确定磁场最小面积

合集下载

专题:圆形磁场问题

专题:圆形磁场问题
O4 O3 O2
O1
例题(多选)如图虚线所示区域内有方向垂直于纸面的匀
强磁场,一束速度大小各不相同的质子正对该区域的圆 心O射入这个磁场;结果,这些质子在该磁场中运动的
时间有的较长,有的较短,其中运动时间较长的粒子

CD )
B v O s1 θ1 R1 s2
A.射入时的速度一定较大 B.在该磁场中运动的路程一定较长 C.在该磁场中偏转的角度一定较大 D.从该磁场中飞出的速度一定较小
2 2
2
当速度变为2V的带电粒子,不具备“磁会聚”的 条件,因此不会都通过O点。但此题可采用极端分析 法,带电微粒在磁场中经过一段半径为r’=2R的圆 弧运动后,将在y轴的右方(x>0)的区域离开磁场并做 匀速直线运动,如图所示。靠近上端点发射出来的带 电微粒在突出磁场后会射向x同正方向的无穷远处; 靠近下端点发射出来的带电微粒会在靠近原点之处穿 出磁场。所以,这束带电微粒与x同相交的区域范围 是x>0. y
θ2
R2
结论3:运动速度v相同,方向不同,弧长越长对应 时间越长。(直径对应的弧最长)
例题:如图,半径为 r=3×10-2m的圆形区域内有一匀强磁 场B=0.2T,一带正电粒子以速度v0=106m/s的从a点处射入 磁场,该粒子荷质比为q/m=108C/kg,不计重力。若要使
粒子飞离磁场时有最大的偏转角,其入射时粒子的方向应 如何(以v0与oa的夹角表示)?最大偏转角多大? 解析:R=mv/Bq=5×102m>r 说明:半径确定时,通过的弧越 长,偏转角度越大。而弧小于半 个圆周时,弦越长则弧越长。 sin = r/R = 37º,
h 2vt 4 3mv / qE
2
圆形磁场多次碰撞问题

确定带电粒子在磁场中做圆运动的圆心的方法

确定带电粒子在磁场中做圆运动的圆心的方法

确定带电粒子在磁场中做圆运动的圆心的方法带电粒子在磁场中圆运动的问题综合性较强,是高中物理的一个难点,也是高考的热点。

解这类问题既要用到物理中的洛仑兹力、圆周运动的规律,又要用到数学中的平面几何的知识.其中关键是确定圆运动的圆心,只有找到圆心的位置,才能正确运用物理规律和数学知识。

下面给出几种找圆心常用的方法。

方法一:利用两个速度垂线的交点找圆心由于向心力的方向与线速度方向互相垂直,洛伦兹力(向心力)沿半径指向圆心,知道两个速度的方向,画出粒子轨迹上两个对应的洛伦兹力,其延长线的交点即为圆心。

例1 、如图1所示,一个质量为m电荷量为q的带电粒子从x轴上的P(a,0)点以速度v,沿与x正方向成60°的方向射入第一象限内的匀强磁场中,并恰好垂直于y轴射出第一象限。

求匀强磁场的磁感应强度B和射出点的坐标。

方法二:利用速度的垂线与弦的中垂线的交点找圆心带电粒子在匀强磁场中做匀速运动时,如果已知轨迹上的两点的位置和其中一点的速度方向,可用联结这两点的弦的中垂线与一条半径的交点确定圆心的位置。

例2、电子自静止开始经M、N板间(两板间的电压为U)的电场加速后从A点垂直于磁场边界射入宽度为d的匀强磁场中,电子离开磁场时的位置P偏离入射方向的距离为L,如图2所示,求:(1)正确画出电子由静止开始直至离开磁场时的轨迹图;(2)匀强磁场的磁感应强度.(已知电子的质量为m,电量为e)方法三、利用速度的垂线与角的平分线的交点找圆心当带电粒子通过圆形磁场区后又通过无场区,如果只知道射入和射出时的速度的方向和射入时的位置,而不知道射出点的位置,应当利用角的平分线和半径的交点确定圆心。

例3、一质量为m、带电量为+q 的粒子以速度v 从O点沿y 轴正方向射入磁感应强度为B 的圆形匀强磁场区域,磁场方向垂直纸面向外,粒子飞出磁场区域后,从B 处穿过x轴,速度方向与x 轴正方向的夹角为30°,同时进入场强为E、方向沿与x轴负方向成60°角斜向下的匀强电场中,通过了B点正下方的C点.如图示4所示,不计重力,试求:(1)圆形匀强磁场区域的最小面积;(2)C点到B点的距离h。

学科网2024年高三1月大联考物理试题(新课标Ⅲ卷)

学科网2024年高三1月大联考物理试题(新课标Ⅲ卷)

学科网2024年高三1月大联考物理试题(新课标Ⅲ卷)一、单项选择题(本题包含8小题,每小题4分,共32分。

在每小题给出的四个选项中,只有一项是符合题目要求的)(共8题)第(1)题如图所示,竖直虚线的左侧有方向垂直于线圈所在平面、磁感应强度大小为的匀强磁场,一面积为,电阻为的单匝圆形线圈以大小为的速度向左匀速进入磁场,线圈的直径始终与平行.下列说法正确的是()A.在线圈进入磁场的过程中,线圈上产生的感应电流始终沿顺时针方向B.在线圈进入磁场的过程中,线圈受到的安培力先水平向左后水平向右C.当与重合时,线圈上产生的感应电动势大小为D.在线圈进入磁场的过程中,通过导线横截面的电荷量为第(2)题如图所示,一小球(可视为质点)沿斜面匀加速下滑,依次经过A、B、C三点。

已知AB=18 m,BC=30 m,小球经过AB和BC两段所用的时间均为2 s,则小球经过A、B、C三点时的速度大小分别是( )A.12 m/s,13 m/s,14 m/s B.10 m/s,14 m/s,18 m/sC.8 m/s,10 m/s,16 m/s D.6 m/s,12 m/s,18 m/s第(3)题小刚同学站在电梯底板上,利用速度传感器和计算机研究一观光电梯升降过程中的情况,如图所示的v-t图象是计算机显示的观光电梯在某一段时间内速度变化的情况(竖直向上为正方向)。

根据图象提供的信息,可以判断下列说法中正确的是( )A.在5~10s内,该同学对电梯底板的压力等于他所受的重力B.在0~5s内,观光电梯在加速上升,该同学处于失重状态C.在10~20s内,该同学所受的支持力不变,该同学的机械能减少D.在20~25s内,观光电梯在加速下降,该同学处于超重状态第(4)题电容器是一种重要的电学元件,在电工和电子技术中应用广泛.使用图甲所示电路观察电容器的充电和放电过程.电路中的电流传感器(不计内阻)与计算机相连,可以显示电流随时间的变化.直流电源电动势为E,实验前电容器不带电.先将开关K拨到“1”给电容器充电,充电结束后,再将其拨到“2”,直至放电完毕.计算机显示的电流随时间变化的曲线如图乙所示.则下列说法正确的是()A.乙图中阴影部分的面积B.乙图中阴影部分的面积C.由甲、乙两图可判断阻值D.由甲、乙两图可判断阻值第(5)题2024年4月25日,神舟十八号飞船与天宫空间站顺利对接。

磁场的计算和测量方法

磁场的计算和测量方法

磁场的计算和测量方法磁场是我们生活中常见的一种物理现象,它可以通过计算和测量来揭示其特性和行为。

在本文中,我们将探讨磁场的计算和测量方法,并深入了解其原理和应用。

一、磁场的计算方法磁场的计算方法有多种,其中最常见的是通过安培定律和比奥-萨伐尔定律来计算。

安培定律表明,磁场的大小与电流强度成正比,与距离成反比。

因此,我们可以通过测量电流和距离来计算磁场的强度。

具体而言,我们可以使用安培表来测量电流,并使用磁感应强度计来测量距离。

然后,根据安培定律的公式B = μ0 * I / (2πr),其中B表示磁场强度,μ0表示真空中的磁导率,I表示电流强度,r表示距离,我们可以计算出磁场的数值。

此外,还有一种常见的计算方法是通过磁通量和磁场的关系来计算。

磁通量是磁场穿过一个平面的总磁场量,可以通过使用磁感应强度计和测量平面面积来计算。

然后,根据比奥-萨伐尔定律的公式Φ = B * A * cosθ,其中Φ表示磁通量,B表示磁场强度,A表示平面面积,θ表示磁场与平面法线的夹角,我们可以计算出磁场的数值。

二、磁场的测量方法除了计算方法外,我们还可以使用各种仪器和设备来测量磁场。

其中最常见的是磁感应强度计和霍尔效应传感器。

磁感应强度计是一种用于测量磁场强度的仪器,它包含一个磁场感应元件和一个指示器。

当磁感应元件暴露在磁场中时,它会产生一个电压信号,指示器会根据该信号显示磁场的强度。

这种仪器的优点是简单易用,适用于实验室和工业环境中的磁场测量。

另一种常用的磁场测量方法是使用霍尔效应传感器。

霍尔效应是一种基于磁场对电流的影响而产生的电势差现象,可以通过将霍尔效应传感器放置在磁场中来测量磁场的强度。

传感器会产生一个电压信号,该信号与磁场的强度成正比。

这种方法的优点是精确度高,适用于需要高精度测量的应用,如磁共振成像和磁力计。

除了这些仪器和设备,还有其他一些测量方法,如磁力计和磁化强度计。

磁力计是一种用于测量磁场力的仪器,它可以通过测量磁场对物体施加的力来确定磁场的强度。

专项练习--磁场地最小面积求解

专项练习--磁场地最小面积求解

25题练习〔3〕--磁场的最小面积1.如以下图,第四象限内有互相正交的匀强电场E 与匀强磁场B 1,E 的大小为1.5×103 V/m,B 1大小为0.5 T ;第一象限的某个矩形区域内,有方向垂直纸面的匀强磁场,磁场的下边界与x 轴重合.一质量m =1×10-14 kg,电荷量q =2×10-10 C 的带正电微粒以某一速度v 沿与y 轴正方向60°角从M 点射入,沿直线运动,经P 点后即进入处于第一象限内的磁场B 2区域.一段时间后,微粒经过y 轴上的N点并与y 轴正方向成60°角的方向飞出.M 点的坐标为<0,-10>,N点的坐标为<0,30>,不计微粒重力,g 取10 m/s 2.如此求:<1>微粒运动速度v 的大小;<2>匀强磁场B 2的大小;<3>B 2磁场区域的最小面积.解析:<1>带正电微粒在电场和磁场复合场中沿直线运动,qE =qvB 1,解得v =E/B 1=3×103 m/s.<2>画出微粒的运动轨迹如图,粒子做圆周运动的半径为R =错误! m.由qvB 2=mv 2/R,解得B 2=3错误!/4 T.<3>由图可知,磁场B 2的最小区域应该分布在图示的矩形PACD 内,由几何关系易得PD =2Rsin 60°=20 cm =0.2 m,PA =R<1-cos60°>=错误!/30 m.所以,所求磁场的最小面积为S =PD ·PA =错误! m 2.答案:<1>3×103 m/s <2>错误! T<3>错误! m 22.如图甲所示,x 轴正方向水平向右,y 轴正方向竖直向上.在xoy 平面内有与y 轴平行的匀强电场,在半径为R 的圆形区域内加有与xoy 平面垂直的匀强磁场.在坐标原点O 处放置一带电微粒发射装置,它可以连续不断地发射具有一样质量m 、电荷量q 〔0>q 〕和初速为0v 的带电粒子.重力加速度大小为g.〔1〕当带电微粒发射装置连续不断地沿y 轴正方向发射这种带电微粒时,带电微粒将沿圆形磁场区域的水平直径方向离开磁场,并继续沿x 轴正方向运动.求电场强度和磁场强度的大小和方向.〔2〕调节坐标原点0处的带电微粒发射装置,使其在xoy 平面内不断地以一样的速率v 0沿不同方向将这种带电微粒射入第1象限,如图乙所示.现要求带电微粒最终都能平行于x 轴正方向运动,如此在保证匀强电场、匀强磁场的强度和方向不变的条件下,应如何改变匀强磁场的分布区域?并求出符合条件的磁场区域的最小面积.解〔1〕由题目中"带电粒子从坐标原点O 处沿y 轴正方向进入磁场后,最终沿圆形磁场区 域的水平直径离开磁场并继续沿x 轴正方向运动〞可知,带电微粒所受重力与电场力平衡.设电场强度大小为E,由平衡条件得:qE mg =1分 N ∴q mg E =1分 电场方向沿y 轴正方向 带电微粒进入磁场后,做匀速圆周运动,且圆运动半径r=R.设匀强磁场的磁感应强度大小为B.由牛顿第二定律得:R mv B qv 200=1分 ∴qR mv B 0=1分 磁场方向垂直于纸面向外1分〔2〕设由带电微粒发射装置射入第Ⅰ象限的带电微粒的初速度方向与x 轴承夹角θ, 如此θ满足0≤2πθ<,由于带电微粒最终将沿x 轴正方向运动,故B 应垂直于xoy 平面向外,带电微粒在磁场内做半径为qBmv R 0=匀速圆周运动. 由于带电微粒的入射方向不同,假如磁场充满纸面,它们所对应的运动的轨迹如以下图.2分为使带电微粒经磁场偏转后沿x 轴正方向运动.由图可知,它们必须从经O 点作圆运动的各圆的最高点飞离磁场.这样磁场边界上P 点的坐标P 〔x,y 〕应满足方程:θsin R x =,)cos 1(θ-=R y ,所以磁场边界的方程为:222)(R R y x =-+2分由题中0≤2πθ<的条件可知, 以2πθ→的角度射入磁场区域的微粒的运动轨迹即为所求磁场的另一侧的边界.2分因此,符合题目要求的最小磁场的X 围应是圆222)(R R y x =-+与圆222)(R y R x =+-的交集局部〔图影局部〕.1分由几何关系,可以求得符合条件的磁场的最小面积为:22202min )12(B q v m S -=π1分 3.如以下图,在平面直角坐标系xOy 中的第一象限内存在磁感应强度大小为B 、方向垂直于坐标平面向内的有界圆形匀强磁场区域〔图中未画出〕;在第二象限内存在沿x 轴负方向的匀强电场.一粒子源固定在x 轴上的A 点,A 点坐标为〔-L,0〕.粒子源沿y 轴正方向释放出速度大小为v 的电子,电子恰好能通过y 轴上的C 点,C 点坐标为〔0,2L 〕,电子经过磁场偏转后方向恰好垂直ON,ON 是与x 轴正方向成15°角的射线.〔电子的质量为m,电荷量为e,不考虑粒子的重力和粒子之间的相互作用.〕求:〔1〕第二象限内电场强度E 的大小.〔2〕电子离开电场时的速度方向与y 轴正方向的夹角θ.〔3〕圆形磁场的最小半径R min .解:〔1〕22mv EeL〔2〕=45°〔3〕电子的运动轨迹如图,电子在磁场中做匀速圆周运动的半径电子在磁场中偏转120°后垂直于ON射出,如此磁场最小半径:由以上两式可得:4.〔某某适应性测试>在如右图所示的平面直角坐标系中,存在一个半径R=0.2m的圆形匀强磁场区域,磁感应强度B=1.0T,方向垂直纸面向外,该磁场区域的右边缘与坐标原点O 相切.y轴右侧存在电场强度大小为E=1.0×104N/C的匀强电场,方向沿y轴正方向,电场区域宽度l=0.1m.现从坐标为<-0.2m,-0.2m>的P点发射出质量m=2.0×10-9kg、带电荷量q=5.0×10-5C的带正电粒子,沿y轴正方向射入匀强磁场,速度大小v0=5.0×103m/s.重力不计.<1>求该带电粒子射出电场时的位置坐标;<2>为了使该带电粒子能从坐标为<0.1m,-0.05m>的点回到电场后,可在紧邻电场的右侧一正方形区域内加匀强磁场,试求所加匀强磁场的磁感应强度大小和正方形区域的最小面积.解析:<1>带正电粒子在磁场中做匀速圆周运动,有qv0B=m错误!解得r=0.20m=R根据几何关系可知,带电粒子恰从O点沿x轴进入电场,带电粒子做类平抛运动.设粒子到达电场边缘时,竖直方向的位移为y,有l=v0t,y=错误!·错误!t2联立解得y=0.05m所以粒子射出电场时的位置坐标为<0.1m,0.05m>.<2>粒子飞离电场时,沿电场方向速度v y=at=5.0×103m/s=v0粒子射出电场时速度v=错误!v0由几何关系可知,粒子在正方形区域磁场中做圆周运动半径r′=0.05错误!m由qvB′=m错误!,解得B′=4T正方形区域最小面积S=<2r′>2解得S=0.02m2.答案:<1><0.1m,0.05m> <2>0.02m25.如以下图,在坐标系第一象限内有正交的匀强电、磁场,电场强度E=1.0×103 V/m,方向未知,磁感应强度B=1.0 T,方向垂直纸面向里;第二象限的某个圆形区域内有垂直纸面向里的匀强磁场B′<图中未画出>.一质量m=1×10-14 kg、电荷量q=1×10-10 C的带正电粒子以某一速度v沿与x轴负方向成60°角的方向从A点进入第一象限,在第一象限内做直线运动,而后从B点进入磁场B′区域.一段时间后,粒子经过x轴上的C点并与x轴负方向成60°角飞出.A点坐标为<10,0>,C点坐标为<-30,0>,不计粒子重力.<1>判断匀强电场E的方向并求出粒子的速度v.<2>画出粒子在第二象限的运动轨迹,并求出磁感应强度B′.<3>求第二象限磁场B′区域的最小面积.解析<1>粒子在第一象限内做直线运动,速度的变化会引起洛伦兹力的变化,所以粒子必做匀速直线运动.这样,电场力和洛伦兹力大小相等,方向相反,电场E的方向与微粒运动的方向垂直,即与x轴正向成30°角斜向右上方.由平衡条件有Eq=Bqv得v=错误!=错误! m/s=103 m/s<2>粒子从B点进入第二象限的磁场B′中,轨迹如图粒子做圆周运动的半径为R,由几何关系可知R=错误! cm=错误! cm由qvB′=m错误!,解得B′=错误!=错误!,代入数据解得B′=错误! T.<3>由图可知,B、D点应分别是粒子进入磁场和离开磁场的点,磁场B′的最小区域应该分布在以BD为直径的圆内.由几何关系得BD=20 cm,即磁场圆的最小半径r=10 cm,所以,所求磁场的最小面积为S=πr2=3.14×10-2 m2答案<1>与x轴正向成30°角斜向右上方103 m/s <2>运动轨迹见解析图错误! T <3>3.14×10-2 m26.如图甲所示,在xOy平面内有足够大的匀强电场,电场方向竖直向上,电场强度E=40 N/C,在y轴左侧平面内有足够大的瞬时磁场,磁感应强度B1随时间t变化的规律如图乙所示,15π s后磁场消失,选定磁场垂直纸面向里为正方向.在y轴右侧平面内还有方向垂直纸面向外的恒定的匀强磁场,分布在一个半径为r=0.3 m的圆形区域<图中未画出>,且圆的左侧与y轴相切,磁感应强度B2=0.8 T.t=0时刻,一质量m=8×10-4 kg、电荷量q=2×10-4 C的微粒从x轴上x P=-0.8 m处的P点以速度v=0.12 m/s向x轴正方向入射.<g取10 m/s2,计算结果保存两位有效数字><1>求微粒在第二象限运动过程中离y轴、x轴的最大距离.<2>假如微粒穿过y轴右侧圆形磁场时,速度方向的偏转角度最大,求此圆形磁场的圆心坐标<xy>.解析<1>因为微粒射入电磁场后受到的电场力F=Eq=8×10-3 N,G=mg=8×10-3 N电F=G,所以微粒在洛伦兹力作用下做匀速圆周运动电因为qvB1=m错误!所以R1=错误!=0.6 mT=错误!=10π s从图乙可知在0~5 π s内微粒向左做匀速圆周运动在5π s~10π s内微粒向左匀速运动,运动位移x=v错误!=0.6π m1在10π s~15π s内,微粒又做匀速圆周运动,15π s以后向右匀速运动,之后穿过y轴.所以,离y轴的最大距离s=0.8 m+x+R1=1.4 m+0.6π m≈3.3 m1离x轴的最大距离s′=2R1×2=4R1=2.4 m<2>如图,微粒穿过圆形磁场要求偏转角最大,〔因为R=2r〕入射点A与出射点B的连线必须为磁场圆的直径因为qvB2=错误!所以R2=错误!=0.6 m=2r所以最大偏转角θ=60°所以圆心坐标x=0.30 my=s′-r cos 60°=2.4 m-0.3 m×错误!≈2.3 m,即磁场的圆心坐标为<0.30,2.3>答案<1>3.3 m,2.4 m <2><0.30,2.3>7.如以下图,虚线MO与水平线PQ相较于O点,二者夹角θ=300,在MO右侧某个区域存在着磁感应强度为B、垂直纸面向里的匀强磁场,在MO左侧存在着垂直纸面向里的另一匀强磁场,磁感应强度为B’.现有一群质量为m、电量为+q的带电粒子在纸面内以速度v〔0≤v≤EB〕垂直于MO从O点射入磁场,所有粒子通过直线MO时,速度方向均平行于PQ向左,不计粒子的重力和粒子间的相互作用力.求:〔1〕磁场区域的最小面积.〔2〕速度最大的粒子从O开始射入磁场至返回水平线POQ所用的时间.。

18 磁场最小面积问题—高中物理三轮复习重点题型考前突破

18 磁场最小面积问题—高中物理三轮复习重点题型考前突破

一、磁场形状为圆状的最小面积计算1.如图,在直角坐标系xOy平面内,虚线MN平行于y轴,N点坐标(-l,0),MN与y 轴之间有沿y轴正方向的匀强电场,在第四象限的某区域有方向垂直于坐标平面的圆形有界匀强磁场(图中未画出)。

现有一质量为m、电荷量大小为e的电子,从虚线MN上的P点,以平行于x轴正方向的初速度v0射入电场,并从y轴上A点(0,0.5l)射出电场,射出时速度方向与y轴负方向成30°角,此后,电子做匀速直线运动,进入磁场并从圆形有界磁场边界上Q点(3l6,-l)射出,速度沿x轴负方向,不计电子重力。

求:(1)匀强电场的电场强度E的大小?(2)匀强磁场的磁感应强度B的大小?电子在磁场中运动的时间t是多少?(3)圆形有界匀强磁场区域的最小面积S是多大?解析(1)设电子在电场中运动的加速度为a,时间为t,离开电场时沿y轴方向的速度大小为v y,则a=eE mv y=atl=v0tv0=v y tan 30°解得E=3m v20 el。

(2)设轨迹与x轴的交点为D,OD距离为x D,则x D=0.5l tan 30°x D=3l 6所以DQ平行于y轴,电子在磁场中做匀速圆周运动的轨道的圆心在DQ上,电子运动轨迹如图所示。

设电子离开电场时速度为v ,在磁场中做匀速圆周运动的轨道半径为r , 则v 0=v sin 30° r =m v eB =2m v 0eB r +r sin 30°=l (有r =l3)t =13TT =2πm eB ⎝ ⎛⎭⎪⎫或T =2πr v =πl 3v 0解得B =6m v 0el ,t =πl9v 0。

(3)以切点F 、Q 为直径的圆形有界匀强磁场区域的半径最小,设为r 1,则 r 1=r cos 30°=3r 2=3l6S =πr 21=πl 212。

答案 (1)3m v 20el (2)6m v 0el ,πl 9v 0(3)πl 2122.如图所示,在直角坐标系xoy 中,第Ⅰ象限存在沿y 轴正方向、电场强度为E 的匀强电场,第Ⅳ象限存在一个方向垂直于纸面、磁感应强度为B 的圆形匀强磁场区域。

最小磁场矩形面积问题的再探讨

最小磁场矩形面积问题的再探讨

最小磁场矩形面积问题的再探讨作者:叶玉琴丁丹华来源:《中学物理·高中》2013年第05期《物理教师》2012年第3期刊登了一篇题为《怎样处理“题同答异”的问题》(下文称为《怎》文)的文章,文章探讨的问题如下:题如图1,一带电粒子(不计粒子的重力)以某一速度在竖直平面内做直线运动,经过一段时间后进入一垂直于纸面的磁感应强度为B的匀强磁场区域(图中未画出);粒子飞出磁场后接着沿垂直于电场的方向出入宽度为L的电场中,电场强度的大小为E,方向竖直向上.粒子穿过电场过程中,速度反向改变了60°角.已知带电粒子的质量为m,电荷量为q,粒子进入磁场前的速度方向与水平方向成θ=60°.若磁场区域为矩形,则矩形最小面积为多少?《怎》文开篇提出这样的观点:有些物理问题,因为题目所给的条件不严密,它的答案会随解题者对题目的理解的不同而不同.对于例题中的最小矩形面积问题,《怎》文认为:题目只是确定磁场区域是矩形,并没有要求边界是水平和竖直,留有让学生产生产生歧义的漏洞,因而多数人因为思维定势按图2求磁场区域最小面积为S=Rsinθ·R(1-cosθ)=34R2.【笔者注:此种方法确定的最小矩形的一对对边与粒子进点或出点处半径平行,下文称为“平行半径法”】而事实上有更小的矩形面积区域,如图3,它的面积S′=2Rsin30°·R(1-cos30°)=2-32R2,【笔者注:此种方法确定的最小矩形的一对对边与粒子在磁场中运动的进、出点决定的弦平行,故称之“平行弦法”】鉴于此,笔者认为,第一,关于此类问题的教学处理仅应用“有结果反推原因”的物理方法是不够的,而应给出更严谨、更普遍性的论证,只有这样,才能让学生深刻认识问题、了解问题并掌握解决问题的方法及原理.第二,《怎》文中提出的关于最小矩形磁场区域面积问题的题给条件是严密的,不存在“题同答异”一说,即不存在“答案随解题者对题目的理解的不同而不同”.笔者在教学中确实发现如《怎》文所说的情形:经常有学生拿着题目问,这道题在这里是这个答案,在另一本书上是那个答案.但笔者一点也不烦,因为这正是利用错误资源、澄清认识误区的最好时机!下面笔者对粒子在匀强磁场中做匀速圆周运动中所需的最小矩形磁场区域面积问题作一般性的论证和说明.为方便,令粒子在匀强磁场中做匀速圆周运动的半径为R,圆心角(或曰速度偏向角)为θ,分以下四种情形进行分析论证.21世纪国际社会的竞争归根到底是人才素质的竞争,而创新精神是优秀人才必备的素质.随着新课改的日益全面推行和高考改革的不断深入,近几年来高考试题也越来越突出了对学生能力的考查,主要表现在要求学生在熟练掌握知识的基础上能够灵活地综合运用所学的知识分析问题并寻求最佳的解决方案,这就要求学生具有周密分析、独立思考的能力,因此在教学中如果出现错误资源时,诚如《怎》文所说,这其实正是展现物理教师学术水平和对待问题的态度的最佳时机,同时也是培养中学生的质疑意识和创新精神的最佳时机,教师要积极把握、智慧对待!。

最小磁场面积、最短时间

最小磁场面积、最短时间

磁场时有最大的偏转角,其入射时粒子的方向应如何(以v0
(2)C点到 b点的距离 h。
y O2
A v
b
ቤተ መጻሕፍቲ ባይዱ
O
O1 60°
30°
v
x
h E
解:(1) 反向延长vb交y 轴于O2 点,作∠bO2 O的角平分线
交x 轴于O1 , O1即为圆形轨道的圆心,半径为R = OO1 =mv/qB,画出圆形轨迹交b O2于A点,如图虚线所示。
最小的圆形磁场区域是以OA为直径的圆,如图示:
d
例 一个垂直纸面向里的有界匀强磁场形状
如图所示,磁场宽度为 d。在垂直B的平面内
的A点,有一个电量为 -q、质量为 m、速度
-q A v m
为 v 的带电粒子进入磁场,请问其速度方向与 磁场边界的夹角为多少时粒子穿过磁场的时间 最短?(已知 mv/Bq > d) 对象模型:质点
d
αR O
过程模型:匀速圆周运动 规律:牛顿第二定律 + 圆周运动公式 条件:要求时间最短
解 :质点在磁场中圆周运动半径为
r=mv/Bq。质点在磁场区域中的轨道是 a 1/4 圆周,如图中M、N两点间的圆弧。
y v0 M B
r 2R
在通过M、N两点的不同的圆中,最小 的一个是以MN 连线为直径的圆周。
Or N
O
bx
圆形磁场区域的最小半径
R
1 2
MN
2 mvqB
例、如图,质量为m、带电量为+q 的粒子以速度v 从O点沿
故P1P2=20cm
a P1 N l
S
P2 b B
解题经验
1、临界问题,经常是运动轨迹圆与磁场边界相切时为临 界状态。

磁场中的最小面积问题

磁场中的最小面积问题

磁场中的“最小面积”问题河南省信阳高级中学陈庆威2016.12.27带电粒子在磁场中运动类题目本身就是磁场中的重难点问题,而求粒子在磁场中运动时的“最小面积”问题,又是这类问题中比较典型的难题。

很多时候面对这种题目,同学们的大脑都是一片空白,没有思路、没有方法、也没有模型。

那么,如何突破这一难题呢?以下是我精心整理的几道相关试题。

相信,我们通过该种模型题的训练,能学会举一反三、活学活用、准确把握模型、深刻理解模型,形成自己独立解决该类问题的思维和方法,从而全面提升我们的解题能力。

例题1:如图所示,一质量为m、电荷量为q的带电粒子,从y轴上的P/点以速度丫射入第一象限所示的区域,入射方向与x 轴正方向成。

角.为了使该粒子能从x轴上的P/点射出该区域,且射出方向与x轴正方向也成a角,可在第一象限适当的地方加一个垂直于xoy平面、磁感应强度为B的匀强磁场.若磁场分布为一个圆形区域,求这一匕心一圆形区域的最小面积为(不计粒子的重力)一一 .:解析:粒子在磁场中做匀速圆周运动,洛伦兹力提供向心力,由牛顿第二定律得:"二崂则粒子在磁场中做圆周的半径:R =竺qB由题意可知,粒子在磁场区域中的轨道为半径等于r 的圆上的一段圆周,这段圆弧应与入射方向的速度、 出射方向的速度相切,如图所示:则到入射方向所在直线和出射方向所在直线相距为 R 的O,点 就是圆周的圆心.粒子在磁场区域中的轨道就是以0,为圆心、R 为半径的圆上的圆弧 ef,而e 点和f 点应在所求圆形磁场区 域的边界上,在通过 e 、f 两点的不同的圆周中,最小的一个 是以ef 连线为直径的圆周.即得圆形区域的最小半径 一 R sin a =皿sin ° qB 则这个圆形区域磁场的最小面积例题2:如图所示,一带电质点,质量为m,电量为q,以平行于ox 轴的速度v 从y 轴上的a 点射入图中第一象限所示的区域。

为了使该 质点能从x 轴上的b 点以垂直于ox 轴的速度v 射出,可在适当的地方加一个垂直于xoy 平面、 磁感应强度为B 的匀强磁场。

带电粒子在磁场中的运动的最小面积问题

带电粒子在磁场中的运动的最小面积问题

30 l
运 动 ,初 速度 为 v,方 向 沿 X正 方 向 。 后
T P
来 .粒 子 经 过 Y轴 上 的 P点 .此 时速 度 方 向 与v轴 的 夹 角 为 30。,P到 0的 距 离 为


L,如 图所 示 。不 计 重 力 的 影 响 。求 磁 场 的磁 感 应 强 度B的 大 小 和xv平 面上 磁 场 区域 的 半 径 R。
经 过 v轴 上 的 N点 并 与 v轴 正 方 向成 60。 角 的方 向飞 出 。M点 的 坐标 为 (0,一1O),
N点 的 坐标 为 (0,3O),不 计 粒 子 重 力 ,g取 10m/s 。 (1)请 分 析 判 断 匀强 电场 E,的 方 向 并 求 出微 粒 的 运 动 速
度 v: (2)匀 强 磁 场B,的大 小 为 多 大 ?
R,由图 中几 何 关 系 可得
R: L

例 题 2.如 图所 示 ,第 四象 限 内有 互 相正 交 的 匀 强 电场 E与 匀 强磁 场B ,E的 大 小 为0.5x10 V/m,B.大 小 为0.5T;第 一 象 限 的 某 个 矩形 区域 内 ,有 方 向垂 直 纸 面 向里 的匀 强 磁 场 B,,磁 场
PA:R(1一cos60。): 3O m
所 以 . 所 求 磁 场 的 最 小 面 积 为 S:而 .PA:一1 Xx/3-



、/3 2


m —

150
例题3.一个质量为m,带+q电量 的
粒 子 在 BC边 上 的 M点 以速 度 v垂 直 于
·
/、
, \
BC边 飞入 正 三 角 形ABC。为 了使 该 粒

巴申定律公式求最小值

巴申定律公式求最小值

巴申定律公式求最小值
(最新版)
目录
1.巴申定律简介
2.巴申定律公式
3.求最小值的方法
4.实际应用案例
正文
1.巴申定律简介
巴申定律,又称巴申 - 霍尔定律,是由法国物理学家巴申和英国物理学家霍尔于 1939 年提出的。

该定律主要描述了在磁场中,电子在金属导体中运动时,其电阻与磁场强度之间的关系。

该定律对于理解磁性材料的电导率变化以及磁场对电子运动的影响具有重要意义。

2.巴申定律公式
巴申定律的数学表达式为:
R = ρ * (L / A) * (B^2 / μ0)
其中,R 代表金属导体的电阻;ρ代表金属导体的电阻率;L 代表导体长度;A 代表导体截面积;B 代表磁场强度;μ0 代表真空磁导率。

3.求最小值的方法
在实际应用中,我们常常需要求解巴申定律公式中的最小值。

为了求解最小值,可以对公式进行变形,得到:
B = sqrt((μ0 * A * R) / (L * ρ))
从上述公式可以看出,当 L/A 的比值最大时,磁场强度 B 最小。

也就是说,为了使电阻最小,应当使导体的长度与截面积之比最大。

4.实际应用案例
巴申定律在实际应用中具有广泛的应用价值。

例如,在磁悬浮列车的设计中,需要考虑磁场对列车的影响,以保证列车在高速行驶过程中能够稳定悬浮。

此外,在磁性材料的研究中,巴申定律也为研究者提供了理论依据,帮助他们更好地理解磁性材料的电导率变化。

总之,巴申定律是描述磁场中电子运动规律的重要定律,其在实际应用中具有广泛的价值。

有界磁场的最小面积模型

有界磁场的最小面积模型

一模型界定带电粒子在有界磁场中运动时,要完成题目要求的运动过程,空间中有粒子必须经过的一个磁场区域,按照题目要求的边界形状或由粒子临界状态下的运动轨迹所决定的有界磁场区域,其面积存在着一个最小值,此模型着重归纳有界磁场最小面积的确定与计算方法.二模型破解在涉及最小磁场面积的题目中,主要有两种类型,一种是单一粒子的运动中所经过磁场的最小面积,这种类型的题目通常对磁场区域的形状有明确的要求,如矩形、圆形、三角形;另一种类型是大量粒子经过磁场的运动,由临界状态下的粒子运动轨迹及对粒子的特定运动形式要求所产生的对磁场边界形状的特定要求,从而形成有界磁场的面积的极值问题.1.单一粒子的运动(i)确定粒子在磁场运动的轨迹半径粒子在磁场运动的轨迹半径通常是已知的或是能够由题目中条件计算得出的,也可在未知时先将半径假设出来.(ii)确定粒子在有界磁场中的入射方向和出射方向粒子在有界磁场中的入射方向和出射方向通常也是由题目给出或能够从题目中条件分析得出.(iii)确定粒子在有界磁场中运动时的入射点与出射点的位置当题目中没有给定粒子在进出磁场的位置时,先延长粒子的入射方向与出射方向所在的直线得到一个交点,粒子在磁场中运动的轨迹圆心必在这两条直线所形成的两对夹角中的其中一条夹角平分线上,由粒子经过磁场前后的运动要求确定圆心所在的夹角平分线;再在此夹角平分线上取一点O,过该点作粒子入射方向、出射方向所在直线的垂线,使O点到两直线的垂直距离等于粒子的运动轨迹半径,则两垂足即分别为粒子进出磁场时的入射点与出射点.(iv)确定有界磁场的边界连接入射点与出射点得到一条线段或直线,并作出粒子在磁场处于入射点与出射点之间的一段运动轨迹圆,再由题目对磁场边界形状的要求确定磁场边界线的位置或圆形磁场的最小半径.①圆形有界磁场(I)当题目对圆形磁场区域的圆心位置有规定时,连接圆心与粒子在磁场中的出射点即得到磁场区域的半径.但是这种情况下磁场区域的大小是固定的.(II)当题目对圆形磁场区域的圆心位置无规定时,若粒子在磁场中转过的圆弧为一段劣弧时,将连接入射点a 与出射点b 所得的线段作为磁场区域的直径,则所得圆即为最小面积的圆形磁场区域,如图1所示.图1图中几何关系为θsin R r =若粒子在磁场中转过的圆弧为半圆弧或一段优弧时,最小磁场区域的边界极限圆弧与粒子运动轨迹重合,即无最小值.②半圆形有界磁场(I)当粒子在磁场中运动轨迹是一段劣弧时,连接入射点a 与出射点b 所得直线与半圆形边界的直边重合,以ab 为直径作出的半圆弧即为所求,如图2甲所示.图中几何关系为θsin R r =(II)当粒子在磁场中运动轨迹是一段优弧时,连接入射点a 与出射点b 所得直线与半圆形边界的直边重合,以其中点为圆心作出与粒子运动轨迹相切的圆弧,此圆弧即为半圆形磁场区域的曲线边界,如图2乙所示.图2图中几何关系为)cos 1(θ+=R r (III)当粒子在磁场中运动轨迹是一个半圆弧时,磁场圆形边界与粒子运动轨迹重合.③矩形有界磁场(I)当题目对矩形磁场区域边界某个边有规定时,过入射点或过出射点作已知边界线的平行线或垂线,再作与已知边界线平行或垂直的、与粒子在磁场中运动轨迹相切的直线,则所得矩形即为题目要求的最小矩形.(II)当题目对矩形磁场区域边界无规定时,第一步:连接入射点a 与出射点b 得一条直线ab;第二步:作ab 的平行线且使其与粒子运动轨迹圆相切;第三步:作ab 的两条垂线,若粒子在磁场中转过的是一个优弧时,应使这两条垂线也与粒子运动轨迹圆弧相切,如图3甲所示;若粒子在磁场转过的是一段劣弧时,两条垂线应分别过入射点a 和出射点b,如图3乙所示.所得矩形即为题目要求的最小矩形.图3甲图中几何关系为)cos 1(1θ+=R L 、RL 22=乙图中几何关系为)cos 1(1θ-=R L 、θsin 22R L =○4正三角形有界磁场当粒子在磁场中转过的圆心角超过1200时,先作入射点a、出射点b 连线的中垂线,再从中垂线上某点作粒子运动轨迹圆的两条切线,且使两切线间的夹角为600,则此三条直线所组成的三角形即为题目所要求的最小三角形,如图4甲所示.当粒子在磁场中转过的圆心角不超过1200时,也是先作入射点a、出射点b 连线的中垂线,再从中垂线上某点连接入射点a 与出射点b,使其与ab 组成一正三角形,此正三角形即为所示如图4乙所示.图4甲图中几何关系为θcos 30sin 30cos 00R R L +=;乙图中几何关系为θsin 2R L =.例1.一质量为m 、带电量为+q 的粒子以速度v 0从O 点沿y 轴正方向射入一圆形匀强磁场区域,磁场方向垂直纸面向外,粒子飞出磁场区域后,从b 处穿过x 轴,速度方向与x 轴正方向的夹角为30°,同时进入场强大小为大小为E ,方向沿x 轴负方向成60°角斜向下的匀强电场中,通过了b 点正下方c 点,如图所示,已知b 到O 的距离为L ,粒子的重力不计,试求:30°v o bcv 0xyyEO 例1题图⑴磁感应强度B⑵圆形匀强磁场区域的最小面积;⑶c 点到b 点的距离例2.如图所示,在直角坐标xOy 平面y 轴左侧(含y 轴)有一沿y 轴负方向的匀强电场,一质量为m,电荷量为q 的带正电的粒子从x 轴上P 处发速度v0沿x 轴正方向进入电场,从y轴上Q 点离开电场时速度方向与y轴负方向间夹角θ=300,Q 点坐标为(0,-d),在y轴右侧有一与坐标平面垂直的有界匀强磁场区域(图中未画出),磁场磁感应强度大小qdmv B 0=,粒子能从坐标原点O 沿x轴负方向再进入电场,不计粒子重力,求:例2题图(1)电场强度大小E(2)如果有界匀强磁场区域为半圆形,求磁场区域的最小面积(3)粒子从P 点运动到O 点的总时间【解析】:(1)设粒子从Q 点离开电场时速度大小v 由粒子在匀强电场中做类平抛运动得:02v v =由动能定理得2022121mv mv qEd -=(2分)解得qdmv E 2320=(1分)例2答图(3)设粒子在匀强电场中运动时间为1t 粒子从Q 点离开电场时沿y 轴负向速度大小为y v 有03v v y例3.如图所示,第三象限内存在互相垂直的匀强电场和匀强磁场,匀强磁场方向向里,大小为B 0,匀强电场场强为E。

在磁场中寻找圆心的技巧

在磁场中寻找圆心的技巧

在磁场中寻找圆心的技巧一、已知入射点A和出射点B1、若已知A、B两点速度的方向,过A、B两点作速度方向的垂线,两垂线的交点是圆心;2、若已知A、B两点任意一点速度的方向,作该点速度方向的垂线及AB连线的中垂线,若垂线的交点即是圆心3、根据几何知识还可以得到以下推论:①弦两端的速度与弦的夹角均为θ,且对应的圆心角为2θ②速度的偏角为2θ例1 在y<0的区域存在匀强磁场,磁场方向垂直于xoy平面指向指外,磁感应强度为B,一带正电的粒子以速度V0从O点射入磁场,方向在xoy平面内,与x轴方向的夹角为θ,若粒子射出磁场的位置与O点的距离为L,求该粒子和比荷。

二、轨迹与两直线L、M相切,且圆心在直线N上,则直线L、M夹角的平分线与直线N的交点是圆心。

例2一匀强磁场,磁感应强度的方向垂直于xoy平面,磁场分布在以O为中心的一个圆形区域内。

一个质量为m,电荷量为q的带电粒子,由原点O 开始运动,初速度为V,方向沿x轴正方向。

后来,粒子经过y轴上的P点,此时速度方向与y轴的夹角为30°,P到O的距离为L,如图5所示。

不计重力的影响,求磁感应强度的B大小和xoy平面上的磁场区域的半径R。

三、利用圆的性质确定圆心的位置:1、两圆相切(内切、外切)时,圆心的连线过切点;2、两圆相交时,圆心的连线是相交弦的中垂线;3、带电粒子进入圆形磁场时,若速度的方向指向磁场的圆心O,则出磁场时,速度的方向必然背离圆心O;4、圆形磁场区域与x轴相切于A点,则从A点进入磁场的粒子,若其运动的轨道半径与磁场区域的半径相同,则出场时速度方向与X轴平行。

例3如图所示,在半径为r的圆形区域内,有一个匀强磁场,一带电粒子以速度v0从M点沿半径方向射入磁场区,并由N点射出,O点为圆心,∠MON=120°时,求:带电粒子在磁场区域的偏转半径R及在磁场区域中的运动时间。

例4如图中虚线MN是一垂直纸面的平面与纸面的交线,在平面右侧的半空间存在一磁感应强度为B、方向垂直纸面向外的匀强磁场。

带电粒子在有界磁场中运动规律整合

带电粒子在有界磁场中运动规律整合

带电粒子在有界磁场中运动规律整合带电粒子在有界磁场中的运动问题,是高中物理学习的重点,对考生的空间想象能力、物理过程的分析能力以及物理规律的综合应用能力都有很高的要求。

粒子的运动轨迹往往是一个残缺圆,因此会出现一系列最值。

由于此类问题综合性强,思维含量高,具有很强的选拔功能,因此成为历年高考的热点。

1.速度之“最”带电粒子在有界磁场中的匀速圆周运动,其轨迹是圆的一段弧,当速度大小变化时,匀速圆周运动的半径随之变化,轨迹也将发生变化,当带电粒子在磁场中运动的轨迹与边界相切或运动轨迹恰好过边界端点时的速度,就是满足条件的最大或最小速度.例题1:如图1宽为d的有界磁场的边界为PQ、MN,一个质量为m,带电荷量为-q的微粒沿图示方向垂直射入磁场,磁感应强度为B,要使该粒子不能从边界MN射出,此粒子入射速度的最大值是多大?2.运动时间之“最”由和得带电粒子在磁场中运动时间,时间与速度无关,圆心角越大,则粒子运动时间越长,因此圆心角之“最”决定运动时间之“最”。

例题2:如图3所示,相距为R的两块平行金属板M、N正对着放置,s1、s2分别为M、N板上的小孔,s1、s2、O三点共线,它们的连线垂直M、N,且s2O=R。

以O为圆心、R为半径的圆形区域内存在磁感应强度为B.方向垂直纸面向外的匀强磁场。

D为收集板,板上各点到O点的距离以及板两端点的距离都为2R,板两端点的连线垂直M、N板。

质量为m、带电量为+q的粒子,经s1进入M、N间的电场后,通过s2进入磁场。

粒子在s1处的速度和粒子所受的重力均不计。

当M、N间的电压不同时,粒子从s1到打在D上经历的时间t会不同,求t的最小值。

例题3:如图甲所示,建立Oxy坐标系,两平行极板P、Q垂直于y轴且关于x轴对称,极板长度和板间距均为l,第一四象限有磁场,方向垂直于Oxy平面向里。

位于极板左侧的粒子源沿x轴间右连接发射质量为m、电量为+q、速度相同、重力不计的带电粒子在0~3t时间内两板间加上如图乙所示的电压(不考虑极边缘的影响)。

在磁场中寻找圆心的技巧

在磁场中寻找圆心的技巧

在磁场中寻找圆心的技巧一、已知入射点A和出射点B1、若已知A、B两点速度的方向,过A、B两点作速度方向的垂线,两垂线的交点是圆心;2、若已知A、B两点任意一点速度的方向,作该点速度方向的垂线及AB连线的中垂线,若垂线的交点即是圆心3、根据几何知识还可以得到以下推论:①弦两端的速度与弦的夹角均为θ,且对应的圆心角为2θ②速度的偏角为2θ例1 在y<0的区域存在匀强磁场,磁场方向垂直于xoy平面指向指外,磁感应强度为B,一带正电的粒子以速度V0从O点射入磁场,方向在xoy平面内,与x轴方向的夹角为θ,若粒子射出磁场的位置与O点的距离为L,求该粒子和比荷。

二、轨迹与两直线L、M相切,且圆心在直线N上,则直线L、M夹角的平分线与直线N的交点是圆心。

例2一匀强磁场,磁感应强度的方向垂直于xoy平面,磁场分布在以O为中心的一个圆形区域内。

一个质量为m,电荷量为q的带电粒子,由原点O 开始运动,初速度为V,方向沿x轴正方向。

后来,粒子经过y轴上的P点,此时速度方向与y轴的夹角为30°,P到O的距离为L,如图5所示。

不计重力的影响,求磁感应强度的B大小和xoy平面上的磁场区域的半径R。

三、利用圆的性质确定圆心的位置:1、两圆相切(内切、外切)时,圆心的连线过切点;2、两圆相交时,圆心的连线是相交弦的中垂线;3、带电粒子进入圆形磁场时,若速度的方向指向磁场的圆心O,则出磁场时,速度的方向必然背离圆心O;4、圆形磁场区域与x轴相切于A点,则从A点进入磁场的粒子,若其运动的轨道半径与磁场区域的半径相同,则出场时速度方向与X轴平行。

例3如图所示,在半径为r的圆形区域内,有一个匀强磁场,一带电粒子以速度v0从M点沿半径方向射入磁场区,并由N点射出,O点为圆心,∠MON=120°时,求:带电粒子在磁场区域的偏转半径R及在磁场区域中的运动时间。

例4如图中虚线MN是一垂直纸面的平面与纸面的交线,在平面右侧的半空间存在一磁感应强度为B、方向垂直纸面向外的匀强磁场。

磁场区域的最小面积问题

磁场区域的最小面积问题

磁场区域的最小面积问题考题中多次出现求磁场的最小围问题,这类题对学生的平面几何知识与物理知识的综合运用能力要求较高。

其难点在于带电粒子的运动轨迹不是完整的圆,其进入边界未知的磁场后一般只运动一段圆弧后就飞出磁场边界,运动过程中的临界点(如运动形式的转折点、轨迹的切点、磁场的边界点等)难以确定。

下面我们以实例对此类问题进行分析。

一、磁场围为树叶形例1.如图所示的直角坐标系第I 、II 象限存在方向向里的匀强磁场,磁感应强度大小B =0.5T ,处于坐标原点O 的放射源不断地放射出比荷6104⨯=mq C/kg 的正离子,不计离子之间的相互作用。

⑴求离子在匀强磁场中运动周期;⑵若某时刻一群离子自原点O 以不同速率沿x 轴正方向射出,求经过6106-⨯πs 时间这些离子所在位置构成的曲线方程;⑶若离子自原点O 以相同的速率v 0=2.0×106m/s 沿不同方向射入第I 象限,要求这些离子穿过磁场区域后都能平行于y 轴并指向y 轴正方向运动,则题干中的匀强磁场区域应怎样调整(画图说明即可)?并求出调整后磁场区域的最小面积。

15(16分)解:⑴根据牛顿第二定律 有 2mv qvB R=2分运动周期22R mT v qB ππ==610s π-=⨯ 2分 ⑵离子运动时间611066t s T π-=⨯= 2分根据左手定则,离子沿逆时针方向作半径不同的圆周运动,转过的角度均为1263πθπ⨯== 1分这些离子所在位置均在过坐标原点的同一条直线上, 该直线方程tan2y x x θ==2分⑶离子自原点O 以相同的速率v 0沿不 同方向射入第一象限磁场,均做逆时 针方向的匀速圆周运动 根据牛顿第二定律 有2mv qv B R =00 2分mv R qB=1=m 1分这些离子的轨道圆心均在第二象限的四分之一圆弧AC 上,欲使离子穿过磁场区域后都能平行于y 轴并指向y 轴正方向运动,离开磁场时的位置在以点(1,0)为圆心、半径R=1m 的四分之一圆弧(从原点O起顺时针转动90︒)上,磁场区域为两个四分之一圆的交集,如图所示 2分调整后磁场区域的最小面积22min22()422R R S ππ-=⨯-=m22分例2.如图所示的直角坐标系中,在直线x=-2l 0到y 轴区域存在着两个大小相等、方向相反的有界匀强电场,其中x 轴上方的电场方向沿y 轴负方向,x 轴下方的电场方向沿y 轴正方向。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

确定磁场最小面积的方法
电磁场内容历来是高考中的重点和难点。

近年来求磁场的问题屡屡成为高考中的热点,而这类问题单纯从物理的角度又比较难求解,下面介绍几种数学方法。

一、几何法
例1. 一质量为m电荷量为+q的粒子以速度巾,从0点沿y轴正方向射入磁感应强度
为B的圆形匀强磁场区域,磁场方向垂直纸面向外,粒子飞出磁场区域后,从b处穿过x 轴,速度方向与x轴正方向的夹角为30°,同时进入场强为E、方向沿与x轴负方向成60°角斜向下的匀强电场中,通过了b点正下方的c点,如图1所示,粒子的重力不计,
试求:
(1)圆形匀强磁场区域的最小面积;
(2)c点到b点的距离。

解析:(1)先找圆心,过b点逆着速度v的方向作直线bd,交y轴于d,由于粒子在磁场中偏转的半径一定,且圆心位于Ob连线上,距0点距离为圆的半径,据牛顿第二定律
有:
2
也心二
应①
解得,r"
过圆心作bd的垂线,粒子在磁场中运动的轨迹如图则Oa应为磁
场区域的直径,由几何关系知:
2所示:要使磁场的区域有最小面积,
-=cos3O0
应③
由②③得」
所以圆形匀强磁场的最小面积为:
出_ 3_
z 4『於
(2)带电粒子进入电场后,由于速度方向与电场力方向垂直,故做类平抛运动,由运动
的合成知识有:
s• cos30* =丄皿彳

S- --------- --
联立④⑤⑥解得’…
二、参数方法
例2.在xOy平面内有许多电子(质量为m电荷量为e),从坐标原点0不断地以相同的
速率•沿不同方向射入第一象限,如图3所示。

现加一个垂直于.平面向里,磁感应强度为B的匀强磁场,要使这些电子穿过磁场区域后都能平行于x轴向x轴正向运动。

求符合该条件磁场的最小面积。

图3
解析:由题意可知,电子是以一定速度从原点0沿任意方向射入第一象限时,先考察速
子沿圆弧OCP!动至最高点P时即朝x轴的正向,可见这段圆弧就是符合条件磁场的上边界,见图5。

当电子速度方向与x轴正向成角度"时,作出轨迹图4,当电子达到磁场
边界时,速度方向必须平行于x轴方向,设边界任一点的坐标为;f' ' ■ '1,由图4可知:
可以看出随着夕的变化,S的轨迹是圆心为(0, R),半径为R的圆,即是磁场区域的下边界。

上下边界就构成一个叶片形磁场区域。

如图5所示。

则符合条件的磁场最小面积为扇形
面积减去等腰直角三角形面积的2倍。

度沿+y方向的电子,其运动轨迹是圆心在x轴上的A1点、半径为
的圆。

该电「-厂,消去参数•'一得:
图4
图5
带电粒子在磁场中运动之磁场最小范围问题剖析
近年来在考题中多次出现求磁场的最小范围问题,这类题对学生的平面几何知识与物理知识的综合运用能力要求较高。

其难点在于带电粒子的运动轨迹不是完整的圆,其进入边界未知的磁场后一般只运动一段圆弧后就飞出磁场边界,运动过程中的临界点(如
运动形式的转折点、轨迹的切点、磁场的边界点等)难以确定。

下面我们以实例对此类问题进行分析。

一、磁场范围为圆形
例1 一质量为霍、带电量为:的粒子以速度’:从0点沿轴正方向射入磁感强度为J 的一圆形匀强磁场区域,磁场方向垂直于纸面,粒子飞出磁场区后,从I处穿过.1轴,
速度方向与:轴正向夹角为30°,如图1所示(粒子重力忽略不计)。

试求:(1)圆形磁场区的最小面积;
(2)粒子从O点进入磁场区到达「点所经历的时间;
(3)「■点的坐标。

解析:(1)由题可知,粒子不可能直接由O点经半个圆周偏转到一:点,其必在圆周运动
不到半圈时离开磁场区域后沿直线运动到匚点。

可知,其离开磁场时的临界点与O点都
在圆周上,至恫心的距离必相等。

如图2,过〕点逆着速度:的方向作虚线,与「轴相交,由于粒子在磁场中偏转的半径一定,且圆心位于:.轴上,距O点距离和到虚线上点
垂直距离相等的「1点即为圆周运动的圆心,圆的半径
R-oo } =恥
要使圆形磁场区域面积最小,半径应为
•的一半,即:
-,
(2)粒子运动的圆心角为 1200,时间
点评:此题关键是要找到圆心和粒子射入、射出磁场边界的临界点,注意圆心必在两临 界点速度垂线的交点上且圆
心到这两临界点的距离相等;还要明确所求最小圆形磁场的 直径等于粒子运动轨迹的弦长。

二、磁场范围为矩形 例2如图3所示,直角坐标系⑴第一象限的区域存在沿 轴正方向的匀强电场。


—£
v
有一质量为匸,电量为:的电子从第一象限的某点 J (二,[)以初速度沿:轴的 负方向开始运动,经过 丄轴上的点(■,0)进入第四象限,先做匀速直线运动然后进 入垂直纸面的矩形匀强磁场区
域,磁场左边界和上边界分别与
「轴、:轴重合,电子偏
转后恰好经过坐标原点O ,并沿「轴的正方向运动,不计电子的重力。

求 (1 )电子经过/点的速度:;
(2)该匀强磁场的磁感应强度 -和磁场的最小面积--。

-,得 叮。

弦长眾为,
(3)二距离 I 二,故:点的坐标为(汹:
,0)。

解析:(1)电子从「点开始在电场力作用下作类平抛运动运动到/点,可知竖直方向:
占「1 2 3 ,
y = 1L =—皿x —_X =Vf£
8 2 ,水平方向: 4 。

4屁羽
[=------ 齐=加=■—v o n
解得、。

而- ,所以电子经过厂
二迟血=工
3 ,设V与-X方向的夹角为B,可知%
300。

(2)如图4,电子以与;成30°进入第四象限后先沿:一'工做匀速直线运动,然后进入匀强磁场区域做匀速圆周运动恰好以沿「轴向上的速度经过O点。

可知圆周运动的圆心
- '一定在X轴上,且一点到O点的距离与到直线:一‘匸上M点(M点即为磁场的边界点) 的垂直距离相等,找出01点,画出其运动的部分轨迹为弧MNO所以磁场的右边界和下边界就确定了。

y E
H * i i 1 i
N B 图4
evB = m —
设偏转半径为--, ,由图知OQ = 直纸
面向里。

—R 二一L3(14 -・
矩形磁场的长度- :,宽度•.
矩形磁场的最小面积为:-
点评:此题中粒子进入第四象限后的运动即为例键要注意矩形
磁场边界的确定。

、磁场范围为三角形
例3如图5, 一个质量为1■,带' 电量的粒子在
飞入正三角形ABC为了使该粒子能在AC边上的N点(CM= CN>垂
真于AC边飞出ABC 可在适当的位置加一个垂直于纸面向里,磁感
点时的速度为:
,所以B = v=
■-=二,解得一:_ ,方向垂
1中运动的逆过程,解题思路相似,关
BC边上的M点以速度「垂直于BC边
应强度为B的匀强磁场。

若此磁场仅分布在一个也是正三角形的区域内,且不计粒子的重力。

试求:。

相关文档
最新文档