,∵∠AOM=60°,∴OC=OB?cos60°=y,∴AC=OA﹣OC=8﹣y或AC=OC﹣OA=y﹣8,∵BC2=OB2﹣OC2,BC2=AB2﹣AC2,∴y2﹣(y)2=x2﹣(8﹣y)2或x2﹣(y﹣8)2=y2﹣(y)2,∴x2﹣(y﹣4)2=48,∵x与y是正整数,且y必为正整数,x﹣4为大于等于﹣4的整数,将原方程转为 X2﹣Y2=48,先求(X+Y)(X﹣Y)=48的正整数解,∵(X+Y)和(X﹣Y)同奇同偶,∴(X+Y)和(X﹣Y)同为偶数;∴X2﹣Y2=48可能有几组正整数解:,,,解得:,,,∴x的可能值有3个:x=7,x=8或x=13,当x=7时,y﹣4=±1,y=3或y=5;当x=8时,y﹣4=±4,y=8或y=0(舍去);当x=13时,y﹣4=±11,y=15或y=﹣7(舍去);∴共有4组解:或或或.故选D.【点评】此题考查了勾股定理的应用以及整数的综合应用问题.此题难度较大,注意掌握方程思想、分类讨论思想与数形结合思想的应用.二.填空题(共4小题)12.已知x为实数,且,则x2+x的值为1.【分析】本题用换元法解分式方程,由于x2+x是一个整体,可设x2+x=y,可将方程转化为简单的分式方程求y,将y代换,再判断结果能使x为实数.【解答】解:设x2+x=y,则原方程变为﹣y=2,方程两边都乘y得:3﹣y2=2y,整理得:y2+2y﹣3=0,(y﹣1)(y+3)=0,∴y=1或y=﹣3.当x2+x=1时,即x2+x﹣1=0,△=12+4×1=5>0,x存在.当x2+x=﹣3时,即x2+x+3=0,△=12﹣4×3=﹣11<0,x不存在.∴x2+x=1.【点评】当分式方程比较复杂时,通常采用换元法使分式方程简化.需注意换元后得到的根也必须验根.13.满足方程|x+2|+|x﹣3|=5的x的取值范围是﹣2≤x≤3.【分析】分别讨论①x≥3,②﹣2<x<3,③x≤﹣2,根据x的范围去掉绝对值,解出x,综合三种情况可得出x的最终范围.【解答】解:从三种情况考虑:第一种:当x≥3时,原方程就可化简为:x+2+x﹣3=5,解得:x=3;第二种:当﹣2<x<3时,原方程就可化简为:x+2﹣x+3=5,恒成立;第三种:当x≤﹣2时,原方程就可化简为:﹣x﹣2+3﹣x=5,解得:x=﹣2;所以x的取值范围是:﹣2≤x≤3.【点评】解一元一次方程,注意最后的解可以联合起来,难度很大.14.多项式6x3﹣11x2+x+4可分解为(x﹣1)(3x﹣4)(2x+1).【分析】将﹣11x2分为﹣6x2和﹣5x2两部分,原式可化为6x3﹣6x2﹣5x2+x+4,6x3﹣6x2可提公因式,分为一组,﹣5x2+x+4可用十字相乘法分解,分为一组.【解答】解:6x3﹣11x2+x+4,=6x3﹣6x2﹣5x2+x+4,=6x2(x﹣1)﹣(5x2﹣x﹣4),=6x2(x﹣1)﹣(x﹣1)(5x+4),=(x﹣1)(6x2﹣5x﹣4),=(x﹣1)(3x﹣4)(2x+1).【点评】本题考查了用分组分解法进行因式分解,要考虑分组后还能进行下一步分解,把﹣11x2分成﹣6x2和﹣5x2两部分是解题的关键,也是难点.15.设整数a使得关于x的一元二次方程5x2﹣5ax+26a﹣143=0的两个根都是整数,则a的值是18.【分析】首先将方程组5x2﹣5ax+26a﹣143=0左右乘5得25x2﹣25ax+(130a﹣262)﹣39=0,再分解因式.根据39为两个整数的乘积,令两个因式分别等于39分解的整因数.讨论求值验证即可得到结果.【解答】解:∵5x2﹣5ax+26a﹣143=025x2﹣25ax+(130a﹣262)﹣39=0,即(5x﹣26)(5x﹣5a+26)=39,∵x,a都是整数,故(5x﹣26)、(5x﹣5a+26)都分别为整数,而只存在39=1×39或39×1或3×13或13×3或四种情况,①当5x﹣26=1、5x﹣5a+26=39联立解得a=不符合,②当5x﹣26=39、5x﹣5a+26=1联立解得a=18,③当5x﹣26=3、5x﹣5a+26=13联立解得a=不符合,④当5x﹣26=13、5x﹣5a+26=3联立解得a=不符合,∴当a=18时,方程为5x2﹣90x+325=0两根为13、﹣5.故答案为:18.【点评】本题考查因式分解的应用、一元二次方程的整数根与有理根.解决本题的关键是巧妙利用39仅能分解为整数只存在39=1*39或39*1或3*13*13*3或四种情况,因而讨论量,并不大.三.解答题(共4小题)16.如图,在△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,点P从点A出发沿AB方向向点B运动,速度为1cm/s,同时点Q从点B出发沿B→C→A方向向点A运动,速度为2cm/s,当一个运动点到达终点时,另一个运动点也随之停止运动.设点P 的运动时间为x(秒).(1)设△PBQ的面积为y(cm2),当△PBQ存在时,求y与x的函数关系式,并写出自变量x的取值范围;(2)x为何值时,△PBQ的面积最大?并求出最大值;(3)当点Q在BC上运动时,线段PQ上是否存在一个点T,使得在某个时刻△ACT、△ABT、△BCT的面积均相等(无需计算,说明理由即可).【分析】(1)由在Rt△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,设AC=4y,BC=3y,由勾股定理即可求得AC、BC的长;分别从当点Q在边BC上运动与当点Q在边CA上运动去分析,首先过点Q作AB的垂线,利用相似三角形的性质即可求得△PBQ的底与高,则可求得y与x的函数关系式;(2)由二次函数最值的求法得到两种情况下的△PBQ的面积最大值,进行比较即可得到答案;(3)根据三角形的面积公式得到符合条件的点应该是:到三边的距离之比为12:15:20.【解答】解:(1)设AC=4x,BC=3x,在Rt△ABC中,AC2+BC2=AB2,即:(4x)2+(3x)2=102,解得:x=2,∴AC=8cm,BC=6cm;分两种情况:①如图1,当点Q在边BC上运动时,过点Q作QH⊥AB于H.∵AP=x,∴BP=10﹣x,BQ=2x,∵△QHB∽△ACB,∴=,∴QH=x,y=BP?QH=(10﹣x)x=﹣x2+8x(0<x≤3),②如图2,当点Q在边CA上运动时,过点Q作QH′⊥AB于H′,∵AP=x,∴BP=10﹣x,AQ=14﹣2x,∵△AQH′∽△ABC,∴=,即:=,解得:QH′=(14﹣2x),∴y=PB?QH′=(10﹣x)(14﹣2x)=x2﹣x+42(3<x<7);(2)①当0<x≤3时,y=﹣(x﹣5)2+20.∵该抛物线的开口方向向下,对称轴是x=5,=.∴当x=3时,y取最大值,y最大当3<x<7时,y=x2﹣x+42=(x﹣)2+(3<x<7);∵该抛物线的开口方向向上,对称轴是x=,∴当x=3时,y取最大值,但是x=3不符合题意.综上所述,△PBQ的面积的最大值是.(3)存在.理由如下:设点T到AB、AC、BC的距离分别是a、b、c.∵AB=10cm,AC=8cm,BC=6cm,∴AB?a=AC?c=BC?c,即5a=4b=3c,故a:b:c=12:15:20.∴当满足条件的点T到AB、AC、BC的距离之比为12:15:20时,△ACT、△ABT、△BCT的面积均相等.【点评】本题考查了相似三角形的判定与性质,勾股定理,以及最短距离问题.此题综合性很强,难度较大,解题的关键是方程思想与数形结合思想的应用.17.阅读下面材料:小伟遇到这样一个问题:如图1,在△ABC(其中∠BAC是一个可以变化的角)中,AB=2,AC=4,以BC为边在BC的下方作等边△PBC,求AP的最大值.小伟是这样思考的:利用变换和等边三角形将边的位置重新组合.他的方法是以点B 为旋转中心将△ABP逆时针旋转60°得到△A′BC,连接A′A,当点A落在A′C上时,此题可解(如图2).请你回答:AP的最大值是6.参考小伟同学思考问题的方法,解决下列问题:如图3,等腰Rt△ABC.边AB=4,P为△ABC内部一点,则AP+BP+CP的最小值是(或不化简为).(结果可以不化简)【分析】(1)根据旋转的性质知A′A=AB=BA′=2,AP=A′C,所以在△AA′C中,利用三角形三边关系来求A′C即AP的长度;(2)以B为中心,将△APB逆时针旋转60°得到△A'P'B.根据旋转的性质推知PA+PB+PC=P'A′+P'B+PC.当A'、P'、P、C四点共线时,(P'A′+P'B+PC)最短,即线段A'C最短.然后通过作辅助线构造直角三角形A′DC,在该直角三角形内利用勾股定理来求线段A′C的长度.【解答】解:(1)如图2,∵△ABP逆时针旋转60°得到△A′BC,∴∠A′BA=60°,A′B=AB,AP=A′C∴△A′BA是等边三角形,∴A′A=AB=BA′=2,在△AA′C中,A′C<AA′+AC,即AP<6,则当点A′A、C三点共线时,A′C=AA′+AC,即AP=6,即AP的最大值是:6;故答案是:6.(2)如图3,∵Rt△ABC是等腰三角形,∴AB=BC.以B为中心,将△APB逆时针旋转60°得到△A'P'B.则A'B=AB=BC=4,PA=P′A′,PB=P′B,∴PA+PB+PC=P′A′+P'B+PC.∵当A'、P'、P、C四点共线时,(P'A+P'B+PC)最短,即线段A'C最短,∴A'C=PA+PB+PC,∴A'C长度即为所求.过A'作A'D⊥CB延长线于D.∵∠A'BA=60°(由旋转可知),∴∠1=30°.∵A'B=4,∴A'D=2,BD=2,∴CD=4+2.在Rt△A'DC中A'C====2+2;∴AP+BP+CP的最小值是:2+2(或不化简为).故答案是:2+2(或不化简为).【点评】本题综合考查了旋转的性质、等腰直角三角形的性质、勾股定理以及等边三角形的判定与性质.注意:旋转前、后的图形全等.18.某水库大坝的横截面是如图所示的四边形BACD,期中AB∥CD.了望台PC正前方水面上有两艘渔船M、N,观察员在了望台顶端P处观测渔船M的俯角α=31°,观测渔船N在俯角β=45°,已知NM所在直线与PC所在直线垂直,垂足为点E,PE 长为30米.(1)求两渔船M,N之间的距离(结果精确到1米);(2)已知坝高24米,坝长100米,背水坡AD的坡度i=1:.为提高大坝防洪能力,某施工队在大坝的背水坡填筑土石方加固,加固后坝定加宽3米,背水坡FH的坡度为i=1:,施工12天后,为尽快完成加固任务,施工队增加了机械设备,工作效率提高到原来的倍,结果比原计划提前20天完成加固任务,施工队原计划平均每天填筑土石方多少立方米?(参考数据:tan31°≈,sin31°≈)【分析】(1)根据已知求出EN,根据正切的概念求出EM,求差得到答案;(2)根据坡度和锐角三角函数的概念求出截面积和土石方数,根据题意列出分式方程,解方程得到答案.【解答】解:(1)在Rt△PEN中,∵∠PNE=45°,∴EN=PE=30米,在Rt△PEM中,∠PME=31°,tan∠PME=,∴ME=≈50(米),∴MN=EM﹣EN=20米,答:两渔船M,N之间的距离约为20米;(2)过点F作FK∥AD交AH于点K,过点F作FL⊥AH交直线AH于点L,则四边形DFKA为平行四边形,∴∠FKA=∠DAB,DF=AK=3,由题意得,tan∠FKA=tan∠DAB=4,tan∠H=,在Rt△FLH中,LH==36,在Rt△FLK中,KL==6,∴HK=30,AH=33,梯形DAHF的面积为:×DL×(DF+AH)=432,所以需填土石方为432×100=43200,设原计划平均每天填x立方米,由题意得,12x+(﹣12﹣20)×=43200,解得,x=600,经检验x=600是方程的解.答:原计划平均每天填筑土石方600立方米.【点评】本题考查的是解直角三角形和分式方程的应用,掌握锐角三角函数的概念和解直角三角形的一般步骤、根据题意正确列出分式方程是解题的关键,注意分式方程解出未知数后要验根.19.已知关于x的方程,(1)若两根x1,x2满足x1<0<x2,求m的范围;(2)若,求m的值.【分析】(1)由关于x的方程4x2+mx+m﹣4=0 有两根,可知此一元二次方程的判别式△>0,即可得不等式,又由x1<0<x2,可得x1x2<0,根据根与系数的关系,可得不等式=m﹣1<0,解此不等式组即可求得答案;(2)由一元二次方程根与系数的关系即可得 4x12+mx1+m﹣4=0,x1+x2=﹣,x1x2==m﹣1,然后将6x12+mx1+m+2x22﹣8=0变形,可得4x12+mx1+m﹣4+2[(x1+x2)2﹣2x1x2]=4,则可得方程(﹣)2﹣2[m﹣1]=2,解此方程即可求得答案.【解答】解:(1)∵关于x的方程4x2+mx+m﹣4=0 有两根,∴△=m2﹣4×4×(m﹣4)=m2﹣8m+64=(m﹣4)2+48>0,∵两根x1,x2满足x1<0<x2,∴x1x2==m﹣1<0,∴m<8,(2)∵x1、x2是方程的根,∴4x12+mx1+m﹣4=0,x1+x2=﹣,x1x2==m﹣1,∵6x12+mx1+m+2x22﹣8=0,∴4x12+mx1+m﹣4+2(x12+x22)﹣4=0∴4x12+mx1+m﹣4+2[(x1+x2)2﹣2x1x2]=4,∴(x1+x2)2﹣2x1x2=2,即(﹣)2﹣2[m﹣1]=2,化简得:m2﹣4m=0,解得:m=0 或m=4,∴m的值为0或4.【点评】此题考查了一元二次方程判别式、根与系数的关系等知识.此题难度较大,解题的关键是注意利用根与系数的关系将原方程变形求解,注意方程思想的应用.20.【解答】解:∵m+n=mn且m,n是正实数,∴+1=m,即=m﹣1,∴P(m,m﹣1),即“完美点”B在直线y=x﹣1上,∵点A(0,5)在直线y=﹣x+b上,∴b=5,∴直线AM:y=﹣x+5,∵“完美点”B在直线AM上,∴由解得,∴B(3,2),∵一、三象限的角平分线y=x垂直于二、四象限的角平分线y=﹣x,而直线y=x﹣1与直线y=x平行,直线y=﹣x+5与直线y=﹣x平行,∴直线AM与直线y=x﹣1垂直,∵点B是直线y=x﹣1与直线AM的交点,∴垂足是点B,∵点C是“完美点”,∴点C在直线y=x﹣1上,∴△MBC是直角三角形,∵B(3,2),A(0,5),∴AB=3,∵AM=4,∴BM=,又∵CM=,∴BC=1,=BM?BC=.∴S△MBC【点评】本题考查了一次函数的性质,直角三角形的判定,勾股定理的应用以及三角形面积的计算等,判断直线垂直,借助正比例函数是本题的关键.21.解:(1)反比例函数y=是闭区间[1,2014]上的“闭函数”,理由如下:反比例函数y=在第一象限,y随x的增大而减小,当x=1时,y=2014;当x=2014时,y=1,所以,当1≤x≤2014时,有1≤y≤2014,符合闭函数的定义,故反比例函数y=是闭区间[1,2014]上的“闭函数”;(2)分两种情况:k>0或k<0.①当k>0时,一次函数y=kx+b(k≠0)的图象是y随x的增大而增大,故根据“闭函数”的定义知,,解得.∴此函数的解析式是y=x;②当k<0时,一次函数y=kx+b(k≠0)的图象是y随x的增大而减小,故根据“闭函数”的定义知,,解得.∴此函数的解析式是y=﹣x+m+n;(3)∵y=x2﹣2x=(x2﹣4x+4)﹣2=(x﹣2)2﹣2,∴该二次函数的图象开口方向向上,最小值是﹣2,且当x<2时,y随x的增大而减小;当x>2时,y随x的增大而增大.①当c<2<d时,此时二次函数y=x2﹣2x的最小值是﹣2=c,根据“闭函数”的定义知,d=c2﹣2c或d=d2﹣2d;Ⅰ)当d=c2﹣2c时,由于d=×(﹣2)2﹣2×(﹣2)=6>2,符合题意;Ⅱ)当d=d2﹣2d时,解得d=0或6,由于d>2,所以d=6;②当c≥2时,此二次函数y随x的增大而增大,则根据“闭函数”的定义知,,解得,,∵c<d,∴不合题意,舍去.综上所述,c,d的值分别为﹣2,6.【点评】本题综合考查了二次函数图象的对称性和增减性,一次函数图象的性质以及反比例函数图象的性质.解题的关键是弄清楚“闭函数”的定义.解题时,也要注意“分类讨论”数学思想的应用.22.【解答】解:月用水量为x立方米,支付费用为y元,则有:y=;(2)由表知第二、第三月份的水费均大于13元,故用水量15m3,22m3均大于最低限量am3,于是就有,解得b=2,从而2a=c+19,再考虑一月份的用水量是否超过最低限量am3,不妨设9>a,将x=9代入x>a的关系式,得9=8+2(9﹣a)+c,即2a=c+17,这与2a=c+19矛盾.∴9≤a.从而可知一月份的付款方式应选0≤x≤a的关系式,因此就有8+c=9,解得c=1.故a=10,b=2,c=1.23.【解答】解:(1)由题意可知,当废弃处理量x满足0<x<40时,每天利用设备处理废气的综合成本y=40x+1200,∴当该制药厂每天废气处理量计划为20吨,即x=20时,每天利用设备处理废气的综合成本为y=40×20+1200=2000元,又∵转化的某种化工产品可得利润为80×20=1600元,∴工厂每天需要投入废气处理资金为400元;(2)由题意可知,y=,①当0<x<40时,令80x﹣(40x+1200)≥0,解得30≤x<40,②当40≤x≤80时,令80x﹣(2x2﹣100x+5000)≥0,即2x2﹣180x+5000≤0,∵△=1802﹣4×2×5000<0,∴x无解.综合①②,x的取值范围为30≤x<40,故当该制药厂每天废气处理量计划为[30,40)吨时,工厂可以不用投入废气处理资金就能完成计划的处理量;(3)∵当40≤x≤80时,投入资金为80x﹣(2x2﹣100x+5000),又∵市政府为处理每吨废气补贴a元就能确保该厂每天的废气处理不需要投入资金,∴当40≤x≤80时,不等式80x+ax﹣(2x2﹣100x+5000)≥0恒成立,即2x2﹣(180+a)x+5000≤0对任意x∈[40,80]恒成立,令g(x)=2x2﹣(180+a)x+5000,则有,即,即解得,答:市政府只要为处理每吨废气补贴元就能确保该厂每天的废气处理不需要投入资金.【点评】本题主要考查函数模型的选择与应用.解决实际问题通常有四个步骤:(1)阅读理解,认真审题;(2)引进数学符号,建立数学模型;(3)利用数学的方法,得到数学结果;(4)转译成具体问题作出解答,其中关键是建立数学模型.属于中档题.24.【解答】解:(1)△DAB中,∠DAB=60°,DA=AB=6则:D到y轴的距离=AB=3、D到x轴的距离=DA?sin∠DAB=3;∴D(3,3);由于DC∥x轴,且DC=AB=6,那么将点D右移6个单位后可得点C,即C(9,3);设抛物线的解析式为:y=ax2+bx,有:,解得∴抛物线解析式为:y=﹣x2+x.(2)如图1,连接AC,∵四边形ABCD是菱形,∴AC⊥BD,若PQ⊥DB,则PQ∥AC,∵点P在BC上时,PQ与AC始终相交,和PQ∥AC矛盾,∴点P在BC上时不存在符合要求的t值,当P在DC上时,由于PC∥AQ且PQ∥AC,所以四边形PCAQ是平行四边形,则PC=AQ,有6﹣2t=t,得t=2.(3)①如图1,当点P在DC上,即0<t≤3时,有△EDP∽△EAQ,则===,那么AE=AD=2,即y=2;②如图2,当点P在CB上,即3<t≤6时,有△QEA∽△QPB,则=,即=,得y=,。