二次三项式因式分解复习
因式分解综合复习(含答案)
因式分解综合复习知识点一(提公因式法)【知识梳理】提取公因式法:如果一个多项式的各项含有公因式,那么可以把该公因式提取出来,作为多项式的一个因式,提出公因式后的式子放在括号里,作为另一个因式,这种分解因式的方法叫做提取公因式法. 注意事项(1)如果多项式的首项是负数时,一般先提出“—”号,使括号内的第一项系数是正数.(2)利用提取公因式法分解因式是,一定要“提干净”.(3)注意避免出现分解因式的漏项问题,一般提取公因式后,括号里的多项式项数应与原多项式的项数一致.(4)多项式的公因式可以是数字、字母,也可以是单项式,还可以是多项式. 【例题精讲】例1、(1)y x x 34488-- (2) ab b a b a 264223-+-点拨:提取公因式后剩余的多项式的项数与原多项式的项数相同,由此可以检验是否漏项.【课堂练习】1、将下列各式因式分解(1)32269a b a b c - (2)322812m m m -+- (3)2()3()m a b n b a ---2、多项式15m 3n 2+5m 2n-20m 2n 3的公因式是____.3、分解因式(1)x (x ﹣2)﹣3(2﹣x ) (2)2x (a ﹣b )﹣3(b ﹣a )知识点二(运用公式法) 【知识梳理】将乘法公式反过来写就得到因式分解中所用的公式,常见公式如下: 1. 平方差公式: ))((22b a b a b a -+=- 2. 完全平方公式:222)(2b a b ab a +=++222)(2b a b ab a -=+-3. 三项和完全平方公式:2222)(222c b a bc ac ab c b a ++=+++++4. 完全立方公式:33223)(33b a b ab b a a +=+++33223)(33b a b ab b a a -=-+-5. 立方和公式:))((2233b ab a b a b a +-+=+6. 立方差公式:))((2233b ab a b a b a ++-=-【例题精讲】例1、(1)22169mn m n -+ (2)2221x xy y -+-【课堂练习】1、161)(21)(2+---y x y x =____________.222,248a b a b a b A B C +--+、已知为任何实数,则的值总是()、负数、正数、 0D 、非负数3、把下列多项式分解因式:(1) x 2+10x +25 (2) 4a 2+36ab +81b 2 (3)-4xy -4x 2-y24、因式分解(1)﹣3a 3b +6a 2b 2﹣3ab 3 (2)﹣3ma 2+12ma ﹣9m(3)x 3﹣4x (4)2x 2y ﹣8y知识点三(分组分解法) 【知识梳理】分组分解法:通过对多项式的项分组,将多项式分解因式的方法叫做分组分解法。
二次三项式的因式分解
二次三项式的因式分解二次三项式的因式分解一、二次因式分解二次因式分解是指将一个二次多项式分解成两个一次因式相乘的形式,其步骤如下:1.判断该二次多项式是否可因式分解2.求出该二次多项式的根或配方法3.将该二次多项式分解成两个一次因式相乘的形式例如,对于二次多项式x2+2x+1,其根为x=-1,因此其因式分解形式为(x+1)(x+1)或(x+1)2。
二、三项式因式分解三项式因式分解是指将一个三次多项式分解成一个一次因式和一个二次因式相乘的形式,其步骤如下:1.判断该三次多项式是否可因式分解2.求出该三次多项式的一次因式3.用因式分解法(凑因式法、配方法、取出公因式法等)将该三次多项式分解成一个一次因式和一个二次因式相乘的形式例如,对于三次多项式x3+3x2+3x+1,其一次因式为x+1,因此可以用“提公因式”的方式将其分解成(x+1)(x2+2x+1)或(x+1)(x+1)2的形式。
三、各类公式的因式分解1.完全平方公式完全平方公式是指在二次多项式中出现的a2+2ab+b2的形式,其因式分解形式为(a+b)2。
例如,对于二次多项式x2+4x+4,其可以通过观察得到a=1,b=2,因此其因式分解形式为(x+2)2。
2.差平方公式差平方公式是指在二次多项式中出现的a2-b2的形式,其因式分解形式为(a+b)(a-b)。
例如,对于二次多项式x2-4,其可以通过观察得到a=1,b=2,因此其因式分解形式为(x+2)(x-2)。
3.二次三项式公式二次三项式公式是指在三次多项式中出现的a3+b3或a3-b3的形式,其因式分解形式为(a+b)(a2-ab+b2)或(a-b)(a2+ab+b2)。
例如,对于三次多项式x3+1,其可以通过观察得到a=x,b=1,因此其因式分解形式为(x+1)(x2-x+1)。
以上就是二次三项式的因式分解的相关知识点,希望能对您有所帮助。
17.4(1)二次三项式因式分解
2、若二次三项式 x + m + 6 、 x 可以在实数范围内分解因式, 可以在实数范围内分解因式,试探 的取值。 索m的取值。 的取值
2
2
其中: 其中: a≠0, a≠0, 是一元二次方程ax x1,x2是一元二次方程ax2+bx+c=0 的两根
尝试练习
利利利利利利二程方的 将二次三项式 根 的 方 根,
x 2 + x − 1在实数范围
内 分 解 因 式 的 内 内 内:
x 2 + x − 1 = 0 −1+ 5 −1− 5 x1 = , x2 =_____; (2)解解解方程,方程的 根 __________ 2 2 2 __________ __________ ____; (3)代代代式 ax + bx + c = a( x − x1 )( x − x2 )
2
通过刚才的复习我们已经知道: 通过刚才的复习我们已经知道:
(1)x2-3x+2 =(x-1)(x-2) = (x − x1)( x − x2 ) (2)2x2 –10x +12 =2(x-2)(x-3) = 2( x − x1 )( x − x2 ) (3)x2+x-1
=?
(x1=1,x2=2)
2
2、方程 、
− x + bx + c = 0
2
2
2
则可分解为
− ( x − 2)( x − 9)
的两根为2、 , 的两根为 、9, 。
2 3、方程 3 x + x − 2 = 0 的两根为 、 ,则 的两根为-1、 、 3 2 2 − 3 x − x + 2 可分解为 − 3( x +1)( x − 3) 。 也可以也也为 − ( x + 1)(3 x − 2)
中考数学二次三项式的因式分解(公式法)复习教案(1)
二、教学重点、难点、疑点及解决办法1.教学重点:用公式法将二次三项式因式分解.2.教学难点:一元二次方程的根与二次三项式因式分解的关系.3.教学疑点:一个二次三项式在实数范围内因式分解的条件.三、教学步骤(一)明确目标二次三项式的因式分解常用的方法是公式法、十字相乘法等.但对有些二次三项式,用这两种方法比较困难,如将二次三项式4x2+8x-1因式分解.在学习了一元二次方程的解法后,我们知道,任何一个有实根的一元二次方程,用求根公式都可以求出.那么一元二次方程ax2+bx+c=0(a≠0)的两个根与二次三项式ax2+bx+c的因式分解有无关系呢?这就是我们本节课研究的问题,也就是研究和探索二次三项式因式分解的又一种方法——用公式法.(二)整体感知一元二次方程的一般形式是ax2+bx+c=0(a≠0),观察方程的特点:左边是一个二次三项式,曾经借助于将左边二次三项式因式分解来解一元二次方程.反之,我们还可以利用方程的根,来将二次三项式因式分解.即在分解二次三项式ax2+bx+c的因式时,可先用公式求出方程ax2+bx+c=0的两个根x1,x2,然后写成ax2+bx+c=a(x-x1)(x-x2).通过知识之间的相互联系、相互作用和相互促进,对学生进行辩证唯物主义思想教育.公式ax2+bx+c=a(x-x1)(x-x2)的得出的依据是根与系数的关系.一元二次方程根与系数的关系为公式ax2+bx+c=a(x-x1)(x-x2)的得出奠定了基础.通过因式分解新方法的导出,不仅使学生学习了一个新方法,还能进一步启发学生学习的兴趣,提高他们研究问题的能力.(三)重点、难点的学习与目标完成过程1.复习提问(1)写出关于x的二次三项式?(2)将下列二次三项式在实数范围因式分解.①x2-2x+1;②x2-5x+6;③6x2+x-2;④4x2+8x-1.由④感觉比较困难,引出本节课所要解决的问题.2.①引入:观察上式①,②,③方程的两个根与方程左边的二次三项式的因式分解之关系.①x2-2x+1=0;解:原式变形为(x-1)(x-1)=0.∴ x1=x2=1,②x2-5x+6=0;解原方程可变为(x-2)(x-3)=0∴ x1=2,x2=3.③6x2+x-2=0解:原方程可变为(2x-1)(3x+2)=0.观察以上各例,可以看出,1,2是方程x2-3x+2=0的两个根,而x2-3x+2=(x-1)(x-2),……所以我们可以利用一元二次方程的两个根来分解相应左边的二次三项式.②推导出公式=a(x-x1)(x-x2).这就是说,在分解二次三项式ax2+bx+c的因式时,可先用公式求出方程ax2+bx+c=0的两个根x1,x2,然后写成ax2+bx+c=a(x-x1)(x-x2).教师引导学生从具体的数字系数的例子,观察、探索结论,再从一般的字母系数的例子得出一般性的推导,由此可知认识事物的一般规律是由特殊到一般,再由一般到特殊.③公式的应用例1 把4x2+8x-1分解因式解:∵方程4x2+8x-1=0的根是教师板书,学生回答.由①到②是把4分解成2×2分别与两个因式相乘所得到的.目的是化简①.练习:将下列各式在实数范围因式分解.(1)x2+20x+96;(2)x2-5x+3学生板书、笔答,评价.解2 用两种方程把4x2-5分解因式.方法二,解:∵ 4x2-5=0,方法一比方法二简单,要求学生灵活选择,择其简单的方法.练习:将下列各式因式分解.(1)4x2-8x+1;(2)27x2-4x-8;(3)25x2+20x+1;(4)2x2-6x+4;(5)2x2-5x-3.学生练习,板书,选择恰当的方法,教师引导,注意以下两点:(1)要注意一元二次方程与二次三项式的区别与联系,例如方程2x2-6x-4=0,可变形为x2-3x-2=0;但将二次三项式分解因式时,就不能将3x2-6x-12变形为x2-2x-4.(2)还要注意符号方面的错误,比如上面的例子如果写成2x2-5x-(3)一元二次方程ax2+bx+c=0(a≠0)当△≥0时,方程有两个实根.当△<0时,方程无实根.这就决定了:当b2-4ac≥0时,二次三项式ax1+bx+c在实数范围内可以分解;当b2-4ac<0时,二次三项式ax2+bx+c在实数范围内不可以分解.(四)总结与扩展(1)用公式法将二次三项式ax2+bx+c因式分解的步骤是先求出方程ax2+bx+c=0(a ≠0)的两个根,再将ax2+bx+c写成a(x-x1)(x-x2)形式.(2)二次三项式ax2+bx+c因式分解的条件是:当b2-4ac≥0,二次三项式ax2+bx+c 在实数范围内可以分解;b2-4ac<0时,二次三项式ax2+bx+c在实数范围内不可以分解.(3)通过本节课结论的探索、发现、推导、产生的过程,培养学生的探索精神,激发学生的求知欲望,对学生进行辩证唯物主义思想教育,渗透认识事物的一般规律.四、布置作业教材 P.39中 A1.2(1)——(7).五、板书设计12.5 二次三项式的因式分解(一)结论:在分解二次三项式例1.把4x2+8x-1分解因式ax2+bx+c的因式时解:………可先用公式求出方程:……ax2+bx+c=0的两个根x1,x2,然后写成练习:………ax2+bx+c=a(x-x1)(x-x2)六、作业参考答案教材 P.38中A1(1)(5x+6)(x+1);(2)(2y-3)(3y-2);(3)-(2x-6)(2x+5);(4)(5p-3)(2p+1);(5)(a+16)(a+24);(6)(3xy-7)(xy-1);(7)3(x+2)(2x-7);(8)(3x+5y)(5x-3y);A2。
二次三项式的因式分解
二次三项式的因式分解一、一般步骤1. 确定二次三项式的形式为ax²+bx+c。
2.查找常见的二次三项式因式分解公式,如平方差公式、完全平方公式、积和差分解等。
3.根据公式进行因式分解,将二次三项式化简成两个或多个因式相乘的形式。
4.检验分解是否正确,可以通过将因式相乘来验证。
下面我们将介绍几种常见的二次三项式因式分解公式及其应用。
二、平方差公式平方差公式用于分解形如a²-b²的二次三项式。
其公式为:a²-b²=(a+b)(a-b)其中,a和b可以是任意实数。
根据平方差公式,可得以下例子:1.分解x²-4:x²-4=(x+2)(x-2)2.分解16x²-9:16x²-9=(4x+3)(4x-3)3.分解a⁴-b⁴:a⁴-b⁴=(a²+b²)(a²-b²)三、完全平方公式完全平方公式用于分解形如a²+2ab+b²的二次三项式。
其公式为:a² + 2ab + b² = (a+b)²根据完全平方公式,可得以下例子:1.分解x²+6x+9:x²+6x+9=(x+3)²2.分解4y²+12y+9:4y²+12y+9=(2y+3)²3.分解9z⁴+12z²+4:9z⁴+12z²+4=(3z²+2)²四、积和差分解积和差分解是一种应用于分解二次三项式的技巧。
其基本思想是将二次项的系数进行合理分配,使得二次项可以分解成两个一次项相乘的形式,并带有不同的符号。
具体方法如下:1.将二次项的系数拆分成两个数的和与积。
2.利用这两个数的和与积的关系,将二次项进行分解。
3.整理其他项,进行因式分解。
根据积和差分解,可得以下例子:1.分解2x²+7x+3:2x²+7x+3=(2x+1)(x+3)2.分解12x²-19x-5:12x²-19x-5=(4x+1)(3x-5)結语:二次三项式的因式分解是数学中的基本概念和技巧之一,掌握了这些公式和技巧,可以帮助我们更好地理解和解决二次三项式相关的问题。
2019年中考数学知识点:二次三项式因式分解速记口诀
2019年中考数学知识点:二次三项式因式分解速记口诀
新一轮复习备考周期正式开始,为各位初三考生整理了各学科的复习攻略,主要包括中考必考点、中考常考知识点、各科复习方法、考试答题技巧等内容,帮助各位考生梳理知识脉络,理清做题思路,希望各位考生可以在考试中取得优异成绩!下面是《数学知识点:二次三项式因式分解速记口诀》,仅供参考!
二次三项式因式分解速记口诀
二次三项式的因式分解
先想完全平方式,十字相乘是其次。
两种方法行不通,求根分解去尝试。
二次三项式的因式分解(5种题型)-2023年新八年级数学核心知识点与常见题型(沪教版)(解析版)
二次三项式的因式分解【知识梳理】二次三项式的因式分解(1)形如()2ax bx c a b c ++,,都不为零的多项式称为二次三项式;(2)如果一元二次方程20ax bx c ++=(0)a ≠的两个根是1x 和2x , 那么二次三项式的分解公式为:2ax bx c ++()()12a x x x x =−−.,【考点剖析】 题型一:两根与二次三项式因式分解关系 例1.若方程24210y y −−=的两个根是1y =,2y =,则在实数范围内分解因式2421y y −−=____________.【答案】⎪⎪⎭⎫ ⎝⎛−−⎪⎪⎭⎫ ⎝⎛+−4514514y y . 【解析】如果一元二次方程20ax c ++=(0)a ≠的两个根是1x 和2x,那么二次三项式2ax bx c ++可分解为:2ax bx c ++()()12a x x x x =−−.【总结】本题主要考查利用一元二次方程进行二次三项式的因式分解. 【变式1】若二次三项式)0(2≠++a c bx ax 在实数范围内可分解因式为)221)(221(3−++−−x x ,则一元二次方程)0(02≠=++a c bx ax 的两个实数根为________________.【答案】2211+=x ,2122−=x .【解析】如果一元二次方程20ax bx c ++=(0)a ≠的两个根是1x 和2x,那么二次三项式的分 解公式为:2ax bx c ++()()12a x x x x =−−.【总结】本题主要考查二次三项式的因式分解与相对应的一元二次方程的根的关系.题型二:不能在实数范围内因式分解的二次三项式例2.下列二次三项式在实数范围内不能因式分解的是(,,,,,,) A.2615x x +−;,,,,,,,,,,,,,,,,,,,,,B.,2373y y ++;,,,,,,,,, C.2224x x −−;,,,,,,,,,,,,,,,,,,,,,D.2245y y −+. 【答案】D ;【解析】解:A 、因为24146153610b ac −=+⨯⨯=>,故此二次三项式在实数范围内可以因式分解;B 、因为2449433130b ac −=−⨯⨯=>,故此二次三项式在实数范围内可以因式分解;C 、因为244424360b ac −=+⨯⨯=>,故此二次三项式在实数范围内可以因式分解;D 、因为2416425240b ac −=−⨯⨯=−< 故此二次三项式在实数范围内不能因式分解.故答案选D.【变式1】下列二次三项式在实数范围内不能因式分解的是(,,,,,)A.1562−+x x ,,,,,B.3732++y y ,,,,,C.422−−x x ,,,,,D.22542y xy x +−【答案】D ;【解析】,解:A 、因为24146153610b ac −=+⨯⨯=>,故此二次三项式在实数范围内可以因式分解;B 、因为2449433130b ac −=−⨯⨯=,故此二次三项式在实数范围内可以因式分解;C 、因为24444200b ac −=+⨯=>,故此二次三项式在实数范围内可以因式分解;D 、因为222241642524b ac y y y −=−⨯⨯=− 又因为二次三项式,故20,240y y ≠∴−<,故此二次三项式在实数范围内不能因式分解. 故答案选D.【变式2】下列二次三项式在实数范围内不能因式分解的是(,,,,,,)A.2411x x +−;,,B.,2373y y ++;,,,,C.,224x x −−;,,,D.,22245x xy y −+.【答案】D ;【解析】解:A 、因为24144111770b ac −=+⨯⨯=>,故此二次三项式在实数范围内可以因式分解;B 、因为2449433130b ac −=−⨯⨯=>,故此二次三项式在实数范围内可以因式分解;C 、因为24444200b ac −=+⨯=>,故此二次三项式在实数范围内可以因式分解;D 、因为222241642524b ac y y y −=−⨯⨯=− 又因为二次三项式,故20,240y y ≠∴−<,故此二次三项式在实数范围内不以因式分解. 故答案选D.【变式3】如果关于x 的二次三项式24x x m −+在实数范围内不能因式分解,那么m 的值可以是_________.(填出符合条件的一个值) 【答案】5;【解析】解:当241640b ac m −=−<即4m >时,关于x 的二次三项式24x x m −+在实数范围内不能因式分解,如m 取5等等.题型三:二次项系数为1的实数范围内二次三项式因式分解 例3.在实数范围内分解因式:241x x −−=______________【答案】(22x x −+−;【解析】解:原式=2445x x −+−=()222x −−=(22x x −−−.【变式1】在实数范围内分解因式:232x x −−=,,,,,,,,,,,,,,,,,,,,.【答案】x x ⎛−− ⎝⎭⎝⎭; 【解析】解:因为方程2320x x −−=的两根为x =,故232x x −−=x x ⎛ ⎝⎭⎝⎭. 【变式2】在实数范围内分解因式:243x x −−=,____________________.【答案】(22x x −−;【解析】解:解方程x2-x-3=0,得x=2±则:x2-4x-3=(22x x −−+.【变式3】在实数范围内分解因式: (1)224x x −−;(2)223x xy y −−.【答案】(1)(11x x −−,,,,(2)3322x y x y ⎛⎫⎛⎫−−− ⎪⎪ ⎪⎪⎝⎭⎝⎭【分析】(1)前两项先配成完全平方公式,然后根据平方差公式,可得答案;(2)先解方程2230x xy y −−=,然后分解因式即可. 【详解】(1)原式=(x2﹣2x+1)﹣5=(x ﹣1)22=(x ﹣1(x ﹣1;(2)∵2230x xy y −−=的解是x y =,∴原式=x y x y ⎛⎫⎛⎫− ⎪⎪ ⎪⎪⎝⎭⎝⎭.【点睛】本题考查了因式分解,利用乘法公式和求根公式是解答本题的关键. 题型四:二次项系数不为1的实数范围内二次三项式因式分解 例4.二次三项式2x 2-8x+5在实数范围内因式分解为(,,,,)A.,B.,C.,2(x+)(x-)22D.,2(x-)(x-)22【答案】D ;【解析】解:令2x2-8x+5=0,解得:x1=,x2=,则2x2-8x+5=2(x x .故选D .【变式1】在实数范围内因式分解:222x x −−=__________________.【答案】2(x x ;【解析】解:2220x x −−=的解是1x =,214x =,所以222x x −−=2(x x【变式2】在实数范围内因式分解:2221x x −−=______.【答案】2⎛ ⎝⎭⎝⎭x x ;【解析】解:22122122x x x x ⎛⎫−−=−− ⎪⎝⎭=21111222442x x ⎛⎫−⋅+−− ⎪⎝⎭=213224x ⎡⎤⎛⎫−−⎢⎥ ⎪⎝⎭⎢⎥⎣⎦=221222x ⎡⎤⎫⎛⎫⎢⎥−−⎪ ⎪⎪⎢⎥⎝⎭⎝⎭⎣⎦=11222x x ⎛−− ⎝⎭⎝⎭=2x x ⎛⎝⎭⎝⎭.【变式3】在实数范围内分解因式:2225x x −−=____.【答案】112()2222x x −−−+;【解析】解:2225x x −−=21112()42x x −+−=21112()22x −−=21112()24x ⎡⎤−−⎢⎥⎣⎦11=2(22x x −−,故答案为:112()()2222x x −−−+.【变式4】分解因式:2235a ab b −−.【答案】3a a ⎛⎫⎛⎫− ⎪⎪ ⎪⎪⎝⎭⎝⎭; 【解析】解:因为222=2543()370b b b ∆−⨯⨯−=≥,故方程22350a ab b −−=的两根为a ==,故22353a ab b a a ⎛⎫⎛⎫−−= ⎪⎪ ⎪⎪⎝⎭⎝⎭. 题型五:实数范围内二次三项式因式分解的应用例5.如果二次三项式px 2+2x ﹣1在实数范围内可以因式分解,求p 的取值范围. 【答案】p≥﹣1且p≠0;【解析】解:∵二次三项式px2+2x ﹣1在实数范围内可以因式分解, ∴px2+2x ﹣1=0有实数解, ∴△=4+4p≥0,且p≠0, 解得:p≥﹣1且p≠0.【变式1】二次三项式2342x x k −+,当k 取何值时,(1)在实数范围内能分解; (2)不能分解;(3)能分解成一个完全平方式,这个完全平方式是什么?【答案】(1)32≤k ;(2)32>k ;(3)32=k ,完全平方式为2323⎪⎭⎫ ⎝⎛−x . 【解析】(1)要使二次三项式2342x x k −+在实数范围内能分解,则方程23420x x k −+=要有实数根,则需要满足()021242≥⋅−−=∆k ,解得:32≤k ;(2)要使二次三项式2342x x k −+在实数范围内不能分解,则方程23420x x k −+=没有实数根,则需要满足()021242<⋅−−=∆k ,解得:32>k ;(3)要使二次三项式2342x x k −+在实数范围内能分解成一个完全平方式,则方程23420x x k −+=有两个相等实数根,则需要满足()021242=⋅−−=∆k ,解得:32=k .此时,完全平方式为2323⎪⎭⎫ ⎝⎛−x . 【总结】当一个二次三项不能在实数范围内分解因式时,则说明该二次三项式所对应的一元二次方程在实数范围内无解,反之,则说明该二次三项式所对应的一元二次方程有实数解. 【变式2】阅读题:分解因式:223x x −−. 解:原式22113x x =++−−,,,,,,,,()2214x x =++−,,,,,,,,()214x =+− ,,,,,,,,()()1212x x =+++− ,,,,,,,,()()31x x =+−.此方法是抓住二次项和一次项的特点,然后加一项,使这三项为完全平方式,我们称这种方法为配方法.此题为用配方法分解因式.请体会配方法的特点,然后用配方法解决下列问题:在实数范围内分解因式:2441a a +−.【答案】(2121a a ++.【分析】先配方,再根据平方差公式分解即可. 【详解】()(224412122121a a a a a +−=+−=+++【点睛】本题考查了配方法的应用,熟练掌握配方的方法是解答本题的关键.,此方法是抓住二次项和一次项的特点,然后加一项,使这三项为完全平方式,,再减去一次项系数一半的平方,使整个式子的值不变,这种变形的方法称为“配方法”.,【过关检测】一、单选题1.(2022秋·上海浦东新·八年级统考期中)下列关于x 的二次三项式在实数范围内不能够因式分解的是( )【答案】C【分析】利用完全平方公式把A 分解,利用十字乘法把B 分解,再分别令229=0,y y −+21=0,y −再计算根的判别式,从而可判断C ,D ,从而可得答案. 【详解】解:()22442,x x x −+=−故A 不符合题意;()()22352=32,x xy y x y x y −−+−故B 不符合题意;令229=0,y y −+则4419320,=−⨯⨯=−<,所以229y y −+在实数范围内不能分解,故C 符合题意;令21=0,y −则()2=4241160,b ac −=−⨯⨯−=>,y ∴=,12y y ∴==,21=,y y y ⎛∴− ⎝⎭⎝⎭故D 不符合题意; 故选:C【点睛】本题考查的是因式分解,一元二次方程的解法,根的判别式,掌握利用公式法解一元二次方程,进而分解因式是解题的关键.2.(2023·上海·八年级假期作业)下列关于x 的二次三项式中,一定能在实数范围内因式分解的是( ) A .21x x −+ B .21x mx −+ C .21x mx −− D .22x xy y −+【答案】C【分析】根据一定能在实数范围内因式分解可知必须满足240b ac ∆=−≥,分别进行判断即可;【详解】21x x −+的241430b ac −=−=−<,故A 错误;21x mx −+的2244b ac m −=−,可能大于0,也可能小于0,故B 错误; 21x mx −−的22440b ac m −=+>,故C 正确;22x xy y −+的22224430b ac y y y −=−=−≤,故D 错误;故选C .【点睛】本题主要考查了能在实数范围内分解因式的条件,根据题意判断出判别式的符号,认真计算,熟练掌握任何数的平方都是非负数是解题的关键.3.(2021秋·上海宝山·八年级校考期中)下列关于x 的二次三项式在实数范围内不能够因式分解的是( ) A .x 2﹣3x +2 B .2x 2﹣2x +1C .2x 2﹣xy ﹣y 2D .x 2+3xy +y 2【答案】B【分析】利用十字乘法把选项A ,C 分解因式,可判断A ,C ,利用一元二次方程根的判别式计算的值,从而可判断B ,D ,从而可得答案. 【详解】解:()()23212,x x x x -+=--Q ,故A 不符合题意;令22210,x x -+=,()2=242140,\--´´=-<V ,所以2221x x −+在实数范围内不能够因式分解,故B 符合题意;()()2222,x xy y x y x y --=+-Q ,故C 不符合题意;令2230,x xy y ++=,()22234150,y y y \=-´´=³V ,所以223x xy y ++在实数范围内能够因式分解,故D 不符合题意;故选B【点睛】本题考查的是利用十字乘法分解因式,一元二次方程的根的判别式的应用,掌握“利用一元二次方程根的判别式判断二次三项式在实数范围内能否分解因式”是解本题的关键.【答案】C【分析】从题中可以看出多项式非一般方法可以解出,可以将式子变成关于x 的一元二次方程进行求解,之后再代入因式分解的形式中即可.【详解】解:令22230x xy y −−=,解得1x y =,2x y =,所以22232()()x xy y x y x y −−=,故选:C .【点睛】本题主要考查的是利用特殊方法进行因式分解,掌握一元二次方程的求解方法是解题的关键. 5.(2022秋·上海嘉定·八年级统考期中)在实数范围内不能分解因式的是( )【答案】C【分析】二次三项式可分解因式的前提是方程有实数根,根据方程根的判别式24b ac ∆=−与0的大小关系判断方程是否有实数根,即是否可分解因式. 【详解】A 、()()24421240∆=−−⨯⨯−=>,B 、(()2416360∆=−−⨯⨯−=>,C 、()2245112160∆=−−⨯⨯=−<,D 、()()22442360∆=−−⨯⨯−=>,只有C 选项∆小于0,,即C 选项不能分解因式,故选:C .【点睛】本题考查了二次三项式是否可因式分解,熟练运用根的判别式是解题的关键.【答案】B【分析】二次三项式能不能在实数范围内分解因式,关键是看判别式的范围.0∆≥,能分解因式;Δ0<,不能分解因式.【详解】解:A :24b ac ∆=−,()21413=−−⨯⨯,112=−,,110=−<.23x x −+不能在实数范围内分解因式.故A 错.B :24b ac ∆=−()21412m ⎛⎫=−−⨯⨯− ⎪⎝⎭220m =+>. 212x mx −−能在实数范围内分解因式.故B 正确.C :24b ac ∆=−,()2243−−=,,40−,223x −+不能在实数范围内分解因式.故C 错.D :24b ac ∆=−,()()21412m =−−⨯⨯−,18m =+,m 的值不定,18m +的符号不确定,故不能判断22x x m −−能否在实数范围内分解因式.故D 不一定.故答案为:B .【点睛】本题考查是在实数范围内分解因式,解题的关键是判别式的应用.二、填空题7.(2022秋·上海·八年级上海市民办立达中学校考阶段练习)在实数范围内因式分解:2331x x +−=__________.【答案】3x x ⎛ ⎭⎝⎝⎭ 【分析】求得方程23310x x +−=的两个根,即可求解.【详解】解:23310x x +−=3a =,3b =,1c =−,()249431210b ac ∆=−=−⨯⨯−=>,x =,136x −=,236x −=23333666633133x x x x x x ⎛⎛+−=−=+ −+− ⎝⎭⎝−+⎝⎭⎭⎝⎭,故答案为:3x x ⎛ ⎭⎝⎝⎭ 【点睛】此题考查了因式分解,涉及了公式法求解一元二次方程,解题的关键是正确求得一元二次方程的两个根.8.(2022秋·上海松江·八年级校考期中)在实数范围内因式分解:223105x xy y ++=________.【答案】)【分析】先把原式变形为()222522x xy y x +−+,可得到()2225x y x +−,再利用平方差公式进行因式分解,即可求解. 【详解】解:223105x xy y ++22251205x xy y x +−=+()222252x xy y x +−=+()2252x y x +−=))22x y ⎤⎦−+=)=.故答案为:)【点睛】本题考查了实数范围内分解因式:一些式子在有理数的范围内无法分解因式,可是在实数范围内就可以继续分解因式.通过补项配成完全平方公式是解决问题的关键.9.(2022秋·上海浦东新·八年级统考期中)在实数范围内分解因式:233x x−−=_____.【答案】322x x⎛−−⎝⎭⎝⎭【分析】令2330x x−−=,解得1x=,2x,把233x x−−写成因式分解的形式即可.【详解】解:令2330x x−−=,则1,3,3a b c==−=−,∵()()224341321b ac−=−−⨯⨯−=,∴x=,即1x=,2x=,则233xx x x⎛−−⎛⎝⎝=⎭⎭.故答案为:322x x⎛−−⎝⎭⎝⎭.【点睛】此题考考查了实数范围内的因式分解,正确求解一元二次方程是解题的关键.10.(2022秋·上海黄浦·八年级上海市黄浦大同初级中学校考期中)在实数范围内分解因式:231−−=xx_________________.【答案】3x x⎛⎝⎭⎝⎭【分析】先解方程2310x x−−=,求得方程的两个根,即可求解.【详解】解:2310x x−−=,∵3,,1,1a b c ==−=−,∴2411213b ac ∆=−=+=,∴x ,∴12x x =, ∴231−−=xx 3x x ⎛ ⎝⎭⎝⎭.故答案为:3x x ⎛ ⎝⎭⎝⎭. 【点睛】本题考查了解一元二次方程,因式分解,正确的求得方程的两根是解题的关键.11.(2022秋·上海杨浦·八年级校考期中)在实数范围内分解因式237x x −−=_______.【答案】x x ⎛ ⎝⎭⎝⎭ 【分析】将237x x −−化成一个完全平方式与另一个数的差,再运用平方差公式分解因式.【详解】解:237x x −−22337324x x ⎛⎫=−+− ⎪⎝⎭ 233724x ⎛⎫=−− ⎪⎝⎭3322x x ⎛=−− ⎝⎭⎝⎭x x ⎛= ⎝⎭⎝⎭.故答案为:x x ⎛ ⎝⎭⎝⎭. 【点睛】本题主要考查实数范围内分解因式,其中涉及完全平方公式和平方差公式的运用. 12.(2022秋·上海·八年级上海市进才实验中学校考期中)若二次三项式234ax x ++在实数范围内能因式分解,则a 的最大整数解为______.【答案】1−【分析】由二次三项式234ax x ++在实数范围内可以因式分解,可得2340ax x ++=是一元二次方程且在实数范围内有解,再根据一元二次方程根的判别式列不等式即可得到答案.【详解】解:∵,二次三项式234ax x ++在实数范围内可以因式分解,∴2340ax x ++=是一元二次方程且在实数范围内有解,∴0a ≠,23440a ∆=−⨯⨯≥,解得,916a ≤且0a ≠,所以a 的最大整数解为1−.故答案为:1−.【点睛】本题主要考查了二次三项式在实数范围内分解因式,一元二次方程根的判别式,掌握“二次三项式在实数范围内可以因式分解的含义”是解本题的关键. 13.(2022秋·上海黄浦·八年级上海外国语大学附属大境初级中学校考期中)在实数范围内因式分解:223105x y xy ++=______.【答案】3xy xy ⎛ ⎝⎭⎝⎭ 【分析】令t xy =,则式子可化为3105t t ++,令231050t t ++=,求解即可.【详解】解:令t xy =,则式子可化为23105t t ++,令231050t t ++=,3a =,10b =,5c =t ==即1t=,2t=∴22310533x y xy xy xy xy xy ⎛⎛++== ⎝⎭⎝⎭⎝⎭⎝⎭故答案为:3xy xy ⎛ ⎝⎭⎝⎭【点睛】此题考查了因式分解,涉及了一元二次方程的求解,解题的关键是正确求得一元二次方程的两个根. 14.(2022秋·上海宝山·八年级上海市泗塘中学校考期中)在实数范围内因式分解:22231xy xy −−=__________【答案】2xy xy ⎛ ⎝⎭⎝⎭ 【分析】令t xy =,则式子可化为2231t t −−,令22310t t −=−,求解即可.【详解】解:令t xy =,则式子可化为2231t t −−,令22310t t −=−则2a =,3b =−,1c =−t===则1t =,2t =222312x y xy xy xy ⎛−−=⎝⎭⎝⎭故答案为:xy xy ⎛ ⎝⎭⎝⎭ 【点睛】此题考查了因式分解,涉及了换元法和一元二次方程的求解,解题的关键是正确求得方程的根.15.(2022秋·上海长宁·八年级上海市第三女子初级中学校考期中)在实数范围内因式分解:2231x x +−=_____.【答案】2x x ⎛ ⎝⎭⎝⎭【分析】结合题意,当231022x x +−=时,通过求解一元二次方程,得 231022x x x x ⎛+−==⎝⎭⎝⎭,结合22312x x x x ⎛+−= ⎝⎭⎝⎭,即可得到 答案.【详解】解:2231231222x x x x ⎛⎫+−=+− ⎪⎝⎭, 当231022x x +−=时,得x ==,∴231022x x x x ⎛+−== ⎝⎭⎝⎭,∴23122x x x x ⎛+−= ⎝⎭⎝⎭,∴22312x x x x ⎛+−= ⎝⎭⎝⎭.故答案为:2x x ⎛ ⎝⎭⎝⎭. 【点睛】本题考查了因式分解和一元二次方程的知识,解题的关键是熟练掌握一元二次方程的性质,从而完成求解.16.(2022秋·上海金山·八年级校联考期末)在实数范围内分解因式:224x x −−=__.【答案】(11x x −−【详解】解:原式,()2215x x =−+−22(1)x =−−(11x x =−−故答案为:(11x x −+−【点睛】本题考查了因式分解,利用完全平方公式得出平方差公式是解题关键.17.(2022秋·上海·八年级校考期中)在实数范围内分解因式:2243x x −−___________.【答案】2x x ⎛ ⎝⎭⎝⎭ 【分析】根据公式法解22430x x −−=,得出22x =,再根据因式分解即可得出答案.【详解】解:由22430x x −−=,得:22x =,原式232222x x x x ⎛⎛⎫=−−= ⎪ ⎝⎭⎝⎭⎝⎭,故答案为:2x x ⎛ ⎝⎭⎝⎭. 【点睛】本题考查了实数范围内分解因式,准确熟练地进行计算是解题的关键.18.(2022秋·上海普陀·八年级校考期中)在实数范围内分解因式:2226x xy y −−=_____________.【答案】2x y x y ⎛⎫⎛⎫ ⎪⎪ ⎪⎪⎝⎭⎝⎭ 【分析】先提取2,再将括号里面的式子配方,最后用平方差公式因式分解即可.【详解】解:2226x xy y −−221232x xy y ⎛⎫ ⎪⎝=−⎭− 222291923424x xy y y y ⎛⎫− ⎪⎝=−−⎭+ 22311224x y y ⎡⎤⎛⎫−⎢=⎥ ⎪⎝⎭⎢−⎥⎣⎦22322x y y ⎫=−⎪⎪⎝⎭⎡⎤⎛⎫⎢⎥− ⎪⎢⎥⎝⎭⎣⎦33222x y y x y y ⎛⎫⎛⎫=−− ⎪⎪ ⎪⎪⎝⎭⎝⎭2x y x y ⎛⎫⎛⎫= ⎪⎪ ⎪⎪⎝⎭⎝⎭.故答案为:2x y x y ⎛⎫⎛⎫ ⎪⎪ ⎪⎪⎝⎭⎝⎭ 【点睛】本题考查了利用公式法因式分解以及实数的概念,主要涉及完全平方公式以及平方差公式,熟记完全平方公式以及平方差公式是解题关键.三、解答题19.(2022秋·上海·八年级专题练习)在实数范围内分解因式:(1)422772x x +−;(2)4241036y y −−+.【答案】(1)())2833x +−+ (2)()(2229y y y −+【分析】(1)先利用十字相乘法分解,然后利用平方差公式法分解因式求解即可;(2)先提公因式,然后利用十字相乘法分解,然后利用平方差公式法分解因式求解即可.(1)原式()()22829x x =+−())2833x =+−+(2)原式为()4222518y y =−+−()()222292y y =−+−()(2=22+9y y y −−【点睛】此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法.因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.20.(2021秋·上海·八年级校考阶段练习)在实数范围内因式分解:22327x xy y −−【答案】3x y x y ⎛⎫⎛⎫ ⎪⎪ ⎪⎪⎝⎭⎝⎭【分析】先提公因式,再进行配方,运用平方差公式进行因式分解.【详解】解:22327x xy y −−22273()33x xy y =−− 222221173()3993x xy y y y =−+−−221223[()]33x y y =−−113()()33x y y x y y =−−3()()x y x y =. 【点睛】本题主要考查因式分解,熟练掌握因式分解的方法是解决本题的关键.21.(2022秋·八年级统考期中)在实数范围内因式分解:22236x xy y −−+【答案】2x y x y ⎛⎫⎛⎫− ⎪⎪ ⎪⎪⎝⎭⎝⎭【分析】求出关于x 的一元二次方程222360x xy y −−+=的解即可得出答案.【详解】解:解关于x 的一元二次方程222360x xy y −−+=, 得:x ==, ∴1x y=,2x y=,∴222362x xy y x y x y ⎛⎫⎛⎫−−+=− ⎪⎪ ⎪⎪⎝⎭⎝⎭.【点睛】本题考查实数范围内分解因式,掌握“()200ax bx c a ++=≠的两个根分别为1x 、2x ,则()()212++=−−ax bx c a x x x x ”是正确解答的关键.22.(2022秋·上海青浦·八年级校考期中)在实数范围内因式分解:22323x xy y−−.【答案】3x y x y ⎛⎫⎛⎫ ⎪⎪ ⎪⎪⎝⎭⎝⎭【详解】解:22323x xy y −−=2223()3x xy y −−=22221103()399x xy y y −+−221103()39x y y ⎡⎤=−−⎢⎥⎣⎦11333x y y x y ⎛⎫⎛⎫=−− ⎪⎪ ⎪⎪⎝⎭⎝⎭3x y x y ⎛⎫⎛⎫= ⎪⎪ ⎪⎪⎝⎭⎝⎭.【点睛】本题主要考查因式分解,熟练掌握用配方法进行因式分解是解决本题的关键.23.(2022秋·上海普陀·八年级校考期中)在实数范围内因式分解:223105x y xy ++.【答案】xy xy ⎡⎡⎣⎣.【分析】把223x y 化为222252x y x y −,则利用完全平方公式得到原式()222512xy x y =+−,然后利用平方差公式分解因式.【详解】解:原式222251052x y xy x y =++− ()22225212x y xy x y =++−()222512xy x y =+−))11xy xy ⎤⎤=++⎦⎦xy xy ⎡⎡=⎣⎣故答案为:xy xy ⎡⎡⎣⎣ 【点睛】本题考查了实数范围内分解因式:一些式子在有理数的范围内无法分解因式,可是在实数范围内就可以继续分解因式.通过补项配成完全平方公式是解决问题的关键. 24.(2022秋·上海·八年级上海市黄浦大同初级中学校考阶段练习)在实数范围内因式分解:2222x xy y −++【答案】24x y x y ⎛⎫⎛⎫− ⎪⎪ ⎪⎪⎝⎭⎝⎭【分析】列出关于x 的一元二次方程,求得方程的根,再根据方程的根写出因式分解的结果即可【详解】解:∵关于x 的一元二次方程为:22022x xy y ++=−,∵()22224422170b ac y y y ∆=−=−⨯−⨯=≥,∴x y ==, ∴1x y =,2x y=,∴22222x xy y x y x y ⎛⎫⎛⎫=− ⎪⎪ ⎪⎪⎝⎭⎝+⎭−+【点睛】本题考查了实数范围内因式分解,掌握“若一元二次方程()200ax bx c a ++=≠的两个实数根为1x ,2x ,则()()212++=−−ax bx c a x x x x ”是解决问题的关键. 25.(2022秋·上海·八年级专题练习)在实数范围内因式分解(1)2442y y +−;(2)2235x xy y −−.【答案】(1)(2121y y ++;(2)3x x y ⎛⎫⎛⎫ ⎪⎪ ⎪⎪⎝⎭⎝⎭【分析】(1)先拆项,再根据完全平方公式变形,最后根据平方差公式分解即可;(2)首先解方程得出方程的根进而分解因式.【详解】解:(1)2442y y +−=24413y y ++−=()2213y +−=(2121y y ++;(2)令2235x xy y −−=0, ()()22254337y y y =−−⨯⨯−=△,∴x =,∴x 或x =,∴2235x xy y −−=3x y x ⎛⎫⎛⎫ ⎪⎪ ⎪⎪⎝⎭⎝⎭.。
专题复习:因式分解
专题因式分解☞解读考点☞2年中考 【2015年题组】1.(2015北海)下列因式分解正确的是( )A .24(4)(4)x x x -=+-B .221(2)1x x x x ++=++C .363(6)mx my m x y -=-D .242(2)x x +=+ 【答案】D .考点:1.因式分解-运用公式法;2.因式分解-提公因式法.2.(2015贺州)把多项式22344x y xy x --分解因式的结果是( ) A .34()xy x y x -- B .2(2)x x y -- C .22(44)x xy y x -- D .22(44)x xy y x --++ 【答案】B . 【解析】试题分析:原式=22(44)x x xy y --+=2(2)x x y --,故选B .考点:提公因式法与公式法的综合运用.3.(2015宜宾)把代数式3231212x x x -+分解因式,结果正确的是( )A .23(44)x x x -+B .23(4)x x - C .3(2)(2)x x x +-D .23(2)x x -【答案】D . 【解析】试题分析:原式=23(44)x x x -+=23(2)x x -,故选D .考点:提公因式法与公式法的综合运用. 4.(2015毕节)下列因式分解正确的是( )A .4322269(69)a b a b a b a b a a -+=-+ B .2211()42x x x -+=-C .2224(2)x x x -+=-D .224(4)(4)x y x y x y -=+- 【答案】B . 【解析】试题分析:A .4322269(69)a b a b a b a b a a -+=-+=22(3)a b a -,错误;B .2211()42x x x -+=-,正确;C .224x x -+不能分解,错误;D .224(2)(2)x y x y x y -=+-,错误; 故选B .考点:1.因式分解-运用公式法;2.因式分解-提公因式法. 5.(2015临沂)多项式2mxm -与多项式221x x -+的公因式是()A .1x -B .1x +C .21x - D .()21x -【答案】A .考点:公因式.6.(2015枣庄)如图,边长为a ,b 的矩形的周长为14,面积为10,则22a b ab +的值为( )A .140B .70C .35D .24 【答案】B . 【解析】试题分析:根据题意得:a+b=14÷2=7,ab=10,∴22a b ab +=ab (a+b )=10×7=70;故选B . 考点:因式分解的应用.7.(2015烟台)下列等式不一定成立的是( )A 0)a a b b b =≠B .3521a a a -•= C .224(2)(2)a b a b a b -=+- D .326(2)4a a -=【答案】A .考点:1.二次根式的乘除法;2.幂的乘方与积的乘方;3.因式分解-运用公式法;4.负整数指数幂.8.(2015杭州)下列各式的变形中,正确的是( )A .22()()x y x y x y ---+=- B .11xx xx --= C .2243(2)1x x x -+=-+ D .21()1x x x x ÷+=+【答案】A . 【解析】试题分析:A .22()()x y x y x y ---+=-,正确;B .211x x x x --=,错误; C .2243(2)1x x x -+=--,错误; D .21()1x x x x ÷+=+,错误;故选A .考点:1.平方差公式;2.整式的除法;3.因式分解-十字相乘法等;4.分式的加减法.9.(2015南京)分解因式()(4)a b a b ab --+的结果是 .【答案】2(2)a b -.【解析】试题分析:()(4)a b a b ab --+=2254a ab b ab -++=2244a ab b -+=2(2)a b -.故答案为:2(2)a b -.考点:因式分解-运用公式法.10.(2015巴中)分解因式:2242a a -+= .【答案】22(1)a -.【解析】试题分析:原式=22(21)a a -+=22(1)a -.故答案为:22(1)a -.考点:提公因式法与公式法的综合运用. 11.(2015绵阳)在实数范围内因式分解:23x y y -= .【答案】)3)(3(-+x x y . 【解析】试题分析:原式=2(3)y x -=)3)(3(-+x x y ,故答案为:)3)(3(-+x x y .考点:实数范围内分解因式. 12.(2015内江)已知实数a ,b 满足:211a a +=,211b b +=,则2015a b-|= .【答案】1.考点:1.因式分解的应用;2.零指数幂;3.条件求值;4.综合题;5.压轴题.13.(2015北京市)分解因式:325105x x x -+= .【答案】25(1)x x -.【解析】试题分析:原式=25(21)x x x -+=25(1)x x -.故答案为:25(1)x x -.考点:提公因式法与公式法的综合运用.14.(2015甘南州)已知210a a --=,则322015a a a --+= .【答案】2015. 【解析】试题分析:∵210a a --=,∴21a a -=,∴322015a a a --+=2()+2015a a a a --=2015a a -+=2015,故答案为:2015.考点:1.因式分解的应用;2.条件求值;3.代数式求值;4.综合题.15.(2015株洲)因式分解:2(2)16(2)x x x ---= .【答案】(2)(4)(4)x x x -+-. 【解析】试题分析:原式=2(2)(16)x x --=(2)(4)(4)x x x -+-.故答案为:(2)(4)(4)x x x -+-.考点:提公因式法与公式法的综合运用. 16.(2015东营)分解因式:2412()9()x y x y +-+-= .【答案】2(332)x y -+.考点:因式分解-运用公式法.17.(2015菏泽)若2(3)()x x m x x n ++=-+对x 恒成立,则n= .【答案】4. 【解析】试题分析:∵2(3)()x x m x x n ++=-+,∴22(3)3x x m x n x n ++=+--,故31n -=,解得:n=4.故答案为:4.考点:因式分解-十字相乘法等.18.(2015重庆市)如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数称为“和谐数”.例如自然数12321,从最高位到个位依次排出的一串数字是:1,2,3,2,1,从个位到最高位依次排出的一串数字仍是:1,2,3,2,1,因此12321是一个“和谐数”,再加22,545,3883,345543,…,都是“和谐数”. (1)请你直接写出3个四位“和谐数”;请你猜想任意一个四位“和谐数”能否被11整除? 并说明理由;(2)已知一个能被11整除的三位“和谐数”,设其个位上的数字x (1≤x≤4,x 为自然数),十位上的数字为y ,求y 与x 的函数关系式.【答案】(1)四位“和谐数”:1221,1331,1111,6666…(答案不唯一),能;(2)y=2x(1≤x≤4,x为自然数).考点:1.因式分解的应用;2.规律型:数字的变化类;3.新定义.【2014年题组】1.(2014年常德中考)下面分解因式正确的是()A.x2+2x+1=x(x+2)+1 B. (x2﹣4)x=x3﹣4xC. ax+bx=(a+b)xD. m2﹣2mn+n2=(m+n)2【答案】C.【解析】试题分析:A 、x2+2x+1=x (x+2)+1,不是因式分解,故错误;B 、(x2﹣4)x=x3﹣4x ,不是因式分解,故错误;C 、ax+bx=(a+b )x ,是因式分解,故正确;D 、m2﹣2mn+n2=(m ﹣n )2,故错误.故选C . 考点:1.因式分解-运用公式法;2.因式分解-提公因式法. 2.(2014年海南中考)下列式子从左到右变形是因式分解的是( ) A .()2a 4a 21a a 421+-=+- B .()()2a 4a 21a 3a 7+-=-+C .()()2a 3a 7a 4a 21-+=+-D .()22a 4a 21a 225+-=+-【答案】B .考点:因式分解的意义.3.(2014年无锡中考)分解因式:x3﹣4x= . 【答案】()()x x 2x 2+-. 【解析】 试题分析:()()()32x 4x x x 4x x 2x 2-=-=+-.考点:提公因式法和应用公式法因式分解.4.(2014年株洲中考)分解因式:x2+3x (x ﹣3)﹣9= 【答案】(x ﹣3)(4x+3). 【解析】试题分析: x2+3x (x ﹣3)﹣9=x2﹣9+3x (x ﹣3)=(x ﹣3)(x+3)+3x (x ﹣3)=(x ﹣3)(x+3+3x ) =(x ﹣3)(4x+3). 考点:因式分解.5.(2014年徐州中考)若ab=2,a ﹣b=﹣1,则代数式a2b ﹣ab2的值等于 . 【答案】﹣2. 【解析】试题分析:∵ab=2,a ﹣b=﹣1,∴a2b ﹣ab2=ab (a ﹣b )=2×(﹣1)=﹣2.考点:1.求代数式的值;2.提公因式法因式分解;3.整体思想的应用.6.(2014年眉山中考)分解因式:225xy x -=__________________.【答案】x (y+5)(y ﹣5). 【解析】试题分析:原式=x (y2﹣25)=x (y+5)(y ﹣5). 考点:提公因式法与公式法的综合运用. 7.(2014年绍兴中考)分解因式:2aa - = .【答案】()a a 1-.【解析】 试题分析:()2a a a a 1-=-.考点:提公因式法因式分解. 8.(2014年台州中考)因式分解3a 4a -的结果是 .【答案】()()a a 2a 2+-.考点:提公因式法和应用公式法因式分解. 9.(2014年泸州中考)分解因式:23a 6a 3++= .【答案】()23a 1+.【解析】 试题分析:()()2223a 6a 33a 2a 13a 1++=++=+.考点:提公因式法和应用公式法因式分解.10.(2014年北海中考)因式分解:x2y ﹣2xy2= . 【答案】()xy x 2y -.【解析】 试题分析:()22x y 2xy xy x 2y -=-.考点:提公因式法因式分解. ☞考点归纳归纳 1:因式分解的有关概念 基础知识归纳:因式分解:把一个多项式化成几个整式的积的形式,叫做因式分解,因式分解与整式乘法是互逆运算. 注意问题归纳:符合因式分解的等式左边是多项式,右边是整式积的形式. 2.因式分解与整式乘法是互逆运算.【例1】下列式子从左到右变形是因式分解的是( )()2a 4a 21a a 421+-=+- B .()()2a 4a 21a 3a 7+-=-+ C .()()2a 3a 7a 4a 21-+=+- D .()22a 4a 21a 225+-=+-【答案】B .考点:因式分解的有关概念. 归纳 2:提取公因式法分解因式 基础知识归纳:将多项式各项中的公因式提出来这个方法是提公因式法,公因式系数是各项系数的最大公约数,相同字母取最低次幂. 提取公因式法:ma +mb -mc=m (a+b-c ) 注意问题归纳: 提公因式要注意系数; 要注意查找相同字母,要提净.【例2】若ab=2,a ﹣b=﹣1,则代数式a2b ﹣ab2的值等于 . 【答案】﹣2.考点:因式分解-提公因式法.【例3】因式分解:2a 3ab += .【答案】()a a 3+.【解析】()2a 3ab a a 3+=+.考点:因式分解-提公因式法.归纳 3:运用公式法分解因式基础知识归纳:运用平方差公式:a2-b2=(a+b)(a-b);运用完全平方公式:a2±2ab+b2=(a±b)2.注意问题归纳:首先要看是否有公因式,有公因式必须要先提公因式,然后才能运用公式,注意公式的特点,要选项择合适的方法进行因式分解.【例4】3x2y-27y= ;【答案】3y(x+3)(x-3).【解析】原式=3y(x2-9)=3y(x+3)(x-3).考点:提公因式法与公式法的综合运用.【例5】将多项式m2n-2mn+n因式分解的结果是.【答案】n(m-1)2.【解析】m2n-2mn+n,=n(m2-2m+1),=n(m-1)2.考点:提公因式法与公式法的综合运用.归纳 4:综合运用多种方法分解因式基础知识归纳:因式分解的步骤为:一提公因式;二看公式.公式包括平方差公式与完全平方公式,要能用公式法分解必须有平方项,如果是平方差就用平方差公式来分解,如果是平方和需要看还有没有两数乘积的2倍,如果没有两数乘积的2倍还不能分解.解答这类题时一些学生往往因分解因式的步骤、方法掌握不熟练,对一些乘法公式的特点记不准确而误选其它选项.注意问题归纳:可以提取公因式的要先提取公因式,注意一定要分解彻底.【例6】分解因式:x2+3x(x﹣3)﹣9=【答案】(x﹣3)(4x+3).考点:因式分解-分组分解法.【例】7分解因式:x3-5x2+6x=【答案】x(x-3)(x-2).【解析】x3-5x2+6x=x(x2-5x+6)=x(x-3)(x-2).考点:因式分解-十字相乘法.☞1年模拟1.(2015届四川省成都市外国语学校中考直升模拟)若多项式x4+mx3+nx-16含有因式(x-2)和(x-1),则mn的值是()A.100 B.0 C.-100 D.50 【答案】C.【解析】试题分析:设x4+mx3+nx-16=(x-1)(x-2)(x2+ax+b),则x4+mx3+nx-16=x4+(a-3)x3+(b-3a+2)x2+(2a-3b)x+2b.比较系数得:a-3=m,b-3a+2=0,2a-3b=n,2b=-16,解得:a=-2,b=-8,m=-5,n=20,所以mn=-5×20=-100.故选C.考点:因式分解的意义.2.(2015届广东省佛山市初中毕业班综合测试)因式分解2x2-8的结果是()A.(2x+4)(x-4) B.(x+2)(x-2)C.2 (x+2)(x-2) D.2(x+4)(x-4)【答案】C.【解析】试题分析:2x2-8=2(x2-4)2(x+2)(x-2).故选C.考点:提公因式法与公式法的综合运用.3.(2015届河北省中考模拟二)现有一列式子:①552-452;②5552-4452;③55552-44452…则第⑧个式子的计算结果用科学记数法可表示为()A.1.1111111×1016 B.1.1111111×1027C.1.111111×1056 D.1.1111111×1017【答案】D.考点:1.因式分解-运用公式法;2.科学记数法—表示较大的数. 4.(2014-2015学年山东省潍坊市诸城市实验中学中考三模)分解因式:2x2﹣12x+32= . 【答案】2(x ﹣8)(x+2). 【解析】试题分析:原式提取2,再利用十字相乘法分解,原式=2(x2﹣6x+16)=2(x ﹣8)(x+2).故答案为:2(x ﹣8)(x+2). 考点:提公因式法与公式法的综合运用.5.(2015届北京市平谷区中考二模)把a ﹣4ab2分解因式的结果是 .【答案】a (1+2b )(1﹣2b ). 【解析】试题分析:先提取公因式,再利用平方差公式法,进而分解因式得出即可.考点:提公因式法与公式法的综合运用. 6.(2015届北京市门头沟区中考二模)分解因式:29ax a -= .【答案】(3)(3)a x x -+. 【解析】试题分析:29ax a - =2(9)a x -=(3)(3)a x x -+.故答案为:(3)(3)a x x -+.考点:提公因式法与公式法的综合运用.7.(2015届四川省成都市外国语学校中考直升模拟)若a2-3a+1=0,则3a3-8a2+a+231a = .【答案】2.考点:1.因式分解的应用;2.条件求值.8.(2015届安徽省安庆市中考二模)因式分解:﹣3x2+3x ﹣= .【答案】﹣3(x ﹣21)2. 【解析】试题分析:原式=﹣3(x2﹣x+41)=﹣3(x ﹣21)2.故答案为:﹣3(x ﹣21)2.考点:提公因式法与公式法的综合运用.9.(2015届山东省威海市乳山市中考一模)分解因式:a3b-2a2b2+ab3= . 【答案】ab (a-b )2. 【解析】试题解析:a3b-2a2b2+ab3=ab (a2-2ab+b2)=ab (a-b )2.故答案为:ab (a-b )2.考点:提公因式法与公式法的综合运用.10.(2015届山东省济南市平阴县中考二模)分解因式:3ax2-3ay2= .【答案】3a(x+y)(x-y).【解析】试题分析:3ax2-3ay2=3a(x2-y2)=3a(x+y)(x-y).故答案为:3a (x+y)(x-y).考点:提公因式法与公式法的综合运用.11.(2015届山东省聊城市中考模拟)因式分解:4a3-12a2+9a= .【答案】a(2a-3)2.【解析】试题分析:4a3-12a2+9a=a(4a2-12a+9)=a(2a-3)2.故答案为:a (2a-3)2.考点:提公因式法与公式法的综合运用.12.(2015届山东省潍坊市昌乐县中考一模)把3x3-6x2y+3xy2分解因式的结果是.【答案】3x(x-y)2.考点:提公因式法和公式法的综合运用.13.(2015届广东省广州市中考模拟)分解因式:x2+xy= .【答案】x(x+y).【解析】试题分析:x2+xy=x(x+y).故答案为:x(x+y).考点:因式分解-提公因式法.14.(2015届广东省深圳市龙华新区中考二模)因式分解:2a3-8a= .【答案】2a(a+2)(a-2).【解析】试题分析:2a3-8a=2a(a2-4)=2a(a+2)(a-2).故答案为:2a(a+2)(a-2).考点:提公因式法与公式法的综合运用.15.(2015届江苏省南京市建邺区中考一模)若a-b=3,ab=2,则a2b-ab2= .【答案】6.【解析】试题分析:∵a-b=3,ab=2,∴a2b-ab2=ab(a-b)=2×3=6.故答案为:6.考点:因式分解-提公因式法.16.(2015届河北省中考模拟二)若M=(2015-1985)2,O=(2015-1985)×(2014-1986),N=(2014-1986)2,则M+N-2O的值为.【答案】4.【解析】试题分析:∵M=(2015-1985)2,O=(2015-1985)×(2014-1986),N=(2014-1986)2,∴M+N-2O=(2015-1985)2-2(2015-1985)×(2014-1986)+(2014-1986)2=[(2015-1985)-(2014-1986)]2=4.故答案为:4.考点:因式分解-运用公式法.17.(2015届浙江省宁波市江东区4月中考模拟)分解因式:a3﹣9a= .【答案】a(a+3)(a﹣3).考点:提公因式法与公式法的综合运用.18.(2015届湖北省黄石市6月中考模拟)分解因式:xy2﹣2xy+x=__________.【答案】x(y-1)2.【解析】试题分析:先提公因式x,再对剩余项利用完全平方公式分解因式.即xy2-2xy+x=x(y2-2y+1)=x(y-1)2.故答案为:x(y-1)2.考点:提公因式法与公式法的综合运用.19.(2015届浙江省宁波市江东区4月中考模拟)如图1是一种包装盒的表面展开图,将它围起来可得到一个几何体的模型.(1)这个几何体模型的名称是.(2)如图2是根据a,b,h的取值画出的几何体的主视图和俯视图(图中实线表示的长方形),请在网格中画出该几何体的左视图.(3)若h=a+b,且a,b满足14a2+b2﹣a﹣6b+10=0,求该几何体的表面积.【答案】(1)长方体或底面为长方形的直棱柱;(2)图形略;(3)62.考点:1.因式分解的应用;2.由三视图判断几何体;3.作图-三视图.。
二次三项式的因式分解
(2) (x 5x 3)( x 5x 5) 63
5 73 5 73 ( x 4)( x 1)( x )( x ) 2 2
(3) (x 1)( x 2)( x 3)( x 4) 24
1 33 1 33 ( x 3)( x 2)( x )( x ) 2 2
2
( 8 y ) 2 - 4创 2 (5 y 2 ) 8 y 2 6 y 4 6 y 4 2 2´ 2
2
4 6 4 6 2 x 8 xy 5 y 2( x y)(x y) 2 2
不要漏了y
注意:1.因式分解是恒等变形,所以公式
ax2 bx c a( x x1 )( x x2 )
9 ___________ 。 16 a
4、如果x2 – ax – 8(a是实数)在整数范围内
, 2, – 7, – 。 2 可以分解因式,则a的值是 7 ___________
当m为何值时,二次三项式 x2 +mx + m + 3 (1)在实数范围内能分解;(2)不能分解; (3)是一个完全平方式
把 5 x 2 4 x 8 分解因式
解: 方程5 x 2 4 x 8 0的根是 4 42 4 5 (8) 4 176 2 2 11 x 25 10 5
2 2 11 2 2 11 5 x 4 x 8 5( x )( x ) 5 5
x1 = – 1,x2 = 0.5,那么二次三项式 3x2 +kx + 1
2、已知二次三项式2x2 + bx + c分解因式为
– 4 ,c = ______ –6 。 2(x – 3)(x + 1),则b = ______
沪教版(五四学制)数学八上 17.4-1二次三项式的因式分解 教案(表格式)
2.二次三项式 因式分解的条件是:
当 ,二次三项式 在实数范围内可以分解;
当 时,二次三项式 在实数范围内不可以分解.
五、作业:
练习册:习题17.4(1)
学生解答上面两道题目,观察、思考两题的区别和联系
学生练习
方法探究:通过推导公式验证上一步的猜想
教师边引导边板书,学生回答
注意解题格式
难点
正确应用公式法分解二次三项式。
教具准备
多媒体课件
教学过程
教师活动
学生活动
一、复习:
1.把下列各式因式分解
(1) (2)
2. 解下列方程
(1)
(2)
从上面的题目中可以看出,方程的两个跟为 时,一般式
3.把下列各式分解因式
(1)
(2)
想一想,如何分解?
解(1):方程 的根是
即: ,
第(2)题让学生练习,然后加以分析
再写出分解式
②如果b -4ac<0,那么方程ax +bx+c=0(a≠0)没有实数根,ax +bx+c在实数范围内不能分解因式.
问:解方程 得
因式分解 对吗?
(二)例题分析:
例习:
课本P45/1-3
四、小结:
1.这节课我们学习了二次三项式 在实数范围内因式分解的方法,方法是:先求出二次三项式 的两个根 、 ,
_月__日 星期__第__周
课题
17.4-1二次三项式的因式分解式
课 型
新授
教 时
1
教学
目标
1.理解二次三项式的分解式与一元二次方程的根之间的联系。
2.利用一元二次方程的求根公式在实数范围内将二次三项式分解因式。
二次三项式的因式分解讲义
二次三项式的因式分解一、 知识梳理:1、因式分解的定义;2、因式分解的方法;3、在实数范围内分解的条件。
二、例题讲解与练习:例、解下列方程: 因式分解:思考: 步骤:1、设 练习1:在实数范围内分解因式:1、 2、3、 4、练习2:在实数范围内分解因式:1、 2、3、 034206420124042222=-+=-+=-+=-x x x x x x x 34264212442222-+-+-+-x x x x x x x 进行因式分解如何对)0(2≠++a c bx ax a acb b x a ac b b x c bx ax 24,240222212---=-+-==++的根、解出方程中去到、把求得的两个根代入))((3212x x x x a c bx ax --=++231x x --11、2273x x ++12、31252--m m 2)61(32+++y y 222162)7(2)8x x x x ----、(42215_______________________________.x x +-=内分解因式:2224x ax a +-13、302=++c bx ax练习3:在实数范围内分解因式:1、 2、3、练习4:在实数范围内分解因式:1、2、练习5:练习6:思考:如果关于x 的二次三项式 ( 是整数)在整数范围内可以因式分解,求 的值。
2243x xy y --14、242340_______________________________x x --=内分解因式:2225)9(5)18x x x x -+-+16、(223x m --15、2244yxy x +--.,),)(5(202的值求可分解为可的二次三项式若关于q k q x x kx x x -+++.?,)3(?,)2(?,)1(,2432写出这个完全平方式式能分解成一个完全平方为何值时当在实数范围内不能分解为何值时当解在实数范围内能因式分为何值时当的二次三项式已知关于k k k k x x x +-a ax x 82--a a。
第10讲 二次三项式的因式分解(原卷版)-【暑假预习】2024年新八年级数学核心知识点与常见题型通关
第10讲 二次三项式的因式分解【知识梳理】二次三项式的因式分解(1)形如()2ax bx c a b c ++,,都不为零的多项式称为二次三项式;(2)如果一元二次方程20ax bx c ++=(0)a ≠的两个根是1x 和2x , 那么二次三项式的分解公式为:2ax bx c ++()()12a x x x x =--.,【考点剖析】题型一:两根与二次三项式因式分解关系例1.若方程24210y y --=的两个根是1y =2y =2421y y --=____________.【变式1】若二次三项式)0(2≠++a c bx ax 在实数范围内可分解因式为)221)(221(3-++--x x ,则一元二次方程)0(02≠=++a c bx ax 的两个实数根为________________.题型二:不能在实数范围内因式分解的二次三项式例2.下列二次三项式在实数范围内不能因式分解的是(,,,,,,)A.2615x x +-;,,,,,,,,,,,,,,,,,,,,,B.,2373y y ++;,,,,,,,,,C.2224x x --;,,,,,,,,,,,,,,,,,,,,,D.2245y y -+.【变式1】下列二次三项式在实数范围内不能因式分解的是(,,,,,)A.1562-+x x ,,,,,B.3732++y y ,,,,,C.422--x x ,,,,,D.22542y xy x +-【变式2】下列二次三项式在实数范围内不能因式分解的是(,,,,,,)A.2411x x +-;,,B.,2373y y ++;,,,,C.,224x x --;,,,D.,22245x xy y -+.【变式3】如果关于x 的二次三项式24x x m -+在实数范围内不能因式分解,那么m 的值可以是_________.(填出符合条件的一个值)题型三:二次项系数为1的实数范围内二次三项式因式分解例3.在实数范围内分解因式:241x x --=______________【变式1】在实数范围内分解因式:232x x --=,,,,,,,,,,,,,,,,,,,,.【变式2】在实数范围内分解因式:243x x --=,____________________.【变式3】在实数范围内分解因式:(1)224x x --;(2)223x xy y --.题型四:二次项系数不为1的实数范围内二次三项式因式分解例4.二次三项式2x 2-8x+5在实数范围内因式分解为(,,,,)A.,(x+22B.,(x-)(x-)22C.,D., 【变式1】在实数范围内因式分解:222x x --=__________________.【变式2】在实数范围内因式分解:2221x x --=______.【变式3】在实数范围内分解因式:2225x x --=____.【变式4】分解因式:2235a ab b --.题型五:实数范围内二次三项式因式分解的应用例5.如果二次三项式px 2+2x ﹣1在实数范围内可以因式分解,求p 的取值范围.【变式1】二次三项式2342x x k -+,当k 取何值时,(1)在实数范围内能分解;(2)不能分解;(3)能分解成一个完全平方式,这个完全平方式是什么?【变式2】阅读题:分解因式:223x x --.解:原式22113x x =++--,,,,,,,,()2214x x =++-,,,,,,,,()214x =+-,,,,,,,,()()1212x x =+++-,,,,,,,,()()31x x =+-.此方法是抓住二次项和一次项的特点,然后加一项,使这三项为完全平方式,我们称这种方法为配方法.此题为用配方法分解因式.请体会配方法的特点,然后用配方法解决下列问题:在实数范围内分解因式:2441a a +-.,【过关检测】一、单选题1.(2022秋·上海浦东新·八年级统考期中)下列关于x 的二次三项式在实数范围内不能够因式分解的是( )2.(2023·上海·八年级假期作业)下列关于x 的二次三项式中,一定能在实数范围内因式分解的是( ) A .21x x -+ B .21x mx -+ C .21x mx -- D .22x xy y -+3.(2021秋·上海宝山·八年级校考期中)下列关于x 的二次三项式在实数范围内不能够因式分解的是( )A .x 2﹣3x +2B .2x 2﹣2x +1C .2x 2﹣xy ﹣y 2D .x 2+3xy +y 24.(2020秋·上海浦东新·八年级上海市实验学校校考期中)在实数范围内因式分解2223x xy y --,下列四5.(2022秋·上海嘉定·八年级统考期中)在实数范围内不能分解因式的是( )二、填空题7.(2022秋·上海·八年级上海市民办立达中学校考阶段练习)在实数范围内因式分解:2331x x +-=__________.8.(2022秋·上海松江·八年级校考期中)在实数范围内因式分解:223105x xy y ++=________. 9.(2022秋·上海浦东新·八年级统考期中)在实数范围内分解因式:233x x --=_____.10.(2022秋·上海黄浦·八年级上海市黄浦大同初级中学校考期中)在实数范围内分解因式:231--=x x _________________.11.(2022秋·上海杨浦·八年级校考期中)在实数范围内分解因式237x x --=_______.12.(2022秋·上海·八年级上海市进才实验中学校考期中)若二次三项式234ax x ++在实数范围内能因式分解,则a 的最大整数解为______.13.(2022秋·上海黄浦·八年级上海外国语大学附属大境初级中学校考期中)在实数范围内因式分解:223105x y xy ++=______.14.(2022秋·上海宝山·八年级上海市泗塘中学校考期中)在实数范围内因式分解:22231x y xy --=__________15.(2022秋·上海长宁·八年级上海市第三女子初级中学校考期中)在实数范围内因式分解:2231x x +-=_____.16.(2022秋·上海金山·八年级校联考期末)在实数范围内分解因式:224x x --=__.17.(2022秋·上海·八年级校考期中)在实数范围内分解因式:2243x x --___________. 18.(2022秋·上海普陀·八年级校考期中)在实数范围内分解因式:2226x xy y --=_____________.三、解答题19.(2022秋·上海·八年级专题练习)在实数范围内分解因式:(1)422772x x +-;(2)4241036y y --+.20.(2021秋·上海·八年级校考阶段练习)在实数范围内因式分解:22327x xy y --21.(2022秋·八年级统考期中)在实数范围内因式分解:22236x xy y --+22.(2022秋·上海青浦·八年级校考期中)在实数范围内因式分解:22323x xy y --.23.(2022秋·上海普陀·八年级校考期中)在实数范围内因式分解:223105x y xy ++.24.(2022秋·上海·八年级上海市黄浦大同初级中学校考阶段练习)在实数范围内因式分解:2222x xy y -++25.(2022秋·上海·八年级专题练习)在实数范围内因式分解(1)2442y y +-;(2)2235x xy y --.。
因式分解知识点归纳复习过程
因式分解知识点归纳考点四、十字相乘法(1)二次项系数为1的二次三项式2x px q ++中,如果能把常数项q 分解成两个因式a b 、的积,并且a b +等于一次项系数p 的值,那么它就可以把二次三项式2x px q++分解成()()()b x a x ab x b a x q px x ++=+++=++22例题讲解1、分解因式:652++x x分析:将6分成两个数相乘,且这两个数的和要等于5。
由于6=2×3=(-2)×(-3)=1×6=(-1)×(-6),从中可以发现只有2×3的分解适合,即2+3=51 2解:652++x x =32)32(2⨯+++x x 1 3=)3)(2(++x x 1×2+1×3=5用此方法进行分解的关键:将常数项分解成两个因数的积,且这两个因数的代数和要等于一次项的系数。
例题讲解2、分解因式:672+-x x解:原式=)6)(1()]6()1[(2--+-+-+x x 1 -1=)6)(1(--x x 1 -6(-1)+(-6)= -7练习分解因式(1)24142++x x (2)36152+-a a (3)542-+x x(4)22-+x x (5)1522--y y (6)24102--x x2、二次项系数不为1的二次三项式——c bx ax ++2条件:(1)21a a a = 1a 1c(2)21c c c = 2a 2c(3)1221c a c a b += 1221c a c a b +=分解结果:c bx ax ++2=))((2211c x a c x a ++例题讲解1、分解因式:101132+-x x分析: 1 -23 -5(-6)+(-5)= -11解:101132+-x x =)53)(2(--x x分解因式:(1)6752-+x x (2)2732+-x x。
初三数学 二次三项式的因式分解(用公式法) 知识全析 人教义务版
数学 二次三项式的因式分解(用公式法)【学习目标】1.了解二次三项式的因式分解与解方程的关系.2.会利用一元二次方程的求根公式在实数范围内将二次三项式分解因式.【主体知识归纳】分解二次三项式ax 2+bx +c 时,先用公式法求出方程ax 2+bx +c =0(a ≠0)的两个实数根x 1、x 2,然后写成ax 2+bx +c =a (x -x 1)(x -x 2).【基础知识讲解】1.在利用一元二次方程的求根公式将一般的二次三项式分解因式时,有两点要特别注意:(1)要注意一元二次方程与二次三项式的区别与联系,例如方程3x 2-6x -12=0,可变形为x 2-2x -4=0,但在分解因式时,就绝不能写为3x 2-6x -12=x 2-2x -4.(2)当二次项系数不等于1时,不要漏写系数,例如分解因式2x 2-6x +4,先求出方程2x 2-6x +4=0的两根x 1=1,x 2=2,所以2x 2-6x +4=2(x -1)(x -2),若漏写系数写为2x 2-6x +4=(x -1)(x -2)就错了.2.二次三项式的因式分解均可采用公式法,但比较麻烦.因此,在进行二次三项式的因式分解时,应尽量采用“十字相乘法”,若行不通再用公式法.另外,还应注意因式分解的范围.如5x 2-5x +1在有理数范围内不可分解,而在实数范围内能分解.3.二次三项式ax 2+bx +c (a ≠0),当Δ=b 2-4ac ≥0时,在实数范围内能分解因式;当Δ<0时,在实数范围内不能分解因式.特别地,当a >0,Δ=0时,ax 2+bx +c 是一个完全平方式.【例题精讲】例1:把6x 2-11x -7分解因式.解法一:∵方程6x 2-11x -7=0的根是x =121711122891162)7(64)11()11(2±=±=⨯-⨯⨯-±-- 即x 1=37,x 2=-21. ∴6x 2-11x -7=6(x -37(x +21)=(3x -7)(2x +1). 解法二:6x 2-11x -7=(3x -7)(2x +1).例2:把6x 2+12xy +5y 2分解因式.剖析:本题可看作是关于x (或y )的二次三项式.先求出关于x (或y )的方程6x 2+12xy +5y 2=0的根,再借助于二次三项式的分解法进行分解.解:∵关于x 的方程6x 2+12xy +5y 2=0的根是x =y y y y y y 66612621262564)12(122±-=±-=⨯⨯⨯-±-2, ∴6x 2+12xy +5y 2=6(x -666+-y )(x -666--y )=6(x +666-y )(x +666+y ) 例3:在实数范围内分解因式(2x 2+3x )2-3(2x 2+3x )+2.剖析:此多项式若去括号化成一般形式,一是运算量大,二是增加了分解因式的难度(因为出现了四次式),通过观察分析,所给的多项式可看作是关于(2x 2+3x )的二次三项式,故考查用公式法或十字相乘法分解.解:(2x 2+3x )2-3(2x 2+3x )+2=(2x 2+3x -2)(2x 2+3x -1)=(2x -1)(x +2)·2(x -4173+-)(x -4173--) =2(2x -1)(x +2)(x +4173-)(x +4173+) 说明:在进行二次三项式分解因式时,要注意两种方法的灵活选择,一般来说,十字相乘法比较快捷,但适用的范围较窄,而公式法适用于一般的二次三项式,是通法.例4:关于x 的二次三项式3x 2-5x +2m -1, 问m 取何值时:(1)在实数范围内能分解因式;(2)在实数范围内不能分解因式.剖析:用公式法给出了一种分解二次三项式的一般方法,即通过解所对应的一元二次方程,得出根后才能分解.但方程有没有实数根需经过根的判别式判定.解:令3x 2-5x +2m -1=0,∴Δ=(-5)2-4×3×(2m -1)=37-24m . (1)当37-24m ≥0时,即m ≤2437时,二次三项式3x 2-5x +2m -1能在实数范围内分解因式. (2)当37-24m <0时,即m >2437时,二次三项式3x 2-5x +2m -1不能在实数范围内分解因式. 说明:一个二次三项式在实数范围内能不能因式分解,关键是其所对应的一元二次方程有没有实数解.【思路拓展题】及时复习 深化巩固孔子说过:“温故而知新”,讲述的就是要及时复习这样一个道理。
二次三项式,分解因式的技巧、窍门
二次三项式,分解因式的技巧、窍门二次三项式,ax" + bx + c ( a > 0 ),构成了中学数学的重点,一元二次方程ax" + bx + c = 0 和二次函数y = ax" + bx + c 。
解一元二次方程,通常也都是使用因式分解法。
二次三项式,分解因式通常使用【十字相乘法】,可是有些式子,使用十字相乘法,或许不知从何下手,我们看得不知所措,怎么办呢?我根据自己的经验,来讲讲自己“新一代”的方式方法,希望我们共同掌握技巧、窍门。
让我们一同探索奥秘,一同拿起新武器吧!工具/原料∙拆项分组分解因式,或者这样做草稿,分解因式就会感到方便轻松。
∙例题(1),x" ±10x ±24 ;∙例题(2),8x" ±52x ±60 ;∙配方法分解因式,解一元二次方程,对付复杂的式子,也是使用配方法。
①拆项分组分解法(1),x" ±10x ±24正如x" + (a+b)x + ab = ( x + a )( x + b ),先把单项式mx = (a+b)x 一分为二,变成ax + bx ,就能够分组,提公因式,进行分解了。
关键是看常数项的正负,决定一次项怎样一分为二:【】如果常数项是正数,一次项拆开两个项的绝对值,就都比原来小;【】如果常数项是负数,一次项的绝对值,就是拆开两个项的相差数。
2②一次项怎样一分为二,为什么要根据常数项的正负呢?我们看看 x" ±10x ±24 这个二次三项式。
它相当特别,一次项、常数项,都有正负两种情况。
一次项、常数项的绝对值不变,整个式子就有四种情况,具体的四个式子都能做因式分解。
只要把具体的四个式子都做一遍,我们就会发现:【】常数项不变,只是一次项变成相反数,一次项一分为二的绝对值就不变;【】一次项不变,只要常数项变成相反数,一次项就要改变一分为二的方式。
第12讲 二次三项式的因式分解及一元二次方程的应用(一)解析版
第12讲 二次三项式的因式分解及一元二次方程的应用(一)【学习目标】本节涉及的二次三项式的因式分解,是不能直接运用十字相乘法进行因式分解,针对此类的二次三项式要借助一元二次方程的知识进行解答.同时,通过本节的学习,充分了解二次三项式与其相对应的一元二次方程之间的联系.其次,会运用方程思想解决实际问题,重点问题找到题目中的等量关系,其中列方程思想是本节的重点内容.【基础知识】一、二次三项式的因式分解(1)形如的多项式称为二次三项式;(2)如果一元二次方程20ax bx c ++=的两个根是1x 和2x ,那么二次三项式的分解公式为:2ax bx c ++. 二、一元二次方程应用:利率问题 1、列一元二次方程解应用题的步骤:审题,设元,列方程,解方程,检验,写答句.注:解得一元二次方程的解后,一定需检验是否符合应用题的题意,若不合题意则舍去. 2、利率问题:利息=本金×年利率×期数×(1-利息税); 本利和=本金+利息=本金+本金×年利率×期数×(1-利息税)=本金×[1+年利率×期数×(1-利息税)] .【考点剖析】考点一:二次三项式的因式分解例1.若方程24210y y --=的两个根是1154y +=,2154y -=,则在实数范围内分解因式2421y y --=____________.【难度】★ 【答案】.【解析】如果一元二次方程20ax bx c ++=的两个根是1x 和2x ,那么二次三项式2ax bx c ++可分解为:2ax bx c ++.【总结】本题主要考查利用一元二次方程进行二次三项式的因式分解.例2.将2441x x --在实数范围内分解因式___________.【难度】★ 【答案】4.【解析】因为方程24410x x --=的两个根为:1122x +=,2122x -=,所以2441x x --=4. 【总结】考查如果一元二次方程20ax bx c ++=的两个根是1x 和2x ,那么二次三项式 2ax bx c ++可分解为:2ax bx c ++.例3.将2352x x -+在实数范围内因式分解,正确的结果是( )A .2(1)()3x x ++B .2(1)()3x x --C .23(1)()3x x -+D .【难度】★ 【答案】D【解析】考查如果一元二次方程20ax bx c ++=的两个根是1x 和2x ,那么二次三项式 的分解公式为:2ax bx c ++.【总结】本题可以利用公式进行分解,也可以根据选项,将每一个选项乘开之后进行判定.例4.若二次三项式)0(2≠++a c bx ax 在实数范围内可分解因式为)221)(221(3-++--x x ,则一元二次方程)0(02≠=++a c bx ax 的两个实数根为________________. 【难度】★ 【答案】2211+=x ,2122-=x . 【解析】如果一元二次方程20ax bx c ++=的两个根是1x 和2x ,那么二次三项式的分 解公式为:2ax bx c ++.【总结】本题主要考查二次三项式的因式分解与相对应的一元二次方程的根的关系.例5.在实数范围内分解因式: (1)28x -;(2)35x x -; (3)2328x x +-;(4)21130x x -+.【难度】★【答案】(1)(282222x x x -=-+; (2)(3555x x x x x -=;(3)()()232874x x x x +-=+-;(4)()()2113056x x x x -+=--.【解析】 (1)(2)中不能够用十字相乘法;(3)(4)可以用十字相乘法. 【总结】本题主要考查利用适当的方法对多项式进行因式分解.例6.在实数范围内分解因式: (1)426x x --; (2)42341x x -+.【难度】★【答案】(1)()()()4226233x x x x x --=++-;(2)()()423334131133x x x x x x ⎛⎫⎛⎫-+=+--+ ⎪⎪ ⎪⎪⎝⎭⎝⎭. 【解析】将表达式中的2x 看成一个整体,则可以进行十字相乘法或者求根公式法分解. 【总结】本题主要考查在实数范围内进行因式分解,注意分解要彻底.例7.在实数范围内分解因式: (1)241x x ++;(2)242x x --.【难度】★★【答案】(1)()()2412323x x x x ++=+++-;(2)()()2422626x x x x --=---+.【解析】如果一元二次方程20ax bx c ++=的两个根是1x 和2x ,那么二次三项式 2ax bx c ++可分解为:2ax bx c ++.【总结】本题主要考查利用一元二次方程进行二次三项式的因式分解.例8.在实数范围内分解因式: (1)2231x x +-; (2)2423x x +-; (3)2361x x -+;(4)2633x x +-.【难度】★★【答案】(1)23173172312x x x x ⎛+-+-=+ ⎝⎭⎝⎭;(2)21131134234x x x x ⎛+-+-= ⎝⎭⎝⎭; (3)236363613x x x x ⎛+--+= ⎝⎭⎝⎭;(4)233633623x x x x ⎛⎫⎛⎫+-=+- ⎪⎪ ⎪⎪⎝⎭⎝⎭. 【解析】如果一元二次方程20ax bx c ++=的两个根是1x 和2x ,那么二次三项式 2ax bx c ++可分解为:2ax bx c ++.【总结】本题主要考查利用一元二次方程进行二次三项式的因式分解.例9.在实数范围内分解因式: (1)2621x x --+;(2)24411x x -++.【难度】★★【答案】(1)21717621666x x x x ⎛⎫⎛⎫+---+=-++ ⎪⎪ ⎪⎪⎝⎭⎝⎭;(2)21231234411422x x x x ⎛⎫⎛⎫+--++=--- ⎪⎪ ⎪⎪⎝⎭⎝⎭. 【解析】如果一元二次方程20ax bx c ++=的两个根是1x 和2x ,那么二次三项式 2ax bx c ++可分解为:2ax bx c ++.【总结】本题主要考查利用一元二次方程进行二次三项式的因式分解.例10.在实数范围内分解因式:(1)222x ax a --; (2)2231211x xy y ++; (3)2241x y xy +-;(4)22285x xy y -+.【难度】★★【答案】(1)()()22222x ax a x a a x a a --=--;(2)226363312113x xy y x y x y ⎛⎫⎛⎫+-++=++ ⎪⎪ ⎪⎪⎝⎭⎝⎭; (3)22117117414x y xy xy xy ⎛+-+-=+ ⎝⎭⎝⎭;(4)2246462852x xy y x y x y ⎛⎫⎛⎫+--+= ⎪⎪ ⎪⎪⎝⎭⎝⎭. 【解析】如果一元二次方程20ax bx c ++=的两个根是1x 和2x ,那么二次三项式2ax bx c ++可分解为:2ax bx c ++.【总结】本题主要考查利用一元二次方程进行二次三项式的因式分解.例11.二次三项式2342x x k -+,当k 取何值时, (1)在实数范围内能分解; (2)不能分解;(3)能分解成一个完全平方式,这个完全平方式是什么? 【难度】★★ 【答案】(1)32≤k ;(2)32>k ;(3)32=k ,完全平方式为.【解析】(1)要使二次三项式2342x x k -+在实数范围内能分解,则方程23420x x k -+=要有实数根,则需要满足()021242≥⋅--=∆k ,解得:32≤k ;(2)要使二次三项式2342x x k -+在实数范围内不能分解,则方程23420x x k -+=没有实数根,则需要满足()021242<⋅--=∆k ,解得:32>k ;(3)要使二次三项式2342x x k -+在实数范围内能分解成一个完全平方式,则方程23420x x k -+=有两个相等实数根,则需要满足()021242=⋅--=∆k ,解得:32=k .此时,完全平方式为.【总结】当一个二次三项不能在实数范围内分解因式时,则说明该二次三项式所对应的一元二次方程在实数范围内无解,反之,则说明该二次三项式所对应的一元二次方程有实数解. 考点二:一元二次方程应用:利率问题例1.某人想把10000元钱存入银行,存两年.一年定期年利率6%,两年定期年利率为6.2%.方式一:采用一年期的利率存一年后到期取出再存一年;方式二:一次性存两年再取出,问两种方式哪种划算? 【难度】★【答案】方式一划算.【解析】方式一:两年后可取出:()1123661100002=+%;方式二:两年后可取出:()100622.6110000=+%; ∵11236>10062,∴方式一划算.【总结】本题主要考查利率的应用,注意对两种不同存款方式的区分.例2.某人将1000元人民币按一年期存入银行,到期后将本金和利息再按一年期存入银行,两年后本金和利息共获1077.44元,则这种存款的年利率是多少?(注:所获利息应扣除5%的利息税,). 【难度】★ 【答案】4%.【解析】设这种存款的年利率是x ,由题意可列方程:, 则()07744.19512=+x %,解:038.1951±=+x %(负值舍去),04.0=x .答:这种存款的年利率是4%.【总结】注意要扣除利息税,则第一年的表达式为()x %9511000+,而不是()x +11000.例3.王红梅同学将1000元压岁钱第一次按一年定期存入“少儿银行”,到期后将本利和全部取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本利和共530元,求第一次存款时的年利率,只列式不计算.(不计利息税) 【难度】★★【答案】设第一次存款时的年利率为x ,则可列方程为:.【解析】注意年利率的变化.例4.李立购买了1500元的债券,定期1年,到期兑换后他用去了435元,然后把其余的钱又购买了这种债券定期1年(利率不变),再到期后他兑换得到1308元,求这种债券的年利率. 【难度】★★ 【答案】9%.【解析】设这种债券的年利率为x , 则可列方程为,化简可得:0818555002=-+x x ,分解可得:,解:591-=x (负值舍去),09.02=x .答:这种债券的年利率为9%.【总结】本题中需要注意对题意得理解以及解方程的方法.【过关检测】一、选择题1(2019浦东一署10月考4)下列二次三项式在实数范围内不能因式分解的是( ) A.2615x x +-; B. 2373y y ++; C.2224x x --; D.2245y y -+. 【答案】D ;【解析】解:A 、因为24146153610b ac -=+⨯⨯=>,故此二次三项式在实数范围内可以因式分解;B 、因为2449433130b ac -=-⨯⨯=>,故此二次三项式在实数范围内可以因式分解;C 、因为244424360b ac -=+⨯⨯=>,故此二次三项式在实数范围内可以因式分解;D 、因为2416425240b ac -=-⨯⨯=-<,故此二次三项式在实数范围内不能因式分解.故答案选D.2.(浦东南片2019期中4)下列二次三项式在实数范围内不能因式分解的是( ) A.1562-+x x B.3732++y y C.422--x x D.22542y xy x +- 【答案】D ;【解析】 解:A 、因为24146153610b ac -=+⨯⨯=>,故此二次三项式在实数范围内可以因式分解;B 、因为2449433130b ac -=-⨯⨯=>,故此二次三项式在实数范围内可以因式分解;C 、因为24444200b ac -=+⨯=>,故此二次三项式在实数范围内可以因式分解;D 、因为222241642524b ac y y y -=-⨯⨯=-,又因为二次三项式,故20,240y y ≠∴-<,故此二次三项式在实数范围内不能因式分解.故答案选D.3.(2019曹杨10月考4)下列二次三项式在实数范围内不能因式分解的是( ) A.2411x x +-; B. 2373y y ++; C. 224x x --; D. 22245x xy y -+. 【答案】D ;【解析】解:A 、因为24144111770b ac -=+⨯⨯=>,故此二次三项式在实数范围内可以因式分解;B 、因为2449433130b ac -=-⨯⨯=>,故此二次三项式在实数范围内可以因式分解;C 、因为24444200b ac -=+⨯=>,故此二次三项式在实数范围内可以因式分解;D 、因为222241642524b ac y y y -=-⨯⨯=-,又因为二次三项式,故20,240y y ≠∴-<,故此二次三项式在实数范围内不以因式分解.故答案选D.4.(青浦实验2019期中2)二次三项式2x 2-8x+5在实数范围内因式分解为( )A. B.C. 2(x+)(x-)22D. 2(x-)(x-22【答案】D ;【解析】解:令2x 2-8x +5=0,解得:x 1x 22x 2-8x +5=2(x x .故选D .二、填空题5.(浦东四署2020期末9)在实数范围内分解因式:232x x --= .【答案】3322x x ⎛⎫+-- ⎪ ⎪⎝⎭⎝⎭;【解析】解:因为方程2320x x --=的两根为x =,故232x x --=x x ⎛ ⎝⎭⎝⎭. 6.(青浦实验2019期中15)在实数范围内因式分解:222x x --=__________________.【答案】2(x x ;【解析】解:2220x x --=的解是114x +=,214x -=,所以222x x --=2(x x .7.(嘉定区2019期中12)在实数范围内分解因式:243x x --= ____________________.【答案】(22x x --;【解析】解:解方程x 2-x-3=0,得x=2±则:x 2-4x-3=(22x x --+.8.(西延安2019期中11)在实数范围内因式分解:2221x x --=______.【答案】2⎛ ⎝⎭⎝⎭x x ; 【解析】解:22122122x x x x ⎛⎫--=-- ⎪⎝⎭=21111222442x x ⎛⎫-⋅+-- ⎪⎝⎭=213224x ⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦==11222x x ⎛-- ⎝⎭⎝⎭=2x x ⎛ ⎝⎭⎝⎭. 9(徐教院附2019期中13)在实数范围内分解因式:241x x --=______________【答案】(22x x --;【解析】解:原式=2445x x -+-=()222x --=(22x x -+-.10(浦东新区2020期末10)在实数范围内分解因式:2225x x --=____.【答案】112(22x x ---+;【解析】解:2225x x --=21112()42x x -+-=21112()22x --=21112()24x ⎡⎤--⎢⎥⎣⎦11=2(22x x --,故答案为:112()()2222x x ---+. 11.(浦东南片2020期末9)如果关于x 的二次三项式24x x m -+在实数范围内不能因式分解,那么m 的值可以是_________.(填出符合条件的一个值) 【答案】5;【解析】解:当241640b ac m -=-<即4m >时,关于x 的二次三项式24x x m -+在实数范围内不能因式分解,如m 取5等等. 三、解答题12.(2019·上海八年级课时练习)在实数范围内分解因式:(1)224x x --;(2)223x xy y --.【答案】(1)(11x x -- (2)【分析】(1)前两项先配成完全平方公式,然后根据平方差公式,可得答案; (2)先解方程2230x xy y --=,然后分解因式即可.【详解】(1)原式=(x 2﹣2x +1)﹣5=(x ﹣1)22=(x ﹣1x ﹣1(2)∵2230x xy y --=的解是x y =,∴原式=. 【点睛】本题考查了因式分解,利用乘法公式和求根公式是解答本题的关键. 13.(浦东南片2019期中21)在实数范围内将关于x 的二次三项式因式分解: (1)231x x +- (2)2232y xy x --.【答案】(1)(x x ;(2)2()()x y x y ;【解析】 解:(1)令2310x x +-=,则9413∆=+=,所以1,232x -±=,故231(x x x x +-=;(2)令22230x xy y --=,则2229817y y y ∆=+=,所以1,234x y -±=,故22232()()x xy y x y x y +-=. 14.(2019曹杨10月考22)分解因式:2235a ab b --.【答案】;【解析】解:因为222=2543()370b b b ∆-⨯⨯-=≥,故方程22350a ab b --=的两根为a =,故22353a ab b a a ⎛⎫⎛⎫--= ⎪⎪ ⎪⎪⎝⎭⎝⎭.15.(2019上外10月考22)如果二次三项式px 2+2x ﹣1在实数范围内可以因式分解,求p 的取值范围. 【答案】p ≥﹣1且p ≠0;【解析】解:∵二次三项式px 2+2x ﹣1在实数范围内可以因式分解,∴px 2+2x ﹣1=0有实数解,∴△=4+4p ≥0,且p ≠0,解得:p ≥﹣1且p ≠0.16.(2019·上海八年级课时练习)阅读题:分解因式:223x x --. 解:原式22113x x =++--()214x =+- .此方法是抓住二次项和一次项的特点,然后加一项,使这三项为完全平方式,我们称这种方法为配方法.此题为用配方法分解因式.请体会配方法的特点,然后用配方法解决下列问题:在实数范围内分解因式:2441a a +-.【答案】(2121a a ++.【分析】先配方,再根据平方差公式分解即可.【详解】()(224412122121a a a a a +-=+-=++【点睛】本题考查了配方法的应用,熟练掌握配方的方法是解答本题的关键. 此方法是抓住二次项和一次项的特点,然后加一项,使这三项为完全平方式,,再减去一次项系数一半的平方,使整个式子的值不变,这种变形的方法称为“配方法”.。
二次三项式的因式分解(用公式法)
二次三项式的因式分解(用公式法)引言在代数学中,因式分解是一个重要的概念和技巧。
它可以将一个多项式表达式分解为较简单的乘积形式。
在本文中,我们将重点讨论二次三项式的因式分解,并介绍一种常用的方法——公式法。
二次三项式的定义二次三项式是指具有以下形式的多项式表达式:f(x) = ax^2 + bx + c其中,a、b和c是实数且a ≠ 0。
公式法的基本原理公式法是一种通过使用特定的公式来分解二次三项式的方法。
具体来说,我们可以使用下面的公式来完成因式分解:f(x) = a(x - x1)(x - x2)其中,x1和x2为f(x)的根(也就是函数图像与x轴的交点)。
公式法的步骤下面是使用公式法进行二次三项式因式分解的一般步骤:1.计算二次三项式的判别式Δ。
判别式Δ的计算公式为Δ = b^2 - 4ac。
根据Δ的值可以判断二次三项式的根的情况。
–当Δ > 0时,二次三项式有两个不相等的实根。
–当Δ = 0时,二次三项式有两个相等的实根。
–当Δ < 0时,二次三项式没有实根,但可以分解为两个共轭复根。
2.根据根的情况计算x1和x2。
–当Δ > 0时,根据求根公式:x1 = (-b + √Δ) / 2ax2 = (-b - √Δ) / 2a–当Δ = 0时,二次三项式只有一个实根,即 x = -b / 2a。
–当Δ < 0时,二次三项式的根可以表示为复数形式:x1 = (-b + i√(-Δ)) / 2a和 x2 = (-b - i√(-Δ)) / 2a。
3.代入公式进行因式分解。
将计算得到的x1和x2代入公式f(x) = a(x -x1)(x - x2),即可得到该二次三项式的因式分解形式。
示例为了更好地理解公式法的使用,我们来看一个例子:假设我们有一个二次三项式:f(x) = x^2 + 5x + 6。
首先,计算判别式Δ:Δ = b^2 - 4ac = 5^2 - 4 * 1 * 6 = 25 - 24 = 1由于Δ > 0,说明该二次三项式有两个不相等的实根。
复习回顾九年级数学中已学过的代数式展开和因式分解的知识
复习回顾九年级数学中已学过的代数式展开和因式分解的知识一. 代数式展开代数式展开是指将一个代数式由多个项的乘积展开成多个单项式之和的过程。
在九年级数学中,我们已经学过了展开二项式、展开三项式以及展开含有平方、立方等特殊形式的代数式。
1. 展开二项式展开二项式是代数式展开的最基本形式。
如果我们有一个二项式(a + b)^n,其中a、b为实数,n为正整数,则可以使用二项式定理进行展开。
根据二项式定理,展开式的每一项可以表示为C(n,k) * a^(n-k) *b^k,其中C(n,k)为从n个元素中选择k个元素的组合数。
这个展开过程我们在九年级课程中已经学过了。
例如,展开式(a + b)^2可以表示为a^2 + 2ab + b^2。
可以看到,二项式被展开成了三个单项式之和。
2. 展开三项式除了二项式,我们也学习了如何展开三项式。
如果我们有一个三项式(a + b + c)^n,其中a、b、c为实数,n为正整数,则展开式的每一项可以表示为C(n, k1, k2) * a^(n-k1-k2) * b^k1 * c^k2,其中C(n, k1, k2)为从n个元素中选择k1个元素和k2个元素的组合数。
例如,展开式(a + b + c)^2可以表示为a^2 + 2ab + 2ac + b^2 + 2bc +c^2。
可以看到,三项式被展开成了六个单项式之和。
3. 展开特殊形式的代数式在九年级数学中,我们也学习了如何展开一些特殊形式的代数式,如(a + b)^2 - (a - b)^2,也就是“平方差”。
展开“平方差”可以用(a + b + c)(a + b - c)的展开式为例,其中a、b、c为实数。
我们可以先将整个代数式看作二项式的形式进行展开,然后再将多项式相加的方式进行简化。
例如,展开式(a + b + c)(a + b - c)可以表示为a^2 + ab - ac + ab + b^2 - bc - ac - bc + c^2,简化后的结果为a^2 + 2ab - 2ac + b^2 - 2bc + c^2。
二次三项式的因式分解
2。 2。 4。 4。
2-x+1 X 2+x+ x
试一试
2-4x+2k 二次三项式3 二次三项式3x
(1)当k 取何值时 ,在实数范围内 能分解 (2)当k 取何值时 ,是一个完全平 方式 (3)当k 取何值时 ,在实数范围内 不能分解
ቤተ መጻሕፍቲ ባይዱ
1。能不能用前面的方法把 2+8x-1分解因式 4x +8x2。分解二次三项式 2+bx+c的一般方法怎样? 的一般方法怎样? ax +bx+c的一般方法怎样
二次三项式的因 式分解 (用公式法) 用公式法)
口答
1。若-4和9是关于x的方程 是关于x 2+bx+c=0的两根,则2x2+bx+c 的两根, 2x +bx+c=0的两根 可分解为( 可分解为( ) 若是关于y 和3是关于y的方程 +by+c=0的两根 的两根, 4y2+by+c=0的两根,则4y2+by+c 可分解为( 可分解为( )
复习提问 1。写出关于x的二次三 写出关于x 项式的一般形式 2。关于x的二次三项式 关于x 的因式分解方法有哪些? 的因式分解方法有哪些?
做一做 分解因式
2-2x+1;②x2-5x+6; ①x 2x+1;②x 5x+6; 2-(x ③.X
+x2)x+ x1x2 1
2+x-2 4.6x +x-
想一想
思考题
1 。当 时,二次三项式 2+bx+c在实数范围内可以分解; 在实数范围内可以分解; ax +bx+c在实数范围内可以分解 2 。当 时,二次三项式 2+bx+c 是完全平方式 ax 3 。当 时,二次三项式 2+bx+c 在实数范围内不可以分 ax 解.
二次三项式因式分解复习
二次三项式因式分解复习复习目标:(1)理解二次三项式的意义; (2)理解十字相乘法的根据; (3)能用十字相乘法分解二次三项式;(4)重点是掌握十字相乘法,难点是首项系数不为1的二次三项式的十字相乘法. 【重点难点解析】 1.二次三项式多项式c bx ax ++2,称为字母x 的二次三项式,其中2ax 称为二次项,bx 为一次项,c 为常数项.例如,322--x x 和652++x x 都是关于x 的二次三项式.在多项式2286y xy x +-中,如果把y 看作常数,就是关于x 的二次三项式;如果把x 看作常数,就是关于y 的二次三项式.在多项式37222+-ab b a 中,把ab 看作一个整体,即3)(7)(22+-ab ab ,就是关于ab 的二次三项式.同样,多项式12)(7)(2++++y x y x ,把x +y 看作一个整体,就是关于x +y 的二次三项式.十字相乘法是适用于二次三项式的因式分解的方法. 2.十字相乘法的依据和具体内容利用十字相乘法分解因式,实质上是逆用(ax +b )(cx +d )竖式乘法法则.它的一般规律是:(1)对于二次项系数为1的二次三项式q px x ++2,如果能把常数项q 分解成两个因数a ,b 的积,并且a +b 为一次项系数p ,那么它就可以运用公式))(()(2b x a x ab x b a x ++=+++分解因式.这种方法的特征是“拆常数项,凑一次项”.公式中的x 可以表示单项式,也可以表示多项式,当常数项为正数时,把它分解为两个同号因数的积,因式的符号与一次项系数的符号相同;当常数项为负数时,把它分解为两个异号因数的积,其中绝对值较大的因数的符号与一次项系数的符号相同.(2)对于二次项系数不是1的二次三项式c bx ax ++2(a ,b ,c 都是整数且a ≠0)来说,如果存在四个整数2121,,,c c a a ,使a a a =⋅21,c c c =⋅21,且b c a c a =+1221,那么c bx ax ++2))(()(2211211221221c x a c x a c c x c a c a x a a ++=+++=它的特征是“拆两头,凑中间”,这里要确定四个常数,分析和尝试都要比首项系数是1的情况复杂,因此,一般要借助“画十字交叉线”的办法来确定.学习时要注意符号的规律.为了减少尝试次数,使符号问题简单化,当二次项系数为负数时,先提出负号,使二次项系数为正数,然后再看常数项;常数项为正数时,应分解为两同号因数,它们的符号与一次项系数的符号相同;常数项为负数时,应将它分解为两异号因数,使十字连线上两数之积绝对值较大的一组与一次项系数的符号相同.用十字相乘法分解因式,还要注意避免以下两种错误出现:一是没有认真地验证交叉相乘的两个积的和是否等于一次项系数;二是由十字相乘写出的因式漏写字母.如:)45)(2(86522-+=-+x x y xy x3.因式分解一般要遵循的步骤多项式因式分解的一般步骤:先考虑能否提公因式,再考虑能否运用公式或十字相乘法,最后考虑分组分解法.对于一个还能继续分解的多项式因式仍然用这一步骤反复进行.以上步骤可用口诀概括如下:“首先提取公因式,然后考虑用公式、十字相乘试一试,分组分解要合适,四种方法反复试,结果应是乘积式”. 教学过程: 一、师生互动 1、把下列各式分解因式:(1)1522--x x ;(2)2265y xy x +-.点悟:(1)常数项-15可分为3 ×(-5),且3+(-5)=-2恰为一次项系数; (2)将y 看作常数,转化为关于x 的二次三项式,常数项26y 可分为(-2y )(-3y ),而(-2y )+(-3y )=(-5y )恰为一次项系数.解:(1))5)(3(1522-+=--x x x x ; (2))3)(2(6522y x y x y xy x --=+-. 2、把下列各式分解因式:(1)3522--x x ;(2)3832-+x x .点悟:我们要把多项式c bx ax ++2分解成形如))((2211c ax c ax ++的形式,这里a a a =21,c c c =21而bc a c a =+1221.解:(1))3)(12(3522-+=--x x x x ; (2))x )(x (x x 3133832+-=-+.点拨:二次项系数不等于1的二次三项式应用十字相乘法分解时,二次项系数的分解和常数项的分解随机性较大,往往要试验多次,这是用十字相乘法分解的难点,要适当增加练习,积累经验,才能提高速度和准确性. 3、把下列各式分解因式:(1)91024+-x x ;(2))(2)(5)(723y x y x y x +-+-+; (3)120)8(22)8(222++++a a a a .点悟:(1)把2x 看作一整体,从而转化为关于2x 的二次三项式; (2)提取公因式(x +y )后,原式可转化为关于(x +y )的二次三项式; (3)以)8(2a a +为整体,转化为关于)8(2a a +的二次三项式. 解:(1) )9)(1(9102224--=+-x x x x =(x +1)(x -1)(x +3)(x -3).(2) )(2)(5)(723y x y x y x +-+-+]2)(5)(7)[(2-+-++=y x y x y x=(x +y )[(x +y )-1][7(x +y )+2] =(x +y )(x +y -1)(7x +7y +2).(3) 120)8(22)8(222++++a a a a)108)(128(22++++=a a a a )108)(6)(2(2++++=a a a a点拨:要深刻理解换元的思想,这可以帮助我们及时、准确地发现多项式中究竟把哪一个看成整体,才能构成二次三项式,以顺利地进行分解.同时要注意已分解的两个因式是否能继续分解,如能分解,要分解到不能再分解为止. 4、 分解因式:90)242)(32(22+-+-+x x x x .点悟:把x x 22+看作一个变量,利用换元法解之. 解:设y x x =+22,则 原式=(y -3)(y -24)+90162272+-=y y=(y -18)(y -9))92)(182(22-+-+=x x x x .点拨:本题中将x x 22+视为一个整体大大简化了解题过程,体现了换元法化简求解的良好效果.此外,)9)(18(162272--=+-y y y y 一步,我们用了“十字相乘法”进行分解.例5 分解因式653856234++-+x x x x . 点悟:可考虑换元法及变形降次来解之.解:原式]38)1(5)1(6[222-+++=x x x x x ]50)1(5)1(6[22-+++=x x x x x ,令y x x =+1,则原式)5056(22-+=y y x)103)(52(2+-=y y x)1033)(522(2++-+=x x x x x)3103)(252(22+++-=x x x x )13)(3)(12)(2(++--=x x x x .点拨:本题连续应用了“十字相乘法”分解因式的同时,还应用了换元法,方法巧妙,令人眼花瞭乱.但是,品味之余应想到对换元后得出的结论一定要“还原”,这是一个重要环节.例6 分解因式655222-+-+-y x y xy x .点悟:方法1:依次按三项,两项,一项分为三组,转化为关于(x -y )的二次三项式. 方法2:把字母y 看作是常数,转化为关于x 的二次三项式. 解法1: 655222-+-+-y x y xy x6)55()2(22-+-++-=y x y xy x6)(5)(2----=y x y x )6)(1(--+-=y x y x .解法2: 655222-+-+-y x y xy x65)52(22-+++-=y y x y x )1)(6()52(2-+++-=y y x y x )]y (x )][y (x [16--+-==(x -y -6)(x -y +1).例7 分解因式:ca (c -a )+bc (b -c )+ab (a -b ).点悟:先将前面的两个括号展开,再将展开的部分重新分组. 解:ca (c -a )+bc (b -c )+ab (a -b ))(2222b a ab bc c b c a ac -+-+-= )()()(222b a ab b a c b a c -+---= )())(()(2b a ab b a b a c b a c -+-+--= ])()[(2ab b a c c b a ++--==(a -b )(c -a )(c -b ).点拨:因式分解,有时需要把多项式去括号、展开、整理、重新分组,有时仅需要把某几项展开再分组.此题展开四项后,根据字母c 的次数分组,出现了含a -b 的因式,从而能提公因式.随后又出现了关于c 的二次三项式能再次分解.例8 已知12624+++x x x 有一个因式是42++ax x ,求a 值和这个多项式的其他因式.点悟:因为12624+++x x x 是四次多项式,有一个因式是42++ax x ,根据多项式的乘法原则可知道另一个因式是32++bx x (a 、b 是待定常数),故有=+++12624x x x +2(x )3()42+++⋅bx x ax .根据此恒等关系式,可求出a ,b的值.解:设另一个多项式为32++bx x ,则12624+++x x x)3)(4(22++++=bx x ax x12)43()43()(234++++++++=x b a x ab x b a x ,∵ 12624+++x x x 与12)43()43()(234++++++++x b a x ab x b a x 是同一个多项式,所以其对应项系数分别相等.即有由①、③解得,a =-1,b =1, 代入②,等式成立.∴ a =-1,另一个因式为32++x x .点拨:这种方法称为待定系数法,是很有用的方法.待定系数法、配方法、换元法是因式分解较为常用的方法,在其他数学知识的学习中也经常运用.希望读者不可轻视.【易错例题分析】例9 分解因式:22210235y aby b a -+. 错解:∵ -10=5×(-2),5=1×5, 5×5+1×(-2)=23,∴ 原式=(5ab +5y )(-2ab +5y ).警示:错在没有掌握十字相乘法的含义和步骤. 正解:∵ 5=1×5,-10=5×(-2),5×5+1×(-2)=23.∴ 原式=(ab +5y )(5ab -2y ). 【同步练习】 一、选择题1.如果))((2b x a x q px x ++=+-,那么p 等于 ( ) A .ab B .a +b C .-ab D .-(a +b )2.如果305)(22--=+++⋅x x b x b a x ,则b 为 ( ) A .5 B .-6 C .-5 D .63.多项式a x x +-32可分解为(x -5)(x -b ),则a ,b 的值分别为 ( ) A .10和-2 B .-10和2 C .10和2 D .-10和-24.不能用十字相乘法分解的是 ( ) A .22-+x x B .x x x 310322+- C .242++x x D .22865y xy x --5.分解结果等于(x +y -4)(2x +2y -5)的多项式是 ( ) A .20)(13)(22++-+y x y x B .20)(13)22(2++-+y x y x C .20)(13)(22++++y x y x D .20)(9)(22++-+y x y x6.将下述多项式分解后,有相同因式x -1的多项式有 ( ) ①672+-x x ; ②1232-+x x ; ③652-+x x ; ④9542--x x ; ⑤823152+-x x ; ⑥121124-+x x A .2个 B .3个 C .4个 D .5个 二、填空题7.=-+1032x x __________.8.=--652m m (m +a )(m +b ).a =__________,b =__________.9.=--3522x x (x -3)(__________). 10.+2x ____=-22y (x -y )(__________).11.22____)(____(_____)+=++a m na . 12.当k =______时,多项式k x x -+732有一个因式为(__________).13.若x -y =6,3617=xy ,则代数式32232xy y x y x +-的值为__________.三、解答题14.把下列各式分解因式:(1)6724+-x x ; (2)36524--x x ; (3)422416654y y x x +-; (4)633687b b a a --; (5)234456a a a --; (6)422469374b a b a a +-. 15.把下列各式分解因式:(1)2224)3(x x --;(2)9)2(22--x x ;(3)2222)332()123(++-++x x x x ; (4)60)(17)(222++-+x x x x ; (5)8)2(7)2(222-+-+x x x x ; (6)48)2(14)2(2++-+b a b a . 16.把下列各式分解因式: (1)b a ax x b a +++-2)(2;(2)))(()(222q p q p pq x q p x -+++-; (3)81023222-++--y x y xy x ; (4)310434422-+---y x y xy x ; (5)120)127)(23(22-++++x x x x ; (6)4222212)2)((y y xy x y xy x -++++.17.已知60197223+--x x x 有因式2x -5,把它分解因式. 18.已知x +y =2,xy =a +4,2633=+y x ,求a 的值. 参考答案 【同步练习】1.D 2.B 3.D 4.C 5.A 6.C 7.(x +5)(x -2) 8.1或-6,-6或1 9.2x +1 10.xy ,x +2y 11.224m n ,a ,mn2 12.-2,3x +1或x +2 13.1714.(1) 原式)6)(1(22--=x x)6)(1)(1(2--+=x x x (2) 原式)4)(9(22+-=x x )4)(3)(3(2+-+=x x x(3) 原式)16)(4(2222y x y x --= )4)(4)(2)(2(y x y x y x y x -+-+=(4) 原式))(8(3333b a b a +-=))()(42)(2(2222b ab a b a b ab a b a +-+++-=(5) 原式)456(22--=a a a )43)(12(2-+=a a a(6) 原式)9374(42242b b a a a +-= )9)(4(22222b a b a a --=)3)(3)(2)(2(2b a b a b a b a a -+-+=15.(1) 原式)23)(23(22x x x x +---= )1)(3)(1)(3(-++-=x x x x(2) 原式]3)2(][3)2([+---=x x x x )32)(32(22+---=x x x x )32)(1)(3(2+-+-=x x x x(3) 原式)332123()332123(2222---+++++++=⋅x x x x x x x x)1)(2)(455(2+-++=x x x x(4) 原式)5)(12(22-+-+=x x x x )5)(3)(4(2-+-+=x x x x(5) 原式)12)(82(22++-+=x x x x 2)1)(4)(2(++-=x x x(6)原式)82)(62(-+-+=b a b a 16.(1) 原式)1]()[(+++-=x b a x b a (2) 原式)]()][([q p q x q p p x +---= ))((22q pq x pq p x --+-=(3)原式)8103()22(22+----=y y x y x )2)(43()22(2-----=y y x y x ]2)][43([-+--=y x y x )2)(43(-++-=y x y x(4) 原式3103)1(4422-+-+-=y y x y x )3)(13()1(442---+-=y y x y x )32)(132(-++-=y x y x(5) 原式120)4)(3)(2)(1(-++++=x x x x 120)45)(65(22-++++=x x x x 1201)55(22--++=x x)1155)(1155(22-+++++=x x x x )65)(165(22-+++=x x x x )6)(1)(165(2+-++=x x x x(6) 原式422222212)()(y y xy x y y xy x -+++++= )3)(4(222222y y xy x y y xy x -+++++= )2)(5(2222y xy x y xy x -+++= )2)()(5(22y x y x y xy x +-++=17.提示:)52()601972(23-+--÷x x x x )3)(4(122+-=--=x x x x18.∵ ))((2233y xy x y x y x +-+=+ ]3))[((2xy y x y x -++=, 又∵ 2=+y x ,xy =a +4,2633=+y x ,∴ 26)]4(32[22=+-a ,解之得,a =-7.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次三项式因式分解复习复习目标:(1)理解二次三项式的意义; (2)理解十字相乘法的根据; (3)能用十字相乘法分解二次三项式;(4)重点是掌握十字相乘法,难点是首项系数不为1的二次三项式的十字相乘法. 【重点难点解析】 1.二次三项式多项式c bx ax ++2,称为字母x 的二次三项式,其中2ax 称为二次项,bx 为一次项,c 为常数项.例如,322--x x 和652++x x 都是关于x 的二次三项式.在多项式2286y xy x +-中,如果把y 看作常数,就是关于x 的二次三项式;如果把x 看作常数,就是关于y 的二次三项式.在多项式37222+-ab b a 中,把ab 看作一个整体,即3)(7)(22+-ab ab ,就是关于ab 的二次三项式.同样,多项式12)(7)(2++++y x y x ,把x +y 看作一个整体,就是关于x +y 的二次三项式.十字相乘法是适用于二次三项式的因式分解的方法. 2.十字相乘法的依据和具体内容利用十字相乘法分解因式,实质上是逆用(ax +b )(cx +d )竖式乘法法则.它的一般规律是:(1)对于二次项系数为1的二次三项式q px x ++2,如果能把常数项q 分解成两个因数a ,b 的积,并且a +b 为一次项系数p ,那么它就可以运用公式))(()(2b x a x ab x b a x ++=+++分解因式.这种方法的特征是“拆常数项,凑一次项”.公式中的x 可以表示单项式,也可以表示多项式,当常数项为正数时,把它分解为两个同号因数的积,因式的符号与一次项系数的符号相同;当常数项为负数时,把它分解为两个异号因数的积,其中绝对值较大的因数的符号与一次项系数的符号相同.(2)对于二次项系数不是1的二次三项式c bx ax ++2(a ,b ,c 都是整数且a ≠0)来说,如果存在四个整数2121,,,c c a a ,使a a a =⋅21,c c c =⋅21,且b c a c a =+1221,那么c bx ax ++2))(()(2211211221221c x a c x a c c x c a c a x a a ++=+++=它的特征是“拆两头,凑中间”,这里要确定四个常数,分析和尝试都要比首项系数是1的情况复杂,因此,一般要借助“画十字交叉线”的办法来确定.学习时要注意符号的规律.为了减少尝试次数,使符号问题简单化,当二次项系数为负数时,先提出负号,使二次项系数为正数,然后再看常数项;常数项为正数时,应分解为两同号因数,它们的符号与一次项系数的符号相同;常数项为负数时,应将它分解为两异号因数,使十字连线上两数之积绝对值较大的一组与一次项系数的符号相同.用十字相乘法分解因式,还要注意避免以下两种错误出现:一是没有认真地验证交叉相乘的两个积的和是否等于一次项系数;二是由十字相乘写出的因式漏写字母.如:)45)(2(86522-+=-+x x y xy x3.因式分解一般要遵循的步骤多项式因式分解的一般步骤:先考虑能否提公因式,再考虑能否运用公式或十字相乘法,最后考虑分组分解法.对于一个还能继续分解的多项式因式仍然用这一步骤反复进行.以上步骤可用口诀概括如下:“首先提取公因式,然后考虑用公式、十字相乘试一试,分组分解要合适,四种方法反复试,结果应是乘积式”. 教学过程: 一、师生互动 1、把下列各式分解因式:(1)1522--x x ;(2)2265y xy x +-.点悟:(1)常数项-15可分为3 ×(-5),且3+(-5)=-2恰为一次项系数; (2)将y 看作常数,转化为关于x 的二次三项式,常数项26y 可分为(-2y )(-3y ),而(-2y )+(-3y )=(-5y )恰为一次项系数.解:(1))5)(3(1522-+=--x x x x ; (2))3)(2(6522y x y x y xy x --=+-. 2、把下列各式分解因式:(1)3522--x x ;(2)3832-+x x .点悟:我们要把多项式c bx ax ++2分解成形如))((2211c ax c ax ++的形式,这里a a a =21,c c c =21而bc a c a =+1221.解:(1))3)(12(3522-+=--x x x x ; (2))x )(x (x x 3133832+-=-+.点拨:二次项系数不等于1的二次三项式应用十字相乘法分解时,二次项系数的分解和常数项的分解随机性较大,往往要试验多次,这是用十字相乘法分解的难点,要适当增加练习,积累经验,才能提高速度和准确性. 3、把下列各式分解因式:(1)91024+-x x ;(2))(2)(5)(723y x y x y x +-+-+; (3)120)8(22)8(222++++a a a a .点悟:(1)把2x 看作一整体,从而转化为关于2x 的二次三项式; (2)提取公因式(x +y )后,原式可转化为关于(x +y )的二次三项式; (3)以)8(2a a +为整体,转化为关于)8(2a a +的二次三项式. 解:(1) )9)(1(9102224--=+-x x x x =(x +1)(x -1)(x +3)(x -3).(2) )(2)(5)(723y x y x y x +-+-+]2)(5)(7)[(2-+-++=y x y x y x=(x +y )[(x +y )-1][7(x +y )+2] =(x +y )(x +y -1)(7x +7y +2).(3) 120)8(22)8(222++++a a a a)108)(128(22++++=a a a a )108)(6)(2(2++++=a a a a点拨:要深刻理解换元的思想,这可以帮助我们及时、准确地发现多项式中究竟把哪一个看成整体,才能构成二次三项式,以顺利地进行分解.同时要注意已分解的两个因式是否能继续分解,如能分解,要分解到不能再分解为止. 4、 分解因式:90)242)(32(22+-+-+x x x x .点悟:把x x 22+看作一个变量,利用换元法解之. 解:设y x x =+22,则 原式=(y -3)(y -24)+90162272+-=y y=(y -18)(y -9))92)(182(22-+-+=x x x x .点拨:本题中将x x 22+视为一个整体大大简化了解题过程,体现了换元法化简求解的良好效果.此外,)9)(18(162272--=+-y y y y 一步,我们用了“十字相乘法”进行分解.例5 分解因式653856234++-+x x x x . 点悟:可考虑换元法及变形降次来解之.解:原式]38)1(5)1(6[222-+++=x x x x x ]50)1(5)1(6[22-+++=x x x x x ,令y x x =+1,则原式)5056(22-+=y y x)103)(52(2+-=y y x)1033)(522(2++-+=x x x x x)3103)(252(22+++-=x x x x )13)(3)(12)(2(++--=x x x x .点拨:本题连续应用了“十字相乘法”分解因式的同时,还应用了换元法,方法巧妙,令人眼花瞭乱.但是,品味之余应想到对换元后得出的结论一定要“还原”,这是一个重要环节.例6 分解因式655222-+-+-y x y xy x .点悟:方法1:依次按三项,两项,一项分为三组,转化为关于(x -y )的二次三项式. 方法2:把字母y 看作是常数,转化为关于x 的二次三项式. 解法1: 655222-+-+-y x y xy x6)55()2(22-+-++-=y x y xy x6)(5)(2----=y x y x )6)(1(--+-=y x y x .解法2: 655222-+-+-y x y xy x65)52(22-+++-=y y x y x )1)(6()52(2-+++-=y y x y x )]y (x )][y (x [16--+-==(x -y -6)(x -y +1).例7 分解因式:ca (c -a )+bc (b -c )+ab (a -b ).点悟:先将前面的两个括号展开,再将展开的部分重新分组. 解:ca (c -a )+bc (b -c )+ab (a -b ))(2222b a ab bc c b c a ac -+-+-= )()()(222b a ab b a c b a c -+---= )())(()(2b a ab b a b a c b a c -+-+--= ])()[(2ab b a c c b a ++--==(a -b )(c -a )(c -b ).点拨:因式分解,有时需要把多项式去括号、展开、整理、重新分组,有时仅需要把某几项展开再分组.此题展开四项后,根据字母c 的次数分组,出现了含a -b 的因式,从而能提公因式.随后又出现了关于c 的二次三项式能再次分解.例8 已知12624+++x x x 有一个因式是42++ax x ,求a 值和这个多项式的其他因式.点悟:因为12624+++x x x 是四次多项式,有一个因式是42++ax x ,根据多项式的乘法原则可知道另一个因式是32++bx x (a 、b 是待定常数),故有=+++12624x x x +2(x )3()42+++⋅bx x ax .根据此恒等关系式,可求出a ,b 的值. 解:设另一个多项式为32++bx x ,则12624+++x x x)3)(4(22++++=bx x ax x12)43()43()(234++++++++=x b a x ab x b a x ,∵ 12624+++x x x 与12)43()43()(234++++++++x b a x ab x b a x 是同一个多项式,所以其对应项系数分别相等.即有由①、③解得,a =-1,b =1, 代入②,等式成立.∴ a =-1,另一个因式为32++x x .点拨:这种方法称为待定系数法,是很有用的方法.待定系数法、配方法、换元法是因式分解较为常用的方法,在其他数学知识的学习中也经常运用.希望读者不可轻视.【易错例题分析】例9 分解因式:22210235y aby b a -+. 错解:∵ -10=5×(-2),5=1×5, 5×5+1×(-2)=23,∴ 原式=(5ab +5y )(-2ab +5y ).警示:错在没有掌握十字相乘法的含义和步骤. 正解:∵ 5=1×5,-10=5×(-2),5×5+1×(-2)=23.∴ 原式=(ab +5y )(5ab -2y ). 【同步练习】 一、选择题1.如果))((2b x a x q px x ++=+-,那么p 等于 ( ) A .ab B .a +b C .-ab D .-(a +b )2.如果305)(22--=+++⋅x x b x b a x ,则b 为 ( ) A .5 B .-6 C .-5 D .63.多项式a x x +-32可分解为(x -5)(x -b ),则a ,b 的值分别为 ( ) A .10和-2 B .-10和2 C .10和2 D .-10和-24.不能用十字相乘法分解的是 ( ) A .22-+x x B .x x x 310322+- C .242++x x D .22865y xy x --5.分解结果等于(x +y -4)(2x +2y -5)的多项式是 ( ) A .20)(13)(22++-+y x y x B .20)(13)22(2++-+y x y x C .20)(13)(22++++y x y x D .20)(9)(22++-+y x y x6.将下述多项式分解后,有相同因式x -1的多项式有 ( ) ①672+-x x ; ②1232-+x x ; ③652-+x x ; ④9542--x x ; ⑤823152+-x x ; ⑥121124-+x x A .2个 B .3个 C .4个 D .5个 二、填空题7.=-+1032x x __________. 8.=--652m m (m +a )(m +b ). a =__________,b =__________.9.=--3522x x (x -3)(__________).10.+2x ____=-22y (x -y )(__________). 11.22____)(____(_____)+=++a m na . 12.当k =______时,多项式k x x -+732有一个因式为(__________).13.若x -y =6,3617=xy ,则代数式32232xy y x y x +-的值为__________.三、解答题14.把下列各式分解因式:(1)6724+-x x ; (2)36524--x x ;(3)422416654y y x x +-; (4)633687b b a a --;(5)234456a a a --; (6)422469374b a b a a +-. 15.把下列各式分解因式:(1)2224)3(x x --;(2)9)2(22--x x ;(3)2222)332()123(++-++x x x x ; (4)60)(17)(222++-+x x x x ; (5)8)2(7)2(222-+-+x x x x ; (6)48)2(14)2(2++-+b a b a . 16.把下列各式分解因式: (1)b a ax x b a +++-2)(2;(2)))(()(222q p q p pq x q p x -+++-; (3)81023222-++--y x y xy x ; (4)310434422-+---y x y xy x ; (5)120)127)(23(22-++++x x x x ; (6)4222212)2)((y y xy x y xy x -++++.17.已知60197223+--x x x 有因式2x -5,把它分解因式. 18.已知x +y =2,xy =a +4,2633=+y x ,求a 的值. 参考答案 【同步练习】1.D 2.B 3.D 4.C 5.A 6.C 7.(x +5)(x -2) 8.1或-6,-6或1 9.2x +1 10.xy ,x +2y 11.224m n ,a ,mn2 12.-2,3x +1或x +2 13.1714.(1) 原式)6)(1(22--=x x)6)(1)(1(2--+=x x x (2) 原式)4)(9(22+-=x x )4)(3)(3(2+-+=x x x(3) 原式)16)(4(2222y x y x --= )4)(4)(2)(2(y x y x y x y x -+-+=(4) 原式))(8(3333b a b a +-=))()(42)(2(2222b ab a b a b ab a b a +-+++-=(5) 原式)456(22--=a a a )43)(12(2-+=a a a(6) 原式)9374(42242b b a a a +-= )9)(4(22222b a b a a --=)3)(3)(2)(2(2b a b a b a b a a -+-+=15.(1) 原式)23)(23(22x x x x +---= )1)(3)(1)(3(-++-=x x x x(2) 原式]3)2(][3)2([+---=x x x x )32)(32(22+---=x x x x )32)(1)(3(2+-+-=x x x x(3) 原式)332123()332123(2222---+++++++=⋅x x x x x x x x )1)(2)(455(2+-++=x x x x(4) 原式)5)(12(22-+-+=x x x x)5)(3)(4(2-+-+=x x x x(5) 原式)12)(82(22++-+=x x x x 2)1)(4)(2(++-=x x x(6)原式)82)(62(-+-+=b a b a 16.(1) 原式)1]()[(+++-=x b a x b a (2) 原式)]()][([q p q x q p p x +---= ))((22q pq x pq p x --+-=(3)原式)8103()22(22+----=y y x y x )2)(43()22(2-----=y y x y x ]2)][43([-+--=y x y x )2)(43(-++-=y x y x(4) 原式3103)1(4422-+-+-=y y x y x )3)(13()1(442---+-=y y x y x )32)(132(-++-=y x y x(5) 原式120)4)(3)(2)(1(-++++=x x x x 120)45)(65(22-++++=x x x x 1201)55(22--++=x x)1155)(1155(22-+++++=x x x x )65)(165(22-+++=x x x x )6)(1)(165(2+-++=x x x x(6) 原式422222212)()(y y xy x y y xy x -+++++= )3)(4(222222y y xy x y y xy x -+++++= )2)(5(2222y xy x y xy x -+++= )2)()(5(22y x y x y xy x +-++=17.提示:)52()601972(23-+--÷x x x x )3)(4(122+-=--=x x x x18.∵ ))((2233y xy x y x y x +-+=+ ]3))[((2xy y x y x -++=, 又∵ 2=+y x ,xy =a +4,2633=+y x ,∴ 26)]4(32[22=+-a ,解之得,a =-7.。