投资学-第9章--资本资产定价模型
证券投资学——资本资产定价模型的原理讲义+知识点
内容概览43.1资本资产定价模型的原理43.1.1假设条件假设1:所有的投资者都依据期望收益率评价投资组合的收益水平,依据方差(或标准差)评价投资组合的风险水平,并采用上一章介绍的方法选择最优投资组合。
假设2:所有的投资者对投资的期望收益率、标准差及证券间的相关性具有完全相同的预期。
假设3:证券市场是完美无缺的,没有摩擦。
所谓摩擦是指对整个市场上的资本和信息自由流通的阻碍。
该假设意味着不考虑交易成本及对红利、股息和资本收益的征税,并且假定信息向市场中的每个人自由流动,在借贷和卖空上没有限制及市场上只有一个无风险利率。
43.1.2资本市场线1)无风险资产所谓的无风险证券,是指投资于该证券的回报率是确定的、没有风险的,如购买国债。
既然是没有风险的,因此其标准差为零。
2)无风险证券对有效边界的影响由于可以将一个投资组合作为一个单个资产,因此,任何一个投资组合都可以与无风险证券进行新的组合。
当引入无风险证券时,可行区域发生了变化。
由无风险证券Rf出发并与原有风险证券组合可行域的上下边界相切的两条射线所夹角形成的无限区域便是在现有假设条件下所有证券组合形成的可行域。
由于可行区域发生了变化,因此有效边界也随之发生了变化。
新的效率边界变成了一条直线,即由无风险证券Rf出发并与原有风险证券组合可行域的有效边界相切的射线RfMT便是在现有假设条件下所有证券组合形成的可行域的有效边界。
RfMT这条直线就成了资本市场线(capital market line,CML),资本市场线上的点代表无风险资产和市场证券组合的有效组合。
3)市场分割定理效用函数和效用曲线有什么作用呢?效用函数将决定投资者在效率边界上的具体位置。
也就是说,效用函数将决定投资者持有无风险资产与市场组合的份额。
效用函数这一作用被称为分割定理(separation theorem)。
4)资本市场线方程通过上面的讨论我们知道:在资本资产定价模型假设下,当市场达到均衡时,市场组合M 成为一个有效组合;所有有效组合都可视为无风险证券Rf与市场组合M的再组合。
管理学投资学PPT第章资本资产定价模型
❖若某一个股票未包含在最优资产组合中,
会怎样?
2024/6/29
21
图 9.1 The Efficient Frontier and the
Capital Market Line
2024/6/29
22
9.1.2 消极策略的有效性
理由:
❖市场的有效性
❖投资于市场投资组合指数这样一个消极策略是有
26
▪ β系数。美国经济学家威廉·夏普提出的风险衡量
指标。
▪
用它反映资产组合波动性与市场波动性关系(
在一般情况下,将某个具有一定权威性的股指(
市场组合)作为测量股票β值的基准)。
▪ 如果β值为1.1,表明该股票波动性要比市场大盘
高10 %,说明该股票的风险大于整个市场的风险
,当然它的收益也应该大于市场收益,因此是进
则其收益 - 风险比率为:
wGE [ E (rGE ) rf ] E (rGE ) r f
wGE Cov(rGE , rM ) Cov(rGE , rM )
2024/6/29
25
9.1.4 单个证券的期望收益
市场组合M与CML相切,其收益风险比率为:
E (rM ) rf
2
M
(风险的市场价格)
率应该增加的数量。
▪ 在金融世界里,任何资产组合都不可能超越CML
。由于单个资产一般来说,并不是最优的资产组
合,因此,单个资产也位于该直线的下方。
2024/6/29
14
证券市场线
▪ 资本市场线描述了有效组合的预期收益率和标准
差之间的均衡关系―有效资产组合定价模型。
▪ 问题:
▪ (1) 单个风险资产的预期收益率和标准差之间
投资学卡帕模型
投资学卡帕模型资本资产定价模型(Capital Asset Pricing Model,CAMP)实际上阐述的是如果投资者都采用马科维茨的理论进行投资管理的时候,市场均衡状态是如何形成的。
同时CAMP模型也把风险资产的预期收益和预期风险用相对比较简单的线性关系表达出来。
CAMP模型认为:一个风险资产的预期收益率和衡量该风险资产风险的一个测度,即股票的β值之间存在正相关关系。
作为一种描述风险资产均衡价格决定性的理论,CAMP模型不仅大大简化了投资组合选择的运算过程,使马科维茨的投资组合选择理论朝现实世界的应用迈进了一大步,而且也使得证券投资理论从以往的定性分析转入了定量分析,从规范性转入实证性,进而对证券投资的理论研究和实际操作,乃至整个金融理论和实践的发展产生了巨大的影响,成为现代金融学的一个重要的理论基础。
在金融市场中,当个人投资者考虑它投资于某种风险资产的时候,他实际上面临着两种风险:第一种是系统性风险(Systematic RIsk),指的是市场中无法通过分散投资来消除的风险。
比如说利率变化、经济衰退、战争等等。
第二种是非系统性风险(Nonsystematic RIsk),在股票市场也被称作特定风险(Unique Risk 或 Idiosyncratic risk)。
是属于每个特定股票它本身具有的风险,比如说所在的行业是处在高峰还是低谷,管理层是否运营得力,产品是否受到市场和消费者的欢迎,这种与公司具体相关的风险称之为股票的自由风险。
这种风险可以通过构建股票投资组合来消除。
具体到CAMP的公式来说,如下图所示:r p是单个股票或股票组合的预期回报率。
r f是无风险回报率,是基于一个无风险资产的回报率。
最典型的就是基于国债的国债收益率。
r m是股票市场整体的期望回报率。
r m-r f就是通常说的股票市场溢价。
在CAMP模型和其它很多模型中,实际上是假设从长期回报角度而言,股票市场的平均回报率是会高于无风险回报率的,也就是r m大于r f,代表一个正向的市场溢价。
投资学第章资本资产定价模型剖析ppt课件
与指数模型的期望形式:
E(ri ) rf i i[E(rM ) rf ] 可知二者差别在于,CAPM认为所有的i都为0。 市场模型:rf E(ri ) i[rf E(rM )] ei
如果CAPM有效,则市场模型等同于指数模型。
E(Ri ) kE(Ci ) ( L1 L2 L3 )
其中,E(Ci )为期望流动性代价; k为所有资产的调整后的平均持有期
为平均市场流动性的市场风险溢价净值 为系统性市场风险敏感度, L1、 L 2、 L3为流动性 E(RM CM ),CM 表示市场平均流动性溢价。
37
流动性的三要素
25
9.3 CAPM符合实际吗?
CAPM的实用性取决于证券分析。 9.3.1 CAPM能否检验 ▪ 规范方法与实证方法 ▪ 实证检验的两类 错误(数据、统计方法) 9.3.2 实证检验质疑CAPM
26
9.3 CAPM符合实际吗?
9.3.3CAPM的经济性与有效性 ▪ CAPM在公平定价领域的广泛应用 ▪ CAPM被普遍接受的原因 9.3.4 投资行业与CAPM的有效性 投资公司更趋向于支持CAPM
39
27
9.4 计量经济学和期望收益-贝塔关系
▪ 计量经济方法可能是引起CAPM被错误拒 绝的原因
▪ 相关改进
➢ 用广义最小二乘法处理残差相关性 ➢ 时变方差模型ARCH
28
9.5 CAPM的拓展形式
两种思路: ▪ 假定的放宽 ▪ 投资者心理特征的应用
29
9.5.1 零模型
有效前沿的三大性质:
▪ 两种有效前沿上的资产组合组成的任意资产组合仍在有 效前沿上
23
9.2.2 指数模型和已实现收益
投资学之资本资产定价模型
E(rM) - rf = Market price of risk
M
Slope of the CML
CML举例
假设市场组合由A、B、C组成,有关数据为:[1]各自所 占比重分别为0.1、0.5和0.4;[2]预期收益率分别为 0.12、0.08和0.16;[3]方差分别为0.035、0.067和 0.05;[4]协方差分别为COV(ra,rb)=0.043、 COV(ra,rc)=0.028、 COV(rb,rc)=0.059 ;[5]rf =0.03;.求均衡状态下的CML方程。
对于所有投资者,信息是免费的并且是立即可得的 (information is free and instantaneously available)
同质预期(homogeneous expectations)
结论
所有的投资者都会选择持有包括证券领域中所 有资产的市场组合。
市场投资组合不仅在有效边界上,而且市场组 合还是资本分配线与有效边界的切点,即最优 风险组合。
市场的风险溢价取决于所有市场参与者的平均风险厌 恶程度(Risk premium on the market depends on the average risk aversion of all market participants)
个别证券的风险溢价是它与市场的协方差的函数( Risk premium on an individual security is a function of its covariance with the market)
Capital Asset Pricing Model (CAPM)
W. Sharpe (1964)、 J. Lintner (1965) 和J. Mossin (1966)分别在 其发表的论文中独立地 导出了这一模型。
资产定价模型与市场有效性
资产定价模型与市场有效性资产定价模型(Asset Pricing Model)是一种用于衡量和预测金融资产价格的数学模型。
它是金融学和投资学中的重要理论框架,用于分析资产价格的形成和变动机制。
而市场有效性(Market Efficiency)则是指金融市场是否能够反映所有可用的信息,并将其及时反映在资产价格中。
本文将介绍一些常见的资产定价模型,并探讨市场有效性与资产定价模型的关系。
一、资本资产定价模型(Capital Asset Pricing Model, CAPM)资本资产定价模型是由Sharpe(1964)、Linter(1965)和Mossin (1966)等学者提出的,被广泛应用于资本市场的资产定价。
CAPM 模型认为,一个资产的预期回报和风险成正比,与市场资产组合的风险相关。
CAPM模型的数学表达如下:\[E(R_i) = R_f + \beta_i (E(R_m) - R_f)\]其中,\(E(R_i)\)是资产i的预期回报,\(R_f\)是无风险利率,\(E(R_m)\)是市场组合的预期回报,\(\beta_i\)是资产i相对于市场组合的β系数。
CAPM模型的核心是资产的β系数,反映了资产相对于市场组合的敏感性。
CAPM模型的理论基础是市场均衡和资产组合的效用最大化。
二、套利定价理论(Arbitrage Pricing Theory, APT)套利定价理论是由Ross(1976)提出的资产定价模型,用于解释资产价格的变动。
与CAPM模型不同,APT模型认为资产的价格不仅仅取决于市场风险,还受到其他因素的影响,比如通货膨胀率、利率变动、市场情绪等。
APT模型的数学表达如下:\[E(R_i) = R_f + \sum\limits_{j=1}^k \beta_{ij} f_j\]其中,\(E(R_i)\)是资产i的预期回报,\(R_f\)是无风险利率,\(\beta_{ij}\)是资产i相对于因子j的敏感性,\(f_j\)是因子j的预期回报。
博迪《投资学》(第10版)章节题库-第九章至第十章【圣才出品】
第三部分资本市场均衡第9章资本资产定价模型一、选择题1.如果一个股票的价值是高估的,则它应位于()。
A.证券市场线的上方B.证券市场线的下方C.证券市场线上D.在纵轴上【答案】B【解析】证券市场线(SML)如图9-1所示,它主要用来说明投资组合报酬率与系统风险程度β系数之间的关系。
图9-1被高估的证券预期收益率低于市场收益率,因此位于证券市场线下方。
2.无风险利率和市场预期收益率分别是3.5%和10.5%。
根据资本资产定价模型,一只β值是1.63的证券的预期收益是()。
A.10.12%B.14.91%C.16.56%D.18.79%【答案】B【解析】根据资本资产定价模型:E(r i)=r f+β[E(r M)-r f]=3.5%+1.63×(10.5%-3.5%)=14.91%。
3.资本资产定价模型给出了精确预测()的方法。
A.有效投资组合B.单一资产与风险资产组合期望收益率C.不同风险收益偏好下最优风险投资组合D.资产风险及其期望收益率之间的关系【答案】D【解析】根据资本资产定价模型,每一证券的期望收益率应等于无风险利率加上该证券由β系数测定的风险溢价。
4.假定一只股票定价合理,预期收益是15%,市场预期收益是10.5%,无风险利率是3.5%,这只股票的β值是()。
A.1.36B.1.52C.1.64D.1.75【答案】C【解析】既然α值假定为零,证券的收益就等于CAPM设定的收益。
因此,将已知的数值代入CAPM,即15%=[3.5%+(10.5%-3.5%)β],解得:β=1.64。
5.根据CAPM模型,市场期望收益率和无风险收益率分别是0.12和0.06,β值为1.2的证券A的期望收益率是()。
A.0.068B.0.12C.0.132D.0.142【答案】C【解析】根据资本资产定价模型,E(r i)=r f+[E(r M)-r f]βi=0.06+(0.12-0.06)×1.2=0.132。
资本资产定价模型 (PPT 55张)
i
上式结论也适用于由无风险资产和风险资产组合构 成的投资组合的情形。在图(7-9)中,这种投资组 合的预期收益率和标准差一定落在AB线段上。
11
投资于无风险资产A和风险资产组合B的可行集 ——许多线段AB构成的区域
R
p
﹡D
R r i f R r p f P
Ri
B
★
i
A(rf ) ★
5
二、资本市场线 CML
(一)允许无风险贷出下的可行集与有效集 1.无风险贷款或无风险资产的定义 无风险贷款相当于投资于无风险资产,其收益是确定的, 其风险(标准差)应为零。 无风险资产收益率与风险资产收益率之间的协方差也等于 零。 现实生活中,到期日和投资期相等的国债是无风险资产。
为方便起见,常将1年期的国库券或货币市 场基金当作无风险资产。
17
(二)无风险借款对有效集的影响
1、允许无风险借款下的投资组合
在推导马科维茨有效集的过程中,我们假定投资者可 以购买风险资产的金额仅限于他期初的财富。然而,在 现实生活中,投资者可以借入资金并用于购买风险资产。 由于借款必须支付利息,而利率是已知的,在该借款 本息偿还上不存在不确定性。因此我们把这种借款称为 无风险借款。
iff i
x ,其中 [ 0 , ] p i i p i
x x 1 ,其中 x x [ 0 , 1 ] f i f, i
③
②
8
该组合的预期收益率和标准差的关系为:
p R ( 1 ) r p f
i
p R i i
y f ( x ) b k x
2
一、CAPM模型的基本假设
1.存在着大量投资者,每个投资者的财富相对于所有投 资者的财富总和来说是微不足道的。
资本资产定价模型
资本资产定价模型(CAPM)理论及应用财管131蓝伟龙摘要:资本资产定价模型(CAPM:Capital Asset Pricing Model)自提出以后,即受到众多经济学家的青睐,被广泛应用于经济及管理的许多方面,但同时也受很大的质疑。
本文在详细介绍CAPM模型的基础上,探讨它在证券定价及普通股成本估价方面的一些实际应用。
关键词:资本资产定价模型,CAPM1.引言:资本资产定价模型(Capital Asset Pricing Model 简称CAPM)是由美国学者夏普(William Sharpe)、林特尔(John Lintner)、特里诺(Jack Treynor)和莫辛(Jan Mossin)等人于1964年在资产组合理论的基础上发展起来的,是现代金融市场价格理论的支柱,广泛应用于投资决策和公司理财领域。
资本资产定价模型就是在投资组合理论和资本市场理论基础上形成发展起来的,主要研究证券市场中资产的预期收益率与风险资产之间的关系,以及均衡价格是如何形成的。
资本资产定价模型简称CAPM,是由威廉·夏普、约翰·林特纳一起创造发展的,旨在研究证券市场价格如何决定的模型。
资本资产定价模型假设所有投资者都按马克维茨的资产选择理论进行投资,对期望收益、方差和协方差等的估计完全相同,投资人可以自由借贷。
基于这样的假设,资本资产定价模型研究的重点在于探求风险资产收益与风险的数量关系,即为了补偿某一特定程度的风险,投资者应该获得多得的报酬率。
2.假设:CAPM(capital asset pricing model)是建立在马科威茨模型基础上的,马科威茨模型的假设自然包含在其中:1、投资者希望财富越多愈好,效用是财富的函数,财富又是投资收益率的函数,因此可以认为效用为收益率的函数。
2、投资者能事先知道投资收益率的概率分布为正态分布。
3、投资风险用投资收益率的方差或标准差标识。
4、影响投资决策的主要因素为期望收益率和风险两项。
博迪《投资学》(第9版)课后习题-资本资产定价模型(圣才出品)
第9章 资本资产定价模型一、习题1.如果()()1814P f M E r r E r =%, =6%, =%,那么该资产组合的β值等于多少?答:()()P f P M f E r r E r r β⎡⎤=+⨯−⎣⎦0.18=0.06+p β×(0.14-0.06)解得p β=0.12/0.08=1.5。
2.某证券的市场价格是50美元,期望收益率是14%,无风险利率为6%,市场风险溢价为8.5%。
如果该证券与市场投资组合的相关系数加倍(其他保持不变),该证券的市场价格是多少?假设该股票永远支付固定数额的股利。
答:如果该证券与市场投资组合的相关系数加倍(其他所有变量如方差保持不变),那么β和风险溢价也将加倍。
当前风险溢价为:14%-6%=8%。
因此新的风险溢价将变为16%,新的证券贴现率将变为:16%+6%=22%。
如果股票支付某一水平的永久红利,那么,从原始的数据中可以知道,红利必须满足永续年金的现值公式:价格=股利/贴现率即:50=D/0.14,解得,D =50×0.14=7(美元)。
在新的贴现率22%的情况下,股票价格为:7/0.22=31.82(美元)。
股票风险的增加使它的价值降低了36.36%。
3.下列选项是否正确?并给出解释。
a .β为零的股票提供的期望收益率为零。
b .资本资产定价模型认为投资者对持有高波动性证券要求更高的收益率。
c .你可以通过将75%的资金投资于短期国债,其余的资金投资于市场投资组合的方式来构建一个β为0.75的资产组合。
答:a .错误。
β=0意味着E (r )=r f ,不等于零。
b .错误。
只有承担了较高的系统风险(不可分散的风险或市场风险),投资者才要求较高期望收益;如果高风险债券的β较小,即使总风险较大,投资者要求的收益率也不会太高。
c .错误。
投资组合应当是75%的市场组合和25%的短期国债,此时β为:()()0.7510.2500.75p β=⨯+⨯=4.下表给出两个公司的数据。
(NEW)博迪《投资学》(第10版)笔记和课后习题详解
目 录第一部分 绪论第1章 投资环境1.1 复习笔记1.2 课后习题详解第2章 资产类别与金融工具2.1 复习笔记2.2 课后习题详解第3章 证券是如何交易的3.1 复习笔记3.2 课后习题详解第4章 共同基金与其他投资公司4.1 复习笔记4.2 课后习题详解第二部分 资产组合理论与实践第5章 风险与收益入门及历史回顾5.1 复习笔记5.2 课后习题详解第6章 风险资产配置6.1 复习笔记6.2 课后习题详解第7章 最优风险资产组合7.1 复习笔记7.2 课后习题详解第8章 指数模型8.1 复习笔记8.2 课后习题详解第三部分 资本市场均衡第9章 资本资产定价模型9.1 复习笔记9.2 课后习题详解第10章 套利定价理论与风险收益多因素模型10.1 复习笔记10.2 课后习题详解第11章 有效市场假说11.1 复习笔记11.2 课后习题详解第12章 行为金融与技术分析12.1 复习笔记12.2 课后习题详解第13章 证券收益的实证证据13.1 复习笔记13.2 课后习题详解第四部分 固定收益证券第14章 债券的价格与收益14.1 复习笔记14.2 课后习题详解第15章 利率的期限结构15.1 复习笔记15.2 课后习题详解第16章 债券资产组合管理16.1 复习笔记16.2 课后习题详解第五部分 证券分析第17章 宏观经济分析与行业分析17.1 复习笔记17.2 课后习题详解第18章 权益估值模型18.1 复习笔记18.2 课后习题详解第19章 财务报表分析19.1 复习笔记19.2 课后习题详解第六部分 期权、期货与其他衍生证券第20章 期权市场介绍20.1 复习笔记20.2 课后习题详解第21章 期权定价21.1 复习笔记21.2 课后习题详解第22章 期货市场22.1 复习笔记22.2 课后习题详解第23章 期货、互换与风险管理23.1 复习笔记23.2 课后习题详解第七部分 应用投资组合管理第24章 投资组合业绩评价24.1 复习笔记24.2 课后习题详解第25章 投资的国际分散化25.1 复习笔记25.2 课后习题详解第26章 对冲基金26.1 复习笔记26.2 课后习题详解第27章 积极型投资组合管理理论27.1 复习笔记27.2 课后习题详解第28章 投资政策与特许金融分析师协会结构28.1 复习笔记28.2 课后习题详解第一部分 绪论第1章 投资环境1.1 复习笔记1实物资产与金融资产(1)概念实物资产指经济活动中所创造的用于生产商品和提供服务的资产。
证券投资学(资本资产定价模型)
资本资产定价模型从投资者效用最大化出发,认为在市场均衡条件下,单一资产或者资产组合的收益由两方面组成,即无风险收益和风险溢价,并且这种组合方式以线性的形式表示,即E(Ri)=R0 + βi *[E(Rm)-R0]。
其中,E(Ri)表示证券i的期望收益;R0表示无风险收益;E(Rm)表示市场组合的期望收益;βi表示证券i与市场组合之间的相关系数或者风险系数。
相关统计量的含义:R2:决定系数,是对模型拟合优度的综合测量,它定量的描述了因变量的变化中可以用解释变量的变化来说明的部分,即模型的可解释程度。
F-statistic:F统计量,F检验就是检验全部解释变量对被解释变量的共同影响是否显著。
在此模型中是检验β0,βi对y的共同影响是否显著。
T- statistic:T统计量,T检验即检验单个回归参数显著性,在此模型中是分别检验β0,βi对y的影响是否显著。
D-W:检验一阶自相关性。
当DW值显著的接近于O或4时,则存在自相关性,而接近于2时,则不存在一阶自相关。
我选择了5家上市公司的股票,用每只股票的近5年(2009年1月---2013年11月)的历史交易数据,通过资本资产定价模型,利用Eviews软件求出各个股票与市场组合之间的风险系数β。
【方法与步骤】1、选取5只股票,分别为中国石化、首创股份、宝钢股份、东风汽车、上海机场2、根据一元线性回归模型,运用最小二乘法估计5只股票在计算期(2009年1月5号---2013年11月25号)的β系数,公式为:E(Ri)=R0 + βi*[E(Rm)-R0]。
通过Eviws软件估计β系数,并进行参数检验。
3、根据估计结果,将所有股票分为两类:进取型股票和保守型股票。
4、从两类股票中各任选一只股票,分别绘制其特征线。
5、选择当前适当的无风险收益率Rf,我对了五年内的活期存款利率进行加权求平均数,作为无风险收益率。
6、计算市场组合的平均收益率Rm,我引用上证综合指数代表市场组合,计算上证综合指数在计算期内的平均收益率。
投资学之资本资产定价模型(ppt 47页)
THE CAPM ASSUMPTIONS
附加假设(ADDITIONAL ASSUMPTIONS)
所有投资者都有相同的投资期限(one period investor horizon for all)
对于所有投资者,无风险利率是相同的(risk free rate is the same for是所有投资者持有的、建立在相同投 资结构之上的资产组合,因而体现了证券市场 中所有的相关信息。意味着投资者无需费尽心 机地去做个别投资项目的研究,他们只需持有 市场组合就可以了。或者说,投资者需要做的 就是复制市场组合。
消极投资策略也被称为共同基金原理[mutual fund theorem]。
市场组合的风险溢价与市场组合的方差、投资 者的风险厌恶程度成正比。
单个资产的风险溢价与市场投资组合的风险溢
价及证券的系数成正比。
分离定理
一个投资者的最佳风险资产组合,可以在并不 知晓投资者对风险和回报率的偏好时就加以确 定。即在确定投资者无差异曲线之前,我们就 可以确定风险资产的最佳组合。
市场组合 (Market portfolio)
第五章
资本资产定价模型 (The Capital Asset Pricing Model)
Preface
之前我们学习了(So far we have learned): 1. 投资者持有组合来降低风险(Investor hold portfolios to reduce
risk). 个别资产的“非系统性风险”无须关心,只有“系统性风险”需要关心。
Capital Asset Pricing Model (CAPM)
W. Sharpe (1964)、J. Lintner (1965) 和J. Mossin (1966)分别在 其发表的论文中独立地 导出了这一模型。
投资学-CAPM模型
(七)比较CML与SML
CML与SML的比较: 与 的比较: 的比较 (1).CML描述了有效组合的风险溢价是组合标准差的 函数,此标准差也可有效度量组合风险,并以此 构建完全组合。 (2).SML描述了单个证券的风险溢价是证券风险的函 数。单个证券风险的相应度量不是证券的标准差, 而是证券对组合标准差的贡献值,用证券的贝它 值来度量。SML对单个证券与证券组合均有效。
(四)β系数的计算
因为β系数是线性回归方程 的回归系数,所以:
r =α + β r
i i i
m
+ε i
β
i
i
=
Cov
σ
im
2 m
β —单项证券i的系统风险系数 Covim —单项证券i与市场证券组合的收益率协方差 2 σ m —市场证券组合收益率方差
(五)证券市场线(SML)
CML反映的是有效组合的预期收益率和风险 之间的关系,单一证券与其他证券组合预期收 益和风险的关系取决于它们与市场证券组合的 协方差 具有较大协方差的证券和证券组合提供较大 的预期收益率 证券协方差风险与预期收益率之间的线性关 系,称为证券市场线(SML)
2 f 2 f 2 p m
2 m
+ 2 xf xm ρ
xm
σσ
f
m
]
1 2
σ ,σ
ρ
f
fm
分别代表无风险资产与市场证券组合的风险 为它们的相关系数
f
因为
σ =x σ
p m
σ
=0 ,
m
ρ
fm
=0
σ x = σ
m
p m
r =r
p
f
r −r +
投资学《资本资产定价模型》课件
组合投资与风险分散
投资组合风险与组合中证券数目之间的关系
组合风险结构分析 组合的系统风险 组合的非系统风险 结论:随着组合中资产种类的增多,组合的非系统性风险将逐渐趋向于零;分散化投资只能导致系统风险的平均化,而不可能通过分化投资进行消除。
投资组合中的证券数目与风险和回报率
三、β系数的应用 (一)证券类型的划分 : ,同方向运动,普涨共跌; ,反方向运动,逆市; ,保守或防御型资产; ,中性资产; ,较大风险资产; ,高风险资产。
(二)风险报酬测度和证券估值 β系数在风险测度中的应用
四、β系数计量及其相关问题 β 系数估计中的主要关注问题 [1]估计模型的选用 [2]市场组合收益率的选区 [3]市场态势的影响 [4]交易频率问题 1、系数测量方法 [1]历史法 [2]预测法
资本资产定价模型(Capital Asset Pricing Model,CAPM) 1964年,夏普(W.Sharp)在马科维茨投资组合理论的基础上对证券价格的风险-收益关系进行了深入研究,并提出了资本资产定价模型(CAPM)。 此后,林特纳(Lintner,1965)、莫森(Mossin,1966)又分别独立提出资本资产定价模型。
-18.17
0.47
0.53
0.37
0.06
-0.56
11.59
16.71
12.66
1.83
-16.72
0.64
0.56
0.39
0.11
-0.60
16.64
16.55
12.46
3.10
-16.03
0.69
0.48
0.25
-0.12
-0.76
18.03
第章资本资产定价模型投资学上海财经大学PPT课件
CAPM认为,每一种证券以及每一种证券组合 必然位于证券市场线上,证券市场线上的证券 和证券组合的风险和收益均处于均衡状态。
CAPM将资产的预期收益率与系数这一风险 值相关联,从理论上探讨在多样化的资产搭配 中如何有效地计算某单项证券的风险,说明风 险证券如何在证券市场上确定价格。
22
例题 目前无风险资产的收益率为7%,整个股票 市场的平均收益率为15%,长江公司股票的预 期收益率同整个股票市场的平均收益率之间的 协方差为35%,整个股票市场的平均收益率标 准差为50%,则长江公司股票的必要报酬率是 多少?
ErM rf
A
2 M
单个证券的风险溢价是它与市场协方差的函 数。Eri rfCoFra bibliotekri , rM
2 m
ErM rf
5
图 9.1 有效边界和资本市场线
6
二、对资本市场线的进一步理解 (一)不同投资者的选择
根据分离定律,风险厌恶程度较大的投资者 A,风险厌恶程度较小的投资者B,比较激 进的投资者C分别所选择的投资组合。
CML后面一项可以看成是投资者持有该资产 组合所承担的风险所得到的相应风险补偿。
10
资本市场线给出了有效投资组合的预期收益率 和标准差之间的对应关系。
任何风险证券都处于资本市场线之下。(因为 任何单个风险证券在市场组合中都有一个不为 零的比例,所以资本市场线上的每一个特定组 合都是含有所有证券的组合,这样单个风险证 券就不会处在资本市场线上。)
17
(二)期望收益—贝塔关系
CAPM 对所有的资产组合都有效,因为:
ErP w1Er1 w2 Er2
w1rf w11 ErM rf w2rf w22 ErM rf {w1rf w2rf } {w11 ErM rf w22 ErM rf } (w1 w2 )rf (w11 w22 ) ErM rf rf P ErM rf
chpt10 资本资产定价模型(证券投资学-浙江工商大学 楼迎军)
图 7.5(B) 特征线举例
2005年
楼迎军 金融学院
实例分析7.1
INVESTMENTS
聪明的基金投资者如何计算风险
β 系数一般用于测量单个股票的波动性大小,与 此同时,它也用于测量某种基金随股市上下波动的 敏感程度。它是这样计算出来的:观测在某个三年 期中某种基金总收益的每月波动情况,并把它与标 准· 普尔500股票指数的变动相比较。为了比较起来方 便,标准· 普尔500股票指数的β系数设为1.00。β系数 小于 1.00 的基金的波动性就小于整个市场的波动性 。β系数大于1.00的基金就比整个市场更具有波动性 ,因而它的风险——及潜在收益——也更高。“β系 数”衡量的是某种基金与标准· 普尔500股票指数相比 较来说的波动性。
2005年
7.3
第一篇 楼迎军 金融学院
基础理论篇-----第七章 风险和收益:线性关系和
INVESTMENTS 资本资产定价模型
市场证券组合,它应该具有以下特点: 1.它给出了最优投资组合或风险资产。 2 .当选择了较优证券组合后,它使投资 者了解了每种资产的风险大小。 3 .在给定的风险程度下,投资者可以导 出均衡价格;并且当市场处于不均衡状态 时,有可能使我们发现市场的“廉价货 ” —— 即较好的投资机会(例如股票价值 被低估)。
2005年
Rit i i Rmt eit
第一篇 楼迎军 金融学院
基础理论篇-----第七章 风险和收益:线性关系和
INVESTMENTS 资本资产定价模型
用来描述Ri和Rm之间的关系的回归线被 称为特征线(characteristic line)。这 条回归线的斜率等于βi,它也恰好是第i种 资产的风险度。
楼迎军 金融学院