磁场区域的最小面积.
专题:圆形磁场问题
O1
例题(多选)如图虚线所示区域内有方向垂直于纸面的匀
强磁场,一束速度大小各不相同的质子正对该区域的圆 心O射入这个磁场;结果,这些质子在该磁场中运动的
时间有的较长,有的较短,其中运动时间较长的粒子
(
CD )
B v O s1 θ1 R1 s2
A.射入时的速度一定较大 B.在该磁场中运动的路程一定较长 C.在该磁场中偏转的角度一定较大 D.从该磁场中飞出的速度一定较小
2 2
2
当速度变为2V的带电粒子,不具备“磁会聚”的 条件,因此不会都通过O点。但此题可采用极端分析 法,带电微粒在磁场中经过一段半径为r’=2R的圆 弧运动后,将在y轴的右方(x>0)的区域离开磁场并做 匀速直线运动,如图所示。靠近上端点发射出来的带 电微粒在突出磁场后会射向x同正方向的无穷远处; 靠近下端点发射出来的带电微粒会在靠近原点之处穿 出磁场。所以,这束带电微粒与x同相交的区域范围 是x>0. y
θ2
R2
结论3:运动速度v相同,方向不同,弧长越长对应 时间越长。(直径对应的弧最长)
例题:如图,半径为 r=3×10-2m的圆形区域内有一匀强磁 场B=0.2T,一带正电粒子以速度v0=106m/s的从a点处射入 磁场,该粒子荷质比为q/m=108C/kg,不计重力。若要使
粒子飞离磁场时有最大的偏转角,其入射时粒子的方向应 如何(以v0与oa的夹角表示)?最大偏转角多大? 解析:R=mv/Bq=5×102m>r 说明:半径确定时,通过的弧越 长,偏转角度越大。而弧小于半 个圆周时,弦越长则弧越长。 sin = r/R = 37º,
h 2vt 4 3mv / qE
2
圆形磁场多次碰撞问题
2021届高考物理一轮复习电磁学专项特训(8)带电粒子在复合场中的运动
1.答案:D
参考答案
解析:当粒子所受的洛伦兹力和电场力平衡时,粒子流匀速直线通过该区域,有 qvB=qE , 所以 E=Bv 。假设粒子带正电,则受向下的洛伦兹力,电场方向应该向上。粒子带负电 时,电场方向仍应向上。故正确答案为 D。
2.答案:A
解析:离子在磁场 B2 中发生偏转,知离子带正电.在速度选择器中,有 qE=qvB 可得 v=E/B, 只有速度满足一定值的离子才能通过速度选择器.因 va vb = vc vd 。,所以只有 b、c 两离子能通过速度选择器.a 的速度小于 b 的速度,所以 a 所受的电场力大于洛伦兹力,a 向 P,板偏转,故 A 正确,B 错误.只有 b、c 两离子能通过速度选择器进人磁场队,根据 r=mn/qB2 知质量大的半径大,知射向 A1 的是 b 离子,射向 A2 的是 C 离子.C、D 错误.
q2 q1
=
1 1
,其中
B2
= 12B1 ,
q1
=
q2 ,可得
m2 m1
= 144 ,故选
D.
4.答案:B
解析:A. 粒子从左射入,不论带正电还是负电,电场力大小为 qE,洛伦兹力大小 F = qvB = qE ,二者方向相反,故两个力平衡,速度 v = E ,粒子做匀速直线运动。故 A 错误,
B
A.上板为正极,电流 I = Bdvab Rad + d
B.上板为负极,电流 I = Bvad 2
Rad + b
C.下板为正极,电流 I = Bdvab Rad + d
D.下板为负极,电流 I = Bvad 2
Rad + b
7.如图所示为磁流体发电机的示意图。平行金属板 A、C 间有垂直于纸面向外的匀强磁场, 磁场的磁感应强度大小为 B,两板间距离为 d,两板间连接有理想电流表和定值电阻 R。等 离子体以一定的速度 v0 平行金属板、垂直于磁场射入两板间,电路稳定时电流表的示数 为 I,则下列说法正确的是( )
高二物理混合场题目
混合场1、如图所示,空间分布着方向平行于纸面且与场区边界垂直的有界匀强电场,电场强度为E、场区宽度为L;在紧靠电场右侧的圆形区域内,分布着垂直于纸面向外的匀强磁场,磁感应强度B未知,圆形磁场区域半径为r;一质量为m、电荷量为q的带正电的粒子从A点由静止释放后,在M点离开电场,并沿半径方向射入磁场区域,然后从N点射出,O为圆心,∠MON=120°,粒子重力可忽略不计;求:1粒子经电场加速后,进入磁场时速度的大小;2匀强磁场的磁感应强度B的大小;3粒子从A点出发到N点离开磁场经历的时间;2、如图所示的区域中,左边为垂直纸面向里的匀强磁场,磁感应强度为 B ,右边是一个电场强度大小未知的匀强电场,其方向平行于OC且垂直于磁场方向.一个质量为m 、电荷量为沿垂直于磁场方向进人匀强磁场中,初速度方向与边界线-q 的带电粒子从P孔以初速度V的夹角θ=600 ,粒子恰好从C孔垂直于OC射入匀强电场,最后打在Q点,已知OQ= 2 OC ,不计粒子的重力,求:l 粒子从P运动到Q所用的时间 t ;2 电场强度 E 的大小3 粒子到达Q点时的动能EkQ4、MN是一段半径为1m的光滑的1/4圆弧轨道,轨道上存在水平向右的匀强电场;轨道的右=0.1T;现有一带电量为+1C质量为100g 侧有一垂直纸面向内的匀强磁场,磁感应强度为B1的带电小球从M点由静止开始自由下滑,恰能沿NP方向做直线运动,并进入右侧的复合场;NP沿复合场的中心线已知AB板间的电压为U=2V,板间距离d=2m,板的长度L=3m,若小球恰能从板的边沿飞出,NP沿复合场的中心线试求:1小球运动到N点时的速度v;2水平向右的匀强电场电场强度E;3复合场中的匀强磁场的磁感应强度B25、如图所示,第四象限内有互相正交的匀强电场E与匀强磁场B1, E的大小为×103V/m, B1大小为;第一象限的某个矩形区域内,有方向垂直纸面向里的匀强磁场B2,磁场的下边界与x轴重合.一质量m=1×10-14kg、电荷量q=1×10-10C的带正电微粒以某一速度v沿与y轴正方向60°角从M点沿直线运动,经P点即进入处于第一象限内的磁场B2区域.一段时间后,小球经过y轴上的N点并与y轴正方向成60°角的方向飞出;M点的坐标为0,-10,N点的坐标为0,30,不计粒子重力, g取10m/s2.1请分析判断匀强电场E1的方向并求出微粒的运动速度v;2匀强磁场B2的大小为多大;3 B2磁场区域的最小面积为多少6、如图,在xOy平面第一象限有一匀强电场,电场方向平行y轴向下.在第四象限内存在一有界匀强磁场,左边界为y 轴,右边界为25l x =的直线.磁场方向垂直纸面向外.一质量为m 、带电量为q 的正粒子从y 轴上P 点以初速度v 0垂直y 轴射入匀强电场,在电场力作用下从x轴上Q 点以与x 轴正方向45°角进入匀强磁场.已知OQ =l ,不计粒子重力.求: 1P 与O 点的距离;2要使粒子能再进入电场,磁感应强度B 的范围;7、如图所示,直角坐标系xOy 位于竖直平面内,在水平的x轴下方存在匀强磁场和匀强电场,磁场的磁应强度为B,方向垂直xOy 平面向里,电场线平行于y 轴,一质量为m 、电荷量为q 的带正电的小球,从y 轴上的A 点水平向右抛出,经x 轴上的M 点进入电场和磁场,恰能做匀速圆周运动,从x 轴上的N 点第一次离开电场和磁场,M 、N 之间的距离为L,小球过M 点时的速度方向与x 轴的方向夹角为θ,不计空气阻力,重力加速度为g,求:1电场强度E 的大小和方向;2小球从A 点抛出时初速度v 0的大小;3A 点到x 轴的高度h;8、如图所示,在平面坐标系xoy 内,第Ⅱ、Ⅲ象限内存在沿y 轴正方向的匀强电场,第I 、Ⅳ象限内存在半径为L 的圆形匀强磁场,磁场圆心在ML,0点,磁场方向垂直于坐标平面向外.一带正电粒子从第Ⅲ象限中的Q 一2L,一L 点以速度v 0沿x 轴正方向射出,恰好从坐标原点O 进入磁场,从P2L,O 点射出磁场.不计粒子重力,求:1电场强度与磁感应强度大小之比2粒子在磁场与电场中运动时间之比9、如图所示,一个板长为L,板间距离也是L的平行板容器上极板带正电,下极板带负电;有一对质量均为m,重力不计,带电量分别为+q和-q的粒子从极板正中水平射入忽略两粒子间相互作用,初速度均为v0;若-q粒子恰能从上极板边缘飞出,求1两极板间匀强电场的电场强度E的大小和方向2-q粒子飞出极板时的速度v的大小与方向3在极板右边的空间里存在着垂直于纸面向里的匀强磁场,为使得+q粒子与-q粒子在磁场中对心正碰碰撞时速度方向相反,则磁感应强度B应为多少10、如图所示,直角坐标系xoy位于竖直平面内,在—3m≤ x≤0的区域内有磁感应强度大小B= × l 0—4T、方向垂直于纸面向里的条形匀强磁场,其左边界与x轴交于P点;在x>0的区域内有电场强度大小E=4N/C、方向沿y轴正方向的条形匀强电场;一质量m= ×l 0—27kg、电荷量q=×1 0—19C的带电粒子从P点以速度v= 4×104m/s,沿与X轴正方向成a=600角射入磁场,经电场偏转最终通过x轴上的Q点,不计粒子重力;求:1带电粒子在磁场中运动时间;2 Q点的坐标;11、如图所示,在xoy平面内,MN和x轴之间有平行于y轴的匀强电场和垂直于xoy平面的匀强磁场,y轴上离坐标原点L的A点处有一电子枪,可以沿+x方向射出速度为v0的电子质量为m,电量为e;如果电场和磁场同时存在,电子将做匀速直线运动.如果撤去磁场只保留电场,电子将从P点离开电场,P点的坐标是2L,3L.不计重力的影响,求:1电场强度E和磁感应强度B的大小及方向;2如果撤去电场,只保留磁场,电子将从x轴上的D点图中未标出离开磁场,求D点的坐标及电子在磁场中运动的时间.12、如图所示的平行板器件中,存在相互垂直的匀强磁场和匀强电场,磁场的磁感应强度B1=,方向垂直纸面向里,电场强度E=×105V/m,PQ为板间中线.紧靠平行板右侧边缘xOy坐标系的第一象限内,有垂直纸面向外的匀强磁场,磁感应强度B2=,磁场边界AO和y轴的夹角∠AOy=45°.一束带电量q=×10-19C的正离子从P点射入平行板间,沿中线PQ做直线运动,穿出平行板后从y轴上坐标为0,的Q点垂直y轴射入磁场区,离子通过x轴时的速度方向与x轴正方向夹角在45°~90°之间.则:1离子运动的速度为多大2离子的质量应在什么范围内3现只改变AOy区域内磁场的磁感应强度大小,使离子都不能打AB到x轴上,磁感应强度大小B2′应满足什么条件13、如图所示,在矩形ABCD内对角线BD以上的区域存在有平行于AD向下的匀强电场,对角线BD以下的区域存在有垂直于纸面的匀强磁场图中未标出,矩形AD边长L,AB边长为2L;一个质量为m、电荷+q的带电粒子不计重力以初速度v0从A 点沿AB方向进入电场,在对角线BD的中点P处进入磁场,并从DC边上的Q点垂直于DC离开磁场,试求:1电场强度的大小2带电粒子经过P点时速度的大小和方向3磁场的磁感应强度的大小和方向14、18分如图所示,在xoy平面内,第Ⅲ象限内的直线OM是电场与磁场的边界,OM与负x轴成45°角.在x<0且OM的左侧空间存在着负x方向的匀强电场E,场强大小为C;在y <0且OM的右侧空间存在着垂直纸面向里的匀强磁场B,磁感应强度大小为.一不计重力的带负电的微粒,从坐标原点O沿y轴负方向以v0=2×103m/s的初速度进入磁场,最终离开电磁场区域.已知微粒的电荷量q=5×10-18C,质量m=1×10-24kg,求:1带电微粒第一次经过磁场边界的位置坐标;2带电微粒在磁场区域运动的总时间;3带电微粒最终离开电、磁场区域的位置坐标.15、质谱仪的原理图如图甲所示;带负电粒子从静止开始经过电势差为U 的电场加速后,从G 点垂直于MN 进入偏转磁场,该偏转磁场是一个以直线MN 为上边界方向垂直于纸面向里的匀强磁场,磁场的磁感应强度为B ,带电粒子经偏转磁场后,最终到达照片底片上的H 点,测得G 、H 间的距离为d ,粒子的重力可忽略不计;1设粒子的电荷量为q ,质量为m ,试证明该粒子的比荷为:228d B U m q ; 2若偏转磁场的区域为圆形,且与MN 相切于G 点,如图乙所示,其它条件不变,要保证上述粒子从G 点垂直于MN 进入偏转磁场后不能打到MN 边界上MN 足够长, 求磁场区域的半径应满足的条件;16、磁流体推进船的动力来源于电流与磁场间的相互作用;图1是平静海面上某实验船的示意图,磁流体推进器由磁体、电极和矩形通道简称通道组成;如图2所示,通道尺寸a =,b =、c =;工作时,在通道内沿z 轴正方向加B =的匀强磁场;沿x 轴正方向加匀强电场,使两金属板间的电压U =;海水沿y 轴正方向流过通道;已知海水的电阻率ρ=Ω·m ;1船静止时,求电源接通瞬间推进器对海水推力的大小和方向;2船以v s =s 的速度匀速前进;若以船为参照物,海水以s 的速率涌入进水口由于通道的截面积小球进水口的截面积,在通道内海水速率增加到v d =s ;求此时两金属板间的感应电动势U 感;3船行驶时,通道中海水两侧的电压U /=U -U 感计算,海水受到电磁力的80%可以转化为对船的推力;当船以v s =s 的船速度匀速前进时,求海水推力的功率;17、如图所示,一个初速为零的带正电的粒子经过M、N两平行板间电场加速后,从N板上的孔射出,当带电粒子到达P点时,长方形abcd区域内出现大小不变、方向垂直于纸面且方向交替变化的匀强磁场,磁感强度B=0.4T,每经t=3104-⨯πs,磁场方向变化一次;粒子到达P点时出现的磁场方向指向纸外,在Q处有一个静止的中性粒子,P、Q间距离s=3m;PQ直线垂直平分ab、cd.已知D=m,带电粒子的荷质比为×104C/kg,重力忽略不计;求:1加速电压为200V时带电粒子能否与中性粒子碰撞2画出它的轨迹;3能使带电粒子与中性粒子碰撞,加速电压的最大值是多少18、如图所示,在xoy 坐标平面的第一象限内有沿-y 方向的匀强电场,在第四象限内有垂直于平面向外的匀强磁场;现有一质量为m ,带电量为+q 的粒子重力不计以初速度v 0沿-x 方向从坐标为3l ,l 的P 点开始运动,接着进入磁场后由坐标原点O 射出,射出时速度方向与y 轴方向夹角为45°,求: 1粒子从O 点射出时的速度v 和电场强度E ;2粒子从P 点运动到O 点过程所用的时间; P 3l ,l v x yO450v E B19、如图所示,在坐标系xOy 中,过原点的直线OC 与x 轴正向的夹角φ=120°,在OC 右侧有一匀强电场;在第二、三象限内有一匀强磁场,其上边界与电场边界重叠、右边界为y 轴、左边界为图中平行于y 轴的虚线,磁场的磁感应强度大小为B ,方向垂直纸面向里;一带正电荷q 、质量为m 的粒子以某一速度自磁场左边界上的A 点射入磁场区域,并从O 点射出,粒子射出磁场的速度方向与x 轴的夹角θ=30°,大小为v ,粒子在磁场中的运动轨迹为纸面内的一段圆弧,且弧的半径为磁场左右边界间距的两倍;粒子进入电场后,在电场力的作用下又由O 点返回磁场区域,经过一段时间后再次离开磁场;已知粒子从A 点射入到第二次离开磁场所用的时间恰好等于粒子在磁场中做圆周运动的周期;忽略重力的影响;求 1粒子经过A 点时速度的方向和A 点到x 轴的距离;2匀强电场的大小和方向;3粒子从第二次离开磁场到再次进入电场时所用的时间;20、如图所示,在xOy 平面的第一象限有一匀强电场,电场的方向平行于y 轴向下;在x 轴和第四象限的射线OC 之间有一匀强磁场,磁感应强度的大小为B,方向垂直于纸面向外;有一质量为m ,带有电荷量+q 的质点由电场左侧平行于x 轴射入电场;质点到达x 轴离为d;接上A 点时,速度方向与x 轴的夹角ϕ,A 点与原点O 的距着,质点进入磁场,并垂直于OC 飞离磁场;不计重力影响;若OC 与x 轴的夹角为ϕ,求: 1粒子在磁场中运动速度的大小:φθO C A v B2匀强电场的场强大小;21、两屏幕荧光屏互相垂直放置,在两屏内分别取垂直于两屏交线的直线为x 轴和y 轴,交点O 为原点,如图所示;在y >0,0<x <a 的区域有垂直于纸面向内的匀强磁场,在y >0,x >a 的区域有垂直于纸面向外的匀强磁场,两区域内的磁感应强度大小均为B ;在O 点处有一小孔,一束质量为m 、带电量为>0的粒子沿x 轴经小孔射入磁场,最后打在竖直和水平荧光屏上,使荧光屏发亮;入射粒子的速度可取从零到某一最大值之间的各种数值;已知速度最大的粒子在0<x <a 的区域中运动的时间与在x >a 的区域中运动的时间之比为2︰5,在磁场中运动的总时间为7T /12,其中T 为该粒子在磁感应强度为B 的匀强磁场中做圆周运动的周期;试求两个荧光屏上亮线的范围不计重力的影响;22、在如图所示的直角坐标系中,x 轴的上方有与x 轴正方向成45°角的匀强电场,场强的大小为4102⨯=E V /m .x 轴的下方有垂直于xOy 面的匀强磁场,磁感应强度的大小为T B 2102-⨯=. 把一个比荷为q /m =2×108C/kg 的正电荷从坐标为0,1的A 点处由静止释放. 电荷所受的重力忽略不计,求:1电荷从释放到第一次进入磁场时所用的时间t ;2电荷在磁场中运动轨迹的半径;3电荷第三次到达x 轴上的位置.23、如图所示,在直角坐标系的第一、二象限内有垂直于纸面的匀强磁场,第三象限有沿y轴负方向的匀强电场;第四象限无电场和磁场;现有一从y轴上的M点沿x轴负方向进入电场,不计粒子质量为m、电荷量为q的粒子以速度v的重力,粒子经x轴上的N点和P点最后又回到M点,设OM=L,ON=2L.求:1带电粒子的电性,电场强度E的大小;2带电粒子到达N点时的速度大小和方向;3匀强磁场的磁感应强度的大小和方向;4粒子从M点进入电场,经N、P点最后又回到M点所用的时间;24、如图所示,空间分布着有理想边界的匀强电场和匀强磁场;左侧匀强电场的场强大小为E、方向水平向右,电场宽度为L;中间区域匀强磁场的磁感应强度大小为B,方向垂直纸面向里;一个质量为m、电量为q、不计重力的带正电的粒子从电场的左边缘的O点由静止开始运动,穿过中间磁场区域进入右侧磁场区域后,又回到O点,然后重复上述运动过程;求:1中间磁场区域的宽度d;2带电粒子从O点开始运动到第一次回到O点所用时间t.25、如图所示,竖直绝缘杆处于彼此垂直,大小分别为E和B的匀强电磁场中,电场方向水平向右,磁场方向垂直纸面向外,一个质量为m,带正电为q的小球从静止开始沿杆下滑,且与杆的动摩擦因数为μ,问:⑴小球速度多大时,小球加速度最大是多少⑵小球下滑的最大速度是多少26、如图所示为一个质量为m 、带电量为+q 的圆环,可在水平放置的足够长的粗糙细杆上滑动,细杆处于磁感应强度为B 的匀强磁场中;现给圆环向右初速度v 0,在以后的运动过程中,圆环克服摩擦力所做的功可能为:A .0B .2021mvC .22232221Bq g m mv o D .无法确定 27、如图1所示,宽度为d 的竖直狭长区域内边界为L 1、L 2,存在垂直纸面向里的匀强磁场和竖直方向上的周期性变化的电场如图2所示,电场强度的大小为E 0,E >0表示电场方向竖直向上;t =0时,一带正电、质量为m 的微粒从左边界上的N 1点以水平速度v 射入该区域,沿直线运动到Q 点后,做一次完整的圆周运动,再沿直线运动到右边界上的N 2点;Q 为线段N 1N 2的中点,重力加速度为g;上述d 、E 0、m 、v 、g 为已知量;1求微粒所带电荷量q 和磁感应强度B 的大小;2求电场变化的周期T ;3改变宽度d,使微粒仍能按上述运动过程通过相应宽度的区域,求T 的最小值;28、如图所示,直角坐标系xOy 位于竖直平面内,在水平的x 轴下方存在匀强磁场和匀强电场,磁场的磁感应为B,方向垂直xOy 平面向里,电场线平行于y 轴;一质量为m 、电荷量为q 的带正电的小球,从y 轴上的A 点水平向右抛出,经x 轴上的M 点进入电场和磁场,恰能做匀速圆周运动,从x 轴上的N 点第一次离开电场和磁场,MN之间的距离为L,小球过M点时的速度方向与x轴的方向夹角为 ;不计空气阻力,重力加速度为g,求1 电场强度E的大小和方向;2 小球从A点抛出时初速度v0的大小;3 A点到x轴的高度h.29、如图所示,真空室内存在宽度为d=8cm的匀强磁场区域,磁感应强度B=,磁场方向垂直于纸面向里;ab、cd足够长,cd为厚度不计的金箔,金箔右侧有一匀强电场区域,电场强度E=×105N/C;方向与金箔成37°角.紧挨边界ab放一点状α粒子放射源S,可沿纸面向各个方向均匀放射初速率相同的α粒子,已知:α粒子的质量m=×10-27kg,电荷量q= ×10-19C,初速度v = ×106m/s;sin37°= ,cos37°= 求:1α粒子在磁场中作圆周运动的轨道半径R;2金箔cd被α粒子射中区域的长度L;3设打在金箔上d端离cd中心最远的α粒子穿出金箔进入电场,在电场中运动通过N 点,SN⊥ab且SN = 40cm,则此α粒子从金箔上穿出时,损失的动能△E K为多少30、如图所示,一足够长的矩形区域abcd内充满方向垂直纸面向里的、磁感应强度为B的匀强磁场,在ad边中点O,方向垂直磁场向里射入一速度方向跟ad边夹角θ= 30°、大小为v的带正电粒子,已知粒子质量为m,电量为q,ad边长为L ,ab 边足够长,粒子重力不计,求:1粒子能从ab 边上射出磁场的v 0大小范围.2如果带电粒子不受上述v 0大小范围的限制,求粒子在磁场中运动的最长时间.31、如图所示装置由加速电场、偏转电场和偏转磁场组成;偏转电场处在加有电压的相距为d 的两块水平平行放置的导体板之间,匀强磁场水平宽度为l ,竖直宽度足够大,处在偏转电场的右边,如图甲所示;大量电子其重力不计由静止开始,经加速电场加速后,连续不断地沿平行板的方向从两板正中间射入偏转电场;当两板没有加电压时,这些电子通过两板之间的时间为2t 0,当在两板间加上如图乙所示的周期为2t 0、幅值恒为U 0的电压时,所有电子均能通过电场,穿过磁场,最后打在竖直放置的荧光屏上已知电子的质量为m 、电荷量为e ;求: 1如果电子在t =0时刻进入偏转电场,求它离开偏转电场时的侧向位移大小;2通过计算说明,所有通过偏转电场的电子的偏向角电子离开偏转电场的速度方向与进入电场速度方向的夹角都相同; 3要使电子能垂直打在荧光屏上,匀强磁场的磁感应强度为多少32、如图所示,在x-o-y 坐标系中,以r ,0为圆心、r 为半径的圆形区域内存在匀强磁场,磁场的磁感应强度大小为B ,方向垂直于纸面向里;在y > r 的足够大的区域内,存在沿y 轴负方向的匀强电场,场强大小为E ;从O 点以相同速率向不同方向发射质子,质子的运动轨迹均在纸面内,且质子在磁场中运动的轨迹半径也为r ;已知质子的电荷量为q ,质量为m ,不计质子所受重力及质子间相互作用力的影响;1求质子射入磁场时速度的大小;2若质子沿x 轴正方向射入磁场,求质子从O 点进入磁场到第二次离开磁场经历的时间;3若质子沿与x 轴正方向成夹角θ的方向从O 点射入第一象限的磁场中,求质子在磁场中运动的总时间;33、如图甲所示,水平放置的两平行金属板的板长l 不超过,OO ′为两金属板的中线;在金属板的右侧有一区域足够大的匀强磁场,其竖直左边界MN 与OO ′垂直,磁感应强度的大小B =,方向垂直于纸面向里;两金属板间的电压U 随时间t 变化的规律如图乙所示,现有带正电的粒子连续不断地以速度v 0=1×105m/s,沿两金属板的中线射入电场中;已知带电粒子的荷质比8110C/kg q m=⨯,粒子所受重力和粒子间的库仑力忽略不计,不考虑粒子高速运动的相对论效应;在每个粒子通过电场区域的时间内可以认为两金属板间的电场强度是不变的;1在t =时刻射入电场的带电粒子恰能从平行金属板边缘射出,求该粒子射出电场时速度t /s的大小;2对于所有经过电场射入磁场的带电粒子,设其射入磁场和射出磁场两点间的距离为d,请你证明d是一个不变量;3请你通过必要的计算说明:为什么在每个粒子通过电场区域的时间内,可以认为两金属板间的电场强度是不变的;34、如图甲所示,在直角坐标系0≤x≤L区域内有沿y轴正方向的匀强电场,右侧有一个以点3L,0为圆心、半径为L的圆形区域,圆形区域与x轴的交点分别为M、N;现有一质量为m,带电量为e的电子,从y轴上的A点以速度v0沿x轴正方向射入电场,飞出电场后从M点进入圆形区域,速度方向与x轴夹角为30°;此时在圆形区域加如图乙所示周期性变化的磁场,以垂直于纸面向外为磁场正方向,最后电子运动一段时间后从N飞出,速度方向与进入磁场时的速度方向相同与x轴夹角也为30°;求:⑴电子进入圆形磁场区域时的速度大小;⑵ 0≤x≤L区域内匀强电场场强E的大小;⑶写出圆形磁场区域磁感应强度B0的大小、磁场变化周期T各应满足的表达式;。
历年高考真题-磁场
磁场2.2010·全国卷Ⅰ·17某地的地磁场磁感应强度的竖直分量方向向下,大小为54.510T。
一灵敏电压表连接在当地入海河段的两岸,河宽100m ,该河段涨潮和落潮时有海水(视为导体)流过。
设落潮时,海水自西向东流,流速为2m/s。
下列说法正确的是A .河北岸的电势较高B .河南岸的电势较高C .电压表记录的电压为9mVD .电压表记录的电压为5mV3. 2010·江苏物理·9如图所示,在匀强磁场中附加另一匀强磁场,附加磁场位于图中阴影区域,附加磁场区域的对称轴OO ’与SS’垂直。
a、b、c 三个质子先后从S 点沿垂直于磁场的方向摄入磁场,它们的速度大小相等,b 的速度方向与SS’垂直,a、c 的速度方向与b 的速度方向间的夹角分别为 、,且 。
三个质子经过附加磁场区域后能达到同一点S’,则下列说法中正确的有 A .三个质子从S 运动到S’的时间相等B .三个质子在附加磁场以外区域运动时,运动轨迹的圆心均在OO ’轴上C .若撤去附加磁场,a 到达SS’连线上的位置距S 点最近D .附加磁场方向与原磁场方向相同5.2010·安徽·20如图所示,水平地面上方矩形区域内存在垂直纸面向里的匀强磁场,两个边长相等的单匝闭合正方形线圈Ⅰ和Ⅱ,分别用相同材料,不同粗细的导线绕制(Ⅰ为细导线)。
两线圈在距磁场上界面h 高处由静止开始自由下落,再进入磁场,最后落到地面。
运动过程中,线圈平面始终保持在竖直平面内且下边缘平行于磁场上边界。
设线圈Ⅰ、Ⅱ落地时的速度大小分别为v 1、v 2,在磁场中运动时产生的热量分别为Q 1、Q 2。
不计空气阻力,则A.v 1 <v 2,Q 1< Q 2 B.v 1 =v 2,Q 1= Q 2 C.v 1 <v 2,Q 1>Q 2 D.v 1 =v 2,Q 1< Q 2 6. 2010·全国卷Ⅰ·26如下图,在03x a 区域内存在与xy 平面垂直的匀强磁场,磁感应强度的大小为B.在t=0时刻,一位于坐标原点的粒子源在xy 平面内发射出大量同种带电粒子,所有粒子的初速度大小相同,方向与y 轴正方向的夹角分布在0~180°范围内。
专项练习--磁场地最小面积求解
25题练习〔3〕--磁场的最小面积1.如以下图,第四象限内有互相正交的匀强电场E 与匀强磁场B 1,E 的大小为1.5×103 V/m,B 1大小为0.5 T ;第一象限的某个矩形区域内,有方向垂直纸面的匀强磁场,磁场的下边界与x 轴重合.一质量m =1×10-14 kg,电荷量q =2×10-10 C 的带正电微粒以某一速度v 沿与y 轴正方向60°角从M 点射入,沿直线运动,经P 点后即进入处于第一象限内的磁场B 2区域.一段时间后,微粒经过y 轴上的N点并与y 轴正方向成60°角的方向飞出.M 点的坐标为<0,-10>,N点的坐标为<0,30>,不计微粒重力,g 取10 m/s 2.如此求:<1>微粒运动速度v 的大小;<2>匀强磁场B 2的大小;<3>B 2磁场区域的最小面积.解析:<1>带正电微粒在电场和磁场复合场中沿直线运动,qE =qvB 1,解得v =E/B 1=3×103 m/s.<2>画出微粒的运动轨迹如图,粒子做圆周运动的半径为R =错误! m.由qvB 2=mv 2/R,解得B 2=3错误!/4 T.<3>由图可知,磁场B 2的最小区域应该分布在图示的矩形PACD 内,由几何关系易得PD =2Rsin 60°=20 cm =0.2 m,PA =R<1-cos60°>=错误!/30 m.所以,所求磁场的最小面积为S =PD ·PA =错误! m 2.答案:<1>3×103 m/s <2>错误! T<3>错误! m 22.如图甲所示,x 轴正方向水平向右,y 轴正方向竖直向上.在xoy 平面内有与y 轴平行的匀强电场,在半径为R 的圆形区域内加有与xoy 平面垂直的匀强磁场.在坐标原点O 处放置一带电微粒发射装置,它可以连续不断地发射具有一样质量m 、电荷量q 〔0>q 〕和初速为0v 的带电粒子.重力加速度大小为g.〔1〕当带电微粒发射装置连续不断地沿y 轴正方向发射这种带电微粒时,带电微粒将沿圆形磁场区域的水平直径方向离开磁场,并继续沿x 轴正方向运动.求电场强度和磁场强度的大小和方向.〔2〕调节坐标原点0处的带电微粒发射装置,使其在xoy 平面内不断地以一样的速率v 0沿不同方向将这种带电微粒射入第1象限,如图乙所示.现要求带电微粒最终都能平行于x 轴正方向运动,如此在保证匀强电场、匀强磁场的强度和方向不变的条件下,应如何改变匀强磁场的分布区域?并求出符合条件的磁场区域的最小面积.解〔1〕由题目中"带电粒子从坐标原点O 处沿y 轴正方向进入磁场后,最终沿圆形磁场区 域的水平直径离开磁场并继续沿x 轴正方向运动〞可知,带电微粒所受重力与电场力平衡.设电场强度大小为E,由平衡条件得:qE mg =1分 N ∴q mg E =1分 电场方向沿y 轴正方向 带电微粒进入磁场后,做匀速圆周运动,且圆运动半径r=R.设匀强磁场的磁感应强度大小为B.由牛顿第二定律得:R mv B qv 200=1分 ∴qR mv B 0=1分 磁场方向垂直于纸面向外1分〔2〕设由带电微粒发射装置射入第Ⅰ象限的带电微粒的初速度方向与x 轴承夹角θ, 如此θ满足0≤2πθ<,由于带电微粒最终将沿x 轴正方向运动,故B 应垂直于xoy 平面向外,带电微粒在磁场内做半径为qBmv R 0=匀速圆周运动. 由于带电微粒的入射方向不同,假如磁场充满纸面,它们所对应的运动的轨迹如以下图.2分为使带电微粒经磁场偏转后沿x 轴正方向运动.由图可知,它们必须从经O 点作圆运动的各圆的最高点飞离磁场.这样磁场边界上P 点的坐标P 〔x,y 〕应满足方程:θsin R x =,)cos 1(θ-=R y ,所以磁场边界的方程为:222)(R R y x =-+2分由题中0≤2πθ<的条件可知, 以2πθ→的角度射入磁场区域的微粒的运动轨迹即为所求磁场的另一侧的边界.2分因此,符合题目要求的最小磁场的X 围应是圆222)(R R y x =-+与圆222)(R y R x =+-的交集局部〔图影局部〕.1分由几何关系,可以求得符合条件的磁场的最小面积为:22202min )12(B q v m S -=π1分 3.如以下图,在平面直角坐标系xOy 中的第一象限内存在磁感应强度大小为B 、方向垂直于坐标平面向内的有界圆形匀强磁场区域〔图中未画出〕;在第二象限内存在沿x 轴负方向的匀强电场.一粒子源固定在x 轴上的A 点,A 点坐标为〔-L,0〕.粒子源沿y 轴正方向释放出速度大小为v 的电子,电子恰好能通过y 轴上的C 点,C 点坐标为〔0,2L 〕,电子经过磁场偏转后方向恰好垂直ON,ON 是与x 轴正方向成15°角的射线.〔电子的质量为m,电荷量为e,不考虑粒子的重力和粒子之间的相互作用.〕求:〔1〕第二象限内电场强度E 的大小.〔2〕电子离开电场时的速度方向与y 轴正方向的夹角θ.〔3〕圆形磁场的最小半径R min .解:〔1〕22mv EeL〔2〕=45°〔3〕电子的运动轨迹如图,电子在磁场中做匀速圆周运动的半径电子在磁场中偏转120°后垂直于ON射出,如此磁场最小半径:由以上两式可得:4.〔某某适应性测试>在如右图所示的平面直角坐标系中,存在一个半径R=0.2m的圆形匀强磁场区域,磁感应强度B=1.0T,方向垂直纸面向外,该磁场区域的右边缘与坐标原点O 相切.y轴右侧存在电场强度大小为E=1.0×104N/C的匀强电场,方向沿y轴正方向,电场区域宽度l=0.1m.现从坐标为<-0.2m,-0.2m>的P点发射出质量m=2.0×10-9kg、带电荷量q=5.0×10-5C的带正电粒子,沿y轴正方向射入匀强磁场,速度大小v0=5.0×103m/s.重力不计.<1>求该带电粒子射出电场时的位置坐标;<2>为了使该带电粒子能从坐标为<0.1m,-0.05m>的点回到电场后,可在紧邻电场的右侧一正方形区域内加匀强磁场,试求所加匀强磁场的磁感应强度大小和正方形区域的最小面积.解析:<1>带正电粒子在磁场中做匀速圆周运动,有qv0B=m错误!解得r=0.20m=R根据几何关系可知,带电粒子恰从O点沿x轴进入电场,带电粒子做类平抛运动.设粒子到达电场边缘时,竖直方向的位移为y,有l=v0t,y=错误!·错误!t2联立解得y=0.05m所以粒子射出电场时的位置坐标为<0.1m,0.05m>.<2>粒子飞离电场时,沿电场方向速度v y=at=5.0×103m/s=v0粒子射出电场时速度v=错误!v0由几何关系可知,粒子在正方形区域磁场中做圆周运动半径r′=0.05错误!m由qvB′=m错误!,解得B′=4T正方形区域最小面积S=<2r′>2解得S=0.02m2.答案:<1><0.1m,0.05m> <2>0.02m25.如以下图,在坐标系第一象限内有正交的匀强电、磁场,电场强度E=1.0×103 V/m,方向未知,磁感应强度B=1.0 T,方向垂直纸面向里;第二象限的某个圆形区域内有垂直纸面向里的匀强磁场B′<图中未画出>.一质量m=1×10-14 kg、电荷量q=1×10-10 C的带正电粒子以某一速度v沿与x轴负方向成60°角的方向从A点进入第一象限,在第一象限内做直线运动,而后从B点进入磁场B′区域.一段时间后,粒子经过x轴上的C点并与x轴负方向成60°角飞出.A点坐标为<10,0>,C点坐标为<-30,0>,不计粒子重力.<1>判断匀强电场E的方向并求出粒子的速度v.<2>画出粒子在第二象限的运动轨迹,并求出磁感应强度B′.<3>求第二象限磁场B′区域的最小面积.解析<1>粒子在第一象限内做直线运动,速度的变化会引起洛伦兹力的变化,所以粒子必做匀速直线运动.这样,电场力和洛伦兹力大小相等,方向相反,电场E的方向与微粒运动的方向垂直,即与x轴正向成30°角斜向右上方.由平衡条件有Eq=Bqv得v=错误!=错误! m/s=103 m/s<2>粒子从B点进入第二象限的磁场B′中,轨迹如图粒子做圆周运动的半径为R,由几何关系可知R=错误! cm=错误! cm由qvB′=m错误!,解得B′=错误!=错误!,代入数据解得B′=错误! T.<3>由图可知,B、D点应分别是粒子进入磁场和离开磁场的点,磁场B′的最小区域应该分布在以BD为直径的圆内.由几何关系得BD=20 cm,即磁场圆的最小半径r=10 cm,所以,所求磁场的最小面积为S=πr2=3.14×10-2 m2答案<1>与x轴正向成30°角斜向右上方103 m/s <2>运动轨迹见解析图错误! T <3>3.14×10-2 m26.如图甲所示,在xOy平面内有足够大的匀强电场,电场方向竖直向上,电场强度E=40 N/C,在y轴左侧平面内有足够大的瞬时磁场,磁感应强度B1随时间t变化的规律如图乙所示,15π s后磁场消失,选定磁场垂直纸面向里为正方向.在y轴右侧平面内还有方向垂直纸面向外的恒定的匀强磁场,分布在一个半径为r=0.3 m的圆形区域<图中未画出>,且圆的左侧与y轴相切,磁感应强度B2=0.8 T.t=0时刻,一质量m=8×10-4 kg、电荷量q=2×10-4 C的微粒从x轴上x P=-0.8 m处的P点以速度v=0.12 m/s向x轴正方向入射.<g取10 m/s2,计算结果保存两位有效数字><1>求微粒在第二象限运动过程中离y轴、x轴的最大距离.<2>假如微粒穿过y轴右侧圆形磁场时,速度方向的偏转角度最大,求此圆形磁场的圆心坐标<xy>.解析<1>因为微粒射入电磁场后受到的电场力F=Eq=8×10-3 N,G=mg=8×10-3 N电F=G,所以微粒在洛伦兹力作用下做匀速圆周运动电因为qvB1=m错误!所以R1=错误!=0.6 mT=错误!=10π s从图乙可知在0~5 π s内微粒向左做匀速圆周运动在5π s~10π s内微粒向左匀速运动,运动位移x=v错误!=0.6π m1在10π s~15π s内,微粒又做匀速圆周运动,15π s以后向右匀速运动,之后穿过y轴.所以,离y轴的最大距离s=0.8 m+x+R1=1.4 m+0.6π m≈3.3 m1离x轴的最大距离s′=2R1×2=4R1=2.4 m<2>如图,微粒穿过圆形磁场要求偏转角最大,〔因为R=2r〕入射点A与出射点B的连线必须为磁场圆的直径因为qvB2=错误!所以R2=错误!=0.6 m=2r所以最大偏转角θ=60°所以圆心坐标x=0.30 my=s′-r cos 60°=2.4 m-0.3 m×错误!≈2.3 m,即磁场的圆心坐标为<0.30,2.3>答案<1>3.3 m,2.4 m <2><0.30,2.3>7.如以下图,虚线MO与水平线PQ相较于O点,二者夹角θ=300,在MO右侧某个区域存在着磁感应强度为B、垂直纸面向里的匀强磁场,在MO左侧存在着垂直纸面向里的另一匀强磁场,磁感应强度为B’.现有一群质量为m、电量为+q的带电粒子在纸面内以速度v〔0≤v≤EB〕垂直于MO从O点射入磁场,所有粒子通过直线MO时,速度方向均平行于PQ向左,不计粒子的重力和粒子间的相互作用力.求:〔1〕磁场区域的最小面积.〔2〕速度最大的粒子从O开始射入磁场至返回水平线POQ所用的时间.。
磁场的最小面积
带电粒子在磁场中运动21.如图19所示,一带电质点,质量为m,电量为q,以平行于Ox轴的速度v从y轴上的a点射入图中第一象限所示的区域。
为了使该质点能从x轴上的b点以垂直于Ox轴的速度v射出,可在适当的地方加一个垂直于xy平面、磁感应强度为B的匀强磁场。
若此磁场仅分布在一个圆形区域内,试求这圆形磁场区域的最小半径。
重力忽略不计。
3.如图所示,第四象限内有互相正交的匀强电场E与匀强磁场B1,E的大小为1.5×103 V/m,B1大小为0.5 T;第一象限的某个矩形区域内,有方向垂直纸面的匀强磁场,磁场的下边界与x轴重合。
一质量m=1×10-14kg,电荷量q=2×10-10 C的带正电微粒以某一速度v沿与y轴正方向60°角从M点射入,沿直线运动,经P点后即进入处于第一象限内的磁场B2区域。
一段时间后,微粒经过y轴上的N点并与y轴正方向成60°角的方向飞出。
M点的坐标为(0,-10),N点的坐标为(0,30),不计微粒重力,g取10 m/s2。
则求:(1)微粒运动速度v的大小;(2)匀强磁场B2的大小;(3)B2磁场区域的最小面积。
4.如图所示,在平面直角坐标系xOy中的第一象限内存在磁感应强度大小为B、方向垂直于坐标平面向内的有界圆形匀强磁场区域(图中未画出);在第二象限内存在沿x轴负方向的匀强电场.一粒子源固定在x轴上的A点,A点坐标为(-L,0).粒子源沿y轴正方向释放出速度大小为v的电子,电子恰好能通过y轴上的C点,C点坐标为(0,2L),电子经过磁场偏转后方向恰好垂直ON,ON是与x轴正方向成15°角的射线.(电子的质量为m,电荷量为e,不考虑粒子的重力和粒子之间的相互作用.)求:(1)第二象限内电场强度E的大小.(2)电子离开电场时的速度方向与y轴正方向的夹角θ.(3)圆形磁场的最小半径R min.5.在如右图所示的平面直角坐标系中,存在一个半径R=0.2m的圆形匀强磁场区域,磁感应强度B=1.0T,方向垂直纸面向外,该磁场区域的右边缘与坐标原点O相切.y轴右侧存在电场强度大小为E=1.0×104N/C的匀强电场,方向沿y轴正方向,电场区域宽度l=0.1m.现从坐标为(-0.2m,-0.2m)的P点发射出质量m=2.0×10-9kg、带电荷量q=5.0×10-5C的带正电粒子,沿y轴正方向射入匀强磁场,速度大小v0=5.0×103m/s.重力不计.(1)求该带电粒子射出电场时的位置坐标;(2)为了使该带电粒子能从坐标为(0.1m,-0.05m)的点回到电场后,可在紧邻电场的右侧一正方形区域内加匀强磁场,试求所加匀强磁场的磁感应强度大小和正方形区域的最小面积.6.如图所示,在坐标系第一象限内有正交的匀强电、磁场,电场强度E=1.0×103 V/m,方向未知,磁感应强度B=1.0 T,方向垂直纸面向里;第二象限的某个圆形区域内有垂直纸面向里的匀强磁场B′(图中未画出).一质量m=1×10-14 kg、电荷量q=1×10-10 C的带正电粒子以某一速度v沿与x轴负方向成60°角的方向从A点进入第一象限,在第一象限内做直线运动,而后从B点进入磁场B′区域.一段时间后,粒子经过x轴上的C点并与x轴负方向成60°角飞出.已知A点坐标为(10,0),C点坐标为(-30,0),不计粒子重力.(1)判断匀强电场E的方向并求出粒子的速度v.(2)画出粒子在第二象限的运动轨迹,并求出磁感应强度B′.(3)求第二象限磁场B′区域的最小面积.1.如图19所示,一带电质点,质量为m,电量为q,以平行于Ox轴的速度v从y轴上的a点射入图中第一象限所示的区域。
河北省衡水中学2024届高三下学期高考冲刺物理试卷(一) (含解析)
2023~2024学年度河北衡水中学冲刺高考物理密卷(一)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
共100分。
考试时间75分钟。
第Ⅰ卷(选择题共46分)一、单项选择题(本题共7小题,每小题4分,共28分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.采用图甲所示的装置研究光电效应现象,电流表和电压表不测量时指针均指在表盘的正中间。
分别用a、b、c三束单色光照光电管的阴极K,得到光电管两端的电压与相应的光电流的关系。
如图乙所示。
下列说法正确的是( )A.测量遏止电压时开关S应扳向1B、a光的光子能量比b光的小C.a光照射时光电子的最大初动能比c光照射的大D.c光的强度比a光的大2、两辆汽车A、B在相邻车道以不同的速度匀速行驶,前方十字路口红灯,两车刹车过程中并排行驶时,如图甲所示,车头到前方停车线的距离均为20m,最终两车头均恰好到达停车线前。
以两车并排行驶时车头所在处为位移0点并开始计时,以汽车运动方向为正方向建立x轴,汽车A整个过程的x-t图像如图乙所示,是开口向下的抛物线的一部分,汽车B 整个过程的y-t图像为如图丙所示的直线,下列说法正确的是( )A.两汽车同时到达停车线前B.汽车A的初速度大小为6m/sC .汽车B 的加速度大小为1m/s 2D.两车头沿运动方向的最大距离为3、半径为R 的半圆弧金属丝均匀带+Q 的电荷时,在其圆心处产生的电场强度大小为,k 为静电力常量。
若让一根半径为R 的圆弧金属丝均匀带+Q 的电荷,则在其圆心处产生的电场强度大小为( )A .B .C .D . 4、今年冬天,南海公园、赛罕塔拉、包头乐园为吸引游客,兴建了滑雪游乐场,某公园的滑雪场设置了如图所示滑道跳雪游戏项目:滑道由高为H 的斜面滑道AB 、水平滑道BC 和高为h 的斜面滑道CD 三部分组成,AC 水平距离为L ,CD 滑道的倾角固定,为45°,游客脚上的滑雪板与三段滑道之间的动摩擦因数均为μ=0.25,游客从A 点由静止开始下滑,经过水平滑道BC 过渡后由C 点水平飞出,若不计在B 点的机械能损失,下列说法正确的是( )A .只要H 和L 一定,不管滑道AB 的倾角有多大,游客从C 点飞出的速度一定B .若游客落在滑道CD 的不同点上,则落在滑道的各点速度方向不相同C .其他条件不变,为保证游客落在滑道CD 上,L 可以设计适当短一些D . 当3H =L +h 时,游客恰好落在 D 点5、2023年11月 16 日,中国北斗系统正式加入国际民航组织标准,成为全球民航通用的卫星导航系统。
18 磁场最小面积问题—高中物理三轮复习重点题型考前突破
一、磁场形状为圆状的最小面积计算1.如图,在直角坐标系xOy平面内,虚线MN平行于y轴,N点坐标(-l,0),MN与y 轴之间有沿y轴正方向的匀强电场,在第四象限的某区域有方向垂直于坐标平面的圆形有界匀强磁场(图中未画出)。
现有一质量为m、电荷量大小为e的电子,从虚线MN上的P点,以平行于x轴正方向的初速度v0射入电场,并从y轴上A点(0,0.5l)射出电场,射出时速度方向与y轴负方向成30°角,此后,电子做匀速直线运动,进入磁场并从圆形有界磁场边界上Q点(3l6,-l)射出,速度沿x轴负方向,不计电子重力。
求:(1)匀强电场的电场强度E的大小?(2)匀强磁场的磁感应强度B的大小?电子在磁场中运动的时间t是多少?(3)圆形有界匀强磁场区域的最小面积S是多大?解析(1)设电子在电场中运动的加速度为a,时间为t,离开电场时沿y轴方向的速度大小为v y,则a=eE mv y=atl=v0tv0=v y tan 30°解得E=3m v20 el。
(2)设轨迹与x轴的交点为D,OD距离为x D,则x D=0.5l tan 30°x D=3l 6所以DQ平行于y轴,电子在磁场中做匀速圆周运动的轨道的圆心在DQ上,电子运动轨迹如图所示。
设电子离开电场时速度为v ,在磁场中做匀速圆周运动的轨道半径为r , 则v 0=v sin 30° r =m v eB =2m v 0eB r +r sin 30°=l (有r =l3)t =13TT =2πm eB ⎝ ⎛⎭⎪⎫或T =2πr v =πl 3v 0解得B =6m v 0el ,t =πl9v 0。
(3)以切点F 、Q 为直径的圆形有界匀强磁场区域的半径最小,设为r 1,则 r 1=r cos 30°=3r 2=3l6S =πr 21=πl 212。
答案 (1)3m v 20el (2)6m v 0el ,πl 9v 0(3)πl 2122.如图所示,在直角坐标系xoy 中,第Ⅰ象限存在沿y 轴正方向、电场强度为E 的匀强电场,第Ⅳ象限存在一个方向垂直于纸面、磁感应强度为B 的圆形匀强磁场区域。
最小磁场面积、最短时间
磁场时有最大的偏转角,其入射时粒子的方向应如何(以v0
(2)C点到 b点的距离 h。
y O2
A v
b
ቤተ መጻሕፍቲ ባይዱ
O
O1 60°
30°
v
x
h E
解:(1) 反向延长vb交y 轴于O2 点,作∠bO2 O的角平分线
交x 轴于O1 , O1即为圆形轨道的圆心,半径为R = OO1 =mv/qB,画出圆形轨迹交b O2于A点,如图虚线所示。
最小的圆形磁场区域是以OA为直径的圆,如图示:
d
例 一个垂直纸面向里的有界匀强磁场形状
如图所示,磁场宽度为 d。在垂直B的平面内
的A点,有一个电量为 -q、质量为 m、速度
-q A v m
为 v 的带电粒子进入磁场,请问其速度方向与 磁场边界的夹角为多少时粒子穿过磁场的时间 最短?(已知 mv/Bq > d) 对象模型:质点
d
αR O
过程模型:匀速圆周运动 规律:牛顿第二定律 + 圆周运动公式 条件:要求时间最短
解 :质点在磁场中圆周运动半径为
r=mv/Bq。质点在磁场区域中的轨道是 a 1/4 圆周,如图中M、N两点间的圆弧。
y v0 M B
r 2R
在通过M、N两点的不同的圆中,最小 的一个是以MN 连线为直径的圆周。
Or N
O
bx
圆形磁场区域的最小半径
R
1 2
MN
2 mvqB
例、如图,质量为m、带电量为+q 的粒子以速度v 从O点沿
故P1P2=20cm
a P1 N l
S
P2 b B
解题经验
1、临界问题,经常是运动轨迹圆与磁场边界相切时为临 界状态。
磁场中的最小面积问题
磁场中的“最小面积”问题河南省信阳高级中学陈庆威2016.12.27带电粒子在磁场中运动类题目本身就是磁场中的重难点问题,而求粒子在磁场中运动时的“最小面积”问题,又是这类问题中比较典型的难题。
很多时候面对这种题目,同学们的大脑都是一片空白,没有思路、没有方法、也没有模型。
那么,如何突破这一难题呢?以下是我精心整理的几道相关试题。
相信,我们通过该种模型题的训练,能学会举一反三、活学活用、准确把握模型、深刻理解模型,形成自己独立解决该类问题的思维和方法,从而全面提升我们的解题能力。
例题1:如图所示,一质量为m、电荷量为q的带电粒子,从y轴上的P/点以速度丫射入第一象限所示的区域,入射方向与x 轴正方向成。
角.为了使该粒子能从x轴上的P/点射出该区域,且射出方向与x轴正方向也成a角,可在第一象限适当的地方加一个垂直于xoy平面、磁感应强度为B的匀强磁场.若磁场分布为一个圆形区域,求这一匕心一圆形区域的最小面积为(不计粒子的重力)一一 .:解析:粒子在磁场中做匀速圆周运动,洛伦兹力提供向心力,由牛顿第二定律得:"二崂则粒子在磁场中做圆周的半径:R =竺qB由题意可知,粒子在磁场区域中的轨道为半径等于r 的圆上的一段圆周,这段圆弧应与入射方向的速度、 出射方向的速度相切,如图所示:则到入射方向所在直线和出射方向所在直线相距为 R 的O,点 就是圆周的圆心.粒子在磁场区域中的轨道就是以0,为圆心、R 为半径的圆上的圆弧 ef,而e 点和f 点应在所求圆形磁场区 域的边界上,在通过 e 、f 两点的不同的圆周中,最小的一个 是以ef 连线为直径的圆周.即得圆形区域的最小半径 一 R sin a =皿sin ° qB 则这个圆形区域磁场的最小面积例题2:如图所示,一带电质点,质量为m,电量为q,以平行于ox 轴的速度v 从y 轴上的a 点射入图中第一象限所示的区域。
为了使该 质点能从x 轴上的b 点以垂直于ox 轴的速度v 射出,可在适当的地方加一个垂直于xoy 平面、 磁感应强度为B 的匀强磁场。
带电粒子在匀强磁场中运动的临界极值问题(解析版)
带电粒子在匀强磁场中运动的临界极值问题由于带电粒子往往是在有界磁场中运动,粒子在磁场中只运动一段圆弧就飞出磁场边界,其轨迹不是完整的圆,因此,此类问题往往要根据带电粒子运动的轨迹作相关图去寻找几何关系,分析临界条件,然后应用数学知识和相应物理规律分析求解.1.临界条件的挖掘(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切。
(2)当速率v一定时,弧长(或弦长)越长,圆心角越大(前提条件是劣弧),则带电粒子在有界磁场中运动的时间越长。
(3)当速率v变化时,轨迹圆心角越大,运动时间越长。
(4)当运动轨迹圆半径大于圆形磁场半径时,则以磁场直径的两端点为入射点和出射点的轨迹对应的偏转角最大。
2.不同边界磁场中临界条件的分析(1)平行边界:常见的临界情景和几何关系如图所示。
(2)矩形边界:如图所示,可能会涉及与边界相切、相交等临界问题。
(3)三角形边界:如图所示是正△ABC区域内某正粒子垂直AB方向进入磁场的粒子临界轨迹示意图。
粒子能从AB间射出的临界轨迹如图甲所示,粒子能从AC间射出的临界轨迹如图乙所示。
3. 审题技巧许多临界问题,题干中常用“恰好”、“最大”、“至少”、“不相撞”、“不脱离”等词语对临界状态给以暗示.审题时,一定要抓住这些特定的词语挖掘其隐藏的规律,找出临界条件.【典例1】如图所示,垂直于纸面向里的匀强磁场分布在正方形abcd区域内,O点是cd边的中点。
一个带正电的粒子仅在磁场力的作用下,从O点沿纸面以垂直于cd边的速度射入正方形内,经过时间t0后刚好从c点射出磁场。
现设法使该带电粒子从O点沿纸面以与Od成30°角的方向,以大小不同的速率射入正方形内,下列说法中正确的是( )A .若该带电粒子在磁场中经历的时间是53t 0,则它一定从cd 边射出磁场B .若该带电粒子在磁场中经历的时间是23t 0,则它一定从ad 边射出磁场C .若该带电粒子在磁场中经历的时间是54t 0,则它一定从bc 边射出磁场D .若该带电粒子在磁场中经历的时间是t 0,则它一定从ab 边射出磁场 【答案】 AC 【解析】 如图所示,【典例2】放置在坐标原点O 的粒子源,可以向第二象限内放射出质量为m 、电荷量为q 的带正电粒子,带电粒子的速率均为v ,方向均在纸面内,如图8-2-14所示.若在某区域内存在垂直于xOy 平面的匀强磁场(垂直纸面向外),磁感应强度大小为B ,则这些粒子都能在穿过磁场区后垂直射到垂直于x 轴放置的挡板PQ 上,求:(1)挡板PQ 的最小长度; (2)磁场区域的最小面积. 【答案】 (1)mv Bq (2)⎝⎛⎭⎫π2+1m 2v 2q 2B2【解析】 (1)设粒子在磁场中运动的半径为R ,由牛顿第二定律得qvB =mv 2R ,即R =mvBq【跟踪短训】1. 在xOy 平面上以O 为圆心、半径为r 的圆形区域内,存在磁感应强度为B 的匀强磁场,磁场方向垂直于xOy 平面.一个质量为m 、电荷量为q 的带电粒子,从原点O 以初速度v 沿y 轴正方向开始运动,经时间t 后经过x 轴上的P 点,此时速度与x 轴正方向成θ角,如图8-2-24所示.不计重力的影响,则下列关系一定成立的是( ).A .若r <2mv qB ,则0°<θ<90° B .若r ≥2mv qB ,则t ≥πmqBC .若t =πm qB ,则r =2mv qBD .若r =2mv qB ,则t =πmqB【答案】 AD【解析】 带电粒子在磁场中从O 点沿y 轴正方向开始运动,圆心一定在垂直于速度的方向上,即在x 轴上,轨道半径R =mv qB .当r ≥2mvqB 时,P 点在磁场内,粒子不能射出磁场区,所以垂直于x 轴过P 点,θ最大且为90°,运动时间为半个周期,即t =πm qB ;当r <2mvqB 时,粒子在到达P 点之前射出圆形磁场区,速度偏转角φ在大于0°、小于180°范围内,如图所示,能过x 轴的粒子的速度偏转角φ>90°,所以过x 轴时0°<θ<90°,A 对、B 错;同理,若t =πmqB ,则r ≥2mv qB ,若r =2mv qB ,则t 等于πm qB,C 错、D 对. 2. 如图所示,磁感应强度大小为B =0.15 T 、方向垂直纸面向里的匀强磁场分布在半径为R =0.10 m 的圆形区域内,圆的左端跟y 轴相切于直角坐标系原点O ,右端跟很大的荧光屏MN 相切于x 轴上的A 点。
带电粒子在磁场中的运动的最小面积问题
30 l
运 动 ,初 速度 为 v,方 向 沿 X正 方 向 。 后
T P
来 .粒 子 经 过 Y轴 上 的 P点 .此 时速 度 方 向 与v轴 的 夹 角 为 30。,P到 0的 距 离 为
J
0
L,如 图所 示 。不 计 重 力 的 影 响 。求 磁 场 的磁 感 应 强 度B的 大 小 和xv平 面上 磁 场 区域 的 半 径 R。
经 过 v轴 上 的 N点 并 与 v轴 正 方 向成 60。 角 的方 向飞 出 。M点 的 坐标 为 (0,一1O),
N点 的 坐标 为 (0,3O),不 计 粒 子 重 力 ,g取 10m/s 。 (1)请 分 析 判 断 匀强 电场 E,的 方 向 并 求 出微 粒 的 运 动 速
度 v: (2)匀 强 磁 场B,的大 小 为 多 大 ?
R,由图 中几 何 关 系 可得
R: L
④
例 题 2.如 图所 示 ,第 四象 限 内有 互 相正 交 的 匀 强 电场 E与 匀 强磁 场B ,E的 大 小 为0.5x10 V/m,B.大 小 为0.5T;第 一 象 限 的 某 个 矩形 区域 内 ,有 方 向垂 直 纸 面 向里 的匀 强 磁 场 B,,磁 场
PA:R(1一cos60。): 3O m
所 以 . 所 求 磁 场 的 最 小 面 积 为 S:而 .PA:一1 Xx/3-
—
—
:
、/3 2
—
—
m —
—
150
例题3.一个质量为m,带+q电量 的
粒 子 在 BC边 上 的 M点 以速 度 v垂 直 于
·
/、
, \
BC边 飞入 正 三 角 形ABC。为 了使 该 粒
有界磁场的最小面积模型
一模型界定带电粒子在有界磁场中运动时,要完成题目要求的运动过程,空间中有粒子必须经过的一个磁场区域,按照题目要求的边界形状或由粒子临界状态下的运动轨迹所决定的有界磁场区域,其面积存在着一个最小值,此模型着重归纳有界磁场最小面积的确定与计算方法.二模型破解在涉及最小磁场面积的题目中,主要有两种类型,一种是单一粒子的运动中所经过磁场的最小面积,这种类型的题目通常对磁场区域的形状有明确的要求,如矩形、圆形、三角形;另一种类型是大量粒子经过磁场的运动,由临界状态下的粒子运动轨迹及对粒子的特定运动形式要求所产生的对磁场边界形状的特定要求,从而形成有界磁场的面积的极值问题.1.单一粒子的运动(i)确定粒子在磁场运动的轨迹半径粒子在磁场运动的轨迹半径通常是已知的或是能够由题目中条件计算得出的,也可在未知时先将半径假设出来.(ii)确定粒子在有界磁场中的入射方向和出射方向粒子在有界磁场中的入射方向和出射方向通常也是由题目给出或能够从题目中条件分析得出.(iii)确定粒子在有界磁场中运动时的入射点与出射点的位置当题目中没有给定粒子在进出磁场的位置时,先延长粒子的入射方向与出射方向所在的直线得到一个交点,粒子在磁场中运动的轨迹圆心必在这两条直线所形成的两对夹角中的其中一条夹角平分线上,由粒子经过磁场前后的运动要求确定圆心所在的夹角平分线;再在此夹角平分线上取一点O,过该点作粒子入射方向、出射方向所在直线的垂线,使O点到两直线的垂直距离等于粒子的运动轨迹半径,则两垂足即分别为粒子进出磁场时的入射点与出射点.(iv)确定有界磁场的边界连接入射点与出射点得到一条线段或直线,并作出粒子在磁场处于入射点与出射点之间的一段运动轨迹圆,再由题目对磁场边界形状的要求确定磁场边界线的位置或圆形磁场的最小半径.①圆形有界磁场(I)当题目对圆形磁场区域的圆心位置有规定时,连接圆心与粒子在磁场中的出射点即得到磁场区域的半径.但是这种情况下磁场区域的大小是固定的.(II)当题目对圆形磁场区域的圆心位置无规定时,若粒子在磁场中转过的圆弧为一段劣弧时,将连接入射点a 与出射点b 所得的线段作为磁场区域的直径,则所得圆即为最小面积的圆形磁场区域,如图1所示.图1图中几何关系为θsin R r =若粒子在磁场中转过的圆弧为半圆弧或一段优弧时,最小磁场区域的边界极限圆弧与粒子运动轨迹重合,即无最小值.②半圆形有界磁场(I)当粒子在磁场中运动轨迹是一段劣弧时,连接入射点a 与出射点b 所得直线与半圆形边界的直边重合,以ab 为直径作出的半圆弧即为所求,如图2甲所示.图中几何关系为θsin R r =(II)当粒子在磁场中运动轨迹是一段优弧时,连接入射点a 与出射点b 所得直线与半圆形边界的直边重合,以其中点为圆心作出与粒子运动轨迹相切的圆弧,此圆弧即为半圆形磁场区域的曲线边界,如图2乙所示.图2图中几何关系为)cos 1(θ+=R r (III)当粒子在磁场中运动轨迹是一个半圆弧时,磁场圆形边界与粒子运动轨迹重合.③矩形有界磁场(I)当题目对矩形磁场区域边界某个边有规定时,过入射点或过出射点作已知边界线的平行线或垂线,再作与已知边界线平行或垂直的、与粒子在磁场中运动轨迹相切的直线,则所得矩形即为题目要求的最小矩形.(II)当题目对矩形磁场区域边界无规定时,第一步:连接入射点a 与出射点b 得一条直线ab;第二步:作ab 的平行线且使其与粒子运动轨迹圆相切;第三步:作ab 的两条垂线,若粒子在磁场中转过的是一个优弧时,应使这两条垂线也与粒子运动轨迹圆弧相切,如图3甲所示;若粒子在磁场转过的是一段劣弧时,两条垂线应分别过入射点a 和出射点b,如图3乙所示.所得矩形即为题目要求的最小矩形.图3甲图中几何关系为)cos 1(1θ+=R L 、RL 22=乙图中几何关系为)cos 1(1θ-=R L 、θsin 22R L =○4正三角形有界磁场当粒子在磁场中转过的圆心角超过1200时,先作入射点a、出射点b 连线的中垂线,再从中垂线上某点作粒子运动轨迹圆的两条切线,且使两切线间的夹角为600,则此三条直线所组成的三角形即为题目所要求的最小三角形,如图4甲所示.当粒子在磁场中转过的圆心角不超过1200时,也是先作入射点a、出射点b 连线的中垂线,再从中垂线上某点连接入射点a 与出射点b,使其与ab 组成一正三角形,此正三角形即为所示如图4乙所示.图4甲图中几何关系为θcos 30sin 30cos 00R R L +=;乙图中几何关系为θsin 2R L =.例1.一质量为m 、带电量为+q 的粒子以速度v 0从O 点沿y 轴正方向射入一圆形匀强磁场区域,磁场方向垂直纸面向外,粒子飞出磁场区域后,从b 处穿过x 轴,速度方向与x 轴正方向的夹角为30°,同时进入场强大小为大小为E ,方向沿x 轴负方向成60°角斜向下的匀强电场中,通过了b 点正下方c 点,如图所示,已知b 到O 的距离为L ,粒子的重力不计,试求:30°v o bcv 0xyyEO 例1题图⑴磁感应强度B⑵圆形匀强磁场区域的最小面积;⑶c 点到b 点的距离例2.如图所示,在直角坐标xOy 平面y 轴左侧(含y 轴)有一沿y 轴负方向的匀强电场,一质量为m,电荷量为q 的带正电的粒子从x 轴上P 处发速度v0沿x 轴正方向进入电场,从y轴上Q 点离开电场时速度方向与y轴负方向间夹角θ=300,Q 点坐标为(0,-d),在y轴右侧有一与坐标平面垂直的有界匀强磁场区域(图中未画出),磁场磁感应强度大小qdmv B 0=,粒子能从坐标原点O 沿x轴负方向再进入电场,不计粒子重力,求:例2题图(1)电场强度大小E(2)如果有界匀强磁场区域为半圆形,求磁场区域的最小面积(3)粒子从P 点运动到O 点的总时间【解析】:(1)设粒子从Q 点离开电场时速度大小v 由粒子在匀强电场中做类平抛运动得:02v v =由动能定理得2022121mv mv qEd -=(2分)解得qdmv E 2320=(1分)例2答图(3)设粒子在匀强电场中运动时间为1t 粒子从Q 点离开电场时沿y 轴负向速度大小为y v 有03v v y例3.如图所示,第三象限内存在互相垂直的匀强电场和匀强磁场,匀强磁场方向向里,大小为B 0,匀强电场场强为E。
高中物理磁场经典计算题训练(有答案)
高中物理磁场经典计算题训练(有答案)1.弹性挡板围成边长为L = 100cm 的正方形abcd ,固定在光滑的水平面上,匀强磁场竖直向下,磁感应强度为B = 0。
5T ,如图所示。
质量为m =2×10-4kg 、带电量为q =4×10-3C 的小球,从cd 边中点的小孔P 处以某一速度v 垂直于cd 边和磁场方向射入,以后小球与挡板的碰撞过程中没有能量损失。
(1)为使小球在最短的时间内从P 点垂直于dc 射出来,小球入射的速度v 1是多少? (2)若小球以v 2 = 1 m/s 的速度入射,则需经过多少时间才能由P 点出来?2。
如图所示, 在区域足够大空间中充满磁感应强度大小为B 的匀强磁场,其方向垂直于纸面向里。
在纸面内固定放置一绝缘材料制成的边长为L 的等边三角形框架DEF , DE 中点S 处有一粒子发射源,发射粒子的方向皆在图中截面内且垂直于DE 边向下,如图(a )所示.发射粒子的电量为+q ,质量为m ,但速度v 有各种不同的数值.若这些粒子与三角形框架碰撞时均无能量损失,并要求每一次碰撞时速度方向垂直于被碰的边。
试求: (1)带电粒子的速度v 为多大时,能够打到E 点? (2)为使S 点发出的粒子最终又回到S 点,且运动时间最短,v 应为多大?最短时间为多少? (3)若磁场是半径为a 的圆柱形区域,如图(b )所示(图中圆为其横截面),圆柱的轴线通过等边三角形的中心O ,且a =)10133( L 。
要使S 点发出的粒子最终又回到S 点,带电粒子速度v 的大小应取哪些数值?3。
在直径为d 的圆形区域内存在匀强磁场,磁场方向垂直于圆面指向纸外.一电荷量为q ,质量为m 的粒子,从磁场区域的一条直径AC 上的A 点射入磁场,其速度大小为v 0,方向与AC 成α.若此粒子恰好能打在磁场区域圆周上D 点,AD 与AC 的夹角为β,如图所示.求该匀强磁场的磁感强度B 的大小.a b cdACFD(a )(b )4。
磁场区域的最小面积问题
磁场区域的最小面积问题考题中多次出现求磁场的最小范围问题,这类题对学生的平面几何知识与物理知识的综合运用能力要求较高。
其难点在于带电粒子的运动轨迹不是完整的圆,其进入边界未知的磁场后一般只运动一段圆弧后就飞出磁场边界,运动过程中的临界点(如运动形式的转折点、轨迹的切点、磁场的边界点等)难以确定。
下面我们以实例对此类问题进行分析。
一、磁场范围为树叶形例1.如图所示的直角坐标系第I 、II 象限内存在方向向里的匀强磁场,磁感应强度大小B =0.5T ,处于坐标原点O 的放射源不断地放射出比荷6104⨯=mq C/kg 的正离子,不计离子之间的相互作用。
⑴求离子在匀强磁场中运动周期;⑵若某时刻一群离子自原点O 以不同速率沿x 轴正方向射出,求经过6106-⨯πs 时间这些离子所在位置构成的曲线方程;⑶若离子自原点O 以相同的速率v 0=2.0×106m/s 沿不同方向射入第I 象限,要求这些离子穿过磁场区域后都能平行于y 轴并指向y 轴正方向运动,则题干中的匀强磁场区域应怎样调整(画图说明即可)?并求出调整后磁场区域的最小面积。
15(16分)解:⑴根据牛顿第二定律 有 2mv qvB R=2分运动周期22R mT v qB ππ==610s π-=⨯ 2分 ⑵离子运动时间611066t s T π-=⨯= 2分根据左手定则,离子沿逆时针方向作半径不同的圆周运动,转过的角度均为1263πθπ⨯== 1分这些离子所在位置均在过坐标原点的同一条直线上, 该直线方程tan23y x x θ==2分⑶离子自原点O 以相同的速率v 0沿不 同方向射入第一象限磁场,均做逆时 针方向的匀速圆周运动 根据牛顿第二定律 有2mv qv B R =00 2分mv R qB=1=m 1分这些离子的轨道圆心均在第二象限的四分之一圆弧AC 上,欲使离子穿过磁场区域后都能平行于y 轴并指向y 轴正方向运动,离开磁场时的位置在以点(1,0)为圆心、半径R=1m 的四分之一圆弧(从原点O起顺时针转动90︒)上,磁场区域为两个四分之一圆的交集,如图所示 2分调整后磁场区域的最小面积22min22()422R R S ππ-=⨯-=m22分例2.如图所示的直角坐标系中,在直线x=-2l 0到y 轴区域内存在着两个大小相等、方向相反的有界匀强电场,其中x 轴上方的电场方向沿y 轴负方向,x 轴下方的电场方向沿y 轴正方向。
2018年全国中学生奥林匹克物理竞赛--含答案
2018年全国中学生奥林匹克物理竞赛河南省预赛试卷考试时间:2018年5月27日(星期日)上午8:30~10:30注意事项:1、首先填写密封线内的市、县、学校、姓名和考号;2、用蓝色或黑色水笔、钢笔、圆珠笔直接在试卷上作答;3、答卷过程中可以使用普通型计算器;本试卷共8页,三大题,16小题,总分100分。
一、选择题(本题8小题。
每小题4分,共32分。
在每小题给出的四个选顶中,第1~4题只有一项符合题目要求.第5~8题有多项符合题目要求。
全部选对的锝4分.选对但不全的得2分,有选错的得0分,请将选出的答案序号填在下面的表格中。
1.在国际单位制(简称SI)中,力学和电学的基本单位有:m(米)、kg(千克)、s(秒)、A(安培).则导出单位V (伏特) 用上述基本单位可表示为A.m2·kg·s-4·A-1B.m2·kg·s-3·A-1C.m2·kg·s-2·A-1D.m2·kg·s-1·A-l2.物理概念和规律的应用都有一定的前提条件,对此,下列说法中正确的是A.牛顿第二定律适用于宏观物体和微观粒子B.只要合外力的功为零,机械能就守恒C.磁感线总是闭合的D.电场线总是开放的3.一油滴静止在极板水平放置的足够大的平行板电容器中,给电容器再充上一些电荷△Q,油滴开始向上运动,经t秒后,电容器突然放电失去一部分电荷△Q',又经过t秒,油滴回到原位置,假如在运动过程中油滴的电量一定.则A.在两个t秒内,油滴的平均速度相同B.油滴在前后两个t秒内的加速度大小之比为l ∶3C.油滴在前后两个t秒内离出发点的最大距离之比为1∶3D.△Q'∶△Q=1∶3'4、如图所示,质量均为m的两物体A、B用轻绳连接并跨过两光滑的定滑轮处于静止状态,两定滑轮间距为L;现在两定滑轮连线中点处再挂一质量也为m的物体C,从静止释放C 后,若轻绳足够长,则A .AB .C 的速度先增大后减小C.B 的速度一直增大 D .A 上升的最大高度是L /85.如图所示的a 、b 分别表示一列横波上相距3 m 的两个质点A 、B 的振动图像。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
磁场区域的最小面积
传统的磁场题一般是已知磁场,画轨迹,本部分题目是由轨迹反推磁场区域,是逆向推理,难度较大。
1.一匀强磁场,磁场方向垂直于 xoy 平面,在 xy 平面上,磁场分布在以 O 为中心的一个圆形区域内。
一个质量为 m 、电荷量为 q 的电带粒子,由原点 O 开始运动, 初速度为 v ,方向沿 x 正方向。
后来,粒子经过 y 轴上的 P 点,此时速度方向与 y 轴
的夹角为 30°, P 到 O 的距离为 L ,如图所示。
不计重力的影响。
求磁场的磁感应强度 B 的大小和 xy 平面上磁场区域的半径 R 。
2. 如图所示,第四象限内有互相正交的匀强电场 E 与匀强磁场 B 1, E 的大小为0.5×103V/m, B 1大小为 0.5T ;第一象限的某个矩形区域内,有方向垂直纸面向里的匀强磁场 B 2,磁场的下边界与 x 轴重合.一质量 m =1×10-14kg 、电荷量 q =1×10-10C 的带正电微粒以某一速度 v 沿与 y 轴正方向 60°角从 M 点沿直线运动, 经 P 点即进入处于第一象限内的磁场 B 2区域.一段时间后,小球经过 y 轴上的 N 点并与 y 轴正方向成 60°角的方向飞出。
M 点的坐标为 (0, -10 , N 点的坐标为 (0, 30 ,不计粒子重力, g 取 10m/s2.
(1请分析判断匀强电场 E 1的方向并求出微粒
的运动速度 v ;
(2匀强磁场 B 2的大小为多大?;
(3B 2磁场区域的最小面积为多少?
3. 一个质量为 m, 带 +q电量的粒子在 BC 边上的 M 点以速度 v 垂直于 BC 边飞入正三角形 ABC 。
为了使该粒子能在 AC 边上的 N 点垂直于 AC 边飞出该三角形,可在适当的位置加一个垂直于纸面向里, 磁感应强度为 B 的匀强磁场。
若此磁场仅分布在一个也是正三角形的区域内,且不计粒子的重力。
试
求:
(1该粒子在磁场里运动的时间 t ;
(2该正三角形区域磁场的最小边长;
(3画出磁场区域及粒子运动的轨迹。
4.如图, ABCD 是边长为 a 的正方形。
质量为 m 、电荷量为 e 的电子以大小为v 0的初速度沿纸面垂直于 BC 边射入正方形区域。
在正方形内适当区域中有匀强磁场。
电子从 BC 边上的任意点入射,都只能从 A 点射出磁场。
不计重力,求:
⑴此匀强磁场区域中磁感应强度的方向和大小;
⑵此匀强磁场区域的最小面积。