第十四讲地震波层析成像课堂
层析成像
或写为:
1.13
其中
1.14
式(1.13)是一个关于 三次方程,泊松比 值给定时,就可以求出 的值。而 是瑞利波相速度 与横波速度 之比,显然均匀弹性半空间中的瑞利波速度只与介质的横波速度 和泊松比 有关,而与频率无关(无频散)。
将式(1.9)代入式(1.1)可得由瑞利波传播引起的质点位移( 和 )为:
3.1
其中, 为目标函数, 为N维向量空间, 为向量的2范数。从目标函数的形式看,该问题显然属于最小二乘法最优化问题。由于方程(3.1)中无约束控制项,所以该问题是非约束最优化问题。另一方面,从数据与参数之间的关系看,频散数据的个数M一般大于横波速度的个数N,因此该问题是一个超定问题。瑞利波勘探中,较常用的反演方法有最小二乘法及较新的遗传算法。本文主要研究最小二乘算法。
1.3
又有
1.4
由于平面瑞利波的位移发生在x-z平面内,因此由式(1.1)和式(1.4)可知,瑞利波是P波和SV波相互作用的结果。
对于一个角频率为 ,波数为 ,沿x方向传播的瑞利谐波,其势函数可表示为:
1.5
其中, 和 分别表示瑞利波胀缩分量和旋转分量的振幅随深度变化的函数;波数 , 为瑞利波波长。
1.15
结合式(1.11),由式(1.15)得
1.16
式(1.16)还可写成
1.17
由式(1.17)可知瑞利波质点位移随深度的变化可表示为
1.18
由式(1.8)和式(1.14)可以计算出 和 的比值。
由 与波长 的关系以及式(1.14)、(1.18),我们就可以计算出在给定泊松比情况下 和 与 之间的变化关系。图2.5给出了不同泊松比情况下两种位移用自由表面处的位移( )归一化后随深度( )的变化曲线。图2.5表明瑞利波的质点位移的大小随深度的增加而迅速减小,在深度约等于1个波长时( ),质点的位移量已非常小(大概为自由表面处位移的0.2倍)。这意味着瑞利波勘探的穿透深度大约为1个波长。
地震层析成像技术 ppt课件
二、地震层析成像方法面临的主要问题
2.1 地震波走时自动拾取问题 在地震层析成像的研究中 ,可获得的观测数据是地震 记录 .从地震记录中可以获得地震波的走时、振幅和 频率 ,其中最关键的是地震波走时 .随着数字地震技 术的发展 ,观测数据的数量迅速增加 ,准确地进行地 震波走时的拾取越来越成为一项重要且繁重的工作 . 为此 ,走时的自动拾取成为人们研究与关注的对象 .
二、地震层析成像方法面临的主要问题
2.2 三维波动方程有限差分算法模拟地震波场的问题 开展非弹性介质和完全弹性介质有限差分法三维
一、地震层析成像研究发展概况
地震层析成像的研究在70年代首先以井间速度结构 调查为研究对象(Bois et al.1972)。1979年, Dines和Lytle首先对地震层析成像坐了大量数值模 拟,并公布了利用弯曲的地震射线进行地下地震波 速度成像的结果,并首先将层析成像 ( Computerized Geophysical Tomography ) 这 一 名 词 用 于 论 文 的 标 题 。 1984 年 , 美 国 的 Anderson利用天然地震数据着手全 化、密度结构、地幔物质流动有了新的认识。
二、地震层析成像方法面临的主要问题
2.2 三维波动方程有限差分算法模拟地震波场的问题 不论是天然地震还是人工地震 (即使是二维观测方 式 )的观测数据都是在三维空间介质中形成 .由于地 下地质结构的千变万化 ,理论数据的正演计算只有在 三维空间中实现才更具有实际意义 .而目前大多采用 二维计算 ,使得理论数据与观测数据之间的误差不仅 由地质模型形成而且还由计算方法的数学模型形成 . 三维波动方程的有限差分解是获取地震波三维波场 的有效方法 .
一、地震层析成像研究发展概况
20世纪60年代初期,美国科学家Cormack从数学和 实验结果证实了根据X射线的投影可以唯一地确定人 体内部结构,从而奠定了医学诊断上图像重建的理 论 基 础 , 即 X 射 线 CT(X Ray Computer Tomography). 60年代中期和70年代中期,随着数 学图像重建方法在射电天文学和电子显微学方面的 应用和发展,在数学方法上出现了本质上与奥地利 数学家1917年提出的Rndon逆变换方法相同的褶积 投影方法,Chapman,1981)。此后,地学界借 助医学CT思想,利用地震波的传播对地壳乃至上地 幔结构开始进行半定量研究。从此,低着层析成像 成为地球物理学研究的一个新领域。
地震偏移成像基本原理ppt课件(共114张PPT)
三大处理技术:
反褶积、叠加、和偏移成像
反褶积和叠加引自其它相关学科 偏移成像基于古典技术
偏移成像: 1.具有地震勘探本身的特征。
过渡到地震波动力学特 征
§1.1 偏移成像的基本原理
一.偏移成像的概念
偏移
反偏移
反射地震方法:
1.激发弹性波,2.记录反射波, 3.研究地质岩层结构和物 性特征。是一种反散射问题。
(1.1.24)
此时反向外推遇到倏逝波,正向外推发生耗损波。分别表示为:
考虑到我们的边界条件是线性的,可以求出反射系数:
40a〕式可改写为:
38〕公式组可以看出,后两种展开是等价的。
9〕式得出F-k域的向下外推公式
20〕式完全相同,因此〔1.
z方向上差分网格向下外推时不重叠,速度变化可稍大些。
根据这个公式可以进行地震记录的向下半空间延拓,求出地下任何一点的波场,实现地震波偏移的目的。
这个方程可用来模拟下行波的地震记录。
(2〕下行波反向外推公式 下行波的反向外推是指沿负z方向的外 推。其外推式为:
(1.1.20)
上式可用来从下行波场进行反向求源的计算工作。
下面分析波场本身的条件对外推结果的影响
(1.1.21)
当
时, 为正或负的实数,这时所有外推公式中存在虚指
数。说明在外推过程中波场发生相位变化。一般都能得出正确的结
2). Kirchhoff积分法波动方程法偏移:70年代中期,French和 Schneider等在绕射偏移法的基础上使用了波动方程解的Kirchhoff积 分公式,发展为地震偏移的波动方程积分法。使绕射偏移建立在可 靠的波的基本原理上。因而改善了偏移剖面,取得了良好的效果。
地震波层析成像和电磁波层析成像
地震波层析成像和电磁波层析成像地震波层析成像和电磁波层析成像1.地震波CT地震层析成像的主要目标是确定地球内部的精细结构和局部不均匀性。
这不仅可以促进地球科学的发展,而且还可以解决许多地质勘探和矿产资源开发中的难题。
第一个原因是岩石地震波与岩性性质有比较稳定的相关性,易于对地球内部成像,反之,对找水活确定流体性质时,电磁波层析成像较好。
第二个原因是对于主要频段的电磁波,其衰减比地震波大。
对于地址勘探、采矿工程、勘察工程等来说目标提一般为几米到几百米,对应波长为几十米,频率为数十赫兹。
这种的地震波在不松散的岩石中传播为几公里后耍贱一般不超过120dB,接收起来不费力。
反而相应波长的电磁波在岩石中传播几十米后就可能衰减100dB,难以穿透几百米的岩层。
第三个原因是电磁波速度太快,反映波速的到时参数难以测量。
地震波波速为每秒几千米,振幅、到时都易于测量,而且在地震记录上可以区分不同的震相,从而得到丰富地质信息。
1.井间地震波数据的采集方法一般地层观测排列均匀布置在风化层一下,以使提高成像分辨率。
一般采集方法及对应的观测方式有:1.共激发点道集数据采集方法单点激发,多点接收的观测方式采集地震数据。
这种方法比较适用于在震源连续性能较差且接收为多道检波系统的情况下使用。
这种方法有采集快,效率高的特点。
但要求至少有一口井的井深超过目的层且满足目的层覆盖要求。
2.共接收点道集数据采集方法这种方法以移动式多点源激发,单点接收的观测方式采集地震数据。
适合在震源连续激发性能较好且接收器为单级检波器系统情况下使用。
但施工效率不高,也有井深要求。
3.YO-YO道集数据采集这种方法采用激发点和接收点反向移动的观测方式采集地震数据。
要求震源系统具有良好的连续激发性能,获得道集多用于反射波成像。
适合井深不符合透射层析成像要求的目的层成像问题。
4.井间地震连续测井方法这种方法采用激发点和接收点等间距同向移动的观测方式采集地震数据。
工程物探中地震层析成像的研究
工程物探中地震层析成像的研究本文从工程物探的实际出发,首先分析了资料采集的步骤和方法,接着论述了工程物探中地震层析成像的几种方法,其中包括了弯曲射线成像方法、最短路径射线追踪法,最后,本文结合实例分析了地震层析成像技术在工程物探中的具体应用。
标签:工程;物探;地震层析成像一、前言近年来,对地震层析成像的研究不断深入,工程物探中对地震层析成像的应用也越来越广泛,所以,分析工程物探中的地震层析成像非常的有必要,具有很高的研究价值。
二、资料采集层析成象与其它物探方法的最主要区别是要求有各种不同方向的人射射线通过探侧目标,因此要求震源和接收器或者可以旋转,或者可以沿两条平行线移动(称为跨孔方式)。
跨孔方式的层析成象可以利用两条大致平行的巷道或两个钻孔进行施工观测,其中一边安放震源,另一边移动检波器,探测范围在二者之间。
地震层析成象使用的震源可用以下几种:1、炸藥。
在坑道中常用几十克的炸药引爆作震源,放入坑道壁的小孔洞内引爆。
对于有瓦斯的巷道要用专用的防爆装置才不会产生危险。
2、电火花震源。
在钻孔中使用效率较高,对不超过100m的探测间距,要求几万焦耳的能量。
国产的电火花震源可在中国科学院电工所购买。
3、专用的井中震源。
具有定向功能,价格比较昂贵,如美国和日本OYO 公司出产的水枪式井中定向振源,价格都在百万美元以上。
对浅层勘探而言,地矿部物化探所(河北廊坊)研制的晶体声波发生器亦可用于声层析成象。
4、敲击产生震动。
只能用于坑道或堤坝探测,重复性较差。
震源下井时还需绞车和电缆配套。
各种工程地震仪都可用于地震CT的资料采集(如E2401),其动态范围要在100dB以上,频带最好达到1000Hz,记录的格式为SEG—1或SEG—2。
下井观测的方式垂直地震剖面。
三、弯曲射线成像方法直射线的假设只在介质近似均匀情况下成立,已有数值模拟的结果说明当速度差异小于巧多时,直射线反演可以给出较好的近似结果,但工程实际中完整围岩与断层、溶洞等异常体速度差异往往高达50%多以上,这时必须考虑弯曲射线成像方法.设成像区域中速度分布为v(x,y),走时为t,则两者关系用下式表示:(1)若将成像区域剖分成网格,设第j个网格中的慢度为Xj,则对于第i条射线有:(2)其中N为射线数,M为网格数。
地震层析成像之模型参数化
地震层析成像——(一)模型参数化冷独行整理地震层析成像(seismic tomography)是指利用大量地震观测数据反演研究区域三维结构的一种方法。
其原理类似于医学上的CT,但地震层析成像比医学上的CT技术更复杂。
大量数据以及其他许多不定因素,包括存在多种数据误差、解的不唯一性在内的地球内部成像问题。
Aki和Lee[3]以及Aki等[4]利用区域台阵的三维成像,以及Dziewonski等[5]对全球大尺度上地幔速度结构的勾画成为成像研究中开拓性的工作地震层析成像是典型的地球物理反演问题,大多数地震层析成像问题都涉及到以下几个方面:①模型参数化,②正演(射线追踪),③反演,④解的评价。
一、模型参数化成像的目的就是要获得接近实际地下结构的模型,所以在成像前必需要建立模型来描述地层结构,而且选取模型的好坏决定了获得地层结构信息能力的好坏。
过于简化的模型可能使结构中有意义的信息被忽略,复杂的模型可能使反演的不确定性增强,同时可能引入虚假信息。
模型参数化可分为两类。
一类是Tarantola和Nercessian等提出了“不分块”的参数化。
不对模型进行离散化,反演完全在泛函空间中进行,只是在最后计算想要的截面时采取离散化。
由于反演在泛函空间中进行,理论上可以计算空间任何位置上的速度,结果不受离散化的影响,有利于成像的显示。
另一类是离散化的模型参数化。
其优点是数学上容易处理,运算相对简单;缺点是在一般方法中出现的某些简化,在用离散时可能被掩盖掉。
现在通用的大都是离散化的模型参数化,通常采用两种方法来表示地层结构。
一种是使用少量参数确定三维解析函数(如,Dziewonski;Spencer和Gubbins),例如:Woodhouse、Dziewonski[19]和Su等[20]在全球地震层析成像使用球谐展开来表示模型;Burmakov等将速度扰动展开成一定阶数的切比雪夫多项式,以减少未知量个数,提高求解效率;朱露培提出的频谱参数化法,将待求扰动场按其空间频率展开,反演各阶频率系数。
地震波形反演与成像技术研究
地震波形反演与成像技术研究地震是自然界中一种常见而又具有毁灭性的现象,对于地震波形的反演与成像技术的研究,有助于我们更好地理解地震的发生机理以及预测地震活动。
本文将介绍地震波形反演与成像技术的研究内容和应用,旨在探讨其在地震科学领域中的重要意义。
一、地震波形反演技术地震波形反演技术是指通过测定和分析地震波传播过程中的振动波形,来获取地下介质的结构和物性参数的方法。
这项技术在地震勘探、地震震源研究、地下构造研究以及地震灾害评估等方面都有着广泛的应用。
1.地震波一维反演地震波一维反演是指通过解析地震波在单一纵向剖面上的振动波形,来获取地下介质的速度结构和各向异性参数等信息。
这项技术在地震探测和勘探中起到了至关重要的作用,可以帮助人们确定石油和矿产资源的分布情况,也有助于开展地震灾害评估与防治工作。
2.地震波二维反演地震波二维反演是指通过多道地震记录的波形数据,结合已知的地震波传播理论及其他约束条件,来重建地下介质的速度结构和波阻抗分布的方法。
相较于一维反演,二维反演能够提供更全面、更精细的地下结构信息,对于地震地质研究和勘探定位等方面都具有重要的意义。
二、地震波形成像技术地震波形成像技术是指将地震波信号转化为图像,通过图像来描述地下介质的分布和特征,以及地震源的定位和强度等参数。
这项技术在地震监测和地震预防工作中扮演着重要角色。
1.地震波形叠加成像地震波形叠加成像是将多道地震记录的波形数据进行叠加处理,从而增强地震信号的强度和清晰度,以便更准确地解释地下结构和特征。
通过波形叠加成像技术,我们可以观察到地下构造中的异常变化、隐蔽断层等信息,有助于我们对地震活动的分析和预测。
2.地震层析成像地震层析成像是一种通过分析地震记录波形的波速变化,来重建地下介质速度结构的方法。
这项技术可以提供更高分辨率的地下结构图像,有助于地震地质研究和资源勘探工作。
同时,地震层析成像还可以用于定位地震震源,并对地震灾害进行评估和预测。
地震层析成像
Company Logo
四、应用
广泛应用于内部地球物理和地球动力学、 能源勘探开发、工程和灾害地质、金属矿勘探 等领域。 如:地震层析成像结果从三个方面展示出 地球内部横向不均匀结构(参考文献:地震层 析成像板块构造及地幔演化动力学,2001)
Company Logo
四、应用
首次发现非洲超级地慢柱等大型地慢柱均起源 于核慢边界。 还有一个最重要的结力学对其给出 了很好的解释, 为板块运动的热对流学说提供了 证据。在大洋洋脊、板块消减带、克拉通地区, 地壳和上地慢中的火山、地壳和地慢顶部、造山 带、 断裂区和震源区等地方层析成像技术也都有 大量的应用成果。无论是能源和矿产等资源勘探, 还是地球内部结构及地球动力学研究, 地震层析 成像技术都是有效的、重要的技术之一。
结构以及其它物 性参数
Company Logo
二、分类
研究区域的尺度:全球层析成像、区域层析成像、 局部层析成像; 按所用资料的来源:天然地震层析成像(大尺度深 部横向不均匀性研究)、人工地震测深(主要研究 浅部界面分布); 反演的物性参数:利用地震波走时反演地震波速 度的波速层析成像、利用地震波振幅衰减反演地 震波衰减系数的层析成像;
Company Logo
二、分类
所依据的 理论基础
基于射线方程 的层析成像 基于波动方程 的层析成像
体波(反射波 、折射波)层 析成像
面波层析成 像
射线追踪时所用的地 震波资料的不同
Company Logo
二、分类
基于射线理论, 地震波走时层析成像方法由于 走时具有较高信噪比、无论是柱面波还是球面波走 时的规律都相同等优点, 相对来说发展较早, 技术 方法比较成熟,是目前地震层析成像的主要方法;
近地表走时层析成像与波形偏移成像的方法
波形偏移成像方法
通过利用地震波的传播特性和波动方程,对地震数据进行波形偏移成像处理,能够提高地震数据的成像质量和解 释精度,为油气勘探和地质研究提供了更加准确和可靠的技术手段。
波形偏移成像
波形偏移成像是一种通过将地震记录中的反射波进行偏移,得到地下介质反射 界面的成像方法。该方法能够提高地震记录的分辨率,提供更准确的地下介质 信息。
02
近地表走时层析成像方法
走时层析成像原理
走时层析成像是一种基于地震波 走时信息反演地下介质速度结构
的方法。
通过测量地震波在地下介质中的 传播时间,可以反演得到地下介
工程地质领域
在工程地质领域中,可以利用近地表 走时层析成像与波形偏移成像技术对 工程场地进行详细的地质勘察,为工 程设计和施工提供重要的依据。
矿产资源勘探领域
在矿产资源勘探中,可以利用这两种 技术对地下矿体的形态和分布情况进 行详细研究,为矿产资源的开发提供 重要的参考。
06
结论与展望
研究结论
近地表走时层析成像方法
波形偏移成像
主要采用偏移算法,通过将地震记录进行空间归位,提高图 像的分辨率和信噪比。
05
近地表走时层析成像与波形偏 移成像应用
地震勘探应用
近地表走时层析成像技术:利用地震波在地下介质中的传播速度差异,通过测量地 震波到达时间,反演得到地下介质的波速结构。
波形偏移成像技术:通过将地震数据进行偏移处理,将反射波束汇聚到地下界面上 ,提高地震数据的分辨率和信噪比。
逆时偏移法
通过逆时偏移算法,将地 震波传播过程进行逆向模 拟,得到地下介质的分布 信息。
地震层析成像方法及其应用研究
感谢观看
2、环境监测:地震层析成像方法也可以应用于环境监测领域。例如,通过 观测地震波在地壳中的传播特征,可以评估地球表面的沉降和隆起状况,监测地 壳运动和地震活动,为环境预警和减灾提供支持。
3、地球科学:地震层析成像方法在地球科学领域的研究中也具有重要意义。 它可以帮助科学家了解地球的内部结构和动力学过程,深化对地球演化历史的认 识。
电阻率法层析成像的原理与方法
电阻率法层析成像基于电阻抗测量技术,通过施加激励信号于研究对象,测 量其内部电学特征,如电阻抗等,并将测量结果转化为图像。具体实验设计包括 选择合适的激励信号、设计测量电路、采集数据及图像处理等步骤。
在物理学领域,电阻率法层析成像被广泛应用于研率的变化,可以推断出材料内部的 导电性能与微观结构。
地震层析成像方法的应用与发展
地震层析成像方法在地球物理领域的应用广泛,主要包括以下几个方面:
1、资源勘探与开发:地震层析成像方法在石油、天然气和地热等资源的勘 探与开发中具有重要作用。通过对地震数据的分析和处理,可以获取地下岩层的 分布、厚度、结构和属性等信息,为资源勘探和开发提供可靠的地质依据。
结论
电阻率法层析成像作为一种无损、非侵入性的成像方法,在物理学、化学、 生物医学等多个领域具有广泛的应用前景。本次演示详细介绍了电阻率法层析成 像的原理、方法及其在各领域的应用,并展望了其未来发展方向。随着技术的不 断进步和应用领域的拓展,电阻率法层析成像将在未来发挥更加重要的作用,为 科学研究与实际应用提供有力支持。
在应用前景方面,地震层析成像方法仍然有很大的发展空间。例如,利用该 方法进行深部矿产资源勘探、地下水污染监测以及地壳运动和地质灾害预警等领 域的应用研究,都具有重要的现实意义和社会价值。
(完整word版)地震层析成像概论
《地震层析成像概论》大作业张义蜜,2012260301272016-01-04目录1简述用于地震走时成像方法中的射线追踪算法及原理。
(1)1.1打靶法 (1)1.1.1近(旁)轴射线追踪 (1)1.1.2完全非线性打靶算法 (2)1.2弯曲(调整)法 (2)1.2.1伪弯曲法 (2)1.2.2其它弯曲算法 (3)1.3基于网格(节点)波前扩展的算法 (4)1.3.1快速行进法(FastMarchingMethod) (5)1.3.2最短路径算法 (6)1.3.3改进型最短路径算法 (8)1.4多次反射与透射波射线追踪 (9)1.4.1分区多步快速行进法(MultistageFMM) (9)1.4.2分区多步不规则最短路径算法(MultstageISPM) (10)1.5球坐标系中MultistageISPM算法原理 (11)1.6多值波前(射线)追踪 (12)2简述用于地震走时成像方法中的反演算法及原理。
(13)2.1反向投影算法 (13)2.1.1代数重建技术(ART) (13)2.1.2同时迭代重建技术(SIRT) (14)2.2梯度法 (14)2.2.1最速下降法 (14)2.2.2高斯-牛顿法 (15)2.2.3阻尼最小二乘法 (15)2.2.4共轭梯度(CG)法 (16)2.3 全局最优化法 (16)2.3.1蒙特卡罗(MonteCarlo)方法 (16)2.3.2遗传(GeneticMethod)方法 (17)2.3.3模拟退火(SimulatedAnnealing)法 (17)3简述用于地方震走时成像方法中的炮检排列(作图)、基本步骤、以及最终目的 (19)3.1炮检排列 (19)3.2基本步骤 (19)3.3最终目的 (19)4如何进行反演解的评价,解得评价在地震成像中的意义如何? (20)4.1分辨率和协方差矩阵 (20)4.2合成实验 (23)5简述采用L1和L2范数下的反演目标函数各自的优缺点,是否可以采用L1/L2范数混合下的反演目标函数,简述如何实现这一混合的反演目标函数。
地震波层析成像反演方法及其研究综述
地震波层析成像反演方法及其研究综述通过研究利用初至波走时的层析反演方法建立近地表速度模型,提供近地表地下介质的速度信息,进一步为静校正或浅层工程勘探服务。
标签:速度建模;层析成像;初至波地震勘探是利用人工在地表激发和接收地震波,再对地震波作分析处理以及解释而得到地下构造信息和岩性信息的一种方法。
在整个地震勘探过程中,精确的求取地震波在地下介质中的传播速度,一直是地震勘探的核心问题之一。
尤其在地表条件较复杂的区域,地表速度的横向剧烈变化会严重影响中深层目的层的成像效果。
近地表速度不准确,将会直接影响到速度分析、偏移成像的质量以及静校正的精度等地震勘探的各个环节和最终的勘探成果。
1 地震面波及波形反演利用面波进行结构反演一直是了解地球介质结构的重要途径。
近几年来,在面波理论和面波反演方面做了大量工作。
陈蔚天和陈晓非(2001)提出了一种求解水平层状海洋-地球模型中面波振型问题的新算法,它简洁、高效,彻底消除了高频情况下数值计算的精度失真问题。
张碧星等(2000,2002)对瑞利波勘探中“之”字形频散曲线形成的物理机理和多模性问题进行了理论分析,研究了诸波模的传播特性及相互关系,以及地表下低速层介质的位置、厚度及其它参数对“之”字形频散曲线的相互影响.在面波反演理论方面,朱良保等(2001)通过保角变换,把面波群速度的反演变成了球谐系数的线性化反演,使其计算速度快,等值线光滑,构造界限清晰。
众多研究者根据从面波资料求出的频散曲线,对不同地区的地下速度结构作了反演,揭示了横向结构差异的广泛存在。
根据走时反演地下结构是获取结构信息的经典做法。
刘伊克等(2001)根据三维地震观测的初至走时数据,利用最小平方与QR分解相结合的算法,在三维空间重建近地表低降速带速度模型。
同时,采用分形算法克服了初至波波形差异以及折射波相位反转导致的拾取误差,实现了三维初至拾取的大规模全自动化运算。
李录明等(2000)针对地震勘探中的复杂地表问题,提出了一套地震初至波表层模型层析反演方法.它利用地震直达波、回折波、折射波以及三者组合的初至波和层析反演方法具有的纵、横向变速优势,实现适应速度任意变化的复杂表层模型反演。
地下地震声波层析成像(CT)正演与反演研究
d 1 dx 1 a1 a 3 z , a 2 a 3 x ds Vc ds Vc
(14-2) 其中:
( 1) a ( k 1 ) i 1
4
k i
Vi
lk
(k=2,3,4)
根据式(14)利用数值方法求得雅可比矩阵的各元素后,就可以 建立起线性方程组进行实际的反演计算。 3、大型稀疏矩阵解法 由于建立的雅可比矩阵是一巨型稀疏矩阵,它通常是奇异的。因 其逆算子很难求得,所以反演计算时均采用迭代算法,如代数重建法 (ART)或同时迭代算法(SIRT),其它如奇异值分解法(SVD)、正 交化算法(ORTH)以及最小二乘共轭梯度法(LSQR)都是有效的。我 们经过测试比较认为 LSQR 方法收敛快,计算过程稳定。在此讨论几 种有效的算法。
1给出所有控制参数2自动形成射线网格理论走时计算4计算雅可比矩阵5形成走时扰动向量形成求解走时ct方程6更新并约束修正速度场输出中间结果是否满足精度或迭代次数dgct层析反演处理流程图dst3采集野外数据dst3exe自动拾取初至形成ct入数据井间声波走时ct反演结束11井间成像区域网格化形成波速层析数据形成孔隙度数据winsurferct彩色图孔隙度彩色图dst3系统处理流程图它可以在任何具有tvcga卡及其兼容的图形适配卡的微机上均可运行
t 0 i 为声源节点 i 为其它节点
(i)
(8) 将网格节点走时初始化后, 再计算每个节点向周围传播到下一个 节点的走时,并通过比较法,找出最小走时及其入射点。 ③ 计算每个节点上的最小走时 从含有发射点的单元开始,逐步向其四周的单元扩展,计算每个单元 内任意两节点间波的旅行时间:
(k )
V
(k )
V
地震与地震波-教育版PPT课件
波很接近,因此又称地声波。但普通的声波在流体中传播,而 地震波是在地球介质中传播,所以要复杂得多,在计算上地震 波和光波有些相似之处。波动光学在短波的情况下可以过渡到 几何光学,从而简化了计算;同样地,在一定条件下地震波的概 念可以用地震射线来代替而形成了几何地震学。不过光波只是 横波,地震波却纵、横两部分都有,所以在具体的计算中,地 震波要复杂得多。
22
授课:XXX
2021/3/9
地震波的概念
地下岩层断裂错位伴随产生大量的能 量释放,造成周围弹性介质的强烈振 动,这种振动以波的方式向外传播, 即为地震弹性波
23
授课:XXX
2021/3/9
地震波的种类
按波的本质形式大体可分为纵波和横 波
按波的传播区域大体可分为体波和面 波
24
授课:XXX
2021/3/9
震级 震源深度 震中距 场地条件 人口密度和经济发展程度 建筑物质量 发生地震的时间
16
授课:XXX
2021/3/9
地理分布——地震 带
地震的地理分布受一定的地质条件控制,具有一定的规律。地震 大多分布在地壳不稳定的部位,特别是板块之间的消亡边界,形成地震活动 活跃的地震带。全世界主要有三个地震带:
9
授课:XXX
2021/3/9
地震分类
◢ M<1级 的地震称为超微震 ◢ 1≤M<3级 的称为弱震或微震 ◢ 3≤M<4.5级 的称为有感地震 ◢ 4.5≤M<6级 的称为中强震 ◢ 6≤M<7级 的称为强震 ◢ 7≤M<8级 的称为大地震 ◢ 8≤M级 的称为巨大地震。
10
授课:XXX
地震波速度反射层析成像技术
地震波速度反射层析成像技术地震波速度反射层析成像技术是一种非侵入式地球物理勘探方法,通过分析地震波在不同介质中的传播速度变化,可以对地下构造进行成像。
这项技术在地质勘探、地下工程及地震灾害评估等领域有着广泛的应用。
地震波速度反射层析成像技术的基本原理是利用地震波在地下不同介质中传播速度不同的特性,通过接收地震波的反射信号,来推断地下结构的分布情况。
地震波在地下传播时,会遇到不同地层的变化,从而发生反射和折射。
通过接收地震仪记录的强度和时间信息,可以计算出地震波经过的路径和速度。
为了获得地震波速度反射层析成像技术的成像结果,需要进行一系列的数据处理工作。
首先,需要对采集到的地震数据进行预处理,包括去除噪声、补偿衰减等。
接着,通过对地震数据进行叠加处理,得到地震记录的剖面图像。
然后,利用地震波传播速度与地下介质的关系,进行反演计算,得到地下构造的速度分布情况。
最后,通过图像渲染和解释,可将地下结构呈现出来。
地震波速度反射层析成像技术在石油勘探中有着重要的应用。
通过对地下速度结构的揭示,可以进行油气储层的预测和定位。
同时,可以对油气井的选择和开发提供参考。
此外,地震波速度反射层析成像技术还可以帮助解决其他地下工程问题,如隧道、地铁的建设和设计。
通过对地下速度分布的了解,可以减少盲目施工带来的风险,提高工程的安全性和效率。
地震波速度反射层析成像技术在地震灾害评估中也扮演着重要的角色。
地震影响的程度与地下构造有着密切的关系。
通过对地震数据的处理和解释,可以确定地震波传播的路径和振幅变化,进而预测地震灾害的危险性。
这对于制定防灾减灾策略和保护人们的生命财产至关重要。
然而,地震波速度反射层析成像技术也面临一些挑战和限制。
首先,由于地下介质的复杂性,地震波往往会发生多次反射和折射,从而导致数据的解释困难。
其次,地震波传播速度会受到地下介质中其他因素的影响,如饱和度、温度等,这也给成像结果的准确性带来了一定的不确定性。
第十四讲地震波层析成像
mantle convection
Travel time table from ak135 model
Travel time picks
Shearer, 2009
3-D variations of Earth’s Structure from Seismic Tomography
Seismic waves in the Earth
Parallel beam
Fan beam, Multi-receiver, Moves in big steps
Cunningham & Jurdy, 2000
Broader fan beam, Coupled, moving source receivers, fast moving
Broader fan beam, Moving source, fixed receivers, fast moving (1976)
Traveltime/waveform
3-D wave speeds Inverse problem
Researchers at MIT and Harvard, led by Keiti Aki and Adam Dziewonski in late 1970’s and 1980’s, pioneered the technique of seismic tomography.
R. Weaver,Science, 2005
Processing Steps:
Remove instrument response, de-mean, detrend, bandpass filter, time-domain normalization, spectral whitening Cross-correlation: 1 day at a time. Stack over many days. Waveform selection (SNR) for tomography
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
? ? ? ? Radon transform p(s, ) ? ? f ( x, y) (x cos ? y sin ? s)dx
? where p is the radon transform of f(x, y), and is a Dirac Delta Function (an infinite spike
at 0 with an integral area of 1)
p is also called sinogram, and it is a sine wave when f(x, y) is a point value.
Travel time picks
.
7
Shearer, 2009
3-D variations of Earth's Structure from Seismic Tomography
Seismic waves in the Earth
Traveltime/waveform
3-D wave speeds
? 古登堡(美国)——核幔边界 ? --地幔与地核分界面的发现者
? 莱曼(丹麦,女)—— (内外核边界)
?
--外核与内核分界面的发现者
.
5
地球一维结构是远远不够的! Plate tectonics
Topography
.
mantle convection
6
Travel time table from ak135 model
Bullen Seismological Tables
→ 1D Earth model
Jeffreys-Bullen 1-D Earth Model
.
3
地球内部结构
PREM一维全球速度模型
1. PREM参考地球模型: Preliminary Reference Earth Model (Dziewonski & Anderson, 1981)
.
15
Shepp-Logan Phantom (human cerebral)
Input
Radon Projected
Recovered (output)
Back projection of the function is a way to solve f() from p()
? ? ??? (“Inversion”):
8
PREM模型给出了地球的一维结构,而地球内部三维结构需要更精细的刻画。
地震层析成像方法是给出地球内部三维结构的最重要的方法。
某种意义上说,地震是照亮地球内部的明灯。
地震层析成像方法可以给出:
全球地球结构的横向不均匀性; 典型地球动力学过程的三维结构:俯冲带、地幔柱、大洋中脊等; 小尺度的构造(断层等); 地震分布特征。
Inverse problem
Researchers at MIT and Harvard, led by Keiti Aki and Adam Dziewonski in late 1970's
and 1980's, pioneered the technique of se.ismic tomography .
Present Generation of models: Dense receiver sets, all rotating, great coverage and crossing rays.
Brain Scanning Cool Fact:
According to an earlier report, the best valentine's gift to your love ones is a freshly taken brainogram. The spots of red shows your love, not your words!
第六章 地震层析成像
.
1
Seismic waves
IRIS From
? Seismic wave is currently the only effective
tool that can penetrate the entire earth ?
.
2
1939:
Jeffreys & Bullen
First travel-time tables:Jeffreys-
Broader fan beam, Coupled, moving source receivers, fast moving
Broader fan beam, Moving source, fixed receivers, fast moving (1976)
Different “generations” of-RXay Computed Tomography (angled beams are used to increase resolution). Moral: .good coverage & cross-crossing 17
.
9
全球地震层.析成像
10
地幔柱
区域地震层. 析成像
11
大洋中脊
区域地震层. 析成像
12
俯冲带
区域地震层. 析成像
13
局部地震层析成像
.
14
地震层析成像的基础——Radon 变换 Tomo— Greek for “tomos” (body), graphy--- study or subject
? f ( x, y) ? p( x cos ? y sin ), )d
0
.
16
A few of the early medical tomo setups
Parallel beam
Fan beam, Multi-receiver, Moves in big steps
Cunningham & Jurdy, 2000
2. IASP91速度模型 (Kennett and Engdahl, 1991)
3. AK135 速度模型 Kennett et al. (1995);
Montagner and Kennett (1996).
另外 还有: MC35, STW105, 诺维齐(前南斯拉夫)——莫霍面(壳幔边界) ? --地壳与地幔分界面的发现者